3GPP security

Valtteri Niemi
3GPP SA3 (Security) chairman
Nokia
Some history and background
Some history 1/2

- SA3 took over the responsibility of specifications created by ETSI SMG10, e.g. TS 43.020 “Security-related network functions”
- For 3GPP Release 99, WG SA3 created 19 new specifications, e.g. TS 33.102 “3G security; Security architecture”
 - 5 specifications (out of these 19) originated by ETSI SAGE, e.g. TS 35.202 “KASUMI specification”
- For 3GPP Release 4, SA3 was kept busy with GERAN security, MAP security (later to be replaced by TCAP security) and various extensions to Rel-99
 - ETSI SAGE originated again 5 new specifications, e.g. TS 35.205-208 “MILENAGE algorithm set”
Some history 2/2

- **3GPP Release 5: SA3 added 3 new specifications:**
 - TS 33.203 “IMS security”
 - TS 33.210 “Network domain security: IP layer”
 - TS 33.108 “Handover interface for Lawful Interception” (created by SA3 LI subgroup)

- **Release 6: SA3 added 17 new specifications, e.g.:**
 - TS 33.220-222 “Generic Authentication Architecture”
 - TS 33.234 “WLAN interworking security”
 - TS 33.246 “Security of MBMS”
 - TS 33.310 “Network domain security: Authentication Framework”
 - TR 33.978 “Early IMS security”
 - TS 55.205 “GSM-MILENAGE algorithms: An example algorithm set for A3 and A8” (originated by SAGE)
 - TS 55.216-218 “A5/3 and GEA3 specifications” (originated by SAGE)
More recent history: Releases 7 and 8

- Key establishment between a UICC and a terminal (TS 33.110)
- Network Domain Security; Transaction Capabilities Application Part (TCAP) user security (TS 33.204)
- GAA extensions:
 - HTTPS connection between a UICC and a Network Application Function (NAF) (see TR 33.918)
 - SIM card based GBA (see TR 33.920)
 - GBA Push (TS 33.223)
- Specifications of UEA2 & UIA2 (incl. SNOW 3G spec) (TS 35.215-218)
- LTE/SAE security
 - Threats and Rationale for design decisions (TR 33.821)
 - Security of mobility between 3GPP and non-3GPP access networks (TR 33.922)
- Co-existence between TISPAN and 3GPP authentication schemes (TR 33.803)
- Access security review (TR 33.801)
- Trust recommendations for open platforms (TR 33.905)
- Liberty Alliance and 3GPP security interworking (TR 33.980)
3G security background

- **Leading principles:**
 - Move useful 2G security features to 3G
 - Add countermeasures against real weaknesses in 2G

- **Main security characteristics in GSM (= 2G) :**
 - User authentication & radio interface encryption
 - SIM used as security module
 - Operates without user assistance
 - Requires minimal trust in serving network

- **Main weaknesses in GSM:**
 - Active attacks are possible (false BS etc.)
 - Authentication data (e.g. cipher keys) sent in clear inside one network and between networks
 - Cipher keys too short (in the near future)
 - Secret algorithms do not create trust
Some release 5 highlights
Security gateways for IPsec

- Inter-operator signaling is done via security gateways (a)
- End-to-end security (b) can be added after key management evolves towards PKI
Challenge with phased introduction of security mechanisms

- An example case: introduction of Security Gateways in network-to-network communications
- Now: communication works well without this additional security
- Problem #1: Assume 10% of networks have been upgraded to support security gateways
 → Only ~ 1% of the total communication is protected
- Problem #2: Assume 99% of networks have been upgraded to support security gateways
 → Then ~ 98% of total communication is protected
- But certainly an active attacker masquerades as one of the remaining 1% of networks
IMS (SIP) security

- IMS home
- IMS visited
- PS domain

- R99 access security
- Integrity protection
- Network domain security
- IMS home

- Authentication & key agreement
- Security mechanism agreement
- IMS visited

Future Security Workshop
January 2007
Authentication in the IMS access domain

- Strong mutual authentication needed
- Re-use of UMTS AKA protocol
 - Based on secret key cryptography
 - Typically implemented on a tamper-resistant UICC (ISIM application)
- UMTS AKA integrated into HTTP Digest
 - According to RFC3310
Message protection in the access domain

- SIP entities must be able to communicate using integrity and replay protection
 - 3GPP Rel-5 relies on bearer network confidentiality
 - 3GPP Rel-6 introduced SIP message confidentiality
 - 3GPP Rel-7 introduced NAT traversal

- Must be possible to provide protection on a per hop basis as some proxies need to read bodies
IMS security builds on network domain security

Source: 3GPP TS 33.203

Protection mechanisms specified in this specification i.e. TS 33.203.

Protection mechanisms specified in TS 33.210 (IP Network Layer), cf.[5].

Protection mechanisms specified in TS 33.102, cf. [1].
Release 6 highlights
WLAN interworking in 3GPP

- WLAN access zone can be connected to cellular core network
- Shared subscriber database & charging & authentication (WLAN Direct IP access)
- Shared services (WLAN 3GPP IP Access)
- Service continuity is the next step
WLAN interworking – non-roaming case

Source: 3GPP TS 33.234
WLAN Direct IP access security

- Authentication methods
 - between WLAN-UE and 3GPP AAA server
 - based on EAP (RFC3748)
 - EAP-SIM: based on GSM AKA and network authentication (RFC4186)
 - EAP-AKA: based on UMTS AKA (RFC4187)

- Identity privacy
 - user’s identity (IMSI) encrypted within pseudonym
 - AAA server generates and delivers pseudonym to UE as part of authentication
 - UE shall not interpret pseudonym, it uses received identifier at next authentication
 - if AAA server can’t identify user by its pseudonym -> AAA server requests permanent identity
WLAN 3GPP IP access 1/2

- Goal is to provide access to 3GPP system PS based services for the user through WLAN
 - IMS and corporate network
- Most of security requirements of Direct IP access are also applicable for this case
 - Level of security of the 3GPP system shall not be compromised by deployment of the 3GPP-WLAN IW system
 - Access control for users accessing WLAN shall have the same level of security as 3GPP system authentication procedure
WLAN 3GPP IP access 2/2

- Security is provided by IPsec tunnel between UE and PDG
- WLAN-UE uses IKEv2 for tunnel establishment
- EAP messages carried over IKEv2 terminate in AAA server.
- PDG extracts EAP messages received from the WLAN-UE over IKEv2, and sends them to the AAA server over Diameter/RADIUS.
MBMS Security Architecture (node layout)

Mobile Operator Network

BM-SC

Content Server

BSF

BGW

Internet

BM-SC can reside in home or visited network

BGW: Bearer Gateway (first hop IP-router)

BM-SC: Broadcast/Multicast Service Center

BSF: Bootstrapping Server Function
Summary of MBMS Security

- Service protection, not content protection in DRM-sense
- Application layer solution which is bearer agnostic
- Based on IETF and OMA protocols (cover all MBMS user services)
 - MIKEY for key delivery
 - SRTP for streaming protection
 - DCF for download protection
- GBA used for mutual authentication and distribution of shared secret
- Three level key hierarchy for data protection
- Allows two trust models for key management:
 - ME is trusted; or
 - Only UICC is trusted
- Specified in TS 33.246
Generic Authentication Architecture (GAA)

- GAA consists of three parts (Rel-6):
 - **TS 33.220 Generic Bootstrapping Architecture (GBA)** offers generic authentication capability for various applications based on shared secret. Subscriber authentication in GBA is based on HTTP Digest AKA [RFC 3310].
 - **TS 33.221 Support of subscriber certificates**: PKI Portal issues subscriber certificates for UEs and delivers an operator CA certificates. The issuing procedure is secured by using shared keys from GBA.
 - **TS 33.222 Access to Network Application Function using HTTPS** is also based on GBA.

Figure from 3GPP TR 33.919
GBA: Generic Bootstrapping

- Bootstrapping Server Function (BSF) and the UE shall mutually authenticate using the AKA protocol, and agree on session keys that are afterwards applied between UE and an operator-controlled Network Application Function (NAF).

- After the bootstrapping, the UE and NAF can run some application-specific protocol where the authentication / encryption of messages will be based on those session keys generated during the mutual authentication between UE and BSF.

- Zh and Zn are based on DIAMETER
- Ub uses HTTP Digest AKA
- Ua is application-specific
GBA_U

- GBA establishes session keys between the ME and the NAF
- An enhanced version called GBA_U allows session keys to be established between UICC and NAF
 - The session keys are not revealed outside the UICC
 - The application-specific NAF protocol is implemented on the UICC
 - This enhancement offers a higher level of security which is needed for certain applications like MBMS
Summary of standardized GBA use cases

<table>
<thead>
<tr>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web browsing (3GPP Rel-6)</td>
</tr>
<tr>
<td>Subscriber certificates (3GPP Rel-6)</td>
</tr>
<tr>
<td>Authentication Proxy (3GPP Rel-6)</td>
</tr>
<tr>
<td>MBMS (3GPP Rel-6)</td>
</tr>
<tr>
<td>Aggregation Proxy (OMA XDM 1.0)</td>
</tr>
<tr>
<td>OMA SUPL 1.0</td>
</tr>
<tr>
<td>Web Single Sign-On (3GPP Rel-7)</td>
</tr>
<tr>
<td>OMA Common Security Functions 1.0</td>
</tr>
<tr>
<td>OMA BCAST Smartcard profile 1.0</td>
</tr>
<tr>
<td>Digest, PSK TLS</td>
</tr>
<tr>
<td>Digest</td>
</tr>
<tr>
<td>Digest (PSK TLS)</td>
</tr>
<tr>
<td>Digest, MIKEY</td>
</tr>
<tr>
<td>Digest</td>
</tr>
<tr>
<td>PSK TLS</td>
</tr>
<tr>
<td>Digest (PSK TLS)</td>
</tr>
<tr>
<td>Digest, PSK TLS, ...</td>
</tr>
<tr>
<td>Digest, MIKEY</td>
</tr>
</tbody>
</table>

Future Security Workshop
January 2007
Release 7 (and beyond) highlights
Rel-7: 2G-GBA

- In Release 6, GAA requires USIM
- As an *early implementation feature* it is possible to use SIM cards in Rel-7
- Adds a TLS channel between UE and BSF
- Some key requirements:
 - not to reduce security for USIM / ISIM users.
 - minimise the changes to the USIM / ISIM based GBA.
 - provide measures to mitigate known vulnerabilities of GSM.
- BSF informs NAF if subscriber uses 2G-GBA
- NAF may decide not to serve 2G subscribers
Rel-7: Support for https between UICC and NAF

- Adds the possibility to use GBA-U key KS_int_NAF for https (TLS protected http)
- Feature is useful if e.g. web server inside UICC
- *Early implementation feature* in Rel-7
SAE/LTE: some key threats

- User plane packet injection/modification/eavesdropping
- Physical attack threat on eNodeB
- (D)DoS attacks against eNodeB from the network/UE’s
- Mobility Management threats
 - Unauthorized access to the control plane data
 - Privacy (disclosure of user location)
 - Unauthorized manipulation of control plane data
 - Disturbing or misusing network service
 - Unauthorized access to network service

SAE = System Architecture Evolution
LTE = Long Term Evolution (of radio networks)
SAE/LTE: some recent discussion items

- User Plane Ciphering Termination End-Point
- Common or separate eNodeB keys
- EAP AKA versus UMTS AKA
- User plane integrity protection
- UICC required for LTE access
IMS enhancements

- Release 7: IMS security TS 33.203 expanded to support NAT traversal for fixed broadband access
- Rel-7: 3GPP TR 33.803 created to show how different authentication mechanisms may co-exist in one single IMS system (with several different access systems)
 - IMS access with UICC (3GPP)
 - “Early” IMS access with SIM (3GPP)
 - NASS-bundled authentication (TISPAN)
 - HTTP Digest as defined by TISPAN
 - Other mechanisms (e.g. from packet cable industry) may be included later
- Rel-8: Media security requirements gathered (together with TISPAN and IETF)
Other Release 7 security enhancements

- Key establishment for secure UICC-terminal channel (TS 33.110)
 - Applies, e.g. for secure UICC-terminal channel specified by ETSI SCP
 - Built on top of GBA
- Liberty-3GPP security interworking
- GBA push (TS 33.223, probably Rel-8)
 - Applies to several OMA specified features (e.g. BCAST)
- Network domain security: Authentication Framework (TS 33.310) enhanced for TLS support
- Withdrawal of A5/2 algorithm
- Key establishment between UICC hosting device and a remote device (probably Rel-8)
For more information:

www.3gpp.org