

ETSI TS 146 032 V9.0.0 (2010-02)

Technical Specification

Digital cellular telecommunications system (Phase 2+);
Full rate speech;

Voice Activity Detector (VAD)
 for full rate speech traffic channels

(3GPP TS 46.032 version 9.0.0 Release 9)

GLOBAL SYSTEM FOR
MOBILE COMMUNICATIONS

R

�

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)13GPP TS 46.032 version 9.0.0 Release 9

Reference
RTS/TSGS-0446032v900

Keywords
GSM

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered
for the benefit of its Members.

3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)23GPP TS 46.032 version 9.0.0 Release 9

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or
GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under
http://webapp.etsi.org/key/queryform.asp.

http://webapp.etsi.org/IPR/home.asp
http://webapp.etsi.org/key/queryform.asp

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)33GPP TS 46.032 version 9.0.0 Release 9

Contents

Intellectual Property Rights .. 2

Foreword ... 2

Foreword ... 5

1 Scope .. 6

2 References .. 6

3 Abbreviations ... 6

4 General ... 6

5 Functional description .. 7

5.1 Overview and principles of operation .. 7

5.2 Algorithm description ... 7

5.2.1 Adaptive filtering and energy computation .. 9

5.2.2 ACF averaging .. 9

5.2.3 Predictor values computation .. 9

5.2.4 Spectral comparison .. 10

5.2.5 Periodicity detection ... 10

5.2.6 Information tone detection .. 11

5.2.7 Threshold adaptation... 12

5.2.8 VAD decision ... 15

5.2.9 VAD hangover addition .. 15

6 Computational details ... 15

6.1 Adaptive filtering and energy computation .. 17

6.2 ACF averaging ... 18

6.3 Predictor values computation ... 18

6.3.1 Schur recursion to compute reflection coefficients ... 19

6.3.2 Step-up procedure to obtain the aav1[0..8] ... 19

6.3.3 Computation of the rav1[0..8] ... 20

6.4 Spectral comparison ... 20

6.5 Periodicity detection ... 21

6.6 Threshold adaptation .. 21

6.7 VAD decision ... 23

6.8 VAD hangover addition ... 23

6.9 Periodicity updating ... 24

6.10 Tone detection .. 24

6.10.1 Windowing ... 24

6.10.2 Auto-correlation .. 24

6.10.3 Computation of the reflection coefficients .. 25

6.10.4 Filter coefficient calculation ... 26

6.10.5 Pole Frequency Test.. 26

6.10.6 Prediction gain test.. 26

7 Digital test sequences ... 27

7.1 Test configuration... 27

7.2 Test sequences .. 28

Annex A (informative): ... 29

A.1 Simplified block filtering operation ... 29

A.2 Description of digital test sequences .. 29

A.2.1 Test sequences .. 29

A.2.2 File format description ... 31

A.3 VAD performance .. 33

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)43GPP TS 46.032 version 9.0.0 Release 9

A.4 Pole frequency calculation ... 34

Annex B (normative): Test sequences .. 35

Annex C (informative): Change history ... 36

History .. 37

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)53GPP TS 46.032 version 9.0.0 Release 9

Foreword
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The present document specifies the Voice Activity Detector (VAD) to be used in the Discontinuous Transmission
(DTX) for the digital cellular telecommunications system.

Archive en_300965v080000p0.zip which accompanies the present document, contains test sequences, as described in
clause A.2.

en_300965v080000p0.zip Annex B: Test sequences for the GSM Full Rate speech codec; Test sequences files
*.inp, *.cod, *.vad.

The specification from which the present document has been derived was originally based on CEPT documentation,
hence the presentation of the present document may not be entirely in accordance with the ETSI/PNE Rules.

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)63GPP TS 46.032 version 9.0.0 Release 9

1 Scope
The present document specifies the Voice Activity Detector (VAD) to be used in the Discontinuous Transmission
(DTX) as described in GSM 06.31. It also specifies the test methods to be used to verify that a VAD complies with the
technical specification.

The requirements are mandatory on any VAD to be used either in the GSM Mobile Stations (MS)s or Base Station
Systems (BSS)s.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a
GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] GSM 01.04: "Digital cellular telecommunications system (Phase 2+); Abbreviations and
acronyms".

[2] GSM 06.10: "Digital cellular telecommunications system(Phase 2+); Full rate speech;
Transcoding".

[3] GSM 06.12: "Digital cellular telecommunications system(Phase 2+); Full rate speech; Comfort
noise aspect for full rate speech traffic channels".

[4] GSM 06.31: "Digital cellular telecommunications system(Phase 2+); Full rate speech;
Discontinuous Transmission (DTX) for full rate speech traffic channels".

3 Abbreviations
Abbreviations used in the present document are listed in GSM 01.04 [1].

4 General
The function of the VAD is to indicate whether each 20 ms frame produced by the speech encoder contains speech or
not. The output is a binary flag which is used by the TX DTX handler defined in GSM 06.31 [4].

The ETS is organized as follows.

Clause 2 describes the principles of operation of the VAD.

In clause 3, the computational details necessary for the fixed point implementation of the VAD algorithm are given.
This clause uses the same notation as used for computational details in GSM 06.10.

The verification of the VAD is based on the use of digital test sequences. Clause 4 defines the input and output signals
and the test configuration, whereas the detailed description of the test sequences is contained in clause A.2.

The performance of the VAD algorithm is characterized by the amount of audible speech clipping it introduces and the
percentage activity it indicates. These characteristics for the VAD defined in the present document have been
established by extensive testing under a wide range of operating conditions. The results are summarized in clause A.3.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)73GPP TS 46.032 version 9.0.0 Release 9

5 Functional description
The purpose of this clause is to give the reader an understanding of the principles of operation of the VAD, whereas the
detailed description is given in clause 3. In case of discrepancy between the two descriptions, the detailed description of
clause 3 shall prevail.

In the following subclauses of clause 2, a Pascal programming type of notation has been used to describe the algorithm.

5.1 Overview and principles of operation
The function of the VAD is to distinguish between noise with speech present and noise without speech present. The
biggest difficulty for detecting speech in a mobile environment is the very low speech/noise ratios which are often
encountered. The accuracy of the VAD is improved by using filtering to increase the speech/noise ratio before the
decision is made.

For a mobile environment, the worst speech/noise ratios are encountered in moving vehicles. It has been found that the
noise is relatively stationary for quite long periods in a mobile environment. It is therefore possible to use an adaptive
filter with coefficients obtained during noise, to remove much of the vehicle noise.

The VAD is basically an energy detector. The energy of the filtered signal is compared with a threshold; speech is
indicated whenever the threshold is exceeded.

The noise encountered in mobile environments may be constantly changing in level. The spectrum of the noise can also
change, and varies greatly over different vehicles. Because of these changes the VAD threshold and adaptive filter
coefficients must be constantly adapted. To give reliable detection the threshold must be sufficiently above the noise
level to avoid noise being identified as speech but not so far above it that low level parts of speech are identified as
noise. The threshold and the adaptive filter coefficients are only updated when speech is not present. It is, of course,
potentially dangerous for a VAD to update these values on the basis of its own decision. This adaptation therefore only
occurs when the signal seems stationary in the frequency domain but does not have the pitch component inherent in
voiced speech. A tone detector is also used to prevent adaptation during information tones.

A further mechanism is used to ensure that low level noise (which is often not stationary over long periods) is not
detected as speech. Here, an additional fixed threshold is used.

A VAD hangover period is used to eliminate mid-burst clipping of low level speech. Hangover is only added to
speech-bursts which exceed a certain duration to avoid extending noise spikes.

5.2 Algorithm description
The block diagram of the VAD algorithm is shown in figure 2.1. The individual blocks are described in the following
subclauses. ACF, N and sof are calculated in the speech encoder.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)83GPP TS 46.032 version 9.0.0 Release 9

Predictor
values

computation

ACF
averaging

Spectral
comparison

Periodicity
detection

vvad

th
vad

stat

rvad

pvadACF

N

av1

rav1

ptch

av0

vad
Adaptive

filtering and
energy

computation

sof
tone

Tone
detection

VAD
hangover
addition

VAD
decision

Threshold
adaptation

Figure 2.1: Functional block diagram of the VAD

The global variables shown in the block diagram are described as follows:

- ACF are auto-correlation coefficients which are calculated in the speech encoder defined in GSM 06.10
(subclause 3.1.4, see also clause A.1). The inputs to the speech encoder are 16 bit 2's complement numbers, as
described in GSM 06.10, subclause 4.2.0;

- av0 and av1 are averaged ACF vectors;

- rav1 are autocorrelated predictor values obtained from av1;

- rvad are the autocorrelated predictor values of the adaptive filter;

- N is the long term predictor lag value which is obtained every sub-segment in the speech coder defined in
GSM 06.10;

- ptch indicates whether the signal has a steady periodic component;

- sof is the offset compensated signal frame obtained in the speech coder defined in GSM 06.10;

- pvad is the energy in the current frame of the input signal after filtering;

- thvad is an adaptive threshold;

- stat indicates spectral stationarity;

- vvad indicates the VAD decision before hangover is added;

- vad is the final VAD decision with hangover included.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)93GPP TS 46.032 version 9.0.0 Release 9

5.2.1 Adaptive filtering and energy computation

Pvad is computed as follows:

Pvad rvad acf rvad acfi

i

i= +
=
∑0 0

1

8

2

This corresponds to performing an 8th order block filtering on the input samples to the speech encoder, after zero offset
compensation and pre-emphasis. This is explained in clause A.1.

5.2.2 ACF averaging

Spectral characteristics of the input signal have to be obtained using blocks that are larger than one 20 ms frame. This is
done by averaging the auto-correlation values for several consecutive frames. This averaging is given by the following
equations:

av n acf n j ii i
j

frames

0 0 8
0

1

{ } { } ; ..= − =
=

−

∑

av n av n frames ii i1 0 0 8{ } { } ; ..= − =

Where n represents the current frame, n-1 represents the previous frame etc. The values of constants are given in
table 2.1.

Table 2.1: Constants and variables for ACF averaging

Constant Value Variable Initial value
frames 4 previous ACF's

av0 & av1

All set to 0

5.2.3 Predictor values computation

The filter predictor values aav1 are obtained from the auto-correlation values av1 according to the equation:

a R p= −1

where:

 - -
R = | av1[0], av1[1], av1[2], av1[3], av1[4], av1[5], av1[6], av1[7] |
 | av1[1], av1[0], av1[1], av1[2], av1[3], av1[4], av1[5], av1[6] |
 | av1[2], av1[1], av1[0], av1[1], av1[2], av1[3], av1[4], av1[5] |
 | av1[3], av1[2], av1[1], av1[0], av1[1], av1[2], av1[3], av1[4] |
 | av1[4], av1[3], av1[2], av1[1], av1[0], av1[1], av1[2], av1[3] |
 | av1[5], av1[4], av1[3], av1[2], av1[1], av1[0], av1[1], av1[2] |
 | av1[6], av1[5], av1[4], av1[3], av1[2], av1[1], av1[0], av1[1] |
 | av1[7], av1[6], av1[5], av1[4], av1[3], av1[2], av1[1], av1[0] |
 - -

and:

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)103GPP TS 46.032 version 9.0.0 Release 9

 - - - -
p = |av1[1]| a = |aav1[1]|
 |av1[2]| |aav1[2]|
 |av1[3]| |aav1[3]|
 |av1[4]| |aav1[4]|
 |av1[5]| |aav1[5]|
 |av1[6]| |aav1[6]|
 |av1[7]| |aav1[7]|
 |av1[8]| |aav1[8]|
 - - - -

aav1[0] = -1

av1 is used in preference to av0 as av0 may contain speech.

The autocorrelated predictor values rav1 are then obtained:

rav aav aav ii k

k

i

k i1 1 1 0 8

0

8

= =
=

−

+∑ ; ..

5.2.4 Spectral comparison

The spectra represented by the autocorrelated predictor values rav1 and the averaged auto-correlation values av0 are
compared using the distortion measure dm defined below. This measure is used to produce a Boolean value stat every
20 ms, as given by these equations:

dm

rav av rav av

av

i i
i=

+
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
∑1 0 2 1 0

0

0 0
1

8

0

 difference = |dm - lastdm|

 lastdm = dm

 stat = difference < thresh

The values of constants and initial values are given in table 2.2.

Table 2.2: Constants and variables for spectral comparison

Constant Value Variable Initial value
thresh 0.05 lastdm 0

5.2.5 Periodicity detection

The frequency spectrum of mobile noise is relatively stationary over quite long periods. The Inverse Filter
Autocorrelated Predictor coefficients of the adaptive filter rvad are only updated when this stationarity is detected.
Vowel sounds however, also have this stationarity, but can be excluded by detecting the periodicity of these sounds
using the long term predictor lag values (Nj) which are obtained every sub-segment from the speech codec defined in
GSM 06.10. Consecutive lag values are compared. Cases in which one lag value is a factor of the other are catered for,
however cases in which both lag values have a common factor, are not. This case is not important for speech input but
this method of periodicity detection may fail for some sine waves. The Boolean variable ptch is updated every 20 ms
and is true when periodicity is detected. It is calculated according to the following equation:

 ptch = oldlagcount + veryoldlagcount >= nthresh

The following operations are done after the VAD decision and when the current LTP lag values (N0 .. N3) are
available, this reduces the delay of the VAD decision. (N{-1} = N3 of previous segment.)

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)113GPP TS 46.032 version 9.0.0 Release 9

 lagcount = 0

 for j = 0 to 3 do
 begin
 smallag = maximum(Nj,N{j-1}) mod minimum(Nj,N{j-1})
 if minimum(smallag,minimum(Nj,N{j-1})-smallag) < lthresh
 then increment(lagcount)
 end

 veryoldlagcount = oldlagcount

 oldlagcount = lagcount

The values of constants and initial values are given in table 2..

Table 2.3: Constants and variables for periodicity detection

Constant Value Variable Initial value
lthresh
nthresh

2
4

oldlagcount
veryoldlagcount

N3

0
0

40

5.2.6 Information tone detection

The tone flag is only evaluated in the downlink VAD. In the uplink VAD, tone detection is not performed and tone =
false.

Computation of the tone flag is complex. It is therefore evaluated after the processing of the current speech encoder
frame. In this way transmission of the speech or SID frame is not delayed.

Information tones and environmental noise can be classified by inspecting the short term prediction gain, information
tones resulting in higher prediction gains than environmental noise. Tones can therefore be detected by comparing the
prediction gain to a fixed threshold. By limiting the prediction gain calculation to a fourth order analysis, information
signals consisting of one or two tones can be detected whilst minimizing the prediction gain for environmental noise.

The prediction gain decision is implemented by comparing the normalized prediction error with a threshold. This
measure is used to evaluate the Boolean variable tone every 20 ms. The signal is classified as a tone if the prediction
error is smaller than the threshold predth. This is equivalent to a prediction gain threshold of 13,5 dB.

Mobile noise can contain very strong resonances at low frequencies, resulting in a high prediction gain. A further test is
therefore made to determine the pole frequency of a second order analysis of the signal frame. The signal is classified as
noise if the frequency of the pole is less than 385 Hz. The pole frequency calculation is described in clause A.4.

The algorithm for detecting information tones is as follows:

 tone = false

 den = a[1]*a[1]
 num = 4*a[2] - a[1]*a[1]

 if (num <= 0)
 return

 if ((a[1] < 0) AND (num / den < freqth))
 return
 4
 prederr = MULT (1 - RC[i]*RC[i])
 i=1

 if (prederr < predth)
 tone = true

 return

The values of the constants are given in table 2.4. The coefficients a[1..2] are transversal filter coefficients calculated
from rc[1..2]. The calculation of the reflection coefficients rc[1..4] is described below.

The offset compensated signal frame sof[0..159] is multiplied by the Hanning window to give the windowed frame
sofh[0..159]:

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)123GPP TS 46.032 version 9.0.0 Release 9

sofh sof hann ii i i= = 0 159..

where

hann
i

ii = − ⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ =05 1 2

159
0 159. cos ..π

The auto-correlation acfh[0..4] of the windowed signal frame is then calculated:

acfh sofh sofh kk i

i k

i k= =
=

−∑
159

0 4; ..

rc[1..4] are then calculated from acfh[0..4] using the Schur recursion described in the RPE-LTP codec.

Table 2.4: Constants for information tone detection

Constant Value
freqth
predth

0,0973
0,0158

NOTE: Reflection coefficients are available in the RPE-LTP codec. However, they are calculated after
pre-emphasis using a rectangular window and do not give good tone detection results.

5.2.7 Threshold adaptation

A check is made every 20 ms to determine whether the VAD decision threshold (thvad) should be changed. This
adaptation is carried out according to the flowchart shown in figure 2.2. The constants used are given in table 2.5.

Adaptation takes place in two different situations: firstly whenever ACF[0] is very low and secondly whenever there is
a very high probability that speech and information tones are not present.

In the first case, the threshold is adapted if the energy of the input signal is less than pth. The threshold is set to plev
without carrying out any further tests because at these very low levels the effect of the signal quantization makes it
impossible to obtain reliable results from these tests.

In the second case, the decision threshold (thvad) and the adaptive filter coefficients (rvad) are only updated with the
rav1 values when there is a very high probability that speech and information tones are not present. Adaptation occurs if
the following conditions are met over a number (adp) of signal frames:

- stationarity is detected in the frequency domain;

- the signal does not contain a periodic component;

- information tones are not present.

The step-size by which the threshold is adapted is not constant but a proportion of the current value (determined by
constants dec and inc). The adaptation begins by experimentally multiplying the threshold by a factor of (1-1/dec). If
the new threshold is now higher than or equal to Pvad times fac then the threshold needed to be decreased and it is left
at this new lower level. If, on the other hand, the new threshold level is less than Pvad times fac then the threshold
either needed to be increased or kept constant. In this case it is set to Pvad times fac unless this would mean multiplying
it by more than a factor of (1+1/inc) (in which case it is multiplied by a factor of (1+1/inc)). The threshold is never
allowed to be greater than Pvad+margin.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)133GPP TS 46.032 version 9.0.0 Release 9

Table 2.5: Constants and variables for threshold adaptation

Constant Value Variable Initial value
pth
plev
fac
adp
inc
dec
margin

300 000
800 000
3.0
8
16
32
80 000 000

adaptcount
thvad
rvad[0]
rvad[1]
rvad[2]
rvad[3] to
rvad[8]

0
1 000 000
6
-4
1

All 0

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)143GPP TS 46.032 version 9.0.0 Release 9

BEGIN

no

increment
adaptcount

yes

adaptcount = 0

no

th
vad

= plev

END

thvad = thvad thvad- / dec

thvad
thvad thvad= min (+ / inc , p

vad*fac)

th
vad

= p
vad+ margin

rvad= rav1

adaptcount = adp + 1

yes

no

yes

no

no

END

thvad< p
vad* fac ?

ACF[0] < pth ?

adaptcount > adp ?

th
vad

> p
vad+ margin ?

yes

yes

stat and not ptch
and not tone ?

Figure 2.2: Flow diagram for threshold adaptation

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)153GPP TS 46.032 version 9.0.0 Release 9

5.2.8 VAD decision

Prior to hangover the VAD decision condition is:

 vvad = pvad > thvad

5.2.9 VAD hangover addition

VAD hangover is only added to bursts of speech greater than or equal to burstconst blocks. The Boolean variable vad
indicates the decision of the VAD with hangover included. The values of the constants are given in table 2.6. The
hangover algorithm is as follows:

 if vvad then increment(burstcount) else burstcount = 0

 if burstcount >= burstconst then
 begin
 hangcount = hangconst;
 burstcount = burstconst
 end

 vad = vvad or (hangcount >= 0)

 if hangcount >= 0 then decrement(hangcount)

Table 2.6: Constants and variables for VAD hangover addition

Constant Value Variable Initial value
burstconst
hangconst

3
5

burstcount
hangcount

0
-1

6 Computational details
In the next paragraphs, the detailed description of the VAD algorithm follows the preceding high level description. This
detailed description is divided in ten clauses related to the blocks of figure 2.1 (except periodicity updating) in the high
level description of the VAD algorithm.

Those clauses are:

1) adaptive filtering and energy computation;

2) ACF averaging;

3) predictor values computation;

4) spectral comparison;

5) periodicity detection;

6) threshold adaptation;

7) VAD decision;

8) VAD hangover addition;

9) periodicity updating;

10) information tone detection.

The VAD algorithm takes as input the following variables of the RPE-LTP encoder (see the detailed description of the
RPE-LTP encoder GSM 06.10):

- L_ACF[0..8], auto-correlation function (GSM 06.10/4.2.4);

- scalauto, scaling factor to compute the L_ACF[0..8] (GSM 06.10/4.2.4);

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)163GPP TS 46.032 version 9.0.0 Release 9

- Nc, LTP lag (one for each sub-segment, GSM 06.10/4.2.11);

- sof, offset compensated signal frame (GSM 06.10/4.2.2).

So four Nc values are needed for the VAD algorithm.

The VAD computation can start as soon as the L_ACF[0..8] and scalauto variables are known. This means that the
VAD computation can take place after part 4.2.4 of GSM 06.10 (Auto-correlation) of the LPC analysis clause of the
RPE-LTP encoder. This scheme will reduce the delay to yield the VAD information. The periodicity updating (included
in subclause 2.2.5) and information tone detection, are done after the processing of the current speech encoder frame.

All the arithmetic operations and names of the variables follow the RPE-LTP detailed description. To increase the
precision within the fixed point implementation, a pseudo-floating point representation of some variables is used. This
stands for the following variables (and related constants) of the VAD algorithm:

pvad: Energy of filtered signal;

thvad: Threshold of the VAD decision;

acf0: Energy of input signal.

For the representation of these variables, two integers (16 bits) are needed:

- one for the exponent (e_pvad, e_thvad, e_acf0);

- one for the mantissa (m_pvad, m_thvad, m_acf0).

The value e_pvad represents the lowest power of 2 just greater or equal to the actual value of pvad and the m_pvad
value represents a integer which is always greater or equal to 16384 (normalized mantissa). It means that the pvad value
is equal to:

pvad = 2
e_ pvad

*(m _ pvad /32768)

This scheme guarantees a large dynamic range for the pvad value and always keeps a precision of 16 bits. All the
comparisons are easy to make by comparing the exponents of two variables and the VAD algorithm needs only one
pseudo-floating point addition. All the computations related to the pseudo-floating point variables require very simple
16 or 32 bits arithmetic operations defined in the detailed description of the RPE-LTP encoder. This pseudo-floating
point arithmetic is only used in subclauses 3.1 and 3.6.

Table 3.1 gives a list of all the variables of the VAD algorithm that must be initialized in the reset procedure and kept in
memory for processing the subsequent frame of the RPE- LTP encoder. The types (16 or 32 bits) and initial values of
all these variables are clearly indicated and their related subclause is also mentioned. The bit exact implementation uses
other temporary variables that are introduced in the detailed description whenever it is needed.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)173GPP TS 46.032 version 9.0.0 Release 9

Table 3.1: Initial values for variables to be stored in memory

Names of variables: type (# of bits): Initialization: Subclause:

Adaptive filter coefficients:
rvad[0] 16 24 576 3.1, 3.6
rvad[1] 16 -16 384 3.1, 3.6
rvad[2] 16 4 096 3.1, 3.6
rvad[3..8] 16 0 3.1, 3.6

Scaling factor of ravd[0..8]:
normrvad 16 7 3.1, 3.6

Delay line of the auto-correlation coefficients:
L_sacf[0..26] 32 0 3.2
L_sav0[0..35] 32 0 3.2

Pointers on the delay lines:
pt_sacf 16 0 3.2
pt_sav0 16 0 3.2

Distance measure:
L_lastdm 32 0 3.4

Periodicity counters:
oldlagcount 16 0 3.5, 3.9
veryoldlagcount 16 0 3.5, 3.9

Adaptive threshold:
e_thvad (exponent) 16 20 3.6
m_thvad (mantissa) 16 31 250 3.6

Counter for adaptation:
adaptcount 16 0 3.6

Hangover flags:
burstcount 16 0 3.8
hangcount 16 -1 3.8

LTP lag memory:
oldlag 16 40 3.9

Tone Detection
tone 16 0 3.10

6.1 Adaptive filtering and energy computation
This subclause computes the e_pvad and m_pvad variables which represent the pvad value. It needs the L_ACF[0..8]
and scalauto variables of the RPE-LTP algorithm and the rvad[0..8] and normrvad variables produced by subclause 3.6
of the VAD algorithm. It also computes a floating point representation of L_ACF[0] (e_acf0 and m_acf0) used in
subclause 3.6.

Test if L_ACF[0] is equal to 0:

IF (scalauto < 0) THEN scalvad = 0;
ELSE scalvad = scalauto; / keep scalvad for use in subclause 3.2 /

IF (L_ACF[0] == 0) THEN
 | e_pvad = -32768;
 | m_pvad = 0;
 | e_acf0 = -32768;
 | m_acf0 = 0;
 | EXIT /continue with subclause 3.2/

Re-normalization of the L_ACF[0..8]:

normacf = norm(L_ACF[0]);

| FOR i = 0 to 8:
| sacf[i] = (L_ACF[i] << normacf) >> 19;
| NEXT i:

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)183GPP TS 46.032 version 9.0.0 Release 9

Computation of e_acf0 and m_acf0:

e_acf0 = add(32, (scalvad << 1));
e_acf0 = sub(e_acf0, normacf);
m_acf0 = sacf[0] << 3;

Computation of e_pvad and m_pvad:

e_pvad = add(e_acf0, 14);
e_pvad = sub(e_pvad, normrvad);

L_temp = 0;

| FOR i = 1 to 8:
| L_temp = L_add(L_temp, L_mult(sacf[i], rvad[i]));
| NEXT i:

L_temp = L_add(L_temp, L_mult(sacf[0], rvad[0]) >> 1);

IF (L_temp <= 0) THEN L_temp = 1;

normprod = norm(L_temp);
e_pvad = sub(e_pvad, normprod);
m_pvad = (L_temp << normprod) >> 16;

6.2 ACF averaging
This subclause uses the L_ACF[0..8] and the scalvad variables to compute the array L_av0[0..8] and L_av1[0..8] used
in subclause 3.3 and 3.4.

Computation of the scaling factor:

scal = sub(10, (scalvad << 1));

Computation of the arrays L_av0[0..8] and L_av1[0..8]:

| FOR i = 0 to 8:
| L_temp = L_ACF[i] >> scal;
| L_av0[i] = L_add(L_sacf[i], L_temp);
| L_av0[i] = L_add(L_sacf[i+9], L_av0[i]);
| L_av0[i] = L_add(L_sacf[i+18], L_av0[i]);
| L_sacf[pt_sacf + i] = L_temp;
| L_av1[i] = L_sav0[pt_sav0 + i];
| L_sav0[pt_sav0 + i] = L_av0[i];
| NEXT i:

Update of the array pointers:

IF (pt_sacf == 18) THEN pt_sacf = 0;
ELSE pt_sacf = add(pt_sacf, 9);

IF (pt_sav0 == 27) THEN pt_sav0 = 0;
ELSE pt_sav0 = add(pt_sav0, 9);

6.3 Predictor values computation
This subclause computes the array rav1[0..8] needed for the spectral comparison and the threshold adaptation. It uses
the L_av1[0..8] computed in subclause 3.2, and is divided in the three following subclauses:

- Schur recursion to compute reflection coefficients.

- Step up procedure to obtain the aav1[0..8].

- Computation of the rav1[0..8].

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)193GPP TS 46.032 version 9.0.0 Release 9

6.3.1 Schur recursion to compute reflection coefficients

This subclause is identical to the one used in the RPE-LTP algorithm. The array vpar[1..8] is computed with the array
L_av1[0..8] as an input.

Schur recursion with 16 bits arithmetic:

IF(L_av1[0] == 0) THEN
 |== FOR i = 1 to 8:
 | vpar[i] = 0;
 |== NEXT i:
 | EXIT; /continue with subclause 3.3.2/
temp = norm(L_av1[0]);
|== FOR k=0 to 8:
| sacf[k] = (L_av1[k] << temp) >> 16;
|== NEXT k:

Initialize array P[..] and K[..] for the recursion:

|== FOR i=1 to 7:
| K[9-i] = sacf[i];
|== NEXT i:

|== FOR i=0 to 8:
| P[i] = sacf[i];
|== NEXT i:

Compute reflection coefficients:

|== FOR n=1 to 8:
| IF(P[0] < abs(P[1])) THEN
| |== FOR i = n to 8:
| | vpar[i] = 0;
| |== NEXT i:
| | EXIT; /continue with
| | subclause 3.3.2/
| vpar[n] = div(abs(P[1]), P[0]);
| IF (P[1] > 0) THEN vpar[n] = sub(0, vpar[n]);
| IF (n == 8) THEN EXIT; /continue with subclause 3.3.2/
|
| Schur recursion:
|
| P[0] = add(P[0], mult_r(P[1], vpar[n]));
|==== FOR m=1 to 8-n:
| P[m] = add(P[m+1], mult_r(K[9-m], vpar[n]));
| K[9-m] = add(K[9-m], mult_r(P[m+1], vpar[n]));
|==== NEXT m:
|
|== NEXT n:

6.3.2 Step-up procedure to obtain the aav1[0..8]

Initialization of the step-up recursion:

L_coef[0] = 16384 << 15;
L_coef[1] = vpar[1] << 14;

Loop on the LPC analysis order:

|= FOR m = 2 to 8:
|== FOR i = 1 to m-1:
|== temp = L_coef[m-i] >> 16; / takes the msb /
|== L_work[i] = L_add(L_coef[i], L_mult(vpar[m], temp));
|== NEXT i
|=
|== FOR i = 1 to m-1:
|== L_coef[i] = L_work[i];

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)203GPP TS 46.032 version 9.0.0 Release 9

|== NEXT i
|=
|= L_coef[m] = vpar[m] << 14;
|= NEXT m:

Keep the aav1[0..8] on 13 bits for next clause:

| FOR i = 0 to 8:
| aav1[i] = L_coef[i] >> 19;
| NEXT i:

6.3.3 Computation of the rav1[0..8]
|= FOR i= 0 to 8:
|= L_work[i] = 0;
|== FOR k = 0 to 8-i:
|== L_work[i] = L_add(L_work[i], L_mult(aav1[k], aav1[k+i]));
|== NEXT k:
|= NEXT i:

IF (L_work[0] == 0) THEN normrav1 =0;
ELSE normrav1 = norm(L_work[0]);

|= FOR i= 0 to 8:
|= rav1[i] = (L_work[i] << normrav1) >> 16;
|= NEXT i:

Keep the normrav1 for use in subclause 3.4 and 3.6.

6.4 Spectral comparison
This subclause computes the variable stat needed for the threshold adaptation. It uses the array L_av0[0..8] computed in
subclause 3.2 and the array rav1[0..8] computed in subclause 3.3.3.

Re-normalize L_av0[0..8]:

IF (L_av0[0] == 0) THEN
 | FOR i = 0 to 8:
 | sav0[i] = 4095;
 | NEXT i:
ELSE
 | shift = norm(L_av0[0]);
 |= FOR i = 0 to 8:
 |= sav0[i] = (L_av0[i] << shift-3) >> 16;
 |= NEXT i:

Compute partial Σ of dm:

L_ Σ p = 0;
|= FOR i = 1 to 8:

|= L_ Σ p = L_add(L_ Σ p, L_mult(rav1[i], sav0[i]));
|= NEXT i:

Compute the division of partial Σ by sav0[0]:

IF (L_ Σ p < 0) THEN L_temp = L_sub(0, L_ Σ p);

ELSE L_temp = L_ Σ p;

IF (L_temp == 0) THEN
 | L_dm = 0;
 | shift = 0;
ELSE
 | sav0[0] = sav0[0] << 3;
 | shift = norm(L_temp);
 | temp = (L_temp << shift) >> 16;

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)213GPP TS 46.032 version 9.0.0 Release 9

 | IF (sav0[0] >= temp) THEN
 | | divshift = 0;
 | | temp = div(temp, sav0[0]);
 | ELSE
 | | divshift = 1;
 | | temp = sub(temp, sav0[0]);
 | | temp = div(temp, sav0[0]);
 |
 | IF(divshift == 1) THEN L_dm = 32768;
 | ELSE L_dm = 0;
 |
 | L_dm = L_add(L_dm, temp) << 1;

 | IF(L_ Σ p < 0) THEN L_dm = L_sub(0, L_dm);

Re-normalization and final computation of L_dm:

L_dm = (L_dm << 14);
L_dm = L_dm >> shift;
L_dm = L_add(L_dm, (rav1[0] << 11));
L_dm = L_dm >> normrav1;

Compute the difference and save L_dm:

L_temp = L_sub(L_dm, L_lastdm);
L_lastdm = L_dm;
IF (L_temp < 0) THEN L_temp = L_sub(0, L_temp);
L_temp = L_sub(L_temp, 3277);

Evaluation of the stat flag:

IF (L_temp < 0) THEN stat = 1;
ELSE stat = 0;

6.5 Periodicity detection
This subclause just sets the ptch flag needed for the threshold adaptation.

temp = add(oldlagcount, veryoldlagcount);
IF (temp >= 4) THEN ptch = 1;
ELSE ptch = 0;

6.6 Threshold adaptation
This subclause uses the variables e_pvad, m_pvad, e_acf0 and m_acf0 computed in subclause 3.1. It also uses the flags
stat (see subclause 3.4) and ptch (see subclause 3.5). It follows the flowchart represented on figure 2.2.

Some constants, represented by a floating point format, are needed and a symbolic name (in capital letter) for their
exponent and mantissa is used; table 3.2 lists all these constants with the symbolic names associated and their numerical
constant values.

Table 3.2: List of constants

Constant Exponent Mantissa
pth
margin
plev

E_PTH = 19
E_MARGIN = 27
E_PLEV = 20

M_PTH = 18 750
M_MARGIN = 19 531
M_PLEV = 25 000

NOTE: Floating point representation of constants used in subclause 3.6:
pth = 2(E_PTH)x(M_PTH/32768).
margin = 2(E_MARGIN)x(M_MARGIN/32768).
plev = 2(E_PLEV)x(M_PLEV/32768).

Test if acf0 < pth; if yes set thvad to plev:

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)223GPP TS 46.032 version 9.0.0 Release 9

comp = 0;
IF (e_acf0 < E_PTH) THEN comp = 1;
IF (e_acf0 == E_PTH) THEN IF (m_acf0 < M_PTH) THEN comp =1;
IF (comp == 1) THEN
 | e_thvad = E_PLEV;
 | m_thvad = M_PLEV;
 | EXIT; /continue with subclause 3.7/

Test if an adaptation is needed:

comp = 0;
IF (ptch == 1) THEN comp = 1;
IF (stat == 0) THEN comp = 1;
IF (tone == 1) THEN comp = 1;
IF (comp == 1) THEN
 | adaptcount = 0;
 | EXIT; /continue with subclause 3.7/

Incrementation of adaptcount:

adaptcount = add(adaptcount, 1);
IF (adaptcount <= 8) THEN EXIT; /continue with subclause 3.7/

Computation of thvad-(thvad/dec):

m_thvad = sub(m_thvad, (m_thvad >> 5));
IF (m_thvad < 16384) THEN
 | m_thvad = m_thvad << 1;
 | e_thvad = sub(e_thvad, 1);

Computation of pvad*fac:

L_temp = L_add(m_pvad, m_pvad);
L_temp = L_add(L_temp, m_pvad);
L_temp = L_temp >> 1;
e_temp = add(e_pvad, 1);
IF (L_temp > 32767) THEN
 | L_temp = L_temp >> 1;
 | e_temp = add(e_temp, 1);
m_temp = L_temp;

Test if thvad < pvad*fac:

comp = 0;
IF (e_thvad < e_temp) THEN comp = 1;
IF (e_thvad == e_temp) THEN IF (m_thvad < m_temp) THEN comp =1;

Computation of minimum (thvad+(thvad/inc), pvad*fac) if comp = 1:

IF (comp == 1) THEN
| Compute thvad +(thvad/inc).
| L_temp = L_add(m_thvad, (m_thvad >> 4));
| IF (L_temp > 32767) THEN
| | m_thvad = L_temp >> 1;
| | e_thvad = add(e_thvad,1);
| ELSE m_thvad = L_temp;
| comp2 = 0;
| IF (e_temp < e_thvad) THEN comp2 = 1;
| IF (e_temp == e__hvad) THEN IF (m_temp<m_thvad) THEN comp2 = 1;
| IF (comp2 == 1) THEN
| | e_thvad = e_temp;
| | m_thvad = m_temp;

Computation of pvad + margin:

IF (e_pvad == E_MARGIN) THEN
 | L_temp = L_add(m_pvad, M_MARGIN);
 | m_temp = L_temp >> 1;

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)233GPP TS 46.032 version 9.0.0 Release 9

 | e_temp = add(e_pvad, 1);
ELSE
 | IF (e_pvad > E_MARGIN) THEN
 | | temp = sub(e_pvad, E_MARGIN);
 | | temp = M_MARGIN >> temp;
 | | L_temp = L_add(m_pvad, temp);
 | | IF (L_temp > 32767) THEN
 | | | e_temp = add(e_pvad, 1);
 | | | m_temp = L_temp >> 1;
 | | ELSE
 | | | e_temp = e_pvad;
 | | | m_temp = L_temp;
 | ELSE
 | | temp = sub(E_MARGIN, e_pvad);
 | | temp = m_pvad >> temp;
 | | L_temp = L_add(M_MARGIN, temp);
 | | IF (L_temp > 32767) THEN
 | | | e_temp = add(E_MARGIN, 1);
 | | | m_temp = L_temp >> 1;
 | | ELSE
 | | | e_temp = E_MARGIN;
 | | | m_temp = L_temp;

Test if thvad > pvad + margin:

comp = 0;
IF (e_thvad > e_temp) THEN comp = 1;
IF (e_thvad == e_temp) THEN IF (m_thvad > m_temp) THEN comp =1;

IF (comp == 1) THEN
 | e_thvad = e_temp;
 | m_thvad = m_temp;

Initialize new rvad[0..8] in memory:

normrvad = normrav1;

|= FOR i = 0 to 8:
|= rvad[i] = rav1[i];
|= NEXT i:

Set adaptcount to adp + 1:

adaptcount = 9;

6.7 VAD decision
This subclause only outputs the result of the comparison between pvad and thvad using the pseudo-floating point
representation of thvad and pvad. The values e_pvad and m_pvad are computed in subclause 3.1 and the values e_thvad
and m_thvad are computed in subclause 3.6.

vvad = 0;
IF (e_pvad > e_thvad) THEN vvad = 1;
IF (e_pvad == e_thvad) THEN IF (m_pvad > m_thvad) THEN vvad =1;

6.8 VAD hangover addition
This subclause finally sets the vad decision for the current frame to be processed.

IF (vvad == 1) THEN burstcount = add(burstcount, 1);
ELSE burstcount = 0;

IF (burstcount >= 3) THEN
 | hangcount = 5;
 | burstcount = 3;

vad = vvad;
IF (hangcount >= 0) THEN
 | vad = 1;

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)243GPP TS 46.032 version 9.0.0 Release 9

 | hangcount = sub(hangcount, 1);

6.9 Periodicity updating
This subclause must be delayed until the LTP lags are computed by the RPE-LTP algorithm. The LTP lags called Nc in
the speech encoder are renamed lags[0..3] (index 0 for the first sub- segment of the frame, 1 for the second and so on).

Loop on sub-segments for the frame:

lagcount = 0;

|= FOR i = 0 to 3:
|= Search the maximum and minimum of consecutive lags.
|= IF (oldlag > lags[i]) THEN
|= | minlag = lags[i];
|= | maxlag = oldlag;
|= ELSE
|= | minlag = oldlag;
|= | maxlag = lags[i] ;
|=
|= Compute smallag (modulo operation not defined):
|=
|= smallag = maxlag;
|== | FOR j = 0 to 2:
|== | IF (smallag >= minlag) THEN smallag =sub(smallag, minlag);
|== | NEXT j;
|=
|= Minimum of smallag and minlag - smallag:
|=
|= temp = sub(minlag, smallag);
|= IF (temp < smallag) THEN smallag = temp;
|= IF (smallag < 2) THEN lagcount = add(lagcount, 1);
|= Save the current LTP lag.
|= oldlag = lags[i];
|= NEXT i:

Update the veryoldlagcount and oldlagcount:

veryoldlagcount = oldlagcount;
oldlagcount = lagcount;

6.10 Tone detection
This subclause computes the tone variable needed for the threshold adaptation. Tone is only calculated for the VAD in
the downlink. In the uplink VAD tone=0.

To reduce delay, this subclause should be calculated after the processing of the current speech encoder frame.

6.10.1 Windowing

This subclause applies a Hanning window to the input frame sof[0..159] to form the output frame sofh[0..159]. The
input frame is the current offset compensated signal frame calculated in the RPE-LTP codec. The array of constants
hann[i] is defined in table 3.2.

Multiply signal frame by Hanning window:

|== FOR i = 0 to 79:
| sofh[i] = mult_r(sof[i], hann[i]);
| sofh[159-i] = mult_r(sof[159-i], hann[i]);
|== NEXT i;

6.10.2 Auto-correlation

This subclause computes the auto-correlation vector L_acfh[0..5] from the windowed input frame sofh[0..159]. The
input frame must be scaled in order to avoid an overflow situation. This subclause is identical to the one used in the
RPE-LTP algorithm, with the exception that only five auto-correlation values are calculated.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)253GPP TS 46.032 version 9.0.0 Release 9

Dynamic scaling of the array sofh[0..159]:

Search for the maximum:

smax = 0;

|== FOR k = 0 to 159:
| temp = abs(sofh[k]);
| IF (temp > smax) THEN smax = temp;
|== NEXT k;

Computation of the scaling factor:

IF (smax == 0) THEN scalauto = 0;
ELSE scalauto = sub(4, norm(smax << 16));

Scaling of the array sofh[0..159]:

IF (scalauto > 0) THEN
 | temp = 16384 >> sub(scalauto,1);
 |== FOR k = 0 to 159:
 | sofh[k] = mult_r(sofh[k], temp);
 |== NEXT k:

Compute the L_ACF[..]:

|== FOR k=0 to 4:
| L_acfh[k] = 0;
|==== FOR i=k to 159:
| L_temp = L_mult(sofh[i], sofh[i-k]);
| L_acfh[k] = L_add(L_acfh[k], L_temp);
|==== NEXT i:
|== NEXT k:

6.10.3 Computation of the reflection coefficients

This subclause calculates the reflection coefficients rc[1..4] from the input array L_acfh[0..4]. This procedure is
identical to the one in subclause 3.3.1 and the RPE-LTP codec, with the exception that only four reflection coefficients
are calculated.

Schur recursion with 16 bits arithmetic:

IF(L_acfh[0] == 0) THEN
 |== FOR i = 1 to 4:
 | rc[i] = 0;
 |== NEXT i:
 | EXIT; /continue with subclause 3.10.4/
temp = norm(L_acfh[0]);
|== FOR k=0 to 4:
| sacf[k] = (L_acfh[k] << temp) >> 16;
|== NEXT k:

Initialize array P[..] and K[..] for the recursion:

|== FOR i=1 to 3:
| K[5-i] = sacf[i];
|== NEXT i:

|== FOR i=0 to 4:
| P[i] = sacf[i];
|== NEXT i:

Compute reflection coefficients:

|== FOR n=1 to 4:
| IF(P[0] < abs(P[1])) THEN
| |== FOR i = n to 4:
| | rc[i] = 0;
| |== NEXT i:
| | EXIT; /continue with subclause 3.10.4/
| rc[n] = div(abs(P[1]), P[0]);
| IF (P[1] > 0) THEN rc[n] = sub(0, rc[n]);
| IF (n == 4) THEN EXIT; /continue with subclause 3.10.4/
|

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)263GPP TS 46.032 version 9.0.0 Release 9

Schur recursion:

| P[0] = add(P[0], mult_r(P[1], rc[n]));
|==== FOR m=1 to 4-n:
| P[m] = add(P[m+1], mult_r(K[5-m], rc[n]));
| K[5-m] = add(K[5-m], mult_r(P[m+1], rc[n]));
|==== NEXT m:
|
|== NEXT n:

6.10.4 Filter coefficient calculation

This subclause calculates the direct form filter coefficients a[1..2] from the reflection coefficients rc[1..4].

Step-up procedure to obtain the a[1..2]:

temp = rc[1] >> 2;
a[1] = add(temp, mult_r(rc[2], temp));
a[2] = rc[2] >> 2;

6.10.5 Pole Frequency Test

This subclause uses the direct form filter coefficients a[1..2] to determine the pole frequency of the second order LPC
analysis. If the pole frequency is less than 385 Hz tone is set to 0 and clause 3 terminates.

L_den = L_mult (a[1], a[1]);

L_temp = a[2] << 16;
L_num = L_sub (L_temp, L_den);

If pole is not complex then exit:

IF (L_num <= 0) THEN
 | tone = 0;
 | EXIT; /clause 3 complete/

If pole frequency is less than 385 Hz then exit:

IF (a[1] < 0) THEN
 | temp = L_den >> 16;
 | L_den = L_mult (temp, 3189);
 | L_temp = L_sub (L_num, L_den);
 | IF (L_temp < 0) THEN
 | tone = 0;
 | EXIT; /clause 3 complete/

6.10.6 Prediction gain test

This subclause uses the reflection coefficients rc[1..4] to calculate the prediction gain. If the prediction gain is greater
than 13,5 dB then tone is set to 1 otherwise tone is set to 0.

Calculate normalized prediction error:

prederr = 32767;

|== FOR i=1 to 4
| temp = mult (rc[i], rc[i]);
| temp = sub (32767, temp);
| prederr = mult(prederr, temp);
|== NEXT i;

Test if prediction error is smaller than threshold:

temp = sub (prederr, 1464);

IF (temp < 0) THEN tone = 1;
 ELSE tone = 0;

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)273GPP TS 46.032 version 9.0.0 Release 9

Table 3.2: Values of the Hanning window array hann[i]

i hann i hann i hann i hann
0 0 20 4856 40 16545 60 28139
1 12 21 5325 41 17192 61 28581
2 51 22 5811 42 17838 62 29003
3 114 23 6314 43 18482 63 29406
4 204 24 6832 44 19122 64 29789
5 318 25 7365 45 19758 65 30151
6 458 26 7913 46 20389 66 30491
7 622 27 8473 47 21014 67 30809
8 811 28 9046 48 21631 68 31105
9 1025 29 9631 49 22240 69 31377

10 1262 30 10226 50 22840 70 31626
11 1523 31 10831 51 23430 71 31852
12 1807 32 11444 52 24009 72 32053
13 2114 33 12065 53 24575 73 32230
14 2444 34 12693 54 25130 74 32382
15 2795 35 13326 55 25670 75 32509
16 3167 36 13964 56 26196 76 32611
17 3560 37 14607 57 26707 77 32688
18 3972 38 15251 58 27201 78 32739
19 4405 39 15898 59 27679 79 32764

7 Digital test sequences
This clause provides information on the digital test sequences that have been designed to help the verification of
implementations of the Voice Activity Detector. Copies of these sequences are available (see clause A.2).

7.1 Test configuration
The VAD must be tested in conjunction with the speech encoder defined in GSM 06.10. The test configuration is shown
in figure 4.1. The input signal to the speech encoder is the sop[...] signal as defined in GSM 06.10 table 5.1. The
relevant parameters produced by the speech encoder are input to the VAD algorithm to produce the VAD output. This
output has to be checked against some reference files.

The file format of the encoder output parameters given in GSM 06.10 table 5.1 is extended to carry the VAD
information.

The VAD information is placed in the unused bit 15 (MSB) of the first encoded parameter:

 LAR(1): bit 15 = 1 if VAD on
 bit 15 = 0 if VAD 0ff

Furthermore, in order to facilitate approval testing over the air interface, the SP flag generated by the TX DTX handler
(see GSM 06.31) on the basis of the VAD flag is placed in the MSB position of the second encoded parameter:

 LAR(2): bit 15 = 1 if SP on
 bit 15 = 0 if SP off

The output file will also contain the SID codeword and the comfort noise parameters as described in GSM 06.12 and
GSM 06.31.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)283GPP TS 46.032 version 9.0.0 Release 9

RPE-LTP
encoder

VAD
under test

TX

DTX

handler

13 bit PCM

Reset

VAD flag
 1 bit

260 bits
SID or speech
260 bits

SP flag
1 bit

8kHz clock

COMPARISON

Figure 4.1: VAD test configuration

7.2 Test sequences
The test sequences are described in detail in clause A.2.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)293GPP TS 46.032 version 9.0.0 Release 9

Annex A (informative):

A.1 Simplified block filtering operation
Consider an 8th order transversal filter with filter coefficients a0..a8, through which a signal is being passed, the output
of the filter being:

′ = − −
=
∑s n a s n ii

i

() ()

0

8

 (1)

If we apply block filtering over 20 ms segments, then this equation becomes:

′ = − − ≤ − ≤ ≤ ≤
=
∑s n a s n i n i ni
i

() () ;
0

8

0 167;0 159 (2)

If the energy of the filtered signal is then obtained for every 20 ms segment, the equation for this is:

Pvad a s n i n ii

in

= − −
⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
≤ − ≤

==
∑∑ () ;

0

8

0

167 2

0 159 (3)

We know that (see GSM 06.10, subclause 3.1.4):

acf s s n i ii n

n

n i= ≤ − ≤ =
=

−∑
0

159

0 159 0 8; ; .. (4)

If equation (3) is expanded and acf0..acf8 are substituted for sn then we arrive at the equations:

Pvad r acf r acfi

i

i= +
=
∑0 0

1

8

2 (5)

Where:

r a ai k
k

i

k i i=
=

−

+ =∑
0

8

0 8; .. (6)

A.2 Description of digital test sequences

A.2.1 Test sequences
The VAD algorithm uses results from the full rate speech encoder defined in GSM 06.10. In the testing of the VAD, it
is assumed that the relevant speech encoder functions have been verified by the test sequences defined in GSM 06.10.

The five types of input sequences are briefly described below.

Spectral comparison

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)303GPP TS 46.032 version 9.0.0 Release 9

The two kinds of statements of the spectral comparison algorithm (subclause 3.4), arithmetic statements and control
statements, are tested by separate test sequences.

 Arithmetic statements:

 spec_a1.*

 spec_a2.*

 Control statements

 spec_c1.*

 spec_c2.*

 spec_c3.*

 spec_c4.*

Threshold adaptation

There are two types of tests to verify the threshold adaptation described in subclause 3.6:

 adapt_i1.*

 adapt_i2.*

The initial test sequences test the acf0 and VAD decision. A fault in the VAD decision will cause all the other
sequences to fail, so it is recommended that this test is run before all other tests.

 adapt_m1.*

 adapt_m2.*

The main test sequences will check the basic threshold adaptation mechanism.

Periodicity detection

 pitch1.*

 pitch2.*

These sequences check the periodicity detection algorithm described in subclause 3.5.

Tone detection

The tone detector test sequences are only required for downlink VAD implementations. There are three types of test to
verify the tone detection algorithm described in subclause 3.10. The first test sequence tests the operation of the tone
detector by means of a frequency sweep:

 freq_sw.*

The following test sequences test the prediction gain calculation within the tone detector:

 pred1.*

 pred2.*

The following sequences test the second order pole frequency calculation within the tone detector:

 pole1.*

 pole2.*

"Safety" and initialization

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)313GPP TS 46.032 version 9.0.0 Release 9

 safety.*

This sequence checks that safety tests have been implemented to prevent zero values being passed to the norm function.
It checks the functions described in the Adaptive Filtering and Energy Computation subclause (subclause 3.1), and the
Predictor Values Computation (subclause 3.3). This sequence also checks the initialization of thvad and the rvad array.

Real speech

 good_sp.*

 bad_sp.*

Because the test sequences cannot be guaranteed to find every possible error, there is a small possibility that an
implementation of the correct output for test sequences, but fail with real speech. Because of this, an extra set of
sequences are included that consist of barely detectable speech and very clean speech.

There are 3 different file extensions:

 *.inp: speech encoder input sequences, binary files

 *.vad: output flag of the VAD algorithm, ASCII files

*.cod: TX DTX handler output sequences, binary files for comparison with VAD/DTX handler output.

The *.cod files contain speech coder output information in the format described in clause 4.

It should be noted that there is no requirement in GSM 06.12 for a bit exact implementation of the averaging procedure
to calculate the "LAR" and "xmax" parameters in the SID frames. Different implementations are allowed.

The algorithms used for the calculation of the LAR and xmax parameters of the SID frames are therefore reproduced
below:

LAR averaging:

| FOR i = 1 to 8:
| L_Temp = 2; /* const. for rounding*/
| | FOR n = 1 to 4:
| | L_Temp1 = LAR[j-n](i); /*conversion 16 --> 32 bit*/
| | L_Temp = L_Add(L_Temp , L_Temp1);
| | NEXT n
| L_Temp = L_temp >> 2;
| mean (LAR(i)) = L_Temp; /*conversion 32 --> 16 bit*/
| NEXT i;

xmax averaging

L_Temp = 8; /* const. for rounding*/

| FOR n = 1 to 4:
| | FOR i = 1 to 4:
| | L_Temp1 = xmax[j-n](i); /*conversion 16 --> 32 bit*/
| | L_Temp = L_Add(L_Temp , L_Temp1);
| | NEXT i
| NEXT n

L_Temp = L_Temp >> 4;

mean (xmax) = L_Temp; /*conversion 32 --> 16 bit*/

A.2.2 File format description
All the *.inp and *.cod files are written in binary using 16 bit words, while all *.vad files are written in ASCII format.
The sizes of the files are shown in table A.2.1, A.2.2 and A.2.3. The detailed format of the *.inp and *.cod files is in
accordance with the descriptions given in GSM 06.10 clause 5.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)323GPP TS 46.032 version 9.0.0 Release 9

Table A.2.1: File sizes for *.inp extension files

File: Frames: Size in bytes:
spec_a1.inp 22 7 040
spec_a2.inp 22 7 040
spec_c1.inp 48 15 360
spec_c2.inp 48 15 360
spec_c3.inp 48 15 360
spec_c4.inp 48 15 360
adapt_i1.inp 67 21 440
adapt_i2.inp 48 15 360
adapt_m1.inp 403 128 960
adapt_m2.inp 376 120 320
pitch1.inp 35 11 200
pitch2.inp 35 11 200
freq_sw.inp 560 179 200
pred1.inp 126 40 320
pred2.inp 126 40 320
pole1.inp 97 31 040
pole2.inp 42 13 440
safety.inp 5 16 00
good_sp.inp 312 99 840
bad_sp.inp 312 99 840

Table A.2.2: File sizes for *.cod extension files

File: Frames: Size in bytes:
spec_a1.cod 22 3 344
spec_a2.cod 22 3 344
spec_c1.cod 48 7 296
spec_c2.cod 48 7 296
spec_c3.cod 48 7 296
spec_c4.cod 48 7 296
adapt_i1.cod 67 10 184
adapt_i2.cod 48 7 296
adapt_m1.cod 403 61 256
adapt_m2.cod 376 57 152
pitch1.cod 35 5 320
pitch2.cod 35 5 320
freq_sw.cod 560 85 120
pred1.cod 126 19 152
pred2.cod 126 19 152
pole1.cod 97 14 744
pole2.cod 42 6 384
safety.cod 5 760
good_sp.cod 312 47 424
bad_sp.cod 312 47 424

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)333GPP TS 46.032 version 9.0.0 Release 9

Table A.2.3: File sizes for *.vad extension files

File: Frames: Size in bytes:
spec_a1.vad 22 88
spec_a2.vad 22 88
spec_c1.vad 48 192
spec_c2.vad 48 192
spec_c3.vad 48 192
spec_c4.vad 48 192
adapt_i1.vad 67 268
adapt_i2.vad 48 192
adapt_m1.vad 403 1 612
adapt_m2.vad 376 1504
pitch1.vad 35 140
pitch2.vad 35 140
freq_sw.inp 560 2 240
pred1.vad 126 504
pred2.vad 126 504
pole1.vad 97 388
pole2.vad 42 168
safety.vad 5 20
good_sp.vad 312 1 248
bad_sp.vad 312 1 248

A.3 VAD performance
In optimizing a VAD a difficult trade-off has to be made between speech clipping which reduces the subjective
performance of the system, and the average activity factor. The benefit of DTX is increased as the average activity
factor is reduced. However, in general, a reduction of the activity will be associated with a greater risk for audible
speech clipping.

In the optimization process, great emphasis has been placed on avoiding unnecessary speech clipping. However, it has
been found that a VAD with virtually no audible clipping would result in a very high activity and very little DTX
advantage.

The VAD specified in this technical specification introduces audible and possibly objectionable clipping in certain
cases, mainly with low input levels. However, a comprehensive evaluation programme consisting of about 600
individual conversations conducted in a wide range of realistic conditions, it was found that about 90% of the
conversations were free from objectionable clipping.

The voice activity performance of the VAD is summarized in table A.3.1. The activity figures are averages of a large
number of conversations covering factors like different talkers, noise characteristics and locations. It should be noted
that the actual activity of a particular talker in a specific conversation may vary considerably relative to the averages
given. This is due both to the variation in talker behaviour as well as to the level dependency of the VAD (the channel
activity has been found to decrease by about 0,5 points of percentage per dB level reduction). However, as mentioned
above, a decreased speech input level increases the risk of objectionable speech clipping.

All the values given are activity figures, i.e. the % of time the radio channel has to be on.

Table A.3.1: Summary of channel activity

Telephone
instrument

Situation Typical channel
activity factor:

Handset Quiet location 55%
Handset Moderate office

noise with
voice interference

60%

Handset Strong voice
interference (e.g.
airport/railway station)

65-70%

Handsfree/
handset

Variable vehicle
noise

60%

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)343GPP TS 46.032 version 9.0.0 Release 9

A.4 Pole frequency calculation
This annex describes the algorithm used to determine whether the pole frequency for a second order analysis of the
signal frame is less than 385 Hz.

The filter coefficients for a second order synthesis filter are calculated from the first two unquantized reflection
coefficients rc[1..2] obtained from the speech encoder. This is done using the routine described in subclause 3.10.4. If
the filter coefficients a[0..2] are defined such that the synthesis filter response is given by:

 H(z) = 1 / (a[0] + a[1]z-1 + a[2]z-2) (1)

Then the positions of the poles in the Z-plane are given by the solutions to the following quadratic:

 a[0]z2 + a[1]z + a[2] = 0, a[0] = 1 (2)

The positions of the poles, z, are therefore:

 z = re ± j*sqrt(im), j2 = -1 (3)

where:

 re = - a[1] / 2 (4)

 im = (4*a[2] - a[1]2) / 4 (5)

If im is negative then the poles lie on the real axis of the Z-plane and the signal is not a tone and the algorithm
terminates. If re is negative then the poles lie in the left hand side of the Z-plane and the frequency is greater than
2 000 Hz and the prediction error test can be performed.

If im is positive and re is positive then the poles are complex and lie in the right hand side of the Z-plane and the
frequency in Hz is related to re and im by the expression:

 freq = arctan (sqrt(im)/re) * 4 000 / π (6)

Having ensured that both im and re are positive, the test for a dominant frequency less than 385 Hz can be derived by
substituting Equations 4 and 5 into Equation 6 and re-arranging:

 (4*a[2] - a[1]2) / a[1]2 < (tan(π*385/4 000))2 (7)

or

 (4*a[2] - a[1]2) / a[1]2 < 0.0973 (8)

If this test is true then the signal is not a tone and the algorithm terminates, otherwise the prediction error test is
performed.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)353GPP TS 46.032 version 9.0.0 Release 9

Annex B (normative):
Test sequences
The test vectors are described in the present document are supplied in archive en_300965v080000p0.zip which
accompanies the present document. The files contained in this archive are listed in clause A.2.

The full rate test vectors apply to both GSM Phase 1 and Phase 2. However, the files pole1.* pole2.* pred1.* pred2.*
and freq_sw.* are not required for Phase 1 (uplink and downlink) and Phase 2 uplink implementations.

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)363GPP TS 46.032 version 9.0.0 Release 9

Annex C (informative):
Change history

Change history
SMG No. TDoc.

No.
CR. No. Section

affected
New version Subject/Comments

SMG#09 4.0.5 ETSI Publication
SMG#17 4.2.1 ETSI Publication
SMG#23 4.3.1 ETSI Publication
SMG#23 5.0.3 Release 1996 version
SMG#27 6.0.0 Release 1997 version
SMG#29 7.0.0 Release 1998 version
 7.0.1 Version update to 7.0.1 for Publication
SMG#31 8.0.0 Release 1999 version

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
03-2001 11 Version for Release 4 4.0.0
06-2002 16 Version for Release 5 4.0.0 5.0.0
12-2004 26 Version for Release 6 5.0.0 6.0.0
06-2007 36 Version for Release 7 6.0.0 7.0.0
12-2008 42 Version for Release 8 7.0.0 8.0.0
12-2009 46 Version for Release 9 8.0.0 9.0.0

ETSI

ETSI TS 146 032 V9.0.0 (2010-02)373GPP TS 46.032 version 9.0.0 Release 9

History

Document history

V9.0.0 February 2010 Publication

	Intellectual Property Rights
	Foreword
	Foreword
	1 Scope
	2 References
	3 Abbreviations
	4 General
	5 Functional description
	5.1 Overview and principles of operation
	5.2 Algorithm description
	5.2.1 Adaptive filtering and energy computation
	5.2.2 ACF averaging
	5.2.3 Predictor values computation
	5.2.4 Spectral comparison
	5.2.5 Periodicity detection
	5.2.6 Information tone detection
	5.2.7 Threshold adaptation
	5.2.8 VAD decision
	5.2.9 VAD hangover addition

	6 Computational details
	6.1 Adaptive filtering and energy computation
	6.2 ACF averaging
	6.3 Predictor values computation
	6.3.1 Schur recursion to compute reflection coefficients
	6.3.2 Step-up procedure to obtain the aav1[0..8]
	6.3.3 Computation of the rav1[0..8]

	6.4 Spectral comparison
	6.5 Periodicity detection
	6.6 Threshold adaptation
	6.7 VAD decision
	6.8 VAD hangover addition
	6.9 Periodicity updating
	6.10 Tone detection
	6.10.1 Windowing
	6.10.2 Auto-correlation
	6.10.3 Computation of the reflection coefficients
	6.10.4 Filter coefficient calculation
	6.10.5 Pole Frequency Test
	6.10.6 Prediction gain test

	7 Digital test sequences
	7.1 Test configuration
	7.2 Test sequences

	Annex A (informative):
	A.1 Simplified block filtering operation
	A.2 Description of digital test sequences
	A.2.1 Test sequences
	A.2.2 File format description

	A.3 VAD performance
	A.4 Pole frequency calculation

	Annex B (normative): Test sequences
	Annex C (informative): Change history
	History

