ETSI TS 138 521-5 V17.0.0 (2024-01)

5G;

NR;

User Equipment (UE) conformance specification; Radio transmission and reception;

Part 5: Satellite access Radio Frequency (RF) and performance (3GPP TS 38.521-5 version 17.0.0 Release 17)

Reference
RTS/TSGR-0538521-5vh00

Keywords
5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from: https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024. All rights reserved.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**TM logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under https://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	ctual Property Rights	2
Legal l	Notice	2
Modal	verbs terminology	2
Forewo	ord	9
1 :	Scope	11
2	References	11
	Definitions of terms, symbols and abbreviations	
3.1	Terms	
3.2	Symbols	
3.3	Abbreviations	12
4 (General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	14
4.3	Specification suffix information	
4.4	Relationship with core specifications	14
5 (Operating bands and channel arrangement	14
5.1	General	
5.2	Operating bands	
5.2.1	General	
5.2.2	Operating bands with conducted requirements	
5.2.3	reserved (for radiated requirements)	
5.3	UE channel bandwidth	
5.3.1	General	
5.3.2	Maximum transmission bandwidth configuration	
5.3.3	Minimum guardband and transmission bandwidth configuration	
5.3.4	RB alignment	
5.3. 4 5.3.5	UE channel bandwidth per operating band	
5.3.5 5.4	Channel arrangement	
5.4.1		
	Channel spacing.	
5.4.1.1	Channel spacing for adjacent NTN satellite carriers	
5.4.2	Channel raster	
5.4.2.1	NR-ARFCN and channel raster.	
5.4.2.2	Channel raster to resource element mapping	
5.4.2.3	Channel raster entries for each operating band	
5.4.3	Synchronization raster	
5.4.3.1	Synchronization raster and numbering	
5.4.3.2	Synchronization raster to synchronization block resource element mapping	
5.4.3.3 5.4.4	Synchronization raster entries for each operating band	
6 '	Transmitter characteristics	20
6.1	General	20
6.2	Transmitter power	21
6.2.1	UE maximum output power	21
6.2.1.1	Test purpose	21
6.2.1.2	Test applicability	
6.2.1.3	Minimum conformance requirements	
6.2.1.4	Test description	
6.2.1.4.		
6.2.1.4.		
6.2.1.4.		
6.2.1.5	Test requirement	
6.2.2	UE maximum output power reduction	

6.2.2.1	Test purpose	
6.2.2.2	Test applicability	23
6.2.2.3	Minimum conformance requirements	23
6.2.2.4	Test description	24
6.2.2.4.1	Initial conditions	24
6.2.2.4.2	Test procedure	26
6.2.2.4.3	Message contents	26
6.2.2.5	Test requirement	27
6.2.3	UE additional maximum output power reduction	28
6.2.3.1	Test purpose	28
6.2.3.2	Test applicability	28
6.2.3.3	Minimum conformance requirements	28
6.2.3.3.1	General	28
6.2.3.3.2	A-MPR for NS_24	29
6.2.3.4	Test description	30
6.2.3.4.1	Initial conditions	30
6.2.3.4.2	Test procedure	
6.2.3.4.3	Message contents	35
6.2.3.5	Test requirement	
6.2.4	Configured transmitted power	
6.2.4.1	Test purpose	
6.2.4.2	Test applicability	
6.2.4.3	Minimum conformance requirements	
6.2.4.4	Test description	
6.2.4.4.1	Initial condition	
6.2.4.4.2	Test procedure	
6.2.4.4.3	Message contents	
6.2.4.5	Test requirement	
6.3	Output power dynamics	
6.3.1	Minimum output power	
6.3.1.1	Test purpose	
6.3.1.2	Test applicability	
6.3.1.3	Minimum conformance requirements	
6.3.1.4	Test description	
6.3.1.4.1	Initial condition	
6.3.1.4.2	Test procedure	
6.3.1.4.3	Message contents	
6.3.1.5	Test requirement	
6.3.2	Transmit OFF power	
6.3.2.1	Test purpose	
6.3.2.2	Test applicability	
6.3.2.3	Minimum conformance requirements	
6.3.2.4	Test description	
6.3.2.5	Test requirement	
6.3.3	Transmit on/off time mask	
6.3.3.1	Test purpose	
6.3.3.2	Test applicability	
6.3.3.3	Minimum conformance requirements	
6.3.3.4	Test description	
6.3.3.4.1	Initial conditions	
6.3.3.4.2	Test procedure	
6.3.3.4.3	Message contents	
6.3.3.5	Test requirement	
6.4	Transmit signal quality	
6.4.1	Frequency error	
6.4.1.1	Test purpose	
6.4.1.2	Test applicability	
6.4.1.3	Minimum conformance requirements	
6.4.1.4	Test description	
6.4.1.4.1	Initial condition	
6.4.1.4.2	Test procedure	
6.4.1.4.3	Message contents	
0.7.1.7.3	1410 Sage Comonis	

6.4.1.5	Test requirement	
6.5	Output RF spectrum emissions	53
6.5.1	Occupied bandwidth	53
6.5.2	Out of band emission	53
6.5.2.1	[to be updated]	53
6.5.2.2	Spectrum emission mask	53
6.5.2.2.1	Test purpose	
6.5.2.2.2	Test applicability	
6.5.2.2.3	Minimum conformance requirements	
6.5.2.2.4	Test description	
6.5.2.2.5	Test requirement	
6.5.2.3	[to be updated]	
6.5.2.4	Adjacent channel leakage ratio	
6.5.2.4.0	General	
6.5.2.4.1	NR Adjacent channel leakage ratio	
6.5.2.4.1	•	
	UTRA Adjacent channel leakage ratio	
6.5.3	Spurious emission	
6.5.3.0	General	
6.5.3.1	General spurious emissions	
6.5.3.1.1	Test purpose	
6.5.3.1.2	Test applicability	
6.5.3.1.3	Minimum conformance requirements	
6.5.3.1.4	Test description	
6.5.3.1.5	Test requirement	64
6.5.3.2	Spurious emissions for UE co-existence	65
6.5.3.2.1	Test purpose	65
6.5.3.2.2	Test applicability	65
6.5.3.2.3	Minimum conformance requirements	65
6.5.3.2.4	Test description	
6.5.3.1.5	Test requirement	
6.5.3.3	Additional Spurious emissions	
6.5.3.3.1	Test purpose	
6.5.3.3.2	Test applicability	
6.5.3.3.3	Minimum conformance requirements	
6.5.3.3.4	Test description	
6.5.3.3.5	Test requirement	
6.5.4	•	
	Transmit intermodulation	
6.5.4.1	Test purpose	
6.5.4.2	Test applicability	
6.5.4.3	Minimum conformance requirements	
6.5.4.4	Test description	
6.5.4.4.1	Initial conditions	
6.5.4.4.2	Test procedure	
6.5.4.4.3	Message contents	73
6.5.4.5	Test requirement	73
7 Re	eceiver characteristics	74
7.1	General	
7.2	Diversity characteristics	
7.3	Reference sensitivity	
7.3.1	General	
7.3.2	Reference sensitivity power level	
7.3.2.1	Test purpose	
7.3.2.2	Test applicability	
7.3.2.3	Minimum conformance requirements	75
7.3.2.4	Test description	75
7.3.2.4.1	Initial conditions	75
7.3.2.4.2	Test procedure.	77
7.3.2.4.3	Message contents	
7.3.2.5	Test requirement	
7.4	Maximum input level	
7.1	Test nurnose	79 79

7.4.2	Test applicability	
7.4.3	Minimum conformance requirements	
7.4.4	Test description	79
7.4.4.1	Initial conditions	79
7.4.4.2	Test procedure	
7.4.4.3	Message contents	
7.4.5	Test requirement	
7.5	Adjacent channel selectivity	81
7.5.1	Test purpose	81
7.5.2	Test applicability	81
7.5.3	Minimum conformance requirements	82
7.5.4	Test description	83
7.5.4.1	Initial conditions	83
7.5.4.2	Test procedure	83
7.5.4.3	Message contents	84
7.5.5	Test requirement	84
7.6	Blocking characteristics	85
7.6.1	General	85
7.6.2	In-band blocking	86
7.6.3	Out of Band Blocking	86
7.6.3.1	Test purpose	86
7.6.3.2	Test applicability	
7.6.3.3	Minimum conformance requirements	
7.6.3.4	Test description	87
7.6.3.4.1	Initial conditions	87
7.6.3.4.2	Test procedure	88
7.6.3.4.3	Message contents	88
7.6.3.5	Test requirement	
7.6.4	Narrow band blocking	
7.7	Spurious response	88
7.7.1	Test Purpose	
7.7.2	Test Applicability	
7.7.3	Minimum Conformance Requirements	
7.7.4	Test Description	
7.7.4.1	Initial Conditions	
7.7.4.2	Test Procedure	89
7.7.4.3	Message Contents	
7.7.5	Test Requirement	
7.8	Intermodulation characteristics	90
7.8.1	General	
7.8.2	Wide band Intermodulation	
7.8.2.1	Test purpose	
7.8.2.2	Test applicability	
7.8.2.3	Minimum conformance requirements	
7.8.2.4	Test description	
7.8.2.4.1	Initial conditions	
7.8.2.4.2	Test procedure	
7.8.2.4.3	Message contents	
7.8.2.5	Test requirement	
7.9	Spurious emissions	
7.9.1	Test purpose	
7.9.2	Test applicability	
7.9.3	Minimum conformance requirements	
7.9.4	Test description	
7.9.4.1	Initial conditions	
7.9.4.2	Test procedure	
7.9.4.3	Message contents	
7.9.5	Test requirement	96
8 C	onducted performance requirements	06
8.0	General	
8.1.1	Relationship between minimum requirements and test requirements	
0.1.1	relationship between minimum requirements and test requirements	JU

8.1.2	Applicability of minimum requirements	
8.1.3	Conducted requirements	97
8.1.3.1		
8.1.3.2	2 Reference point	97
8.1.3.3		
8.1.3.4		98
8.1.3.4		
8.1.3.4	ι ι	
8.2	Demodulation performance requirements	
8.2.1	General	
8.2.1.1		
8.2.1.1		
8.2.1.1	TT 7 T	
8.2.1.2	4	
8.2.1.2	1	
8.2.1.2	2.2 2RX requirements	102
Anna	ex A: (normative): Measurement channels	107
A.1	General	
A.1.1	Throughput definition	107
A.2	UL reference measurement channels	107
A.3	DL reference measurement channels	107
A.3.1	General	107
A.3.2	Reference measurement channels for PDSCH performance requirements	107
A.3.2.	0 General	107
A.3.2.	1 FDD	108
A.3.2.	1.1 Reference measurement channels for SCS 15 kHz FR1	108
A.4	Testing related to Satellite Access	110
	· · · · · · · · · · · · · · · · · · ·	
A.4.1	General	
A.4.2	Test condition for transmitter characteristics	
A.4.3 A.4.4	Test condition for receiver characteristics Test condition for performance requirements	
A.4.4	rest condition for performance requirements	110
Anne	x B: (normative): Propagation conditions	111
B.0	No interference	111
ь.0	No interference	111
B.1	Static propagation condition	111
B.1.1	UE Receiver with 1Rx	111
B.1.2	UE Receiver with 2Rx	111
D 0	36 14 4 6 B 4 4 B	
B.2	Multi-path fading propagation conditions	
B.2.0	General	
B.2.1	Delay profiles	
B.2.2	Combinations of channel model parameters	
B.2.3	MIMO Channel Correlation Matrices	
B.2.3.0		
B.2.3.	1.2 MIMO Correlation Matrices at High, Medium and Low Level	113
Anne	ex C (normative): Downlink physical channels	114
C.1	General	
C.2	Setup (Conducted)	114
C.3	Connection (Conducted)	114
C.3.0	General	
C.3.1	Measurement of Performance requirements	

Annex D (normative):		Characteristics of the interfering signal	116
D.1	General		116
D.2	Interference signals		116
Anne	x F (normative):	Measurement uncertainties and Test Tolerances	117
F.1	Acceptable uncertainty	of Test System (normative)	117
F.1.0			
F.1.1		environments	
F.1.2		mitter	
F.1.3	Measurement of recei	ver	118
F.2	Interpretation of measu	rement results (normative)	118
F.3	Test Tolerance and De	rivation of Test Requirements (informative)	118
F.3.0	General	_	118
F.3.1		environments	
F.3.2		mitter	
F.3.3	Measurement of recei	ver	119
F.4	Uplink power window		119
F.4.1	Introduction		119
F.4.2		ndow above a requirement	
F.4.3		dow below a requirement	
F.4.4	Setting the power wir	dow centred on a target value	122
Anne	x H (normative):	Statistical Testing	124
H.1	General		124
H.2	Statistical testing of red	ceiver characteristics	124
H.2.1			
H.2.2		to error ratio	
H.2.3			
H.2.4		of the pass fail limits	
H.2.5		·S	
H.2.6		pass fail limits (Informative)	
H.2.6.		on of the pass-fail limits	
H.2.6.	2 Simulation to deri	ve the pass-fail limits for testing 95% throughput	128
Anne	x I (informative):	Change history	129
Histo	ry		131

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, modal verbs have the following meanings:

shall indicates a mandatory requirement to do somethingshall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.

should indicates a recommendation to do something

should not indicates a recommendation not to do something

may indicates permission to do something

need not indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.

can indicates that something is possiblecannot indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will indicates that something is certain or expected to happen as a result of action taken by an agency

the behaviour of which is outside the scope of the present document

will not indicates that something is certain or expected not to happen as a result of action taken by an

agency the behaviour of which is outside the scope of the present document

might indicates a likelihood that something will happen as a result of action taken by some agency the

behaviour of which is outside the scope of the present document

might not indicates a likelihood that something will not happen as a result of action taken by some agency

the behaviour of which is outside the scope of the present document

In addition:

is (or any other verb in the indicative mood) indicates a statement of fact

is not (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

1 Scope

The present document specifies the measurement procedures for the conformance test of the NR User Equipment (UE) supporting satellite access operation that contains RF and Performance requirements.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 38.521-1: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone".
- [3] Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] 3GPP TS 38.108: "NR; Satellite Node radio transmission and reception"
- [5] 3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone".
- [6] 3GPP TS 38.101-4: "NR; User Equipment (UE) radio transmission and reception; Part 4: Performance requirements".
- [7] 3GPP TS 38.213: "NR; Physical layer procedures for control"
- [8] 3GPP TS 38.331: "Radio Resource Control (RRC) protocol specification".
- [9] 3GPP TS 38.300: "NR; NR and NG-RAN Overall description; Stage-2".
- [10] 3GPP TS 36.101: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception".
- [11] 3GPP TS 38.101-5: "NR; User Equipment (UE) radio transmission and reception; Part 5: Satellite access Radio Frequency (RF) and performance requirements"
- [12] 3GPP TS 38.508-1: "5GS; User Equipment (UE) conformance specification; Part 1: Common test environment ".
- [13] 3GPP TS 38.306: "User Equipment (UE) radio access capabilities".

3 Definitions of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Geosynchronous Earth Orbit: Earth-centered orbit at approximately 35786 kilometres above Earth's surface and synchronised with Earth's rotation. A geostationary orbit is a non-inclined geosynchronous orbit, i.e. in the Earth's equator plane.

Low Earth Orbit: Orbit around the Earth with an altitude between 300 km, and 1500 km.

Non-terrestrial networks: Networks, or segments of networks, using an airborne or space-borne vehicle to embark a transmission equipment relay node or base station.

Satellite: A space-borne vehicle embarking a bent pipe payload or a regenerative payload telecommunication transmitter, placed into Low-Earth Orbit (LEO), Medium-Earth Orbit (MEO), or Geostationary Earth Orbit (GEO).

Satellite Access Node: see definition in TS 38.108 [4].

UE transmission bandwidth configuration: Set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

 ΔF_{Global} Granularity of the global frequency raster ΔF_{Raster} Band dependent channel raster granularity

 $\begin{array}{ll} BW_{Channel} & Channel \ bandwidth \\ BW_{interferer} & Bandwidth \ of \ the \ interferer \end{array}$

 $\begin{array}{ll} F_{DL_low} & The \ lowest \ frequency \ of \ the \ downlink \ \it{operating band} \\ F_{DL_high} & The \ highest \ frequency \ of \ the \ downlink \ \it{operating band} \\ F_{UL_high} & The \ lowest \ frequency \ of \ the \ uplink \ \it{operating band} \\ F_{UL_high} & The \ highest \ frequency \ of \ the \ uplink \ \it{operating band} \\ \end{array}$

F_{Interferer} Frequency of the interferer

F_{Interferer} (offset) Frequency offset of the interferer (between the center frequency of the interferer and the carrier

frequency of the carrier measured)

F_{loffset} Frequency offset of the interferer (between the center frequency of the interferer and the closest

edge of the carrier measured)

F_{OOB} The boundary between the NR out of band emission and spurious emission domains

 $\begin{array}{ll} F_{REF} & RF \ reference \ frequency \\ F_{REF-Offs} & Offset \ used \ for \ calculating \ F_{REF} \end{array}$

F_{uw} (offset) The frequency separation of the center frequency of the carrier closest to the interferer and the

center frequency of the interferer

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

NR Absolute Radio Frequency Channel Number (NR-ARFCN)

 $\begin{array}{ll} N_{REF\text{-}Offs} & Offset used for calculating \ N_{REF} \\ P_{Interferer} & Modulated \ mean \ power \ of \ the \ interferer \\ P_{uw} & Power \ of \ an \ unwanted \ DL \ signal \end{array}$

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

A-MPR Additional Maximum Power Reduction

BW Bandwidth
BWP Bandwidth Part
CP-OFDM Cyclic Prefix-OFDM
CW Continuous Wave

DFT-s-OFDM Discrete Fourier Transform-spread-OFDM

DM-RS Demodulation Reference Signal DTX Discontinuous Transmission

EIRP Equivalent Isotropically Radiated Power

EVM Error Vector Magnitude
FR Frequency Range
FRC Fixed Reference Channel
GEO Geosynchronous Earth Orbit

GSCN Global Synchronization Channel Number

IBB In-band Blocking

ITU-R Radiocommunication Sector of the International Telecommunication Union

LEO Low Earth Orbiting

MBW Measurement bandwidth defined for the protected band

MEO Medium Earth Orbiting MOP Maximum Output Power

MPR Allowed maximum power reduction
MSD Maximum Sensitivity Degradation
NGEO Non-Geostationary Earth Orbiting

NR New Radio

NR-ARFCN NR Absolute Radio Frequency Channel Number

NS Network Signalling NTN Non-Terrestrial Network

OCNG OFDMA Channel Noise Generator

OOB Out-of-band

PRB Physical Resource Block

QAM Quadrature Amplitude Modulation

RAN Radio Access Network
RE Resource Element
REFSENS REFerence SENSitivity
RF Radio Frequency

RMS Root Mean Square (value)
RSRP Reference Signal Receive Power
RSRQ Reference Signal Receive Quality

RX Receiver

SAN Satellite Access Node SC Single Carrier SCS Subcarrier spacing Spectrum Emission Mask **SEM** SNR Signal-to-Noise Ratio SRS Sounding Reference Symbol SS Synchronization Symbol TNTerrestrial Network

TX Transmitter
TxD Tx Diversity
UE User Equipment

4 General

4.1 Relationship between minimum requirements and test requirements

TS 38.101-5 [11] is a Single-RAT specification for satellite NR UE, covering RF characteristics and minimum performance requirements. Conformance to the TS 38.101-5 [11] is demonstrated by fulfilling the test requirements specified in the present document.

The Minimum Requirements given in TS 38.101-5 [11] makes no allowance for measurement uncertainty (MU). The present document defines test tolerances (TT). These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by the various levels of "shared risk" principle as described below.

- a) Core specification value is not relaxed by any relaxation value (TT=0). For each single measurement, the probability of a borderline good UE being judged as FAIL equals the probability of a borderline bad UE being judged as PASS.
 - Test tolerances equal to 0 (TT=0) are considered in this specification.
- b) Core specification value is relaxed by a relaxation value (TT>0). For each single measurement, the probability of a borderline bad UE being judged as PASS is greater than the probability of a borderline good UE being judged as FAIL.
 - Test tolerances lower than measurement uncertainty and greater than 0 (0 < TT < MU) are considered in this specification.
 - Test tolerances up to measurement uncertainty (TT = MU) are considered in this specification which is also known as "Never fail a good DUT" principle.
- c) Core specification value is tightened by a stringent value (TT<0). For each single measurement, the probability of a borderline good UE being judged as FAIL is greater than the probability of a borderline bad UE being judged as PASS.

Test tolerances lower than 0 (TT<0) are not considered in this specification..

The "Never fail a good DUT" and the "Shared Risk" principles are defined in Recommendation ITU-R M.1545 [3].

4.2 Applicability of minimum requirements

The applicability of each requirement is described under clauses 6.1, 7.1, 8.1 of TS 38.101-5 [11].

The conducted minimum requirements specified in the present document shall be met in all applicable scenarios for FR1.

The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty, it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

4.3 Specification suffix information

Specification suffix information is not defined for the time being in Release 17.

4.4 Relationship with core specifications

TS 38.101-5 [11] specifies the minimum RF and performance requirements for NR User Equipment (UE) operating in a Non-Terrestrial Network. TS 38.108 [4] specifies the minimum RF and performance requirements of Satellite Access Node (SAN).

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future Releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NTN satellite can operate according to this version of the specification are identified as described in Table 5.1-1.

Table 5.1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7,125 MHz

The present specification covers FR1 operating bands.

5.2 Operating bands

5.2.1 General

NTN satellite covers FR1 operating bands in the present specification.

5.2.2 Operating bands with conducted requirements

NTN satellite is designed to operate in the operating bands defined in Table 5.2.2-1.

Table 5.2.2-1: NTN satellite bands in FR1

NTN satellite operating band	Uplink (UL) operating band Satellite Access Node receive / UE transmit FUL,low - FUL,high	Downlink (DL) operating band Satellite Access Node transmit / UE receive FDL,low - FDL,high	Duplex mode				
n256	1,980MHz – 2,010 MHz	2,170 MHz – 2,200 MHz	FDD				
n255	1,626.5 MHz – 1,660.5 MHz 1,525 MHz – 1,559 MHz						
NOTE: NTN satellite bands are numbered in descending order from n256.							

5.2.3 reserved (for radiated requirements)

[To be updated]

5.3 UE channel bandwidth

5.3.1 General

The UE channel bandwidth supports a single RF carrier in the uplink or downlink at the UE. From a SAN perspective, different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the SAN.

From a UE perspective, the UE is configured with one or more BWP / carriers, each with its own UE channel bandwidth. The UE does not need to be aware of the SAN channel bandwidth or how the SAN allocates bandwidth to different UEs.

The placement of the UE channel bandwidth for each UE carrier is flexible but can only be completely within the SAN channel bandwidth.

The relationship between the channel bandwidth, the guardband and the maximum transmission bandwidth configuration is shown in Figure 5.3.1-1.

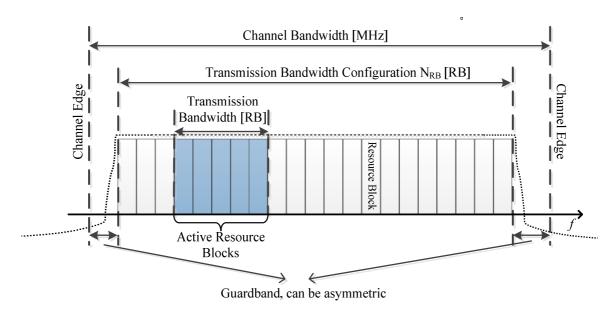


Figure 5.3.1-1: Definition of the channel bandwidth and the maximum transmission bandwidth configuration for one channel

5.3.2 Maximum transmission bandwidth configuration

The maximum transmission bandwidth configuration N_{RB} for each UE channel bandwidth and subcarrier spacing is specified in Table 5.3.2-1.

Table 5.3.2-1: Maximum transmission bandwidth configuration N_{RB}

SCS (kHz)	5	10	15	20 MHz
	MHz	MHz	MHz	MHz
	N _{RB}	N _{RB}	N _{RB}	N _{RB}
15	25	52	79	106
30	11	24	38	51
60	N/A	11	18	24

5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each UE channel bandwidth and SCS is specified in Table 5.3.3-1,

Table 5.3.3-1: Minimum guardband for each UE channel bandwidth and SCS (kHz)

SCS (kHz)	5	10	15	20
	MHz	MHz	MHz	MHz
15	242.5	312.5	382.5	452.5
30	505	665	645	805
60	N/A	1,010	990	1,330

NOTE: The minimum guardbands have been calculated using the following equation: (BW_{Channel} x 1,000 (kHz) - N_{RB} x SCS x 12) / 2 - SCS/2, where N_{RB} are from Table 5.3.2-1.

Figure 5.3.3-1: Void

The number of RBs configured in any channel bandwidth shall ensure that the minimum guardband specified in this clause is met.

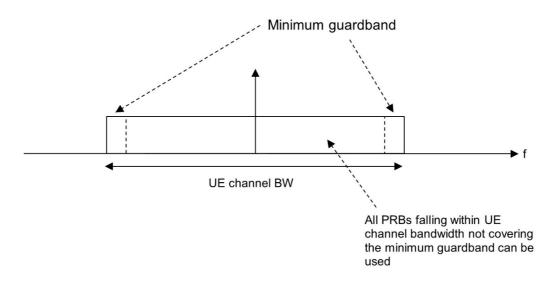


Figure 5.3.3-2: UE PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol, the minimum guard band on each side of the carrier is the guard band applied at the configured SAN channel bandwidth for the numerology that is transmitted/received immediately adjacent to the guard band.

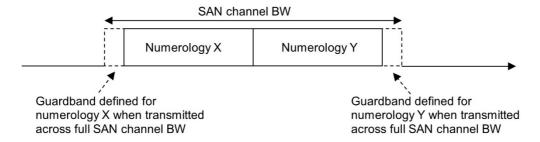


Figure 5.3.3-3: Guard band definition when transmitting multiple numerologies

NOTE: Figure 5.3.3-2 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

5.3.4 RB alignment

The RB alignment refers to NR RB alignments as specified in 3GPP TS 38.101-1 [5] clause 5.3.4.

5.3.5 UE channel bandwidth per operating band

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths. The channel bandwidths are specified for both the TX and RX path.

Table 5.3.5-1: Channel bandwidths for each NTN satellite band

NTN satellite	SCS kHz	CS UE Channel bandwidth (MHz)			2)
band	kHz	5	10	15	20
	15	5	10	15	20
n256	30		10	15	20
	60		10	15	20
	15	5	10	15	20
n255	30		10	15	20
	60		10	15	20

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NTN satellite carriers

The channel spacing for adjacent NTN satellite carriers refers to the NR channel spacing as specified in TS 38.101-1 [5] clause 5.4.1.1.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency channel raster defines a set of RF reference frequencies F_{REF} . The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements.

The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range (0...2016666) on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{REF-Offs}$ are given in Table 5.4.2.1-1 and N_{REF} is the NR-ARFCN.

 $F_{REF} = F_{REF-Offs} + \Delta F_{Global} (N_{REF} - N_{REF-Offs})$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	NREF-Offs	Range of NREF
0 - 3,000	5	0	0	0 - 599,999

The channel raster defines a subset of RF reference frequencies that can be used to identify the RF channel position in the uplink and downlink. The RF reference frequency for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity ΔF_{Raster} , which may be equal to or larger than ΔF_{Global} .

The mapping between the channel raster and corresponding resource element is given in clause 5.4.2.2. The applicable entries for each operating band are defined in clause 5.4.2.3.

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on the channel raster and the corresponding resource element refers to the NR requirements specified in 3GPP TS 38.101-1 [5] clause 5.4.2.2.

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NTN satellite operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in clause 5.4.2.2.

For NTN satellite operating bands with 100 kHz channel raster, $\Delta F_{Raster} = 20 \times \Delta F_{Global}$. In this case every 20th NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as <20>.

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band

NTN satellite operating band	ΔF _{Raster} (kHz)	Uplink Range of N _{REF} (First – <step size=""> – Last)</step>	Downlink Range of N _{REF} (First – <step size=""> – Last)</step>			
n256	100	396,000 - <20> - 402,000	434,000 - <20> - 440,000			
n255	100	325,300 - <20> - 332,100	305,000 - <20> - 311,800			

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in Table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in clause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block is defined separately for each band.

Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Frequency range	SS Block frequency position SSREF	GSCN	Range of GSCN		
0 – 3,000 MHz	N * 1,200 kHz + M * 50 kHz,	3N + (M-3)/2	2 – 7,498		
	N=1:2,499, M ε {1,3,5} ¹				
NOTE: The default value for operating bands with which only support SCS spaced channel raster(s) is M=3.					

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block refers to 3GPP TS 38.101-1 [5] clause 5.4.3.2.

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is give in Table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in Table 5.4.3.3-1.

Table 5.4.3.3-1: Applicable SS raster entries per operating band

NTN satellite operating band	SS Block SCS	SS Block pattern ¹	Range of GSCN (First – <step size=""> – Last)</step>				
n256	15 kHz	Case A	5,429 - <1> - 5,494				
n255	15 kHz	Case A	3,818 - <1> - 3,892				
	30 kHz	Case B	3,824 - <1> - 3,886				
NOTE: SS Block pattern is	NOTE: SS Block pattern is defined in clause 4.1 in 3GPP TS 38.213 [7].						

5.4.4 TX-RX frequency separation

The default TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation for operating bands is specified in Table 5.4.4-1.

Table 5.4.4-1: UE TX-RX frequency separation

NTN Satellite Operating Band	TX – RX carrier centre frequency separation
n256	190 MHz
n255	-101.5 MHz

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed. Handheld power class 3 UE is assumed in Release 17 for satellite access.

All requirements in this clause are applicable to devices supporting GSO and/or NGSO satellites.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

Uplink RB allocations given in Table 6.1-1 are used throughout this clause, unless otherwise stated by the test case.

Table 6.1-1: Common uplink configuration

							ocation			
Channel Bandwidth	SCS(kHz)	OFDM	Edge_Full_Left	Edge_Full_Right	Edge_1RB_Left	Edge_1RB_Right	Outer_Full	Inner_Full	Inner_1RB_Left	Inner_1RB_Right
	15	DFT-s	2@0	2@23	1@0	1@24	25@0	12@6	1@1	1@23
	15	CP	2@0	2@23	1@0	1@24	25@0	13@6	1@1	1@23
EMU-	20	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
5MHz	30	CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	60	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	60	CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	15	DFT-s	2@0	2@50	1@0	1@51	50@0	25@12	1@1	1@50
		CP	2@0	2@50	1@0	1@51	52@0	26@13	1@1	1@50
10MHz	30	DFT-s	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
TOWINZ		CP	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
	60	DFT-s	2@0	2@9	1@0	1@10	10@0	5@2 ¹	1@1	1@9
		CP	2@0	2@9	1@0	1@10	11@0	5@2 ¹	1@1	1@9
	15	DFT-s	2@0	2@77	1@0	1@78	75@0	36@18	1@1	1@77
		CP	2@0	2@77	1@0	1@78	79@0	39@19 ¹	1@1	1@77
15MHz	20	DFT-s	2@0	2@36	1@0	1@37	36@0	18@9	1@1	1@36
ISWITIZ	30	CP	2@0	2@36	1@0	1@37	38@0	19@9	1@1	1@36
	60	DFT-s	2@0	2@16	1@0	1@17	18@0	9@4	1@1	1@16
	60	CP	2@0	2@16	1@0	1@17	18@0	9@4	1@1	1@16
	15	DFT-s	2@0	2@104	1@0	1@105	100@0	50@25	1@1	1@104
	13	CP	2@0	2@104	1@0	1@105	106@0	53@26	1@1	1@104
20MHz	30	DFT-s	2@0	2@49	1@0	1@50	50@0	25@12	1@1	1@49
20111112	30	CP	2@0	2@49	1@0	1@50	51@0	25@12 ¹	1@1	1@49
	60	DFT-s	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
NOTE 1: The	allocated P	CP	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22

NOTE 1: The allocated RB number L_{CRB} is ceil(N_{RB}/2) -1 in order to meet Inner RB allocation definition (RB_{Start,Low} ≤ RB_{Start} ≤ RB_{Start,High}) described in subclause 6.2.2 of TS 38.101-1 [5].

6.2 Transmitter power

6.2.1 UE maximum output power

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated
- Verification of UE frequency pre-compensation is to be updated

6.2.1.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2.1.2 Test applicability

This test case applies to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.2.1.3 Minimum conformance requirements

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth of NR carrier unless otherwise stated. The period of measurement shall be at least one sub frame (1 ms).

Table 6.2.1.3-1: UE Power Class

NR satellite band	Class 3 (dBm)	Tolerance (dB)				
n256	23	±2				
n255	23	±2				
NOTE 1: P _{PowerClass} is the maxim	TE 1: P _{PowerClass} is the maximum UE power specified without taking into account the tolerance					
NOTE 2: Power class 3 is defau	TE 2: Power class 3 is default power class unless otherwise stated					

The normative reference for this requirement is TS 38.101-5 [11] clause 6.2.1.

6.2.1.4 Test description

6.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 [2] Annex C.2.

Table 6.2.1.4.1-1: Test Configuration Table

Initial Conditions					
	nt as specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
[12] subclause 4					
Test Frequencies	s as specified in TS 38.508-1	Low range, Mid range, High range			
[12] subclause 4	.3.1				
	indwidths as specified in TS	Lowest, Mid, Highest			
38.508-1 [12] sul	bclause 4.3.1				
Test SCS as spe	ecified in Table 5.3.5-1	Lowest, Highest			
	Test Parameters				
Test ID	Downlink Configuration	Uplink Configura	ation		
	N/A for maximum output	Modulation (NOTE 2)	RB allocation (NOTE 1)		
1	power test case	DFT-s-OFDM PI/2 BPSK	Inner Full		
2		DFT-s-OFDM PI/2 BPSK	Inner 1RB Left		
3		DFT-s-OFDM PI/2 BPSK	Inner 1RB Right		
4		DFT-s-OFDM QPSK	Inner Full		
5		DFT-s-OFDM QPSK	Inner 1RB Left		
6		DFT-s-OFDM QPSK	Inner 1RB Right		
NOTE 1: The s	pecific configuration of each RB	allocation is defined in Table 6.1-1.	_		
NOTE 2: DFT-s	-OFDM PI/2 BPSK test applies of	only for UEs which supports half Pi BPSK i	n FR1.		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] Annex C.0, C.1, C.2, and uplink signals according to TS 38.521-1 [2] Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.1.4.3.

6.2.1.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active sub-frame (1 ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.

6.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 and 5.4 with the following exceptions.

Table 6.2.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [12], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.2.1.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.1.5-1 for Power Class 3.

Table 6.2.1.5-1: Maximum Output Power test requirement for Power Class 3

NR satellite band	Class 3 (dBm)	Tolerance (dB)		
N256	23	±2±TT		
N255	23	±2±TT		
NOTE 1: P _{PowerClass} is the maximum UE power specified without taking into account the tolerance				
NOTE 2: Power class 3 is default power class unless otherwise stated NOTE 3: TT for each frequency and channel bandwidth is specified in Table 6.2.1.5-2				

Table 6.2.1.5-2: Test Tolerance (UE maximum output power)

[to be updated]

6.2.2 UE maximum output power reduction

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access is to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated
- Verification of UE frequency pre-compensation is to be updated

6.2.2.1 Test purpose

The number of RB identified in Table 6.2.2.3-1 is based on meeting the requirements for adjacent channel leakage ratio and the maximum power reduction (MPR) due to Cubic Metric (CM).

6.2.2.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

NOTE: Test execution is not necessary if TS 38.521-5 clause 6.5.2.4.1 is executed.

6.2.2.3 Minimum conformance requirements

UE is allowed to reduce the maximum output power due to higher order modulations and transmit bandwidth configurations. For UE power class 3, the allowed maximum power reduction (MPR) is defined in Table 6.2.2.3-1 for channel bandwidths \leq 100 MHz. The Δ MPR is set to zero.

The allowed MPR for SRS, PUCCH formats 0, 1, 3 and 4, and PRACH shall be as specified for QPSK modulated DFT-s-OFDM of equivalent RB allocation. The allowed MPR for PUCCH format 2 shall be as specified for QPSK modulated CP-OFDM of equivalent RB allocation.

0

≤ 1

≤ 1.5

≤ 2

QPSK

16 QAM

64 QAM

256 QAM

QPSK

16 QAM

64 QAM

256 QAM

 Modulation
 MPR (dB)

 Edge RB allocations
 Outer RB allocations
 Inner RB allocations

 Pi/2 BPSK
 ≤ 0.5
 0

 W Pi/2
 BPSK
 0

 DFT-s DMRS
 0

≤ 1

≤ 2

≤ 3

≤ 3

≤ 2.5

≤ 4.5

≤ 3.5

≤ 6.5

Table 6.2.2.3-1: Maximum power reduction (MPR) for power class 3

RB allocation ranges for Outer and Inner RB allocations are specified in TS 38.521-1 [2] 6.2.2.3.

The normative reference for this requirement is TS 38.101-5 [11] clause 6.2.2.

6.2.2.4 Test description

OFDM

CP-OFDM

6.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 [2] Annex C.2.

Table 6.2.2.4.1-1: Test Configuration Table for power class 3 (contiguous allocation)

			Initial Conditions	
Test Envi	ronment as	s specified in TS 38.508-1	Normal, TL/VL, TL/VH, TH/VL, TH/VH	
[12] subcl				
		s specified in TS 38.508-1	Low range, High range	
	ause 4.3.1			
Test Chai	nnel Bandı	vidths as specified in TS	Lowest, Highest	
38.508-1	[12] subcla	ause 4.3.1	Lowest, Fiightoot	
Test SCS	as specific	ed in Table 5.3.5-1	Lowest, Highest	
	ac opec	Test Param	eters for Channel Bandwidths	
Test ID	Freq	Downlink Configuration	Uplink Configura	ition
	•	-	Modulation (NOTE 2)	RB allocation (NOTE 1)
1	Default	N/A for Maximum Power	DFT-s-OFDM Pi/2 BPSK	Inner Full
2	Low	Reduction (MPR) test case	DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Left
3	High		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Right
4	Default		DFT-s-OFDM Pi/2 BPSK	Outer Full
5	Default		DFT-s-OFDM QPSK	Inner Full
6	Low		DFT-s-OFDM QPSK	Edge_1RB_Left
7	High		DFT-s-OFDM QPSK	Edge_1RB_Right
8	Default		DFT-s-OFDM QPSK	Outer Full
9	Default		DFT-s-OFDM 16 QAM	Inner Full
10	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left
11	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right
12	Default		DFT-s-OFDM 16 QAM	Outer Full
13	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left
14	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right
15	Default		DFT-s-OFDM 64 QAM	Outer Full
16	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left
17	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right
18	Default		DFT-s-OFDM 256 QAM	Outer Full
19	Default		CP-OFDM QPSK	Inner Full
20			CP-OFDM QPSK	
21	Low			Edge_1RB_Left
22	High		CP-OFDM QPSK	Edge_1RB_Right
23	Default Default		CP-OFDM QPSK CP-OFDM 16 QAM	Outer Full
				Inner Full
24	Low		CP-OFDM 16 QAM CP-OFDM 16 QAM	Edge_1RB_Left
25	High			Edge_1RB_Right
26 27	Default		CP-OFDM 16 QAM	Outer Full
	Low		CP-OFDM 64 QAM	Edge_1RB_Left
28 29	High		CP-OFDM 64 QAM	Edge_1RB_Right
	Default		CP-OFDM 64 QAM	Outer Full
30	Low		CP-OFDM 256 QAM	Edge_1RB_Left
31	High		CP-OFDM 256 QAM	Edge_1RB_Right
32	Default		CP-OFDM 256 QAM	Outer Full
33 ³	Low		DFT-s-OFDM Pi/2 BPSK w Pi/2 BPSK DMRS	Edge_1RB_Left
34 ³	High		DFT-s-OFDM Pi/2 BPSK w Pi/2 BPSK DMRS	Edge_1RB_Right
35 ³	Default		DFT-s-OFDM Pi/2 BPSK w Pi/2 BPSK DMRS	Outer Full

NOTE 2: DFT-s-OFDM Pi/2 BPSK test applies only for UEs which supports Pi/2 BPSK in FR1.

NOTE 3: Applicable to UEs indicating support for UE capability *lowPAPR-DMRS-PUSCHwithPrecoding-r16*.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.2.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] Annex C.0, C.1, C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.

- 5. Propagation conditions are set according to TS 38.521-1 [2] Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of 1 ms over consecutive active uplink slots.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 6.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [12] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 and 5.4 with the following exceptions:

Table 6.2.2.4.3-1: PUSCH-Config

Information Element	Value/remark	Comment	Condition
PUSCH-Config ::= SEQUENCE {			
resourceAllocation	resourceAllocationType0		Almost contiguous allocation
	resourceAllocationType1		Contiguous allocation

Table 6.2.2.4.3-2: DMRS-UplinkConfig (Test ID 37 - 39 in Table 6.2.2.4.1-1)

Derivation Path: TS 38.508-1 [12], Table 4.6.3-51					
Information Element	Value/remark	Comment	Condition		
DMRS-UplinkConfig ::= SEQUENCE {					
transformPrecodingEnabled SEQUENCE {					
dmrs-UplinkTransformPrecoding-r16					
SEQUENCE {					
pi2BPSK-ScramblingID0	Not present				
pi2BPSK-ScramblingID1	Not present				
}					
}					
}					

Table 6.2.2.4.3-3: ServingCellConfig

Derivation Path: TS 38.508-1 [12] Table 4.6.3-167						
Information Element	Value/remark	Comment	Condition			
ServingCellConfig ::= SEQUENCE {						
uplinkConfig SEQUENCE {						
powerBoostPi2BPSK	1		Test IDs where NOTE 3 in Table 6.2.2.4.1-1 applies.			
	0		Test IDs where NOTE 4 in Table 6.2.2.4.1-1 applies.			
}						
}						

Test requirement 6.2.2.5

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.2.5-1.

Table 6.2.2.5-1: UE MPR test requirements for power class 3 (contiguous allocation)

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClass} (dB)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1	23	0	0	0	23.0	2.0	2	25.0 + TT	21.0 - TT
2	23	0	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
3	23	0	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
4	23	0	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
5	23	0	0	0	23.0	2.0	2	25.0 + TT	21.0 - TT
6	23	0	1	0	22.0	2.0	2	25.0 + TT	20.0 - TT
7	23	0	1	0	22.0	2.0	2	25.0 + TT	20.0 - TT
8	23	0	1	0	22.0	2.0	2	25.0 + TT	20.0 - TT
9	23	0	1	0	22.0	2.0	2	25.0 + TT	20.0 - TT
10	23	0	2	0	21.0	2.0	2	25.0 + TT	19.0 - TT
11	23	0	2	0	21.0	2.0	2	25.0 + TT	19.0 - TT
12	23	0	2	0	21.0	2.0	2	25.0 + TT	19.0 - TT
13	23	0	2.5	0	20.5	2.5	2	25.0 + TT	18.0 - TT
14	23	0	2.5	0	20.5	2.5	2	25.0 + TT	18.0 - TT
15	23	0	2.5	0	20.5	2.5	2	25.0 + TT	18.0 - TT
16	23	0	4.5	0	18.5	4.0	2	25.0 + TT	14.5 - TT
17	23	0	4.5	0	18.5	4.0	2	25.0 + TT	14.5 - TT
18	23	0	4.5	0	18.5	4.0	2	25.0 + TT	14.5 - TT
19	23	0	1.5	0	21.5	2.0	2	25.0 + TT	19.5 - TT
20	23	0	3	0	20.0	2.5	2	25.0 + TT	17.5 - TT
21	23	0	3	0	20.0	2.5	2	25.0 + TT	17.5 - TT
22	23	0	3	0	20.0	2.5	2	25.0 + TT	17.5 - TT
23	23	0	2	0	21.0	2.0	2	25.0 + TT	19.0 - TT
24	23	0	3	0	20.0	2.5	2	25.0 + TT	17.5 - TT
25	23	0	3	0	20.0	2.5	2	25.0 + TT	17.5 - TT
26	23	0	3	0	20.0	2.5	2	25.0 + TT	17.5 - TT
27	23	0	3.5	0	19.5	3.5	2	25.0 + TT	16.0 - TT
28	23	0	3.5	0	19.5	3.5	2	25.0 + TT	16.0 - TT
29	23	0	3.5	0	19.5	3.5	2	25.0 + TT	16.0 - TT
30	23	0	6.5	0	16.5	5.0	2	25.0 + TT	11.5 - TT
31	23	0	6.5	0	16.5	5.0	2	25.0 + TT	11.5 - TT
32	23	0	6.5	0	16.5	5.0	2	25.0 + TT	11.5 - TT
33	23	0	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
34	23	0	0.5	0	22.5	2.0	2	25.0 + TT	20.5 - TT
35	23	0	0	0	23	2.0	2	25.0 + TT	21.0 - TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance. NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.2.2.5-2.

Table 6.2.2.5-2: Test Tolerance (Maximum Power Reduction (MPR))

[to be updated]

6.2.3 UE additional maximum output power reduction

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated

6.2.3.1 Test purpose

Additional emission requirements can be signalled by the network. Each additional emission requirement is associated

with a unique network signalling (NS) value indicated in RRC signalling by an NR frequency band number of the applicable operating band and an associated value in the field *additionalSpectrumEmission*. Throughout this specification, the notion of indication or signalling of an NS value refers to the corresponding indication of an NR satellite band number of the applicable operating band, the IE field *freqBandIndicatorNR* and an associated value of *additionalSpectrumEmission* in the relevant RRC information elements [8].

To meet the additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in Table 6.2.1.3-1. Unless stated otherwise, the total reduction to UE maximum output power is max(MPR, A-MPR) where MPR is defined in clause 6.2.2. Outer and inner allocation notation used in clause 6.2.3 is defined in clause 6.2.2. In absence of modulation and waveform types the A-MPR applies to all modulation and waveform types.

6.2.3.2 Test applicability

[to be updated]

6.2.3.3 Minimum conformance requirements

6.2.3.3.1 General

Table 6.2.3.3.1-1 specifies the additional requirements with their associated network signalling values and the allowed A-MPR and applicable operating band(s) for each NS value. The mapping of NR satellite band numbers and values of the *additionalSpectrumEmission* to network signalling labels is specified in Table 6.2.3.3.1-2.

Table 6.2.3.3.1-1: Additional maximum power reduction (A-MPR)

Network signalling label	Requirements (clause)	NR satellite Band	Channel bandwidth (MHz)	Resources blocks (N _{RB})	A-MPR (dB)
NS_01		Table 5.2.2-1	5, 10, 15, 20	Table 5.3.2-1	N/A
NS_24	6.5.3.3.13 in 3GPP TS 38.101-1 [5]	n256	5, 10, 15, 20	Table 6.2.3.15-1 in 3GPP TS 38.101-1 [5]	Clause 6.2.3.15 in 3GPP TS 38.101-1 [5] ²
NS_02N	6.5.3.3.2	n255	5, 10, 15, 20		N/A
NS_100	6.5.2.4.2 in 3GPP TS 38.101-1 [5]	n256 ¹			Table 6.2.3.1-2 in 3GPP TS 38.101-1 [5]

NOTE 1: This NS can be signalled for NR bands that have UTRA services deployed.

NOTE 2: A-MPR for the upper 5 MHz of the band is not specified, and therefore shall be used as a guard band.

[The NS_01 label with the field additionalPmax [8] absent is default for all NTN satellite bands.]

Table 6.2.3.3.1-2: Mapping of network signalling label

NR satellite band			Value	of additionals	SpectrumEm	ission				
	0	0 1 2 3 4 5 6 7								
n256	NS_01	NS_24	NS_100							
n255	NS_01	NS_02N								
NOTE:	additionalSpec	dditionalSpectrumEmission corresponds to an information element of the same name defined in clause								
	.3.2 of 3GPP TS 38.331 [8].									

Table 6.2.3.3.1-3: A-MPR for NS_100 (UTRA protection)

Modulati	on/Waveform	Outer (dB)
DFT-s-	Pi/2 BPSK	≤ 2
OFDM		
	QPSK	≤ 2
	16 QAM	≤ 2.5
	64 QAM	≤ 3
	256 QAM	≤ 4.5
CP-OFDM	QPSK	≤ 4
	16 QAM	≤ 4
	64 QAM	≤ 4
	256 QAM	≤ 6.5

The normative reference for this requirement is TS 38.101-5 [11] clause 6.2.3.1.

6.2.3.3.2 A-MPR for NS_24

Table 6.2.3.3.2-1: A-MPR regions for NS_24

Channal	Channel Region A Region B Region C											
Bandwidth, MHz	Carrier Centre Frequency, Fc, MHz	Rbend*12 *SCS MHz	LCRB*12 *SCS MHz	Rbend*12* SCS MHz	LCRB*12 *SCS MHz	Rbend*12* SCS MHz	LCRB*12 *SCS MHz					
5MHz	Fc=1,992.5		>3.24									
5MHz	Fc=1,997.5		>3.24									
5MHz	Fc=2,002.5		>2.16	>3.78	≤1.98	≤3.6	≤1.98					
10MHz	Fc=1,985	>5.4										
10MHz	Fc=1,995		>4.5	>7.56	≤4.32	≤7.38	≤4.32					
10MHz	Fc=2,000	>6.84		<2.88		≥3.06 ≤6.66	>1.44					
15MHz	Fc=1,987.5		>7.02	>11.52	≤6.84	≤11.34	≤6.84					
15MHz	Fc=1,997.5	>9.36		<3.6		≥3.78 ≤9.18	>1.44					
20MHz	Fc=1,990	>13.5		<4.5		≥4.68 ≤13.32	>2.16					
20MHz	Fc=1,995	>12.6		<5.4		≥5.58 ≤12.42	>1.44					

NOTE 1: The A-MPR values are listed in Table 6.2.3.3.2-2. NOTE 2: For any undefined region, MPR applies

Table 6.2.3.3.2-2: A-MPR for NS_24

Modulation/Wav	eform	Outer (dB)	Inner (dB)
DFT-s-OFDM	PI/2	≤ 1.5	N/A
	BPSK		
	QPSK	≤ 2	
	16	≤ 3	
	QAM		
	64	≤ 3.5	
	QAM		
	256	≤ 5.5	
	QAM		
CP-OFDM	QPSK	≤ 4	
	16	≤ 4	
	QAM		
	64	≤ 4.5	
	QAM		
	256	≤ 7.5	
	QAM		

6.2.3.4 Test description

6.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Tables 6.2.3.4.1-1 to 6.2.3.4.1-30. The details of the uplink reference measurement channels (RMCs) are specified in clause A.2. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2.

Table 6.2.3.4.1-1: Test Configuration table for NS_100

Test Environment as specified in TS 38.508-1 [12] subclause 4.3.1 Test Frequencies as specified in TS 38.508-1 [12] subclause 4.3.1 Test Channel Bandwidths as specified in TS 38.508-1 [12] subclause 4.3.1 Lowest, Highest Lo		Initial Conditions								
Test Channel Bandwidths as specified in TS 38.508-1 [12] subclause 4.3.1 Lowest, Highest Test SCS as specified in Table 5.3.5-1 Lowest, Highest A-MPR test parameters for NS_100 Test ID Freq ChBw ChBw SCS ChBw SCS ChBw SCS ChBw SCS ChBw SCS Downlink Configuration Downlink Configuration Downlink Configuration Wodulation (Note 1) Pl/2 BPSK Edge_1RB_Left Pl/2 BPSK Edge_1RB_Left Pl/2 BPSK Edge_1RB_Right	Test Environ	ment as spe	cified in TS	38.508-1 [12	2] subclause 4.1			Normal		
Test ID								Low range, High range		
Test ID Freq ChBw Configuration ChBw SCS Downlink Configuration Modulation (Note 2) RB allocation (Note 1)	Test Channe	I Bandwidths	as specifie	d in TS 38.5		se 4.3	3.1	Lowest, Highest		
Test ID Freq ChBw Configuration ChBw SCS Downlink Configuration Modulation (Note 2) RB allocation (Note 1)	Test SCS as	specified in	Table 5.3.5-	1	-			Lowest, Highest		
Test ID				A-MPR	test parameters	for N	S_100	·		
ChBw					Downlink		Uplir	k Configuration		
2 High Default Default 3 Default Default Default 4 Low Default Default 5 High Default Default 6 Default Default 7 Low Default Default 9 Default Default 10 Low Default Default 11 High Default Default 12 Default Default 13 Low Default Default 14 High Default Default 15 Default Default 16 Low Default Default 17 Default Default 18 Default Default 19 Default Default 11 High Default Default 11 High Default Default 12 Default Default Default 13 Low Default Default 14 High Default Default 15 Default Default Default 16 Low Default Default 17 High Default Default 18 Default Default Default 19 Low Default Default 19 Low Default Default 19 Low Default Default 20 High Default Default 22 Low Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default 29 Low Default Default 20 High Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default 29 Low Default Default 20 Default Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default Default 23 High Default Default Default 24 Default Default Default 25 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default 28 Low Default Default Default 29 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default 28 Low Default Default Default 29 Low Default Default Default 26 AQAM Edge_1RB_Right 26 AQAM Guter_Full 27 AQAM Guter_Full 28 AQAM Guter_Full 29 AQAM Guter_Full 29 AQAM Guter_Full 20 AQAM Guter_Full 20 AQAM Guter_Full 20 AQAM Guter_	Test ID	Freq	ChBw	SCS	_	N	RR allocation (Note			
2 High Default Default 3 Default Default Default 4 Low Default Default 5 High Default Default 6 Default Default 7 Low Default Default 9 Default Default 10 Low Default Default 11 High Default Default 12 Default Default 13 Low Default Default 14 High Default Default 15 Default Default 16 Low Default Default 17 Default Default 18 Default Default 19 Default Default 11 High Default Default 11 High Default Default 12 Default Default Default 13 Low Default Default 14 High Default Default 15 Default Default Default 16 Low Default Default 17 High Default Default 18 Default Default Default 19 Low Default Default 19 Low Default Default 19 Low Default Default 20 High Default Default 22 Low Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default 29 Low Default Default 20 High Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default 29 Low Default Default 20 Default Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default Default 23 High Default Default Default 24 Default Default Default 25 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default 28 Low Default Default Default 29 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default 28 Low Default Default Default 29 Low Default Default Default 26 AQAM Edge_1RB_Right 26 AQAM Guter_Full 27 AQAM Guter_Full 28 AQAM Guter_Full 29 AQAM Guter_Full 29 AQAM Guter_Full 20 AQAM Guter_Full 20 AQAM Guter_Full 20 AQAM Guter_										
Default Default Default Default										
4 Low Default Default 5 High Default Default 6 Default Default Default 7 Low Default Default 8 High Default Default 9 Default Default 10 Low Default Default 11 High Default Default 12 Default Default Default 13 Low Default Default 14 High Default Default 15 Default Default 16 Low Default Default 17 High Default Default 18 Default Default 19 Default Default 19 Default Default 110 Low Default Default 111 High Default Default 112 Default Default 113 Low Default Default 114 High Default Default 115 Default Default Default 116 Low Default Default 117 High Default Default 118 Default Default Default 119 Low Default Default 110 Low Default Default 110 Low Default Default 111 High Default Default 112 Default Default 113 Low Default Default 14 High Default Default 15 Default Default Default 16 Low Default Default 17 High Default Default 18 Default Default Default 19 Low Default Default 18 Default Default Default 19 Low Default Default 19 Low Default Default 19 Low Default Default 10 Low Default Default 110 Low Default 1										
S	3	Default		Default						
Default Defa	4	Low	Default	Default						
B	5	High	Default	Default		>				
B	6	Default		Default		Ö				
11 High Default Default 12 Default Default 13 Low Default Default 14 High Default Default 15 Default Default 16 Low Default Default 17 High Default Default 18 Default Default 19 Low Default Default 19 Low Default Default 20 High Default Default 20 High Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default 29 Low Default Default 20 Low Default Default 20 Low Default Default 21 Default Default Default 22 Low Default Default Default 23 High Default Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default Default 29 Low Default Default Default 20 Low Default Default Default 20 Low Default Default Default 21 Default Default Default 22 Low Default Default Default 23 Low Default Default Default 24 Default Default Default 25 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default	7	Low	Default	Default		Ö	16 QAM	Edge_1RB_Left		
11 High Default Default 12 Default Default 13 Low Default Default 14 High Default Default 15 Default Default 16 Low Default Default 17 High Default Default 18 Default Default 19 Low Default Default 19 Low Default Default 20 High Default Default 20 High Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default 29 Low Default Default 20 Low Default Default 20 Low Default Default 21 Default Default Default 22 Low Default Default Default 23 High Default Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default Default 29 Low Default Default Default 20 Low Default Default Default 20 Low Default Default Default 21 Default Default Default 22 Low Default Default Default 23 Low Default Default Default 24 Default Default Default 25 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default	8	High	Default	Default		္ပ်	16 QAM	Edge_1RB_Right		
11 High Default Default 12 Default Default 13 Low Default Default 14 High Default Default 15 Default Default 16 Low Default Default 17 High Default Default 18 Default Default 19 Low Default Default 19 Low Default Default 20 High Default Default 20 High Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default 29 Low Default Default 20 Low Default Default 20 Low Default Default 21 Default Default Default 22 Low Default Default Default 23 High Default Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default Default Default 29 Low Default Default Default 20 Low Default Default Default 20 Low Default Default Default 21 Default Default Default 22 Low Default Default Default 23 Low Default Default Default 24 Default Default Default 25 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default	9	Default	Default	Default		Ē	16 QAM	Outer_Full		
12 Default Default Default 13 Low Default Default 14 High Default Default 15 Default Default 16 Low Default Default 17 High Default Default 18 Default Default Default 19 Low Default Default 20 High Default Default 21 Default Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 High Default Default 29 Default Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default Default 23 High Default Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Default Default Default 29 Default Default Default 20 Default Default Default 20 Default Default Default 21 Default Default Default Default 22 Low Default Default Default 23 Default Default Default 24 Default Default Default 25 Low Default Default Default 26 High Default Default Default 27 Default Default Default Default 28 Default Default Default Default 29 Default Default Default Default 20 Default Defa	10	Low	Default	Default			64 QAM	Edge_1RB_Left		
13	11	High	Default	Default			64 QAM	Edge_1RB_Right		
14 High Default Default 15 Default Default 16 Low Default Default 17 High Default Default 18 Default Default 19 Low Default Default 20 High Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default 28 Default Default 29 Low Default Default 20 Default Default 21 Default Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Default Default Default 29 Default Default Default 20 Default Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default Default 23 Default Default Default Default 24 Default Default Default 25 Low Default Default Default 26 High Default Default Default 27 Default Default Default	12	Default	Default	Default			64 QAM	Outer_Full		
15 Default Default Default 16 Low Default Default 17 High Default Default 18 Default Default 19 Low Default Default 20 High Default Default 21 Default Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 High Default Default 29 Low Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Default Default Default 29 Default Default Default 20 Default Default Default 20 Default Default Default 21 Default Default Default 22 Low Default Default Default 23 Default Default Default Default 24 Default Default Default Default 25 Low Default Default Default Default 26 Default Default Default 27 Default Default Default	13	Low	Default	Default	N/A for A-MPR		256 QAM	Edge_1RB_Left		
The color of the		High	Default	Default	test cases		256 QAM	Edge_1RB_Right		
17 High Default Default 18 Default Default 19 Low Default Default 20 High Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 High Default Default 29 Low Default Default 20 Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Default Default 29 Default Default 20 Default Default 20 Default Default 20 Default Default 21 Default Default 22 Low Default Default 23 Default Default Default 24 Default Default Default 25 Low Default Default 26 Default Default 27 Default Default Default	15	Default	Default	Default			256 QAM	Outer_Full		
18 Default Default Default 19 Low Default Default 20 High Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Default Default 29 Default Default 29 Default Default 20 Default Default 20 Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Default Default 29 Default Default 20 Default Default 20 Default Default 20 Default Default 20 Default Default 21 Default Default 22 Default Default 23 Default Default 24 Default Default 25 Default Default 26 Default Default 27 Default Default Default	16	Low	Default	Default			QPSK	Edge_1RB_Left		
19 Low Default Default 20 High Default Default 21 Default Default 22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default 28 Default Default 29 Low Default Default 20 Default Default 21 Default Default 22 Low Default Default 23 Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default	17	High	Default	Default			QPSK	Edge_1RB_Right		
20 High Default Default	18	Default	Default	Default			QPSK	Outer_Full		
22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default 29 Low Default 20	19	Low	Default	Default		_	16 QAM	Edge_1RB_Left		
22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default 29 Low Default 20	20	High	Default	Default		2	16 QAM	Edge_1RB_Right		
22 Low Default Default 23 High Default Default 24 Default Default 25 Low Default Default 26 High Default Default 27 Default Default Default 28 Low Default 29 Low Default 20	21	Default	Default	Default		R	16 QAM	Outer_Full		
24DefaultDefaultDefault64 QAMOuter_Full25LowDefault256 QAMEdge_1RB_Left26HighDefaultDefault256 QAMEdge_1RB_Right27DefaultDefault256 QAMOuter_Full		Low	Default	Default		S	64 QAM			
24DefaultDefaultDefault64 QAMOuter_Full25LowDefault256 QAMEdge_1RB_Left26HighDefaultDefault256 QAMEdge_1RB_Right27DefaultDefault256 QAMOuter_Full	23	High	Default	Default	Ġ	64 QAM	Edge_1RB_Right			
26 High Default Default 27 Default Default Default 28 256 QAM Edge_1RB_Right 29 256 QAM Outer_Full	24	Outer_Full								
27 Default Default Default 256 QAM Outer_Full	25 Low Default Default 256 QAM Edge_1RB_Left									
27 Default Default Default 256 QAM Outer_Full	26	High	Default	Default	1		256 QAM	Edge_1RB_Right		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 unless otherwise stated in this	27									
	NOTE 1: Th	ne specific co	onfiguration o	of each RB	allocation is define	ed in	Table 6.1-1 unle	ess otherwise stated in this		

table.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

Table 6.2.3.4.1-2: Test Configuration table for NS_24

Initial	Condition	IS								
	invironme ubclause		ecified in	TS 38.508-1	Nor	Normal				
Test Frequencies as specified in TS 38.508-1 [12] subclause 4.3.1					Ref	er to uplink o	carrier centre frequ	ency (F _c) in test pa	rameters	
Test Channel Bandwidths as specified in TS 38.508-1 [12] subclause 4.3.1					Ref	er to test par	rameters (5, 10, 15	5, 20 MHz)		
Test S	CS as sp	ecified in	n Table 5	5.3.5-1	Low	est				
	A-MPR test parameters for NS_24									
Test	Fc	ChBw		Downlink			Uplink Co	nfiguration		
ID	(MHz)	(MHz)	SCS	Configuration		dulation	RB allocation (Note 1)			
טו	(1411 12)	(1411 12)		Comiguration	(N	OTE 2, 3)	Region A	Region B	Region C	
1	1,992.5	5	Default		N	PI/2 BPSK	Outer_Full	N/A	N/A	
2	1,992.5	5	Default		FDM	QPSK	Outer_Full	N/A	N/A	
3	1,992.5	5	Default		Ö	16 QAM	Outer_Full	N/A	N/A	
4	1,992.5	5	Default		္ပ္	64 QAM	Outer_Full	N/A	N/A	
5	1,992.5	5	Default		ᆫ	256 QAM	Outer_Full	N/A	N/A	
6	1,997.5	5	Default	N/A for A-MPR testing	Ω	PI/2 BPSK	Outer_Full	N/A	N/A	

007	<i>-</i>		Dofoult
,997		5	Default
,997		5	Default
,997		5	Default
,997	.5	5	Default
,002	.5	5	Default
,002	.5	5	Default
,002	.5	5	Default
,002	.5	5	Default
,002	.5	5	Default
1,98	5	10	Default
1,98		10	Default
1,98		10	Default
1,98	5	10	Default
1,98	5	10	Default
1,98	5	10	Default
1,98		10	Default
1,99	5	10	Default
1,99	5	10	Default
1,99	5	10	Default
1,99	5	10	Default
1,99	5	10	Default
2,00	0	10	Default
2,00	0	10	Default
2,00	0	10	Default
2,00	0	10	Default
2,00	0	10	Default

Fig. 2,000 10 Default Pil/2 BPSK Outer_Full N/A				
ST 2,000 10 Default ST ST Default ST ST ST Default ST ST ST ST ST ST ST S	66	2,000	10	Default
3 2,000 10 Default 10 Default 200 10 Default 200 2,000 200	7	2 000	10	Default
8 2,000 10 Default 26 QAM Quter_Full N/A N				
2,000				
1				
BPSK Outer_Full Edge_1RB_Right Edge_1R\$		2,000	10	Default
1,987.5 15 Default Default Edge_1RB_Right Edge_1RB_C Edge_1RB_C Edge_1RB_Right Edge_1RB_C		1,987.5	15	Default
16 QAM	1 -	1,987.5	15	Default
1,987.5 15 Default Default Edge_1RB_Right Edge_1RB_Light Edg	7-	1,987.5	15	Default
25 1,987.5 15 Default 256 QAM Outer_Full Edge_1RB_Right Ed)-	1.987.5	15	Default
Pi/2	3-		15	Default
1 1,997.5 15 Default	6-			
1, 1, 1, 97.5 15 Default				
1.997.5 15 Default	1	·	15	Default
1,997.5 15 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 50@ 1,997.5 15 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 50@ 1,997.5 15 Default 256 QAM Outer_Full N/A N/A 1,997.5 15 Default 16 QAM Outer_Full N/A N/A 1,997.5 15 Default 256 QAM Outer_Full N/A N/A 1,990 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 74@ 1,990 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 74@ 1,990 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 74@ 1,990 20 Default 256 QAM Outer_Full N/A N/A 1,990 20 Default QPSK Edge_1RB_Right Edge_1RB_Left 69@ 1,990 20 Default QPSK Outer_Full N/A N/A 1,990 20 Default QPSK Outer_Full N/A N/A	4	1,997.5	15	Default
250 QAM Edge_1RB_kight Edge_1RB_Left Solution	7	1,997.5	15	Default
BPSK Outer_Full N/A N/A N/A		1,997.5	15	Default
QPSK Quer_Full QPSK QP	01	1,997.5	15	Default
1,997.5 15 Default 1,990 20 Default 2,000 20 Default 2,000 20 Default 2,000	12	1 997 5	15	Default
1				
256 QAM Outer_Full N/A				
Pi/2 BPSK Edge_1RB_Right Edge_1RB_Left 74@				
1,990 20 Default Default Default Default Default Default Default Default Default Default		1,997.5	15	Default
1,990 20 Default 16 QAM Edge_1RB_Right Edge_1RB_Left 74@		1,990	20	Default
16 QAM		1,990	20	Default
5-17 (17) 1,990 20 Default 64 QAM Edge_1RB_Right Edge_1RB_Left 74@ 8-20 (20) 1,990 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 74@ 21 (1,990) 20 (20) Default PI/2 BPSK Outer_Full N/A N////A 22 (1,990) 20 (20) Default QPSK Outer_Full N/A N///A 23 (1,990) 20 (20) Default 256 QAM Outer_Full N/A N///A 25 (1,990) 20 (20) Default 256 QAM Outer_Full N/A N///A 26-1/28 1,995 20 (20) Default 256 QAM Outer_Full N/A N///A 29-1/31 1,995 20 (20) Default QPSK Edge_1RB_Right Edge_1RB_Left 69@ 30-1/37 1,995 20 (20) Default 16 QAM Edge_1RB_Right Edge_1RB_Left 69@ 40-1/37 1,995 20 (20) Default 256 QAM Edge_1RB_Right <td>2-</td> <td>1,990</td> <td>20</td> <td>Default</td>	2-	1,990	20	Default
1,990 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 74@	5-	1,990	20	Default
PI/2 PSK Outer_Full N/A N/	8-	1,990	20	Default
QPSK Outer_Full N/A N/		1,990	20	Default
16 QAM Outer_Full N/A	22	1.000	20	Defection
24 1,990 20 Default 25 1,990 20 Default 26-128 1,995 20 Default 29-28 1,995 20 Default 29-34 1,995 20 Default 28-37 1,995 20 Default 28-38-37 1,995 20 Default 40-40 1,995 20 Default 41-1,995 20 Default 41-1,995 20 Default 42-1,995 20 Default 42-1,995 20 Default 43-1,995 20 Default 44-1,995 20 Default 44-1,995 20 Default 44-1,995 20 Default 45-1,995 20 Default </td <td></td> <td></td> <td></td> <td></td>				
1,995 20 Default 256 QAM Outer_Full N/A N/A N/A Pl/2 PSK Edge_1RB_Right Edge_1RB_Left 696 696 1,995 20 Default 16 QAM Edge_1RB_Right Edge_1RB_Left 696 696 1,995 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 696 696 1,995 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 696 696 1,995 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 696 696 1,995 20 Default QPSK Outer_Full N/A N/A N/A 1,995 20 Default 1,995 2				
PI/2 PSK Edge_1RB_Right Edge_1RB_Left 696				
BPSK Edge_1RB_Right Edge_1RB_Left Edge		1,990	20	Default
9-10 1,995 20 Default QPSK Edge_1RB_Right Edge_1RB_Left 69 @ 2-14 1,995 20 Default 16 QAM Edge_1RB_Right Edge_1RB_Left 69 @ 5-16 1,995 20 Default 64 QAM Edge_1RB_Right Edge_1RB_Left 69 @ 8-10 1,995 20 Default 256 QAM Edge_1RB_Right Edge_1RB_Left 69 @ 11 1,995 20 Default PI/2 BPSK Outer_Full N/A N/A 12 1,995 20 Default QPSK Outer_Full N/A N/A 13 1,995 20 Default 16 QAM Outer_Full N/A N/A 14 1,995 20 Default 20 Default 256 QAM Outer_Full N/A N/A 15 1,995 20 Default 256 QAM Outer_Full N/A N/A 16 QPSK Outer_Full N/A N/A N/A N/A		1,995	20	
16 QAM Edge_1RB_Right Edge_1RB_Left 69 @ 16 QAM Edge_1RB_Right Edge_1RB_Left 69 @ 18-18-19-18-19-19-19-19-19-19-19-19-19-19-19-19-19-	29-	1,995	20	Default
1,995 20 Default 64 QAM Edge_1RB_Right Edge_1RB_Left 69 @ 68 QAM Edge_1RB_Right Edge_1RB_Left 69 @ 69 QAM Edge_1RB_Right Edge_1RB_Left 69 QAM Edge_1RB_Right Edge_1RB_Left 69 QAM Edge_1RB_Right Edge_1RB_Left 69 QAM PI/2 BPSK Outer_Full N/A N	32-	1,995	20	Default
256 QAM Edge_1RB_Right Edge_1RB_Left 69@	35-	1,995	20	Default
PI/2 BPSK Outer_Full N/A N/A N/A	38-	•		
1,995 20 Default QPSK Outer_Full N/A N/A		•		
16 QAM Outer_Full N/A N/A N/A 1,995 20 Default 64 QAM Outer_Full N/A N/A				
44 1,995 20 Default 64 QAM Outer_Full N/A N////////////////////////////////////				
1,995 20 Default 256 QAM Outer_Full N/A N/A N/A Outer_Full N/A N/A Outer_Full Oute				
6- 1 002 5 5 Default d QPSK Outer Full N/A N/A				
			20	Delauit
		1,992.5	5	Default

			1
148	1,992.5	5	Default
149	1,992.5	5	Default
150- 151	1,997.5	5	Default
152	1,997.5	5	Default
153	1,997.5	5	Default
154-			
159 160-	2,002.5	5	Default
162	2,002.5	5	Default
163- 165	2,002.5	5	Default
166- 167	1,985	10	Default
168	1,985	10	Default
169	1,985	10	Default
170-	1,985	10	Default
171 172	1,985	10	Default
173	1,985	10	Default
174-		10	
179	1,995	10	Default
180- 182	1,995	10	Default
183- 185	1,995	10	Default
186- 191	2,000	10	Default
192- 194	2,000	10	Default
195- 197	2,000	10	Default
198- 199	2,000	10	Default
200	2,000	10	Default
201	2,000	10	Default
202- 207	1,987.5	15	Default
208- 210	1,987.5	15	Default
211- 213	1,987.5	15	Default
214- 219	1,997.5	15	Default
220- 222	1,997.5	15	Default
223-	1,997.5	15	Default
225	1,997.5	15	Default
227			
228	1,997.5	15	Default
229	1,997.5	15	Default
230- 235	1,990	20	Default
236- 238	1,990	20	Default
239- 241	1,990	20	Default
242- 243	1,990	20	Default
244	1 000	20	Default
	1,990		
245 246-	1,990	20	Default
251	1,995	20	Default
252- 254	1,995	20	Default

N/A for A-MPR testing

64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 266 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 266 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 266 QAM Outer_Full N/A N/A 267 QAM Edge_1RB_Right N/A N/A 268 QAM Edge_1RB_Right N/A N/A 265 QAM Edge_1RB_Right N/A N/A 265 QAM Outer_Full N/A N/A 265 QAM Outer_Full N/A N/A 265 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 266 QAM Outer_Full Edge_1RB_Left 37@0 266 QAM Outer_Full Edge_1RB_Left					
256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 268 QAM Outer_Full Edge_1RB_Right N/A N/A 64 QAM Edge_1RB_Right N/A N/A N/A 64 QAM Edge_1RB_Right N/A N/A N/A 268 QAM Outer_Full N/A N/A N/A 268 QAM Outer_Full N/A N/A N/A 268 QAM Outer_Full N/A N/A N/A 265 QAM Outer_Full N/A N/A N/A 265 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 37@0 265 QAM Outer_Full Edge_1RB_Left 37@0 265 QAM Edge_		64 QAM	Outer Full	N/A	N/A
QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right N/A QPSK 16 QAM Edge_1RB_Right N/A N/A 266 QAM Edge_1RB_Right N/A N/A 266 QAM Edge_1RB_Right N/A N/A 267 QAM Outer_Full N/A N/A 268 QAM Outer_Full N/A N/A 268 QAM Outer_Full N/A N/A 265 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 265 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 266 QAM Outer_Full Edge_1RB_Left 37@0 266 QAM Outer_Full Edge_1RB_Left 37@0 266 QAM Edge_1RB_Right Edg	Ì				
16 QAM			Outel_Full	IN/A	IN/A
16 QAM			Outer Full	N/A	N/A
256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right N/A N/A QPSK 16 QAM Edge_1RB_Right N/A N/A N/A 64 QAM Edge_1RB_Right N/A N/A N/A 64 QAM Edge_1RB_Right N/A N/A N/A QPSK 16 QAM Outer_Full N/A N/A N/A 64 QAM Outer_Full N/A N/A N/A 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left OUTER_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left OUTER_Left		16 QAM	Outer_i uii	IN/A	IN//A
256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right N/A N/A QPSK 16 QAM Edge_1RB_Right N/A N/A N/A 64 QAM Edge_1RB_Right N/A N/A N/A 64 QAM Edge_1RB_Right N/A N/A N/A QPSK 16 QAM Outer_Full N/A N/A N/A 64 QAM Outer_Full N/A N/A N/A 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left OUTER_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left OUTER_Left	ĺ	64 QAM	Outer Full	N/A	N/A
QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right N/A N/A QPSK 16 QAM Edge_1RB_Right N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A	ŀ				
16 QAM			Outer_Full	IN/A	IN/A
GAM		QPSK	Outor Full	Edge 1DB Dight	Edgo 1DB Loft
64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right N/A N/A 64 QAM Edge_1RB_Right N/A N/A 256 QAM Edge_1RB_Right N/A N/A 256 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 37@0 256 QAM Outer_Full Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A 64 QAM </td <td></td> <td>16 QAM</td> <td>Outer_i uii</td> <td>Luge_IND_Night</td> <td>Luge_IIID_Leit</td>		16 QAM	Outer_i uii	Luge_IND_Night	Luge_IIID_Leit
QPSK 16 QAM 16 QAM 256 QAM 269_1RB_Right N/A N/A QAM 256 QAM 269_1RB_Right N/A N/A QPSK 16 QAM 30 QPSK 16 QAM 40 QUter_Full N/A N/A QPSK 16 QAM 40 QUter_Full N/A N/A QPSK 16 QAM 40 QUter_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM 40 QUter_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM 40 QUter_Full Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM 41 Edge_1RB_Right Edge_1RB_Right Edge_1RB_Left 256 QAM 41 Edge_1RB_Right Edge_1RB_Right Edge_1RB_Left 256 QAM 41 Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM 41 Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM 41 Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM 41			Outer_Full	Edge_1RB_Right	Edge_1RB_Left
16 QAM	•	256 QAM	Outer_Full	Edge_1RB_Right	Edge_1RB_Left
64 QAM Edge_1RB_Right N/A N/A 256 QAM Edge_1RB_Right N/A N/A QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 37@0 64 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QA	•		Edge_1RB_Right	N/A	N/A
256 QAM Edge_1RB_Right N/A N/A QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0	İ		Edge 1RB Right	N/A	N/A
QPSK 16 QAM 64 QAM QAM QPSK 16 QAM Outer_Full Outer_Full N/A N/A 256 QAM QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM GPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM GPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM GPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM GPSK 16 QAM Outer_Full N/A N/A 256 QAM GPSK 16 QAM Outer_Full N/A N/A 256 QAM GPSK 16 QAM Outer_Full N/A N/A 256 QAM GPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM GPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM GPSK 16 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM GPSK 16 QAM Outer_Full N/A N/A 256 QAM GPSK 16 QAM Outer_Full N/A N/A 256 QAM GPSK 16 QAM Outer_Full N/A N/A 256 QAM GPSK 16 QAM Outer_Full N/A	ŀ				
16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 37@0 64 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0			Euge_TKb_Kignt	IN/A	IN/A
64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 37@0 64 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK Outer_Full N/A N/A 16 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM Outer_Full N/A N/A 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0			Outor Full	NI/A	NI/A
64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 37@0 64 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0		16 QAM	Outer_i uii	IN/A	IN/A
256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A			Outer Full	N/A	N/A
QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 37@0 GPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left	ŀ				
16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A	ļ		Outer_Full	IN/A	IN/A
256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 64 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0			Outer_Full	Edge_1RB_Right	Edge_1RB_Left
QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 64 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0		64 QAM	Outer_Full	Edge_1RB_Right	Edge_1RB_Left
16 QAM Edge_1RB_Right Edge_1RB_Left 37@0 64 QAM Edge_1RB_Right Edge_1RB_Left 37@0 256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Ed			Outer_Full	Edge_1RB_Right	Edge_1RB_Left
256 QAM Edge_1RB_Right Edge_1RB_Left 37@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Outer_Full N/A N/A QPSK O			Edge_1RB_Right	Edge_1RB_Left	37@0
QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM <t< td=""><td></td><td>64 QAM</td><td>Edge_1RB_Right</td><td>Edge_1RB_Left</td><td>37@0</td></t<>		64 QAM	Edge_1RB_Right	Edge_1RB_Left	37@0
16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Outer_Full N/A N/A QPSK Outer_Full N/A N/A QPSK Outer_Full <td></td> <td></td> <td>Edge_1RB_Right</td> <td>Edge_1RB_Left</td> <td>37@0</td>			Edge_1RB_Right	Edge_1RB_Left	37@0
256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM O				N/A	N/A
256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM O		64 QAM	Outer_Full	N/A	N/A
QPSK 16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16		256 OAM		N/A	
16 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 64 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left 256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0	ŀ		Outor_r un	14/71	14/74
256 QAM Outer_Full Edge_1RB_Right Edge_1RB_Left QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Outer_Full	Edge_1RB_Right	Edge_1RB_Left
QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0		64 QAM	Outer_Full	Edge_1RB_Right	Edge_1RB_Left
16 QAM Edge_1RB_Right Edge_1RB_Left 51@0 64 QAM Edge_1RB_Right Edge_1RB_Left 51@0 256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Outer_Full	Edge_1RB_Right	Edge_1RB_Left
256 QAM Edge_1RB_Right Edge_1RB_Left 51@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Edge_1RB_Right	Edge_1RB_Left	51@0
QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0		64 QAM	Edge_1RB_Right	Edge_1RB_Left	51@0
16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Edge_1RB_Right	Edge_1RB_Left	51@0
256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			_	N/A	N/A
256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0	Ī	64 QAM	Outer Full	N/A	N/A
QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0	ŀ				
16 QAM Edge_1RB_Right Edge_1RB_Left 74@0 64 QAM Edge_1RB_Right Edge_1RB_Left 74@0 256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0	ŀ		Outoi_i uii	1 1// 1	1 1// 1
256 QAM Edge_1RB_Right Edge_1RB_Left 74@0 QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Edge_1RB_Right	Edge_1RB_Left	74@0
QPSK 16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0		64 QAM	Edge_1RB_Right	Edge_1RB_Left	74@0
16 QAM Outer_Full N/A N/A 64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Edge_1RB_Right	Edge_1RB_Left	74@0
64 QAM Outer_Full N/A N/A 256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Outer_Full	N/A	N/A
256 QAM Outer_Full N/A N/A QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0	j	64 QAM	Outer Full	N/A	N/A
QPSK 16 QAM Edge_1RB_Right Edge_1RB_Left 69@0	ŀ				
16 QAM Edge_1RB_Right Edge_1RB_Left 69@0	ŀ		Outel_i_uii	IN/A	IN/A
64 QAM Edge_1RB_Right Edge_1RB_Left 69@0			Edge_1RB_Right	Edge_1RB_Left	69@0
		64 QAM	Edge_1RB_Right	Edge_1RB_Left	69@0

255- 257	1,995	20	Default
258- 259	1,995	20	Default
260	1,995	20	Default
261	1,995	20	Default
262	1,992.5	5	Default
263	1,997.5	5	Default
264	1,985	10	Default

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 unless otherwise stated in this table

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

NOTE 3: In test IDs with multiple modulations, each UL Modulation shall be tested separately against Range A, B, and

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according Annex G.0, G.1, G.2 and G.3.0.
- 4. The UL Reference Measurement channels are set according to the applicable table from Table 6.2.3.4.1-1 to Table 6.2.3.4.1-2.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.3.4.3.

6.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the applicable table from Table 6.2.3.4.1-1 to Table 6.2.3.4.1-2. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE Allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration one sub-frame (1 ms).

NOTE: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 6.2.3.4.1-1 to Table 6.2.3.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [12] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.2.3.4.3 Message contents

6.2.3.4.3.1 Message contents exceptions for network signalling value "NS_100"

1. Information element additionalSpectrumEmission is set to NS_100. This can be set in the *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.1-1: Additional Spectrum Emission: Additional spurious emissions test requirement for "NS 100"

Derivation Path: TS 38.508-1 [12], Table 4.6.3-1						
Information Element	Value/remark	Comment	Condition			
additionalSpectrumEmission	2 (NS_100)					

6.2.3.4.3.2 Message contents exceptions for network signalling value "NS_24"

1. Information element additionalSpectrumEmission is set to NS_24. This can be set in the *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.3.4.3.2-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS 24"

Derivation Path: TS 38.508-1 [12], Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_24)		

6.2.3.5 Test requirement

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in the applicable Table from table 6.2.3.5-1 to Table 6.2.3.5-2. The allowed A-MPR values specified in Table 6.2.3.3.1-1 are in addition to the allowed MPR requirements specified in Clause 6.2.2. For the UE maximum output power modified by MPR and/or A-MPR, the power limits specified in Table 6.2.1.3-1 apply.

Table 6.2.3.5-1: Test Tolerance (UE additional maximum output power reduction)

[to be updated]

Table 6.2.3.5-2: UE Power Class 3 test requirements (NS_100) for n256

Test ID	P _{PowerClass} (dBm)	MPR (dB)	A-MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,c} (dBm)	T(P _{CMAX_L,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1, 2	23	0.5	2	0	21	2	2	25+TT	19-TT
3	23	0.5	2	0	21	2	2	25+TT	19-TT
4, 5	23	1	2	0	21	2	2	25+TT	19-TT
6	23	1	2	0	21	2	2	25+TT	19-TT
7, 8	23	2	2.5	0	20.5	2.5	2	25+TT	18-TT
9	23	2	2.5	0	20.5	2.5	2	25+TT	18-TT
10, 11	23	2.5	3	0	20	2.5	2	25+TT	17.5-TT
12	23	2.5	3	0	20	2.5	2	25+TT	17.5-TT
13, 14	23	4.5	4.5	0	18.5	4	2	25+TT	14.5-TT
15	23	4.5	4.5	0	18.5	4	2	25+TT	14.5-TT
16, 17	23	3	4	0	19	3.5	2	25+TT	15.5-TT
18	23	3	4	0	19	3.5	2	25+TT	15.5-TT
19, 20	23	3	4	0	19	3.5	2	25+TT	15.5-TT
21	23	3	4	0	19	3.5	2	25+TT	15.5-TT
22, 23	23	3.5	4	0	19	3.5	2	25+TT	15.5-TT
24	23	3.5	4	0	19	3.5	2	25+TT	15.5-TT
25, 26	23	6.5	6.5	0	16.5	5	2	25+TT	11.5-TT
27	23	6.5	6.5	0	16.5	5	2	25+TT	11.5-TT

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

Table 6.2.3.5-3: UE Power Class 3 test requirements (NS_24) for n256

Test ID	P _{PowerClass} (dBm)	MPR (dB)	A-MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,c} (dBm)	T(P _{CMAX_L,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
1, 6, 11- 13, 26, 31, 36- 38, 51- 53, 66, 71-73, 86-88, 101, 106- 108, 121, 126-128, 141	23	N/A	1.5	0	21.5	2	2	25 + TT	19.5-TT
2, 7, 14- 16, 27, 32, 39- 41, 54- 56, 67, 74-76, 89-91, 102, 109- 111, 122, 129-131, 142	23	N/A	2.0	0	21	2	2	25+TT	19-TT
3, 8, 17- 19, 28, 33, 42- 44, 57- 59, 68, 77-79, 92-94, 103, 112- 114, 123, 132-134, 143	23	N/A	3.0	0	20	2.5	2	25 + TT	17.5-TT
4, 9, 20- 22, 29, 34, 45- 47, 60- 62, 69, 80-82, 95-97, 104, 115- 117, 124, 135-137, 144	23	N/A	3.5	0	19.5	3.5	2	25 + TT	16-TT
5, 10, 23- 25, 30, 35, 48- 50, 63- 65, 70, 83-85, 98-100, 105, 118- 120, 125, 138-140, 145	23	N/A	5.5	0	17.5	5	2	25 + TT	12.5-TT

Test ID	P _{PowerClass} (dBm)	MPR (dB)	A-MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,c} (dBm)	T(P _{CMAX_L,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
146-147,	(авііі)	(ub)	(ub)	(ub)	(авііі)	(ub)	(ub)	(авііі)	(авііі)
150-151,									
154-159,									
166-167,									
170-171,									
174-179,									
186-191,									
198-199,									
202-207,	23	N/A	4	0	19	3.5	2	25+TT	15.5-TT
214-219,									
226-227,									
230-235,									
242-243,									
246-251,									
258-259,									
262-264									
148, 152,									
160-162,									
168, 172,									
180-182,									
192-194,									
200, 208-	23	N/A	4.5	0	18.5	4	2	25+TT	14.5-TT
210, 220-									
222, 228,									
236-238,									
244, 252-									
254, 260									
149, 153,									
163-165,									
169, 173,									
183-185,									
195-197,									
201, 211-	23	N/A	7.5	0	15.5	5	2	25+TT	10.5-TT
213, 223-									
225, 229,									
239-241,									
245, 255-									
257, 261									

NOTE 1: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance.

NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.2.3.5-1.

6.2.4 Configured transmitted power

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated

6.2.4.1 Test purpose

To verify the measured UE configured maximum output power P_{UMAX,f,c} is within the specified bounds.

6.2.4.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.2.4.3 Minimum conformance requirements

The requirements for configured transmitted power defined in subclause 6.2.4 of 3GPP TS 38.521-1 [2] clause 6.2.4 shall apply to NTN satellite UE.

The normative reference for this requirement is TS 38.101-1 [5] clause 6.2.4.

6.2.4.4 Test description

6.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.2.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in clause A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.4.4.1-1: Test Configuration Table

Initial Conditions					
Test Environment as specified in TS 38.508-1		Normal, TL/VL, TL/VH, TH/VL, TH/VH			
[12] subclause 4	.1				
Test Frequencies	s as specified in TS 38.508-1	Mid range			
[12] subclause 4					
	indwidths as specified in TS	Lowest, Mid, Highest			
38.508-1 [12] subclause 4.3.1					
Test SCS as spe	ecified in Table 5.3.5-1	Lowest			
	Test Param	eters for Channel Bandwidths			
Test ID	Downlink Configuration	Uplink Configura	tion		
	N/A	Modulation (NOTE 2)	RB allocation (NOTE 1)		
1		DFT-s-OFDM Pi/2 BPSK	Inner Full		
2		DFT-s-OFDM QPSK	Inner Full		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					
NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.4.4.3.

6.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE reaches the Pumax level of the test point.
- 3. Measure the mean power of the UE in the channel bandwidth for each test point in table 6.2.4.5-1 according to the test configuration from table 6.2.4.4.1-1. The period of measurement shall be at least the continuous duration of one active slot and in the uplink symbols. For TDD slots with transient periods are not under test.

6.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 with the following exceptions:

Table 6.2.4.4.3-0: PUSCH-Config

Derivation Path: TS 38.508-1 [12], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

Table 6.2.4.4.3-1: FrequencyInfoUL-SIB: Test point 1

Derivation Path: TS 38.508-1 [12] Table 4.6.3-62 FrequencyInfoUL-SIB					
Information Element	Value/remark	Comment	Condition		
p-Max	-10				

Table 6.2.4.4.3-2: FrequencyInfoUL-SIB: Test point 2

Derivation Path: TS 38.508-1 [12] Table 4.6.3-62 FrequencyInfoUL-SIB					
Information Element	Value/remark	Comment	Condition		
p-Max	10				

Table 6.2.4.4.3-3: FrequencyInfoUL-SIB: Test point 3

Derivation Path: TS 38.508-1 [12] Table 4.6.3-62 FrequencyInfoUL-SIB					
Information Element	Value/remark	Comment	Condition		
р-Мах	15				

Table 6.2.4.4.3-4: FrequencyInfoUL-SIB: Test point 4

Derivation Path: TS 38.508-1 [12] Table 4.6.3-62 FrequencyInfoUL-SIB					
Information Element	Value/remark	Comment	Condition		
p-Max	20				

Table 6.2.4.4.3-5: ServingCellConfig

Derivation Path: TS 38.508-1 [12] Table 4.6.3-167					
Information Element	Value/remark	Comment	Condition		
ServingCellConfig ::= SEQUENCE {					
uplinkConfig SEQUENCE {					
powerBoostPi2BPSK	0		Test ID 1, 2		
}					
}					

6.2.4.5 Test requirement

The maximum output power measured shall not exceed the values specified in Table 6.2.4.5-1.

Table 6.2.4.5-1: P_{CMAX} configured UE output power for Test ID 1,2

	Maximum output power			
Measured UE output	-10 dBm ± (7+TT)			
power test point 1				
Measured UE output	10 dPm + (6+TT)			
power test point 2	10 dBm ± (6+TT)			
Measured UE output	15 dBm ± (5+TT)			
power test point 3	13 dbiii ± (3+11)			
Measured UE output	Note 3			
power test point 4	Note 3			
NOTE 1: TT for each freq	uency and channel bandwidth is specified in Table 6.2.4.5-2.			
NOTE 2: Power class 3 is default power class unless otherwise stated.				
NOTE 3: The maximum output power shall be within the range in Table 6.2.4.5-1a.				

Table 6.2.4.5-1a: Measured UE output power test point 4 for Test ID 1,2

NR band	Tolerance (dB)
Danu	
n256	20 dBm ±(2.5+TT)
n255	20 dBm ±(2.5+TT)
NOTE 1:	TT for each frequency and channel bandwidth is specified in Table 6.2.4.5-
] :	2.

Table 6.2.4.5-2: Test Tolerance (Configured transmitted power)

[to be updated]

6.3 Output power dynamics

6.3.1 Minimum output power

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated

6.3.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3.1.2 Test applicability

This test case applies to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.3.1.3 Minimum conformance requirements

The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

The minimum output power is defined as the mean power in at least one sub-frame 1 ms. The minimum output power shall not exceed the values specified in Table 6.3.1.3-1.

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40	4.515
10	-40	9.375
15	-40	14.235
20	-40	19.095

Table 6.3.1.3-1: Minimum output power

The normative reference for this requirement is TS 38.101-5 [11] clause 6.3.1.

6.3.1.4 Test description

6.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions Test Environment as specified in TS 38.508-1 Normal, TL/VL, TL/VH, TH/VL, TH/VH [12] subclause 4.1 Test Frequencies as specified in TS 38.508-1 Low range, Mid range, High range [12] subclause 4.3.1 Test Channel Bandwidths as specified in TS Lowest, Mid, Highest 38.508-1 [12] subclause 4.3.1 Highest Test SCS as specified in Table 5.3.5-1 **Test Parameters for Channel Bandwidths** Test ID **Downlink Configuration Uplink Configuration RB allocation (NOTE 1)** N/A for minimum output power Modulation test case DFT-s-OFDM QPSK Outer Full NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1

Table 6.3.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to clauses C.0, C.1, C.2, and uplink signals according to clauses G.0, G.1, G.2, G.3.0.

- 4. The UL Reference Measurement Channel is set according to Table 6.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.3.1.4.3.

6.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Measure the mean power of the UE in the associated measurement channel bandwidth specified in Table 6.3.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of one active sub-frame (1 ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.

6.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 with following exception.

Table 6.3.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [12], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.3.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3.1.5-1.

Table 6.3.1.5-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)				
5	-40+TT	4.515				
10	-40+TT	9.375				
15	-40+TT	14.235				
20	-40+TT	19.095				
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3.1.5-2						

Table 6.3.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz
BW ≤ 40MHz	1 dB

6.3.2 Transmit OFF power

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending

6.3.2.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

An excess Transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3.2.2 Test applicability

This test case applies to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.3.2.3 Minimum conformance requirements

Transmit OFF power is defined as the mean power in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of its ports.

The Transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1 ms) excluding any transient periods. The Transmit OFF power shall not exceed the values specified in Table 6.3.2.3-1.

Table 6.3.2.3-1: Transmit OFF power

Channel bandwidth	(MHz)	5, 10, 15, 20
REF_SCS	(kHz)	15
Transmit OFF power	(dBm)	-50
Measurement bandwidth	(MHz)	MBW=REF_SCS*(12*N _{RB} +1)/1000

The normative reference for this requirement is TS 38.101-5 [11] clause 6.3.2.

6.3.2.4 Test description

This test is covered by clause 6.3.3 Transmit ON/OFF time mask.

6.3.2.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3.1.5-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)				
5	-50+TT	4.515				
10	-50+TT	9.375				
15	-50+TT	14.235				
20 -50+TT 19.095						
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3.2.5-2						

Table 6.3.1.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz
BW ≤ 40MHz	1.5 dB

6.3.3 Transmit on/off time mask

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access is to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated

6.3.3.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3.3.2.5.

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power as defined in sub-clause 6.3.2 and transmit ON power symbols (transmit ON/OFF)

Transmission of the wrong power increases interference to other channels or increases transmission errors in the uplink channel.

6.3.3.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.3.3.3 Minimum conformance requirements

The requirements for transmit ON/OFF time mask defined in 3GPP TS 38.101-1 [5] clause 6.3.3 shall apply for NTN satellite UE.

The normative reference for this requirement is TS 38.101-5 [11] clause 6.2.2.

6.3.3.4 Test description

6.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 [2] Annex C.2.

Table 6.2.2.4.1-1: Test Configuration Table for power class 3

		Initial Conditions				
i i		Normal, TL/VL, TL/VH, TH/VL, TH/VH				
[12] subclause 4						
	s as specified in TS 38.508-1	Low range, Mid range, High range (NC	OTE 2)			
[12] subclause 4						
Test Channel Ba	andwidths as specified in TS	Lowest, Mid, Highest				
38.508-1 [12] subclause 4.3.1						
Test SCS as spe	ecified in Table 5.3.5-1	Lowest, Highest				
	Test Param	eters for Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Configuration				
	N/A for minimum output power	Modulation	RB allocation (NOTE 1)			
1	test case	DFT-s-OFDM QPSK Inner Full				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.						
NOTE 2: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test frequencies.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] clauses C.0, C.1, C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to TS 38.521-1 [2] Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in State [to be updated] with generic procedure parameters [12], Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.3.3.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.3.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 8 for15 kHz SCS, on slots 8 and 18 for 30 kHz SCS and on slots 17 and 37 for 60 kHz SCS.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. ON power sub test:
 - 3.1. Measure the output power of the UE PUSCH transmission during one slot.
- 4. OFF power sub test:
- 4.1. Measure the UE transmission OFF power during the slot prior to the PUSCH transmission, excluding a transient period of $10 \mu s$ in the end of the slot.
- 4.2. Measure the UE transmission OFF power during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.

6.3.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclauses 4.6 and 5.4 with the following exceptions:

Table 6.3.3.4.3-1: PUSCH-TimeDomainResourceAllocationList

Information Element	Value/remark	Comment	Condition
PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1maxNrofUL-Allocations)) OF {	2 entries		
PUSCH-TimeDomainResourceAllocation[1]			
k2	4		FR1_15kHz, FR1_30kHz
	6		FR1 60kHz
mappingType	typeA		_
startSymbolAndLength	27	Start symbol(S)=0, Length(L)=14	
PUSCH-TimeDomainResourceAllocation[2] SEQUENCE { k2	2	addressed by Msg3 PUSCH time resource allocation field of the Random Access Response acc. to TS 38.213 [7] Table 8.2-1. K ₂ + Δ=4 acc. to TS 38.214 [21] Table 6.1.2.1.1-5 (NOTE 1) K ₂ + Δ=9 acc. to TS 38.214 [21] Table 6.1.2.1.1-5	FR1_15kHz FR1_30kHz
mannin aT. in a	t A	(NOTE 1)	
mappingType startSymbolAndLength	typeA 27	Start symbol(S)=0, Length(L)=14	
}			

Access Response and the last slot (of the same or another period) for the corresponding Msg3.

Condition	Explanation
FR1_15kHz	FR1 is used under the test. SCS is set to 15kHz.
FR1_30kHz	FR1 is used under the test. SCS is set to 30kHz.
FR1_60kHz	FR1 is used under the test. SCS is set to 60kHz.

Table 6.3.3.4.3-2: PUSCH-Config

Derivation Path: TS 38.508-1 [12], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

Table 6.3.3.2.4.3-7: P-Max

Derivation Path: TS 38.508-1 [12], Table 4.6.3-89							
Information Element Value/remark Comment Condition							
P-Max	23						

6.3.3.5 Test requirement

The requirement for the power measured in steps 2, 3 and 4 of the test procedure shall not exceed the values specified in Table 6.3.3.5-1.

Table 6.3.3.5-1: General ON/OFF time mask

			Cha	nnel ba	ndwidtl	ı / minii	mum ou	itput po	wer / m	easure	ment b	andwi	dth		
	5	10	15 MU-	20 MHz	25 MHz	30	35 MHz	40	45 MHz	50	60	70	80	90	100
	MHz	MHz	MHz	IVITIZ	IVITZ	MHz		MHz		MHz	MHz	MHz	MHz	MHz	MHz
Transmit							≤ -50)+TT dB	m						
OFF															
power															
Transmissi	[4.51	[9.37	[14.23	[19.09	[23.95	[28.81	[33.85	[38.89	[43.57	[48.61	[58.3	[68.0	[78.1	[88.2	[98.3
on OFF	5]	5]	5]	5]	5]	5]	5]	5]	5]	5]	5]	7]	5]	3]	1]
Measurem															1
ent															1
bandwidth															1
Transmit	t Same as Table 6.2.1.5-1														
ON power	ower														
NOTE 1: T	NOTE 1: TT for each frequency and channel bandwidth of OFF power is specified in Table 6.3.3.2.5-2														
NOTE 2: T	NOTE 2: TT for each frequency and channel bandwidth of ON power is specified in Table 6.2.1.5-3														

Table 6.3.3.2.5-2: Test Tolerance for OFF power

The test tolerance for frequency range and channel bandwidth applicable to NTN is provided below.	f ≤ 3.0GHz
BW ≤ 40MHz	[to be updated]

6.4 Transmit signal quality

6.4.1 Frequency error

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Verification of UE frequency pre-compensation is to be updated

6.4.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4.1.2 Test applicability

This test case applies to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.4.1.3 Minimum conformance requirements

The NTN satellite UE basic measurement interval of modulated carrier frequency is 1 UL slot. The NTN satellite UE pre-compensates the uplink modulated carrier frequency by the estimated Doppler shift according to 3GPP TS 38.300 [9] clause 16.14.2. The mean value of basic measurements of NTN UE modulated carrier frequency shall be accurate to within \pm 0.1 PPM observed over a period of 1 ms of cumulated measurement intervals compared to ideally pre-compensated reference uplink carrier frequency.

[NOTE: The ideally pre-compensated reference uplink carrier frequency consists of the UL carrier frequency signalled to the UE by SAN and UL pre-compensated Doppler frequency shift. For the test case, the location of the UE is explicitly provided to the UE from the test equipment.]

The normative reference for this requirement is TS 38.101-5 [11] clause 6.4.1.

6.4.1.4 Test description

6.4.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 Annex C.2.

Table 6.4.1.4.1-1: Test Configuration Table

	Initial Conditions						
Test Enviro	nment as specified in	n TS 38.508-1 [12]	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
subclause 4							
Test Freque	encies as specified ir	n TS 38.508-1 [12]	Mid range				
subclause 4							
Test Chann	el Bandwidths as sp	ecified in TS 38.508-1	Highest				
[12] subclau	ıse 4.3.1						
Test SCS a	s specified in Table	5.3.5-1	Lowest				
		Test I	Parameters				
	Downlink (Configuration	Upli	nk Configuration			
Test ID	Modulation	RB allocation	Modulation	RB allocation			
1	CP-OFDM QPSK	CP-OFDM QPSK Full RB (NOTE 1) DFT-s-OFDM QPSK REFSENS (NOTE 2)		REFSENS (NOTE 2)			
NOTE 1: F	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2						
NOTE 2: F	NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, in Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to clauses C.0, C.1, C.2, and uplink signals according to clauses G.0, G.1, G.2, G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

SCS, channel BW and NR band.

6.4.1.4.2 Test procedure

- 1. UE location according to TS 38.508-1 [12] clause 5.6.1 is provided to the UE through any preconfigured means.
- 2. Test equipment shall emulate the signal with doppler and delay according to ephemeris defined in TS 38.508 [12] table 5.6.2.1-1 for GSO if UE supports only GSO or both GSO and NGSO satellites and table 5.6.2.1-3 for NGSO (LEO-1200) if UE supports only NGSO satellites. Test system shall send same SIB19 information during the duration of the test as defined in TS 38.508-1 [12] clause 5.6.3.1.
- 3. Deactivate UE prediction of satellite trajectory by any preconfigured means
- 4. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.4.1.4.3.
- 5. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 6.4.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

- 6. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 7. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 8. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 9. For UEs supporting DSS, repeat steps 1~4 on the applicable bands as specified in Clause 5.4.2.1 with message contents being according to TS 38.508-1 [12] subclause 4.6 ensuring Table 4.6.3-61 and Table 4.6.3-62 with condition DSS.
- 10 Repeat from test procedure steps 1-9 with ephemeris values for maximum positive Doppler for GSO if UE supports only GSO or both GSO and NGSO satellites and for NGSO (LEO-600) if UE supports only NGSO satellites replacing ephemeris in step 2 by corresponding tables in clause 6.4A.1.4.3. Test system shall send same SIB19 information during the duration of this frequency error measurement.
- 11 Repeat from test procedure steps 1-9 with ephemeris values for maximum negative Doppler for GSO if UE supports only GSO or both GSO and NGSO satellites and for NGSO (LEO-600) if UE supports only NGSO satellites replacing ephemeris in step 2 by corresponding tables in clause 6.4A.1.4.3. Test system shall send same SIB19 information during the duration of each frequency error measurement.
- 12 Repeat from test procedure steps 1-8 with ephemeris values for half of maximum positive Doppler if UE supports only GSO or both GSO and NGSO satellites and for NGSO (LEO-600) if UE supports only NGSO satellites replacing ephemeris in step 2 by corresponding tables in clause 6.4A.1.4.3. Test system shall send same SIB19 information during the duration of this frequency error measurement.
- 13 In case the UE supports both GSO and NGSO satellites, repeat test procedure steps 10-13 for NGSO (LEO-600).

6.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 and subclause 5.6.2.1 with the following exceptions

Table 6.4.1.4.3-1a: EphemerisInfo- NR NTN Ephemeris Information for GSO satellites (maximum positive Doppler)

Derivation Path: TS 38.598-1, Table 4.6.3-56C				
Information Element	Value/remark	Comment	Condition	
EphemerisInfo-r17 ::= CHOICE {				
positionVelocity-r17 SEQUENCE {				
positionX-r17	-17104941			
positionY-r17	27550229			
positionZ-r17	-607219			
velocityVX-r17	258			
velocityVY-r17	299			
velocityVZ-r17	6277			
}				
}				
NOTE 1: Satellite-UE elevation angle equal to	26.15 degrees, one-way delay equal	to 129.93 ms and Do	oppler equal to	
0.17 ppm				

Table 6.4.1.4.3-1b: EphemerisInfo- NR NTN Ephemeris Information for NGSO (LEO-600) satellites (maximum positive Doppler)

Information Element	Value/remark	Comment	Condition
EphemerisInfo-r17 ::= CHOICE {			
positionVelocity-r17 SEQUENCE {			
positionX-r17	-2717617		
positionY-r17	4550419		
positionZ-r17	852799		
velocityVX-r17	6164		
velocityVY-r17	-19424		
velocityVZ-r17	124281		
}			
}			

Table 6.4.1.4.3-2a: EphemerisInfo -NR NTN Ephemeris Information for GSO satellites (maximum negative Doppler)

Derivation Path: TS 38.598-1, Table 4.6.3-56C				
Information Element	Value/remark	Comment	Condition	
EphemerisInfo-r17 ::= CHOICE {				
positionVelocity-r17 SEQUENCE {				
positionX-r17	-17061001			
positionY-r17	27582763			
positionZ-r17	-276165			
velocityVX-r17	361			
velocityVY-r17	160			
velocityVZ-r17	-6335			
}				
}				
NOTE 1: Satellite-UE elevation angle equal to 2	26.78 degrees, one-way delay equal	to 129.74 ms and Do	oppler equal to -	
0.17 ppm.				

Table 6.4.1.4.3-2b: EphemerisInfo -NR NTN NTN Ephemeris Information for NGSO (LEO-600) satellites (maximum negative Doppler)

Derivation Path: TS 38.598-1, Table 4.6.3-56C					
Information Element	Value/remark	Comment	Condition		
EphemerisInfo-r17 ::= CHOICE {					
positionVelocity-r17 SEQUENCE {					
positionX-r17	-2199272				
positionY-r17	3404229				
positionZ-r17	3535794				
velocityVX-r17	35394				
velocityVY-r17	-74414				
velocityVZ-r17	94682				
}					
}					
NOTE 1: Satellite-UE elevation angle equal to 1	69 97 degrees, one-way delay egua	I al to 6.60 ms and Dor	nnler equal to -		

NOTE 1: Satellite-UE elevation angle equal to 169.97 degrees, one-way delay equal to 6.60 ms and Doppler equal to - 22.62 ppm.

Table 6.4.1.4.3-3a: EphemerisInfo -NR NTN Ephemeris Information for GSO satellites (maximum positive Doppler/2)

Information Element	Value/remark	Comment	Condition
EphemerisInfo-r17 ::= CHOICE {			
positionVelocity-r17 SEQUENCE {			
positionX-r17	-17062164		
positionY-r17	27354696		
positionZ-r17	-3544856		
velocityVX-r17	-360		
velocityVY-r17	164		
velocityVZ-r17	2993		
}			
}			

NOTE 1: Satellite-UE elevation angle equal to 20.61 degrees, one-way delay equal to 131.70 ms and Doppler equal to - 0.085 ppm.

Table 6.4.1.4.3-3b: EphemerisInfo -NR NTN Ephemeris Information for NGSO (LEO-600) satellites (maximum positive Doppler/2)

Information Element	Value/remark	Comment	Condition
EphemerisInfo-r17 ::= CHOICE {			
positionVelocity-r17 SEQUENCE {			
positionX-r17	-2592823		
positionY-r17	4245650		
positionZ-r17	2024520		1
velocityVX-r17	19359		
velocityVY-r17	-43278		
velocityVZ-r17	116553		
}			
}			

NOTE 1: Satellite-UE elevation angle equal to 60.25 degrees, one-way delay equal to 2.30 ms and Doppler equal to 11.29 ppm.

6.4.1.5 Test requirement

The frequency error Δf shall fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + [15 \text{ Hz}])$

The above requirement shall be verified for at least two cases of which one has zero Doppler conditions.

6.5 Output RF spectrum emissions

[to be updated]

6.5.1 Occupied bandwidth

[to be updated]

6.5.2 Out of band emission

6.5.2.1 [to be updated]

6.5.2.2 Spectrum emission mask

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access is to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated

6.5.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth

6.5.2.2.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.5.2.2.3 Minimum conformance requirements

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies offset greater than Δf_{OOB} , the spurious requirements in clause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.3-1 for the specified channel bandwidth.

Channel bandwidth (MHz) / Spectrum emission limit **Afoor** (dBm) Measurement bandwidth (MHz) 5 10, 15, 20 ± 0-1 -13 -13 1 % of channel BW ± 1-5 -10 -10 ± 5-6 -13 -25 1 MHz ± 6-10 ± 5-BW_{Channel} -13 ± BW_{Channel}-(BW_{Channel}+5) -25

Table 6.5.2.3-1: General NR spectrum emission mask

The normative reference for this requirement is TS 38.101-5 [11] clause 6.5.2.2.

6.5.2.2.4 Test description

6.5.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 [2] Annex C.2.

Table 6.2.2.4.1-1: Test Configuration Table for power class 3 (contiguous allocation)

	Default Conditions						
Test En	vironment a	as specified	d in TS 3	Normal			
subclau	se 4.1						
		s specified	d in TS 38	3.508-1 [12]	Low range, High range		
subclau	se 4.3.1						
Test Ch	Test Channel Bandwidths as specified in TS 38.508-			Lowest, Highest			
1 [12] subclause 4.3.1				-			
Test SCS as specified in Table 5.3.5-1			e 5.3.5-1	Lowest, Highest			
Test Parameters for Char				neters for Chan	nel Bandwidths		
Test I	Freq	ChBw	SCS	Downlink	Uplink Configuration		
ID	-			Configuratio	_		
				n			

		Default	Defaul t	N/A for Spectrum Emission Mask test	Modulation (NOTE 2)	RB allocation (NOTE 1)
44	Low	_		case	DFT-s-OFDM	Edge_1RB_Left
5 ⁴	High				PI/2 BPSK DFT-s-OFDM	Edge_1RB_Right
6 ⁴	Default	=			PI/2 BPSK DFT-s-OFDM PI/2 BPSK	Outer_Full
7	Low				DFT-s-OFDM QPSK	Edger_1RB_Left
8	High	=			DFT-s-OFDM QPSK	Edge_1RB_Right
9	Default				DFT-s-OFDM QPSK	Outer_Full
10	Low				DFT-s-OFDM 16 QAM	Edge_1RB_Left
11	High				DFT-s-OFDM 16 QAM	Edge_1RB_Right
12	Default				DFT-s-OFDM 16 QAM	Outer_Full
13	Low				DFT-s-OFDM 64 QAM	Edge_1RB_Left
14	High				DFT-s-OFDM 64 QAM	Edge_1RB_Right
15	Default				DFT-s-OFDM 64 QAM	Outer_Full
19	Low				CP-OFDM QPSK	Edge_1RB_Left
20	High				CP-OFDM QPSK	Edge_1RB_Right
21	Default				CP-OFDM QPSK	Outer_Full
22	Low				CP-OFDM 16 QAM	Edge_1RB_Left
23	High				CP-OFDM 16 QAM	Edge_1RB_Right
24	Default				CP-OFDM 16 QAM	Outer_Full
25	Low				CP-OFDM 64 QAM	Edge_1RB_Left
26	High				CP-OFDM 64 QAM	Edge_1RB_Right
27	Default				CP-OFDM 64 QAM	Outer_Full
28	Low				CP-OFDM 256 QAM	Edge_1RB_Left
29	High				CP-OFDM 256 QAM	Edge_1RB_Right
30	Default				CP-OFDM 256 QAM	Outer_Full

NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

NOTE 3: VOID

NOTE 4: UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79, or in TDD mode the IE *powerBoostPi2BPSK* is set to 0 for bands n40, n41, n77, n78 and n79.

NOTE 5: For Power Class 3 testing, UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79, or in TDD mode the IE *powerBoostPi2BPSK* is set to 0 for bands n40, n77, n78 and n79.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.

- 3. Downlink signals are initially set up according to TS 38.521-1 [2] Annex C.0, C.1, C.2, and uplink signals according to TS 38.521-1 [2] Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to TS 38.521-1 [2] Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in State [to be updated] with generic procedure parameters [to be updated], Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.5.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.2.4.1-1, Table 6.5.2.2.4.1-2, Table 6.5.2.2.4.1-2a and Table 6.5.2.2.4.1-3. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200 ms for the UE to reach PUMAX level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 to 6.2.2.5-9. The period of the measurement shall be at least the continuous duration of 1 ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.2.2.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, table 6.5.2.2.4.1-2, and table 6.5.2.2.4.1-2a, send an NR RRCReconfiguration message according to TS 38.508-1 [12] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [to be updated] subclause 4.6 and 5.4 with the following exceptions:

Table 6.5.2.2.4.3-1: PUSCH-Config

Information Element	Value/remark	Comment	Condition
PUSCH-Config ::= SEQUENCE {			
resourceAllocation	resourceAllocationType0		Almost contiguous allocation
	resourceAllocationType1		Contiguous allocation

6.5.2.2.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2.2.5-1, and the power of any UE emission shall fulfil requirements in Table 6.5.2.2.5-1.

Table 6.5.2.2.5-1: General NR spectrum emission mask

Δf _{OOB}	Channel bandwidth (MHz)	Measurement bandwidth	
(MHz)	5	10, 15, 20	
± 0-1	-13+TT	-13+TT	1 % of channel BW
± 1-5	-10+TT	-10+TT	
± 5-6	-13+TT		
± 6-10	-25+TT		1 MHz
± 5-BW _{Channel}		-13+TT	
± BW _{Channel} -(BW _{Channel} +5)		-25+TT	

Table 6.5.2.2.5-2: Test Tolerance (Spectrum Emission Mask)

[to be updated]

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3 [to be updated]

6.5.2.4 Adjacent channel leakage ratio

6.5.2.4.0 General

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.4.1 NR Adjacent channel leakage ratio

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access is to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated

6.5.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.4.1.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.5.2.4.1.3 Minimum conformance requirements

NR Adjacent Channel Leakage power Ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent NR channel frequency at nominal channel spacing.

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.4.1-1.

If the measured adjacent channel power is greater than -50 dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5.2.4.1-2.

Table 6.5.2.4.1-1: NR ACLR measurement bandwidth

Channel bandwidth	(MHz)	5,10,15,20
REF_SCS	(kHz)	15
NR ACLR measurement bandwidth	(MHz)	MBW=REF_SCS*(12*N _{RB} +1)/1000

Table 6.5.2.4.1-2: NR ACLR requirement

	Power class 3
NR ACLR	30 dB

The normative reference for this requirement is TS 38.101-5 [11] clause 6.5.2.4.1.

6.5.2.4.1.4 Test description

6.5.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 [2] Annex C.2.

Table 6.2.2.4.1-1: VOID

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.2.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] clauses C.0, C.1, C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to TS 38.521-1 [2] Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].

8. Ensure the UE is in State [to be updated] with generic procedure parameters according to TS 38.508-1 [12] clause [to be updated], Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.5.2.4.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2.2.4.1T. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200 ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, as measured in step 3 of 6.2.2.4.2, which shall meet the requirements described in clause 6.2.2.5 as appropriate.
- 4. Measure the rectangular filtered mean power for the assigned NR channel.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.

NOTE: When switching to DFT-s-OFDM waveform, as specified in the test configuration tables in clause 6.2.2.4.1, send an NR RRCReconfiguration message according to TS 38.508-1 [12] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 and 5.4 with the following exceptions:

Table 6.5.2.4.1.4.3-1: *P-Max* (Step 7)

Derivation Path: TS 38.508-1 [12], Table 4.6.3-89					
Information Element	Information Element Value/remark Comment Condition				
P-Max	23		PC2 UE or		
			PC1 UE		

Table 6.5.2.4.1.4.3-1a: Void

Table 6.5.2.4.1.4.3-2: PUSCH-Config

Derivation Path: TS 38.508-1 [12] subclause 4.6.3 Table 4.6.3-118 PUSCH-Config				
Information Element	Value/remark	Comment	Condition	
PUSCH-Config ::= SEQUENCE {				
resourceAllocation	resourceAllocationType	0	Almost contiguous allocation	
	resourceAllocationType	1	Contiguous allocation	
}				

Table 6.5.2.4.1.4.3-3: DMRS-UplinkConfig (Test ID 33-35 in Table 6.2.2.4.1-1)

Derivation Path: TS 38.508-1 [12], Table 4.6.3-51				
Information Element	Value/remark	Comment	Condition	
DMRS-UplinkConfig ::= SEQUENCE {				
transformPrecodingEnabled SEQUENCE {				
dmrs-UplinkTransformPrecoding-r16 {				
Setup SEQUENCE {				
pi2BPSK-ScramblingID0	Not present			
pi2BPSK-ScramblingID1	Not present			
}				
}				
}				

Table 6.5.2.4.1.4.3-4: ServingCellConfig

Derivation Path: TS 38.508-1 [12] Table 4.6.3-167				
Information Element	Value/remark	Comment	Condition	
ServingCellConfig ::= SEQUENCE {				
uplinkConfig SEQUENCE {				
powerBoostPi2BPSK	1		Test IDs where NOTE 3 in Table 6.2.2.4.1-1 applies.	
	0		Test IDs where NOTE 4 in Table 6.2.2.4.1-1 applies.	
}				
}				

6.5.2.4.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in clause 6.2.2.5 as appropriate, and if the measured adjacent channel power is greater than –50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5.2.4.1.5-2.

The measured UE mean power in the channel bandwidth, derived in step 7, shall fulfil power class 3 requirements in Tables 6.2.2.5-1 and 6.2.2.5-3 as appropriate, and if the measured adjacent channel power is greater than –50 dBm then the measured NR ACLR, derived in step 7, shall be higher than the power class 3 limits in Table 6.5.2.4.1.5-2.

Table 6.5.2.4.1.5-1: NR ACLR measurement bandwidth

Channel bandwidth	(MHz)	5,10,15,20
REF_SCS	(kHz)	15
NR ACLR measurement bandwidth	(MHz)	MBW=REF_SCS*(12*N _{RB} +1)/1000

Table 6.5.2.4.1.5-2: NR ACLR requirement

	Power class 3
NR ACLR	30 - TT dB

Table 6.5.2.4.1.5-3: Test Tolerance (NR ACLR)

[to be updated]

6.5.2.4.2 UTRA Adjacent channel leakage ratio

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access is to be updated
- Message exceptions specific to satellite access is to be updated
- Test Points analysis is to be updated
- Test configuration is to be updated
- Annex F MU/TT is to be updated

6.5.2.4.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.4.2.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.5.2.4.2.3 Minimum conformance requirements

UTRA adjacent channel leakage power ratio (UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA_{ACLR} is specified for the first adjacent UTRA channel (UTRA_{ACLR1}) which center frequency is \pm 2.5 MHz from NR channel edge and for the 2^{nd} adjacent UTRA channel (UTRA_{ACLR2}) which center frequency is \pm 7.5 MHz from NR channel edge.

The UTRA channel power is measured with a RRC filter with roll-off factor $\alpha = 0.22$ and bandwidth of 3.84 MHz. The assigned NR channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.5.2.4.1-1.

If the measured adjacent channel power is greater than -50 dBm then the UTRA_{ACLR1} and UTRA_{ACLR2} shall be higher than the value specified in Table 6.5.2.4.2-1.

Table 6.5.2.4.2-1: UTRA ACLR requirement

Power class 3	
UTRA _{ACLR1}	33 dB
UTRA _{ACLR2}	36 dB

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

The normative reference for this requirement is TS 38.101-5 [11] clause 6.5.2.4.2.

6.5.2.4.2.4 Test description

6.5.2.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 [2] Annex C.2.

Table 6.2.2.4.2-1: Test Configuration Table for power class 3

[to be updated]

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [to be updated] Annex A, Figure A.3.1.2.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [to be updated] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] clauses C.0, C.1, C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to TS 38.521-1 [2] Annex B.0.
- 6. Ensure the UE is in State [to be updated] with generic procedure parameters [to be updated], Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [to be updated] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

6.5.2.4.2.4.2 Test procedure

[to be updated]

6.5.2.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [to be updated] subclause 4.6 and 5.4 with the following exceptions:

[to be updated]

6.5.2.4.2.5 Test requirement

[to be updated]

6.5.3 Spurious emission

6.5.3.0 General

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with SM.329 [to be updated] and NTN operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.1 General spurious emissions

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated

- Annex F MU/TT is to be updated

6.5.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5.3.1.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.5.3.1.3 Minimum conformance requirements

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.3-2 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

Table 6.5.3.1.3-1: Boundary between NR out of band and general spurious emission domain

Channel bandwidth	OOB boundary F _{OOB} (MHz)
BW _{Channel}	BWchannel + 5

Table 6.5.3.1.3-2: Requirement for general spurious emissions limits

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1,000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	

The normative reference for this requirement is TS 38.101-5 [11] subclause 6.5.3.1

6.5.3.1.4 Test description

6.5.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 6.5.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in [to be updated]. Configurations of PDSCH and PDCCH before measurement are specified in [to be updated].

Table 6.5.3.1.4.1-1: Test Configuration Table

Initial Conditions				
Test Environment as specified in TS 38.508-		Normal		
1 [12] subcla	use 4.1.			
Test Frequer	ncies as specified in TS 38.508-	Low range, Mid range, High range		
1 [12] subcla	use 4.3.1.			
Test Channe	el Bandwidths as specified in TS	Lowest, Mid, Hig	hest	
38.508-1 [12] subclause 4.3.1.				
Test SCS as specified in Table 5.3.5-1		Lowest		
Test Parame	eters			
Test ID	Downlink Configuration	Uplink Configuration		
		Modulation	RB allocation (NOTE 1)	
1	N/A for Spurious Emissions	CP-OFDM QPSK	OuterFull	
2	testing	CP-OFDM QPSK	Edge_1RB_Left	
3		CP-OFDM QPSK	Edge_1RB_Right	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure [to be updated] for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex [to be updated]
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex [to be updated].
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.5.3.1.4.3.

6.5.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 with below exceptions.

[to be updated]

6.5.3.1.5 Test requirement

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 6.5.3.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.5-1 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.1.5-1.

Table 6.5.3.1.5-1: General spurious emissions test requirements

frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1,000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	

6.5.3.2 Spurious emissions for UE co-existence

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated

6.5.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5.3.2.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.5.3.2.3 Minimum conformance requirements

This clause specifies the requirements for NR NTN satellite bands for UE coexistence with protected bands.

Table 6.5.3.2.3-1: Requirements for spurious emissions for UE co-existence

NR NTN	Spurious emission for UE co-existence							
satellite Band	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE	
n255	NR Band n1, n2, n3, n5, n7, n8, n12, n13, n14, n18, n20, n24, n25, n26, n28, n29, n30, n34, n38, n39, n40, n41, n48, n50, n51, n53, n65, n66, n67, n70, n71, n74, n75, n76, n85, n90, n91, n92, n93, n94, n100, n101	F _{DL_low}	-	F_{DL_high}	-50	1		
	NR Band n77, n78, n79	F_{DL_low}	-	F_{DL_high}	-50	1	2	
n256	NR Band n1, n3, n5, n7, n8, n12, n13, n14, n18, n20, n24, n26, n28, n29, n30, n38, n39, n40, n41, n48, n50, n51, n53, n65, n66, n67, n71, n74, n75, n76, n78, n79, n85, n90, n91, n92, n93, n94, n101, n100, n101	F _{DL_low}	-	F _{DL_high}	-50	1		
	E-UTRA Band 33, 35	F _{DL_low}	-	F _{DL_high}	-50	1		
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2	
	NR Band n2, n25, n70	F _{DL_low}	-	F _{DL_high}	NA	NA	3	

- NOTE 1: The protected NR or E-UTRA bands are specified in clause 5.2 from 3GPP TS 38.101-1 [5] or 3GPP TS 36.101 [10]. F_{DL_low} and F_{DL_high} refer to each frequency band specified in Table 5.2.2-1 in 3GPP TS 38.101-1 [5] or 3GPP TS 36.101 [10].
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1.3-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2 MHz + N x L_{CRB} x RB_{size} kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: The co-existence between n256 and band n2, n25 and n70 is subject to regional/national regulation.

The normative reference for this requirement is TS 38.101-5 [11] subclause 6.5.3.2.

6.5.3.2.4 Test description

6.5.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 6.5.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in [to be updated]. Configurations of PDSCH and PDCCH before measurement are specified in [to be updated].

Table 6.5.3.2.4.1-1: Test Configuration Table

Initial Conditions						
		Normal				
1 [12] subclause 4.1.						
Test Frequencies as specified in TS 38.508-		Low range, Mid range, High range				
1 [12] subcla	use 4.3.1.					
Test Channe	I Bandwidths as specified in TS	Lowest, Mid, Highest				
38.508-1 [12] subclause 4.3.1.						
Test SCS as specified in Table 5.3.5-1		Lowest				
	Test Parameters					
Test ID	Downlink Configuration	Uplink Configuration				
	N/A	Modulation	RB allocation (NOTE 1)			
1		CP-OFDM QPSK	Outer_Full			
2		CP-OFDM QPSK	Edge_1RB_Left			
3		CP-OFDM QPSK	Edge_1RB_Right			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 12 Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 12 subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] clauses C.0, C.1 and C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0 in TS 38.521-1 [2].
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 12 clause 4.5. Message contents are defined in clause 6.5.3.2.4.3.

6.5.3.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.2.4.3 Message contents

Message contents are according to TS 38.508-1[12] subclause 4.6.

6.5.3.1.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as the minimum requirements and are not repeated in this clause.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Tables 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Tables 6.5.3.2.3-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.2.3-1.

6.5.3.3 Additional Spurious emissions

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test configuration is to be updated
- Annex F MU/TT is to be updated
- Relative power TC Table 6.3.4.3.3-1 is to be updated

6.5.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5.3.3.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.5.3.3.3 Minimum conformance requirements

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

The normative reference for this requirement is TS 38.101-5 [11] subclause 6.5.3.3.

6.5.3.3.3.1 Minimum conformance requirements (network signalling value "NS 02N")

When "NS_02N" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.1-1: Additional requirements for "NS 02N"

ncy band IHz)	Channel bandwidth / Spectrum emission limit ¹ (dBm)	Measurement bandwidth	NOTE			
	5 MHz, 10 MHz, 15					
	MHZ, 20 MHZ					
f ≤ 1,605	-50	700 Hz	Averaged over any 2 millisecond active transmission interval			
f ≤ 1,610	-50 + 24/5 (f-1605)	700Hz				
≨ f ≤ 1,605	-40	1MHz	Averaged over any 2 millisecond active transmission interval			
f ≤ 1,610	-40 + 24/5 (f-1605)	1MHz				
NOTE: The EIRP requirement in regulation is converted to conducted requirement using						
	f ≤ 1,605 f ≤ 1,610 f ≤ 1,605 f ≤ 1,610 The EIRP re	Spectrum emission Iimit¹ (dBm) 5 MHz, 10 MHz, 15 MHz, 20 MHz 15 1,605 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1 1,610 1	MHz) Spectrum emission limit¹ (dBm) bandwidth 5 MHz, 10 MHz, 15 MHz, 20 MHz 700 Hz f ≤ 1,605 -50 700 Hz f ≤ 1,610 -50 + 24/5 (f-1605) 700 Hz f ≤ 1,605 -40 1MHz The EIRP requirement in regulation is converted to con-			

6.5.3.3.4 Test description

6.5.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All these configurations shall be tested with applicable test parameters for each channel bandwidth and sub-carrier spacing, are shown in Tables 6.5.3.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 Annex C.2.

Table 6.5.3.3.4.1-1: Test Configuration Table

[to be updated]

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] clauses C.0, C.1 and C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0 in TS 38.521-1 [2].
- 6. UE location according to TS 38.508-1 [12] clause 5.6.1 is provided to the UE through any preconfigured means.
- 7. Test equipment shall emulate the signal with doppler and delay according to ephemeris defined in TS 38.508 [12] table 5.6.2.1-1 for GSO if UE supports only GSO or both GSO and NGSO satellites and table 5.6.2.1-3 for NGSO (LEO-1200) if UE supports only NGSO satellites. Test system shall send same SIB19 information during the duration of the test as defined in TS 38.508-1 [12] clause 5.6.3.1.
- 8. Deactivate UE prediction of satellite trajectory by any preconfigured means.

6.5.3.3.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.3.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration in Tables 6.5.3.3.4.1-1, which shall meet the requirements in clause 6.5.3.3.5 with allowed A-MPR values specified in 6.2.3.5. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to clauses 6.5.3.3.3.1. The centre frequency of the filter shall be stepped in contiguous steps according to the same table. During measurement the spectrum analyser shall be set to 'Detector' = RMS. For NS_02N the additional spurious emissions requirement shall be verified with UE transmission power obtained by sending uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as -MU to -(MU + Uplink power control window size) dB of the target power level 15 dBm for at least the duration of the additional spurious emissions measurement, where:

- MU is the test system uplink power measurement uncertainty and is specified in Table F.1.3-1 for the carrier frequency f and the channel bandwidth BW.
- Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in [Table 6.3.4.3.3-1] and is [0.7dB] for 1dB power step size, and the Test system relative power measurement uncertainty is specified for test case 6.3.4.3 in Table F.1.2-1.

6.5.3.3.4.3 Message contents

Message contents for SIB19 are according to TS 38.508-1 [12] clause 5.6.2.1 with following exceptions:

6.5.3.3.4.3.1 Message contents exceptions (network signalling value "NS 02N")

Message contents are according to TS 38.508-1 [12] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_02N. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.1-1: Additional Spectrum Emission: Additional spurious emissions test requirement for "NS_02N"

Derivation Path: TS 38.508-1 [12] clause 4.6.3, Table 4.6.3-1					
Information Element	Value/remark	Comment	Condition		
additionalSpectrumEmission	1 (NS_02N)				

6.5.3.3.5 Test requirement

This clause specifies the requirements for the specified NR band for an additional spectrum emission requirement with protected bands as indicated from Table 6.5.3.3.5.1.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.3.5.1 Test requirement (network signalling value "NS_02N")

When "NS 02N" is indicated in the cell,

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Channel bandwidth / Measurement NOTE Frequency band (MHz) Spectrum emission bandwidth limit1 (dBm) 5 MHz, 10 MHz, 15 MHz, 20 MHz 1.559≤ f ≤ 1.605 -50 700 Hz Averaged over any 2millisecond active transmission interval 1,605≤ f ≤ 1,610 -50 + 24/5 (f-1605) 700Hz $1,559 \le f \le 1,605$ Averaged over any 2--40 1MHz millisecond active transmission interval -40 + 24/5 (f-1605) 1MHz 1,605≤ f ≤ 1,610 The EIRP requirement in regulation is converted to conducted requirement using NOTE:

Table 6.5.3.3.5.1-1: Additional requirements for "NS 02N"

a 0 dBi antenna.

6.5.4 Transmit intermodulation

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated
- Annex F MU/TT is to be updated

6.5.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5.4.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

6.5.4.3 Minimum conformance requirements

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

UE transmit intermodulation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each transmitter antenna port with the other antenna port(s) if any terminated. Both the wanted signal power and the intermodulation product power are measured through NR rectangular filter with measurement bandwidth shown in Table 6.5.4.3-1.

The requirement of transmit intermodulation is specified in Table 6.5.4.3-1.

Table 6.5.4.3-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW _{Channel}				
Interference signal frequency offset from channel center	BW _{Channel}	2*BWChannel			
Interference CW signal level	-40 dBc				
Intermodulation product	< -29 dBc	< -35 dBc			
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCS's for the channel BW as defined in Table 6.5.2.4.1-1				
Measurement offset from channel center	BWChannel and 2*BWChannel 2*BWChannel and 4*BWChannel				

The normative reference for this requirement is TS 38.101-5 [11] clause 6.5.4.

6.5.4.4 Test description

6.5.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.4.4.1-1: Test Configuration Table

Initial Conditi	nitial Conditions						
Test Environm	nent as specified in TS 38.508-1	Normal					
[12] subclause	e 4.1						
Test Frequenc	cies as specified in TS 38.508-1	Mid range					
[12] subclause	4.3.1						
Test Channel Bandwidths as specified in TS		Mid, Highest					
38.508-1 [12] subclause 4.3.1							
Test SCS as s	pecified in Table 5.3.5-1	Lowest, Highest					
Test Paramet	ers						
Test ID	Downlink Configuration	Uplink Configuration					
	N/A for transmit	Modulation	RB allocation (NOTE 1)				
1	intermodulation test case	DFT-s-OFDM PI/2 BPSK	Inner Full				
2	Intermodulation test case	DFT-s-OFDM QPSK	Inner Full				
NOTE 1: The							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, in Figure A.3.1.3.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to clauses C.0, C.1, C.2, and uplink signals according to clauses G.0, G.1, G.2, G.3.0 in TS 38.521-1 [2].
- 4. The UL Reference Measurement channels are set according to Table 6.5.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0 in TS 38.521-1 [2].
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.5.4.4.3.

6.5.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power of the UE. For TDD, only slots consisting of only UL symbols are under test for the wanted signal and for the intermodulation product.
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 5. Set the interference CW signal level according to table 6.5.4.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 8. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.5.4.5-1.

6.5.4.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 with the following exception:

Table 6.5.4.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [12], Table 4.6.3-118 with condition TRANSFORM PRECODER ENABLED

6.5.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5.4.5-1.

Table 6.5.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW _{Channel}					
Interference signal frequency offset from channel center	BWchannel	2*BWchannel				
Interference CW signal level	-40 dBc					
Intermodulation product	< -29 dBc	< -35 dBc				
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCS's for the channel BW as defined in Table 6.5.2.4.1-1					
Measurement offset from channel center	BW _{Channel} and 2*BW _{Channel} 2*BW _{Channel} and 4*BW _{Channel}					
NOTE: The test requirements downlink signal.	do not apply when the interfering signal ov	erlaps with the channel bandwidth of the				

7 Receiver characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective clauses below.

With the exception of clause 7.3, the requirements shall be verified with the network signalling value NS_01 configured in Table [to be updated].

All requirements in this clause are applicable to devices supporting GSO and/or NGSO satellites.

All the parameters in clause 7 are defined using the UL reference measurement channels specified in 3GPP TS 38.101-1 [5] Annex A.2.2, the DL reference measurement channels specified in 3GPP TS 38.101-1 [5] Annex A.3.2 and using the set-up specified in 3GPP TS 38.101-1 [5] Annex C.3.1.

7.2 Diversity characteristics

The UE is required to be equipped with a minimum of two RX antenna ports in all operating bands.

The UE shall be verified with two RX antenna ports in all supported frequency bands.

The above rules apply for all clauses with the exception of clause 7.9.

7.3 Reference sensitivity

7.3.1 General

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

In later clauses of Clause 7 where the value of REFSENS is used as a reference to set the corresponding requirement. In all bands, the UE shall be verified against those requirements by applying the REFSENS value in Table 7.3.2.3-1.

7.3.2 Reference sensitivity power level

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Annex F MU/TT is to be updated

7.3.2.1 Test purpose

The test purpose is to verify the ability of the UE to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

7.3.2.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

7.3.2.3 Minimum conformance requirements

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annex A3.2.2 of 3GPP TS 38.101-1 [5], with parameters specified in Table 7.3.2.3-1.

Table 7.3.2.3-1: Two antenna port reference sensitivity QPSK PREFSENS for FDD bands

	Operating band / SCS / Channel bandwidth											
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	35 MHz (dBm)	40 MHz (dBm)	45 MHz (dBm)	50 MHz (dBm)	
	15	-99.5	-96.3	-94.5	-93.8							
n256	30		-96.6	-94.6	-94.0							
	60		-97.0	-94.9	-94.2							
	15	-100.0	-96.8	-95.0	-93.8							
n255	30		-97.1	-95.1	-94.0							
	60		-97.5	-95.4	-94.2							
NOTE : The	transmit	tter shall b	e set to F	O _{UMAX} as (defined in	clause 6	.2.4 of 3G	SPP TS 3	8.101-1 [5	5].		

The reference receiver sensitivity (REFSENS) requirement specified in Table 7.3.2.3-1 shall be met with uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.3-2.

less than or equal to that specified in Table 7.3.2.3-2.

Table 7.3.2.3-2: Uplink configuration for reference sensitivity

	Operating band / SCS (kHz) / Channel bandwidth (MHz) / Duplex mode									
Operating Band	scs	5	10	15	20	Duplex Mode				
	15	25	50	75	100					
n256	30		24	36	50	FDD				
	60		10	18	24					
	15	25	50	75	[75]					
n255	30		24	36	[36]	FDD				
	60		10	18	[18]					

NOTE: UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1 of 3GPP TS 38.101-1 [5]).

The minimum requirements specified in Table 7.3.2.3-1 shall be verified with the network signalling value NS_01 (Table 6.2.3.1-1 of 3GPP TS 38.101-1 [5]) configured.

The normative reference for this requirement is TS 38.101-5 [11] clause 7.3.2.

7.3.2.4 Test description

7.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3 The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.2of TS 38.521-1 [2]. Configurations of PDSCH and PDCCH before measurement are specified in Annex [to be updated].

SCS, channel BW and NR band.

Table 7.3.2.4.1-1: Test Configuration Table

Initial Conditions							
Test Environment as specified in TS 38.508-1 [12] subclause 4.1			Normal, TL/VL, TL/VH, TH/VL, TH/VH				
Test Frequencies as specified in TS 38.508-1 [12] subclause4.3.1			Low range, Mid range, High range				
Test Channel Bandwidths as specified in TS 38.508-1 [12] subclause 4.3.1			Lowest, Mid, Highest				
Test SCS as	specified in Table	5.3.5-1	Lowest				
			Test Parameters				
Test ID	Downlink (Configuration	Uplink Configuration				
	Modulation	RB allocation	Modulation	RB allocation			
1 CP-OFDM Full RB (NOTE 1) DFT-s-OFDM QPSK REFSENS (NOTE 2) QPSK							
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2. NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for each							

Table 7.3.2.4.1-2: Downlink Configuration of each RB allocation

Channel Bandwidth	SCS(kHz)	LCRBmax	Outer RB allocation / Normal RB allocation	
	15	25	25@0	
5MHz	30	11	11@0	
	60	N/A	N/A	
	15	52	52@0	
10MHz	30	24	24@0	
	60	11	11@0	
	15	79	79@0	
15MHz	30	38	38@0	
	60	18	18@0	
	15	106	106@0	
20MHz	30	51	51@0	
	60	24	24@0	

NOTE: Test Channel Bandwidths are checked separately for each NR band, the applicable channel bandwidths are specified in Table 5.3.5-1.

Table 7.3.2.4.1-3: Uplink configuration for reference sensitivity, LCRB @ RBstart format

Operating Band	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz
	15	25@0	50@0	75@0	100@0
n256	30		24@0	36@0	50@0
	60		10@0	18@0	24@0
	15	25@0	50@0	75@0	[75@0]
n255	30	10@1 ¹	24@0	36@0	[36@0]
	60		10@0	18@0	[18@0]

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 12 subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] clauses C.0, C.1 and C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL and Reference Measurement Channel is set according to Table 7.3.2.4.1-1, Table 7.3.2.4.1-2, and Table 7.3.2.4.1-3.
- 5. Propagation conditions are set according to Annex B.0. in TS 38.521-1 [2].

6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 7.3.2.4.3.

7.3.2.4.2 Test procedure.

- 1. UE location according to TS 38.508-1 [12] clause 5.6.1 is provided to the UE through any preconfigured means.
- 2 Test equipment shall emulate the signal with doppler and delay according to ephemeris defined in TS 38.508 [12] table 5.6.2.1-1 for GSO if UE supports only GSO or both GSO and NGSO satellites and table 5.6.2.1-3 for NGSO (LEO-1200) if UE supports only NGSO satellites. Test system shall send same SIB19 information during the duration of the test as defined in TS 38.508-1 [12] clause 5.6.3.1.
- 3. Deactivate UE prediction of satellite trajectory by any preconfigured means.
- 4. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.3.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Tables 7.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 6. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1 if 2Rx antennas connected or Table 7.3.2.5-2 if 4Rx antennas connected. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure the UE transmits PUMAX level for at least the duration of the Throughput measurement.
- 7. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex [to be updated].

7.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [12] clause 4.6 ensuring Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED for NR band.

Message contents are according to TS 38.508-1[12] subclause 4.6 with the following exceptions for each network signalling value.

SIB19 message contents according to TS 38.508-1 [12] clause 5.6.2.1

7.3.2.4.3.1 Message contents exceptions (network signalled value "NS_01")

Message contents according to TS 38.508-1 [12] subclause 4.6 can be used without exceptions.

7.3.2.5 Test requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex [to be updated] with reference receive power level specified in Tables 7.3.2.5-1 and parameters specified Tables 7.3.2.4.1-1, Tables 7.3.2.4.1-2 and Tables 7.3.2.4.1-3.

: Two antenna port Reference sensitivity QPSK PREFSENS for FDD bands for PC3

-	Operating ban	d / SCS / Cha	nnel bandwi	dth / Duple	ex-mode				
z n)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	35 MHz (dBm)	40 MHz (dBm)	45 MHz (dBm)	50 MHz (dBm)	Duplex Mode
+TT +TT +TT	-94.5 +TT	-93.8 +TT							
<u>+TT</u>	-94.6 +TT	-94.0 +TT							FDD
ŀΤΤ	-94.9 +TT	-94.2 +TT							
⊦TT	-95.0 +TT	-93.8 +TT							
⊦ TT	-95.1 +TT	-94.0 +TT							
⊦TT ⊦TT	-95.4 +TT	-94.2 +TT							FDD
+TT	-94.6 ³ +TT	-93.5 ³ +TT							
+TT	-94.9 ³ +TT	-93.7 ³ +TT							

line for this operating band except for two Rx vehicular UE. Four Rx antenna ports for RedCap UE is not supported for this

defined in subclause 6.2.4

ied by -0.5 dB when the assigned NR channel bandwidth is confined within 1475.9-1510.9 MHz.

dwidth is specified in Table 7.3.2.5-3.

Table 7.3.2.5-2: Test Tolerance (TT) for RX sensitivity level

f ≤ 3.0GHz	3.0GHz < f ≤ 6.0 GHz
[X dB]	[Y dB]

7.4 Maximum input level

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access are to be updated
- Message exceptions specific to satellite access is to be updated

7.4.1 Test purpose

Maximum input level tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to a g-NodeB.

7.4.2 Test applicability

This test case applies to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

7.4.3 Minimum conformance requirements

Maximum input level is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel. The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in 3GPP TS 38.101-1 [5] Annexes A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.3-1.

Table 7.4.3-1: Maximum input level

Rx Parameter	Units	Channel bandwidth (MHz)		
KX Faraillelei	Ullits	5, 10, 15, 20		
Power in Transmission Bandwidth Configuration ³	dBm	-40 ²		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum uplink configuration specified in Table 7.3.2-2 with P_{CMAX_L,f,c} as defined in clause 6.2.4.

NOTE 2: Reference measurement channel is A.3.2.3 or A.3.3.3 for 64 QAM.

NOTE 3: Power in transmission bandwidth configuration value is rounded to the nearest 0.5dB value.

The normative reference for this requirement is TS 38.101-5 [11] clause 7.4.

7.4.4 Test description

7.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 7.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.4.4.1-1: Test Configuration Table

Initial Conditions							
Test Environment as speci	fied in TS 38.508-1 [12]	Normal					
subclause 4.1							
Test Frequencies as specif	ied in TS 38.508-1 [12]	Mid range					
subclause 4.3.1							
Test Channel Bandwidths	as specified in TS	Lowest, Mid, Highest					
38.508-1 [12] subclause 4.	3.1						
Test SCS as specified in Ta		Lowest					
	Test Parameters for	Channel Bandwidths					
Downlink Co	nfiguration	Uplink Configuration					
Modulation	RB allocation	Modulation	RB allocation				
CP-OFDM 64 QAM	NOTE 1	DFT-s-OFDM QPSK	NOTE 2				
NOTE 1: The specific configuration of downlink RB allocation is defined in Table 7.3.2.4.1-2.							
NOTE 2: The specific configuration of uplink RB allocation is defined in Table 7.3.2.4.1-3.							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to clauses C.0, C.1, C.2, and C.3.1, and uplink signals according to clauses G.0, G.1, G.2, and G.3.1.
- 4. The DL and UL Reference Measurement Channels are set according to Table 7.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.
- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 7.4.4.3.

7.4.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Tables 7.4.4.1-1. Since the UE has no payload data and no loopback data to send, the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.4.5-1. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as -MU to -(MU + Uplink power control window size) dB of the target power level in Table 7.4.5-1 for at least the duration of the Throughput measurement, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.3-1 for the carrier frequency f and the channel bandwidth BW

- Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [5], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified for test case 6.3.4.3 in Table F.1.2-1.
- For UEs supporting Tx diversity, the transmit power is measured as the sum of the output power from both UE antenna connectors.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.3.

7.4.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED.

7.4.5 Test requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 and A.3.3 with parameters specified in Tables 7.4.5-1.

Table 7.4.5-1: Maximum input level

Rx Parameter		Units	Channel bandwidth (MHz) 5, 10, 15, 20
Power in			
Transmission		dBm	-40 ² -TT
Bandwidth		иын	-4011
Configura	Configuration		
NOTE 1:	NOTE 1: The transmitt		e set to 4 dB below P _{CMAX_L,f,c} at the minimum
uplink configuration spe		iguration spe	ecified in Table 7.3.2-3 with P _{CMAX_L,f,c} as
defined in clause 6.2.4.		clause 6.2.4	•
NOTE 2:	Reference	measureme	nt channel is A.3.2.3 or A.3.3.3 for 64 QAM.

Table 7.4.5-2: Test Tolerance (Maximum input level)

f ≤ 3.0GHz
0.7 dB

7.5 Adjacent channel selectivity

7.5.1 Test purpose

Adjacent channel selectivity (ACS) is a measure of a receiver's ability to receive an NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

7.5.2 Test applicability

This test case applies to all types of NR UE release 17 and forward that support satellite access operation.

7.5.3 Minimum conformance requirements

In Release 17, only frequency bands below 2.7GHz are considered. The NR satellite UE shall fulfil the minimum requirements specified in Table 7.5.3-1 for NR satellite bands with FDL_high < 2700 MHz and FUL_high < 2,700 MHz. These requirements apply for all values of an adjacent channel interferer in case 1 and for any SCS specified for the channel bandwidth of the wanted signal. The lower and upper range of test parameters are chosen as in Table 7.5.3-2 and Table 7.5.3-3 for verification of the requirements specified in Table 7.5.3-1. For these test parameters, the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in 3GPP TS 38.101-1 [5] Annexes A.2.2 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FD for the DL-signal as described in 3GPP TS 38.101-1 [5] Annex A.5.1.1/A.5.2.1).

Table 7.5.3-1: ACS for NR satellite bands with $F_{DL\ high}$ < 2,700 MHz and $F_{UL\ high}$ < 2,700 MHz

RX	Units Channel bandwidth (MHz)			(MHz)
parameter	Units	5, 10	15	20
ACS	dB	33	30	27

Table 7.5.3-2: Test parameters for NR bands with F_{DL} high < 2,700 MHz and F_{UL} high < 2,700 MHz, case 1

DV noromotor	Units	Channel bandwidth (MHz)			
RX parameter	Ullits	5, 10	15	20	
Power in transmission bandwidth configuration	dBm	REFSENS + 14 dB			
Pinterferer ⁴	dBm	REFSENS + 45.5 dB	REFSENS + 42.5 dB	REFSENS + 39.5	
BWinterferer	MHz	5			
Finterferer (offset) ²	MHz	BWChannel /2 + 2.5 / -(BWChannel /2 + 2.5)			

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in clause 7.3.2 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 3: The interferer consists of the NR interferer RMC specified in 3GPP TS 38.101-1 [5] Annexes A.3.2.2 with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in 3GPP TS 38.101-1 [5] Annex A.5.1.1.
- NOTE 4: Pinterferer shall be rounded to the next higher 0.5dB value.

Table 7.5.3-3: Test parameters for NR bands with $F_{DL_high} < 2,700$ MHz and $F_{UL_high} < 2,700$ MHz, case 2

DV norometer	Unito	Channel bandwidth (MHz)			
RX parameter	Units	5, 10	15	20	
Power in transmission bandwidth configuration	dBm	-71.5	-68.5	-65.5	
Pinterferer	dBm	-40			
BWinterferer	MHz	5			
F _{interferer} (offset)	MHz	BWChannel /2 + 2.5 / -(BWChannel /2 + 2.5)			

- NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in clause 7.3.2 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(|F_{interferer}| / SCS | + 0.5) SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.
- NOTE 3: The interferer consists of the NR interferer RMC specified in 3GPP TS 38.101-1 [5] Annexes A.3.2.2 with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in 3GPP TS 38.101-1 [5] Annex A.5.1.1.
- NOTE 4: Pinterferer shall be rounded to the next higher 0.5dB value.

The normative reference for this requirement is TS 38.101-5 [11] clause 7.5.

7.5.4 Test description

7.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 7.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Default Conditions Test Environment as specified in TS Normal 38.508-1 [12] subclause 4.1 Test Frequencies as specified in TS Mid range 38.508-1 [12] subclause 4.3.1 Test Channel Bandwidths as specified in Lowest, Mid, Highest TS 38.508-1 [12] subclause 4.3.1 Test SCS as specified in Table 5.3.5-1 Lowest **Test Parameters Downlink Configuration Uplink Configuration** Test ID Modulation **RB** allocation **RB** allocation Modulation NOTE 1 **CP-OFDM QPSK** DFT-s-OFDM QPSK NOTE 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1

Table 7.5.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, in Figure A.3.1.4.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to clauses C.1, C.2, C.3.1, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause 5.6.1 is provided to the UE through any preconfigured means.
- 7. Test equipment shall emulate the signal with doppler and delay according to ephemeris defined in TS 38.508 [12] Table 5.6.2.1-1 for GSO if UE supports only GSO or both GSO and NGSO satellites and Table 5.6.2.1-3 for NGSO (LEO-1200) if UE supports only NGSO satellites. Test system shall send same SIB19 information during the duration of the test as defined in TS 38.508-1 [12] clause 5.6.3.1.
- 8. Deactivate UE prediction of satellite trajectory by any preconfigured means.
- 9. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 7.5.4.3.

7.5.4.2 Test procedure

1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.5.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 7.5.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.5.5-2 as appropriate (Case 1). Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as -MU to -(MU + Uplink power control window size) dB of the target power level in Table 7.5.5-2 for at least the duration of the Throughput measurement, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.3-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [5], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- For UEs supporting Tx diversity, the transmit power is measured as the sum of the output power from both UE antenna connectors.
- 4. Set the Interferer signal level to the value as defined in Table 7.5.5-2 as appropriate (Case 1) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex D.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 4.
- 7. Set the Downlink signal level to the value as defined in Table 7.5.5-3 as appropriate (Case 2). Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as -MU to -(MU + Uplink power control window size) dB of the target power level in Table 7.5.5-3 for at least the duration of the Throughput measurement, where MU and Uplink power control window size are defined above.
- 8. Set the Interferer signal level to the value as defined in Table 7.5.5-3 s appropriate (Case 2) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in Annex D.
- 9. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.
- 10. Repeat steps from 7 to 9, using an interfering signal above the wanted signal in Case 2 at step 8.
- 11. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.3.

7.5.4.3 Message contents

Message contents are according to TS 38.508-1 [12] clause 4.6 ensuring Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED for NR band.

Message contents are according to TS 38.508-1[12] subclause 4.6 with the following exceptions for each network signalling value.

SIB19 message contents according to TS 38.508-1 [12] clause 5.6.2.1.

7.5.5 Test requirement

For NR bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz, the throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in [Annexes

A.2.2 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in Annex A.5.1.1 with parameters specified in Tables 7.5.5-2 and 7.5.5-3.

Table 7.5.5-1: ACS for NR satellite bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

RX	RX Units Channel bandw		el bandwidth	(MHz)
parameter	Units	5, 10	15	20
ACS	dB	33	30	27

Table 7.5.5-2: Test parameters for NR bands with FDL_high < 2,700 MHz and FUL_high < 2,700 MHz, case 1

BV parameter	Units	Channel bandwidth (MHz)			
RX parameter	Ullits	5, 10	15	20	
Power in transmission bandwidth configuration	dBm		REFSENS + 14 dB		
Pinterferer ⁴	dBm	REFSENS + 45.5 dB	REFSENS + 42.5 dB	REFSENS + 39.5	
BWinterferer	MHz	5			
Finterferer (offset) ²	MHz	BWChannel /2 + 2.5 / -(BWChannel /2 + 2.5)			

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in clause 7.3.2 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(frac{1}{F_{interferer}} | / SCS | frac{1}{F_{interferer}} | / SCS | fr$
- NOTE 3: The interferer consists of the NR interferer RMC specified in 3GPP TS 38.101-1 [5] clause A.3.2.2 with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in 3GPP TS 38.101-1 [5] Annex A.5.1.1.
- NOTE 4: Pinterferer shall be rounded to the next higher 0.5dB value.

Table 7.5.5-3: Test parameters for NR bands with $F_{DL_high} < 2,700$ MHz and $F_{UL_high} < 2,700$ MHz, case 2

DV novemeter	Units	Channel bandwidth (MHz)			
RX parameter	Units	5, 10	15	20	
Power in transmission bandwidth configuration	dBm	-71.5	-68.5	-65.5	
Pinterferer	dBm	-40			
BW _{interferer} MHz		5			
Finterferer (offset)	MHz		BWChannel /2 + 2.5 / -(BWChannel /2 + 2.5)		

- NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in clause 7.3.2 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: The absolute value of the interferer offset F_{interferer} (offset) shall be further adjusted to $(| F_{interferer} | / SCS | + 0.5) SCS | MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.$
- NOTE 3: The interferer consists of the NR interferer RMC specified in 3GPP TS 38.101-1 [5] clause A.3.2.2 with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in 3GPP TS 38.101-1 [5] clause A.5.1.1.
- NOTE 4: Pinterferer shall be rounded to the next higher 0.5 dB value.

7.6 Blocking characteristics

7.6.1 General

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the

adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

7.6.2 In-band blocking

[to be updated]

7.6.3 Out of Band Blocking

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Addition to applicability spec is pending
- Initial condition and call setup procedure to support NR satellite access is to be updated
- Message exceptions specific to satellite access is to be updated
- Test Points analysis is to be updated
- Test configuration is to be updated
- Annex F MU/TT is to be updated

7.6.3.1 Test purpose

Out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band, with $F_{DL_high} < 2,700$ MHz and $F_{UL_high} < 2,700$ MHz, or falling outside a frequency range up to $3*BW_{Channel}$ below or from $3*BW_{Channel}$ above the UE receive band, with $F_{DL_low} \ge 3,300$ MHz and $F_{UL_low} \ge 3,300$ MHz, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

7.6.3.2 Test applicability

The requirements of this test apply to all types of NR Power Class 3 UE release 17 and forward that support satellite access operation.

7.6.3.3 Minimum conformance requirements

For NR satellite bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band.

The throughput of the wanted signal shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in 3GPP TS 38.101-1 [5] clauses A.2.2, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in clauses A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3-1 and Table 7.6.3-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.6.3-1: Out-of-band blocking parameters for NR satellite bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

RX parameter	Units	Channel bandwidth (MHz)				
		5, 10	15	20		
Power in transmission bandwidth configuration ²	dBm	REFSENS + 6 dB	REFSENS + 7 dB	REFSENS + 9 dB		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in clause 7.3.2 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: Power in transmission bandwidth configuration shall be rounded to the next higher 0.5dB value.

Table 7.6.3-2: Out of-band blocking for NR satellite bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

Operating Band	Parameter	Unit	Range 1	Range 2	Range 3
	Pinterferer	dBm	-44	-30	-15
n255	Finterferer (CW)	MHz	$-60 < f - F_{DL_{low}} < -15$	$-85 < f - F_{DL_low} \le -60$	$1 \le f \le F_{DL_low} - 85$
			or	or	or
			$15 < f - F_{DL_high} < 60$	$60 \le f - F_{DL_high} < 85$	F _{DL_high} + 85 ≤ f
					≤ 12750
n256¹	F _{interferer} (CW)	MHz	$-100 < f - F_{DL_{low}} < -15$	-145 < f − F _{DL_low} ≤ -	$1 \le f \le F_{DL_low} - 145$
			or	100	or
			$15 < f - F_{DL_high} < 60$	or	F _{DL_high} + 85 ≤ f
				$60 \le f - F_{DL_high} < 85$	≤ 12750

NOTE 1: Band n256 lower frequency ranges are modified to enable specific implementations void

NOTE 2: void NOTE 3: void NOTE 4: void

For interferer frequencies across ranges 1, 2 and 3 in Table 7.6.3-1, a maximum of

$$\left| \max \left\{ 24,6 \cdot \left\lceil n \cdot N_{RR} / 6 \right\rceil \right\} / \min \left\{ \left\lceil n \cdot N_{RR} / 10 \right\rceil \right\} \right|$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $min(\lfloor BW_{channel}/2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, $BW_{Channel}$ the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 7.7 apply.

The normative reference for this requirement is TS 38.101-5 [11] clause 7.6.3.

7.6.3.4 Test description

7.6.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in TS 38.521-1 [2] clause A.2. Configurations of PDSCH and PDCCH before measurement are specified in TS 38.521-1 [2] Annex C.2.

Table 7.6.3.4.1-1: Test Configuration Table for power class 3

[to be updated]

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, Figure A.3.1.2.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to TS 38.521-1 [2] clauses C.0, C.1, C.2, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to TS 38.521-1 [2] Annex B.0.
- 6. UE location according to TS 38.508-1 [12] clause [to be updated] is provided to the UE through AT commands or any other preconfigured means.

- 7. Test equipment shall emulate Zero Doppler conditions in service link and Common TA delay according to SIB19 configuration in TS 38.508-1 [12].
- 8. Ensure the UE is in State [to be updated] with generic procedure parameters [to be updated], Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 6.2.2.4.3.

7.6.3.4.2 Test procedure

[to be updated]

7.6.3.4.3 Message contents

Message contents are according to TS 38.508-1 [12] subclause 4.6 and 5.4 with the following exceptions:

[to be updated]

7.6.3.5 Test requirement

[to be updated]

7.6.4 Narrow band blocking

[to be updated]

7.7 Spurious response

7.7.1 Test Purpose

Spurious response is a measure of the ability of the receiver to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency for which a response is obtained, i.e. for which the out-of-band blocking limit as specified in subclause 7.6.3 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7.2 Test Applicability

This test case applies to all types of NR UE release 17 and forward that support satellite access operation.

7.7.3 Minimum Conformance Requirements

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in 3GPP TS 38.101-1 [5] Annexes A.2.2 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in Annex A.5.1.1) with parameters for the wanted signal as specified in Table 7.7.3-1 for NR bands with $F_{DL_high} < 2700$ MHz and $F_{UL_high} < 2700$ MHz and for the interferer as specified in Table 7.7.3-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.7.3-1: Spurious response parameters for NR bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

RX parameter	Units	Channel bandwidth (MHz)			
		5, 10	15	20	
Power in transmission bandwidth configuration ²	dBm	REFSENS + 6 dB	REFSENS + 7 dB	REFSENS + 9 dB	

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: Power in transmission bandwidth configuration value is rounded to the next higher 0.5dB value.

Table 7.7.3-2: Spurious response

Parameter	Unit	Level
PInterferer (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

The normative reference for this requirement is TS 38.101-5 [11] clause 7.7.

7.7.4 Test Description

7.7.4.1 Initial Conditions

The initial conditions shall be the same as in clause 7.6.3.4.1 in order to test spurious responses obtained in clause 7.6.3 under the same conditions.

7.7.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.6.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 7.6.3.4.1-1. Since the UE has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the CW signal generator for an interfering signal according to Table 7.7.5-2. The spurious frequencies are taken from records in the final step of test procedures in clause 7.6.3.4.2.
- 4. Set the downlink signal level according to the Table 7.7.5-1. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as -MU to -(MU + Uplink power control window size) dB of the target power level in Table 7.7.5-1 for at least the duration of the Throughput measurement, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.3-1 for the carrier frequency f and the channel bandwidth BW
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [5], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified for test case 6.3.4.3 in Table F.1.2-1.
 - For UEs supporting Tx diversity, the transmit power is measured as the sum of the output power from both UE antenna connectors.
- 5. For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.3.

7.7.4.3 Message Contents

Message contents are according to TS 38.508-1 [12] clause 4.6 ensuring Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED for NR band.

Message contents are according to TS 38.508-1[12] subclause 4.6 with the following exceptions for each network signalling value.

SIB19 message contents according to TS 38.508-1 [12] clause 5.6.2.1. Message contents are according to TS 38.508-1 [12] clause 4.6 ensuring Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED for NR band.

Message contents are according to TS 38.508-1[12] subclause 4.6 with the following exceptions for each network signalling value.

SIB19 message contents according to TS 38.508-1 [12] clause 5.6.2.1.

7.7.5 Test Requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters for the wanted signal as specified in Table 7.7.5-1 for NR bands with $F_{DL_high} < 2,700$ MHz and $F_{UL_high} < 2,700$ MHz and for the interferer as specified in Table 7.7.5-2.

Table 7.7.5-1: Spurious response parameters for NR bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

RX parameter	Units	Channel bandwidth (MHz)				
		5, 10	15	20		
Power in transmission bandwidth configuration ²	dBm	REFSENS + 6 dB	REFSENS + 7 dB	REFSENS + 9 dB		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.

NOTE 2: Power in transmission bandwidth configuration value is rounded to the next higher 0.5dB value.

Table 7.7.5-2: Spurious response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

7.8 Intermodulation characteristics

7.8.1 General

Intermodulation response rejection is a measure of the capability of the receiver to receive a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.8.2 Wide band Intermodulation

7.8.2.1 Test purpose

Intermodulation response tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when two or more interfering signals exist which have a specific frequency relationship to the wanted signal.

7.8.2.2 Test applicability

This test case applies to all types of NR UE release 17 and forward that support satellite access operation.

7.8.2.3 Minimum conformance requirements

The wide band intermodulation requirement is defined using a CW carrier and modulated NR signal as interferer 1 and interferer 2 respectively.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in 3GPP TS 38.101-1 [5] Annexes A.2.2 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in Annex A.5.1.1) with parameters specified in Table 7.8.2.3-1 for NR bands with $F_{DL_high} < 2,700$ MHz and $F_{UL_high} < 2,700$ MHz. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 7.8.2.3-1: Wide band intermodulation parameters for NR bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

Rx parameter	Units		Channel bandwidth (MHz)				
		5, 10	0 15 20				
P _w in Transmission Bandwidth Configuration, per CC ⁵	dBm	REFSENS + 6 dB	REFSENS + (9 + 10log ₁₀ (BW _{Channel} /20)) dB				
P _{Interferer 1} (CW)	dBm	-46					
P _{Interferer 2} (Modulated)	dBm		-46				
BW _{Interferer 2}	MHz			5			
F _{Interferer 1} (Offset)	MHz	-BW _{channel} /2 - 7.5 / +BW _{channel} /2 + 7.5					
F _{Interferer 2} (Offset)	MHz		2*Finterferer 1				

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is specified in 3GPP TS 38.101-1 [5] Annexes A.2.2 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in Annex A.5.1.1).
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in 3GPP TS 38.101-1
 [5] Annexe A.3.2.2 with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in Annex A.5.1.1 and 15 kHz SCS.
- NOTE 4: The Finterferer 1 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the CW interferer and Finterferer 2 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated interferer.
- NOTE 5: $10\log_{10}(x)$ is rounded to the next higher 0.5dB value.

The normative reference for this requirement is TS 38.101-5 [11] clause 7.8.

NOTE 1

7.8.2.4 Test description

7.8.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 7.8.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Default Conditions Test Environment as specified in TS Normal 38.508-1 [12] subclause 4.1 Test Frequencies as specified in TS Mid range 38.508-1 [12] subclause 4.3.1 Test Channel Bandwidths as specified in Lowest, Mid, Highest TS 38.508-1 [12] subclause 4.3.1 Test SCS as specified in Table 5.3.5-1 Highest **Test Parameters Downlink Configuration Uplink Configuration Test ID** Modulation **RB** allocation Modulation **RB** allocation

Table 7.8.2.4.1-1: Test Configuration Table

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, in Figure A.3.1.4.3 for TE diagram and clause A.3.2 for UE diagram.

DFT-s-OFDM QPSK

NOTE 1

NOTE 1: The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1.

- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to clauses C.0, C.1, C.2, C.3.1, and uplink signals according to TS 38.521-1 [2] clauses G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.8.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

CP-OFDM QPSK

- 6. UE location according to TS 38.508-1 [12] clause 5.6.1 is provided to the UE through any preconfigured means.
- 7. Test equipment shall emulate the signal with doppler and delay according to ephemeris defined in TS 38.508 [12] Table 5.6.2.1-1 for GSO if UE supports only GSO or both GSO and NGSO satellites and Table 5.6.2.1-3 for NGSO (LEO-1200) if UE supports only NGSO satellites. Test system shall send same SIB19 information during the duration of the test as defined in TS 38.508-1 [12] clause 5.6.3.1.
- 8. Deactivate UE prediction of satellite trajectory by any preconfigured means.
- 9. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 7.8.2.4.3.

7.8.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 7.8.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 7.8.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 3. Set the Downlink signal level to the value as defined in Table 7.8.2.5-1. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as -MU to -(MU + Uplink power control window size) dB of the target power level in Table 7.8.2.5-1 for at least the duration of the Throughput measurement, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.3-1 for the carrier frequency f and the channel bandwidth BW
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [5], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified for test case 6.3.4.3 in Table F.1.2-1.
 - For UEs supporting Tx diversity, the transmit power is measured as the sum of the output power from both UE antenna connectors.
- 4. Set the Interfering signal levels to the values as defined in Table 7.8.2.5-1 and frequency below the wanted signal.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex H.2.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal at step 4.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.3.

7.8.2.4.3 Message contents

Message contents are according to TS 38.508-1 [12] clause 4.6 ensuring Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED for NR band.

Message contents are according to TS 38.508-1[12] subclause 4.6 with the following exceptions for each network signalling value.

SIB19 message contents according to TS 38.508-1 [12] clause 5.6.2.1.

7.8.2.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.8.2.5-1 for the specified wanted signal mean power in the presence of two interfering signals.

Table 7.8.2.5-1: Wide band intermodulation parameters for NR bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

Rx parameter	Units		Channel bandwidth (MHz)				
-		5, 10	15	20			
P _w in Transmission Bandwidth Configuration, per CC ⁵	dBm	REFSENS + 6 dB	REFSENS + (9 + 10log ₁₀ (BW _{Channel} /20)) dB				
P _{Interferer 1} (CW)	dBm	-46					
P _{Interferer 2} (Modulated)	dBm		-46				
BW _{Interferer 2}	MHz			5			
F _{Interferer 1} (Offset)	MHz	-BW _{channel} /2 - 7.5 / +BW _{channel} /2 + 7.5					
F _{Interferer 2} (Offset)	MHz	2*Finterferer 1					

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 7.3.2.3-3 with P_{CMAX_L,f,c} defined in clause 6.2.4.
- NOTE 2: Reference measurement channel is specified in 3GPP TS 38.101-1 [5] Annexes A.2.2 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in Annex A.5.1.1).
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in 3GPP TS 38.101-1
 [5] Annexes A.3.2.2 with one sided dynamic OCNG Pattern OP.1 FDD for the DL-signal as described in Annex A.5.1.1 and 15 kHz SCS.
- NOTE 4: The Finterferer 1 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the CW interferer and Finterferer 2 (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated interferer.
- NOTE 5: 10log₁₀(x) is rounded to the next higher 0.5dB value.

7.9 Spurious emissions

7.9.1 Test purpose

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

Test verifies the UE's spurious emissions meet the requirements described in clause 7.9.3.

Excess spurious emissions increase the interference to other systems.

7.9.2 Test applicability

This test case applies to all types of NR UE release 17 and forward that support satellite access operation.

7.9.3 Minimum conformance requirements

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.3-1

Table 7.9.3-1: General receiver spurious emission requirements

Frequency range	Measurement bandwidth	Maximum level	NOTE				
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm					
1 GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm					
NOTE: Unused PDCCH resources are padded with resource element groups with power level given							
by PDCCH as define	by PDCCH as defined in Annex C.3.1.						

The normative reference for this requirement is TS 38.101-5 [11] clause 7.9.

7.9.4 Test description

7.9.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 7.9.4.1-1. The details of the uplink and downlink reference measurement channels (RMC) are specified in Annexes A.2 and A.3. Configuration of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.9.4.1-1: Test Configuration Table

	Default Conditions					
Test Enviro	nment as specified in TS	S Normal				
	2] subclause 4.1					
Test Freque	encies as specified in TS	Low rar	nge, Mi	d range, High range		
38.508-1 [1:	2] subclause 4.3.1		-			
Test Chann	el Bandwidths as specif	ied in Highes	t			
TS 38.508-	1 [12] subclause 4.3.1					
Test SCS a	s specified in Table 5.3.	5-1 Highes	t			
		Test Para	meter	S		
	nfiguration		Uplink Config	juration		
Test ID	Modulation	Modulation RB allocat		Modulation	RB allocation	
1	N/A	0		N/A	0	

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, in Figure A.3.1.5.1 for TE diagram and clause A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [12] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.1, C.2, C.3.1, and uplink signals according to TS 38.521-1 [2] Annex G.0, G.1, G.2, G.3.1.
- 4. The DL and UL Reference Measurement channels are set according to Table 7.9.4.1-1.
- 5. Propagation conditions are set according to [Annex B.0].
- 6. UE location according to TS 38.508-1 [12] clause 5.6.1 is provided to the UE through any preconfigured means.
- 7. Test equipment shall emulate the signal with doppler and delay according to ephemeris defined in TS 38.508 [12] Table 5.6.2.1-1 for GSO if UE supports only GSO or both GSO and NGSO satellites and Table 5.6.2.1-3 for NGSO (LEO-1200) if UE supports only NGSO satellites. Test system shall send same SIB19 information during the duration of the test as defined in TS 38.508-1 [12] clause 5.6.3.1.
- 8. Deactivate UE prediction of satellite trajectory by any preconfigured means.
- 9. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 7.9.4.3.

7.9.4.2 Test procedure

- 1. Sweep the spectrum analyser (or equivalent equipment) over a frequency range and measure the average power of spurious emission.
- 2. Repeat step 1 for all NR Rx antennas of the UE.

7.9.4.3 Message contents

Message contents are according to TS 38.508-1 [12] clause 4.6 ensuring Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED for NR band.

Message contents are according to TS 38.508-1[12] subclause 4.6 with the following exceptions for each network signalling value.

SIB19 message contents according to TS 38.508-1 [12] clause 5.6.2.1.

7.9.5 Test requirement

The measured spurious emissions derived in step 1), shall not exceed the maximum level specified in Table 7.9.5-1.

Table 7.9.5-1: General receiver spurious emission requirements

Frequency range	Measurement bandwidth	Maximum level	NOTE			
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm				
1 GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm				
NOTE: Unused PDCCH resources are padded with resource element groups with power level given						
by PDCCH as define	ed in Annex C.3.1.					

8 Conducted performance requirements

8.0 General

[to be updated]

8.1.1 Relationship between minimum requirements and test requirements

TS 38.101-5 is a Single-RAT and interwork specification for NR UE, covering minimum performance requirements of both conducted and radiated requirements. Conformance to 38.101-5 is demonstrated by fulfilling the test requirements specified in the present document.

The Minimum Requirements given in TS 38.101-5 make no allowances for measurement uncertainty (MU). The present document defines test tolerances (TT). These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in 38.101-4 to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared – without any modification – against the test requirements as defined by various level of "Shared Risk" principle as described below.

- a) Core specification value is not relaxed by any relaxation value (TT=0). For each single measurement, the probability of a borderline good UE being judged as FAIL equals the probability of a borderline bad UE being judged as PASS.
 - Test tolerances equal to 0 (TT=0) are considered in this specification.
- b) Core specification value is relaxed by a relaxation value (TT>0). For each single measurement, the probability of a borderline bad UE being judged as PASS is greater than the probability of a borderline good UE being judged as FAIL.

- Test tolerances lower than measurement uncertainty and greater than 0 (0 < TT < MU) are considered in this specification.
- Test tolerances high up to measurement uncertainty (TT = MU) are considered in this specification which is also known as "Never fail a good DUT" principle.
- c) Core specification value is tightened by a stringent value (TT<0). For each single measurement, the probability of a borderline good UE being judged as FAIL is greater than the probability of a borderline bad UE being judged as PASS.

Test tolerances lower than 0 (TT<0) are not considered in this specification.

The "Never fail a good DUT" and the "Shared Risk" principles are defined in Recommendation ITU-R M.1545.

8.1.2 Applicability of minimum requirements

The conducted minimum requirements specified in the present document shall be met in all applicable scenarios for FR1. The interwork minimum requirement specified in the present document shall be met in all applicable scenarios for NR interworking operation.

All minimum performance requirements defined in Clause 8 are applicable to NR/5GC, EN-DC and NE-DC unless otherwise explicitly stated.

Unless otherwise stated, all minimum performance requirements defined in Clause 8 are applicable to UE power class 3 only.

8.1.3 Conducted requirements

8.1.3.1 Introduction

The requirements are defined for the following modes:

- Mode 1: Conditions with external noise source
 - Wanted signal with power level Es is transmitted.
 - External white noise source with power spectral density Noc is used.
 - Es and Noc levels are selected to achieve target SNR as described in Clause 8.1.3.3.

8.1.3.2 Reference point

The reference point for SNR, Es and Noc of DL signal is the UE antenna connector or connectors.

8.1.3.3 SNR definition

For Mode 1 conditions conducted UE demodulation and CSI requirements the SNR is defined as:

$$SNR = \frac{\sum_{j=1}^{N_{RX}} E_s^{(j)}}{\sum_{j=1}^{N_{RX}} N_{oc}^{(j)}}$$

Where

- N_{RX} denotes the number of receiver antenna connectors and the superscript receiver antenna connector j.
- The above SNR definition assumes that the REs are not precoded, and does not account for any gain which can be associated to the precoding operation.
- Unless otherwise stated, the SNR refers to the SSS wanted signal.
- The downlink SSS transmit power is defined as the linear average over the power contributions in [W] of all resource elements that carry the SSS within the operating system bandwidth.

- The power ratio of other wanted signals to the SSS is defined in clause C.3.1.

8.1.3.4 Noc

8.1.3.4.1 Introduction

This clause describes the Noc power level for Mode 1 conditions conducted testing of demodulation and CSI requirements.

8.1.3.4.2 Noc for NR operating bands in FR1

The Noc power spectrum density shall be larger or equal to the minimum Noc power level for each operating band supported by the UE as defined in clause 8.1.3.4.2.1.

Unless otherwise stated, a fixed Noc power level of -145 dBm/Hz shall be used for all operating bands.

8.1.3.4.2.1 Derivation of Noc values for NR operating bands in FR1

The minimum Noc power level for an operating band, subcarrier spacing and channel bandwidth is derived based on the following equation:

 $Noc_{Band_X,\ SCS_Y,\ CBW_Z} = REFSENS_{Band_X,\ SCS_Y,\ CBW_Z} - 10*log10(12*SCS_Y*nPRB) + D - SNR_{REFSENS} + \Delta_{thermal} +$

where

- REFSENS_{Band_X, SCS_Y, CBW_Z} is the REFSENS value in dBm for Band X, SCS Y and CBW Z specified in Table 7.3.2-1 of TS 38.101-5 [11]
- 12 is the number of subcarriers in a PRB
- SCS Y is the subcarrier spacing associated with the REFSENS value
- nPRB is the maximum number of PRB for SCS Y and CBW Z associated with the REFSENS value, and is specified in Table 5.3.2-1 of TS 38.101-5 [11]
- D is diversity gain equal to 3 dB
- SNR_{REFSENS} = -1 dB is the SNR used for simulation of REFSENS
- Δ_{thermal} is the amount of dB that the wanted noise is set above UE thermal noise, giving a defined rise in total noise. $\Delta_{\text{thermal}} = 16$ dB, giving a rise in total noise of 0.1dB, regarded as insignificant.

The calculated Noc value for the baseline of Band n256, 15 kHz SCS, 10 MHz CBW is -146.5 dBm/Hz. An allowance of 1.5 dB is made for future bands, giving an Noc power level of -145 dBm/Hz.

8.2 Demodulation performance requirements

8.2.1 General

8.2.1.1 Applicability of requirements

8.2.1.1.1 General

The minimum performance requirements are applicable to all FR1 operating bands defined in clause 5.2.

If same test is listed for different UE features/capabilities in Clause 8.2.1.1.2, then this test shall apply for UEs which support all corresponding UE features/capabilities.

8.2.1.1.2 Applicability of requirements for optional UE features

The performance requirements in Table 8.2.1.1.2-1 shall apply for UEs which support optional UE features only.

Table 8.2.1.1.2-1: Requirements applicability for optional UE features

UE feature/capability 13]	Test t	уре	Test list	Applicability notes	
NR NTN access (nonTerrestrialNetwork-r17)	FR1 FDD	PDSCH	Clause 8.2.1.2.2.1 (Test 1-1, Test 1-2, Test 1-3, Test 1-4)		
NR NTN scenario support (ntn- ScenarioSupport-r17)	FR1 FDD	PDSCH	Clause 8.2.1.2.2.1 (Test 1-1, Test 1-2, Test 1-3, Test 1-4)	The requirements apply only when <i>ntn-ScenarioSupport-r17</i> is "ngso" or is not included.	
Increasing the number of HARQ processes (max-HARQ-ProcessNumber-r17)	FR1 FDD	PDSCH	Clause 8.2.1.2.2.1 (Test 1-3)		
Disabled HARQ feedback for downlink transmission (harq- FeedbackDisabled-r17)	FR1 FDD	PDSCH	Clause 8.2.1.2.2.1 (Test 1-4)		
NOTE: For UE supporting NR NTN access (nonTerrestrialNetwork-r17), the requirements in TS 38.101-4 [6] also applies to UE according to applicability rules in TS 38.101-4 [6] Clause 5.1, 6.1, 7.1 and 8.1					

8.2.1.2.0 PDSCH demodulation requirements

The parameters specified in Table 8.2.1.2.0-1 are valid for all PDSCH tests unless otherwise stated.

Table 8.2.1.2.0-1: Common test parameters

	Parameter	Unit	Value
PDSCH transmission			Transmission scheme 1
Carrier configuration	Offset between Point A and the lowest usable subcarrier on this carrier (Note 2)	RBs	0
J	Subcarrier spacing	kHz	15
	Cyclic prefix		Normal
	RB offset	RBs	0
DL BWP configuration #1	Number of contiguous PRB	PRBs	Maximum transmission bandwidth configuration as specified in clause 5.3.2 of TS 38.101-1 [5] for tested channel bandwidth and subcarrier spacing
Common serving	Physical Cell ID		0
cell parameters	SSB position in burst		First SSB in Slot #0
oon parameters	SSB periodicity	ms	20
	Slots for PDCCH monitoring		Each slot
	Symbols with PDCCH	Symbols	0, 1
	Number of PRBs in CORESET		Table 5.2-2 of 38.101-4 for tested channel bandwidth and subcarrier spacing
DDCCII	Number of PDCCH candidates and aggregation levels		1/AL8
PDCCH	CCE-to-REG mapping type		Non-interleaved
configuration	DCI format		1_1
	TCI state		TCI state #1
	PDCCH & PDCCH DMRS Precoding configuration		Single Panel Type I, Random per slot with equal probability of each applicable i ₁ , i ₂ combination, and with REG bundling granularity for number of Tx larger than 1
Cross carrier schedul			Not configured
	First subcarrier index in the PRB used for CSI-RS		k ₀ =0 for CSI-RS resource 1,2,3,4
	First OFDM symbol in the PRB used for CSI-RS		l ₀ = 6 for CSI-RS resource 1 and 3 l ₀ = 10 for CSI-RS resource 2 and 4
	Number of CSI-RS ports (X)		1 for CSI-RS resource 1,2,3,4
	CDM Type Density (ρ)	-	'No CDM' for CSI-RS resource 1,2,3,4 3 for CSI-RS resource 1,2,3,4
CSI-RS for tracking	Delisity (p)		15 kHz SCS: 20 for CSI-RS resource
COI-ICO IOI TIACKING	CSI-RS periodicity	Slots	1,2,3,4 15 kHz SCS:
	CSI-RS offset	Slots	10 for CSI-RS resource 1 and 2 11 for CSI-RS resource 3 and 4
	Frequency Occupation		Start PRB 0 Number of PRB = ceil(BWP size/4)*4
	QCL info		TCI state #0
	Row index (Note 3)		3 for 2 CSI-RS ports and 5 for 4 CSI- RS ports
	First subcarrier index in the PRB used for CSI-RS		$k_0 = 0$
	First OFDM symbol in the PRB used for CSI-RS		l ₀ = 12
	Number of CSI-RS ports (X)		Same as number of transmit antenna
NZP CSI-RS for CSI acquisition	CDM Type		'No CDM' for 1 transmit antenna 'FD-CDM2' for 2 and 4 transmit antenna
	Density (ρ)		1
	CSI-RS periodicity	Slots	15 kHz SCS: 20
	CSI-RS offset	Slots	0
	Frequency Occupation		Start PRB 0 Number of PRB = ceil(BWP size/4)*4
	QCL info		TCI state #1
	Row index (Note 3)		5
ZP CSI-RS for CSI acquisition	First subcarrier index in the PRB used for CSI-RS		k ₀ = 4
аочиошоп	First OFDM symbol in the PRB used for CSI-RS		l ₀ = 12

	Number of CSI	-RS ports (X)		4
	CDM Type	- 1 ()		'FD-CDM2'
	Density (ρ)			1
	CSI-RS periodi	city	Slots	15 kHz SCS: 20
	CSI-RS offset		Slots	0
	Frequency Occ	cupation		Start PRB 0 Number of PRB = ceil(BWP size/4)*4
	Antenna ports i	ndexes		{1000} for Rank 1 tests
PDSCH DMRS	Position of the mapping type A	first DMRS for PDSCH		2
configuration		SCH DMRS CDM group(s)		1 for Rank 1
	Type 1 QCL	SSB index		SSB #0
TCI state #0	information	QCL Type		Type C
TCI State #0	Type 2 QCL	SSB index		N/A
	information	QCL Type		N/A
	Type 1 QCL	CSI-RS resource		CSI-RS resource 1 from 'CSI-RS for tracking' configuration
TCI state #1	information	QCL Type		Type A
	Type 2 QCL	CSI-RS resource		N/A
	information	QCL Type		N/A
PT-RS configuration				PT-RS is not configured
Maximum number of	code block group	os for ACK/NACK feedback		1
Maximum number of	HARQ transmiss	sion		4
HARQ ACK/NACK b	undling			Multiplexed
Redundancy version	coding sequence	e		{0,2,3,1}
PDSCH & PDSCH DMRS Precoding configuration				Single Panel Type I, Random precoder selection updated per slot, with equal probability of each applicable i ₁ , i ₂ combination, and with PRB bundling granularity
Symbols for all unused REs				OP.1 FDD as defined in Annex A.5.1.1 of 38.101-4
Physical signals, cha				As specified in Annex B.4.1 of 38.101-4
NOTE 1: UE assumes that the TCI state for the PDSCH is identical to the TCI state applied for the PDCCH transmission				

NOTE 2: Point A coincides with minimum guard band as specified in Table 5.3.3-1 from TS 38.101-1 [5] for tested channel bandwidth and subcarrier spacing.

NOTE 3: Refer to Table 7.4.1.5.3-1 in [9]

8.2.1.2.1 1RX requirements

[to be updated]

8.2.1.2.2 2RX requirements

8.2.1.2.2.1 FDD

8.2.1.2.2.1.1 Minimum requirements for PDSCH Mapping Type A

The performance requirements are specified in Table 8.2.1.2.2.1.1-3 with the addition of test parameters in Table 8.2.1.2.2.1.1-2 and the downlink physical channel setup according to Annex A.3.

The test purposes are specified in Table 8.2.1.2.2.1.1-1.

Table 8.2.1.2.2.1.1-1: Tests purpose

Purpose	Test index
1 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1-1, 1-2, 1-3, 1-4
under 2 receive antenna conditions and with different	
channel models and MCS	

Table 8.2.1.2.2.1.1-2: Test parameters

	Parameter	Unit	Value
Duplex mode			FDD
Active DL BWP index			1
PDSCH configuration	Mapping type		Type A
3	k0		0
	Starting symbol (S)		2
	Length (L)		12
	PDSCH aggregation factor		1
	PRB bundling type		Static
	PRB bundling size		2
	Resource allocation type		Type 0
	RBG size		Config2
	VRB-to-PRB mapping type		Non-interleaved
	VRB-to-PRB mapping interleaver bundle size		N/A
PDSCH DMRS configuration	DMRS Type		Type 1
	Number of additional DMRS		1
	Maximum number of OFDM symbols for DL front loaded DMRS		1
CSI-RS for tracking	CSI-RS periodicity	Slots	20 for CSI-RS resource 1,2,3,4.
	CSI-RS offset	Slots	10 for CSI-RS resource 1 and 2 11 for CSI-RS resource 3 and 4.
Number of HARQ Processes			16 for Test 1-1, Test 1-2 32 for Test 1-3 4 with feedback disabled, 12 with feedback enabled in 16 HARQ processes with re-Tx disable for all HARQ for Test 1-4 in which 4 disabled processes are randomly select at test configuration
The number of slots between PDSCH and corresponding HARQ-ACK information			10 for Test 1-1, Test 1-2, Test 1-3 N/A for Test 1-4
Maximum number of	HARQ transmission		4 for Test 1-1, Test 1-2, Test 1-3 Disabled for all HARQ processes for Test 1-4

Table 8.2.1.2.2.1.1-3: Minimum performance for Rank 1

Test num.	Reference channel	Bandwidth (MHz) / Subcarrier spacing (kHz)	Modulation format and code rate	Propagation condition	Correlation matrix and antenna configuration	Reference value	
						Fraction of maximum throughput (%)	SNR (dB)
1-1	R.PDSCH.1-1.1 FDD	10 / 15	QPSK, 0.30	NTN- TDLA100-200	1x2, ULA Low	70	0.3
1-2	R.PDSCH.1-2.1 FDD	10 / 15	16QAM, 0.48	NTN-TDLC5- 200	1x2, ULA Low	70	7.6
1-3	R.PDSCH.1-1.1 FDD	10 / 15	QPSK, 0.30	NTN-TDLC5- 200	1x2, ULA Low	70	-0.4
1-4	R.PDSCH.1-1.1 FDD	10 / 15	QPSK, 0.30	NTN- TDLA100-200	1x2, ULA Low	70	1.1

The normative reference for this requirement is TS $38.101-5\ [11]$ clause 8.2.1.2.2.

8.2.1.2.2.1.1_1 2Rx FDD FR1 PDSCH Mapping Type A for Satellite Access

Editor's Note: This test cases is incomplete in following aspects:

- Annex F MU/TT analysis
- Annex G Minimum test time

8.2.1.2.2.1.1_1.1 Test Purpose

Verify the PDSCH mapping Type A normal performance under 2 receive antenna conditions and with different channel models and MCS for NTN capable UE receiving signal from earth based gNB via a satellite access node.

8.2.1.2.2.1.1_1.2 Test Applicability

This test applies to all types of NTN UE release 17 and forward supporting satellite access.

8.2.1.2.2.1.1_1.3 Test Description

8.2.1.2.2.1.1_1.3.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1 and Table 5.3.6-1 of 38.521-1 [2].

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.

Test Environment: Normal, as defined in TS 38.508-1 [12] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 38.508-1 [12] clause 5.2.2.

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connectors as shown in TS 38.508-1 [12] Annex A, in Figure A.3.1.7.1 for TE diagram and clause A.3.2.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to Table 5.2-1 and Table 5.2.2.1.1.0-2 as appropriate.
- 3. Downlink signals for NR cell are initially set up according to clauses C.0, C.1, C.2 and uplink signals according to clauses G.0, G.1, G.2, G.3.1 of TS 38.521-1 [2].
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR for NR/5GC with *Connected without Release On, Test Mode* On according to TS 38.508-1 [12] clause 4.5. Message contents are defined in clause 8.2.1.2.2.1.1_1.3.3.

8.2.1.2.2.1.1_1.3.2 Test procedure

- 1. UE location according to TS 38.508-1 [12] clause 5.6.1 is provided to the UE through any preconfigured means.
- 2 Test equipment shall emulate the signal with doppler and delay according to ephemeris defined in TS 38.508[12] table 5.6.2.1-1 for GSO if UE supports only GSO or both GSO and NGSO satellites and table 5.6.2.1-3 for NGSO (LEO-1200) if UE supports only NGSO satellites. Test system shall send same SIB19 information duringthe duration of the test as defined in TS 38.508-1 [12] clause 5.6.3.1.
- 3. Deactivate UE prediction of satellite trajectory by any preconfigured means.
- 4. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Tables Table 8.2.1.2.2.1.1-3. The SS sends downlink MAC padding bits on the DL RMC.
- 5. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.2.1.2.2.1.1-2 and Table 8.2.1.2.2.1.1-3 as appropriate.

- 6. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.1.5. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest and decide pass or fail according to [Annex G].
- 4. Repeat steps from 1 to 3 for each subtest in Table 8.2.1.2.2.1.1-3 as appropriate.

8.2.1.2.2.1.1_1.3.3 Message contents

Message contents are according to TS 38.508-1 [12] clauses 4.6.1 and 5.4.2.

SIB19 contents as TS 38.508-1 [12] clause 5.6.2.1.

Table 8.2.1.2.2.1.1_1.3.3-1: DMRS-DownlinkConfig

Derivation Path: TS 38.508-1 [6], Table 5.4.2.0-24					
Information Element	Value/remark	Comment	Condition		
DMRS-DownlinkConfig ::= SEQUENCE {					
dmrs-AdditionalPosition	Pos1				
}					

Table 8.2.1.2.2.1.1_1.3.3-2: PDSCH-ServingCellConfig

Derivation Path: TS 38.508-1 [6], Table 5.4.2.0-25					
Information Element	Value/remark	Comment	Condition		
PDSCH-ServingCellConfig ::= SEQUENCE {					
nrofHARQ-ProcessesForPDSCH	n16	Test 1-1, Test 1-2			
	n32	Test 1-3			
		Test 1-4			
		4 with feedback			
		disabled, 12 with			
		feedback enabled			
		in 16 HARQ			
		processes with re-			
		Tx disable for all			
		HARQ for Test 1-4			
		in which 4 disabled			
		processes are			
		randomly select at			
		test configuration			
}					

Table 8.2.1.2.2.1.1_1.3.3-3: CSI-ResourcePeriodicityAndOffset for CSI Tracking

Derivation Path: TS 38.508-1 [6], Table 5.4.2.0-9					
Information Element	Value/remark	Comment	Condition		
CSI-ResourcePeriodicityAndOffset ::= CHOICE {					
slots20	10 (for CSI-RS resources 1 and 2) 11 (for CSI-RS resources 3 and 4)				
}					

8.2.1.2.2.1.1_1.3.4 Test requirement

Table 8.2.1.2.2.1.1-2 and Table 8.2.1.2.2.1.1-3 define the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A 3.2.1.1 for each throughput test shall meet or exceed the specified value in Table 8.2.1.2.2.1.1_1.3.4-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.2.2.1.1_1.3.4-1: Minimum performance for Rank 1

Test num.	Reference channel	Bandwidth (MHz) / Subcarrier spacing (kHz)	Modulation format and code rate	Propagation condition	Correlation matrix and antenna configuration	Reference value	
						Fraction of maximum throughput (%)	SNR (dB)
1-1	R.PDSCH.1-1.1 FDD	10 / 15	QPSK, 0.30	NTN-TDLA100-200	1x2, ULA Low	70	0.3 + TT
1-2	R.PDSCH.1-2.1 FDD	10 / 15	16QAM, 0.48	NTN-TDLC5-200	1x2, ULA Low	70	7.6 + TT
1-3	R.PDSCH.1-1.1 FDD	10 / 15	QPSK, 0.30	NTN-TDLC5-200	1x2, ULA Low	70	-0.4 + TT
1-4	R.PDSCH.1-1.1 FDD	10 / 15	QPSK, 0.30	NTN-TDLA100-200	1x2, ULA Low	70*	1.1 + TT

Annex A: (normative): Measurement channels

A.1 General

A.1.1 Throughput definition

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per codeword. For multi-codeword transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all codewords.

A.2 UL reference measurement channels

[to be updated]

A.3 DL reference measurement channels

A.3.1 General

The transport block size (TBS) determination procedure is described in clause 5.1.3.2 of TS 38.214 [12].

Unless otherwise stated, no user data is scheduled on slot #0 within 20 ms in order to avoid SSB and PDSCH transmissions in one slot and simplify test configuration.

A.3.2 Reference measurement channels for PDSCH performance requirements

A.3.2.0 General

For PDSCH reference channels if more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to each Code Block (otherwise L=0 Bit).

A.3.2.1 FDD

Reference measurement channels for SCS 15 kHz FR1 A.3.2.1.1

Table A.3.2.1.1-1: PDSCH Reference Channel for FDD (QPSK)

Parameter	Unit		Value
Reference channel		R.PDSCH.1-	
		1.1 FDD	
Channel bandwidth	MHz	10	
Subcarrier spacing	kHz	15	
Number of allocated	PRBs	52	
resource blocks	LVD2	52	
Number of consecutive		12	
PDSCH symbols		12	
Allocated slots per 2	Slots	19	
frames	Oloto		
MCS table		64QAM	
MCS index		4	
Modulation		QPSK	
Target Coding Rate		0.30	
Number of MIMO layers		1	
Number of DMRS REs		18	
Overhead for TBS		0	
determination		Ů	
Information Bit Payload per			
Slot			
For Slot i = 0	Bits	N/A	
For Slots i = 1,, 19	Bits	3,904	
Transport block CRC per			
Slot			
For Slot i = 0	Bits	N/A	
For Slots i = 1,, 19	Bits	24	
Number of Code Blocks			
per Slot			
For Slot i = 0	CBs	N/A	
For Slots i = 1,, 19	CBs	1	
Binary Channel Bits Per			
Slot			
For Slot i = 0	Bits	N/A	
For Slots i = 10, 11	Bits	12,480	
For Slots i =1,, 9, 12,, 19	Bits	13,104	
Max. Throughput averaged over 2 frames	Mbps	3.709	
NOTE 1: SS/PBCH block is	transmi	itted in slot #0 w	ith periodicity 20 ms
NOTE 2: Slot i is slot index			nui ponodiony 20 mo
110 12 2. Glot 113 Glot IIIdex	POI 2 110	41100	

Table A.3.2.1.1-2: PDSCH Reference Channel for FDD (16QAM)

Parameter	Unit			Value			
Reference		R.PDSCH.1-					
channel		2.1 FDD					
Channel bandwidth	MHz	10					
Subcarrier spacing	kHz	15					
Number of allocated	PRBs	52					
resource blocks							
Number of consecutive PDSCH symbols		12					
Allocated slots per 2 frames	Slots	19					
MCS table		64QAM					
MCS index		13					
Modulation		16QAM					
Target Coding Rate		0.48					
Number of MIMO layers		1					
Number of DMRS REs		12					
Overhead for TBS determination		0					
Information Bit Payload per Slot							
For Slot i = 0	Bits	N/A					
For Slots i = 1,, 19	Bits	13,064					
Transport block CRC per Slot							
For Slot i = 0	Bits	N/A					
For Slots i = 1,, 19	Bits	24					
Number of Code Blocks per Slot							
For Slot i = 0	CBs	N/A					
For Slots i = 1,, 19	CBs	2					
Binary Channel Bits Per Slot							
For Slot i = 0	Bits	N/A					
For Slots i = 10, 11	Bits	26,208					
For Slots i = 1,, 9, 12,, 19	Bits	27,456					
Max. Throughput averaged over	Mbps	12.411					
2 frames							
NOTE 1: SS/PE	3CH bloc	k is transmitted	in slot #0 with	periodicity 20 n	ns	<u> </u>	

NOTE 1: SS/PBCH block is transmitted in slot #0 with periodicity 20 ms NOTE 2: Slot i is slot index per 2 frames

A.4 Testing related to Satellite Access

A.4.1 General

The following test conditions should be maintained for Satellite Access when test equipment emulates the snapshot of the satellite link channel.

- The same ephemeris info will be maintained during each test.
- A set of ephemeris information are pre-defined for each satellite corresponding to respective epoch times in TS 38.508-1 [12].
- The range of the selected constant delay shift is as follows:
 - For NGSO an altitude of 600 km and 1200 km on a circular orbit are considered. The range of the one-way delay between UE and satellite is from 2ms (lowest value for LEO orbit 600km) to 6.67 ms (highest value for LEO orbit 1200 km).
 - For GSO the range of the one-way delay from UE to satellite is within 119.375 ms to 128.79 ms.
- Constant delay value is derived from ephemeris info (SIB19) and UE location associated to zero Doppler or non-zero Doppler value under test.

A.4.2 Test condition for transmitter characteristics

All requirements in clause 6 for transmitter characteristics, other than frequency error in clause 6.4.1 shall be verified when Doppler conditions are set to zero and delay conditions are set to constant for all types of satellites.

Frequency error requirement in clause 6.4.1 shall be verified for at least two cases: one with zero Doppler condition and the other one with a constant Doppler shift where the range of the absolute value of Doppler is greater than zero and up to [0.93] ppm if the IE field ntn-ScenarioSupport-r17 is present and indicated as GSO and up to 24 ppm if the IE field ntn-ScenarioSupport-r17 is present and indicated as NGSO or only the IE field nonTerrestrialNetwork-r17 is present. The delay condition is a constant.

A.4.3 Test condition for receiver characteristics

All requirements in clause 7 for receiver characteristics shall be verified when Doppler conditions are set to zero and delay conditions are set to constant for all types of satellites.

A.4.4 Test condition for performance requirements

All requirements in clause 8 for performance requirements shall be verified when Doppler conditions related to satellite motion for DL in service link are set to zero and delay conditions are set to constant for all types of NGSO satellites.

The one-way delay between UE and satellite for NGSO at an altitude of 600 km is 2 ms.

Annex B: (normative): Propagation conditions

B.0 No interference

The downlink connection between the System Simulator and the UE is without Additive White Gaussian Noise, and has no fading or multipath effects.

B.1 Static propagation condition

B.1.1 UE Receiver with 1Rx

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = [1 \ 1].$$

B.1.2 UE Receiver with 2Rx

For 1 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}.$$

B.2 Multi-path fading propagation conditions

B.2.0 General

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum that is characterized by a classical spectrum shape and a maximum Doppler frequency.

Initial channel matrix for LOS component of NTN-TDL-C channel model is equal to channel matrix of Static propagation conditions in Clause B.1.

B.2.1 Delay profiles

The delay profiles are derived from the TR 38.811 [x] NTN-TDL models for the desired delay spread and tap resolution. After scaling the normalized delay spread values for each tap by the desired RMS delay spread, the tap delays are quantized to a delay resolution of 5ns by rounding to the nearest multiple of the delay resolution.

Table B.2.1-1: Delay profiles for NR NTN channel models

Туре	Model	Delay spread (r.m.s.)	Delay resolution
NLOS	NTN-TDLA100	100 ns	5 ns
LOS	NTN-TDLC5	5 ns	5 ns

Table B.2.1-2: NTN-TDLA100 (DS = 100 ns)

Tap #	Delay [ns]	Power [dB]	Fading distribution
1	0	0	Rayleigh
2	110	-4.7	Rayleigh
3	285	-6.5	Rayleigh

Table B.2.1-3: NTN-TDLC5 (DS = 5 ns)

Tap#	Delay [ns]	Power [dB]	Fading distribution
4	0	-0.6	LOS path
'	0	-8.9	Rayleigh
2	60 -21.5		Rayleigh
NOTE 1: Tap #1 follows a Rician distribution.			

B.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as a combination of a channel model name and a maximum Doppler frequency, i.e., NTN-TDLA<DS>-<Doppler>, or NTN-TDLC<DS>-<Doppler> where '<DS>' indicates the desired delay spread and '<Doppler>' indicates the maximum Doppler frequency (Hz).

Table B.2.2-1 show the propagation conditions that are used for the performance measurements in multi-path fading environment for NLOS and LOS propagation conditions.

Table B.2.2-1: Channel model parameters for NTN

Combination name	Model	Maximum Doppler frequency
NTN-TDLA100-200	NTN-TDLA100	200 Hz
NTN-TDLC5-200	NTN-TDLC5	200 Hz

B.2.3 MIMO Channel Correlation Matrices

B.2.3.0 General

The MIMO channel correlation matrices defined in clause B.2.3 apply for the antenna configuration using uniform linear arrays at both gNB and UE.

B.2.3.1 MIMO Correlation Matrices using Uniform Linear Array (ULA)

B.2.3.1.0 General

The MIMO channel correlation matrices defined in clause B.2.3.1.1 apply for the antenna configuration using uniform linear array (ULA) at both gNB and UE.

B.2.3.1.1 Definition of MIMO Correlation Matrices

Table B.2.3.1.1-1 defines the correlation matrix for the gNB.

Table B.2.3.1.1-1: gNB correlation matrix

	One antenna	Two antennas
gNB Correlation	$R_{gNB} = 1$	$R_{gNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$

Table B.2.3.1.1-2 defines the correlation matrix for the UE:

Table B.2.3.1.1-2: UE correlation matrix

	One antenna	Two antennas
UE Correlation	$R_{UE}=1$	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$

Table B.2.3.1.1-3 defines the channel spatial correlation matrix $R_{\rm spxt}$. The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the gNB and UE.

Table B.2.3.1.1-3: $R_{\rm syxt}$ correlation matrices

1x2 case	$R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$
2x1 case	$R_{\scriptscriptstyle spat} = R_{\scriptscriptstyle gNB} = egin{bmatrix} 1 & lpha \ lpha^* & 1 \end{bmatrix}$
2x2 case	$R_{spat} = R_{gNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \end{bmatrix} = \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^* & \alpha^*\beta & 1 & \beta \\ \alpha^*\beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$

B.2.3.1.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.1.2-1.

Table B.2.3.1.2-1: The α and β parameters for ULA MIMO correlation matrices

Correlation Model	α	β
I ow correlation	0	0

The correlation matrices low correlation are defined in Table B.2.3.1.2-2 below.

Table B.2.3.1.2-2: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x1 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
NOTE: Id is the dxd identity matrix.	

Annex C (normative): Downlink physical channels

C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.2 Setup (Conducted)

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel
PBCH
SSS
PSS
PDCCH
PDSCH
PBCH DMRS
PDCCH DMRS
PDSCH DMRS
CSI-RS

C.3 Connection (Conducted)

C.3.0 General

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.1 Measurement of Performance requirements

Table C.3.1-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels, unless otherwise stated.

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Parameter	Unit	Value (Note 2)
SSS transmit power	W	Test specific
EPRE ratio of PSS to SSS	dB	0
EPRE ratio of PBCH to SSS	dB	0
EPRE ratio of PBCH to PBCH DMRS	dB	0
EPRE ratio of PDCCH to SSS	dB	0
EPRE ratio of PDCCH to PDCCH DMRS	dB	0
EPRE ratio of PDSCH to SSS	dB	0
EPRE ratio of PDSCH to PDSCH DMRS	dB	Test specific (Note 1)
EPRE ratio of CSI-RS to SSS	dB	-10*log10(L) (Note 3)
EPRE ratio of OCNG to SSS	dB	0
EPRE ratio of PDCCH OCNG to SSS	dB	0
EPRE ratio of LTE CRS to NR SSS	dB	0 (Note 4)

NOTE 1: Value is derived from Table 4.1-1 in TS 38.214 [12] based on "Number of DM-RS CDM groups without data" and "DMRS Type" parameters specified for each test.

NOTE 2: The value is the energy of per RE for a single antenna port before pre-coding.

NOTE 3: $L \in \{1,2,4,8\}$ is the CDM group size of NZP CSI-RS specified for each test.

NOTE 4: It is only applicable to LTE-NR coexistence tests.

Annex D (normative): Characteristics of the interfering signal

D.1 General

Some RF performance requirements for the NR UE receiver are defined with interfering signals present in addition to the wanted signal.

For NR bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz, a modulated 5 MHz full bandwidth NR down link signal, and in some cases an additional CW signal, are used as interfering signal. And for some cases an additional CW signal is used.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel bandwidth options for NR band lower than 2700 MHz.

Table D.2-1: Description of modulated NR interferer for NR bands with F_{DL_high} < 2,700 MHz and F_{UL_high} < 2,700 MHz

		Channel bandwidth								
		5 MHz 10MHz 15 MHz 20 N								
RB		NOTE 1								
BW Interferer		5 MHz								
NOTE 1:	The	RB configured for interfering signal is the same as maximum RB								
	num	ber defined in Table 5.3.2-1 for each sub-carrier spacing.								

Annex F (normative): Measurement uncertainties and Test Tolerances

F.1 Acceptable uncertainty of Test System (normative)

F.1.0 General

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

The downlink signal uncertainties apply at each receiver antenna connector.

F.1.1 Measurement of test environments

The measurement accuracy of the UE test environments defined in TS 38.508-1 [12] subclause 4.1, Test environments shall be

- Pressure ±5 kPa.

- Temperature ±2 degrees.

- Relative Humidity ±5 %.

- DC Voltage ± 1.0 %.

- AC Voltage ±1.5 %.

- Vibration 10 %.

- Vibration frequency 0.1 Hz.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

F.1.2 Measurement of transmitter

Table F.1.2-1: Maximum Test System Uncertainty for transmitter tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
	Same as clause 6.3.1 in TS 38.521-1 [2] for FDD band with $f \le 3$ GHz.	
6.3.2 Transmit OFF power	Same as clause 6.3.2 in TS 38.521-1 [2] for FDD band with $f \le 3$ GHz.	

F.1.3 Measurement of receiver

Table F.1.3-1: Maximum Test System Uncertainty for receiver tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
7.4 Maximum input level	Same as clause 7.4 in TS 38.521-1 [2] for FDD band with $f \le 3$ GHz.	
7.5 Adjacent channel selectivity7.5 Adjacent channel selectivity	Same as clause 7.5 in TS 38.521-1 [2] for FDD band with "f \leq 3.0 GHz".	Same as clause 7.5 in TS 38.521-1 [2]".
7.6.2 In-band blocking	Same as clause 7.6.2 in TS 38.521-1 [2] for FDD band with "f \leq 3.0 GHz".	Same as clause 7.6.2 in TS 38.521-1 [2]".
7.6.3 Out of Band Blocking	Same as clause 7.6.3 in TS 38.521-1 [2] for FDD band with "f \leq 3.0 GHz".	Same as clause 7.6.3 in TS 38.521-1 [2]".
7.6.4 Narrow band blocking	Same as clause 7.6.4 in TS 38.521-1 [2] for FDD band with "f \leq 3.0 GHz".	Same as clause 7.6.4 in TS 38.521-1 [2]".
7.7 Spurious response	Same as clause 7.6.3.	Same as clause 7.6.3.
7.8.2 Wide band Intermodulation	Same as clause 7.8.2 in TS 38.521-1 [2] for FDD band with "f \leq 3.0 GHz".	Same as clause 7.8.2 in TS 38.521-1 [2]".
7.9 Spurious emissions	Same as clause 7.8.2 in TS 38.521-1 [2] with "f ≤ 12.75 GHz"	

F.2 Interpretation of measurement results (normative)

The measurement results returned by the Test System are compared – without any modification – against the Test Requirements. The Test Requirement is defined as a threshold considered in a test to assess compliance of the device; it might be either equal ("Shared Risk" principle) or relaxed ("Never fail a good DUT" principle) compared to the corresponding core specification value by an amount defined in Annex F.3 as Test Tolerance.

The "Shared Risk" and the "Never fail a good DUT" principles are defined in Recommendation ITU-R M.1545.

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows:

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement, making the test harder to pass. For some tests, for example receiver tests, this may require modification of stimulus signals. This procedure will ensure that a Test System not compliant with clause F.1does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.3 Test Tolerance and Derivation of Test Requirements (informative)

F.3.0 General

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in this clause. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test

Requirements will differ from the Minimum Requirements, and the formula used for the relaxation is given in this clause.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

The downlink Test Tolerances apply at each receiver antenna connector.

F.3.1 Measurement of test environments

The UE test environments are set to the values defined in TS 38.508-1 subclause 4.1, without any relaxation. The applied Test Tolerance is therefore zero.

F.3.2 Measurement of transmitter

Table F.3.2-1: Derivation of Test Requirements (Transmitter tests)

Sub clause	Test Tolerance (TT)	Formula for test requirement
	Same as clause 6.3.1 in TS 38.521-1 [2] for FDD band with $f \le 3$ GHz.	Minimum requirement + TT
6.3.2 Transmit OFF power	Same as clause 6.3.2 in TS 38.521-1 [2] for FDD band with $f \le 3$ GHz.	Minimum requirement + TT

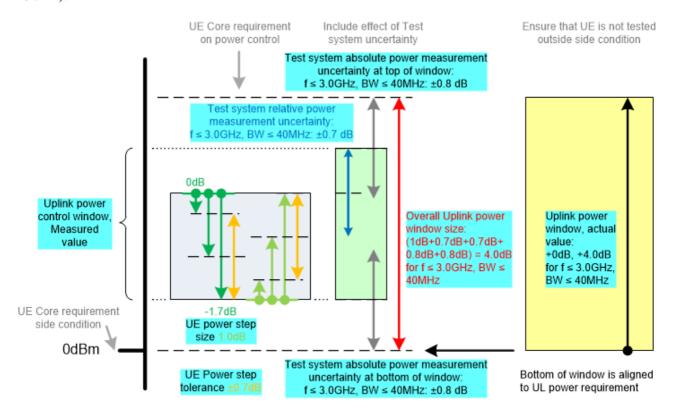
F.3.3 Measurement of receiver

Table F.3.3-1: Derivation of Test Requirements (Receiver tests)

Sub	clause	Test Tolerance (TT)	Formula for test requirement
7.4 Maxim	num input level	Same as clause 7.4 in TS 38.521-1 [2] for FDD band with $f \le 3GHz$.	Maximum input level - TT
7.5 Adjace selectivity	ent channel	Same as clause 7.5 in TS 38.521-1 [2]".	Same as clause 7.5 in TS 38.521-1 [2]".
7.6.2 In-ban	d blocking	Same as clause 7.6.2 in TS 38.521-1 [2]".	Same as clause 7.6.2 in TS 38.521-1 [2]".
7.6.3 Out of	Band Blocking	Same as clause 7.6.3 in TS 38.521-1 [2]".	Same as clause 7.6.3 in TS 38.521-1 [2]".
7.6.4 Narroy blocking	w band	Same as clause 7.6.4 in TS 38.521-1 [2]".	Same as clause 7.6.4 in TS 38.521-1 [2]".
7.7 Spurious i	response	Same as clause 7.6.3.	Same as clause 7.6.3.
7.8.2 Wide to Intermodulation		Same as clause 7.8.2 in TS 38.521-1 [2]".	Same as clause 7.8.2 in TS 38.521-1 [2]".
7.9 Spurious	emissions	Same as clause 7.9 in TS 38.521-1 [2]".	Same as clause 7.9 in TS 38.521-1 [2]".

F.4 Uplink power window

F.4.1 Introduction


A number of Tx and Rx Test cases set the UE uplink power to be within a defined window to ensure the test is carried out in the intended conditions. This clause gives the method for calculating the uplink power window used in Tx test cases and Rx Test cases.

F.4.2 Setting the power window above a requirement

Information from the core requirements in TS 38.101-1 [5], TS 38.213 [7] and the uncertainties in Annex F applicable to the Test case are used to derive the uplink power window. There are 4 stages:

- Find the uplink power target value.
- Determine how closely the uplink power can be set to the target value.
- Include the effect of test system uncertainty.
- Position the Uplink power window to ensure UE is not tested outside Core requirements.

This process is shown in the diagram below, using values for $f \le 3$ GHz and BW ≤ 40 MHz and taking an example where the target value is 0dBm (lower end of a UE Core requirement side condition range of 0 dBm \le Output power ≤ 10 dBm):

UE Uplink power

Figure F.4.2-1: Example uplink power setting to be above a requirement

The smallest UE Power step size is defined in TS 38.213 [7] Table 7.1.1-1, for absolute $\delta_{\text{PUSCH},f,c}$.

The UE Power step size tolerance is defined in TS 38.101-1 [5] Table 6.3.4.3-1, for PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods, and for a power step $\Delta P \le 1$ dB.

The Test system uncertainties are defined in Annex F of the present document.

To ensure that the actual UE uplink power is within the Uplink power window, UE uplink power measured by the test system should remain within the smaller Uplink power control window shown in Figure F.4.2-1.

F.4.3 Setting the power window below a requirement

Information from the core requirements in TS 38.101-1 [5], TS 38.213 [7] and the uncertainties in Annex F applicable to the Test case are used to derive the uplink power window. There are 4 stages:

- Find the uplink power target value.
- Determine how closely the uplink power can be set to the target value.
- Include the effect of test system uncertainty.
- Position the Uplink power window to ensure UE is not tested outside Core requirements.

This process is shown in the diagram below, using values for $f \le 3$ GHz and BW ≤ 40 MHz and taking an example where the target value is 4 dB below PCMAX_L (UE Core requirement side condition):

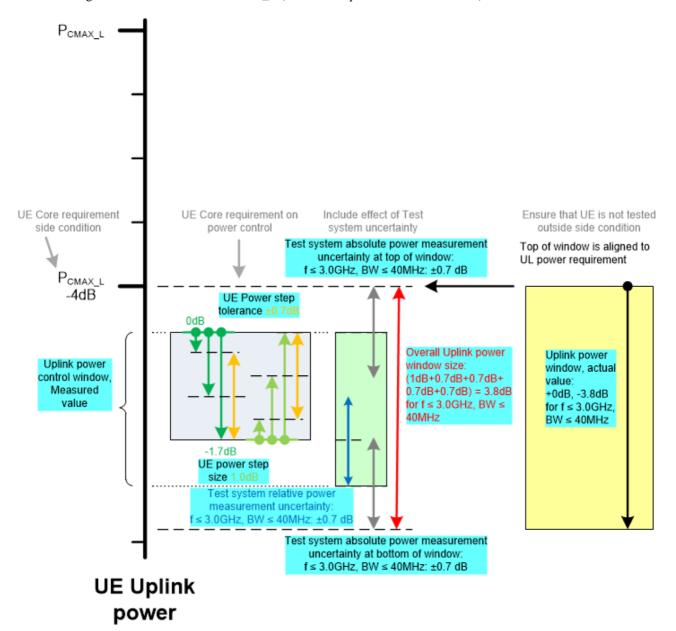


Figure F.4.3-1: Example uplink power setting to be below a requirement

The smallest UE Power step size is defined in TS 38.213 [7] Table 7.1.1-1, for absolute $\delta_{\text{PUSCH}_{s}f,c}$.

The UE Power step size tolerance is defined in TS 38.101-1 [5] Table 6.3.4.3-1, for PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods, and for a power step $\Delta P \le 1$ dB.

The Test system uncertainties are defined in Annex F of the present document.


To ensure that the actual UE uplink power is within the Uplink power window, UE uplink power measured by the test system should remain within the smaller Uplink power control window shown in Figure F.4.3-1.

F.4.4 Setting the power window centred on a target value

Information from the core requirements in TS 38.101-1 [5], TS 38.213 [7] and the uncertainties in Annex F applicable to the Test case are used to derive the uplink power window. There are 4 stages:

- Find the uplink power target value.
- Determine how closely the uplink power can be set to the target value.
- Include the effect of test system uncertainty.
- Position the Uplink power window centred on the target value.

This process is shown in the diagram below, using values for $f \le 3$ GHz and BW ≤ 40 MHz and taking an example where the target value is +10 dBm:

UE Uplink power

Figure F.4.4-1: Example NR FR1 uplink power setting centred on a target value

The smallest UE Power step size is defined in TS 38.213 [7] Table 7.1.1-1, for absolute $\delta_{\text{PUSCH}_{b}f,c}$.

The UE Power step size tolerance is defined in TS 38.101-1 [5] Table 6.3.4.3-1, for PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods, and for a power step $\Delta P \le 1$ dB.

The Test system uncertainties are defined in Annex F of the present document.

To ensure that the actual UE uplink power is centred on the target value, UE uplink power measured by the test system should remain within the smaller Uplink power control window shown in Figure F.4.4-1.

Annex H (normative): Statistical Testing

H.1 General

This annex specifies mapping throughput to error ratio, pass fail limits and pass fail decision rules that are needed for measuring average throughput for a duration sufficient to achieve statistical significance for testing receiver characteristics.

H.2 Statistical testing of receiver characteristics

H.2.1 General

The test of receiver characteristics is twofold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver tests is > 95 % of the maximum throughput.

All receiver tests are performed in static propagation conditions. No fading conditions are applied.

H.2.2 Mapping throughput to error ratio

- a) The measured information bit throughput R is defined as the sum (in kilobits) of the information bit payloads successfully received during the test interval, divided by the duration of the test interval (in seconds).
- b) In measurement practice the UE indicates successfully received information bit payload by signalling an ACK to the SS.
 - If payload is received, but damaged and cannot be decoded, the UE signals a NACK.
- c) Only the ACK and NACK signals, not the data bits received, are accessible to the SS. The number of bits is known in the SS from knowledge of what payload was sent.
- d) For the reference measurement channel, applied for testing, the number of bits is different in different slots, however in a radio frame it is fixed during one test.
- e) The time in the measurement interval is composed of successfully received slots (ACK), unsuccessfully received slots (NACK) and no reception at all (DTX-slots).
- f) DTX-slots may occur regularly according the applicable reference measurement channel (regDTX). In real live networks this is the time when other UEs are served. In TDD these are the UL and special slots. regDTX vary from test to test but are fixed within the test.
- g) Additional DTX-slots occur statistically when the UE is not responding ACK or NACK where it should. (statDTX)
 - This may happen when the UE was not expecting data or decided that the data were not intended for it.

The pass / fail decision is done by observing the:

- number of NACKs;
- number of ACKs; and
- number of statDTXs (regDTX is implicitly known to the SS).

The ratio (NACK + statDTX)/(NACK+ statDTX + ACK) is the Error Ratio (ER). Taking into account the time consumed by the ACK, NACK, and DTX-TTIs (regular and statistical), ER can be mapped unambiguously to throughput for any single reference measurement channel test.

H.2.3 Design of the test

The test is defined by the following design principles (see clause H.2.6, Theory...):

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Customer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1. Limit ER = 0.05 (Throughput limit = 95%)
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

H.2.4 Numerical definition of the pass fail limits

Table H.2.4-1: pass fail limits

ne	nsp	nsf	ne	nsp	nsf	ne	nsp	ns _f	ne	nsp	ns _f
0	67	NA	37	715	477	74	1290	1093	111	1847	1739
1	67	NA	38	731	493	75	1306	1110	112	1862	1756
2	95	NA	39	747	509	76	1321	1128	113	1877	1774
3	119	NA	40	763	525	77	1336	1145	114	1891	1792
4	141	NA	41	779	541	78	1351	1162	115	1906	1809
5	162	NA	42	795	557	79	1366	1179	116	1921	1827
6	183	NA	43	810	573	80	1382	1197	117	1936	1845
7	203	NA	44	826	590	81	1397	1214	118	1951	1863
8	222	NA	45	842	606	82	1412	1231	119	1966	1880
9	241	67	46	858	622	83	1427	1248	120	1981	1898
10	259	80	47	873	639	84	1442	1266	121	1995	1916
11	278	92	48	889	655	85	1457	1283	122	2010	1934
12	296	105	49	905	672	86	1472	1300	123	2025	1951
13	314	118	50	920	688	87	1487	1318	124	2040	1969
14	332	131	51	936	705	88	1503	1335	125	2055	1987
15	349	145	52	952	721	89	1518	1353	126	2069	2005
16	367	159	53	967	738	90	1533	1370	127	2084	2023
17	384	173	54	983	755	91	1548	1387	128	2099	2041
18	401	187	55	998	771	92	1563	1405	129	2114	2058
19	419	201	56	1014	788	93	1578	1422	130	2128	2076
20	436	216	57	1029	805	94	1593	1440	131	2143	2094
21	453	230	58	1045	822	95	1608	1457	132	2158	2112
22	469	245	59	1060	838	96	1623	1475	133	2173	2130
23	486	260	60	1076	855	97	1638	1492	134	2187	2148
24	503	275	61	1091	872	98	1653	1510	135	2202	2166
25	520	290	62	1107	889	99	1668	1527	136	2217	2183
26	536	305	63	1122	906	100	1683	1545	137	2232	2201
27	553	320	64	1137	923	101	1698	1562	138	2246	2219
28	569	335	65	1153	940	102	1713	1580	139	2261	2237
29	585	351	66	1168	957	103	1728	1598	140	2276	2255
30	602	366	67	1184	974	104	1742	1615	141	2291	2273
31	618	382	68	1199	991	105	1757	1633	142	2305	2291
32	634	398	69	1214	1008	106	1772	1650	143	2320	2309
33	651	413	70	1229	1025	107	1787	1668	144	2335	2327
34	667	429	71	1245	1042	108	1802	1686	145	2349	2345
35	683	445	72	1260	1059	109	1817	1703	146	2364	2363
36	699	461	73	1275	1076	110	1832	1721	*) no	te 2 in	H.2.5

- NOTE 1: The first column is the number of errors (ne = number of NACK + statDTX).
- NOTE 2: The second column is the number of samples for the pass limit (ns_p , ns=Number of Samples= number of NACK + statDTX + ACK).
- NOTE 3: The third column is the number of samples for the fail limit (ns_f).
- NOTE 4: The UE could be decided as early pass/fail when at least 67 samples are received. The ns_f is set to NA for ne less than 9.

H.2.5 Pass fail decision rules

The pass fail decision rules apply for a single measurement. A test case is passed only when all the measurements in the test case are passed.

Having observed 0 errors, pass the test at 67+ samples, otherwise continue

Having observed 1 error, pass the test at 95+ otherwise continue

Having observed 2 errors, pass the test at 119+ samples, otherwise continue

etc

Having observed 14645 errors, pass the test at 23642349+ samples, fail the test at 2345- samples, otherwise continue

Having observed 152 errors, pass the test at + samples, fail the test at 2363- samples.

Where x+ means: x or more, x- means x or less.

NOTE 1: An ideal DUT passes after 67 samples. The maximum test time is 2364 samples.

NOTE 2: It is allowed to deviate from the early decision concept by postponing the decision (pass/fail or continue). Postponing the decision to or beyond the end of Table H.2.4-1 requires a pass fail decision against the test limit: pass the DUT for ER<0.0618, otherwise fail.

H.2.6 Theory to derive the pass fail limits (Informative)

Editor's note: This clause of the Annex H is for information only and it describes the background theory and information for statistical testing.

H.2.6.1 Numerical definition of the pass-fail limits

A statistical test is characterized by test time, selectivity and confidence level. The outcome of the statistical test is a decision. This decision may be correct, i.e., DUTs whose throughput is less than 95% maximum throughput being declared to fail, and DUTs whose throughput is higher or equal to 95% being declared to pass, or in-correct with opposite decision. The Confidence Level (CL) describes the probability that the decision is a correct one. The complement is the wrong decision probability (risk) D = 1-CL.

As described in H.2.2, the measurement of throughput could be mapped to ER (Error Ratio). When testing ER, transport blocks or "samples" are observed and the number of correctly and erroneously received blocks are recorded. For a "standard" test, a pre-defined number of samples are observed, and a pass/fail decision is made based on the number of observed errors being above/below a threshold. This threshold is based on the targeted throughput or BLER and the design target CL. There is always some risk of a statistical variation leading to an incorrect pass/fail decision. The greater the number of samples that are recorded, the lower is the risk of such an error. The number of samples that are observed in a standard test is dimensioned to achieve an acceptable low risk of error (i.e., an acceptable high confidence level) for DUTs that just meet the specified limit.

The standard test works well where the target ER level is relatively high and confidence level relatively low (both are chosen to be on a comparable order of magnitude). However, for relatively low ER testing the length of time required for observing sufficient samples to achieve a 95% confidence level is excessive. In many cases, the DUTs will in fact have a much lower true ER level than the target ER level, (in which case, the number of samples needed to achieve high confidence that the true ER level is lower than the limit is much smaller). On the other hand, a bad DUT which is expected to fail the requirement might have a much higher true ER level (in which case, errors occur more frequently and it can be demonstrated that the DUT is above the target ER limit with fewer samples).

To avoid long test time, an alternative test method called early pass/fail is adopted. With the early pass/fail, each time a block error is encountered, a decision is made on whether the DUT can be passed/failed with 95% CL or the test needs to continue until another error is encountered. In the case of very good DUTs, the test can also be passed, when the number of samples permissible for one error event is reached and no error event is recorded. Pass/Fail is decided based on the total number of observed samples and errors, and a statistical calculation based on an inverse binomial cumulative distribution. The calculation involves one parameter, one variable and the result:

- Parameter: d (per step decision probability).
- Variable: ne (number of observed errors).
- Result: ns (number of expected samples for pass/fail, depending on which one is calculated).

The per step decision probability risk, d, expresses the probability of making an incorrect pass/fail decision in the current step (i.e., for the current decision coordinate). d is determined by simulation such that the overall risk of making a wrong decision over all steps of each test of a large number of tests on a large number of DUTs that exactly meet the target ER limit is D=5% (and hence the CL 95%).

It should be noted that d is determined separately considering early pass and early fail testing.

For a marginal DUT (i.e., a DUT almost exactly meeting the target ER level), the unmodified early pass/early fail approach is unable to distinguish whether the DUT has just passed or just failed the BLER ($\epsilon \rightarrow 0$), and can thus terminate with an "undecided" result. To avoid this undecided result and provide selectivity, a so-called "bad device factor" (M) is introduced into the early pass calculation. This factor biases the decision towards avoiding failing good DUT.

H.2.6.2 Simulation to derive the pass-fail limits for testing 95% throughput

As per the description in clause H.2.2, the 95% throughput measurement is mapped to ER=0.05, where ER is (NACK + statDTX)/(NACK + statDTX + ACK).

The binomial distribution and its inverse are used to design the pass and fail limits. Note that this method is not unique and that other methods exist.

$$fail(ne,d_f) := \frac{ne}{ns_f} = \frac{ne}{(ne+qnbinom(d_f,ne,ER))}$$

$$pass(ne,cl_p,M) := \frac{ne}{ns_p} = \frac{ne}{(ne+qnbinom(cl_p,ne,ER \cdot M))}$$

Where

- fail(..) is the error ratio for the fail limit.
- pass(..) is the error ratio for the pass limit.
- ER is the specified error ratio 5%.
- ne is the number of bad results. This is the variable in both equations.
- M is the Bad DUT factor M=1.5.
- d_f is the wrong decision probability of a single (ne, ns) co-ordinate for the fail limit. It is found by simulation to be $d_f = 0.006$.
- cl_p is the confidence level of a single (ne, ns) co-ordinate for the pass limit. It is found by simulation to be $cl_p = 0.9945$.
- qnbinom(..): The inverse cumulative function of the negative binomial distribution.

The simulation works as follows:

- A large population of limit DUTs with true ER = 0.05 is decided against the pass and fail limits.
- cl_p and d_f are tuned such that CL (95 %) of the population passes and D (5 %) of the population fails.
- A population of Bad DUTs with true ER = M*0.05 is decided against the same pass and fail limits.
- cl_p and d_f are tuned such that CL (95 %) of the population fails and D (5 %) of the population passes.
- The number of DUTs decrease during the simulation, as the decided DUTs leave the population. That number decreases with an approximately exponential characteristics. After 146 bad results all DUTs of the population are decided.

NOTE: The exponential decrease of the population is an optimal design goal for the decision co-ordinates (ne, ns), which can be achieved with other formulas or methods as well.

Annex I (informative): Change history

Date Meeting Toc CR Rev Cat Subject/Comment New version	Change history							
Property Research Researc	Date	Meeting	TDoc	CR	Rev			_
2022-11 RANSE97 R5-226641 - TP to add clause 4 to TS 38 521-5 0.0.0 2022-11 RANSE97 R5-227686 - Text proposal for section 6, 6, 1 and 6, 2, 1 in TS 38, 521-5 0.0.0 2022-11 RANSE97 R5-227886 - Text proposal for section 6, 2, 1 in TS 38, 521-5 0.0.0 2022-13 RANSE98 R5-231738 - Definition of NTN minimum output power test case 6, 3, 1 0.0.1 2023-03 RANSE98 R5-231739 - Definition of NTN minimum output power test case 6, 3, 1 0.0.1 2023-03 RANSE98 R5-231740 - Introduction of new test case 7, 9 Spurious emissions and addition of main structure of section 7, addition of main structure of section 6, addition of main structure of section 8, addition of main structure of section 8, addition of main structure of section 6, addition of sec	2022-11	PAN5#07	P5-226630	_	_	_	TP to add clause 1-3 to TS 38 521-5	
2022-11 RANS#97 R5-226641 - TP to add clause 5 to TS 38.521-5 0.0.0					 			
2022-11 RANS#97 R5-227886 - Text proposal for section 6, 2.1 in TS 38,521-5 0.0.0 2023-03 RANS#98 R5-231738 - Definition of NTN minimum output power test case 6.3.1 0.0.1 2023-03 RANS#98 R5-231739 - Definition of NTN minimum output power test case 6.3.2 0.0.1 2023-03 RANS#98 R5-231740 - Introduction of new test case 7.9 Spurious emissions and 0.0.1 2023-03 RANS#98 R5-231741 - Introduction of new test case 7.9 Spurious emissions and 0.0.1 2023-03 RANS#98 R5-231741 - Introduction of new test case 7.9 Spurious emissions and 0.0.1 2023-03 RANS#98 R5-231742 - Introduction of period section 7 2023-03 RANS#98 R5-231742 - Introduction of period section 7 2023-03 RANS#98 R5-231742 - Introduction of period section 7 2023-03 RANS#98 R5-230877 - Introduction of period dilation performance test cases for NTN 2023-03 RANS#98 R5-230877 - Introduction of formation et section 8.2 2023-03 RANS#98 R5-230878 - Introduction of formation et section 8.2 2023-03 RANS#98 R5-230879 - Introduction of formation et section 9.2 2023-03 RANS#98 R5-23186 - Introduction of formation et section 6.2 2023-03 RANS#98 R5-231867 - Introduction of formation et section 6.2 2023-03 RANS#98 R5-231867 - Introduction of NTN TC 6.3 a on Tx on-off time mask 2023-04 RANS#99 R5-231389 - Introduction of NTN TC 6.3 a on Tx on-off time mask 2023-05 RANS#99 R5-231389 - Introduction of NTN TC 6.3 a on Tx on-off time mask 2023-06 RANS#99 R5-233189 -					<u> </u>			
2022-11 RANS#98 R5-227886 - - Text proposal for section 6.2.2 in TS 38.521-5 0.0.0 2023-03 RANS#98 R5-231739 - - Definition of NTN minimum output power test case 6.3.2 0.0.1 2023-03 RANS#98 R5-231740 - Definition of NTN transmit OFF power test case 6.3.2 0.0.1 2023-03 RANS#98 R5-231740 - Introduction of nemest case 7.8 pytiorius emissions and addition of main structure of section 7. 0.0.1 2023-03 RANS#98 R5-231741 - Introduction of demodulation performance test cases for NTN capable Uses 0.0.1 2023-03 RANS#98 R5-230877 - Introduction of 6.5.3 I for TS38.521-5 0.0.1 2023-03 RANS#98 R5-230878 - Introduction of 6.5.3 I for TS38.521-5 0.0.1 2023-03 RANS#98 R5-231867 - Introduction of 7.1 7.2 and 7.3 for TS38.521-5 0.0.1 2023-03 RANS#98 R5-231867 - Introduction of 6.5.3.1 for TS38.521-5 0.0.1 2023-05 RANS#98 R5-231867 - Intro					 			
2023-03 RANS#98 R5-231739 - Definition of NTN transmit OFF power test case 6.3 2					 			
2023-03 RANS#98 R5-231740 - Definition of NTN transmit OFF power test case 6.3.2 0.0.1								1
2023-03 RANS#98 R5-231740 				-	-	-		
addition of main structure of section 7				-	 	1		1
lest cases for NTN capable Ues							addition of main structure of section 7	
Capable Ues	2023-03	RAN5#98	R5-231741	-	-	-	test cases for NTN capable Ues	0.0.1
2023-03 RANS#98 R5-230878 - - Introduction of 7.1 7.2 and 7.3 for TS38.521-5 0.0.1	2023-03	RAN5#98	R5-231742	-	-	-		0.0.1
2023-03 RANS#98 R5-230878 - - Introduction of 7.1 T.2 and 7.3 for TS38.521-5 0.0.1	2023-03	RAN5#98	R5-230877	-	-	-		0.0.1
2023-03 RANS#98 R5-230879 - - Introduction of 6.5.3 z for TS38.521-5 0.0.1 2023-03 RANS#98 R5-231854 - - Text configurations and requirements for section 6.2.1 and 6.2.2 0.0.1 2023-03 RANS#98 R5-231367 - - Introduction of NTN TC 6.5.2.2 on Spectrum emission mask 0.0.1 2023-03 RANS#98 R5-231369 - - Introduction of NTN TC 6.5.2.2 on Spectrum emission mask 0.0.1 2023-03 RANS#98 R5-231383 - - Introduction of NTN TC 6.5.2.2 on Spectrum emission mask 0.0.1 2023-06 RANS#99 R5-232346 - - Introduction of NTN TC 6.5.2.4 on ACLR 0.0.1 2023-06 RANS#99 R5-2323567 - - Introduction of NTN maximum input level test case 7.4 0.1.0 2023-06 RANS#99 R5-233568 - - - Introduction of referenced Annexes for test case 7.9 Spurious emissions 0.1.0 2023-06 RANS#99 R5-233568 - - - Introduction of NTN AMPR tests 0.1.0 2023-06	2023-03	RAN5#98	R5-230878	-	-	-		0.0.1
2023-03 RAN5#98 R5-231367 - - Text configurations and requirements for section 6.2.1 and 6.2.2	2023-03			-	-	-		
S.22 S.22 S.22 S.22 S.22 S.23 S.23 S.24 S.23 S.24 S.25	2023-03			_	-	-		1
2023-03 RANS#98 R5-231367 - - Introduction of NTN TC 6.3.2 on Spectrum emission mask 0.0.1 2023-03 RANS#98 R5-231368 - - Introduction of NTN TC 6.5.2.2 on Spectrum emission mask 0.0.1 2023-03 RANS#98 R5-231383 - - Introduction of NTN TC 7.6.3 on out of band blocking 0.0.1 2023-06 RANS#99 R5-232366 - - Definition of NTN maximum input level test case 7.4 0.1.0 2023-06 RANS#99 R5-233567 - - Introduction of new test case 7.5 Adjacent channel selectivity 0.1.0 2023-06 RANS#99 R5-233568 - - Introduction of new test case 7.5 Adjacent channel selectivity 0.1.0 2023-06 RANS#99 R5-233568 - - Introduction of new Annexes 0.1.0 2023-06 RANS#99 R5-233568 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RANS#99 R5-233573 - - Introduction of NTN AMPR tests 0.1.0 2023-06 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>6.2.2</td><td></td></td<>							6.2.2	
2023-03 RANS#98 R5-231368 - - Introduction of NTN TC 6.5.2.4 on ACLR 0.0.1 2023-03 RANS#98 R5-231369 - - Introduction of NTN TC 7.6.3 on out of band blocking 0.0.1 2023-06 RANS#99 R5-232346 - - Definition of NTN maximum input level test case 7.4 0.1.0 2023-06 RANS#99 R5-232372 - - Introduction of new test case 7.8 spurious 0.1.0 2023-06 RANS#99 R5-232372 - - Introduction of referenced Annexes for test case 7.9 Spurious 0.1.0 2023-06 RANS#99 R5-233568 - - Introduction of new Annexes 0.1.0 2023-06 RANS#99 R5-233569 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RANS#99 R5-233570 - - Introduction of NTN configured transmission power tests 0.1.0 2023-06 RANS#99 R5-233572 - - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06	2023-03	RAN5#98	R5-231367	_	-	-		0.0.1
2023-03 RANS#98 R5-231389 - - Introduction of NTN TC 6.5.2.4 on ACLR 0.0.1 2023-03 RANS#98 R5-231383 - - Introduction of NTN TC 7.6.3 on out of band blocking 0.0.1 2023-06 RANS#99 R5-232346 - - Definition of NTN maximum input level test case 7.4 0.1.0 2023-06 RANS#99 R5-232372 - - Introduction of new test case 7.5 Adjacent channel selectivity 0.1.0 2023-06 RANS#99 R5-232586 - - Introduction of new Annexes 0.1.0 2023-06 RANS#99 R5-233568 - - Introduction of new Annexes 0.1.0 2023-06 RANS#99 R5-233569 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RANS#99 R5-233570 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RANS#99 R5-233571 - - Updates to NTN TC 6.3.2 on Tx on-off time mask 0.1.0 2023-06 RANS#99 R5-233527<				_	-	-		
2023-03 RAN5#98 R5-231383 - - Introduction of NTN TC 7.6.3 on out of band blocking 0.0.1 2023-06 RAN5#99 R5-232366 - - Definition of NTN maximum input level test case 7.4 0.1.0 2023-06 RAN5#99 R5-233567 - - Introduction of new test case 7.4 dajacent channel selectivity 0.1.0 2023-06 RAN5#99 R5-233568 - - Introduction of referenced Annexes for test case 7.9 Spurious emissions 2023-06 RAN5#99 R5-233568 - - Introduction of NTN configured transmission power tests 0.1.0 2023-06 RAN5#99 R5-233569 - - Introduction of NTN configured transmission power tests 0.1.0 2023-06 RAN5#99 R5-233570 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RAN5#99 R5-233571 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RAN5#99 R5-233571 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.				-	-	-		1
Definition of NTN maximum input level test case 7.4 0.1.0				-	-	-		
2023-06 RAN5#99 R5-233567 - - Introduction of new test case 7.5 Adjacent channel selectivity 0.1.0 2023-06 RAN5#99 R5-232372 - - Correction of referenced Annexes for test case 7.9 Spurious emissions 0.1.0 2023-06 RAN5#99 R5-233568 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RAN5#99 R5-233579 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RAN5#99 R5-233570 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RAN5#99 R5-233570 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RAN5#99 R5-233571 - - Updates to NTN TC 6.3.0 on Tx on-off time mask 0.1.0 2023-06 RAN5#99 R5-233573 - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 0.1.0 2023-09 RAN5#100 R5-235824 - - MU and TT definition for NR NTN Min power and Off power test case 1.0.0 2023-09 </td <td></td> <td></td> <td></td> <td>_</td> <td>† -</td> <td>_</td> <td></td> <td></td>				_	† -	_		
2023-06 RAN5#99 R5-232372 - - Correction of referenced Annexes for test case 7.9 Spurious emissions 0.1.0					-			
2023-06 RAN5#99 R5-233568 - - Introduction of new Annexes 0.1.0 2023-06 RAN5#99 R5-233569 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RAN5#99 R5-232519 - - Introduction of NTN configured transmission power tests 0.1.0 2023-06 RAN5#99 R5-233570 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RAN5#99 R5-233571 - - Updates Eneral SE for NTN 0.1.0 2023-06 RAN5#99 R5-233571 - - Updates to NTN TC 6.3.3 on Tx on-off time mask 0.1.0 2023-06 RAN5#99 R5-233573 - - Updates to NTN TC 6.5.2.4 on ACLR 0.1.0 2023-09 RAN5#100 R5-235824 - - MU and TT definition for NR NTN Min power and Off power test 1.0.0 2023-09 RAN5#100 R5-235825 - - MU and TT definition for NR NTN Maximum Input level test 1.0.0 2023-09 RAN5#100 R5-23586	2023-06				-		Correction of referenced Annexes for test case 7.9 Spurious	
2023-06 RAN5#99 R5-233569 - - Introduction of NTN AMPR tests 0.1.0 2023-06 RAN5#99 R5-232579 - - Introduction of NTN configured transmission power tests 0.1.0 2023-06 RAN5#99 R5-233570 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RAN5#99 R5-233571 - - Updates for NTN TC 6.3.3 on Tx on-off time mask 0.1.0 2023-06 RAN5#99 R5-233572 - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 0.1.0 2023-06 RAN5#99 R5-233573 - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 0.1.0 2023-09 RAN5#100 R5-235824 - - MU and TT definition for NR NTN Min power and Off power test 1.0.0 2023-09 RAN5#100 R5-235825 - - - MU and TT definition for NR NTN Maximum Input level test 1.0.0 2023-09 RAN5#100 R5-23627 - - - NTN AMPR test configurations and requirements		D.4.1.	D= 000=00					
2023-06 RAN5#99 R5-232519 - - Introduction of NTN configured transmission power tests 0.1.0 2023-06 RAN5#99 R5-233570 - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RAN5#99 R5-233571 - - Updates to NTN TC 6.5.2 on Tx on-off time mask 0.1.0 2023-06 RAN5#99 R5-233572 - - Updates to NTN TC 6.5.2 on Spectrum emission mask 0.1.0 2023-06 RAN5#99 R5-233573 - - Updates to NTN TC 6.5.2 on Spectrum emission mask 0.1.0 2023-09 RAN5#100 R5-235824 - - MU and TT definition for NR NTN Min power and Off power test cases 1.0.0 2023-09 RAN5#100 R5-235825 - - MU and TT definition for NR NTN Maximum Input level test case 1.0.0 2023-09 RAN5#100 R5-236286 - - - MU and TT definition for NR NTN Maximum Input level test case 1.0.0 2023-09 RAN5#100 R5-236286 - - - Update Tx Intermodulatio					 	1		
2023-06 RAN5#99 R5-233570 - - - TP to add 2Rx PDSCH mapping type A test case for NTN UE 0.1.0 2023-06 RAN5#99 R5-233158 - - Updates for NTN 0.1.0 2023-06 RAN5#99 R5-233571 - - Updates to NTN TC 6.3.3 on Tx on-off time mask 0.1.0 2023-06 RAN5#99 R5-233573 - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 0.1.0 2023-09 RAN5#100 R5-235824 - - MU and TT definition for NR NTN Min power and Off power test 1.0.0 2023-09 RAN5#100 R5-235825 - - MU and TT definition for NR NTN Maximum Input level test 1.0.0 2023-09 RAN5#100 R5-234627 - - NTN AMPR test configurations and requirements 1.0.0 2023-09 RAN5#100 R5-234628 - - Editorial change to move 6.2.4 in 38.521-5 1.0.0 2023-09 RAN5#100 R5-235826 - - Update Ref sensitivity for NTN 1.0.0 2023-09 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>1</td></td<>				-		-		1
2023-06 RAN5#99 R5-233158 - - - Update General SE for NTN 0.1.0 2023-06 RAN5#99 R5-233571 - - - Updates to NTN TC 6.3.3 on Tx on-off time mask 0.1.0 2023-06 RAN5#99 R5-233573 - - - Updates to NTN TC 6.5.2.4 on ACLR 0.1.0 2023-09 RAN5#100 R5-235824 - - - MU and TT definition for NR NTN Min power and Off power test cases 1.0.0 2023-09 RAN5#100 R5-235825 - - MU and TT definition for NR NTN Maximum Input level test cases 1.0.0 2023-09 RAN5#100 R5-235825 - - NTN AMPR test configurations and requirements 1.0.0 2023-09 RAN5#100 R5-235826 - - Editorial change to move 6.2.4 in 38.521-5 1.0.0 2023-09 RAN5#100 R5-235826 - - Update Ref sensitivity for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - Update TX Intermodulation for NTN 1.0.0 <				-		-		
2023-06 RAN5#99 R5-233571 - - - Updates to NTN TC 6.3.3 on Tx on-off time mask 0.1.0 2023-06 RAN5#99 R5-233572 - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 0.1.0 2023-06 RAN5#99 R5-235824 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 0.1.0 2023-09 RAN5#100 R5-235824 - - MU and TT definition for NR NTN Min power and Off power test cases 1.0.0 2023-09 RAN5#100 R5-235825 - - MU and TT definition for NR NTN Maximum Input level test cases 1.0.0 2023-09 RAN5#100 R5-234627 - - NTN AMPR test configurations and requirements 1.0.0 2023-09 RAN5#100 R5-234628 - - Editorial change to move 6.2.4 in 38.521-5 1.0.0 2023-09 RAN5#100 R5-235866 - - Update Ref sensitivity for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - Update TX Spur co-exist for NTN 1.0.0				-	-	-		
2023-06 RAN5#99 R5-233572 - - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 0.1.0 2023-06 RAN5#99 R5-233573 - - - Updates to NTN TC 6.5.2.4 on ACLR 0.1.0 2023-09 RAN5#100 R5-235824 - - - MU and TT definition for NR NTN Min power and Off power test cases 1.0.0 2023-09 RAN5#100 R5-235825 - - - MU and TT definition for NR NTN Maximum Input level test cases 1.0.0 2023-09 RAN5#100 R5-234627 - - - NTN AMPR test configurations and requirements 1.0.0 2023-09 RAN5#100 R5-235868 - - - Editorial change to move 6.2.4 in 38.521-5 1.0.0 2023-09 RAN5#100 R5-235826 - - - Update Ref sensitivity for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - - Update TX Spur co-exist for NTN 1.0.0 2023-09 RAN5#100 R5-235686 -				-	-	-	'	1
2023-06 RAN5#99 R5-233573 - - - Updates to NTN TC 6.5.2.4 on ACLR 0.1.0 2023-09 RAN5#100 R5-235824 - - - MU and TT definition for NR NTN Min power and Off power test cases 1.0.0 2023-09 RAN5#100 R5-235825 - - - MU and TT definition for NR NTN Maximum Input level test case 1.0.0 2023-09 RAN5#100 R5-234627 - - - NTN AMPR test configurations and requirements 1.0.0 2023-09 RAN5#100 R5-234628 - - Editorial change to move 6.2.4 in 38.521-5 1.0.0 2023-09 RAN5#100 R5-235826 - - Update Ref sensitivity for NTN 1.0.0 2023-09 RAN5#100 R5-235826 - - Update TX Intermodulation for NTN 1.0.0 2023-09 RAN5#100 R5-235826 - - Update TX Spur co-exist for NTN 1.0.0 2023-09 RAN5#100 R5-235826 - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-		
2023-09 RAN5#100 R5-235824 - - - MU and TT definition for NR NTN Min power and Off power test cases 1.0.0				-	-	-		
Cases Cases Cases Cases Cases Cases Cases Case				-	-	-		
Case	2023-09	RAN5#100	R5-235824	-	-	-		1.0.0
2023-09 RAN5#100 R5-234627 - - NTN AMPR test configurations and requirements 1.0.0 2023-09 RAN5#100 R5-234628 - - Editorial change to move 6.2.4 in 38.521-5 1.0.0 2023-09 RAN5#100 R5-235866 - - - Update Ref sensitivity for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - - Update TX Intermodulation for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - - Update TX Spur co-exist for NTN 1.0.0 2023-09 RAN5#100 R5-235456 - - - Clarifications to 38.521-5 1.0.0 2023-09 RAN5#100 R5-235186 - - - Initial conditions update for multiple test cases 1.0.0 2023-09 RAN5#100 R5-235681 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-09 RAN5#101 R5-237834 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.1.0 <td>2023-09</td> <td>RAN5#100</td> <td>R5-235825</td> <td>-</td> <td>-</td> <td>-</td> <td>·</td> <td>1.0.0</td>	2023-09	RAN5#100	R5-235825	-	-	-	·	1.0.0
2023-09 RAN5#100 R5-234628 - - Editorial change to move 6.2.4 in 38.521-5 1.0.0 2023-09 RAN5#100 R5-235866 - - - Update Ref sensitivity for NTN 1.0.0 2023-09 RAN5#100 R5-235826 - - - Update TX Intermodulation for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - - Update TX Spur co-exist for NTN 1.0.0 2023-09 RAN5#100 R5-235456 - - - Clarifications to 38.521-5 1.0.0 2023-09 RAN5#100 R5-235186 - - - Initial conditions update for multiple test cases 1.0.0 2023-09 RAN5#100 R5-235679 - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 2023-09 RAN5#100 R5-235683 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-12 RAN5#101 R5-237834 - - - - Addition of test configuration and erro	2023-00	PAN5#100	P5-23/627	_	<u> </u>	l _		100
2023-09 RAN5#100 R5-235866 - - - Update Ref sensitivity for NTN 1.0.0 2023-09 RAN5#100 R5-235826 - - - Update TX Intermodulation for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - - Update TX Spur co-exist for NTN 1.0.0 2023-09 RAN5#100 R5-235456 - - - Clarifications to 38.521-5 1.0.0 2023-09 RAN5#100 R5-235186 - - Initial conditions update for multiple test cases 1.0.0 2023-09 RAN5#100 R5-235679 - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 2023-09 RAN5#100 R5-235683 - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-12 RAN5#101 R5-237874 - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.1.0 2023-12 RAN5#101 R5-237834 - - - Introduction of test configuration and error correction for 7.9 1.1.0<								
2023-09 RAN5#100 R5-235826 - - - Update TX Intermodulation for NTN 1.0.0 2023-09 RAN5#100 R5-235827 - - - Update TX Spur co-exist for NTN 1.0.0 2023-09 RAN5#100 R5-235456 - - - Clarifications to 38.521-5 1.0.0 2023-09 RAN5#100 R5-235186 - - - Initial conditions update for multiple test cases 1.0.0 2023-09 RAN5#100 R5-235679 - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 2023-09 RAN5#100 R5-235683 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-12 RAN5#101 R5-237874 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.0.0 2023-12 RAN5#101 R5-237834 - - - Addition of test configuration and error correction for 7.5 1.1.0 2023-12 RAN5#101 R5-237836 - - - Introduction of new					<u> </u>			
2023-09 RAN5#100 R5-235827 - - - Update TX Spur co-exist for NTN 1.0.0 2023-09 RAN5#100 R5-235456 - - - Clarifications to 38.521-5 1.0.0 2023-09 RAN5#100 R5-235186 - - - Initial conditions update for multiple test cases 1.0.0 2023-09 RAN5#100 R5-235679 - - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 2023-09 RAN5#100 R5-235683 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-12 RAN5#101 R5-237874 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.0.0 2023-12 RAN5#101 R5-237834 - - - Addition of test configuration and error correction for 7.5 1.1.0 2023-12 RAN5#101 R5-237836 - - - Introduction of new test cases 7.8 Intermodulation characteristics 1.1.0 2023-12 RAN5#101 R5-236147 - - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
2023-09 RAN5#100 R5-235456 - - - Clarifications to 38.521-5 1.0.0 2023-09 RAN5#100 R5-235186 - - - Initial conditions update for multiple test cases 1.0.0 2023-09 RAN5#100 R5-235679 - - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 2023-09 RAN5#100 R5-235683 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-09 RAN5#100 R5-235681 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.0.0 2023-12 RAN5#101 R5-237874 - - - Addition of test configuration and error correction for 7.5 1.1.0 2023-12 RAN5#101 R5-237834 - - - Introduction of new test cases 7.7 Spurious response 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 1.1.0 2023-12 RAN5#101 R5-236147 -								
2023-09 RAN5#100 R5-235186 - - - Initial conditions update for multiple test cases 1.0.0 2023-09 RAN5#100 R5-235679 - - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 2023-09 RAN5#100 R5-235683 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-09 RAN5#100 R5-235681 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.0.0 2023-12 RAN5#101 R5-237874 - - - Addition of test configuration and error correction for 7.5 1.1.0 2023-12 RAN5#101 R5-237834 - - - Introduction of new test cases 7.7 Spurious response 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 1.1.0 2023-12 RAN5#101 R5-236147 - - - Addition of test configuration and error correction for 7.9 1.1.0 Spurious emissions 1.1.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>						1		
2023-09 RAN5#100 R5-235679 - - - Updates to NTN TC 6.3.3 on Tx on-off time mask 1.0.0 2023-09 RAN5#100 R5-235683 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-09 RAN5#100 R5-235681 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.0.0 2023-12 RAN5#101 R5-237874 - - - Addition of test configuration and error correction for 7.5 1.1.0 2023-12 RAN5#101 R5-237834 - - - Introduction of new test cases 7.7 Spurious response 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 1.1.0 2023-12 RAN5#101 R5-236147 - - - Introduction of Annex B.0 1.1.0					 			
2023-09 RAN5#100 R5-235683 - - - Updates to NTN TC 6.5.2.2 on Spectrum emission mask 1.0.0 2023-09 RAN5#100 R5-235681 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.0.0 2023-12 RAN5#101 R5-237874 - - - Addition of test configuration and error correction for 7.5 Adjacent channel selectivity 1.1.0 2023-12 RAN5#101 R5-237834 - - - Introduction of new test cases 7.7 Spurious response 1.1.0 2023-12 RAN5#101 R5-237835 - - - Introduction of new test cases 7.8 Intermodulation characteristics 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 Spurious emissions 1.1.0 2023-12 RAN5#101 R5-236147 - - - Introduction of Annex B.0 1.1.0					1	1		
2023-09 RAN5#100 R5-235681 - - - Updates to NTN TC 6.5.2.4 on ACLR 1.0.0 2023-12 RAN5#101 R5-237874 - - - Addition of test configuration and error correction for 7.5 1.1.0 2023-12 RAN5#101 R5-237834 - - - Introduction of new test cases 7.7 Spurious response 1.1.0 2023-12 RAN5#101 R5-237835 - - - Introduction of new test cases 7.8 Intermodulation characteristics 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 Spurious emissions 1.1.0 2023-12 RAN5#101 R5-236147 - - - Introduction of Annex B.0 1.1.0							'	
2023-12 RAN5#101 R5-237874 - - - Addition of test configuration and error correction for 7.5 Adjacent channel selectivity 1.1.0 2023-12 RAN5#101 R5-237834 - - - Introduction of new test cases 7.7 Spurious response 1.1.0 2023-12 RAN5#101 R5-237835 - - - Introduction of new test cases 7.8 Intermodulation characteristics 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 Spurious emissions 1.1.0 2023-12 RAN5#101 R5-236147 - - - Introduction of Annex B.0 1.1.0								
Adjacent channel selectivity					1	-	'	
2023-12 RAN5#101 R5-237835 - - - Introduction of new test cases 7.8 Intermodulation characteristics 1.1.0 2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 Spurious emissions 1.1.0 2023-12 RAN5#101 R5-236147 - - - Introduction of Annex B.0 1.1.0							Adjacent channel selectivity	
Characteristics Characteristics	2023-12			-	-	-		
2023-12 RAN5#101 R5-237836 - - - Addition of test configuration and error correction for 7.9 Spurious emissions 1.1.0 2023-12 RAN5#101 R5-236147 - - - Introduction of Annex B.0 1.1.0	2023-12	RAN5#101	R5-237835	-	-	-		1.1.0
2023-12 RAN5#101 R5-236147 Introduction of Annex B.0 1.1.0	2023-12	RAN5#101	R5-237836	-	-	-	Addition of test configuration and error correction for 7.9	1.1.0
2002 42 DANESMAN DE 2004 40 Introduction of America D. Observatorial and A	2023-12	RAN5#101	R5-236147	_	 	 -		110
	2023-12	RAN5#101	R5-236148	-	-	 	Introduction of Annex D. Characteristics of the interfering signal	1.1.0

	Change history								
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New version		
2023-12	RAN5#101	R5-236149	-	-	-	Introduction of measurement uncertainties and test tolerances for test cases from 7.5 to 7.9	1.1.0		
2023-12	RAN5#101	R5-236150	-	-	-	Introduction of Annex F.4 Uplink power window	1.1.0		
2023-12	RAN5#101	R5-236151	-	-	-	Introduction of Annex H Statistical Testing	1.1.0		
2023-12	RAN5#101	R5-236291	-	-	-	Further clarification on NR NTN comformance requirement specifications	1.1.0		
2023-12	RAN5#101	R5-237690	-	-	-	Adding Additional Spurious Emission TC for NTN	1.1.0		
2023-12	RAN5#101	R5-237875	-	-	-	Adding Frequency Error TC for NTN	1.1.0		
2023-12	RAN5#101	R5-237864	-	-	-	Core requirements alignment for NR NTN test cases	1.1.0		
2023-12	RAN5#101	R5-237876	-	-	-	Update to Refsens test case 7.3.2 for NTN	1.1.0		
2023-12	RAN5#101	R5-237877	-	-	-	Update to PDSCH demodulation test cases for NTN	1.1.0		
2023-12	RAN#102	RP-233928	-	-	-	presented at RAN#102 for approval	2.0.0		
2023-12	RAN#102	-	-	-	-	put under revision control as v17.0.0 with small editorial changes	17.0.0		

History

	Document history								
V17.0.0	January 2024	Publication							