

ETSI White Paper No. 31

NGSI-LD API:
for Context Information Management

1st edition – January 2019

ISBN No. 979-10-92620-27-6

Authors:

Duncan Bees

Lindsay Frost

Martin Bauer

Mike Fisher

Wenbin Li

ETSI
06921 Sophia Antipolis CEDEX, France
Tel +33 4 92 94 42 00
info@etsi.org
www.etsi.org

NGSI-LD API: for Context Information Management 2

About the authors

Duncan Bees

Duncan Bees, Principal, Duncan Bees Technologies Ltd.

Duncan Bees carries out technical and business projects in telecommunications, IoT, media streaming, and broadband

infrastructure in Vancouver, Canada. He has led wireless baseband signal processing development teams, product planning for

communications semiconductors, strategic planning for the Digital Living Network Association, and was Chief Technology and

Business Officer of the Home Gateway Initiative (HGI). He holds the degrees of Master of Electrical Engineering (digital signal

processing) from McGill University, and a Bachelor of Applied Science from the University of British Columbia.

Lindsay Frost

Chief Standardization Engineer, NEC Laboratories Europe

Lindsay Frost was elected chairman of ETSI ISG CIM in February 2017, elected to the Board of ETSI in November 2017 and is ETSI

delegate to the sub-committee of the EC Multi-Stakeholder Platform (Digitizing European Industry) and to the CEN-CENELEC-ETSI

Sector Forum on Smart and Sustainable Cities and Communities. He began his career as a research manager in experimental physics

facilities in Germany, Italy and Australia, before joining NEC in 1999. From 2003 to 2009 he managed NEC R&D teams for 3GPP,

WiMAX, fixed-mobile convergence and WLAN, while also working for two years as a group chairman in the Wi-Fi Alliance.

Martin Bauer

Senior Researcher, NEC Laboratories Europe

Martin Bauer has worked on activities related to Internet of Things, Context Management and Semantics for more than 15 years.

Recently he has been working on IoT-related European projects in the area of smart city and autonomous driving, as well as IoT-

related standardization activities, in particular oneM2M and ETSI ISG CIM. He is the AIOTI WG03 sub-group chair for the semantic

interoperability topic. He holds a doctorate degree in Computer Science from Stuttgart University and Master of Science degrees

in Computer Science from both the University of Oregon and Stuttgart University.

Mike Fisher

Chief Researcher of Distributed Computing, BT Applied Research

Mike Fisher’s main research interests are in the convergence of computing and wide area networking - including active networks,

Grid computing, Cloud computing and most recently the Internet of Things. He has had a leading role in BT’s contributions to a

number of collaborative IoT projects, including the MK:Smart and CityVerve smart cities projects in Milton Keynes and Manchester,

respectively. His focus in BT was on network services to make information sharing easier, and the value that this can deliver.

Wenbin Li

Research Engineer, Easy Global Market

Wenbin Li is a Research Engineer at Easy Global Market working on international projects (including FP7, H2020) in IoT and ICT

domains. The research fields cover IoT architecture and platform, data modelling and management, Semantic Web, and AI. He

received a PhD degree of Computer Science from the National Institute of Applied Science Lyon with a special focus on services-

oriented computing paradigm in dynamic environments. Before joining Easy Global Market, he was a R&D engineer of Internet of

Things at Orange Labs, during which he contributed to the European project FP7 FICORE and an Orange internal project to improve

semantic interoperability for IoT infrastructures.

NGSI-LD API: for Context Information Management 3

Contents

About the authors 2

Contents 3

Introduction: NGSI-LD and Linked Data 4

Context Information 6

Requirements driving the NGSI-LD Solution 6

Data Lakes, Context Brokers and the NGSI-LD Architecture 7

NGSI-LD System Elements and Architectures 7

Business Model 10

A Rich Information Model Built Upon Linked-Data Standards. 10

Property Graph Approach to Model Context Information Use Cases 11

Use Case Example - Smart Street Light System 12

NGSI-LD API 13

Basic Operations 13

NGSI-API Operations - Context Producers and Consumers. 13

NGSI-API Operations - Context Sources and Consumers. 14

Summary of advantages of NGSI-LD 15

Ongoing Work and Getting Involved 16

Relations to ETSI TC SmartM2M and oneM2M 17

Acknowledgements 18

References 18

NGSI-LD API: for Context Information Management 4

Introduction: NGSI-LD and Linked Data

The ETSI Industry Specification Group for cross-cutting Context Information Management (ISG CIM) named

its API using the text string "NGSI-LD" with the formal agreement of OMA which originally defined NGSI.

This greatly helps in avoiding confusion with the IEC CIM/Common Information Model specifications. The

rationale is to reinforce the fact that it leverages on the former OMA NGSI 9 and 10 interfaces [3] and

FIWARE NGSIv2 [4] to incorporate the latest advances from Linked Data.

This whitepaper explains the main concepts behind a new data exchange protocol called NGSI-LD which

aims to make it easier to find and exchange information with open databases, mobile Apps and IoT

platforms. It fills the gap between brief press releases and detailed specification documents for NGSI-LD

API [1] and related use cases [2].

New applications in domains such as Smart City, Smart Agriculture, and Smart Industry collate and interpret

data from fast-changing and geographically dispersed sources. They also actuate devices and effect many

real-world results. To produce, interpret and exchange data, these applications need to define

unambiguously the data used, and to share those definitions with other applications. The data relevant to

a service, and the definitions that describe its format and meaning, can be called the context of the service.

For example, location, time, temperature, and application specific information must have common

definitions and be understood by all the applications which manipulate it.

In domains like Smart City, the lack of an open and standardized approach for the exchange of context

information is a hindrance to the widespread adoption of services. Consider that a dramatically growing

number of entities – such as an Internet-of-Things (IoT) enabled traffic sensor, traffic light, or a vehicle

license database – can provide information to, receive information from, or receive control messages from

many different applications. A common framework for context would enable re-use and information

sharing across those applications and help build a critical mass of rich services. This is illustrated in the figure

1, where a common context definition for multiple services (on the right of the figure) is contrasted with

the inflexibility of independently defined context (on the left).

Figure 1: Independent Context vs Common Context (Ecoystem Model)

The ETSI Industry Specification Group for cross-cutting Context Information Management is addressing this

problem. This whitepaper describes an open framework for the exchange of contextual information for

NGSI-LD API: for Context Information Management 5

smart services, using a RESTful1 API named NGSI-LD, developed by ETSI ISG CIM. The term NGSI points to

earlier work by the Open Mobile Alliance2 which was one inspiration for our approach and the term LD

points to concepts of Linked Data as the other major influence.

Context information exchange using NGSI-LD has major advantages. Firstly, within the NGSI-LD framework,

applications can flexibly discover and query relevant information. The data discovery is dynamic, and the

built-in query patterns support the most common questions that are practical in unbounded federated

information systems. Secondly, NGSI-LD helps to precisely communicate the nature of the context

information for a given service, such as its period of validity, its geographic constraints, and other

semantically important information, by enabling direct inclusion of pointers to the relevant parameters and

definitions. To ensure interoperability, the NGSI-LD API defines the meaning of the most commonly needed

terms and provides the tools to create domain-specific extensions to model any other type of information.

Thirdly, NGSI-LD provides a scalable solution to connect, publish and federate diverse data sources using a

developer-friendly interface for data sharing and usage.

More specifically, the data in NGSI-LD are structured like a data graph model and linked with each other.

The relationships between entities are easily handled in NGSI-LD in a similar way to graph databases. It also

provides the update, query and subscription support needed to allow applications to automatically access

data from various data sources. The deployment architectures, examples of which are described later in

this paper, are also flexible.

NGSI-LD builds upon previous work, including OMA [3] and FIWARE [4]. It is intended to complement and

work alongside IoT system specifications, while providing a path to integrate data from open linked data

and other information sources. In NGSI-LD, information not relevant to the application layer of that

particular service, for example details of the IoT or network technologies used to connect entities, or to

manage IoT devices and gateways, is not explicitly considered. Such aspects are covered elsewhere, for

example in oneM2M, where ETSI is a founding member alongside other major international standards

bodies. OneM2M has defined a common platform for IoT, which can interoperate with a wide range of

networks and systems (oneM2M, TS-0001-Functional_Architecture [5]).

The NGSI-LD information model makes it easy to create models of real-world entities, relationships and

properties; moreover, the information model is expressive enough to connect and federate other existing

information models, using JSON-LD [6]. It is also compatible with RDF so that triplestores and application

logic found e.g. in SPARQL3 or DataCube4 software can be applied.

The ETSI ISG CIM work is ongoing and interested parties are invited to participate. Information useful to

implementers, as well as details about the group, are provided towards the end of this paper.

1 The term RESTful (representational state transfer) was introduced in 2000 by Roy Fielding to refer to a simple and
highly scaleable way of accessing and manipulate textual representations of web resources using a uniform and
predefined set of stateless operations, usually the HTTP operations GET, POST, PUT, DELETE.
2 OMA NGSI v9 and v10, see www.openmobilealliance.com and successor organization www.omaspecworks.org
3 SPARQL https://www.w3.org/TR/sparql11-query/
4 DATA CUBE https://www.w3.org/TR/vocab-data-cube/

http://www.openmobilealliance.com/
http://www.omaspecworks.org/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/vocab-data-cube/

NGSI-LD API: for Context Information Management 6

Context Information
We can depict a “smart” service as an interconnection of context providing services and context consuming

applications. These work together to ensure that each application has the information it requires to deliver

knowledge and insight, and to exercise control. We can regard the context of an application as being all the

relevant aspects of its operating environment that are required for it to work as intended. Each application

needs a different mix of data (context) from one or more sources. A context producer may be a sensor, a

gauge, a database an open data repository, etc.

In figure 2, context producers and consumers are connected by a cross-connecting Context Information

Management System. The NGSI-LD API is used by data consumers to query for and receive updates on

context information.

 Figure 2. Interconnection of Context Information

In the ETSI ISG CIM framework, context information is considered to be any relevant information about

entities, their properties (temperature, location, or any other such parameter), and their relationships with

other entities. Entities may be representations of real-word objects but may also be more abstract notions

such as a legal entity, corporation, nation state, or groups of entities.

For example, a smart electric meter may be modelled as an entity of a defined type, installed in a house at

a given location, measuring a dynamically changing power consumption, and connected to a particular

distribution transformer. A Smart Energy application may require all this information as context.

An important feature of NGSI-LD is that also the relationships between entities can be modelled as having

specific properties, e.g. Anne and Bob have a relationship "isMarriedTo" and this relationship has a property

called "DateOfMarriage". Information models which provide for annotating attributes to relationships are

commonly called labelled property graphs (see references [7] and [8]). They provide a theoretical

foundation for automated reasoning about the characteristics of the systems they represent.

Context information is exchanged amongst applications, context producers, and context brokers. The key

requirements driving the technology choices for NGSI-LD and then the Architectures are discussed below.

Requirements driving the NGSI-LD Solution
The main considerations shaping the design of the NGSI-LD API are given here, and in more detail below.

NGSI-LD API: for Context Information Management 7

⚫ The information model and API should model context information such as entities, their properties,
and relations. Communication protocols and other IoT system parameters are not explicitly
modelled (unless relevant to the service context, for example including an ID of a wireless access
point as part of the provenance of a value measured by a sensor).

⚫ Context producers should be able to register and update the broad categories of information they
can offer. Context consumers (software applications and ultimately end users) should be able to
discover relevant context information and receive notifications of updates.

⚫ Flexible query options should be supported. An application may need, for example, to query all
parking facilities in a city, check which ones have charging points for electric vehicles of the desired
type/power-rating and check availability.

⚫ Commonly needed cross-domain constructs such as time and location should be explicitly defined
in the information model, to prevent minor variations leading to system incompatibilities. The
information model should be extensible so as to allow the creation of domain/application specific
definitions and semantics.

⚫ A range of situations and architectures should be supported from the simple to the very complex
systems with huge numbers of entities. Deployed architecture should be able to evolve, from
centralized to distributed to federated, without needing to reinstall software implementations.

Data Lakes, Context Brokers and the NGSI-LD Architecture
There is nothing new about databases exchanging information. In the last years the need to organize

information within city administrations and also across globally distributed enterprises has led to the

development of so-called “data lakes” where a (very) large storage system, with indexing appropriate to

the applications and use cases, is connected with a large number of different databases with varied data

structures and varied data definitions. So-called “adaptor” software is built, often unique to the system, to

import the information from the various sources, adapting the data and matching the terms used to

categorize it, so that the imported information is consistent with the definitions and indexing defined for

the “data lake” i.e. so-called data cleanup. The importing can be dynamic, as information is added or

changed in the contributing databases. Cleanup can include consistency checks, timestamp validations, etc.

Nobody wants a dirty data lake.

NGSI-LD API can add value also to these sophisticated proprietary systems by providing a system-

independent means to advertise the existence of data with particular categories and provide it using an

appropriate adaptor. Systems outside the ecosystem of a specific data lake can use the API to extract just

the information they need. It is important to see the API as a “messenger” which is independent of specific

data sources and data lakes, as well as independent of specific information brokers and architectures.

NGSI-LD System Elements and Architectures
What are the ways in which the NGSI-LD API can be used within a real-world service architecture? In the

ISG CIM framework, context consumers use the API to access information provided by context producers,

often through Context Brokers of several types. A Context Broker mediates exchanges between context

consumers and producers. The architectures shown in the following are prototypical ones; real systems

may instantiate a combination of these architectures or form a more complex one, e.g. consisting of a mesh

of Context Brokers.

NGSI-LD API: for Context Information Management 8

A Context Producer (e.g. a sensor gateway, which sends streams of updates or timed batches of updates)

simply delivers context information to context brokers, which arrange its storage and (later) delivery to

context consumers.

A Context Source is the name given to more complex systems which can collect and store a wide range of

information, e.g. from devices or databases, register the availability of its information with a broker’s

Context Registry, and deliver the requested context information in response to a redirected query from a

Broker or directly to context consumers.

The functionality of a Context Source can of course be paired with a Context Broker. This is a common

architecture, to provide a Central Broker which acts as the central point of context management and storage

for many context producers, as shown in figure 3. This architecture might be chosen for a system of limited

geographical scope, or one where the end devices are limited in capability and storage. For example, a

context producer could be a rain sensor which is connected via an IoT system to a Central Broker. Context

Producers use update operations to update the context information stored in the Central Broker. Context

queries to the Central Broker from context consumers could be either one-time or could be asynchronous

subscribe/notify queries. Note that a component could be both a Context Consumer and a Context

Producer e.g. an App in a mobile phone might query about air pollution conditions along a cycling route or

also provide its location on the route to enable statistics about the popularity of bicycle routes to be

collected.

Figure 3: Centralized architecture

NGSI-LD API: for Context Information Management 9

A more complex architecture uses a Distribution Broker, shown in figure 4, to respond to requests from

Context Consumers for context information. The actual information would be stored and provided by

Context Sources, but applications can still access all information through the Distribution Broker. To make

this work, Context Sources must register the information they can provide with the Context Registry. For

example, in a parking application, Context Sources could be parking houses which each can provide context

information about numerous entities (parking spaces they enclose, or cars parked within). In addition,

Context Consumers can themselves directly discover Context Sources via the Context Registry.

This type of architecture might be selected for a geographically distributed system, or where different

partners are responsible for different data repositories. When a Context Consumer requests information

from a Distribution Broker, it checks the Context Registry to discover which Context Sources have the

appropriate data. For example, a parking application might need to know which parking house contains

handicapped parking spaces. The Distribution Broker gathers data from Context Sources and potentially

aggregates it for delivery to the requesting consumer. In another mode, all the context information is

stored by the Context Sources, and they can directly provide context data to Context Consumers.

Figure 4 Distributed architecture example

NGSI-LD also supports a Federated Architecture. This is a model for aggregation of NGSI-LD infrastructure

in order to extend access to context information across multiple NGSI-LD systems. In the Federated model,

NGSI-LD domains are registered to a Federation Context Registry. Applications can then query or subscribe

to entities within a wider geographic scope. The Federation Broker discovers the domain Context Brokers

that can provide relevant information, forwards the request to these Brokers and aggregates the results, so

the application gets the result in the same way as in the centralized and distributed cases. Federation can

be used for scalability, and also partnering with databases which need to limit access to specific parts of

their content (e.g. police data).

NGSI-LD API: for Context Information Management 10

Business Model
The NGSI-LD API makes no assumptions about which business models are relevant to the context

exchange [9]. The range of deployment architectures can flexibly support various business models and

allow them to evolve. The Central Broker architecture is suitable where a single trusted context producer

aggregates all the information for delivery to applications, e.g. in a town or municipality, a storm water

flow sensor network might be integrated with a rainfall measurement system and an emergency response

dispatch system.

The Distributed architecture might be chosen when combining information from a range of integrated

public services (e.g. health-care, social care and community services) in a town. The Federated architecture

might integrate e.g. traffic control data and parking availability data between neighbouring towns. If the

data exchange stops, or some systems are offline, the federate community continues to operate, with one

less source of context information.

A Rich Information Model Built Upon Linked-Data Standards.
We now consider the NGSI-LD representation of real-world entities and their context information within a

layered information model (see figure 5), consisting of the Core Meta Model, the Cross-domain Ontology,

and the open-ended domain-specific models.

Figure 5 – Layered approach used to define NGSI-LD Information Model

In this model, the NGSI-LD Core Meta Model, in the centre of the figure, represents Entities, their

Relationships, and their Properties with values. It contains the core terms needed to uniquely represent the

key concepts of the NGSI-LD Information model as well as the terms that define the API-related Data Types.

These are encoded using JSON-LD, which provides the advantage of being familiar and accessible to

developers. For example, an Entity, representing a device or other data source, is encoded using a JSON-LD

object.

The NGSI-LD Cross Domain models provide commonly used constructs such as time and geographical

location. These are generally applicable to many domains so standardising their representation provides

valuable cross-domain interoperability. The main features of the NGSI-LD Cross Domain model have been

added to distinguish between: (a) the location of an entity; (b) the entity’s observation space (“the

geographic location that is being observed by the entity”, for example in the case of a camera the

NGSI-LD API: for Context Information Management 11

observation space is different from the actual location of the camera); and (c) the operation space (“the

geographic location in which an Entity is active”, for example a crane can have a certain operation space).

Proprietary variations of the terms defined in the NGSI-LD Core and Cross Domain models can of course be

defined by users, but the NGSI-LD API queries and operations will not directly reference them. For example,

even if “yesterday” were to be given a proprietary definition, the query “temperature measured yesterday”

would not be valid. The query would need to be expressed with a time interval expressed using the

appropriate representation based on ISO8601 (see NGSI-LD specification [1], section 4.6.3). The aim is to

keep the Core and Cross-Domain information models as simple and generic as possible. However, ETSI ISG

CIM will consider proposals for additional “cross-domain” terms, if they provide clear benefits to the API.

Domain-Specific Ontologies for entities (real world devices, databases, or other information sources) can

be created by extending the Cross Domain Ontologies and the Core Meta Model, with specialised terms

drawn from other ontologies.

The underpinning of the Meta Model is the Property Graph, which can be formally represented using the

RDF model [10]. That core meta-model and cross-domain ontology, illustrated in figures 6a and 6b, make it

easy to create real-world models of entities, interrelationships and properties; moreover, the information

model is expressive enough to connect and federate other models.

Figure 6a: NGSI-LD Meta-Model

Figure 6b: Cross-domain NGSI-LD Information Model

Property Graph Approach to Model Context Information Use Cases
ETSI ISG CIM uses Property Graphs for the information model to depict the context required to support the

example use cases [2]. The property graph enables complex modelling of a relationship with a relationship

NGSI-LD API: for Context Information Management 12

and also of a property of a property. For example, Ann and Bob can have a relationship “marriedTo” which

can have a relationship “witnessedBy” to Charles, or “marriedTo” can have a property “atLocation”;

furthermore, the property “atLocation” can have the property “accuracy”. The property graph visualization

shows this kind of metadata by the addition of extra arcs between e.g. an existing arc (relationship) and an

entity or property. For a wealth of material about Property Graphs, see the websites of any popular graph

database such as Neo4j, OrientDB, Titan, BlazeGraph5

For each real-life Use Case, the generic Property Graph can be filled in with all the specific details of the

particular relationships and properties in that Use Case, to visualize the actual so-called Instance Graph.

Use Case Example - Smart Street Light System
In the use case Smart Street Light System, street lighting levels are controlled by an intelligent agent which

reacts to ambient light and weather conditions, traffic levels, and the state of traffic lights in the local area.

This application seeks to minimize energy consumption and maintain light levels sufficient for current traffic

conditions or pedestrian safety. A simplified Instance Graph is shown in figure 7.

The figure uses some conventions about the shapes enclosing text labels to indicate their function. The four

large shaded ovals represent the cooperating domains (e.g., “Street Light Management System”). Entities

in each domain (e.g., “Zone A Lights”) are shown in unshaded rectangles. Properties of entities are shown

as ovals (e.g., hasState). The values of a property of an Entity are shown in irregular hexagons (e.g.,

“Brightness = 60” is the value of the property called “hasState” of the entity “Zone A Lights”). Relationships

between entities are shown as lines with a name shown inside a diamond shape (e.g. “connected to”).

Figure 7: Instance Graph for Smart Street Lighting Application

The example in figure 7 shows four interrelated systems. Entities of the Street Light Management System

are related to (have logical or physical proximity to) other Entities within that System, and also to Entities

of other Systems, such as a Weather Monitoring System, a Street Monitoring System, and a Traffic Light

Management System. Entities (e.g. “Zone A Lights” are represented in the diagram by solid rectangles with

incoming and/or outgoing curved lines which indicate that they are subjects and/or objects of relationships

with other Entities. Any Properties of one of the Entities are represented by ovals in the figures, e.g. as in

5 See also https://db-engines.com/en/system/Blazegraph%3BOrientDB%3BTitan for a cross-comparison of features.

https://db-engines.com/en/system/Blazegraph%3BOrientDB%3BTitan

NGSI-LD API: for Context Information Management 13

“HasState”, with the actual values shown inside hexagon shapes. Relationships between subject Entities

and object Entities are shown as lines with the name of the relationship, written as a verb such as “contains,

isConnectedTo, IsSensorFor”, etc, inside a diamond shape. These relationships thus encode logical,

physical, or hierarchical links between Entities. Any relationship verb can be defined individually in various

domain specific ontologies.

The Weather Monitoring System, the Street Monitoring System, and the Traffic Light Management System

each use the NGSI-LD API to make available the information they collect. The Street Light Management

System can then query for relevant context information from all of these other systems and may subscribe

to notifications and updates.

Other applications and systems, such as the Traffic Light Management System and many other systems

might also make use of the context information produced by the various systems and Entities shown in

figure 7, as was introduced in figure 2.

NGSI-LD API

Basic Operations
The NGSI-LD API supports a number of operations, with messages expressed using JSON-LD [6]. It allows

context consumers and context producers to interact with context information systems. Not all conceivable

operations are supported in the API, but rather a subset which is as simple as possible yet complex enough

to handle the vast majority of interactions.

For representation in the NGSI-LD API, any Entity is represented by a JSON-LD encoded object. The JSON-

LD representation of an Entity includes a reference (in the @context statement) to the NGSI-LD Meta-Model

(see figure 6a) along with the specific Entity Type Name, the Entity URI, the Properties and the Relationships

associated with that Entity. Each Property includes a Property type, and a value (JSON data type or JSON

object). Each Relationship includes a Relationship type, and the object of the Relationship (e.g., another

entity). An important characteristic of NGSI-LD is that Properties and Relationships (which are together

termed Attributes) may themselves also have Attributes.

Particularly, the API operations allow applications to discover, query and explore the graph-based data by

specifying any combination of entities, types, relationships and/or properties as criteria for data queries.

An HTTP REST binding of the NGSI-LD operations is defined in the NGSI-LD API specification [1].

NGSI-API Operations - Context Producers and Consumers.
One group of NGSI-LD operations allow Context Producers to create NGSI-LD Entities i.e. insert an object

with a defined URI into the system, and to allow Context Consumers to retrieve and subscribe to Entities.

These are as follow:

⚫ Context Information Provision – a set of operations through which a Context Producer can create,
modify, and delete an NGSI-LD Entity.

⚫ Context Information Consumption – operations through which a Context Consumer can retrieve or
query for NGSI-LD Entities. Queries can filter out Entities by Attribute Values (target value of a
Property or the target value of a Relationship).

NGSI-LD API: for Context Information Management 14

⚫ Context Information Subscription – operations through which regular or event-driven update
notifications of the context of one or more Entities can be created, updated, retrieved, queried for.

Figure 8 shows how these operations can be used in an application. Each horizontal arrow represents the

exchange of an NGSI-LD message. A Context Producer has the initial task of inserting/creating an NGSI

Entity in the NGSI-LD System by transferring a JSON-LD message representing Entity A to the system. A

Context Consumer later queries the NGSI-LD System for Entities meeting particular conditions. The Context

Consumer is informed that Entity A meets the conditions, and then subscribes to notifications from Entity

A. When information about Entity A is next updated by the Context Producer, the System automatically

informs the Context Subscriber of the new value.

Figure 8 – Example API Operations (Context Producer and Context Consumer)

NGSI-API Operations - Context Sources and Consumers.
Another group of NGSI-LD operations allow Context Sources to be registered as potential sources of

information meeting certain conditions. A Distribution Broker can query a Registry to ascertain which

Context Sources may be able to provide the information requested.

⚫ Context Source Registration – a set of operations through which a Context Source (i.e., the entire
collection of information which it could provide) can be registered, updated, and deleted (removed
from the registry). The registration information includes the types of Entities, Properties, and
Relationships about which the Context Source can provide information, as well as geographic and
temporal constraints on the information (e.g., “only in the region Germany”, “only for years 2017
and later”). For example, a particular Context Source could register that it can provide the indoor
temperature for Building A and Building B or that it can provide the speed of cars in a geographic
region covering the centre of a particular city.

⚫ Context Source Discovery – operations through which a Context Consumer or Producer can retrieve
or query Context Source registrations.

NGSI-LD API: for Context Information Management 15

⚫ Context Source Registration Subscription – a set of operations through which a Context Consumer
can create, update, retrieve, query for, or be notified regarding Context Source registration
subscriptions. In other words, subscribers may be notified about new Context Source Registrations
that can potentially provide the requested information.

Figure 9 shows the sequence of NGSI-LD message exchanges which would allow a Context Source for smart

street lighting to: (a) register its availability to a Broker; (b) for a Context Consumer to discover the existence

of a Context Source (in the right town, with up-to-date data); then (c) query for updates of the status of a

specific entity (e.g. the “red/green” status of the traffic signals along a particular street). Such a query would

allow, e.g., an ambulance to query the red/green status of traffic signals on the route ahead. Alternatively,

a city planner might add some simple counting software to check the daily average intervals when

pedestrians have right-of-way across the street.

Figure 9 – Sample API Operations (Context Source and Context Consumer)

The NGSI-LD API and its Information Model (Core Meta-Model and Cross Domain Meta-Model) provide a

powerful framework, but they do not provide detailed vocabulary, definitions and models for every real-

life application. NGSI-LD does allow – indeed it mandates – that every term is uniquely defined, by reference

to a specific vocabulary, avoiding the possibility of confusion of naming. Here the advantage of using JSON-

LD becomes very apparent, because the terms can be defined in a separate document, referenced by an

@context statement. The external resource document can be as simple or as complex as needed in an

application or a domain.

Summary of advantages of NGSI-LD

Although various data exchange methods could be selected for smart services, the following points are

substantial advantages of the NGSI-LD approach for solution providers:

• Cities wanting to expose their open data, for use of citizens or even disparate city departments,

will find NGSI-LD useful for publishing (parts of) existing files and PDF documents using explicit

and exchangeable vocabulary and outputting parts of existing “data-lakes”

NGSI-LD API: for Context Information Management 16

• Vendor lock-in can be avoided as the NGSI-LD framework can be easily extended to accommodate
specific features of each application in the domains of e.g. Smart City, Smart Industry or Smart
Agriculture.

• The API is independent of choice of architecture so that multiple independent systems can easily
link up, and partners with data can join or leave without disruption to services.

From the viewpoint of software developers, the following advantages are important:

1. A text-string based serialization of data and its context, using developer-friendly JSON-LD.

2. An explicit procedure for relating every term used in context information exchanged between

systems to an unambiguous definition (using the @context statement of JSON-LD).

3. A very flexible high-level information model which can directly represent data from a wide variety

of information sources.

4. A simple set of operations via the API which can be used across dynamic, federated databases to

register and discover data sources based on graph patterns. The data sources can include existing

“data lakes” which may have been deployed e.g. for cities.

5. A query language, independent of the underlying database technology(s), to unambiguously

detect, filter, and set up subscriptions for updates to selected data.

Ongoing Work and Getting Involved

The first phase of the ETSI ISG CIM specification work was completed mid-2018. The initial cornerstone

documents describing the NGSI-LD API [1] as well as an accompanying Use Case Analysis [2] are published.

ETSI ISG CIM welcomes participation in this specification development work by the IoT community and

smart city stakeholders, as well as those in other domains such as smart agriculture, smart industry, service

providers, vendors of related infrastructure, and software developers.

As the work continues, the next steps for ISG CIM are:

⚫ To provide new or revised standards documents, with a target of year-end 2019:

o NGSI-LD API functionality may be extended in key areas such as query capabilities.

o An Information Model Document will be published, specifying further details of the
Property Graph approach, guidelines for using it in data models, and cross-references to
useful models from a number of different domains.

o An analysis of data security and privacy requirements for NGSI-LD will be published.

⚫ To encourage implementations and enhance tie-ins with related industrial and enterprise projects
focussing upon context information [9] to drive a new generation of services:

o The FIWARE Foundation open-source project will contain an adaption module for
interaction with NGSI-LD API and is committed to natively supporting NGSI-LD.

o The Orange 'Thing’ in project [11] will make use of the NGSI-LD information model to
achieve an object-oriented vision of smart services.

o Collaborations with a number of EC Horizon2020 projects will provide feedback for
improving the NGSI-LD API.

NGSI-LD API: for Context Information Management 17

ETSI ISG CIM heartily welcomes input, critique and collaboration and looks forward to your contact.

Relations to ETSI TC SmartM2M and oneM2M

ETSI ISG CIM makes no attempt to handle sensors and M2M device management, device connectivity,

gateway management, interworking of different M2M devices, etc. The focus of ISG CIM is to enable

exchange of information and metadata and "to develop for cross-domain context information management

an interchange protocol between diverse systems from the IoT, Mobile Applications, Open Data Portal and

proprietary database worlds". The work in GS CIM 009 NGSI-LD API [1] is to combine Linked Data and Open

Data principles using an API based on an information model using Property Graph concepts to combine

information from user Apps, municipal databases, open data portals and IoT platforms (including oneM2M).

NGSI-LD is expanding potential usage of oneM2M and supporting use of ETSI SmartM2M (SAREF) work to

align ontologies across many domains. Discussions are underway on how to achieve aspects of NGSI-LD

functionality via the oneM2M interfaces.

In its terms of reference, ETSI ISG CIM includes:

• report considering how NGSI-LD functionality could be proposed into oneM2M (mechanism could
be e.g. liaisons, workshops or direct contributions by Members who are in both organisations) and
might involve collaboration on new or existing Work Items

• consolidate and encourage re-use of a cross-domain ontology (collaborating with SAREF in
cooperation with SmartM2M, or also e.g. schema.org, or W3C, etc.) which will provide for re-use
of identical concepts and preclude misinterpretation of exchanged information

• collaborate with oneM2M concerning means to interwork with oneM2M systems today and
consider feasibility of including NGSI-LD functionality via the Mca Reference Point in the future

NGSI-LD API: for Context Information Management 18

Acknowledgements

The authors thank the following people who were co-creators of the ISG CIM information model and NGSI-

LD API discussed in this whitepaper, as well as their companies and the EU research projects which

supported their work: Abdullah Abbas (Orange), José Manuel Cantera (Fiware Foundation), Gilles Privat

(Orange).

Related European Union Horizon 2020 research and innovation programmes are: No. 732851 (FI-NEXT), No.

723156 (WISE-IoT), No. 732240 (SynchroniCity) and No. 731993 (AutoPilot),

References

[1] ETSI GS CIM 009 V1.1.1 (2019-01) Published. Context Information Management (CIM); Application

Programming Interface (API). See

http://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM004v010101p.pdf

[2] ETSI GR CIM 002 V1.1.1 Context Information Management (CIM); Use Cases (UC). See

https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/gr_CIM002v010101p.pdf

[3] Open Mobile Alliance, Next Generation Service Interfaces Architecture Approved Version 1.0

Published 29 May 2012

[4] Fiware, FIWARE-NGSI v2 Specification. See e.g. http://fiware.github.io/specifications/ngsiv2/stable/

[5] oneM2M, TS-0001-Functional_Architecture-V2.18.1 See

http://www.onem2m.org/images/files/deliverables/Release2A/TS-0001-Functional_Architecture-

v_2_18_1.pdf

[6] W3C, JSON-LD 1.1 A JSON-based Serialization for Linked Data. See https://www.w3.org/TR/json-ld11/

[7] Rodriguez, M.A., Neubauer, P. Constructions from dots and lines. Bul. Am. Soc. Info. Sci. Tech. 36(6),

35{41 (2010). See https://pdfs.semanticscholar.org/2b21/1f9553ec78ff17fa3ebe16c0a036ef33c54b.pdf

[8] Rodriguez, M.A., Neubauer, P. The graph traversal pattern. Tech. rep., AT&T and NeoTechnology (April

2010). See https://pdfs.semanticscholar.org/ae6d/dcba8c848dd0a30a30c5a895cbb491c9e445.pdf

[9] Haller S., Karnouskos S., Schroth C. (2009) The Internet of Things in an Enterprise Context. In:

Domingue J., Fensel D., Traverso P. (eds) Future Internet – FIS 2008. FIS 2008. Lecture Notes in Computer

Science, vol 5468. Springer, Berlin, Heidelberg. See https://www.alexandria.unisg.ch/46642/1/fis2008-

haller-final.pdf

[10] W3C, Resource Description Framework (RDF), consists of a suite of documents. See

https://www.w3.org/standards/techs/rdf#w3c_all

[11] Orange, Thing’n http://www.thinginthefuture.com/

http://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM004v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/CIM/001_099/002/01.01.01_60/gr_CIM002v010101p.pdf
http://fiware.github.io/specifications/ngsiv2/stable/
http://www.onem2m.org/images/files/deliverables/Release2A/TS-0001-Functional_Architecture-v_2_18_1.pdf
http://www.onem2m.org/images/files/deliverables/Release2A/TS-0001-Functional_Architecture-v_2_18_1.pdf
https://www.w3.org/TR/json-ld11/
https://pdfs.semanticscholar.org/2b21/1f9553ec78ff17fa3ebe16c0a036ef33c54b.pdf
https://pdfs.semanticscholar.org/ae6d/dcba8c848dd0a30a30c5a895cbb491c9e445.pdf
https://www.alexandria.unisg.ch/46642/1/fis2008-haller-final.pdf
https://www.alexandria.unisg.ch/46642/1/fis2008-haller-final.pdf
https://www.w3.org/standards/techs/rdf#w3c_all
http://www.thinginthefuture.com/

ETSI
06921 Sophia Antipolis CEDEX, France
Tel +33 4 92 94 42 00
info@etsi.org
www.etsi.org

 This White Paper is issued for information only. It does not constitute an official or agreed position of ETSI, nor of its Members. The views
expressed are entirely those of the author(s).

ETSI declines all responsibility for any errors and any loss or damage resulting from use of the contents of this White Paper .

ETSI also declines responsibility for any infringement of any third party's Intellectual Property Rights (IPR) but will be pleased to
acknowledge any IPR and correct any infringement of which it is advised .

Copyright Notification

Copying or reproduction in whole is permitted if the copy is complete and unchanged (including this copyright statement).

© ETSI 2019. All rights reserved .

DECT™, PLUGTESTS™, UMTS™, TIPHON™, IMS™, INTEROPOLIS™, FORAPOLIS™, and the TIPHON and ETSI logos are Trade Marks of ETSI
registered for the benefit of its Members .

3GPP™ and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners .

mailto:info@etsi.org

