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1. Executive Summary 

ISG ENI focuses on defining the functionalities and architecture to increase the Autonomous operation of 

a communication network, thereby enhancing the overall operator experience. Artificial Intelligence (AI) 

technologies in ENI can be used throughout the lifecycle of the various domains making up the 

infrastructure (e.g., Campus, Radio, Fixed Access, Backbone, Core, Data centre) as well as the lifecycle of 

the services provided to the end users (e.g., VPN, IoT, mobile, customized slices of application-specific 

functionality, and fixed access). The ENI architecture contains two main functionalities, (1) policy 

definition and management, and (2) cognition management. The former enables any user to input policies 

and requests to the ENI system in a standard form that ENI can process and respond to in a standard 

format. The latter provides enhanced and explainable learning and decision-making, and uses those 

policies to grant the expected end-user experience in a safe and scalable manner. 

2. Autonomous Operation using Level Categorization 

There is a common understanding in the autonomous network (AN) expert's community to identify Levels 

of autonomy from Level 0 (no use of autonomy) to Level 5 (full autonomy), as shown in Table 2.1. The 

concept expressed is related to a similar definition used in Autonomous Driving Cars, where Level 0 is fully 

manual and Level 5 means fully autonomous driving (no human intervention). This means that the level of 

Autonomy increases with the gradual introduction of autonomation in Network creation and 

management from Level 0 to Level 5. 

In a similar way to Autonomous Driving Car, a progressive evolution is planned to move forward to a fully 

AN. AI models, in both their predictive and generative forms, can support the Autonomous Networks 

evolution. Increasing their use will increase the Level of Autonomy. 

Telco and digital service providers are taking care of the evolution of Autonomy in their Networks with 

increasing interest. Some are evaluating the opportunity to assess the Level of Autonomy in their 

Networks. This implies common definitions of the Levels of autonomy, introducing clear rules and 

measures (e.g., Key Product and Quality Indicators, or KPIs and KQIs) to make this assessment. 

Even if most Operators are now positioned in Level 1 or 2, there is a clear wish to move forward to Levels 

3 and 4 in the next 5 years. This goal seems reasonable to reach using AI. The assessment could be in 

terms internal and external to Network creation and management in terms of Autonomy, and might be 

proposed to Customers as a KPIs and/or KQIs. Nevertheless, vendors can also be impacted by the AN-level 

assessment, when operators require vendors to provide them with systems and equipment compliant 

with a specific level of autonomy. 
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Table 2.1: Categories of network intelligence from a technical point of view [i.3] 

Level Name Definition 
Man-Machine 

Interface 

Decision 
Making 

Participation 

Decision 
Making  

and Analysis 

Degree of 
Intelligence 

Environment 
Adaptability 

Supported 
Scenario 

0 
Manual 
network 

OAM Personnel 
manually manage the 

network and obtain 
alarms and logs 

How 
(command) 

All-manual 

Shallow 
awareness (from 

events and 
alarms) 

Manual 
understanding 

Fixed 
Single 

scenario 

1 

Partially 
automated 

network with 
some 

automated 
diagnostics 

Automated scripts are 
used in service 

provisioning, network 
deployment, and 

maintenance. Shallow 
perception of network 
status and decision-

making suggestions of 
machine 

How 
(command) 

Provide 
suggestions for 

machines or 
humans and 

help decision-
making 

Local awareness 
(SNMP/YANG 
events, alarms, 
KPIs, and logs) 

A small amount 
of analysis 

Little change 
Few 

scenarios 

2 
Automated 

network 

Automation of most 
service provisioning, 
network deployment, 

and maintenance 
Comprehensive 

perception of network 
status and local machine 

decision-making 

HOW 
(declarative) 

The machine 
provides multiple 

opinions, and 
then chooses 

one 

Increased 
awareness 
(Telemetry-

provided basic 
data) 

Powerful 
analysis 

Little change 
Few 

scenarios 

3 
Self-

optimization 
network 

Deep awareness of 
network status and 
automatic network 

control, meeting users' 
network intentions 

HOW 
(declarative) 

Most of the 
machines make 

decisions 

Comprehensive 
and adaptive 

sensing (such as 
data 

compression and 
optimization 

technologies) 

Comprehensive 
knowledge with 

enhanced 
prediction 

Changeable 

Multiple 
scenarios 

and 
combinations 

4 
Partial 

autonomous 
network 

In a limited environment, 
people do not need to 
participate in decision-

making and network can 
self-adapt 

WHAT (intent) 

Optional 
decision-making 

response 
(decision 

typically needs 
human approval) 

Adaptive posture 
awareness (edge 

collection and 
judgment) 

Comprehensive 
knowledge and 
forward forecast 

Changeable 

Multiple 
scenarios 

and 
combinations 

5 
Autonomous 

network 

In different network 
environments and 

network conditions, the 
network can 

automatically adapt to 
and adjust to meet 
people's intentions 

WHAT (intent) 
Machine 

self-decision 

Adaptive 
optimization 
(E2E closed-

loop, including 
collection, 

judgment, and 
decision-making) 

Self-evolution 
and knowledge-

based 
reasoning 

Any change 
Any scenario 

& 
combination 

 

When upgrades move toward Level 4 it is a clear challenge for Network Operators in terms of a significant 

and tangible evolution, in the 3-dimensional domain: network, service, and operation. The Level 

assessment seems to be of significant interest to monitoring and measuring progress to reach the 

targeted Level of Autonomy. It should be significantly easier to reach for vendors, since they are focussed 

on supplying a component of the system or network. 

ENI proposed adding Autonomous levels at different levels in the Telco Network, from single equipment 

in a single Domain to the overall combination of network resources and services. Detailed information 

and documentation can be found in ETSI GR ENI 007 [27] and ETSI GR ENI 010 [28]. 
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3. Use cases and requirements 

3.1. Introduction 
As one of the key technologies that can help network operations move towards L4 autonomous 

operation, mainstream operators are considering adopting the latest AI technologies (e.g., Large 

Language Model (LLM), Generative AI (GenAI), transformers, etc.) to help improve operational efficiency. 

3.2. Use Case 1: Network Awareness 
Network awareness refers to the operator understanding the state and status of the network at any given 

time. Scenarios include knowledge Question and Answering (Q&A) and intelligent Management, and 

Administration Operation, Operation and Maintenance (OAM) assistants in a single- and multi-agent 

form. It will be fully integrated into other tools and systems to support network management operations 

and the whole production process of AN. The European Commissioner for Internal Market Thierry 

Breton’s MWC Barcelona keynote speech mentioned on Feb 2024, “The EU should … set up end-to-end 

integrated infrastructures and platforms for telco cloud and edge, which could be used to orchestrate the 

development of innovative technologies and AI applications for various use cases” [6]. Table 3.2.1 

summarizes this use case. 

Table 3.2.1: Use Case 1 – Network Awareness 

Use Case 
name 

 
Problem Description 

Solution 
Highlights 

Business Value 

Comprehensive 
monitoring and 
network status 
awareness. 

 Cloud networks and 
services are becoming 
increasingly complex, 
making detecting and 
preventing faults in 
advance difficult. The 
root cause of the 
problem is complex to 
locate and takes a long 
time to evaluate. 

Predictive 
maintenance 
enables problems 
to be inferred 
before they occur. 

Improving network 
awareness is mandatory 
for improving network 
OAM operations. This 
also includes more 
efficient scheduling and 
troubleshooting. 

 

Network status data are scattered in multiple systems in different locations. This complicates cross-

system coordination, which in turn makes analysis and remediation difficult and slow. The process of 

analyzing network status requires significant labour effort and specialized skills. In addition, traditional 

rule-based and pattern-matching methods cannot realize intelligent prediction and analysis of unknown 

and new cyber threats and lack risk assessment optimization schemes. 

New network status awareness applications based on a LLM enable the ingestion and analysis of massive 

network telemetry and other related information. Operational domain knowledge is infused into a LLM to 

enable its analysis of network status data to be customized to a particular application and environment. A 

LLM can provide a comprehensive analysis of different data and customized inference of what those data 

mean. This can then be used for a variety of other tasks, such as operation optimization and enhanced 

operation decision-making. 
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3.3. Use Case 2: Intelligent IP Network Simulation 
IP networks carry a large number of voice and data services across different regions, and minor network 

configuration errors can cause huge economic losses and social impacts. According to statistics, more 

than 70% of major IP network failures are caused by manual configuration errors. Online simulation and 

verification tools can be used to assess proposed network configuration risks in advance, thereby 

reducing network failures. Table 3.3.1 summarizes this use case. 

Table 3.3.1: Use Case 2 – Online Intelligent Simulation for IP Network 

Use Case 
name 

Problem Description Solution Highlights Business Value 

IP network 
intelligent 
online 
simulation 

Reduce major failures 
caused by manual 
configuration errors and 
improve configuration 
efficiency and security 

A digital map is built based on 
digital twin technology, with 
embedded high-precision 
simulation capabilities, and 
network verification algorithms 

Increased risk prevention and 
associated annual cost 
prevention will be significant 

 

Incorrect Quality of Service (QoS) configurations may adversely affect millions of users. Incorrect QoS 

configuration can lead to several problems, including service outages, network congestion, poor service 

due to increased latency, jitter, packet loss, and the introduction of security vulnerabilities. This employed 

digital twin technology with an embedded high-precision simulation system that generated data to assess 

the risk of proposed network changes. The network risk assessment is carried out by using CPV/DPV 

(Control/Data Plane Verification). Highlights of the solution include: 

• A network digital twin provides a realistic digital verification environment, records the status and 

behaviour of the digital twin in real-time, supports the traceability and playback of historical data, 

and greatly reduces the cost of trial and error. 

• High-precision network protocol simulation supports multi-vendor devices that use more than 20 

mainstream routing protocols to generate realistic traffic simulation. The impact of changes on 

routes, traffic paths, link loads, and other pertinent factors affecting performance can be 

identified in advance. 

• Network verification algorithm formalizes network verification intents and rules for network-wide 

connectivity verification, network-wide loop verification, network-wide problems and anomalies, 

and output verification reports. 

It was shown to effectively take care of IP network security, increase the accuracy rate of preventing 

network change risks before most risk happen, intercept high-risk operations with very good results, and 

avoid economic losses and social impacts caused by potential problems and risks. It is expected to prevent 

economic losses of more than 130 million Euro in value per year when applied nationwide. 
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3.4. Use Case 3: Network Maintenance 
Operators face the following challenges in network maintenance scenarios: 

• How to accurately identify and output results that meet user requirements based on user and 

business policies conveyed in the form of intents? 

• How to improve OAM, which will also improve the user experience? 

• How to accurately locate cross-layer network faults and shorten the locating time? 

• How to overcome the lack of in-depth cross-layer fault analysis tools and applications? 

• How to increase knowledge dissemination for on-site maintenance operations? 

• How to achieve dynamic orchestration and end-to-end task execution and make network 

operations more autonomous? 

Table 3.4.1: Use Case 3 – Using a Network LLM for Network Maintenance 

Use Case name Problem Description Solution Highlights Business Value 

Innovative 

practice of 

network LLM in 

network 

maintenance 

scenario. 

The operator faces network 

maintenance challenges including the 

inability to understand and 

disambiguate intent policies, conduct 

in-depth cross-layer fault analysis, 

perform efficient OAM decision-making, 

and execute end-to-end management 

tasks. 

The solution has been applied 

to 8 scenarios such as on-site 

maintenance and emergency 

support, with an average fault 

location accuracy of more than 

80%. 

10-second quick Q&A, 

minute-level cross-layer fault 

locating, 20% increase in fault 

handling efficiency, and 50% 

reduction in on-site 

installation and maintenance. 

 

The high-level technology evolution requirements for its network LLM include intent creation, 

management, and processing; improved analysis of ingested and inferred data; and enhanced decision-

making and execution in AN closed-loop network maintenance scenarios. By learning professional 

knowledge and business rules in the telco field, the LLM is enhanced with application-specific knowledge 

and understanding. 

Business rules teach it intelligent scheduling and help improve its decision-making. Since network 

maintenance is made up of multiple specialized applications, this overall solution can scale through the 

use of a mixture-of-experts model [17] and finetuning mechanisms [17] to effectively empower AI 

applications and improve the value of network operations. 
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Figure 3.4.1: Architectural Diagram of the Network Maintenance Scenario 

Accurate intent recognition: ENI [15] contains an innovative policy model [16] that can represent 

imperative, declarative, and intent policies. This enables each to call the other, and simplifies their parsing 

and application through the use of common abstractions. The next phase of this use case will connect the 

network LLM to knowledge management in ENI (e.g., knowledge repositories as well as a knowledge 

graph for enhanced reasoning with explanations). This combination will also reduce the possibility of 

hallucinations from the LLM. 

Cross-layer fault analysis: cross-layer fault location can be realized by using a combination of knowledge 

graphs [15] [17] to represent cross-layer operation, knowledge retrieval enhancements using retrieval 

augmented generation [17] technology, and additional software to perform root cause analysis such as a 

Cognitive Assistant [22]. 

Intelligent interactive decision-making: Natural language makes OAM more accessible to business users. 

A LLM can improve data query efficiency by enabling users to understand data and relationships between 

data. The LLM, when paired with ENI cognitive capabilities, can assist in finetuning the context for a 

query, thereby producing more accurate results. It can also seed the knowledge of the LLM and 

knowledge graph by incorporating expert knowledge from maintenance personnel. 

This architecture supports the use of mobile phones to query multi-system equipment and professional 

network management indicators anytime and anywhere, and the results can be returned within 

10 seconds, the cross-layer fault locating is improved to the minute level, the fault neutralization 

efficiency is increased by 20%, the on-site installation and maintenance hour is reduced by 50%, and the 

automatic completion rate of complaint work orders is increased by 10%. 
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3.5. Getting Ready for Partial Autonomous Operation 
The evolution of network LLM capabilities can be aligned with the evolution of ANs, encouraging the 

addition of new features to move upwards in the autonomous level categorization. The following sections 

explore this relationship. 

Challenges in Achieving Partial Autonomous Operation 

In order to be applied to communication networks on a large scale, network LLMs face challenges in three 

aspects: security and reliability, knowledge refinement for specific network scenarios and incorporating 

additional technologies to augment the power of a LLM. 

1. Secure and reliable. The communication network is a complex production network serving the 

national economy and people's livelihood, and any failure may affect tens of millions of users. 

Hence, it is necessary to ensure that AI systems can operate securely and reliably. Indeed, this is a 

fundamental principle of the AI Act [24]. In addition, the AI Act requires the decision-making 

process to be explainable and traceable [25]. 

2. Knowledge Refinement. The communication network is a very complex network, involving 

different domains (e.g., wireless, core, and transmission) that support diverse applications and 

serve hundreds of millions of users. The LLM can be used in scenarios such as fault location, 

service improvement, network monitoring and troubleshooting, intelligent professional Q&A, and 

personalized intelligent customer service. However, a LLM cannot prove that a problem was fixed, 

it can only provide a probability. Hence, cognitive technologies [19] must be used in conjunction 

with a LLM (see clause 4 and particularly clause 4.3 of the present document.) 

3. Technology Augmentation. The network LLM needs to be augmented with other appropriate 

technologies as described in [15] [16] [17] to perform the following: intent recognition, parsing, 

and management to serve more constituencies; policy management for providing 

recommendations and commands in a standard format; knowledge graphs for proving and 

explaining decisions; natural language processing and understanding for conversing with and 

answering questions from the user. 

Ready for Partial Autonomous Operation 

The network LLM will reshape how AI is used in the development of autonomous network operations. Key 

points include: 

1. Inject knowledge into management and orchestration systems to achieve more intelligent 

operations and improve the level of network security. This includes, for certain specific tasks 

and services, the ability to: 

A. Optimize data flow and resource allocation to provide the best “Quality of Experience” 

(QoE) and “Quality of Service” (QoS) for preferred sets of customers. 

NOTE: “Quality of Experience” (QoE) and “Quality of Service” (QoS) are terms used widely to 

measure experience and service useability by end customers with Mean opinion scores. 

B. Dynamically adjust the allocation of cloud-network resources to maximize cost-effective 

service operation. 
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C. Predict and identify network vulnerabilities and automatically repair or isolate affected 

components from the rest of the network. 

D. Automate network and system management operations to reduce manual intervention 

and lower costs. 

2. Integrate the network LLM into network operation planning, construction, operation, and 

maintenance, including: 

A. Real-time analysis and optimization of network behaviour, dynamic adjustment of 

resources, response to emergencies and changes, and improvement of system stability. 

B. Identify and defend against security threats to prevent attacks in advance. 

C. Optimize the energy allocation of 5G base stations and data centres to achieve energy 

savings and cost reduction. 

The integration of AI technologies into a telecommunications network environment presents a number of 

different challenges. This has resulted in a more cautious phased integration approach, as follows: 

• Phase 1 is mostly chatbots for question-answering and similar applications. For example, a 

network optimization chatbot could help with problem diagnosis to decision execution. 

• Phase 2 adds role-oriented digital assistants. Exemplary applications include on-site installation 

and maintenance, customer service, and fault diagnosis and remediation. Integrating LLMs with 

knowledge graphs will usher in explainability and transparency. 

• Phase 3 adds agents and multi-agent systems. One example is [26], which leverages the 

collective strengths of multiple LLMs through a layered Mixture-of-Agents (MoA) approach. It 

enhances response quality through iterative refinement. LLMs generate better responses when 

they have access to outputs from other models, even if those outputs are of lower quality. 

Similar to mixture-of-experts, this is a layered architecture where each layer is made up of 

multiple LLM agents. There are typically 3 agents per layer and 4 layers. Each agent takes all the 

outputs from agents in the previous layer as auxiliary information in generating its response. 

MoA achieves state-of-the-art performance on benchmarks like AlpacaEval 2.0, MT-Bench, and 

FLASK, surpassing GPT-4 Omni. This exemplary approach, after appropriate finetuning, could be 

used to further automate network OAM operations. 
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4. Management Technologies to Increase Autonomy 
of OAM Operations 

4.1. Deep learning 

4.1.1. Introduction 

Deep learning is a subset of artificial intelligence that investigates how to use neural networks with many 

layers (i.e., "deep") to model complex patterns in data. It is particularly effective for tasks involving large 

amounts of unstructured data, such as images, audio, and text. Deep learning has become a crucial 

component in enhancing autonomous systems through the development of increasingly computationally 

efficient models. This section will provide several examples of its use in ICT technology. 

4.1.2. Generic AI for OAM Use Cases 

Deep learning has shown significant potential in enhancing the autonomy of network management 

systems by enabling automatic detection and classification of network anomalies, predicting network 

congestion, and optimizing resource allocation based on traffic patterns and user behaviour. The 

following are examples of deep learning for network management autonomous operation in different 

domains for different applications: 

1. AI Networking and AIOps1: Autonomous networks leverage AI and machine learning to 

continuously monitor the networks, analysing data in real-time. This capability allows the network 

management systems to identify patterns that reveal anomalies, enabling proactive problem-

solving and self-healing mechanisms. This helps ensure that network issues are detected and 

resolved before they impact users [11]. The needed data to feed the AI models can be gathered 

using telemetry procedures. ETSI ISG ENI is specifying a cognitive network (see clause 4.3 and 

[22]) that uses a sophisticated cognition model to understand normalised ingested data (e.g., 

what caused the data to occur and its significance to the operation of the system) and 

information (e.g., what is the urgency of fixing this problem, and how likely is the fix to cause 

other problems), as well as the context that defines how those data were produced2. Once that 

understanding is achieved, ENI then evaluates the meaning of the data, and determines if any 

actions need to be taken to ensure that the goals and objectives of the system are met. This 

includes improving or optimising performance, reliability, and/or availability. In short, it uses 

AIOps and cognitive networking to improve the operator experience. 

 
1 AIOps is the use of AI technologies to automate and optimise IT service management and operations. 

2 Many types of data, and especially information and knowledge, are context-dependent. This means that the 

significance and relevance of a problem may change in different contexts. 
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2. Machine Learning for Network Management: The complexity of modern networks, especially 

with the move towards cloud-native and disaggregated architectures, necessitates the use of AI 

and machine learning for effective management. These technologies enable the network to learn 

from historical data and predict future network states, such as congestion, allowing for proactive 

adjustments in routing to prevent bottlenecks [12]. Some additional examples include: 

• Automation of Configuration, Policy Management, and Network Monitoring, where simple 

and repetitive, but manually intensive, tasks, can be performed using ML. 

• Anomaly Detection, where ML identifies trends and outliers that indicate potential outages, 

failures, or bottlenecks. 

• Security Incident Alerts and Remediation, by recognising trends and anomalies that indicate 

security issues. 

• Predictive Maintenance, which uses ML to proactively replace hardware before it fails and 

address nascent issues while they are still relatively minor and can be resolved more easily 

and quickly. 

3. Deep Reinforcement Learning (DRL) for Resource Allocation in 5G Networks: DRL algorithms 

learn from the interaction with the environment, making decisions based on the state of the 

system and receiving feedback in the form of rewards. This allows the model to learn the optimal 

policy over time. DRL can handle complex, uncertain, and dynamic environments by learning to 

adapt to different environmental changes and make decisions that maximize the long-term 

reward. One approach uses deep Q-learning to dynamically allocate network resources based on 

traffic demands and user behaviour. The model learns to optimize spectrum and computing 

resource allocation to maximize network performance and user quality of experience [13]. Some 

additional examples include: 

• DRL enables networks to self-optimise by continually fine-tuning parameters and paths to 

minimise some metrics such as congestion and latency while maximizing other metrics, such 

as throughput and reliability; 

• DRL can be used to model resource allocation as a dynamic programming problem for  

optimising one or more goals, such as energy efficiency and cost; 

• DRL can be used to improve the reliability of data transmission in 5G networks. For example, it 

can be used to determine the number of repeated transmissions of emergency data to reach 

the target outage probability; and 

• DRL can make real-time decisions based on the current state of the system. 
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4. Transfer Learning for Cross-Domain Resource Optimization: Transfer learning can be applied to 

adapt optimization models trained on one network domain to new domains with limited data. 

This improves the generalization capability for network optimization models [14]. Some examples 

include: 

• transfer learning applied to resource management on network cross-domains; 

• transfer learning applied to data traffic analysis on multimodal traffic; 

• transfer learning applied to computing task allocation on multimodal tasks. 

4.2. Policy Management 
ISG ENI uses a novel policy model [16] to manage the behaviour of the system. Management involves 

monitoring the activity of a system, making decisions about how the system is acting, and performing 

control actions to modify the behaviour of the system [15]. Policy Management ensures that consistent 

and scalable decisions are made governing the behaviour of a system. Policy controls the behaviour of an 

Entity, not the actual end result. For example, an access control list may be created and managed using 

policy, but is not a policy instance or type of policy. 

The actions of a policy should always be verified. Past architectures have not done this (i.e., they usually 

have a policy decision entity and an entity to enforce the decision, but no entity to verify that the policy 

was executed correctly). This is an important feature of the ENI Policy Management system, as shown 

below. Also, a goal of ENI is to continually evaluate and optimize policy, so that it becomes more effective 

with experience. 
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Figure 4.2.1: Simplified Functional Block Diagram of the ENI Policy Model 

4.2.1. Defining Input and Output Policies 

The Policy Continuum [15] differentiates between the needs of different constituencies in defining and 

expressing policy. Each constituency is made up of a set of users that have similar business needs, and 

more importantly, use similar concepts and terminology. The Policy Continuum formally differentiates 

between the needs of different constituencies in defining and expressing policy. The number of continua 

in the Policy Continuum is determined by the applications using it. This enables ENI to formally capture 

policies as expressed in each continuum and translate them into its own internal format. This also 

provides traceability and explanations (crucial for compliance with the EU AI Act) in policy management. 

A set of five External Reference Points [15] are used to send policies to and from the ENI System. There is 

also an External Reference Point to ingest information and knowledge that applies to policies from a 

particular source (e.g., a LLM using RAG). 
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4.2.2. Types of Policies 

ENI defines a novel information model that can represent different types of policies, each with its own 

content [16]. For the current release, three types of policies are defined: 

1. Imperative policy: a type of policy that uses statements to explicitly change the state of a set of 

targeted objects. Hence, the order of statements that make up the policy is explicitly defined. It 

is typically made up of Event, Condition, and Action clauses. An example of an imperative policy, 

using informal English, is: 

• WHEN an Alarm is received, IF the severity of the Alarm is Critical THEN execute the 

CriticalAlarm Policy. 

2. Declarative policy: a type of policy that uses statements from a formal logic to describe a set of 

computations that need to be done without defining how to execute those computations. 

Hence, the state is not explicitly manipulated, and the order of statements that make up the 

policy is irrelevant. An example of a declarative policy, using First Order Logic, is: 

• ∃x∃y (Customer(x) ∧ SLA(y) ∧ have(x, y)) 

The English equivalent is: “Some Customers have a SLA”. 

3. Intent policy: a type of policy that uses statements from a restricted natural language (e.g. an 

external Domain Specific Language, or DSL) to express the goals of the policy, but does not 

specify how to accomplish those goals. In particular, formal logic syntax is not used. Therefore, 

each statement in an Intent Policy may require the translation of one or more of its terms to a 

form that another managed functional entity can understand. An example of an intent policy is: 

• No processor shall run at more than 75% utilization. 

The above example indicates different types of ambiguity that may exist in an intent statement. 

For example, does the term "processor" include both CPUs and GPUs? What about ASICs that 

have processing capabilities? As another example, the term "utilization" could refer to memory, 

I/O operations, or processor utilization. 

4.2.3. The ENI Policy Model 

Figure 4.2.3.1 shows a simplified functional block diagram of the ENI Policy Model. At the top, a 

PolicyObject may aggregate 0..n metadata objects. This is inherited by all subclasses of the PolicyObject. 

There are 4 subclasses. PolicySource defines the author and other contact info for a policy, and 

PolicyTarget defines the set of managed objects that this policy may affect. PolicyStructure and 

PolicyComponentStructure define the types of policies and components of a policy, respectively. 

Conceptually, the "left side" represents the type of policy, and the "right side" represents the contents of 

the policy. When a given policy is defined on the left side, the set of components that can be used to 

populate its content are then defined on the right side. Once a particular subclass of PolicyStructure is 

chosen, this restricts the types of policy components that can be used to define its content. 
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Figure 4.2.3.1: Simplified Functional Block Diagram of the ENI Policy Information Model 

4.2.4. ENI Policy Execution 

There are multiple ways to execute ENI policies [15]. An exemplary functional block diagram is shown in 

Figure 4.2.3.1 using a model-driven engineering approach, where code is generated from UML 

information and data models. An exemplary recipe for executing policies is: 

1. Annotate the information model with tag-value pairs to add information for tools to manipulate 

the model. 

2. Generate one or more DSLs that are used to describe the object model(s) created from the 

information model. This enables these models to be shared across different tools and 

programming languages to enable a consistent and coherent view of the information to be 

accessible. Each DSL corresponds to a particular Policy Continuum level. 

3. Generate a final DSL to model the behaviour of the system being managed. This ensures that 

behaviours defined by policies are supported in and consistent with the information model. 

4. Analyse the produced policies. This includes syntactic and semantic checking and conflict 

resolution. Reasoning is used to help resolve any conflicts found. This can also be used to 

transform a policy of one type (e.g. intent) into a policy of another type. 

5. Generate monitoring criteria, then Implement and deploy the policy. 
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4.3. Cognitive Management 
Cognition is the process of acquiring and understanding data and information to produce new data, new 

information, and new knowledge. Cognitive networks use situation-awareness3 to evaluate the 

performance of a system against its goals. Cognitive systems understand the underlying meaning of why 

telemetry-based information occurred as a function of context. Cognitive systems reason by using formal 

logic or other mechanisms to form and prove hypotheses as to why a problem occurred and how to fix it. 

Cognitive systems learn experientially and become more efficient and accurate over time as their 

knowledge increases and is refined. An example of Knowledge produced is the understanding of how 

telemetry affects KPIs, and the trends that lead to faults and violations of Service Levels (SL) and Service 

Level agreements (SLAs). 

A Cognitive Network is aware of its goals, and can actively protect them from being violated even in the 

presence of change. Similarly, if its goals change, then it takes measures to change the services it provides 

to meet those changed goals. This is one of the primary use cases for Cognitive Networks. 

The ENI Cognitive Management Functional Block uses cognitive processes to understand how past 

behaviour, coupled with currently ingested contextual data and information, affect the goals that the ENI 

System is trying to achieve. The ENI Cognitive Management system draws from human decision-making 

processes to better comprehend the relevance and meaning of ingested data. Cognitive management 

enables the ENI System to experientially learn to improve its operation and performance, thereby 

providing autonomic behaviour. 

4.3.1. Cognition Model 

The ENI Cognitive Management Functional Block is based on an innovative cognition model [15] [19]. 

A cognition model defines how cognitive processes, such as comprehension, action, and prediction, are 

performed and influence decisions. The ENI cognition model draws heavily on how human cognition is 

performed. More specifically, cognitive psychology defines three interacting layers, called reactive (or 

subconscious), deliberative, and reflective. Reactive processes take immediate responses based upon the 

reception of an appropriate external stimulus. Deliberative processes receive data from and can send 

recommendations and/or commands to the reactive processes. 

In ENI, these processes accumulate and generalise knowledge from experience, and combine that with 

what is learned from other people and systems. They can achieve more complex goals by applying short- 

and long-term memory in order to create and carry out more elaborate plans. Reflective processes 

consider what predictions turned out wrong, along with what obstacles and constraints were 

encountered, in order to prevent sub-optimal performance from occurring again. This may require the 

reformulation of the problem in a way that leads to more effective solutions. 

ENI Cognitive Management learns from experience to improve its performance. This includes acquiring 

new knowledge from instruction or experience, revising and correcting existing knowledge, and 

combining existing data and information to infer and deduce new knowledge. 

 
3 Situation awareness is perceiving data and behavior that pertain to the relevant circumstances and/or conditions of 

a system or process, understanding the meaning and significance of these data and behaviors, and how processes, 

actions, and new situations inferred from these data and processes are likely to evolve in the near future. 
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All recommendations and commands from ENI are embedded in Policies. The key advantage of this 

combined approach is the transformer's ability to process and generate natural language, while 

leveraging the knowledge graph's capability to integrate and reason over disparate data sources and 

domain knowledge within the telco ecosystem. This could drive more intelligent, automated and context-

aware decision-making across various telco operations and services. 

Figure 4.3.1.1 shows a simplified Functional block diagram of the ENI Cognition closed control loops. 

Figure 4.3.1.1: Simplified Functional Block Diagram of the ENI Cognition Model 

4.3.2. Cognitive Planning and Execution 

Managing networks is complex, since business rules, environmental conditions, and user needs are all 

constantly changing. Therefore, ENI uses a set of agents, each optimised to perform a particular function, 

track changes, assess their meaning and relevance, and plan any changes desired. This is pictured below. 

Figure 4.3.2.1 shows some of our extensions to the Observe-Orient-Decide-Act (OODA) control loop [19]. 

We control the loop using a Finite State Machine (FSM); we insert an AI-based planning module between 

the orient and decide functions; we add a reinforcement learning module that observes each stage of the 

FSM and produces recommendations to optimize one or more of the control loops. The system can take 

“shortcuts” if certain criteria are met (also not part of the original OODA loop), shown as “Normal” 

(no shortcuts), High Priority (bypasses planning), and “Urgent” (bypasses planning and decision-making). 
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We use a hybrid approach to implement the above cognition model by using a DRL agent framework for 

implementing a state machine. This combination makes the state machine more robust to change. DRL 

agents can be data-driven, learning to adapt their behaviour online by continuously updating their policy 

based on new observations and rewards from the environment. DRL can optimize sophisticated reward 

functions that encode complex objectives like safety constraints, fairness criteria, or multi-objective 

trade-offs, enabling finer-grained behaviour management. 

Figure 4.3.2.1: ENI Cognition Model as an Extension of the OODA Control Loop [18] 

4.4. How Generative AI Applications Enhance Autonomicity 
Generative models are being increasingly used in network management applications. Indeed, Generative 

AI models can be used to autonomously detect and resolve network issues, optimizing performance and 

minimizing downtime. These models also enhance network security by identifying and mitigating threats 

in real-time. Additionally, AI-driven automation streamlines configuration management, reducing human 

error and ensuring consistent policies across the network. These are collectively examples of intelligent 

management, which leads to more efficient resource utilization, improved user experiences, and 

significant cost savings. 

This section provides examples of how transformers and knowledge graphs enhance the autonomy of 

network operations. 

4.4.1. Overview of Generative AI 

With the advent of 5G and the upcoming 5.5G, one of the goals of 3GPP is integrating cellular and non-

cellular communication technologies to provide significant improvement of the network connectivity, 

accessibility, and data rates to support future services such as tactile internet, augmented reality, 

metaverse, cloud gaming, telepresence, autonomous remote driving, and navigation. 

This integration of heterogeneous communication systems is leading to an increase in the complexity of 

networks, which makes their control and management ever more complex. 
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In this context, Generative AI can support the design and management of complex systems according to 

gathered observations. For example, the output of generative models can provide: 

- enhanced predictability based on historical information and context, which can be used to 

estimate when and where problems might occur in a network infrastructure; 

- diagnosis of network problems in real-time, reducing downtime and improving reliability; 

- optimised allocation of network resources, ensuring efficient utilisation; 

- data analytics and trends to make reliable decisions about infrastructure management by 

exploiting data-driven strategies; 

- personalised services to customers, enhancing their experience and reducing customer churn. 

Some applications of a Generative AI model to networking can be found in the literature. In [1], authors 

generate a semantic model for the received information, starting from the original complex content, to 

make the transmission to the channel corruptions more robust. In [2], the authors define a method for the 

virtual representation of physical objects of a 5G and beyond network. In [3], the authors describe a 

method for extracting a model of a city’s entire mobility network, a weighted directed graph in which 

nodes are geographic locations and weighted edges represent people’s movements between those 

locations, thus describing the entire mobility set flows within a city. 

In [4], authors investigate a generative pre-trained model NetGPT for both traffic understanding and 

generation tasks. The authors use multi-pattern network traffic modelling to construct unified text inputs 

and support traffic understanding and generation tasks. Finally, in [5], the authors define a model to 

generate a synthetic CPS topology with realistic network feature distribution. This model can learn 

different complex network parameters and capture the distribution of different network features of the 

input networks. 

4.4.2. Transformers and Knowledge Graphs as Used in ENI 

In [17], there is the description of the use of Transformers and Knowledge Graphs in ENI. 

Transformers are a specific neural network architecture [20] that is designed to process sequential data, 

such as text, by using self-attention mechanisms to capture relationships between different parts of the 

input sequence. Transformers excel at understanding context and long-range dependencies in text, 

making them highly effective for various language tasks, including machine translation, summarization, 

and question-answering. LLMs are typically based on the transformer architecture and are characterized 

by their massive scale, often containing billions of parameters. LLMs can perform various natural language 

processing tasks, including text generation, conversational AI, and content creation. 

The Transformer Management Functional Block is located within the Policy Management Functional Block 

for two reasons: (1) the most common function of the Transformer Management Functional Block is to be 

used to create and edit ENI Policies, and (2) External Policy Users (i.e. the End-User, an Application, the 

OSS, the BSS, and the Orchestrator) do not need direct access to the functionality provided by the 

Transformer Management Functional Block. This also reduces the attack surface of ENI. 
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The Transformer Management Functional Block may require significant computing, memory, and/or other 

resources for its operation. This is one reason why it is designed as a Functional Block. Hence, it may use a 

set of Internal Reference Points. A simplified Functional Block Diagram is shown in Figure 4.4.2.1. It 

contains four Functional Blocks: Retrieval Augmented Generation (RAG), Prompting Framework, 

Transformer Processing, and Output Generation. 

 

Figure 4.4.2.1: Simplified Functional Block Diagram of the Transformer 

Management Functional Block 

RAG enhances the output of transformers by combining the strengths of retrieval-based and generation-

based approaches, leading to more accurate, relevant, and contextually informed responses. It enables 

ENI to use open-source models and finetune them with telco-specific documentation and business rules. 

The prompting framework enables different prompting techniques to be used. It can significantly enhance 

transformer performance in generative AI by improving logical reasoning, handling complex problems, 

and mimicking non-linear human thought processes. 

The Transformer Processing Functional Block enables different Transformers to be used. Its primary focus 

is to provide additional information for parsing input policies to the parser components in the Policy 

Management Functional Block. 

The Output Generation Functional Block is used to generate code corresponding to the processed policy. 

It is designed as a modular set of hierarchical Functional Blocks. Two examples are shown, one for 

processing DSLs, and the other for generating code, such as Java® and Python™. 
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A Knowledge Graph4 uses a formal logic model to represent the semantics of nodes, edges, and their 

relationships as a rich set of structures. This formal representation allows logical inference for retrieving 

implicit knowledge rather than only allowing queries requesting explicit knowledge. [21] discusses how 

Knowledge Graphs may be used to significantly improve complex database analysis and reasoning by 

LLMs. 

This includes (1) providing enhanced context and background knowledge, (2) enhancing question 

answering by forcing the LLM to reason in steps, (3) enhancing recommendations by training the LLM to 

follow step-by-step reasoning through the graph, (4) improving data integration and retrieval by ensuring 

the retrieved information (e.g., from a RAG system) is more relevant, and (5) helping knowledge transfer 

and generation across different domains and tasks, enabling better performance on unseen or out-of-

distribution data. 

The inclusion of a Knowledge Graph also provides two important benefits for LLMs: 

1. Mitigating Hallucinations by grounding LLMs with factual knowledge from Knowledge Graphs, 

hallucinations may be reduced, improving the reliability of the system's outputs. 

2. Enabling Explainable and Traceable Reasoning by providing a structured and interpretable 

representation of knowledge, allowing LLMs to generate more explainable and traceable 

reasoning paths for their outputs. The use of formal logic in Knowledge Graphs enables 

hypotheses and theorems to be proven. This is critical for compliance with the EU’s AI Act. 

Likewise, a Transformer can provide several benefits for Knowledge Graphs, including: (1) automated 

graph construction and completion, (2) linking entities in text to entities in a Knowledge Graph to form a 

semantic network, (3) process dynamically changing graph data to enable reasoning over evolving 

knowledge, and provide richer context definition, contextual knowledge, and dependencies. 

Possible applications of this combination include: 

• Knowledge Assistant. The transformer model processes network data streams (logs, events, 

metrics) to extract insights and generate natural language reports/alerts. The Knowledge Graph 

integrates static network topology data, device configurations, service models etc, to provide 

context for reasoning. The combination enables advanced network monitoring, root cause 

analysis, predictive maintenance, and automated remediation workflows. 

• Service/Resource Discovery. The Knowledge Graph models complex interdependencies & 

hierarchies of network services & apps. The Transformer processes user requests/intents and 

queries the Knowledge Graph to discover and recommend relevant services or resources based 

on user entitlements, device capabilities etc. 

• Intent-based Service Automation. The Knowledge Graph models intricate network policies, 

constraints and best practices. Transformer queries the Knowledge Graph to generate low-level 

device configurations or orchestration workflows while adhering to policies. 

 
4 A knowledge graph is not a type of Generative AI; rather, it is a type of symbolic logic. However, when coupled with 

a transformer, a neuro-symbolic Ai is realized, which does include generative AI functionality. 
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4.5. Network Digital Twins 
The advent of the 5G Service-Based Architecture, and in general the softwarization of the network, has 
made network status and configuration vital for run-time adaptation and optimization of network 
performance and resource utilization. For this reason, future networks will need to embed such dynamic 
data in the Network Digital Twins, granting real-time alignment of the real network status. 

The concept of Digital Twins is well-known, especially in manufacturing and IoT, as a tool to enable 

predictive maintenance and accurate control of objects and complex systems. The concept is to build a 

digital replica of a real system, that is supported by a continuous flow of data from the physical twin (the 

original system) in such a way as to maintain the two entities “synchronized”. 

The same concept can be applied to networks and networked services, leading to Network Digital Twins: 

an accurate replica of a real network, complete with modelled equipment and traffic. The Network Digital 

Twin represents an important asset for future networks, and in particular future mobile networks where 

resources are scarcer and coverage status of every single user can change overtime. 

Network Digital Twins are a key component of future mobile networks beyond 5G, as it can be used to 

orchestrate and manage the emulation environment following NFV/SDN principles [23]. Data generated 

by the Digital Twin, based on network flows and device behaviours, are made accessible to other 

components and functions of the system, so they can perform intelligent analysis and predictions. 

In particular, the Network Digital Twin directly supports three main AI-driven autonomous functionalities: 

• Generate datasets for training AI/ML algorithms: representing a faithful replica of the actual 

network infrastructure, the Network Digital Twin can generate diverse datasets for training AI/ML 

algorithms without affecting or impacting the actual physical component. 

• Perform prediction and prevention: the Network Digital Twin can predict different future 

scenarios and forecast different problems and vulnerabilities. 

• Analyze “what-if” scenarios: Network Digital Twins can provide different scenarios to gain in-

depth knowledge of the network behaviour and analyze the different management strategies 

without requiring direct actions on the physical counterpart. The Network Digital Twin can 

provide a playground for AI to perform tests and learn the potential impact of its actions without 

generating potential performance issues on the real system. 

However, several challenges are still to be addressed. Arguably the most relevant is the two-way 

continuous data flow between the physical and the digital twin. However, the amount of information to 

perform an accurate replica of the state of the physical twin and the related data flows and services might 

be massive and difficult to handle. This leads to the requirement of applying AI/ML to reduce the amount 

of actual data to transfer by modelling or predicting some aspects of the data flows and network state 

information. 

In addition, the time scale in networks can be as short as milli-, micro- or even nano-seconds, requiring 

the introduction of prediction and modelling to minimize the distance between the time on the physical 

twin and that in its digital version. The amount of time required to transfer/synchronize state information 

will impact the overall performance and, in some cases, even the feasibility of some of the scenarios 

above. 
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5. Network Technologies for AI Service Delivery 
(Net4AI) 

The fast evolution towards investigating how AI can be used in telecom networks raises the expectations 

for service agility in both business and consumer markets. While technological development is growing 

fast, the critical question is whether the service provider’s existing underlying data communications 

networks can fulfil the expectations, delivering high-demanding services intelligently and with low latency 

and ensuring a deterministic experience-centric network architecture. 

To accomplish the above expectations, the network has to provide deterministic QoS and QoE and 

autonomous operation of both infrastructure and services. 

As reported in Figure 5.1, the following concept could help in focalizing the relationship between AI and 

Network. 

Figure 5.1: AI for Network and Network for AI 

• "Network for AI" enable the Network to properly deliver the services based on AI to the customer, 
enabling dynamic service creation and granting SLA proactively. Conversely, Network has to adopt 
technologies enabling simple and effective monitoring and control from AI technologies. 

• “AI for network” increase the Autonomous lifecycle of infrastructure and service. 

Clause 5 is concentrating on defining the aspects related to “Network for AI”. Convergence to a fewer 
network protocols and simpler routing infrastructure will simplify its representation in digital twins and 
help enable AI-based automation. The Network will be capable of supporting multiple scenarios by 2030, 
including: 

• Transport Network: The base station access is upgraded from 10GE to 50GE, driving the transmission 
speed of the Metro Area Network (MAN) aggregation network and backbone network to 400/800GE 
and increased usage of Segment Routing IPv6 (SRv6), which is the latest evolution of source routing 
technology. With the development of the industry ecosystem and related standards, SRv6 and its 
compression technologies are increasingly deployed on global IP networks, helping telecom carriers, 
industry customers, and enterprise customers deploy more cost-effective and intelligent networks and 
provide convenient and high-quality service experiences based on network slicing functionality. 
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• Data centre network: The server network scale increases from 100,000 nodes to millions of nodes. 
The maximum interface rate of data centre switches is upgraded to 400/800GE, reducing the latency 
from microseconds to nanoseconds. Additionally, AI training scenarios mainly involve a small number 
of high-density flows, which are small in number and high in flow density. Traditional Equal Cost Multi-
Path (ECMP) is based on hash mechanisms not considering the throughput of each flow. This causes 
traffic conflict and backpressure, reducing traffic throughput and affecting training efficiency. Traffic 
paths between AI training cards can be planned to avoid hash conflicts between traffic. Uplink 
conflicts on leaf switches and downlink conflicts on spine switches must be considered during path 
planning. Load balancing functionalities considering the status of the whole data centre network are 
recommended to realize efficient network scale load balancing. 

• Campus network: Wi-Fi is upgraded from Wi-Fi 6 to Wi-Fi 7, giving users a peak access capability of up 
to 30 Gbit/s. With the development of WLAN technologies, homes, and enterprises rely increasingly 
on Wi-Fi to access their Network. The Wi-Fi 7 improves the data transmission rate and ensures low 
latency and high reliability. Therefore, Wi-Fi 7 better matches the requirements for robustness and 
delay performance for data transmission in scenarios such as voice conference, real-time operation, 
industrial Internet of Things (IIoT), interactive telemedicine, and similar (for example, Industrial 
Automated Guided Vehicles (AGVs) require 100 ms @99.999%) services. 

• Intelligent OAM: The network is upgraded from L3 (conditionally autonomous) to L4 (highly 
autonomous) or later to L4.5 to almost achieve fully intelligent AN L5. Intelligent OAM will benefit 
from the listed technologies. They simplify the creation of a Digital Map enabling network modeling, 
dynamic data collection, and actuation of the needed network changes. This ensures a high-level 
service customer experience based on uniform management for all the network domains. 

• NaaS interface: Customers expect one-step solutions to network and cloud service management, 
selection, and subscription. 

• Deterministic SLA: Customers require deterministic service-level SLA assurance, obtained with a 
flexible allocation of cloud and network resources and intelligent traffic control based on different 
production scenarios. 

• Customer-level assurance: Customers pay more attention to service-related network quality and there 
is the need to prevent network faults in advance and provide the possibility to perform service 
monitoring and maintenance by themselves. 
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6. Conclusions 

As one of the key technologies that can help network operation move towards L4, mainstream operators 

are considering adopting the latest AI and ML technologies (e.g., Generative AI LLM and transformers) to 

help improve network operation management efficiency. Automation involves several kinds of use cases, 

as highlighted in Clause 3. They involve the Network infrastructure lifecycle management (creation, 

expansion, troubleshooting), service delivery, and end-user interactions. 

The first class of use cases involves the management of a specific network infrastructure domain, like the 

one involving the IP network and digital twin simulation as described in this document, or the entire 

network status to calculate the KPI indicator to be aware of the network status. 

For the second class, services can be requested and delivered by interpreting the user intent or by an API 

interface, connecting the end user directly to the data centre/cloud where the applications are 

implemented. SLA breach avoidance and root cause analyses are examples of service management 

automation. 

In Clause 4, several technologies have been analyzed to address those use cases, and the combination of 

them is suggested to fulfill each use case at best. Significantly, no single AI technology satisfies all 

requirements of each use case. Hence, an analysis and recommendations of which technologies mix to be 

used to fulfill each scenario are described. In particular, the functions of policy management to 

standardize recommendations and commands generated for the system being managed and the 

Cognition Model to understand the meaning and implications of ingested data, and define which actions 

are needed to fulfill the policies are described: 

• ETSI ISG ENI uses a novel policy model [16] to manage the behaviour of the system. Management 

involves monitoring the activity of a system, making decisions about how the system is acting, and 

performing control actions to modify the behaviour of the system [15]. Policy management 

ensures that consistent and scalable decisions are made to govern the behaviour of a system. 

Policy controls the behaviour of an Entity, not the actual end result. For example, an access 

control list may be created and managed using policy but is not a policy instance or type of policy. 

• A cognition model defines how cognitive processes, such as comprehension, action, and 

prediction, are performed and influence decisions. The ENI cognition model draws heavily on how 

human cognition is performed. 

Generative models are increasingly used in network management applications and, in particular, in the 

above Policy and Cognition Model functionalities. Indeed, Generative AI models can be used to 

autonomously detect and resolve network issues, optimizing performance and minimizing downtime. 

By analyzing vast amounts of network data, generative AI can predict potential failures and recommend 

proactive maintenance. It also enhances network security by identifying and mitigating threats in real-

time. Additionally, AI-driven automation streamlines configuration management, reducing human error 

and ensuring consistent policies across the network. This intelligent management leads to more efficient 

resource utilization, improved user experiences, and significant cost savings, making generative AI an 

invaluable tool for modern network operations. 
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The network infrastructure itself has to evolve to interact efficiently with highlighted AI technologies, 

providing e2e real-time interaction. The network infrastructure has to be easily represented in a digital 

map, with a simple way to dynamically collect the status of the Network and actuate the necessary 

adaptations. The Network has to deliver state-of-the-art services (like AR, unmanned industry, and 8K 

video) to every user and device, providing ubiquitous 10Gbps access on campus, at home, on mobile, and 

in industry. This implies using a 400/800GE connection in the Network and the data centre. Digital Map 

utilization enables to properly optimize the connection in the data centre implementing network scale 

load balancing mechanisms. E2e SRv6-based network slicing from Campus to data centre and public cloud 

represents one way to diminish the overall number of protocols and stitching points in the network, 

enabling simple modelling, monitoring, provisioning and optimization. 

Technologies are available to increase the overall AN level of the telecommunication networks, and ENI 
wants to highlight the possible way ahead continuing to drive technology evolution and suggesting best 
practices to implement them in live environments. Fervent activities in Work Items and PoCs will need a 
joint effort by the whole industry to synchronize the effort in a common direction and speed the increase 
of the Autonomous Network level. 
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Annex A. Autonomous Driving 

Deep learning provides significant improvements in various aspects of vehicle perception, decision-

making, and control. Key functionalities provided include: 

1. Semantic Feature Extraction: Deep learning models can extract semantic features from various 

inputs, improving the vehicle's ability to understand its environment. This is particularly useful in 

tasks such as object detection, scene understanding, and natural language processing for 

interpreting road signs and navigation instructions [7]. 

2. Personalized Adaptive Cruise Control: Deep reinforcement learning algorithms, such as Dueling 

Double Deep Q-Network, can be used to develop personalized adaptive cruise control systems. 

These systems can learn and adapt to individual driving styles, categorizing them as aggressive, 

general, or conservative, and adjust the vehicle's behaviour accordingly [8]. 

3. Cooperative Platoon Merging: Deep reinforcement learning approaches can optimize the 

merging behavior of connected and automated vehicles in platoons. This can lead to significant 

reductions in energy consumption (up to 76.7%) and improvements in passenger comfort [9]. 

4. [10] provides an overview of the architecture and algorithms used for common autonomous 

driving tasks, including motion planning, platooning, pedestrian detection lane recognition, and 

others. 
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