ETSI TS 138 101-2 V16.4.0 (2020-07)

5G; NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone (3GPP TS 38.101-2 version 16.4.0 Release 16)

Reference

RTS/TSGR-0438101-2vG40

Keywords

5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u>

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx</u>

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2020. All rights reserved.

DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP[™]** and LTE[™] are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M[™]** logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners.

 $\ensuremath{\mathsf{GSM}}\xspace^{\ensuremath{\$}}$ and the GSM logo are trademarks registered and owned by the GSM Association.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intelle	Intellectual Property Rights		
Legal	Legal Notice		
Moda	l verbs terminology	2	
Forew	vord	10	
1	Scope	12	
2	References	12	
3	Definitions, symbols and abbreviations		
3.1	Definitions		
3.2 3.3	Symbols		
4	General	17	
4.1	Relationship between minimum requirements and test requirements		
4.2	Applicability of minimum requirements		
4.3	Specification suffix information		
5	Operating bands and channel arrangement		
5.1	General		
5.2	Operating bands		
5.2A	Operating bands for CA		
5.2A.1			
5.2A.2			
5.2D	Operating bands for UL MIMO		
5.3	UE Channel bandwidth		
5.3.1	General		
5.3.2	Maximum transmission bandwidth configuration		
5.3.3	Minimum guardband and transmission bandwidth configuration		
5.3.4	RB alignment		
5.3A	UE channel bandwidth for CA		
5.3A.1			
5.3A.2	0		
5.3A.3			
5.3A.4			
5.3D	Channel bandwidth for UL MIMO		
5.4	Channel arrangement		
5.4.1 5.4.1.1	Channel spacing for a diagont ND coming		
5.4.1.1	Channel spacing for adjacent NR carriers Channel raster		
5.4.2 5.4.2.1			
5.4.2.1			
5.4.2.2			
5.4.3	Synchronization raster		
5.4.3.1			
5.4.3.2			
5.4.3.3			
5.4A	Channel arrangement for CA.		
5.4A.1	•		
5.5	Configurations		
5.5A	Configurations for CA		
5.5A.1	•		
5.5A.2			
5.5D	Configurations for UL MIMO		
6	Transmitter characteristics		
6.1	General		
		•••••••••••••••••••••••••••••••••••••••	

6.2	Transmitter power	47
6.2.1	UE maximum output power	
6.2.1.0	General	
6.2.1.1	UE maximum output power for power class 1	
6.2.1.2	UE maximum output power for power class 2	
6.2.1.3	UE maximum output power for power class 3	
6.2.1.4	UE maximum output power for power class 4	
6.2.2	UE maximum output power reduction	
6.2.2.1	UE maximum output power reduction for power class 1	
6.2.2.2	UE maximum output power reduction for power class 2	
6.2.2.3	UE maximum output power reduction for power class 3	
6.2.2.4	UE maximum output power reduction for power class 4	
6.2.3	UE maximum output power with additional requirements	
6.2.3.1	General	
6.2.3.2	A-MPR for NS_201	
6.2.3.2.1	A-MPR for NS_201 for power class 1	
6.2.3.2.2	A-MPR for NS_201 for power class 2	
6.2.3.2.3	A-MPR for NS_201 for power class 3	
6.2.3.2.4	A-MPR for NS_201 for power class 4	
6.2.3.3	A-MPR for NS_202	
6.2.3.3.1	A-MPR for NS_202 for power class 1	
6.2.3.3.2	A-MPR for NS_202 for power class 2	
6.2.3.3.3	A-MPR for NS_202 for power class 3	
6.2.3.3.4	A-MPR for NS_202 for power class 4	
6.2.4	Configured transmitted power	
6.2.4 6.2A	Transmitter power for CA	
6.2A		
6.2A.1	UE maximum output power for CA.	
6.2A.2 6.2A.2.1	UE maximum output power reduction for CA	
	General	
6.2A.2.2	Maximum output power reduction for power class 1	
6.2A.2.3	Maximum output power reduction for power class 2	
6.2A.2.4	Maximum output power reduction for power class 3	
6.2A.2.5	Maximum output power reduction for power class 4	
6.2A.3	UE maximum output power with additional requirements for CA	
6.2A.3.1	General	
6.2A.3.2	A-MPR for CA_NS_201	
6.2A.3.2.1	A-MPR for CA_NS_201 for power class 1	
6.2A.3.2.2		
6.2A.3.2.3	A-MPR for CA_NS_201 for power class 3	
6.2A.3.2.4		
6.2A.3.3	A-MPR for CA_NS_202	
6.2A.3.3.1	A-MPR for CA_NS_202 for power class 1	
6.2A.3.3.2		
6.2A.3.3.3		
6.2A.3.3.4	1	
6.2A.4	Configured transmitted power for CA	
	Transmitter power for UL MIMO	
6.2D.1	UE maximum output power for UL MIMO	
6.2D.1.1	UE maximum output power for UL MIMO for power class 1	
6.2D.1.2	UE maximum output power for UL MIMO for power class 2	
6.2D.1.3	UE maximum output power for UL MIMO for power class 3	
6.2D.1.4	UE maximum output power for UL MIMO for power class 4	
6.2D.2	UE maximum output power reduction for modulation / channel bandwidth for UL MIMO	66
6.2D.2.1	UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for	
	power class 1	66
6.2D.2.2	UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for	
	power class 2	66
6.2D.2.3	UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for	
	power class 3	66
6.2D.2.4	UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for	
	power class 4	
6.2D.3	UE maximum output power reduction with additional requirements for UL MIMO	67

6.2D.3.1	UE maximum output power reduction with additional requirements for UL MIMO for power class 1	67
6.2D.3.2	UE maximum output power reduction with additional requirements for UL MIMO for power class 2	
6.2D.3.3	UE maximum output power reduction with additional requirements for UL MIMO for power class 3	
6.2D.3.4	UE maximum output power reduction with additional requirements for UL MIMO for power class 4	
6.2D.4	Configured transmitted power for UL MIMO	
6.3	Output power dynamics	
6.3.1	Minimum output power	
6.3.1.0	General	
6.3.1.1	Minimum output power for power class 1	
6.3.1.2	Minimum output power for power class 2, 3, and 4	
6.3.2	Transmit OFF power	
6.3.3	Transmit ON/OFF time mask	
6.3.3.1	General	
6.3.3.2	General ON/OFF time mask	
6.3.3.3	Transmit power time mask for slot and short or long subslot boundaries	
6.3.3.4	PRACH time mask	
6.3.3.5	Void	70
6.3.3.6	SRS time mask	70
6.3.3.7	PUSCH-PUCCH and PUSCH-SRS time masks	72
6.3.3.8	Transmit power time mask for consecutive slot or long subslot transmission and short subslot	
	transmission boundaries	
6.3.3.9	Transmit power time mask for consecutive short subslot transmissions boundaries	72
6.3.4	Power control	
6.3.4.1	General	73
6.3.4.2	Absolute power tolerance	73
6.3.4.3	Relative power tolerance	74
6.3.4.4	Aggregate power tolerance	75
6.3A	Output power dynamics for CA	
6.3A.1	Minimum output power for CA	
6.3A.1.0	General	
6.3A.1.1	Minimum output power for power class 1	
6.3A.1.2	Minimum output power for power class 2, 3, and 4	
6.3A.2	Transmit OFF power for CA	
6.3A.3	Transmit ON/OFF time mask for CA	
6.3A.4	Power control for CA	
6.3A.4.1	General	
6.3D	Output power dynamics for UL MIMO	
6.3D.1	Minimum output power for UL MIMO	
6.3D.1.1	Minimum output power for UL MIMO for power class 1	
6.3D.1.2 6.3D.2	Minimum output power for UL MIMO for power class 2, 3 and 4	
6.3D.2 6.3D.3	Transmit OFF power for UL MIMO Transmit ON/OFF time mask for UL MIMO	
6.3D.3 6.4	Transmit Signal quality	
6.4.1	Frequency Error	
6.4.2	Transmit modulation quality	
6.4.2.0	General	
6.4.2.1	Error vector magnitude	
6.4.2.2	Carrier leakage	
6.4.2.2.1	General	
6.4.2.2.2	Carrier leakage for power class 1	
6.4.2.2.3	Carrier leakage for power class 2	
6.4.2.2.4	Carrier leakage for power class 3	
6.4.2.2.5	Carrier leakage for power class 4	
6.4.2.3	In-band emissions	
6.4.2.3.1	General	
6.4.2.3.2	In-band emissions for power class 1	
6.4.2.3.3	In-band emissions for power class 2	
6.4.2.3.4	In-band emissions for power class 3	

6.4.2.3.5 In-band emissions for power class 4	83
6.4.2.4 EVM equalizer spectrum flatness	
6.4.2.5 EVM spectral flatness for Pi/2 BPSK modulation	
6.4A Transmit signal quality for CA	
6.4A.1 Frequency error.	
6.4A.2 Transmit modulation quality	
6.4A.2.0 General	
6.4A.2.1 Error Vector magnitude	
6.4A.2.2 Carrier leakage	
6.4A.2.2.1 General	
6.4A.2.2.2 Carrier leakage for power class 1	
6.4A.2.2.3 Carrier leakage for power class 2	
6.4A.2.2.4 Carrier leakage for power class 3	
6.4A.2.2.5 Carrier leakage for power class 4	
6.4A.2.3 Inband emissions	
6.4A.2.3.1 General	
6.4A.2.3.2 Inband emissions for power class 1	
6.4A.2.3.3 Inband emissions for power class 2	
6.4A.2.3.4 Inband emissions for power class 3	
6.4A.2.3.5 Inband emissions for power class 4	
6.4A.2.4 EVM equalizer spectrum flatness	
6.4D Transmit signal quality for UL MIMO	
6.4D.0 General	
6.4D.1 Frequency error for UL MIMO	
6.4D.2 Transmit modulation quality for UL MIMO	
6.4D.3 Time alignment error for UL MIMO	
6.4D.4 Requirements for coherent UL MIMO	
6.5 Output RF spectrum emissions	
6.5.1 Occupied bandwidth	
6.5.2 Out of band emissions	
6.5.2. Out of band emissions	
6.5.2.1 Spectrum emission mask	
6.5.2.2 Void	
6.5.2.3 Adjacent channel leakage ratio	
6.5.3.1 Spurious emission band UE co-existence	
6.5.3.2 Additional spurious emissions	
6.5.3.2.1 General	
6.5.3.2.2 Additional spurious emission requirements for NS_201	
6.5.3.2.3 Additional spurious emission requirements for NS_202	
6.5A Output RF spectrum emissions for CA	
6.5A.1 Occupied bandwidth for CA	
6.5A.2 Out of band emissions	
6.5A.2.1 Spectrum emission mask for CA	
6.5A.2.3 Adjacent channel leakage ratio for CA	
6.5A.2.3 Adjacent channel leakage ratio for CA	
6.5A.3 Spurious emissions for CA	
6.5A.3.1 Spurious emission band UE co-existence for CA	
6.5A.3.2 Additional spurious emissions	
6.5A.3.2.1 General	
6.5A.3.2.2 Additional spurious emission requirements for CA_NS_201	
6.5A.3.2.3 Additional spurious emission requirements for CA_NS_202	
6.5D Output RF spectrum emissions for UL MIMO	
6.5D.1 Occupied bandwidth for UL MIMO	
6.5D.2 Out of band emissions for UL MIMO	
6.5D.3 Spurious emissions for UL MIMO	
6.6 Beam correspondence	
6.6.1 General	
6.6.2 (Void)	
6.6.3 (Void)	
6.6.4 Beam correspondence for power class 3	
6.6.4.1 General	99

6.6.4.2	Beam correspondence tolerance for power class 3	
6.6.4.3	Side Conditions	
6.6.4.3.1	Side Condition for SSB and CSI-RS	
6.6.5	(Void)	
6.6A	Beam correspondence for CA	101
7 R	eceiver characteristics	
7.1	General	
7.2	Diversity characteristics	
7.3	Reference sensitivity	
7.3.1	General	
7.3.2	Reference sensitivity power level	
7.3.2.1	Reference sensitivity power level for power class 1	
7.3.2.2	Reference sensitivity power level for power class 2	
7.3.2.3	Reference sensitivity power level for power class 3	
7.3.2.4	Reference sensitivity power level for power class 4	
7.3.3	Void	
7.3.4	EIS spherical coverage	
7.3.4.3	EIS spherical coverage for power class 3	
7.3A	Reference sensitivity for CA	
7.3A.1	General	
7.3A.2	Reference sensitivity power level for CA	
7.3A.2.1	Intra-band contiguous CA	
7.3D	Reference sensitivity for UL MIMO	
7.4	Maximum input level	
7.4A 7.4A.1	Maximum input level for CA	
7.4A.1 7.4A.2	Maximum input level for Intra-band contiguous CA Maximum input level for Intra-band non-contiguous CA	
7.4A.2 7.4A.3	void	
7.4A.3 7.4D	Maximum input level for UL MIMO	
7.5	Adjacent channel selectivity	
7.5A	Adjacent channel selectivity for CA	
7.5A.1	Adjacent channel selectivity for Intra-band contiguous CA	
7.5A.2	Adjacent channel selectivity for Intra-band non-contiguous CA	
7.5A.3	void	
7.5D	Adjacent channel selectivity for UL MIMO	
7.6	Blocking characteristics	
7.6.1	General	
7.6.2	In-band blocking	
7.6.3	Void	
7.6A	Blocking characteristics for CA	113
7.6A.1	General	113
7.6A.2	In-band blocking	
7.6A.2.2	In-band blocking for Intra-band non-contiguous CA	
7.6A.2.3	void	
7.6D	Blocking characteristics for UL MIMO	
7.7	Void	
7.8	Void	
7.9	Spurious emissions	
7.10	Void	115
Annov	(normative): Measurement channels	114
AIIIICX	(nor mative). Weasurement channels	
A.1 G	eneral	116
	L reference measurement channels	117
A.2.1	General	
A.2.2	Void	
A.2.3	Reference measurement channels for TDD	
A.2.3.1 A.2.3.2	DFT-s-OFDM Pi/2-BPSK DFT-s-OFDM QPSK	
A.2.3.2 A.2.3.3		
A.2.3.3 A.2.3.4	DFT-s-OFDM 16QAM DFT-s-OFDM 64QAM	
n.2.3.4	אין אוע וע-10-6-1 נע	124

A.2.3.		
A.2.3.		
A.2.3.	.7 CP-OFDM 64QAM	
A.3	DL reference measurement channels	
A.3.1	General	
A.3.2		
A.3.3		
A.3.3. A.3.3.		
A.3.3.	1 ~	
A.3.3.	1 4	
A.3.3.		
A.4	Void	
A.5	OFDMA Channel Noise Generator (OCNG)	
A.5.1 A.5.2	OCNG Patterns for FDD OCNG Patterns for TDD	
A.5.2.		
Anne	ex B (informative): Void	
Anno	ex C (normative): Downlink physical channels	1/3
C.1	General	
C.2	Setup	
	-	
C.3	Connection	
C.3.1	Measurement of Receiver Characteristics	
Anne	ex D (normative): Characteristics of the interfering signal	
	General	
D.1		
D.2	Interference signals	144
Anno	ex E (normative): Environmental conditions	145
Anne		
E.1	General	
E.2	Environmental	
E.2.1	Temperature	
E.2.2	Voltage	
E.2.3	Void	
Anne	ex F (normative): Transmit modulation	147
F.1	Measurement Point.	
F.2	Basic Error Vector Magnitude measurement	
F.3	Basic in-band emissions measurement	147
F.4	Modified signal under test	
F.5	Window length	
F.5.1 F.5.2	Timing offset Window length	
F.5.3	Window length for normal CP	
F.5.4	Window length for Extended CP	
F.5.5	Window length for PRACH	
F.6	Averaged EVM	152
	C C	
F.7	Spectrum Flatness	153
Anne	ex G (informative): Void	
Anne	x H (Normative)	155

Modi	fied MPR behavior		
H.1	Indication of modifie	d MPR behavior	155
Anne	ex H (normative):	Modified MPR behavior	
H.1	Indication of modifie	d MPR behavior	156
Anne	ex I (informative):	Void	
Anne	ex J (normative):	UE coordinate system	
J.1	Reference coordinate	system	
J.2	Test conditions and a	ngle definitions	
J.3	DUT positioning guid	delines	
Anne	ex K (informative):	Void	
Anne	ex L (informative):	Change history	
Histo	ry		175

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, modal verbs have the following meanings:

shall indicates a mandatory requirement to do something

shall not indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.

should	indicates a recommendation to do something
should not indicates a recommendation not to do somet	
may	indicates permission to do something
need not	indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.

can	indicates that something is possible
cannot	indicates that something is impossible

The constructions "can" and "cannot" are not substitutes for "may" and "need not".

will	indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not	indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document

3GPP TS 38.101-2 version 16.4.0 Release 16

11

might notindicates a likelihood that something will not happen as a result of action taken by some agency
the behaviour of which is outside the scope of the present document

In addition:

- is (or any other verb in the indicative mood) indicates a statement of fact
- is not (or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

1 Scope

The present document establishes the minimum RF requirements for NR User Equipment (UE) operating on frequency Range 2.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone"
- [3] 3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios"
- [4] Void
- [5] 3GPP TS 38.521-2: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone"
- [6] Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000"
- [7] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain"
- [8] 47 CFR Part 30, "UPPER MICROWAVE FLEXIBLE USE SERVICE, §30.202 Power limits", FCC.
- [9] 3GPP TS 38.211: "NR; Physical channels and modulation".
- [10] 3GPP TS 38.213: "NR; Physical layer procedures for control".
- [11] 3GPP TS 38.215: "NR; Physical layer measurements".
- [12] 3GPP TS 38.133: "NR; Requirements for support of radio resource management".
- [13] 3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
- [14] 3GPP TS 38.306: "NR; User Equipment (UE) radio access capabilities".
- [15] IEEE Std 149: "IEEE Standard Test Procedures for Antennas", IEEE.

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Bidirectional spectrum: UL/DL common spectrum in which the UE supports the configuration of uplink or downlink CCs.

Beam correspondence: the ability of the UE to select a suitable beam for UL transmission based on DL measurements with or without relying on UL beam sweeping.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

EIRP(Link=Link angle, Meas=Link angle): measurement of the UE such that the link angle is aligned with the measurement angle. EIRP (indicator to be measured) can be replaced by EIS, Frequency, EVM, carrier Leakage, Inband eission and OBW.

EIRP(Link=TX beam peak direction, Meas=Link angle): measurement of the EIRP of the UE such that the measurement angle is aligned with the beam peak direction within an acceptable measurement error uncertainty. EIRP (indicator to be measured) can be replaced by Frequency, EVM, carrier Leakage, In-band eission and OBW

EIRP(Link=Spherical coverage grid, Meas=Link angle): measurement of the EIRP spherical coverage of the UE such that the EIRP link and measurement angles are aligned with the directions along the spherical coverage grid within an acceptable measurement error uncertainty. Alternatively, the spherical coverage grid can be replaced by the beam peak search grid as the results from the beam peak search can be re-used for spherical coverage.

EIS (equivalent isotropic sensitivity): sensitivity for an isotropic directivity device equivalent to the sensitivity of the discussed device exposed to an incoming wave from a defined AoA

EIS(Link=RX beam peak direction, Meas=Link angle): measurement of the EIS of the UE such that the measurement angle is aligned with the RX beam peak direction within an acceptable measurement error uncertainty.

NOTE 1: The sensitivity is the minimum received power level at which specific requirement is met.

NOTE 2: Isotropic directivity is equal in all directions (i.e. 0 dBi).

Fallback group: Group of carrier aggregation bandwidth classes for which it is mandatory for a UE to be able to fallback to lower order CA bandwidth class configuration. It is not mandatory for a UE to be able to fallback to lower order CA bandwidth class configuration that belong to a different fallback group

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

Link angle: a DL-signal AoA from the view point of the UE, as described in Annex J. If the beam lock function is used to lock the UE beam(s), the link angle can become any arbitrary AoA once the beam lock has been activated.

Measurement angle: the angle of measurement of the desired metric from the view point of the UE, as described in Annex J

radiated interface boundary: operating band specific radiated requirements reference point where the radiated requirements apply

radiated requirements reference point: for the RF measurement setup, the radiated requirements reference point is located at the centre of the quiet zone. From the UE perspective the reference point is the input of the UE antenna array

RX beam peak direction: direction where the maximum total component of RSRP and thus best total component of EIS is found

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

TX beam peak direction: direction where the maximum total component of EIRP is found

TRP(Link=TX beam peak direction, Meas=TRP grid): measurement of the TRP of the UE such that the measurement angles are aligned with the directions of the TRP grid points within an acceptable measurement uncertainty while the link angle is aligned with the TX beam peak direction

NOTE: For requirements based on EIRP/EIS, the radiated interface boundary is associated to the far-field region

UE transmission bandwidth configuration: Set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE.

Vehicular UE: A UE embedded in a vehicle

3.2 Symbols

For the purposes of the present document, the following symbols apply:

$\Delta EIRP_{BC}$	The beam correspondence tolerance, where $\Delta EIRP_{BC} = EIRP_2 - EIRP_1$
ΔF_{Global}	Granularity of the global frequency raster
ΔF_{Raster}	Band dependent channel raster granularity
Δf_{OOB}	Δ Frequency of Out Of Band emission
$\Delta_{\rm RB}$	The starting frequency offset between the allocated RB and the measured non-allocated RB
ΔR_{IB}	Allowed reference sensitivity relaxation due to support for inter-band CA operation
$\Delta MB_{P,n}$	Allowed relaxation to each, minimum peak EIRP and reference sensitivity due to support for
	multi-band operation, per band in a combination of supported bands
$\Delta MB_{S,n}$	Allowed relaxation to each, EIRP spherical coverage and EIS spherical coverage due to support
	for multi-band operation, per band in a combination of supported bands
BW _{Channel}	Channel bandwidth
BW _{Channel_CA}	Aggregated channel bandwidth, expressed in MHz
BW_{GB}	max(BWGB,Channel(k))
BWGB,Channel(k)	Minimum guard band defined in sub-clause 5.3A.2 of carrier k
BWinterferer	Bandwidth of the interferer
Ceil(x)	Rounding upwards; $ceil(x)$ is the smallest integer such that $ceil(x) \ge x$
EIRP ₁	The measured total EIRP based on the beam the UE chooses autonomously (corresponding beam)
	to transmit in the direction of the incoming DL signal, which is based on beam correspondence
	without relying on UL beam sweeping
EIRP ₂	The measured total EIRP based on the beam yielding highest EIRP in a given direction, which is
	based on beam correspondence with relying on UL beam sweeping
EIRP _{max}	The applicable maximum EIRP as specified in sub-clause 6.2.1
Floor(x)	Rounding downwards; floor(x) is the greatest integer such that floor(x) \leq x
F_center	The center frequency of an allocated block of PRBs
F _C	RF reference frequency for the carrier center on the channel raster, given in table 5.4.2.2-1
$F_{C,block, high}$	Fc of the highest transmitted/received carrier in a sub-block.

3GPP TS 38.101-2 version 16.4.0 Release 16

Fault 1	Fc of the lowest transmitted/received carrier in a sub-block.
F _{C,block, low}	The Fc of the lowest carrier, expressed in MHz.
F _{C, low}	The Fc of the highest carrier, expressed in MHz.
F _{C, high}	
$F_{DL_{low}}$	The lowest frequency of the downlink <i>operating band</i>
F _{DL_high}	The highest frequency of the downlink <i>operating band</i>
F _{edge,block,low}	The lower sub-block edge, where $F_{edge,block,low} = F_{C,block,low} - F_{offset, low}$.
F _{edge,block,high}	The upper sub-block edge, where $F_{edge,block,high} = F_{C,block,high} + F_{offset, high}$.
F _{edge, low}	The lower edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge, low} = F_{C, low} - F_{offset, low}$.
Fedge, high	The upper edge of Aggregated Channel Bandwidth, expressed in MHz. $F_{edge, high} = F_{C, high} + F_{offset, high}$
F	
F _{Interferer}	Frequency of the interferer
F _{Interferer} (offset)	Frequency offset of the interferer (between the center frequency of the interferer and the carrier
	frequency of the carrier measured)
F _{Ioffset}	Frequency offset of the interferer (between the center frequency of the interferer and the closest
	edge of the carrier measured)
Floor(x)	Rounding downwards; floor(x) is the greatest integer such that floor(x) \leq x
FOOB	The boundary between the NR out of band emission and spurious emission domains
F_{REF}	RF reference frequency
$F_{\text{REF-Offs}}$	Offset used for calculating F _{REF}
F_{UL_low}	The lowest frequency of the uplink operating band
F_{UL_high}	The highest frequency of the uplink operating band
F _{UL_Meas}	The sub-carrier frequency for which the equalizer coefficient is evaluated
GB _{Channel}	Minimum guard band defined in sub-clause 5.3.3
L _{CRB}	Transmission bandwidth which represents the length of a contiguous resource block allocation
	expressed in units of resources blocks
L _{CRB,Max}	Maximum number of RB for a given Channel bandwidth and sub-carrier spacing
Max()	The largest of given numbers
Min()	The smallest of given numbers
MPR _{f,c}	Maximum output power reduction for carrier f of serving cell c
MPR _{narrow}	Maximum output power reduction due to narrow PRB allocation
MPR _{WT}	Maximum power reduction due to modulation orders, transmit bandwidth configurations,
	waveform types
<i>n</i> _{PRB}	Physical resource block number
NR _{ACLR}	NR ACLR
N _{RB}	Transmission bandwidth configuration, expressed in units of resource blocks
$N_{RB,low}$	Transmission bandwidth configurations according to Table 5.3.2-1 for the lowest assigned
NT	component carrier in clause 5.3A.1
$N_{RB,high}$	Transmission bandwidth configurations according to Table 5.3.2-1 for the highest assigned
N	component carrier in clause 5.3A.1
N _{REF}	NR Absolute Radio Frequency Channel Number (NR-ARFCN)
N _{REF-Offs}	Offset used for calculating N _{REF} The configured maximum UE output power
P _{CMAX}	The configured maximum UE output power for carrier f of serving cell c
P_{CMAX}, f, c P_{int}	The intermediate power point as defined in table 6.3.4.2-2
P _{Interferer}	Modulated mean power of the interferer
P _{max}	The maximum UE output power as specified in sub-clause 6.2.1
P_{min}	The minimum UE output power as specified in sub-clause 6.3.1
$P-MPR_{f,c}$	The Power Management UE Maximum Power Reduction for carrier f of serving cell c
P _{PowerClass}	Nominal UE power class (i.e., no tolerance) as specified in sub-clause 6.2.1
PowerClass P _{RB}	The transmitted power per allocated RB, measured in dBm
P _{TMAX,f,c}	The measured total radiated power for carrier f of serving cell c
P TMAX,f,c PUMAX	The measured configured maximum UE output power
P UMAX Pw	Power of a wanted DL signal
RB _{start}	Indicates the lowest RB index of transmitted resource blocks
SCS _{low}	SCS for the lowest assigned component carrier in clause 5.3A.1
SCS _{low} SCS _{high}	SCS for the highest assigned component carrier in clause 5.3A.1
SCS_{high} SS_{REF}	SS block reference frequency position
$T(\Delta P)$	The tolerance $T(\Delta P)$ for applicable values of ΔP (values in dB)
TRP_{max}	The maximum TRP for the UE power class as specified in sub-clause $6.2.1$
• • • • max	The maximum free for the OL power class as specified in sub-clause 0.2.1

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ACLR	Adjacent Channel Leakage Ratio
ACS	Adjacent Channel Selectivity
A-MPR	Additional Maximum Power Reduction
AoA	Angle of Arrival
	6
BCS	Bandwidth Combination Set
BPSK	Binary Phase-Shift Keying
BS	Base Station
BW	Bandwidth
BWP	Bandwidth Part
CA	Carrier aggregation
CABW	Cumulative Aggregated Channel Bandwidth
CA_nX-nY	Inter-band CA of component carrier(s) in one sub-block within Band X and component carrier(s)
	in one sub-block within Band Y where X and Y are the applicable NR operating band
CC	Component carrier
CDF	Cumulative Distribution Function
CP-OFDM	Cyclic Prefix-OFDM
CW	Continuous Wave
DFT-s-OFDM	Discrete Fourier Transform-spread-OFDM
DM-RS	Demodulation Reference Signal
DTX	Discontinuous Transmission
EIRP	Effective Isotropic Radiated Power
EIS	Effective Isotropic Sensitivity
EVM	Error Vector Magnitude
FR	Frequency Range
FWA	Fixed Wireless Access
GSCN	Global Synchronization Channel Number
IBB	In-band Blocking
IDFT	Inverse Discrete Fourier Transformation
ITU-R	Radiocommunication Sector of the International Telecommunication Union
MBW	Measurement bandwidth defined for the protected band
MPR	Allowed maximum power reduction
NR	New Radio
NR-ARFCN	NR Absolute Radio Frequency Channel Number
OCNG	OFDMA Channel Noise Generator
OOB	Out-of-band
OTA	Over The Air
P-MPR	Power Management Maximum Power Reduction
PRB	Physical Resource Block
QAM	Quadrature Amplitude Modulation
RF	Radio Frequency
REFSENS	Reference Sensitivity
RIB	Radiated Interface Boundary
RMS	Root Mean Square (value)
RSRP	Reference Signal Receiving Power
Rx	Receiver
SCS	Subcarrier spacing
SEM	Spectrum Emission Mask
SRS	Sounding Reference Symbol
SS	Synchronization Symbol
TPC	Transimission Power Control
TRP	Total Radiated Power
Tx	Transmitter
UE	User Equipment
UL MIMO	Uplink Multiple Antenna transmission
-	

4 General

4.1 Relationship between minimum requirements and test requirements

The present document is a Single-RAT specification for NR UE, covering RF characteristics and minimum performance requirements. Conformance to the present specification is demonstrated by fulfilling the test requirements specified in the conformance specification 3GPP TS 38.521-2 [5].

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 38.521-2 [5] defines test tolerances. These test tolerances are individually calculated for each test. The test tolerances are used to relax the minimum requirements in this specification to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined in 3GPP TS 38.521-2 [5].

4.2 Applicability of minimum requirements

- a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal
- d) All the requirements for intra-band contiguous and non-contiguous CA apply under the assumption of the same slot format indicated by *TDD-UL-DL-ConfigurationCommon and TDD-UL-DL-ConfigurationDedicated* in the PCell and SCells for NR SA.

A terminal which supports CA or DC configurations, which include FR2 intra-band CA combinations with multiple subblocks, where at least one of the subblocks consists of a contiguous CA combination, is not required to support all possible fallback combinations but can directly fall back to a single FR2 carrier. Deactivating carriers within the CA or DC combination is still possible.

4.3 Specification suffix information

Unless stated otherwise the following suffixes are used for indicating at 2nd level clause, shown in Table 4.3-1.

С	lause suffix	Variant
	None	Single Carrier
	А	Carrier Aggregation (CA)
	В	Dual-Connectivity (DC)
	С	Supplement Uplink (SUL)
D		UL MIMO
NOTE:	or spatial UL MIMC both kinds of UL M	cification represents either polarized UL MIMO D. RF requirements are same. If UE supports IMO, then RF requirements only need to be er polarized or spatial UL MIMO.

Table 4.3-1: Definition of suffixes

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to this version of the specification are identified as described in Table 5.1-1.

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7125 MHz
FR2	24250 MHz – 52600 MHz

Table 5.1-1: Definition of frequency ranges

The present specification covers FR2 operating bands.

5.2 Operating bands

NR is designed to operate in the FR2 operating bands defined in Table 5.2-1.

Table 5.2-1: NR operating bands in FR2

Operating Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive	Duplex Mode
	FuL_low – FuL_high	F _{DL_low} – F _{DL_high}	
n257	26500 MHz – 29500 MHz	26500 MHz – 29500 MHz	TDD
n258	24250 MHz – 27500 MHz	24250 MHz – 27500 MHz	TDD
n259	39500 MHz – 43500 MHz	39500 MHz – 43500 MHz	TDD
n260	37000 MHz – 40000 MHz	37000 MHz – 40000 MHz	TDD
n261	27500 MHz – 28350 MHz	27500 MHz – 28350 MHz	TDD

5.2A Operating bands for CA

5.2A.1 Intra-band CA

NR intra-band contiguous carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1, where all operating bands are within FR2.

Table 5.2A.1-1: Intra-band co	ontiguous CA	operating bands in FR2
-------------------------------	--------------	------------------------

NR CA Band	NR Band (Table 5.2-1)
CA_n257	n257
CA_n258	n258
CA_n259	n259
CA_n260	n260
CA_n261	n261

5.2A.2 Void

5.2D Operating bands for UL MIMO

NR UL MIMO is designed to operate in the operating bands defined in Table 5.2D-1.

Table 5.2D-1: NR UL MIMO operating bands

UL MIMO operating band (Table 5.2-1)			
n257			
n258			
n259			
n260			
n261			

5.3 UE Channel bandwidth

5.3.1 General

The UE channel bandwidth supports a single NR RF carrier in the uplink or downlink at the UE. From a BS perspective, different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. Transmission of multiple carriers to the same UE (CA) or multiple carriers to different UEs within the BS channel bandwidth can be supported.

From a UE perspective, the UE is configured with one or more BWP / carriers, each with its own UE channel bandwidth. The UE does not need to be aware of the BS channel bandwidth or how the BS allocates bandwidth to different UEs.

The placement of the UE channel bandwidth for each UE carrier is flexible but can only be completely within the BS channel bandwidth.

The relationship between the channel bandwidth, the guardband and the transmission bandwidth configuration is shown in Figure 5.3.1-1.

Figure 5.3.1-1: Definition of channel bandwidth and transmission bandwidth configuration for one NR channel

5.3.2 Maximum transmission bandwidth configuration

The maximum transmission bandwidth configuration N_{RB} for each UE channel bandwidth and subcarrier spacing is specified in Table 5.3.2-1

SCS (kHz)	50 MHz 100 MHz 2		200 MHz	400 MHz
	Nrb	Nrb	Nrb	N _{RB}
60	66	132	264	N.A
120	32	66	132	264

Table 5.3.2-1: Maximum transmission bandwidth configuration $N_{\mbox{\scriptsize RB}}$

5.3.3 Minimum guardband and transmission bandwidth configuration

The minimum guardband for each UE channel bandwidth and SCS is specified in Table 5.3.3-1

Table 5.3.3-1: Minimum guardband for each UE channel bandwidth and SCS (kHz)

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
60	1210	2450	4930	N. A
120	1900	2420	4900	9860

NOTE: The minimum guardbands have been calculated using the following equation: $(BW_{Channel} \times 1000 \text{ (kHz)} - N_{RB} \times SCS \times 12) / 2 - SCS/2$, where N_{RB} are from Table 5.3.2-1.

The minimum guardband of receiving BS SCS 240 kHz SS/PBCH block for each UE channel bandwidth is specified in table 5.3.3-2 for FR2.

Table: 5.3.3-2: Minimum guardband (kHz) of SCS 240 kHz SS/PBCH block

SCS (kHz)	100 MHz	200 MHz	400 MHz
240	3800	7720	15560

NOTE: The minimum guardband in Table 5.3.3-2 is applicable only when the SCS 240 kHz SS/PBCH block is received adjacent to the edge of the UE channel bandwidth within which the SS/PBCH block is located.

Figure 5.3.3-1: Void

The number of RBs configured in any channel bandwidth shall ensure that the minimum guardband specified in this clause is met.

Figure 5.3.3-2 UE PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol due to BS transmission of SSB, the minimum guardband on each side of the carrier is the guardband applied at the configured channel bandwidth for the numerology that is transmitted immediately adjacent to the guard band.

If multiple numerologies are multiplexed in the same symbol and the UE channel bandwidth is > 200 MHz, the minimum guardband applied adjacent to 60 kHz SCS shall be the same as the minimum guardband defined for 120 kHz SCS for the same UE channel bandwidth.

Figure 5.3.3-3 Guard band definition when transmitting multiple numerologies

Note: Figure 5.3.3-3 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

5.3.4 RB alignment

For each numerology, its common resource blocks are specified in Clause 4.4.4.3 in [9], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology. The *UE transmission bandwidth configuration* is indicated by the higher layer parameter *carrierBandwidth* [13] and will fulfil the minimum UE guardband requirement specified in Clause 5.3.3.

5.3.5 Channel bandwidth per operating band

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths. The channel bandwidths are specified for both the Tx and Rx path.

Operating band / SCS / UE channel bandwidth						
Operating band	SCS kHz	50 MHz	100 MHz	200 MHz	400 ¹ MHz	
n257	60	Yes	Yes	Yes		
11257	120	Yes	Yes	Yes	Yes	
n258	60	Yes	Yes	Yes		
11200	120	Yes	Yes	Yes	Yes	
n259	60	Yes	Yes	Yes		
1259	120	Yes	Yes	Yes	Yes	
n260	60	Yes	Yes	Yes		
11200	120	Yes	Yes	Yes	Yes	
n261	60	Yes	Yes	Yes		
11201	120	Yes	Yes	Yes	Yes	
NOTE 1: This UE channel bandwidth is optional in this release of the specification.						

Table 5.3.5-1: Channel bandwidths for each NR band

5.3A UE channel bandwidth for CA

5.3A.1 General

5.3A.2 Minimum guardband and transmission bandwidth configuration for CA

For intra-band contiguous carrier aggregation, *Aggregated Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.2-1.

Figure 5.3A.2-1: Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The aggregated channel bandwidth, BW_{Channel_CA}, is defined as

$$BW_{Channel_CA} = F_{edge,high} - F_{edge,low}$$
 (MHz).

The lower bandwidth edge $F_{edge, low}$ and the upper bandwidth edge $F_{edge, high}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

 $F_{edge,low} = F_{C,low} - F_{offset,low}$

$$F_{edge,high} = F_{C,high} + F_{offset,high}$$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$F_{\text{offset,low}} = (N_{\text{RB,low}} * 12 + 1) * \text{SCS}_{\text{low}} / 2 + BW_{\text{GB}} (\text{MHz})$$
$$F_{\text{offset,high}} = (N_{\text{RB,high}} * 12 - 1) * \text{SCS}_{\text{high}} / 2 + BW_{\text{GB}} (\text{MHz})$$

 $BW_{GB} = max(BW_{GB,Channel(k)})$

 $BW_{GB,Channel(k)}$ is the minimum guard band defined in sub-clause 5.3.3 of carrier k, while $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier, SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier respectively.

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.3A.2-2.

Figure 5.3A.2-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

 $F_{edge,block, low} = F_{C,block,low} - F_{offset, low}$

The upper sub-block edge of the Sub-block Bandwidth is defined as

 $F_{edge,block,high} = F_{C,block,high} + F_{offset, high}$

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

 $BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} (MHz)$

The lower and upper frequency offsets F_{offset,block,low} and F_{offset,block,high} depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$\begin{split} F_{offset,block,low} &= (N_{RB,low}*12+1)*SCS_{low}/2 + BW_{GB} \ (MHz) \\ F_{offset,block,high} &= (N_{RB,high}*12-1)*SCS_{high}/2 + BW_{GB} \ (MHz) \\ BW_{GB} &= max(BW_{GB,Channel(k)}) \end{split}$$

where $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier within a sub-block, respectively. $BW_{GB,Channel(k)}$ is the minimum guard band defined in sub-clause 5.3.3 of carrier k within a sub-block.

The sub-block gap size between two consecutive sub-blocks W_{gap} is defined as

 $W_{gap} = F_{edge,block n+1,low} - F_{edge,block n,high} (MHz)$

5.3A.3 RB alignment with different numerologies for CA

5.3A.4 UE channel bandwidth per operating band for CA

For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class with associated bandwidth combination sets specified in clause 5.5A.1. For each carrier aggregation configuration, requirements are specified for all aggregated channel bandwidths contained in a bandwidth combination set, UE can indicate support of several bandwidth combination sets per carrier aggregation configuration. The requirements are applicable only when Uplink CCs are configured within the frequency range between lower edge of lowest downlink component carrier and upper edge of highest downlink component carrier.

For intra-band non-contiguous downlink carrier aggregation, a carrier aggregation configuration is a single operating band supporting two or more sub-blocks, each supporting a carrier aggregation bandwidth class. The requirements are applicable only when Uplink CCs are configured within the frequency range between lower edge of lowest downlink component carrier and upper edge of highest downlink component carrier.

Frequency separation class (Fs) specified in Table 5.3A.4-2 indicates the maximum frequency span between lower edge of lowest component carrier and upper edge of highest component carrier that UE can support per band in downlink or uplink (DL Fs or UL Fs) respectively in non-contiguous intra-band operation within the bidirectional spectrum.

The DL-only frequency spectrum is the width of UE frequency spectrum available to network to configure DL CCs only, and it extends on one-side of the bidirectional spectrum in contiguous manner with no frequency gap between the two. Frequency separation class for DL-only spectrum (Fsd) specified in Table 5.3A.4-3 and is declared per band. The frequency separation class for DL-only spectrum (Fsd) can be equal but not larger than the frequency separation (DL Fs). The combined downlink spectrum (DL Fs + Fsd) cannot exceed 2400 MHz. A UE may configure DL-only spectrum only if the combined downlink spectrum (DL Fs + Fsd) exceeds 1400 MHz.

For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class.

NR CA bandwidth class	Aggregated channel bandwidth	Number of contiguous CC	Fallback group	
А	BW _{Channel} ≤ 400 MHz	1	1,2,3,4	
В	400 MHz < BW _{Channel_CA} ≤ 800 MHz	2	4	
С	800 MHz < BW _{Channel_CA} ≤ 1200 MHz	3	I	
D	200 MHz < BW _{Channel_CA} ≤ 400 MHz	2		
Е	400 MHz < BW _{Channel_CA} ≤ 600 MHz	3	2	
F	600 MHz < BW _{Channel_CA} ≤ 800 MHz	4		
G	100 MHz < BW _{Channel_CA} ≤ 200 MHz	2		
Н	200 MHz < BW _{Channel_CA} ≤ 300 MHz	3		
	300 MHz < BW _{Channel_CA} ≤ 400 MHz	4		
J	400 MHz < BW _{Channel_CA} ≤ 500 MHz	5	3	
К	500 MHz < BW _{Channel_CA} ≤ 600 MHz	6		
L	600 MHz < BW _{Channel_CA} ≤ 700 MHz	7		
Μ	700 MHz < BW _{Channel_CA} ≤ 800 MHz	8		
0	100 MHz ≤ BW _{Channel_CA} ≤ 200 MHz	2		
Р	150 MHz ≤ BW _{Channel_CA} ≤ 300 MHz	3	4	
Q	200 MHz ≤ BW _{Channel_CA} ≤ 400 MHz	4		
	pported component carrier bandwidths for fa Hz and 100 MHz respectively except for CA b		re 400 MHz, 200	
	ry for a UE to be able to fallback to lower ord			
fallback group. It is not mandatory for a UE to be able to fallback to lower order CA bandwidth class				
configuration	that belong to a different fallback group.			

Table 5.3A.4-1: CA bandwidth classes

Frequency separation class	Max. allowed frequency separation (Fs)
I	800 MHz
II	1200 MHz
III	1400 MHz
IV	1000 MHz
V	1600 MHz
VI	1800 MHz
VII	2000 MHz
VIII	2200 MHz
IX	2400 MHz
NOTE 1: Fs values larger than 1- downlink frequency separation.	400 MHz apply only to

Table 5.3A.4-2: Frequency separation classes for non-contiguous intra-band operation

Frequency separation class	Max. allowed frequency separation (Fsd)
I	200 MHz
II	400 MHz
III	600 MHz
IV	800 MHz
V	1000 MHz
VI	1200 MHz

5.3D Channel bandwidth for UL MIMO

The requirements specified in clause 5.3 are applicable to UE supporting UL MIMO.

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent NR carriers is defined as following:

For NR operating bands with 60 kHz channel raster,

- Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-20 \text{ kHz}, 0 \text{ kHz}, 20 \text{ kHz}\}$ for ΔF_{Raster} equals to 60 kHz
- Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-40 \text{ kHz}, 0 \text{ kHz}, 40 \text{ kHz}\}$ for ΔF_{Raster} equals to 120 kHz

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency raster defines a set of RF reference frequencies F_{REF} . The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements.

The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequency is designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range [2016667...3279165] on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in table 5.4.2.1-1 and N_{REF} is the NR-ARFCN

 $F_{REF} = F_{REF\text{-}Offs} + \Delta F_{Global} (N_{REF} - N_{REF\text{-}Offs})$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF _{Global} (kHz)	FREF-Offs [MHz]	NREF-Offs	Range of NREF
24250 - 100000	60	24250.08	2016667	2016667 - 3279165

The *channel raster* defines a subset of *RF reference frequencies* that can be used to identify the RF channel position in the uplink and downlink. The *RF reference frequency* for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity ΔF_{Raster} , which may be equal to or larger than ΔF_{Global} .

The mapping between the channel raster and corresponding resource element is given in Clause 5.4.2.2. The applicable entries for each operating band are defined in clause 5.4.2.3

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on channel raster and the corresponding resource element is given in Table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the UE.

Table 5.4.2.2-1: Channel raster to resource element mapping

	$N_{RB} \mod 2 = 0$	$N_{RB} \mod 2 = 1$
Resource element index k	0	6
Physical resource block number <i>n_{PRB}</i>	$n_{\rm PRB} = \left[\frac{N_{\rm RB}}{2}\right]$	$n_{\rm PRB} = \left\lfloor \frac{N_{\rm RB}}{2} \right\rfloor$

k, n_{RB} , N_{RB} are as defined in TS 38.211 [9].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in clause 5.4.2.2.

- For NR operating bands with 60 kHz channel raster above 24 GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1,2\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 is given as $\langle I \rangle$.
- In frequency bands with two ΔF_{Raster} , the higher ΔF_{Raster} applies to channels using only the SCS that equals the higher ΔF_{Raster} and the SSB SCS that is equal to or larger than the higher ΔF_{Raster} .

Operating Band	ΔF _{Raster} (kHz)	Uplink and Downlink Range of N _{REF} (First – <step size=""> – Last)</step>
n257	60	2054166 - <1> - 2104165
	120	2054167 - <2> - 2104165
n258	60	2016667 - <1> - 2070832
	120	2016667 - <2> - 2070831
n259	60	2270832 - <1> - 2337499
	120	2270832-<2>-2337499
n260	60	2229166 - <1> - 2279165
	120	2229167 - <2> - 2279165
n261	60	2070833 - <1> - 2084999
	120	2070833 - <2> - 2084999

Table 5.4.2.3-1: Applicable NR-ARFCN per operating band

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in Table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in clause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block is defined separately for each band.

Frequency range	SS block frequency position SS _{REF}	GSCN	Range of GSCN
24250 – 100000 MHz	24250.08 MHz + N * 17.28 MHz, N = 0:4383	22256 + N	22256 – 26639

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in Table 5.4.3.2-1.

Table 5.4.3.2-1: Synchronization raster to SS block resource element mapping

Resource element index k	120

k is the subcarrier number of SS/PBCH block defined in TS 38.211 clause 7.4.3.1 [9].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is give in Table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in Table 5.4.3.3-1.

Table 5.4.3.3-1: Applicable SS r	Table 5.4.3.3-1: Applicable SS r	Table 5.4.3.3-1: Applicable SS r	Table 5.4.3.3-1: Applicable SS r
Table 5.4.3.3-1:	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
Applicable SS r	SS r	SS r	SS r
	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
	SS r	SS r	SS r
Table 5.4.3.3-1:	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
Applicable SS r	SS r	SS r	SS r
	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
	SS r	SS r	SS r
Table 5.4.3.3-1:	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
Applicable SS r	SS r	SS r	SS r
	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
	SS r	SS r	SS r
Table 5.4.3.3-1:	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
Applicable SS r	SS r	SS r	SS r
	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
	SS r	SS r	SS r
Table 5.4.3.3-1:	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
Applicable SS r	SS r	SS r	SS r
	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable	Table 5.4.3.3-1: Applicable
	SS r	SS r	SS r

Table 5.4.3.3-1: Applicable SS raster entries per operating band

5.4A Channel arrangement for CA

5.4A.1 Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent NR component carriers is defined as the following unless stated otherwise:

For NR operating bands with 60kHz channel raster:

Nominal channel spacing =
$$\left| \frac{BW_{Channel\,(1)} + BW_{Channel\,(2)} - 2 \left| GB_{Channel\,(1)} - GB_{Channel\,(2)} \right|}{0.06 * 2^{n} [MHz]} \right| 0.06 * 2^{n} [MHz]$$

with

$$n=\mu_0-2$$

where BW_{Channel(1)} and BW_{Channel(2)} are the channel bandwidths of the two respective NR component carriers according to Table 5.3.2-1 with values in MHz, μ_0 is the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1, and *GB_{Channel(i)}* is the minimum guard band for channel bandwidth *i* according to Table 5.3.3-1 for the said μ value, with μ as defined in TS 38.211 [9].

The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation, the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this clause.

5.5 Configurations

5.5A Configurations for CA

5.5A.1 Configurations for intra-band contiguous CA

Table 5.5A.1-1: NR CA configurations, bandwidth combination sets, and fallback group defined for intra-band contiguous CA

			NR CA co	onfiguration /	Bandwidth co	mbination se	t / Fallback g	roup				
NR CA configuration	Uplink CA configurations	BW _{Channel} (MHz)	Maximum aggregated BW (MHz)	BCS	Fallback group							
CA_n257B	CA_n257B	50, 100, 200, 400	400							800	0	1
CA_n257C	CA_n257B	50, 100, 200, 400	400	400						1200	0	1
CA_n257D	CA_n257D	50, 100, 200	200							400	0	
CA_n257E	CA_n257E	50, 100, 200	200	200						600	0	2
CA_n257F	CA_n257F	50, 100, 200	200	200	200					800	0	
CA_n257G	CA_n257G	50, 100	100							200	0	
CA_n257H	CA_n257G CA_n257H	50, 100	100	100						300	0	
CA_n257I	CA_n257G CA_n257H CA_n257I	50, 100	100	100	100					400	0	
CA_n257J	CA_n257G CA_n257H CA_n257I CA_n257J	50, 100	100	100	100	100				500	0	3
CA_n257K	CA_n257G CA_n257H CA_n257I CA_n257J CA_n257K	50, 100	100	100	100	100	100			600	0	

			NR CA co	onfiguration /	Bandwidth co	mbination se	t / Fallback g	roup				
NR CA configuration	Uplink CA configurations	BW _{Channel} (MHz)	Maximum aggregated BW (MHz)	BCS	Fallback group							
CA_n257L	CA_n257G CA_n257H CA_n257I CA_n257J CA_n257K CA_n257L	50, 100	100	100	100	100	100	100		700	0	
CA_n257M	CA_n257G CA_n257H CA_n257I CA_n257J CA_n257K CA_n257L CA_n257M	50, 100	100	100	100	100	100	100	100	800	0	
CA_n258B	CA_n258A CA_n258B	50, 100, 200, 400	400							800	0	
CA_n258C	CA_n258A CA_n258B CA_n258B CA_n258C	50, 100, 200, 400	400	400						1200	0	1
CA_n258D	CA_n258A CA_n258D	50, 100, 200	200							400	0	
CA_n258E	CA_n258A CA_n258D CA_n258E	50, 100, 200	200	200						600	0	2
CA_n258F	CA_n258A CA_n258D CA_n258E CA_n258F	50, 100, 200	200	200	200					800	0	
CA_n258G	CA_n258A CA_n258G	50, 100	100							200	0	
CA_n258H	CA_n258A CA_n258G CA_n258H	50, 100	100	100						300	0	
CA_n258I	CA_n258A CA_n258G CA_n258H CA_n258I	50, 100	100	100	100					400	0	3
CA_n258J	CA_n258A CA_n258G CA_n258H CA_n258I CA_n258J	50, 100	100	100	100	100				500	0	

3GPP TS 38.101-2 version 16.4.0 Release 16

ETSI TS 138 101-2 V16.4.0 (2020-07)

			NR CA co	onfiguration /	Bandwidth co	mbination se	t / Fallback g	roup				
NR CA configuration	Uplink CA configurations	BW _{Channel} (MHz)	Maximum aggregated BW (MHz)	BCS	Fallback group							
CA_n258K	CA_n258A CA_n258G CA_n258H CA_n258I CA_n258J CA_n258K	50, 100	100	100	100	100	100			600	0	
CA_n258L	CA_n258A CA_n258G CA_n258H CA_n258I CA_n258J CA_n258K CA_n258L	50, 100	100	100	100	100	100	100		700	0	
CA_n258M	CA_n258A CA_n258G CA_n258H CA_n258I CA_n258J CA_n258K CA_n258L CA_n258L CA_n258M	50, 100	100	100	100	100	100	100	100	800	0	

			NR CA co	onfiguration /	Bandwidth co	mbination se	t / Fallback g	roup				
NR CA configuration	Uplink CA configurations	BW _{Channel} (MHz)	Maximum aggregated BW (MHz)	BCS	Fallback group							
CA_n259B	CA_n259B	50, 100, 200, 400	400							800	0	
CA_n259C	CA_n259B	50, 100, 200, 400	400	400						1200	0	
CA_n259G	CA_n259G	50, 100	100							200	0	
CA_n259H	CA_n259G CA_n259H	50, 100	100	100						300	0	
CA_n259I	CA_n259G CA_n259H CA_n259I	50, 100	100	100	100					400	0	
CA_n259J	CA_n259G CA_n259H CA_n259I CA_n259J	50, 100	100	100	100	100				500	0	
CA_n259K	CA_n259G CA_n259H CA_n259I CA_n259J CA_n259J CA_n259K	50, 100	100	100	100	100	100			600	0	3
CA_n259L	CA_n259G CA_n259H CA_n259I CA_n259J CA_n259K CA_n259L	50, 100	100	100	100	100	100	100		700	0	
CA_n259M	CA_n259G CA_n259H CA_n259I CA_n259J CA_n259K CA_n259L CA_n259L CA_n259M	50, 100	100	100	100	100	100	100	100	800	0	
CA_n260B	CA_n260B	50, 100, 200, 400	400							800	0	4
CA_n260C	CA_n260B	50, 100, 200, 400	400	400						1200	0	1
CA_n260D	CA_n260D	50, 100, 200	200							400	0	
CA_n260E	CA_n260E	50, 100, 200	200	200						600	0	2
CA_n260F	CA_n260F	50, 100, 200	200	200	200					800	0	

			NR CA co	onfiguration /	Bandwidth co	mbination se	t / Fallback g	roup				
NR CA configuration	Uplink CA configurations	BW _{Channel} (MHz)	Maximum aggregated BW (MHz)	BCS	Fallback group							
CA_n260G	CA_n260G	50, 100	100							200	0	
CA_n260H	CA_n260G CA_n260H	50, 100	100	100						300	0	
CA_n260I	CA_n260G CA_n260H CA_n260I	50, 100	100	100	100					400	0	
CA_n260J	CA_n260G CA_n260H CA_n260I CA_n260J	50, 100	100	100	100	100				500	0	
CA_n260K	CA_n260G CA_n260H CA_n260I CA_n260I CA_n260K	50, 100	100	100	100	100	100			600	0	3
CA_n260L	CA_n260G CA_n260H CA_n260I CA_n260I CA_n260L	50, 100	100	100	100	100	100	100		700	0	
CA_n260M	CA_n260G CA_n260H CA_n260I CA_n260I CA_n260M	50, 100	100	100	100	100	100	100	100	800	0	
CA_n260O	CA_n260O	50, 100	50, 100							200	0	
CA_n260P	CA_n260P	50, 100	50, 100	50, 100						300	0	4
CA_n260Q	CA_n260Q	50, 100	50, 100,	50, 100	50, 100					400	0	
CA_n261B	CA_n261B	50, 100, 200, 400	400							800	0	1
CA_n261C	CA_n261B	50	400	400						850 ¹	0	
CA_n261D	CA_n261D	50, 100, 200	200							400	0	
CA_n261E	CA_n261E	50, 100, 200	200	200						600	0	2
CA_n261F	CA_n261F	50, 100, 200	200	200	200					800	0	
CA_n261G	CA_n261G	100	50, 100							200	0	
_ CA_n261H	 CA_n261G CA_n261H	100	100	50, 100						300	0	
CA_n261I	CA_n261G CA_n261H CA_n261I	50, 100	100	100	100					400	0	3

			NR CA co	nfiguration /	Bandwidth co	mbination se	t / Fallback g	roup				
NR CA configuration	Uplink CA configurations	BW _{Channel} (MHz)	Maximum aggregated BW (MHz)	BCS	Fallback group							
CA_n261J	CA_n261G CA_n261H CA_n261ICA_n261J	50, 100	100	100	100	100				500	0	
CA_n261K	CA_n261G CA_n261H CA_n261I CA_n261K	50, 100	100	100	100	100	100			600	0	
CA_n261L	CA_n261G CA_n261H CA_n261I CA_n261L	50, 100	100	100	100	100	100	100		700	0	
CA_n261M	CA_n261G CA_n261H CA_n261I CA_n261M	50, 100	100	100	100	100	100	100	100	800	0	
CA_n261O	CA_n261O	50, 100	50, 100							200	0	
CA_n261P	CA_n261P	50, 100	50, 100	50, 100						300	0	4
CA_n261Q	CA_n261Q	50, 100	50, 100,	50, 100	50, 100					400	0	
NOTE 2: For the	naximum bandwidth of l ne NR CA configuration ted in a row separately.	with more tha		ent carries, the	e bandwidths ir	n a BCS which	may introduc	e combinations	s more than re	quested uninter	ntionally	r should

5.5A.2 Configurations for intra-band non-contiguous CA

Configurations listed in this clause apply to downlink carrier aggregation only.

NOTE: Sub-blocks belonging to a CA configuration can be in any order. In other words certain CA configuration acronym includes all sub-block arrangements which have exactly the same sub-block set. As an example, CA_260(3O-2P) denotes CA_260(2O-2P-O), CA_260(P-3O-P) etc. but these are not listed in tables separately.

Table 5.5A.2-1: NR CA configurations with single CA bandwidth class defined for intra-band non-contiguous CA

				N	IR CA con	figuration	/ Bandwid	th comb	oination a	set							
NR configuration	Uplink CA configurati ons	Sub- block	Sub - blo ck	Sub - blo ck	Sub - blo ck	Sub - blo ck	Σ(BW _{Chann} _{el,block}) (MHz)	BCS									

	1	1		Ν	IR CA con	figuration	/ Bandwi	dth comb	bination	set				
CA_n257(2A)	-	n257A	n257A										800	0
CA_n258(2A)	-	n258A	n258A										800	0
CA_n258(3A)	-	n258A	n258A	n258A									1200	0
CA_n258(4A)	-	n258A	n258A	n258A	n258A								1600	0
CA_n258(5A)	-	n258A	n258A	n258A	n258A	n258A							2000	0
CA_n260(2A)	-	n260A	n260A										800	0
CA_n260(3A)	-	n260A	n260A	n260A									1200	0
CA_n260(4A)	-	n260A	n260A	n260A	n260A								1600	0
CA_n260(5A)	-	n260A	n260A	n260A	n260A	n260A							2000	0
CA_n260(6A)	-	n260A	n260A	n260A	n260A	n260A	n260A						2400	0
CA_n260(7A)	-	n260A	n260A	n260A	n260A	n260A	n260A	n260A					2800	0
CA_n260(8A)	-	n260A	n260A	n260A	n260A	n260A	n260A	n260A	n260A				2900	0
CA_n260(9A)	-	n260A	n260A	n260A	n260A	n260A	n260A	n260A	n260A	n260A			2950	0
CA_n260(10A)	-	n260A	n260A	n260A	n260A	n260A	n260A	n260A	n260A	n260A	n260A		2950	0
CA_n260(2D)	-	CA_n26 0D	CA_n26 0D										800	0
CA_n260(2G)	CA_n260G	CA_n26 0G	CA_n26 0G										400	0
CA_n260(3G)	-	CA_n26 0G	CA_n26 0G	CA_n26 0G									600	0
CA_n260(4G)	-	CA_n26 0G	CA_n26 0G	CA_n26 0G	CA_n26 0G								800	0
CA_n260(2H)	CA_n260G CA_n260H	CA_n26 0H	CA_n26 0H										600	0
CA_n260(2O)	-	CA_n26 0O	CA_n26 0O										400	0
CA_n260(3O)	-	CA_n26 0O	CA_n26 0O	CA_n26 0O									600	0
CA_n260(4O)	-	CA_n26 0O	CA_n26 0O	CA_n26 0O	CA_n26 0O								800	0
CA_n260(2P)	-	CA_n26 0P	CA_n26 0P										600	0
CA_n260(3P)	-	CA_n26 0P	CA_n26 0P	CA_n26 0P									900	0
CA_n260(4P)	-	CA_n26 0P	CA_n26 0P	CA_n26 0P	CA_n26 0P								1200	0
CA_n260(2Q)	-	CA_n26 0Q	CA_n26 0Q										800	0
CA_n261(2A)	-	n261A	n261A										800	0
$\lambda = 0.04(0.0)$			= 001 A			Ingulation	/ Bandwic		mation	301		000		
-----------------------	----------------------------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------	-----	------	---------	---	
CA_n261(3A) -		n261A	n261A	n261A							 	 800	0	
CA_n261(4A) -		n261A	n261A	n261A	n261A							800	0	
CA_n261(2D) -		CA_n26 1D	CA_n26 1D									800	0	
CA_n261(2G) C	CA_n261G	CA_n26 1G	CA_n26 1G									400	0	
CA_n261(3G) -		CA_n26 1G	CA_n26 1G	CA_n26 1G								600	0	
CA_n261(4G) -		CA_n26 1G	CA_n26 1G	CA_n26 1G	CA_n26 1G							800	0	
	CA_n261G CA_n261H	CA_n26 1H	CA_n26 1H									600	0	
CA_n261(2I) C	CA_n261G CA_n261H CA_n261I	CA_n26 1I	CA_n26 1I									800	0	
CA_n261(2O) -		CA_n26 10	CA_n26 10									400	0	
CA_n261(3O) -		CA_n26 10	CA_n26 10	CA_n26 10								600	0	
CA_n261(4O) -		CA_n26 10	CA_n26 10	CA_n26 10	CA_n26 10							800	0	
CA_n261(5O) -		CA_n26 10	CA_n26 10	CA_n26 10	CA_n26 10	CA_n26 10						800	0	
CA_n261(6O) -		CA_n26 10	CA_n26 10	CA_n26 10	CA_n26 1O	CA_n26 10	CA_n26 10					800	0	
CA_n261(7O) -		CA_n26 10	CA_n26 10	CA_n26 10	CA_n26 1O	CA_n26 10	CA_n26 10	CA_n2 610				800	0	
CA_n261(2P) -		CA_n26 1P	CA_n26 1P									600	0	
CA_n261(2Q) -		CA_n26 1Q	CA_n26 1Q									800	0	

NOTE 6: Unless otherwise stated, BCS0 is referred in each constituent CA configuration
 NOTE 7: Σ(BW_{Channel,block}) denotes the maximum total bandwidth from the summation of the sub-block bandwidths and shall be less than the bandwidth of the operating band.

Table 5.5A.2-2: NR CA configurations and bandwidth combination sets for intra-band non-contiguous CA

				NR CA	A configur	ation / Band	dwidth con	nbination se	et						
CA configuration	Uplink CA configurations	Sub-block	Sub- block	Σ(BW _{Chann} el,block) (MHz)	BCS										

CA_n260(A-D)	-	n260 C	CA_n2 60D								800	0
CA_n260(2A-D)	-	CA_n260(2	2A)	CA_n260 D							1200	0
CA_n260(A-2D)	-	n260	CA_n	260(2D)							1200	0
CA_n260(2A-2D)	-	CA_n260(2	2A)	CA_n26	60(2D)						1600	0
CA_n260(A-D-O)	-	n260 C	CA_n2 60D	CA_n260 O							1000	0
CA_n260(2A-D-O)	-	CA_n260(2	2A)	CA_n260 D	CA_n26 00						1400	0
CA_n260(A-D-2O)	-		CA_n2 60D	CA_n26	60(20)						1200	0
CA_n260(2A-D- 2O)	-	CA_n260(2	2A)	CA_n260 D	CA_n2	260(20)					1600	0
CA_n260(A-G)	CA_n260G		CA_n2 60G								600	0
CA_n260(2A-G)	CA_n260G	CA_n260(2	2A)	CA_n260 G							1000	0
CA_n260(A-2G)	CA_n260G	n260	CA_n	260(2G)							800	0
CA_n260(2A-2G)	CA_n260G	CA_n260(2	2A)	CA_n26	60(2G)						1200	0
CA_n260(2A-2G- O)	-	CA_n260(2	2A)	CA_n26	60(2G)	CA_n260 O					1400	0
CA_n260(2A-2G- 2O)	-	CA_n260(2	2A)	CA_n26	60(2G)	CA_n26	60(20)				1600	0
CA_n260(3A-2G)	-	CA_	n260(3	A)	CA_n	260(2G)					1600	0
CA_n260(4A-G)	-		CA_n2	260(4A)		CA_n260 G					1800	0
CA_n260(4A-2G)	-		CA_n2	260(4A)		CA_n26	60(2G)				2000	0
CA_n260(A-2G- 2O)	-	n260	CA_n	260(2G)	CA_n	260(20)					1200	0
CA_n260(2A-G- 2O)	-	CA_n260(2	2A)	CA_n260 G	CA_n2	260(20)					1400	0
CA_n260(3A-G)	CA_n260G	CA_	n260(3	A)	CA_n26 0G						1400	0
CA_n260(A-2H)	-	n260	CA_n	260(2H)							1000	0
CA_n260(2A-H)	-	CA_n260(2	2A)	CA_n260 H							1100	0
CA_n260(2A-2H)	-	CA_n260(2	-	CA_n26	60(2H)						1400	0
CA_n260(A-H)	CA_n260G CA_n260H	n260 C	CA_n2 60H								700	0

CA_n260(A-O)	-	n260	CA_n2 600								600	0
CA_n260(A-O-P)	-	n260	CA_n2 600	CA_n260 P							900	0
CA_n260(A-O-2P)	-	n260	CA_n2 600	CA_n26	60(2P)						1200	0
CA_n260(2A-O-P)	-	CA_n260	D(2A)	CA_n260 O	CA_n26 0P						1300	0
CA_n260(2A-O- 2P)	-	CA_n260	D(2A)	CA_n260 O	CA_n	260(2P)					1600	0
CA_n260(2A-2O- P)	-	CA_n260	D(2A)	CA_n26	60(20)	CA_n260 P					1500	0
CA_n260(A-O-Q)	-	n260	CA_n2 60O	CA_n260 Q							1000	0
CA_n260(A-O-2Q)	-	n260	CA_n2 600	CA_n26	60(2Q)						1400	0
CA_n260(2A-O-Q)	-	CA_n260	D(2A)	CA_n260 O	CA_n26 0Q						1400	0
CA_n260(2A-O- 2Q)	-	CA_n260	D(2A)	CA_n260 O	CA_n	260(2Q)					1800	0
CA_n260(2A-2O- Q)	-	CA_n260	D(2A)	CA_n26	60(20)	CA_n260 Q					1600	0
CA_n260(2A-O)	-	CA_n260	D(2A)	CA_n260 O							1000	0
CA_n260(A-2O)	-	n260	CA_r	260(20)							800	0
CA_n260(A-2O-P)	-	n260	CA_r	260(20)	CA_n26 0P						1100	0
CA_n260(A-2O- 2P)	-	n260	CA_r	260(20)	CA_n	260(2P)					1400	0
CA_n260(A-2O-Q)	-	n260	CA_r	260(20)	CA_n26 0Q						1200	0
CA_n260(A-2O- 2Q)	-	n260	CA_r	260(20)	CA_n	260(2Q)					1600	0
CA_n260(2A-2O)	-	CA_n260	D(2A)	CA_n26	60(20)						1200	0
CA_n260(2A-2O- 2P)	-	CA_n260	D(2A)	CA_n26	60(20)	CA_n26	60(2P)				1800	0
CA_n260(2A-2O- 2Q)	-	CA_n260	D(2A)	CA_n26	60(20)	CA_n26	60(2Q)				2000	0
CA_n260(2A-3O)	-	CA_n260	D(2A)	С	A_n260(30	D)					1400	0
CA_n260(3A-2O)	-	CA	_n260(3	A)	CA_n	260(2O)					1600	0
CA_n260(4A-O)	-		CA_n2	260(4A)		CA_n260 O					1800	0

CA_n260(4A-3O)	-		CA_n2	260(4A)		CA_n260(3O)						2200	0
CA_n260(5A-O)	-			CA_n260(5A	۹)		CA_n26 00					2200	0
CA_n260(6A-O)	-			CA_n2	60(6A)			CA_n260 O				2600	0
CA_n260(7A-O)	-			(CA_n260(7	A)			CA_n26 00			2950	0
CA_n260(8A-O)	-				CA_n	260(8A)				CA_n2 600		2950	0
CA_n260(4A-2O)	-		CA_n2	260(4A)		CA_n26	60(20)					2000	0
CA_n260(4A-2Q)	-		CA_n2	260(4A)		CA_n26	60(2Q)					2400	0
CA_n260(3A-3O)	-	CA	A_n260(3	A)	(CA_n260(3C))					1800	0
CA_n260(A-G-O)	-	n260	CA_n2 60G	CA_n260 O								800	0
CA_n260(A-G-2O)	-	n260	CA_n2 60G	CA_n26	60(20)							1000	0
CA_n260(2A-G-O)	-	CA_n260	0(2A)	CA_n260 G	CA_n26 00							1200	0
CA_n260(A-2G-O)	-	n260	CA_r	1260(2G)	CA_n26 00							1000	0
CA_n260(A-3O)	-	n260		CA_n260(30	C)							1000	0
CA_n260(3A-O)	-	CA	A_n260(3	A)	CA_n26 00							1400	0
CA_n260(3A-O-P)	CA_n260O CA_n260P	CA	A_n260(3	A)	CA_n26 00	CA_n260 P						1700	0
CA_n260(A-4O)	-	n260		CA_n	260(4O)							1200	0
CA_n260(2A-4O)	-	CA_n260	0(2A)		CA_n2	60(4O)						1600	0
CA_n260(3A-4O)	-	CA	A_n260(3	A)		CA_n2	260(40)					2000	0
CA_n260(4A-4O)	-		CA_n2	260(4A)			CA_n2	60(40)				2400	0
CA_n260(5A-4O)	-			CA_n260(5/	۹)			CA_n26	0(4O)			2800	0
CA_n260(A-P)	-	n260	CA_n2 60P									700	0
CA_n260(A-3P)	-	n260		CA_n260(3F	⊃)							1300	0
CA_n260(A-4P)	-	n260		CA_n	260(4P)							1600	0
CA_n260(A-P-Q)	CA_n260P CA_n260Q	n260	CA_n2 60P	CA_n260 Q								1100	0

CA_n260(2A-P)	-	CA_n260((2A)	CA_n260 P								1100	0
CA_n260(3A-P)	-	CA_	_n260(3	A)	CA_n26 0P							1500	0
CA_n260(4A-P)	-		CA_n2	260(4A)		CA_n260 P						1900	0
CA_n260(5A-P)	-		(CA_n260(5A	A)	1 -	CA_n26 0P					2300	0
CA_n260(6A-P)	-			CA_n2	60(6A)			CA_n260 P				2700	0
CA_n260(A-2P)	-	n260	CA_n	260(2P)								1000	0
CA_n260(2A-2P)	-	CA_n260((2A)	CA_n26	60(2P)							1400	0
CA_n260(2A-3P)	-	CA_n260((2A)	С	A_n260(3F	P)						1700	0
CA_n260(2A-4P)	-	CA_n260((2A)		CA_n2	60(4P)	•					2000	0
CA_n260(3A-2P)	-	CA_	_n260(3	A)	CA_n	260(2P)						1800	0
CA_n260(4A-2P)	-		CA_n2	260(4A)		CA_n20	50(2P)					2200	0
CA_n260(5A-2P)	-			CA_n260(5A	A)		CA_n	260(2P)				2600	0
CA_n260(5A-2O)	-			CA_n260(5A	A)		CA_n	260(2O)				2400	0
CA_n260(6A-2O)	-			CA_n2	60(6A)		•	CA_n26	60(20)			2800	0
CA_n260(5A-3O)	-			CA_n260(5A	۹)		(CA_n260(30)			2600	0
CA_n260(6A-3O)	-			CA_n2	60(6A)		•	CA	_n260(3O)		2950	0
CA_n260(7A-2O)	-			(CA_n260(7	A)			CA_n2	60(2O)		2950	0
CA_n260(7A-3O)	-			(CA_n260(7	A)			CA	A_n260(3	0)	2950	0
CA_n260(6A-2P)	-			CA_n2	60(6A)			CA_n26	60(2P)			2950	0
CA_n260(8A-2O)	-				CA_n	260(8A)				CA_n	260(20)	2550 ²	0
CA_n260(A-Q)	-	n260	CA_n2 60Q									800	0
CA_n260(A-2Q)	-	n260	CA_n	260(2Q)								1200	0
CA_n260(2A-Q)	-	CA_n260((2A)	CA_n260 Q								1200	0
CA_n260(2A-2Q)	-	CA_n260((2A)	CA_n26	60(2Q)							1600	0
CA_n260(3A-Q)	-	CA_	_n260(3	A)	CA_n26 0Q							1600	0
CA_n260(3A-2Q)	-	CA	_n260(3	A)	CA_n	260(2Q)						2000	0
CA_n260(4A-Q)	-		CA_n2	260(4A)		CA_n260 Q						2000	0
CA_n260(D-2G)	-	CA_n260 D	CA_n	260(2G)								800	0

3GPP TS 38.101-2 version 16.4.0 Release 16

ETSI TS 138 101-2 V16.4.0 (2020-07)

CA_n260(2D-O)	-	CA_n260	D(2D)	CA_n260 O							1000	0
CA_n260(D-2O)	-	CA_n260 D	CA_n	1260(20)							800	0
CA_n260(A-I)	CA_n260I	n260	CA_n2 60I								800	0
CA_n260(D-G)	CA_n260D CA_n260G	CA_n260 D	CA_n2 60G								600	0
CA_n260(D-H)	CA_n260D CA_n260H	CA_n260 D	CA_n2 60H								700	0
CA_n260(D-I)	CA_n260D CA_n260I	CA_n260 D	CA_n2 60I								800	0
CA_n260(D-O)	CA_n260D CA_n260O	CA_n260 D	CA_n2 60O								600	0
CA_n260(D-P)	CA_n260D CA_n260P	CA_n260 D	CA_n2 60P								700	0
CA_n260(D-Q)	CA_n260D CA_n260Q	CA_n260 D	CA_n2 60Q								800	0
CA_n260(E-O)	CA_n260E CA_n260O	CA_n260 O	CA_n2 60E								800	0
CA_n260(E-P)	CA_n260E CA_n260P	CA_n260E	CA_n2 60P								800 ¹	0
CA_n260(E-Q)	CA_n260E CA_n260Q	CA_n260E	CA_n2 60Q								1000	0
CA_n260(G-H)	CA_n260G CA_n260H	CA_n260 G	CA_n2 60H		-	-	-				500	0
CA_n260(G-I)	CA_n260G CA_n260I	CA_n260 G	CA_n2 60I								600	0
CA_n260(G-O)	-	CA_n260 G	CA_n2 600								400	0
CA_n260(G-2O)	-	CA_n260 G	CA_n	n260(2O)							600	0

CA_n260(2G-O)	-	CA_n260)(2G)	CA_n260 O						600	0
CA_n260(2G-2O)	-	CA_n260)(2G)	CA_n26	0(20)					800	0
CA_n260(G-3O)	-	CA_n260 G		CA_n260(30	D)					800	0
CA_n260(3G-O)	-	CA	_n260(3	G)	CA_n26 00					800	0
CA_n260(2G-3O)	-	CA_n260)(2G)	С	A_n260(30)				1000	0
CA_n260(G-4O)	-	CA_n260 G		CA_n2	260(40)					1000	0
CA_n260(2G-4O)	-	CA_n260)(2G)		CA_n2	e60(4O)				1200	0
CA_n260(4G-O)	-			260(4G)		CA_n260 O				1000	0
CA_n260(H-O)	-	CA_n260 H	CA_n2 60O							500	0
CA_n260(2H-O)	-	CA_n260)(2H)	CA_n260 O						800	0
CA_n260(O-2P)	-	CA_n260 O	CA_r	n260(2P)						800	0
CA_n260(O-2Q)	-	CA_n260 O	CA_r	1260(2Q)						1000	0
CA_n260(O-P)	-	CA_n260 O	CA_n2 60P							500	0
CA_n260(2O-P)	-	CA_n260	0(20)	CA_n2	260P					700	0
CA_n260(2O-2P)	-	CA_n260)(2P)	CA_n26	0(20)					1000	0
CA_n260(O-Q)	-	CA_n260 O	CA_n2 60Q							600	0
CA_n260(2O-Q)	-	CA_n260)(20)	CA_n260 Q						800	0
CA_n260(2O-2Q)	-	CA_n260)(20)	CA_n26	60(2Q)					1200	0
CA_n260(P-Q)	-	CA_n260P	CA_n2 60Q							700	0
CA_n261(A-D)	-	n261	CA_n2 61D							800	0
CA_n261(A-2D)	-	n261		n261(2D)						800	0
CA_n261(A-D-H)	-	n261	CA_n2 61D	CA_n261 H						800	0
CA_n261(A-D-O)	-	n261	CA_n2 61D	CA_n261 O						800	0

CA_n261(A-D-2O)	-	n261	CA_n2 61D	CA_n26	61(20)								800	0
CA_n261(A-G)	CA_n261G	n261	CA_n2 61G										600	0
CA_n261(A-G-H)	CA_n261G CA_n261H	n261	CA_n2 61G	CA_n261 H									800	0
CA_n261(A-G-I)	CA_n261G CA_n261H CA_n261I	n261	CA_n2 61G	n2611									800	0
CA_n261(A-G-O)	-	n261	CA_n2 61G	CA_n261 O									800	0
CA_n261(A-G-2O)	-	n261	CA_n2 61G	CA_n26	61(20)								800	0
CA_n261(A-2G-O)	-	n261	CA_r	1261(2G)	CA_n26 10								800	0
CA_n261(A-2G- 2O)	-	n261	CA_r	1261(2G)	CA_n	261(20)							800	0
CA_n261(A-3G)	-	n261		CA_n261(30	G)	CA_n261 O							800	0
CA_n261(A-3G-O)	-	n261		CA_n261(30	G)								800	0
CA_n261(A-2G)	CA_n261G	n261	CA_r	n261(2G)									800	
CA_n261(A-4G)	-	n261		CA_n	261(4G)								800	0
CA_n261(A-H)	CA_n261G CA_n261H	n261	CA_n2 61H										700	0
CA_n261(A-2H)	-	n261	CA_r	n261(2H)									800	0
CA_n261(A-H-I)	-	n261	CA_n2 61H	CA_n261I									800	0
CA_n261(A-I)	CA_n261G CA_n261H CA_n261I	n261	CA_n2 61I										800	0
CA_n261(A-2I)	-	n261	CA_	n261(2I)									800	0
CA_n261(A-J)	CA_n261G CA_n261H CA_n261I	n261	CA_n2 61J		-	-	-	-	-				700	0
CA_n261(A-K)	CA_n261G CA_n261H CA_n261I	n261	CA_n2 61K	_	-	-	-	-	-	-	-		800	0
CA_n261(A-O)	-	n261	CA_n2 610										600	0
CA_n261(A-2O)	-	n261	CA_r	n261(2O)									800	0
CA_n261(A-3O)	-	n261	1	CA_n261(30))							1	800	0
CA_n261(A-4O)	-	n261		CA_n	261(40)								800	0

CA_n261(A-5O)	-	n261		(CA_n261(5	O)		7			800	0
CA_n261(A-6O)	-	n261			CA_r	n261(6O)					800	0
CA_n261(A-7O)	-	n261				CA_n261(7	' O)				800	0
CA_n261(A-P)	-	n261	CA_n2 61P								700	0
CA_n261(A-2P)	-	n261	CA_	n261(2P)							800	0
CA_n261(A-Q)	-	n261	CA_n2 61Q								800	0
CA_n261(A-2Q)	-	n261	CA_I	n261(2Q)							800	0
CA_n261(2A-G)	CA_n261G	CA_n26	1(2A)	CA_n261 G							800	0
CA_n261(2A-H)	CA_n261G CA_n261H	CA_n26	1(2A)	CA_n261 H							800	0
CA_n261(2A-I)	CA_n261G CA_n261H CA_n261I	CA_n26	1(2A)	CA_n261I							800	0
CA_n261(3A-G)	CA_n261G	C/	A_n261(3	BA)	CA_n26 1G						800	0
CA_n261(D-G)	CA_n261D CA_n261G	CA_n261 D	CA_n2 61G								600	0
CA_n261(D-H)	CA_n261D CA_n261H	CA_n261 D	CA_n2 61H								700	0
CA_n261(D-I)	CA_n261D CA_n261I	CA_n261 D	CA_n2 61I								800	0
CA_n261(D-O)	CA_n261D CA_n261O	CA_n261 D	CA_n2 610								600	0
CA_n261(D-20)	-	CA_n261 D	CA_I	n261(2O)							800	0
CA_n261(D-P)	CA_n261D CA_n261P	CA_n261 D	CA_n2 61P								700	0
CA_n261(D-Q)	CA_n261D CA_n261Q	CA_n261 D	CA_n2 61Q								800	0
CA_n261(E-O)	CA_n261E CA_n261O	CA_n261E	CA_n2 610								800	0

CA_n261(E-P)	CA_n261E CA_n261P	CA_n261E	CA_n2 61P											800	0
CA_n261(E-Q)	CA_n261E CA_n261Q	CA_n261E	CA_n2 61Q											800	0
CA_n261(G-I)	CA_n261G CA_n261H CA_n261I	CA_n261 G	CA_n2 61I											600	0
CA_n261(G-H)	CA_n261G CA_n261H	CA_n261 G	CA_n2 61H											500	0
CA_n261(2G-2O)	-	CA_n26	1(2G)	CA_n26	61(2O)									800	0
CA_n261(G-O)	-	CA_n261 G	CA_n2 610											400	0
CA_n261(G-20)	-	CA_n261 G	CA_r	261(20)										600	0
CA_n261(2G-O)	-	CA_n26	1(2G)	CA_n261 O										600	0
CA_n261(3G-O)	-	C/	A_n261(3	G)	CA_n26 10									800	0
CA_n261(H-I)	CA_n261G CA_n261H CA_n261I	CA_n261 H	CA_n2 61I											700	0
NOTE 4: Configura NOTE 5: Configura NOTE 6: Void	pandwidth per ope tions for intra-bar tions for intra-bar herwise stated, B nel,block) denotes th	nd contiguous nd non-contig CS0 is referr	s CA defir Juous CA ed in eacl	ed in Table defined in T n constituent	5.5A.1-1 able 5.5A.2 t CA config	uration.	ub-block ba	andwidths ar	nd shall be l	ess than	the band	width of t	he opera	ting band.	

5.5D Configurations for UL MIMO

The requirements specified in clause 5.5 are applicable to UE supporting UL MIMO.

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified over the air (OTA) with a single or multiple transmit chains.

Unless otherwise stated, for power class 3 UEs, the beam correspondence side condition for SSB and CSI-RS specified in clause 6.6.4 shall apply to the transmission tests.

Transmitter requirements for CA operation apply only when the DMRS initialization parameters (including the case when the UE applies cell ID as DMRS scrambling ID) are different across all CCs. The UE may use higher MPR values outside this limitation.

Transmitter requirements for UL MIMO operation apply when the UE transmits on 2 ports on the same CDM group. The UE may use higher MPR values outside this limitation.

6.2 Transmitter power

6.2.1 UE maximum output power

6.2.1.0 General

NOTE: Power class 1, 2, 3, and 4 are specified based on the assumption of certain UE types with specific device architectures. The UE types can be found in Table 6.2.1.0-1.

UE Power class	UE type
1	Fixed wireless access (FWA) UE
2	Vehicular UE
3	Handheld UE
4	High power non-handheld UE

Power class 3 is default power class.

6.2.1.1 UE maximum output power for power class 1

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The minimum output power values for EIRP are found in Table 6.2.1.1-1. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Min peak EIRP (dBm)
n257	40.0
n258	40.0
n260	38.0
n261	40.0
NOTE 1: Minimum peak EIRP is defined as the lower limit without tolerance	

The maximum output power values for TRP and EIRP are found in Table 6.2.1.1-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	35	55
n258	35	55
n260	35	55
n261	35	55

Table 6.2.1.1-2: UE maximum output power limits for power class 1

The minimum EIRP at the 85th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.1-3 below. The requirement is verified with the test metric of EIRP (Link=Spherical coverage grid, Meas=Link angle).

Table 6.2.1.1-3: UE spherical coverage for power class 1

Operating band	Min EIRP at 85 %-tile CDF (dBm)		
n257	32.0		
n258	32.0		
n260	30.0		
n261	32.0		
	Minimum EIRP at 85 %-tile CDF is defined as the lower limit without tolerance		
under norr	The requirements in this table are verified only under normal temperature conditions as defined in Annex E.2.1.		

6.2.1.2 UE maximum output power for power class 2

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The minimum output power values for EIRP are found in Table 6.2.1.2-1. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Min peak EIRP (dBm)	
n257	29	
n258	29	
n261 29		
NOTE 1: Minimum peak EIRP is defined as the lower limit without tolerance		

The maximum output power values for TRP and EIRP are found in Table 6.2.1.2-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n261	23	43

The minimum EIRP at the 60th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.2-3 below. The requirement is verified with the test metric of EIRP (Link=Spherical coverage grid, Meas=Link angle).

Operati	ng band	Min EIRP at 60 %-tile CDF (dBm)	
n2	57	18.0	
n2	58	18.0	
n2	61	18.0	
NOTE 1:	Minimum EIRP at 60 %-tile CDF is defined as the lower limit without tolerance		
NOTE 2:	The requirements in this table are verified only under normal temperature conditions as defined in Annex E.2.1.		

Table 6.2.1.2-3: UE spherical coverage for power class 2

6.2.1.3 UE maximum output power for power class 3

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The minimum output power values for EIRP are found in Table 6.2.1.3-1. The requirement is verified with the test metric of total component of EIRP (Link=TX beam peak direction, Meas=Link angle). The requirement for the UE which supports a single FR2 band is specified in Table 6.2.1.3-1. The requirement for the UE which supports a specified in both Table 6.2.1.3-1 and Table 6.2.1.3-4.

Table 6.2.1.3-1: UE	minimum pe	eak EIRP for	power class 3
---------------------	------------	--------------	---------------

Operating band	Min peak EIRP (dBm)	
n257	22.4	
n258	22.4	
n259	18.7	
n260	20.6	
n261	22.4	
	Minimum peak EIRP is defined as the lower limit without tolerance	
NOTE 2: Void		

The maximum output power values for TRP and EIRP are found on the Table 6.2.1.3-2. The max allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and the total component of EIRP (Link=TX beam peak direction, Meas=Link angle.

Table 6.2.1.3-2: UE maximum output power limits for power class 3

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n259	23	43
n260	23	43
n261	23	43

The minimum EIRP at the 50th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.3-3 below. The requirement is verified with the test metric of the total component of EIRP (Link=Beam peak search grids, Meas=Link angle). The requirement for the UE which supports a single FR2 band is specified in Table 6.2.1.3-3. The requirement for the UE which supports multiple FR2 bands is specified in both Table 6.2.1.3-3 and Table 6.2.1.3-4.

Operating band		Min EIRP at 50 %-tile CDF (dBm)	
n257		11.5	
	n258	11.5	
	n259	5.8	
n260		8	
n261		11.5	
NOTE 1: NOTE 2:	lower limit without tole	%-tile CDF is defined as the erance	
NOTE 3: The requirements in this table are verified only unde normal temperature conditions as defined in Annex E.2.1.			

 Table 6.2.1.3-3: UE spherical coverage for power class 3

For the UEs that support multiple FR2 bands, minimum requirement for peak EIRP and EIRP spherical coverage in Tables 6.2.1.3-1 and 6.2.1.3-3 shall be decreased per band, respectively, by the peak EIRP relaxation parameter $\Delta MB_{P,n}$ and EIRP spherical coverage relaxation parameter $\Delta MB_{S,n}$, as defined in Table 6.2.1.3-4.

Table 6.2.1.3-4: UE multi-band relaxation factors for	power class 3
---	---------------

Band	ΔMB _{P,n} (dB)	∆MB _{s,n} (dB)		
n257	0.7 ³	0.7 ³		
n258	0.6	0.7		
n259	0.5	0.4		
n260	0.5 ¹	0.4 ¹		
n261	0.5 ^{2,4}	0.74		
Note 1: n260 peak and spherical relaxations are 0 dB for UE that exclusively supports n261+n260 Note 2: n261 peak relaxation is 0 dB for UE that exclusively supports n261+n260 Note 3: n257 peak and spherical relaxations are 0 dB for UE that exclusively supports n261+n257 Note 4: n261 peak and spherical relaxations are 0 dB for UE that exclusively supports n261+n257				

6.2.1.4 UE maximum output power for power class 4

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1ms). The minimum output power values for EIRP are found in Table 6.2.1.4-1. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Min peak EIRP (dBm)		
n257	34		
n258	34		
n260	31		
n261	34		
NOTE 1: Minimum peak EIRP is defined as the			
lower limit without tolerance			

Table 6.2.1.4-1: UE minimum peak EIRP for power class 4

The maximum output power values for TRP and EIRP are found in Table 6.2.1.4-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n260	23	43
n261	23	43

Table 6.2.1.4-2: UE maximum output power limits for power class 4

The minimum EIRP at the 20th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2.1.4-3 below. The requirement is verified with the test metric of EIRP (Link=Spherical coverage grid, Meas=Link angle).

Table 6.2.1.4-3: UE spherical coverage for power class 4

Operating band	Min EIRP at 20 %-tile CDF (dBm)	
n257	25	
n258	25	
n260	19	
n261	25	
	EIRP at 20 %-tile CDF is defined as imit without tolerance	
under norr	TE 2: The requirements in this table are verified only under normal temperature conditions as defined in Annex E.2.1.	

6.2.2 UE maximum output power reduction

6.2.2.0 General

The requirements in clause 6.2.2 only apply when both UL and DL of a UE are configured for single CC operation, and they are of the same bandwidth. A UE may reduce its maximum output power due to modulation orders, transmit bandwidth configurations, waveform types and narrow allocations. This Maximum Power Reduction (MPR) is defined in clauses below. The allowed MPR for SRS, PUCCH formats 0, 1, 3 and 4, and PRACH shall be as specified for QPSK modulated DFT-s-OFDM of equivalent RB allocation. The allowed MPR for PUCCH format 2 shall be as specified for QPSK modulated CP-OFDM of equivalent RB allocation. When the maximum output power of a UE is modified by MPR, the power limits specified in clause 6.2.4 apply.

For a UE that is configured for single CC operation with different channel bandwidths in UL and DL, the requirements in clause 6.2A.2 apply.

For all power classes, the waveform defined by BW = 100 MHz, SCS = 120 kHz, DFT-S-OFDM QPSK, 20RB23 is the reference waveform with 0 dB MPR and is used for the power class definition.

6.2.2.1 UE maximum output power reduction for power class 1

For power class 1, MPR for contiguous allocations is defined as:

 $MPR = max(MPR_{WT}, MPR_{narrow})$

Where,

 $MPR_{narrow} = 14.4 \text{ dB}$, when $BW_{alloc,RB} \le 1.44 \text{ MHz}$, $MPR_{narrow} = 10 \text{ dB}$, when $1.44 \text{ MHz} < BW_{alloc,RB} \le 10.8 \text{ MHz}$, where $BW_{alloc,RB}$ is the bandwidth of the RB allocation size.

 MPR_{WT} is the maximum power reduction due to modulation orders, transmission bandwidth configurations listed in table 5.3.2-1, and waveform types. MPR_{WT} is defined in Tables 6.2.2.1-1 and 6.2.2.1-2.

MPRwt			(dB), BW _{channel} ≤ 200 MHz	
Modulation		Outer RB allocations	Inner RB allocations	
			Region 1	Region 2
	Pi/2 BPSK	≤ 5.5	0.0	≤ 3.0
DFT-s-OFDM	QPSK	≤ 6.5	0.0	≤ 3.0
	16 QAM	≤ 6.5	≤ 4.0	≤ 4.0
	64 QAM	≤ 6.5	≤ 5.0	≤ 5.0
	QPSK	≤ 7.0	≤ 4.5	≤ 4.5
CP-OFDM	16 QAM	≤ 7.0	≤ 5.5	≤ 5.5
	64 QAM	≤ 7.5	≤ 7.5	≤ 7.5

Table 6.2.2.1-1 MPR_{WT} for power class 1, BW_{channel} ≤ 200 MHz

Table 6.2.2.1-2 MPR_{WT} for power class 1, BW_{channel} = 400 MHz

		MPR	MPR _{WT} (dB), BW _{channel} = 400 MHz		
Modulation		Outer RB allocations	Inner RB allocations		
			Region 1	Region 2	
	Pi/2 BPSK	≤ 5.5	0.0	≤ 3.0	
DFT-s-OFDM	QPSK	≤ 6.5	0.0	≤ 3.5	
	16 QAM	≤ 6.5	≤ 4.5	≤ 4.5	
	64 QAM	≤ 6.5	≤ 6.5	≤ 6.5	
	QPSK	≤ 7.0	≤ 5.0	≤ 5.0	
CP-OFDM	16 QAM	≤ 7.0	≤ 6.5	≤ 6.5	
	64 QAM	≤ 9.0	≤ 9.0	≤ 9.0	

Where the following parameters are defined to specify valid RB allocation ranges for the RB allocations regions in Tables 6.2.2.1-1 and 6.2.2.1-2:

N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1.

$$RB_{end} = RB_{Start} + L_{CRB} - 1$$

 $RB_{Start,Low} = Max(1, Floor(L_{CRB}/2))$

 $RB_{Start,High} = N_{RB} - RB_{Start,Low} - L_{CRB}$

An RB allocation is an Outer RB allocation if

RB_{Start} < RB_{Start,Low} OR RB_{Start} > RB_{Start,High} OR L_{CRB} > Ceil(N_{RB}/2)

An RB allocation belonging to table 6.2.2.1-1 is a Region 1 inner RB allocation if

$$RB_{start} \ge Ceil(1/3 N_{RB}) AND RB_{end} < Ceil(2/3 N_{RB})$$

An RB allocation belonging to table 6.2.2.1-2 is a Region 1 inner RB allocation if

 $RB_{start} \geq Ceil(1/4 \ N_{RB}) \ AND \ RB_{end} < Ceil(3/4 \ N_{RB}) \ AND \ L_{CRB} \leq Ceil(1/4 \ N_{RB})$

An RB allocation is a Region 2 inner allocation if it is NOT an Outer allocation AND NOT a Region 1 inner allocation

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2.4 apply.

6.2.2.2 UE maximum output power reduction for power class 2

For power class 2, MPR specified in clause 6.2.2.3 applies.

6.2.2.3 UE maximum output power reduction for power class 3

For power class 3, MPR for contiguous allocations is defined as:

 $MPR = max(MPR_{WT}, MPR_{narrow})$

For transmission bandwidth configuration less than or equal to 200MHz,

$$\begin{split} MPR_{narrow} &= 2.5 \text{ dB}, \text{ when } L_{CRB} \text{ is less than or equal to } 1.44 \text{ MHz}, \text{ and } 0 \leq RB_{start} < \text{Ceil}(1/3 \text{ N}_{RB}) \text{ or Ceil}(2/3\text{N}_{RB}) \leq RB_{start} \leq N_{RB}\text{-}L_{CRB}, \text{ MPR}_{narrow} = 2.0 \text{ dB}, \text{ when } 1.44 \text{ MHz} < L_{CRB} <= 4.32 \text{ MHz}, \text{ and } 0 \leq RB_{start} < \text{Ceil}(1/3 \text{ N}_{RB}) \text{ or } \text{Ceil}(2/3\text{N}_{RB}) \leq RB_{start} \leq N_{RB}\text{-}L_{CRB}, \text{ otherwise } MPR_{narrow} = 0 \text{ dB} \text{ when } RB \text{ size is greater than } 4.32 \text{ MHz}, \text{ where } N_{RB} \text{ is the maximum transmission bandwidth configuration defined in Table } 5.3.2\text{-}1. \end{split}$$

 MPR_{WT} is the maximum power reduction due to modulation orders, transmission bandwidth configurations listed in Table 5.3.2-1, and waveform types. MPR_{WT} is defined in Table 6.2.2.3-1.

Table 6.2.2.3-1 MPR_{WT} for power class 3, BWchannel ≤ 200 MHz

		MPR _{WT} , BW _{channel} ≤ 200 MHz		
Modulation		Inner RB allocations, Region 1	Edge RB allocations	
	Pi/2 BPSK	0.0	≤ 2.0	
DFT-s-OFDM	QPSK	0.0	≤ 2.0	
DF1-S-OFDM	16 QAM	≤ 3.0	≤ 3.5	
	64 QAM	≤ 5.0	≤ 5.5	
	QPSK	≤ 3.5	≤ 4.0	
CP-OFDM	16 QAM	≤ 5.0	≤ 5.0	
	64 QAM	≤ 7.5	≤ 7.5	

Where the following parameters are defined to specify valid RB allocation ranges for RB allocations in Table 6.2.2.3-1:

- $RB_{Start,Low} = max(1, L_{CRB})$, where max() indicates the largest value of all arguments.
- $RB_{Start,High} = N_{RB} RB_{Start,Low} L_{CRB}$,

An RB allocation belonging to table 6.2.2.3-1 is a Region 1 inner RB allocation if:

- $RB_{Start,Low} \leq RB_{Start} \leq RB_{Start,High}$, and $L_{CRB} \leq ceil(N_{RB}/3)$, where ceil(x) is the smallest integer greater than or equal to x.

For transmission bandwidth configuration equal to 400MHz,

 $MPR_{narrow} = 2.5 \text{ dB}$, when L_{CRB} is less than or equal to 1.44 MHz, and $0 \le RB_{start} < Ceil(1/3 N_{RB})$ or $Ceil(2/3N_{RB}) \le RB_{start} \le N_{RB}-L_{CRB}$, where N_{RB} is the maximum transmission bandwidth configuration defined in Table 5.3.2-1.

MPR_{WT} is the maximum power reduction due to modulation orders, transmission bandwidth configurations listed in Table 5.3.2-1, and waveform types. MPR_{WT} is defined in Table 6.2.2.3-2.

	MPR _{WT} , BW _{channel} = 400		
Modula	tion	Inner RB allocations, Region 1	Edge RB allocations
	Pi/2 BPSK	0.0	≤ 3.0
DFT-s-OFDM	QPSK	0.0	≤ 3.0
	16 QAM	≤ 4.5	≤ 4.5
	64 QAM	≤ 6.5	≤ 6.5
	QPSK	≤ 5.0	≤ 5.0
CP-OFDM	16 QAM	≤ 6.5	≤ 6.5
	64 QAM	≤ 9.0	≤ 9.0

Table 6.2.2.3-2 MPR_{WT} for power class 3, BW_{channel} = 400 MHz

Where the following parameters are defined to specify valid RB allocation ranges for RB allocations in Table 6.2.2.3-2:

N_{RB} is the maximum number of RBs for a given Channel bandwidth and sub-carrier spacing defined in Table 5.3.2-1.

$$RB_{end} = RB_{Start} + L_{CRB} - 1$$

An RB allocation belonging to table 6.2.2.3-2 is a Region 1 inner RB allocation if

$$RB_{start} \ge Ceil(1/4 N_{RB}) AND RB_{end} < Ceil(3/4 N_{RB}) AND L_{CRB} \le Ceil(1/4 N_{RB})$$

For all transmission bandwidth configurations, an RB allocation is an Edge allocation if it is NOT a Region 1 inner allocation.

6.2.2.4 UE maximum output power reduction for power class 4

For power class 4, MPR specified in sub-clause 6.2.2.3 applies.

Table 6.2.2.4-1: Void

6.2.3 UE maximum output power with additional requirements

6.2.3.1 General

Additional emission requirements can be signalled by the network. Each additional emission requirement is associated with a unique network signalling (NS) value indicated in RRC signalling by an NR frequency band number of the applicable operating band and an associated value in the field additionalSpectrumEmission. Throughout this specification, the notion of indication or signalling of an NS value refers to the corresponding indication of an NR frequency band number of the applicable operating band (the IE field freqBandIndicatorNR) and an associated value of additionalSpectrumEmission in the relevant RRC information elements

To meet these additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in clause 6.2.1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

Table 6.2.3.1-1 specifies the additional requirements with their associated network signalling values and the allowed A-MPR and applicable operating band(s) for each NS value. The mapping of NR frequency band numbers and values of and the *additionalSpectrumEmission* to network signalling labels is specified in Table 6.2.3.1-2. Unless otherwise stated, the allowed total back off is maximum of A-MPR and MPR specified in clause 6.2.2.

Network Signalling Iabel	Requirements (clause)	NR Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_200					N/A
NS_201	6.5.3.2.2	n258			6.2.3.2
NS_202	6.5.3.2.3	n257, n258			6.2.3.3

Table 6.2.3.1-1: Additional maximum power reduction (A-MPR)

NR Band		Value of additionalSpectrumEmission						
	0	1	2	3	4	5	6	7
n257	NS_200	NS_202						
n258	NS_200	NS_201	NS_202					
n259	NS_200							
n260	NS_200							
n261	NS_200							
		ditionalSpectrumEmission corresponds to an information element of the same name defined in p-clause 6.3.2 of TS 38.331 [13].						

Table 6.2.3.1-2: Mapping of Network Signaling label

6.2.3.2 A-MPR for NS_201

6.2.3.2.1 A-MPR for NS_201 for power class 1

For power class 1, A-MPR for NS_201 shall be 9 dB.

Table 6.2.3.2.1-1: (Void)

6.2.3.2.2 A-MPR for NS_201 for power class 2

For power class 2, A-MPR specified in clause 6.2.3.2.3 applies

Table 6.2.3.2.2-1: (Void)

6.2.3.2.3 A-MPR for NS_201 for power class 3

Table 6.2.3.2.3-1: AMPR for NS_201 for power class 3

	Channel Bandwidth, MHz		
Offset Frequency	400		
	Outer RB allocations		
0 MHz, ≤ 100 MHz	≤ 1.5		
> 100 MHz, ≤ 300 MHz	0		
> 300 MHz	0		
NOTE 1: The Offset freque lower channel ed	ency is defined as the frequency from 24.25 GHz to the ge.		
NOTE 2: The allowable ba in Table 6.2.2.3-	ck off is max(MPR, AMPR), where the MPR is defined		
NOTE 3: Any undefined re	gion, MPR applies		

6.2.3.2.4 A-MPR for NS_201 for power class 4

For power class 4, A-MPR for NS_201 specified in clause 6.2.3.2.3 applies.

6.2.3.3 A-MPR for NS_202

6.2.3.3.1 A-MPR for NS_202 for power class 1

For power class 1, A-MPR for NS_202 shall be 11.0 dB.

6.2.3.3.2 A-MPR for NS_202 for power class 2

For power class 2, A-MPR for NS_202 specified in clause 6.2.3.3.3 applies.

6.2.3.3.3 A-MPR for NS_202 for power class 3

For power class 3, A-MPR for NS_202 shall be 1.0 dB.

6.2.3.3.4 A-MPR for NS_202 for power class 4

For power class 4, A-MPR for NS_202 specified in clause 6.2.3.3.3 applies.

6.2.4 Configured transmitted power

The UE can configure its maximum output power. The configured UE maximum output power $P_{CMAX,f,c}$ for carrier f of a serving cell c is defined as that available to the reference point of a given transmitter branch that corresponds to the reference point of the higher-layer filtered RSRP measurement as specified in TS 38.215 [11].

The configured UE maximum output power $P_{CMAX,f,c}$ for carrier f of a serving cell c shall be set such that the corresponding measured peak EIRP $P_{UMAX,f,c}$ is within the following bounds

$$\begin{split} P_{Powerclass} - MAX(MAX(MPR_{f,c}, \text{ A- }MPR_{f,c},) + \Delta MB_{P,n}, P-MPR_{f,c}) - MAX\{T(MAX(MPR_{f,c}, \text{ A- }MPR_{f,c},)), T(P-MPR_{f,c})\} \\ \leq P_{UMAX,f,c} \leq EIRP_{max} \end{split}$$

while the corresponding measured total radiated power $P_{\text{TMAX},f,c}$ is bounded by

$$P_{TMAX,f,c} \leq TRP_{max}$$

with $P_{Powerclass}$ the UE power class as specified in sub-clause 6.2.1, EIRP_{max} the applicable maximum EIRP as specified in sub-clause 6.2.1, MPR_{f,c} as specified in sub-clause 6.2.2, A-MPR_{f,c} as specified in sub-clause 6.2.3, $\Delta MB_{P,n}$ the peak EIRP relaxation as specified in clause 6.2.1 and TRP_{max} the maximum TRP for the UE power class as specified in sub-clause 6.2.1.

maxUplinkDutyCycle-FR2, as defined in TS 38.306 [14], is a UE capability to facilitate electromagnetic power density exposure requirements. This UE capability is applicable to all FR2 power classes.

If the field of UE capability maxUplinkDutyCycle-FR2 is present and the percentage of uplink symbols transmitted within any 1 s evaluation period is larger than maxUplinkDutyCycle-FR2, the UE follows the uplink scheduling and can apply P-MPR_{f,c}.

If the field of UE capability *maxUplinkDutyCycle-FR2* is absent, the compliance to electromagnetic power density exposure requirements are ensured by means of scaling down the power density or by other means.

 $P-MPR_{f,c}$ is the allowed maximum output power reduction. The UE shall apply $P-MPR_{f,c}$ for carrier f of serving cell c only for the cases described below. For UE conformance testing $P-MPR_{f,c}$ shall be 0 dB.

- a) ensuring compliance with applicable electromagnetic power density exposure requirements and addressing unwanted emissions / self desense requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic power density exposure requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.
- NOTE 1: P-MPR_{f,c} was introduced in the P_{CMAX,f,c} equation such that the UE can report to the gNB the available maximum output transmit power. This information can be used by the gNB for scheduling decisions.
- NOTE 2: P-MPR_{f,c} and *maxUplinkDutyCycle-FR2* may impact the maximum uplink performance for the selected UL transmission path.

The tolerance $T(\Delta P)$ for applicable values of ΔP (values in dB) is specified in Table 6.2.4-1.

Operating Band	∆ P (dB)	Tolerance T(∆P) (dB)			
	$\Delta P = 0$	0			
	0 < ∆P ≤ 2	1.5			
	2 < ∆P ≤ 3	2.0			
n257, n258, n259,	3 < ∆P ≤ 4	3.0			
n260, n261	4 < ∆P ≤ 5	4.0			
	5 < ∆P ≤ 10	5.0			
	10 < ∆P ≤ 15	7.0			
	15 < ∆P ≤ X	8.0			
NOTE: X is the value such that Pumax, f,c lower bound, PPowerclass -					
$\Delta P - T(\Delta P)$ = minimum output power specified in clause					
6.3.1					

Table 6.2.4-1: PUMAX, f, c tolerance

6.2A Transmitter power for CA

6.2A.1 UE maximum output power for CA

For downlink intra-band contiguous and non-contiguous carrier aggregation with a single uplink component carrier configured in the NR band, the maximum output power is specified in clause 6.2.1.

For uplink intra-band contiguous carrier aggregation for any CA bandwidth class, the maximum output power is specified in clause 6.2.1.

Power class 3 is default power class.

6.2A.2 UE maximum output power reduction for CA

6.2A.2.1 General

The UE is defined to be configured for CA operation when it has at least one of UL or DL configured for CA. In CA operation, the UE may reduce its maximum output power due to higher order modulations and transmit bandwidth configurations. This Maximum Power Reduction (MPR) is defined in clauses below.

The cumulative aggregated channel bandwidth is defined as the frequency band from the lowest edge of the lowest CC to the upper edge of the highest CC of all UL and DL configured CCs. When the maximum output power of a UE is modified by MPR, the power limits specified in clause 6.2A.4 apply.

The requirements in the following clauses are only applicable to intra-band contiguous uplink CA, with the aggregated channelbandwidth up to 800 MHz.

6.2A.2.2 Maximum output power reduction for power class 1

For power class 1, MPR for UL contiguous allocations within the cumulative aggregated bandwidth is defined as:

$$MPR_{C_CA} = max(MPR_{WT_C_CA}, MPR_{narrow})$$

Where,

- $MPR_{narrow} = 14.4 \text{ dB}$, when $BW_{alloc,RB}$ is less than or equal to 1.44 MHz, $MPR_{narrow} = 10 \text{ dB}$, when 1.44 MHz $< BW_{alloc,RB} \le 10.8 \text{ MHz}$, where $BW_{alloc,RB}$ is the bandwidth of the RB allocation size.
- $MPR_{WT_C_CA}$ is the maximum power reduction due to modulation orders, transmit bandwidth configurations, and waveform types. $MPR_{WT_C_CA}$ is defined in Table 6.2A.2.2-1.

m Type	Cumulative aggregated channel bandwidth			
	< 400 MHz	≥ 400 MHz and < 800 MHz	≥ 800 MHz and ≤ 1400 MHz	
Pi/2 BPSK	≤ 5.5 ¹	7.7 ¹	[8.2]	
QPSK	≤ 6.5 ¹	8.7 ¹	[9.7]	
16 QAM	≤ 6.5	8.7	[9.2]	
64 QAM	≤ 9.0	10.7	[11.2]	
QPSK	≤ 6.5	8.7	[8.7]	
16 QAM	≤ 6.5	8.7	[8.7]	
64 QAM	≤ 9.0	10.7	[11.2]	
	Pi/2 BPSK QPSK 16 QAM 64 QAM QPSK 16 QAM	Pi/2 BPSK $\leq 5.5^1$ QPSK $\leq 6.5^1$ 16 QAM ≤ 6.5 64 QAM ≤ 9.0 QPSK ≤ 6.5 16 QAM ≤ 9.0 QPSK ≤ 6.5 16 QAM ≤ 6.5	< 400 MHz \geq 400 MHz and < 800 MHzPi/2 BPSK \leq 5.517.71QPSK \leq 6.518.7116 QAM \leq 6.58.764 QAM \leq 9.010.7QPSK \leq 6.58.716 QAM \leq 6.58.716 QAM \leq 6.58.7	

Table 6.2A.2.2-1: Maximum power reduction (MPR_{WT_C_CA}) for UE power class 1

In case of a contiguous RB, DFT-s-BPSK or DFT-s-QPSK UL allocation in a single CC of a CA configuration whose cumulative aggregated BW \leq 400 MHz, MPR_{WT_C_CA} shall be derived instead as MAX(MPR₁, MPR₂), where:

MPR₁ shall be determined from Table 6.2.2.1-1 if CABW ≤ 200 MHz, from Table 6.2.2.1-2 if CABW > 200 MHz.

 $MPR_2 \text{ shall be determined from Table 6.2.2.1-1 if BW_{channel_CA} \leq 200 \text{ MHz}, \text{ from Table 6.2.2.1-2 if BW}_{channel_CA} > 200 \text{ MHz}.$

and assume all UL CCs use the same SCS for the purpose of determination of inner and outer RB allocations in Table 6.2.2.1-1 and Table 6.2.2.1-2:

 N_{RB} shall be chosen as the sum of N_{RB} of all constituent UL CCs in the CA configuration.

LCRB shall be chosen as BWalloc, RB

 RB_{start} shall be derived as: $RB_{start_allocatedCC}+N_{RB_unallocatedCC_low}$

 $RB_{start_allocatedCC}$ is the index of the first unallocated RB in the CC with allocation

NRB_unallocatedCC_low is the sum of NRB in all UL CCs lower in frequency compared to the CC with allocation

BW_{channel CA} is the aggregated channel bandwidth of the UL CA configuration

When different waveform types exist across CCs, the requirement is set by the waveform type used in the configuration with the largest $MPR_{C_{CA}}$.

For non-contiguous RB allocations, the following rule for MPR applies:

$$MPR = max(MPR_{C_{CA}}, -10*A + 14.4)$$

Where:

 $A = N_{RB_alloc} / N_{RB_agg_C}$.

 N_{RB_alloc} is the total number of allocated UL RBs

N_{RB_agg_C} is the number of the aggregated RBs within the fully allocated cumulative aggregated channel bandwidth

6.2A.2.3 Maximum output power reduction for power class 2

For power class 2, MPR specified in sub-clause 6.2A.2.4 applies.

Table 6.2A.2.3-1: (Void)

6.2A.2.4 Maximum output power reduction for power class 3

For power class 3, MPR for UL contiguous allocations within the cumulative aggregated bandwidth is denoted as $MPR_{C_{CA}}$ and is defined in Table 6.2A.2.4-1.

		Cumulative aggregated bandwidth configuration		
		≤ 400 MHz	> 400 MHz and < 800 MHz	≥ 800 MHz and ≤ 1400 MHz
	Pi/2 BPSK	≤ 5.0 ¹	≤ 7.7 ¹	≤ [8.2]
DFT-s-OFDM	QPSK	≤ 5.0 ¹	≤ 7.7 ¹	≤ [8.2]
	16 QAM	≤ 6.5	≤ 8.7	≤ [9.3]
	64 QAM	≤ 9.0	≤ 10.7	≤ [11.2]
	QPSK	≤ 5.0	≤ 7.5	≤ [8.0]
CP-OFDM	16 QAM	≤ 6.5	≤ 8.7	≤ [9.2]
	64 QAM	≤ 9.0	≤ 10.7	≤ [11.2]
NOTE 1: (Void).				

Table 6.2A.2.4-1: Maximum power reduction (MPRc_cA) for UE power class 3

In case of a contiguous RB, DFT-s-BPSK or DFT-s-QPSK UL allocation in a single CC of a CA configuration whose cumulative aggregated BW \leq 400 MHz, MPR_{WT_C_CA} shall be derived instead as MAX(MPR₁, MPR₂), where:

MPR₁ shall be determined from Table 6.2.2.3-1 if CABW ≤ 200 MHz, from Table 6.2.2.3-2 if CABW > 200 MHz.

MPR₂ shall be determined from Table 6.2.2.3-1 if $BW_{channel_CA} \le 200$ MHz, from Table 6.2.2.3-2 if $BW_{channel_CA} > 200$ MHz.

and assume all UL CCs use the same SCS for the purpose of determination of inner and outer RB allocations in Table 6.2.2.3-1 and Table 6.2.2.3-2:

 N_{RB} shall be chosen as the sum of N_{RB} of all constituent UL CCs in the CA configuration.

LCRB shall be chosen as BWalloc, RB

 $RB_{start} \ shall \ be \ derived \ as: \ RB_{start_allocatedCC} + N_{RB_unallocatedCC_low}$

 $RB_{\text{start_allocatedCC}}$ is the index of the first unallocated RB in the CC with allocation

NRB_unallocatedCC_low is the sum of NRB in all UL CCs lower in frequency compared to the CC with allocation

BW_{channel_CA} is the aggregated channel bandwidth of the UL CA configurationWhen different waveform types exist across CCs, the requirement is set by the waveform type used in the configuration with the highest contiguous MPR.

For non-contiguous RB allocations, the following rule for MPR applies:

$$MPR = \max(MPR_{C_CA}, -10*A + 7.0)$$

Where:

 $A = N_{RB_alloc} / N_{RB_agg_C.}$

 N_{RB_alloc} is the total number of allocated UL RBs

 $N_{RB_agg_C}$ is the number of the aggregated RBs within the fully allocated cumulative aggregated channel bandwidth

6.2A.2.5 Maximum output power reduction for power class 4

For power class 4, MPR specified in sub-clause 6.2A.2.4 applies.

6.2A.3 UE maximum output power with additional requirements for CA

6.2A.3.1 General

Additional emission requirements can be signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*. To meet these additional requirements, additional maximum power reduction (A-MPR) is allowed for the maximum output power as specified in clause 6.2A.1. Unless stated otherwise, an A-MPR of 0 dB shall be used. Unless otherwise stated, the allowed total back off is maximum of A-MPR and MPR specified in clause 6.2A.2.

For intra-band contiguous aggregation with the UE configured for transmissions on two serving cells, the maximum output power reduction specified in Table 6.2A.3.1-1 is allowed for all serving cells of the applicable uplink contiguous CA configurations according to the CA network signalling value indicated by the field *additionalSpectrumEmissionSCell*.

Table 6.2A.3.1-1 specifies the additional requirements and allowed A-MPR with corresponding network signalling label and operating band. The mapping between network signalling labels and the *additionalSpectrumEmission* IE defined in TS 38.331 [13] is specified in Table 6.2A.3.1-2. Unless otherwise stated, the allowed total back off is maximum of A-MPR and MPR specified in clause 6.2A.2.

Table 6.2A.3.1-1: Additional maximum	n power reduction (A-MPR)
--------------------------------------	---------------------------

Network Signalling value	Requirements (clause)	NR Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)
CA_NS_200					N/A
CA_NS_201	6.5.3.2.2	n258			6.2A.3.2
CA_NS_202	6.5.3.2.3	n257, n258			6.2A.3.3

NR Band	Value of additionalSpectrumEmission / NS number							
	0	1	2	3	4	5	6	7
n257	CA_NS_200	CA_NS_202						
n258	CA_NS_200	CA_NS_201	CA_NS_202					
n259	CA_NS_200							
n260	CA_NS_200							
n261	CA_NS_200							
	nalSpectrumEmission 6.3.2 of TS 38.331 [13		formation element of	the sam	e name	defined	d in	•

6.2A.3.2 A-MPR for CA_NS_201

6.2A.3.2.1 A-MPR for CA_NS_201 for power class 1

For intra-band contiguous CA, AMPR is specified as follows.

Table 6.2A.3.2.1-1: (Void)

For power class 1 CA non-contiguous RB allocations, the following rule for AMPR (dB) applies:

 $AMPR = max(AMPR_{C_CA}, -10*A + 12.0)$

Where AMPR_{C_CA} is 9.0

6.2A.3.2.2 A-MPR for CA_NS_201 for power class 2

For intra-band contiguous CA, A-MPR specified in sub-clause 6.2A.3.2.3 applies.

Table 6.2A.3.2.2-1: (Void)

6.2A.3.2.3 A-MPR for CA_NS_201 for power class 3

For intra-band contiguous CA, AMPR is specified as follows.

Table 6.2A.3.2.3-1: Contiguous Allocations, $AMPR_{C_{CA}}$ for CA_NS_201 for power class 3

	Cumulative Aggregated Bandwidth, MHz			
Offset Frequency	< 400	≥ 400, ≤ 800		
0 MHz, ≤ 100 MHz	≤ 1.5	≤ 3.0		
> 100 MHz, ≤ 300 MHz	0	0		
> 300 MHz	0	0		
NOTE 1: The Offset freq	uency is defined as the fr	equency from 24.25 GHz		
to the lower ch				
NOTE 2: The allowable	back off is max(MPR, AMPR), where the MPR is			
defined in Table 6.2A.2.4-1.				
NOTE 3: Any undefined region, MPR applies.				

For power class 3 CA non-contiguous RB allocations, the following rule for AMPR applies:

AMPR = max(AMPR_C_CA, - 10*A + 5.0) , Offset Frequency ${\leq}\,550$ MHz

6.2A.3.2.4 A-MPR for CA_NS_201 for power class 4

For intra-band contiguous CA, A-MPR for CA_NS_201 specified in sub-clause 6.2A.3.2.3 applies.

6.2A.3.3 A-MPR for CA_NS_202

6.2A.3.3.1 A-MPR for CA_NS_202 for power class 1

For intra-band contiguous CA, A-MPR for CA_NS_202 shall be 11.0 dB.

6.2A.3.3.2 A-MPR for CA_NS_202 for power class 2

For intra-band contiguous CA, A-MPR for CA_NS_202 specified in sub-clause 6.2A.3.3.3 applies.

6.2A.3.3.3 A-MPR for CA_NS_202 for power class 3

For intra-band contiguous CA, A-MPR for CA_NS_202 shall be 2.0 dB.

6.2A.3.3.4 A-MPR for CA_NS_202 for power class 4

For intra-band contiguous CA, A-MPR for CA_NS_202 specified in sub-clause 6.2A.3.3.3 applies.

6.2A.4 Configured transmitted power for CA

A UE configured with carrier aggregation can configure its maximum output power for each uplink activated serving cell c and its total configured maximum output power $P_{CMAX,f,c}$ for each carrier f of a serving cell c is used for power headroom reporting for carrier f of serving cell c only and is in accordance with that specified in clause 6.2.4 with parameters MPR, A-MPR and P-MPR replaced with those specified in subclause 6.2A.2, 6.2A.3 and 6.2.4, respectively. The UE maximum configured power P_{CMAX} in a transmission occasion is determined by the UL grants for carrier f of serving cell's c(i) with non-zero granted power in the respective reference points.

For uplink intra-band contiguous carrier aggregation, MPR is specified in clause 6.2A.2. P_{CMAX} is calculated under the assumption that power spectral density for each RB in each component carrier is same.

The configured UE maximum output power P_{CMAX} shall be set such that the corresponding measured total peak EIRP P_{UMAX} is within the following bounds

$$\begin{split} P_{Powerclass} - MAX(MAX(MPR, A_MPR) + \Delta MB_{P,n}, P-MPR) - MAX\{T(MAX(MPR, A_MPR)), T(P-MPR)\} \leq P_{UMAX} \leq EIRP_{max} \end{split}$$

with $P_{Powerclass}$ the peak EIRP as specified in sub-clause 6.2A.1, EIRP_{max} the applicable maximum EIRP as specified in sub-clause 6.2A.1, MPR as specified in sub-clause 6.2A.2, A-MPR as specified in sub-clause 6.2A.3, $\Delta MB_{P,n}$ the peak EIRP relaxation as specified in clause 6.2.1, P-MPR the power management term for the UE as described in 6.2.4 and TRP_{max} the maximum TRP for the UE power class as specified in sub-clause 6.2A.1.

The measured configured power P_{UMAX} for carrier aggregation is defined as

$$P_{UMAX} = 10 \log_{10} \sum_{c,f(c)} p_{UMAX,f,c}$$

where $p_{UMAX,f,c}$ is the linear value of the measured power $P_{UMAX,f,c}$ for carrier f=f(c) serving cell c.

The tolerance $T(\Delta P)$ for applicable values of ΔP (values in dB) is specified in Table 6.2A.4-1.

Operating Band	∆ P (dB)	Tolerance T(∆P) (dB)			
	$\Delta P = 0$	0			
	0 < ∆P ≤ 2	1.5			
	2 < ∆P ≤ 3	2.0			
n257, n258, n259,	3 < ∆P ≤ 4	3.0			
n260, n261	4 < ∆P ≤ 5	4.0			
	5 < ∆P ≤ 10	5.0			
	10 < ∆P ≤ 15	7.0			
	15 < ∆P ≤ X	8.0			
NOTE: X is the value such that P_{umax} lower bound, $P_{Powerclass} - \Delta P$					
$-T(\Delta P) = m$	$- T(\Delta P) = minimum output power specified in clause$				
6.3A.1	6.3A.1				

Table 6.2A.4-1: PUMAX tolerance

6.2D Transmitter power for UL MIMO

6.2D.1 UE maximum output power for UL MIMO

6.2D.1.1 UE maximum output power for UL MIMO for power class 1

The following requirements define the maximum output power radiated by the UE with UL MIMO for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated.Requirements in Table 6.2D.1.1-1 shall be met with the UE configured for 2 layer UL MIMO transmission as specified in Table 6.2D.1.1-2. The period of measurement shall be at least one sub frame (1ms). The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle). Power class 1 UE is used for fixed wireless access (FWA).

Operating band	Min peak EIRP (dBm)
n257	40.0
n258	40.0
n260	38.0
n261	40.0
NOTE 1: Minimum peak EIRP is defined as the lower limit without tolerance	

Table 6.2D.1.1-2:		configuration
-------------------	--	---------------

Transmission scheme	DCI format	TPMI Index
Codebook based uplink	DCI format 0_1	0

The maximum output power values for TRP and EIRP are found in Table 6.2D.1.1-3 below for UE with UL MIMO. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6 2D 1 1-3: LIE maximum output	power limits for UL MIMO for power class 1
Table 0.2D. I. I-3. UE maximum output	power minus for OL Minuo for power class i

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	35	55
n258	35	55
n260	35	55
n261	35	55

The minimum EIRP at the 85th percentile of the distribution of radiated power measured over the full sphere around the UE with UL MIMO is defined as the spherical coverage requirement and is found in Table 6.2D.1.1-4 below. The requirement is verified with the test metric of EIRP (Link=Spherical coverage grid, Meas=Link angle).

Operating band	Min EIRP at 85 %-tile CDF (dBm)	
n257	32.0	
n258	32.0	
n260	30.0	
n261	32.0	
NOTE 1: Minimum EIRP at 85 %-tile CDF is defined as the lower limit without tolerance		

6.2D.1.2 UE maximum output power for UL MIMO for power class 2

The following requirements define the maximum output power radiated by the UE with UL MIMO for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. Requirements in Table 6.2D.1.2-1 shall be met with the UE configured for 2 layer UL MIMO transmission specified in Table 6.2D.1.2-3. The period of measurement shall be at least one sub frame (1ms). The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2D.1.2-1: UE minimum peak EIRP for UL MIMO for power class 2

Operating band	Min peak EIRP (dBm)
n257	29
n258	29
n261	29
NOTE 1: Minimum p	beak EIRP is defined as the
Iower limit without tolerance. NOTE 2: Min Peak EIRP refers to the total EIRP for the UL beams peaks.	

The maximum output power values for TRP and EIRP are found in Table 6.2D.1.2-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2D.1.2-2: UE maximum output power limits for UL MIMO for power class 2

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n261	23	43

Transmission scheme	DCI format	TPMI Index
Codebook based uplink	DCI format 0_1	0

Table 6.2D.1.2-3: UL MIMO configuration

The minimum EIRP at the 60th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2D.1.2-4 below. The requirement is verified with the test metric of EIRP (Link=Spherical coverage grid, Meas=Link angle).

Table 6.2D.1.2-4: UE spherical coverage for UL MIMO for power class 2

Operating band	Min EIRP at 60 %-tile CDF (dBm)
n257	18.0
n258	18.0
n261	18.0
NOTE 1: Minimum EIRP at 60 %-tile CDF is defined as	
the lower limit without tolerance	

6.2D.1.3 UE maximum output power for UL MIMO for power class 3

The following requirements define the maximum output power radiated by the UE with UL MIMO for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. Requirements in Table 6.2D.1.3-1 shall be met with the UE configured for 2 layer UL MIMO transmission specified in Table 6.2D.1.3-3. The period of measurement shall be at least one sub frame (1 ms). The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Min peak EIRP (dBm)
n257	22.4
n258	22.4
n259	18.7
n260	20.6
n261	22.4
NOTE 1: Minimum peak Elf tolerance.	RP is defined as the lower limit without
NOTE 2: Min Peak EIRP re peaks.	fers to the total EIRP for the UL beams

The maximum output power values for TRP and EIRP are found in Table 6.2D.1.3-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2D.1.3-2: UE maximum output power limits for UL MIMO for power class 3

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n259	23	43
n260	23	43
n261	23	43

Table 6.2	2D.1.3-3: l	JL MIMO	configuration
-----------	-------------	---------	---------------

Transmission scheme	DCI format	TPMI Index
Codebook based uplink	DCI format 0_1	0

The minimum EIRP at the 50th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2D.1.3-4 below. The requirement is verified with the test metric of EIRP (Link=spherical coverage grid, Meas=Link angle).

Operating band	Min EIRP at 50 %-tile CDF (dBm)
n257	11.5
n258	11.5
n259	5.8
n260	8
n261	11.5
NOTE 1: Minimum EIRP at 50 %-tile CDF is defined as the lower limit without tolerance	
NOTE 2: The requirements in this table are only applicable for UE which supports single band in FR2	

Table 6.2D.1.3-4: UE spherical coverage for UL MIMO for power class 3

6.2D.1.4 UE maximum output power for UL MIMO for power class 4

The following requirements define the maximum output power radiated by the UE with UL MIMO for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. Requirements in Table 6.2D.1.4-1 shall be met with the UE configured for 2 layer UL MIMO transmission specified in Table 6.2D.1.4-3. The period of measurement shall be at least one sub frame (1ms). The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.2D.1.4-1: UE minimum peak EIRP for UL MIMO for power class 4

Operating band	Min peak EIRP (dBm)
n257	34
n258	34
n260	31
n261	34
NOTE 1: Minimum peak Elf tolerance.	RP is defined as the lower limit without
NOTE 2: Min Peak EIRP re peaks.	fers to the total EIRP for the UL beams

The maximum output power values for TRP and EIRP are found in Table 6.2D.1.4-2 below. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction, Meas=TRP grid) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Max TRP (dBm)	Max EIRP (dBm)
n257	23	43
n258	23	43
n260	23	43
n261	23	43

Table 6.2D.1.4-3:	UL	MIMO	configuration
-------------------	----	------	---------------

Transmission scheme	DCI format	TPMI Index
Codebook based uplink	DCI format 0_1	0

The minimum EIRP at the 20th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 6.2D.1.4-4 below. The requirement is verified with the test metric of EIRP (Link=Spherical coverage grid, Meas=Link angle).

Operating band	Min EIRP at 20 %-tile CDF (dBm)	
n257	25	
n258	25	
n260	19	
n261	25	
NOTE 1: Minimum E	EIRP at 20 %-tile CDF is defined as	
the lower limit without tolerance		

Table 6.2D.1.4-4: UE spherical coverage for UL MIMO for power class 4

6.2D.2 UE maximum output power reduction for modulation / channel bandwidth for UL MIMO

6.2D.2.1 UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for power class 1

For UE with UL MIMO, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2D.1.1-1 is specified in sub-clause 6.2.2.1. The requirements shall be met with UL MIMO configurations specified in sub-clause 6.2D.1.1.

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2D.4 apply.

6.2D.2.2 UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for power class 2

For UE with UL MIMO, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2D.1.2-1 is specified in sub-clause 6.2.2.2. The requirements shall be met with UL MIMO configurations specified in sub-clause 6.2D.1.2.

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2D.4 apply.

6.2D.2.3 UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for power class 3

For UE with UL MIMO, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2D.1.3-1 is specified in sub-clause 6.2.2.3. The requirements shall be met with UL MIMO configurations specified in sub-clause 6.2D.1.3.

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2D.4 apply.

6.2D.2.4 UE maximum output power reduction for modulation / channel bandwidth for UL MIMO for power class 4

For UE with UL MIMO, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2D.1.4-1 is specified in sub-clause 6.2.2.4. The requirements shall be met with UL MIMO configurations specified in sub-clause 6.2D.1.4.

For the UE maximum output power modified by MPR, the power limits specified in clause 6.2D.4 apply.

6.2D.3 UE maximum output power reduction with additional requirements for UL MIMO

6.2D.3.1 UE maximum output power reduction with additional requirements for UL MIMO for power class 1

For UE with UL MIMO, the A-MPR values specified in clause 6.2.3 shall apply to the maximum output power specified in Table 6.2D.1.1-1. The requirements shall be met with the UL MIMO configurations specified in sub-clause 6.2D.1.1.

For the UE maximum output power modified by A-MPR, the power limits specified in clause 6.2D.4 apply.

6.2D.3.2 UE maximum output power reduction with additional requirements for UL MIMO for power class 2

For UE with UL MIMO, the A-MPR values specified in clause 6.2.3 shall apply to the maximum output power specified in Table 6.2D.1.2-1. The requirements shall be met with the UL MIMO configurations specified in clause 6.2D.1.2.

For the UE maximum output power modified by A-MPR, the power limits specified in clause 6.2D.4 apply.

6.2D.3.3 UE maximum output power reduction with additional requirements for UL MIMO for power class 3

For UE with UL MIMO, the A-MPR values specified in clause 6.2.3 shall apply to the maximum output power specified in Table 6.2D.1.3-1. The requirements shall be met with the UL MIMO configurations specified in clause 6.2D.1.3.

For the UE maximum output power modified by A-MPR, the power limits specified in clause 6.2D.4 apply.

6.2D.3.4 UE maximum output power reduction with additional requirements for UL MIMO for power class 4

For UE with UL MIMO, the A-MPR values specified in clause 6.2.3 shall apply to the maximum output power specified in Table 6.2D.1.4-1. The requirements shall be met with the UL MIMO configurations specified in clause 6.2D.1.4.

6.2D.4 Configured transmitted power for UL MIMO

For UE configured with ULMIMO, the configured maximum output power $P_{CMAX,c}$ for serving cell *c* is defined as sum of all streams and is bound by limits set in clause 6.2.4.

6.3 Output power dynamics

6.3.1 Minimum output power

6.3.1.0 General

The minimum controlled output power of the UE is defined as the EIRP in the channel bandwidth for all transmit bandwidth configurations (resource blocks) when the power is set to a minimum value.

6.3.1.1 Minimum output power for power class 1

For power class 1 UE, the minimum output power shall not exceed the values specified in Table 6.3.1.1-1 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4	47.52
Γ	100	4	95.04
Γ	200	4	190.08
	400	4	380.16

Table 6.3.1.1-1: Minimum output power for power class 1

6.3.1.2 Minimum output power for power class 2, 3, and 4

The minimum output power shall not exceed the values specified in Table 6.3.1.2-1 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 6.3.1.2-1: Minimum output power for power class 2, 3, and 4

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)		
n257, n258, n259, n260,	50	-13	47.52		
n261	100	-13	95.04		
	200	-13	190.08		
	400	-13	380.16		
NOTE 1: n260 is not applied for power class 2.					
NOTE 2: n259 is not applied for power class 2 and 4.					

6.3.2 Transmit OFF power

The transmit OFF power is defined as the TRP in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of its ports.

The transmit OFF power shall not exceed the values specified in Table 6.3.2-1 for each operating band supported. The requirement is verified with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

Table 6.3.2-1: Transmit OFF power

Operating band	Channel bandwidth / Transmit OFF power (dBm) / measurement bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257, n258, n259, n260,	-35	-35	-35	-35	
n261	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz	

6.3.3 Transmit ON/OFF time mask

6.3.3.1 General

The transmit ON/OFF time mask defines the transient period(s) allowed

- between transmit OFF power and transmit ON power symbols (transmit ON/OFF)
- between continuous ON-power transmissions when power change or RB hopping is applied.

In case of RB hopping, transition period is shared symmetrically.

Unless otherwise stated the minimum requirements in clause 6.5 apply also in transient periods.

The transmit ON/OFF time mask is defined as a directional requirement. The requirement is verified in beam locked mode at beam peak direction. The maximum allowed EIRP OFF power level is -30dBm at beam peak direction. The requirement is verified with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

In the following sub-clauses, following definitions apply:

- A slot transmission is a Type A transmission.
- A long subslot transmission is a Type B transmission with more than 2 symbols.
- A short subslot transmission is a Type B transmission with 1 or 2 symbols.

6.3.3.2 General ON/OFF time mask

The general ON/OFF time mask defines the observation period allowed between transmit OFF and ON power. ON/OFF scenarios include: contiguous, and non-contiguous transmission, etc

The OFF power measurement period is defined in a duration of at least one slot excluding any transient periods. The ON power is defined as the mean power over one slot excluding any transient period.

Figure 6.3.3.2-1: General ON/OFF time mask for NR UL transmission in FR2

6.3.3.3 Transmit power time mask for slot and short or long subslot boundaries

The transmit power time mask for slot and a long subslot transmission boundaries defines the transient periods allowed between slot and long subslot PUSCH transmissions. For PUSCH-PUCCH and PUSCH-SRS transitions and multiplexing the time masks in sub-clause 6.3.3.7 apply.

The transmit power time mask for slot or long subslot and short subslot transmission boundaries defines the transient periods allowed between slot or long subslot and short subslot transmissions. The time masks in sub-clause 6.3.3.8 apply.

The transmit power time mask for short subslot transmissiona boundaries defines the transient periods allowed between short subslot transmissions. The time masks in sub-clause 6.3.3.9 apply.

6.3.3.4 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.3.4-1. The measurement period for different PRACH preamble format is specified in Table 6.3.3.4-1.

Format	SCS	Measurement period			
A ₁	60 kHz	0.035677 ms			
	120 kHz	0.017839 ms			
A ₂	60 kHz	0.071354 ms			
	120 kHz	0.035677 ms			
A ₃	60 kHz	0.107031 ms			
	120 kHz	0.053516 ms			
B ₁	60 kHz	0.035091 ms			
	120 kHz	0.0175455 ms			
B4	60 kHz	0.207617 ms			
D4	120 kHz	0.103809 ms			
	60 kHz	0.035677 ms for front X1 occasion			
		0.035091 ms for last occasion			
A1/B1		X1 = [2,5]			
	120 kHz	0.017839 ms for front X1occasion			
		0.017546 ms for last occasion			
		X1 = [2,5]			
	60 kHz				
		0.069596 ms for last occasion			
A2/B2		X2 = [1,2]			
2 = 2	120 kHz				
		0.034798 ms for last occasion			
		X2 = [1,2]			
A ₃ /B ₃	60 kHz	0.107031 ms for first occasion			
		0.104101 ms for second occasion			
	120 kHz	0.053515 ms for first occasion			
		0.052050 ms for second occasion			
C ₀	60 kHz	0.026758 ms			
	120 kHz	0.013379 ms			
C ₂	60 kHz	0.083333 ms			
	120 kHz	0.0416667 ms			
NOTE: For PRACH on PRACH occasion start from begin of 0ms or 0.5 ms boundary, the measurement period will plus 0.032552 μs					

Table 6.3.3.4-1: PRACH ON power measurement period

6.3.3.5 Void

6.3.3.6 SRS time mask

In the case a single SRS transmission, the ON power is defined as the mean power over the symbol duration excluding any transient period; Figure 6.3.3.6-1.

Figure 6.3.3.6-1: Single SRS time mask for NR UL transmission

In the case multiple consecutive SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. See Figure 7.7.4-2

Figure 6.3.3.6-2: Consecutive SRS time mask for the case when no power change is required

When power change between consecutive SRS transmissions is required, then Figure 6.3.3.6-3 and Figure 6.3.3.6-4 apply.

6.3.3.7 PUSCH-PUCCH and PUSCH-SRS time masks

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent UL transmissions. The time masks apply for all types of frame structures and their allowed PUCCH/PUSCH/SRS transmissions unless otherwise stated.

Figure 6.3.3.7-1: PUCCH/PUSCH/SRS time mask when there is a transmission before or after or both before and after SRS

When there is no transmission preceding SRS transmission or succeeding SRS transmission, then the same time mask applies as shown in Figure 6.3.3.7-1.

6.3.3.8 Transmit power time mask for consecutive slot or long subslot transmission and short subslot transmission boundaries

The transmit power time mask for consecutive slot or long subslot transmission and short subslot transmission boundaries defines the transient periods allowed between such transmissions.

Figure 6.3.3.8-1: Consecutive slot or long subslot transmission and short subslot transmission time mask

6.3.3.9 Transmit power time mask for consecutive short subslot transmissions boundaries

The transmit power time mask for consecutive short subslot transmission boundaries defines the transient periods allowed between short subslot transmissions.

The transient period shall be equally shared as shown on Figure 6.3.3.9-2.

Figure 6.3.3.9-1: Void

Figure 6.3.3.9-2: Consecutive short subslot transmissions time mask where DMRS is not the first symbol in the adjacent short subslot transmission

Figure 6.3.3.9-3: Consecutive short subslot (1 symbol gap) time mask for the case when transient period is required on both sides of the symbol and when 120 kHz SCS is used in FR2

6.3.4 Power control

6.3.4.1 General

The requirements on power control accuracy apply under normal conditions and are defined as a directional requirement. The requirements are verified in beam locked mode on beam peak direction.

6.3.4.2 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame (1 ms) at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20 ms. The tolerance includes the channel estimation error RSRP estimate.

The minimum requirements specified in Table 6.3.4.2-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1 (' P_{min} ') and the maximum output power as specified in sub-clause 6.2.1 as minimum peak EIRP (' P_{max} '). The intermediate power point ' P_{int} ' is defined in table 6.3.4.2-2

Power Range	Tolerance
$P_{int} \ge P \ge P_{min}$	± 14.0 dB
$P_{max} \ge P > P_{int}$	± 12.0 dB

Table 6.3.4.2-1: Absolute power tolerance

Table 6.3.4.2-2: Intermediate power poi

Power Parameter	Value	
Pint	P _{max} – 12.0 dB	

6.3.4.3 Relative power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame (1 ms) relatively to the power of the most recently transmitted reference sub-frame (1 ms) if the transmission gap between these sub-frames is 20 ms.

The minimum requirements specified in Table 6.3.4.3-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in sub-clause 6.3.1 and Pint as defined in sub-clause 6.3.4.2. The minimum requirements specified in Table 6.3.4.3-2 apply when the power of the target and reference sub-frames are within the power range bounded by Pint as defined in sub-clause 6.3.4.2 and the measured P_{UMAX} as defined in sub-clause 6.2.4.

For a test pattern that is either a monotonically increasing or monotonically decreasing power sweep over the range specified for Tables 6.3.4.3-1 and 6.3.4.3-2, 3 exceptions are allowed for each of the test patterns. For these exceptions, the power tolerance limit is a maximum of ± 11.0 dB.

Power step ∆P (Up or down) (dB)	All combinations of PUSCH and PUCCH, PUSCH/PUCCH and SRS transitions between sub- frames, PRACH (dB)		
ΔP < 2	±5.0		
2 ≤ ΔP < 3	±6.0		
3 ≤ ∆P < 4	±7.0		
4 ≤ ΔP < 10	±8.0		
10 ≤ ΔP < 15	±10.0		
15 ≤ ∆P	±11.0		
NOTE: The requirements apply with <i>ue- BeamLockFunction</i> enabled.			

Power step ∆P (Up or down) (dB)	All combinations of PUSCH and PUCCH, PUSCH/PUCCH and SRS transitions between sub- frames, PRACH (dB)		
ΔP < 2	± 3.0		
2 ≤ ΔP < 3	± 4.0		
3 ≤ ΔP < 4	± 5.0		
4 ≤ ΔP < 10	± 6.0		
10 ≤ ΔP < 15	± 8.0		
15 ≤ ΔP	± 9.0		
 NOTE 1: The requirements apply with <i>ue-BeamLockFunction</i> enabled. NOTE 2: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, guard periods: for a 			
power step $\Delta P = 1 \text{ dB}$, the relative power tolerance for transmission is $\pm 1.0 \text{ dB}$.			

6.3.4.4 Aggregate power tolerance

The aggregate power control tolerance is the ability of the UE transmitter to maintain its power in a sub-frame (1 ms) during non-contiguous transmissions within 21ms in response to 0 dB TPC commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

The minimum requirements specified in Table 6.3.4.4-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in sub-clause 6.3.1 and P_{int} as defined in sub-clause 6.3.4.2. The minimum requirements specified in Table 6.3.4.4-2 apply when the power of the target and reference sub-frames are within the power range bounded by Pint as defined in sub-clause 6.3.4.2 and the maximum output power as specified in sub-clause 6.2.1.

Table 6.3.4.4-1: A	Aggregate power tolerance	e, P _{in}	_{it} ≥ P ≥ I	P _{min}
--------------------	---------------------------	--------------------	-----------------------	------------------

TPC command	UL channel	Aggregate power tolerance within 21 ms
0 dB	PUCCH	± 5.5 dB
0 dB	PUSCH	± 5.5 dB

Table 6.3.4.4-2	Aggregate	power tolerance,	$P_{max} \ge P \ge P_{int}$
-----------------	-----------	------------------	-----------------------------

TPC command	UL channel	Aggregate power tolerance within 21 ms
0 dB	PUCCH	± 3.5 dB
0 dB	PUSCH	± 3.5 dB

6.3A Output power dynamics for CA

6.3A.1 Minimum output power for CA

Table 6.3A.1-1: Void

6.3A.1.0 General

For intra-band contiguous carrier aggregation, the minimum controlled output power of the UE is defined as the transmit power of the UE per component carrier, i.e., EIRP in the channel bandwidth of each component carrier for all transmit bandwidth configurations (resource blocks), when the power on both component carriers are set to a minimum value.

6.3A.1.1 Minimum output power for power class 1

The minimum output power shall not exceed the values specified in Table 6.3A.1.1-1 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n260, n261	50	4	47.52
	100	4	95.04
	200	4	190.08
	400	4	380.16

Table 6.3A.1.1-1: Minimum output power for power class 1

6.3A.1.2 Minimum output power for power class 2, 3, and 4

The minimum output power shall not exceed the values specified in Table 6.3A.1.2-1 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258, n259, n260,	50	-13	47.52
n261	100	-13	95.04
	200	-13	190.08
	400	-13	380.16
NOTE 1: n260 is not appl	ied for power class 2.	-	·
NOTE 2: n259 is not appli	ied for power class 2 and 4.		

Table 6.3A.1.2-1: Minimum output power for CA for power class 2, 3, and 4

6.3A.2 Transmit OFF power for CA

For intra-band contiguous carrier aggregation, the transmit OFF power is defined as the TRP in the channel bandwidth per component carrier when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of it sports.

The transmit OFF power shall not exceed the values specified in Table 6.3A.2-1 for each operating band supported.

Operating band	Channel band		OFF power (dBm) / width	measurement
	50 MHz	100 MHz	200 MHz	400 MHz
n257, n258, n259, n260,	-35	-35	-35	-35
n261	47.52 MHz	95.04 MHz	190.08 MHz	380.16 MHz

Table 6.3A.2-1: Transmit OFF power for CA

6.3A.3 Transmit ON/OFF time mask for CA

For intra-band contiguous carrier aggregation, the general output power ON/OFF time mask specified in clause 6.3.3.2 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in clause 6.3.3.2 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3A.4 Power control for CA

6.3A.4.1 General

The requirements in this clause apply to a UE when it has at least one of UL or DL configured for CA operation. The requirements on power control accuracy in CA operation apply under normal conditions and are defined as a directional requirement. The requirements are verified in beam locked mode on beam peak direction. The requirements apply for one single PUCCH, PUSCH or SRS transmission of contiguous PRB allocation per configured UL CC with power setting in accordance with Clause 7.1 of [10]

6.3A.4.2 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20 ms. For SRS switching, the absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission with a transmission or non-contiguous transmission or non-contiguous transmission or non-contiguous transmission gap on component carriers (to which SRS switching occurs) larger than 20 ms. The requirement can be tested by time aligning any transmission gaps on the component

carriers. For intra-band contiguous CA, the absolute power control tolerance per configured UL CC is given in Tables 6.3.4.2-1 and 6.3.4.2-2.

6.3A.4.3 Relative power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame relative to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is <20ms.

For intra-band contiguous CA, the requirements apply when the power of the target and reference sub-frames on each component carrier exceed the minimum output power as defined in clause 6.3A.1 and the total power is limited by P_{UMAX} as defined in clause 6.2A.4. For the purpose of these requirements, the power in each component carrier is specified over only the transmitted resource blocks. The UE shall meet the requirements in tables 6.3.4.3-1 and 6.3.4.3-2 for transmission on each assigned component carrier, when the average PSDs over each CC are aligned with each other in the reference sub-frame. The requirements apply per component carrier to:

- a. All possible combinations of PUSCH and PUCCH transitions
- b. SRS and PUSCH/PUCCH transitions, only with simultaneous SRS of constant SRS bandwidth allocated in the target and reference subrames
- c. RACH, primary component carrier

When applicable, the power step ΔP between the reference and target subframes shall be set by a TPC command and/or an uplink scheduling grant transmitted by means of an appropriate DCI Format.

6.3A.4.4 Aggregate power tolerance

The aggregate power control tolerance is the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission and all other power control parameters as specified in [10] kept constant.

For intra-band contiguous CA, the aggregate power tolerance per CC is given in Tables 6.3.4.4.1-1 and 6.3.4.4.1-2, with simultaneous PUSCH configured. The average PSDs over each assigned CC shall be aligned before the start of the test. The requirement can be tested with the transmission gaps time aligned between component carriers.

6.3D Output power dynamics for UL MIMO

6.3D.1 Minimum output power for UL MIMO

6.3D.1.1 Minimum output power for UL MIMO for power class 1

For UE supporting UL MIMO, the minimum controlled output power is defined as the EIRP, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the UE power is set to a minimum value. The minimum output power shall not exceed the values specified in Table 6.3.1.1-1. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

6.3D.1.2 Minimum output power for UL MIMO for power class 2, 3 and 4

For UE supporting UL MIMO, the minimum controlled output power is defined as the EIRP, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the UE power is set to a minimum value. The minimum output power shall not exceed the values specified in Table 6.3.1.2-1. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

6.3D.2 Transmit OFF power for UL MIMO

For UE supporting UL MIMO, the transmit OFF power is defined as the TRP in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of its ports. During DTX and measurements gaps, the transmitter is not considered OFF. The minimum output power shall not

exceed the values specified in Table 6.3.2-1. The requirement is verified with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

6.3D.3 Transmit ON/OFF time mask for UL MIMO

For UE supporting UL MIMO, the ON/OFF time mask requirements in clause 6.3.3 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

6.4 Transmit signal quality

6.4.1 Frequency Error

The UE basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of 1 msec of cumulated measurement intervals compared to the carrier frequency received from the NR gNB.

The frequency error is defined as a directional requirement. The requirement is verified in beam locked mode with the test metric of Frequency (Link=TX beam peak direction, Meas=Link angle).

6.4.2 Transmit modulation quality

6.4.2.0 General

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage
- In-band emissions for the non-allocated RB

All the parameters defined in clause 6.4.2 are defined using the measurement methodology specified in Annex F.

All the requirements in 6.4.2 are defined as directional requirement. The requirements are verified in beam locked mode on beam peak direction, with parameter *maxRank* (as defined in TS 38.331 [13]) set to 1. The requirements are applicable to UL transmission from each configurable antenna port (as defined in TS 38.331 [13]) of UE, enabled one at a time.

In case the parameter 3300 or 3301 is reported from UE via *txDirectCurrentLocation* IE (as defined in TS 38.331 [13]), carrier leakage measurement requirement in clause 6.4.2.2 and 6.4.2.3 shall be waived, and the RF correction with regard to the carrier leakage and IQ image shall be omitted during the calculation of transmit modulation quality.

6.4.2.1 Error vector magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM, the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clauses 6.4.2.4 and 6.4.2.5. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and one slot for PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient in the measurement interval as as defined in clause 6.3.3.

The RMS average of the basic EVM measurements over 10 subframes for the average EVM case, and over 60 subframes for the reference signal EVM case, for the different modulation schemes shall not exceed the values specified in Table 6.4.2.1-1 for the parameters defined in Table 6.4.2.1-2 or 6.4.2.1-3, depending on UE power class. For EVM evaluation purposes, all 13 PRACH preamble formats and all 5 PUCCH formats are considered to have the same EVM requirement as QPSK modulated.

The requirement is verified with the test metric of EVM (Link=TX beam peak direction, Meas=Link angle).

Table 6.4.2.1-1: Minimum requirements for error vector magnitude

Parameter	Unit	Average EVM level	Reference signal EVM level
Pi/2 BPSK	%	30.0	30.0
QPSK	%	17.5	17.5
16 QAM	%	12.5	12.5
64 QAM	%	8.0	8.0

Table 6.4.2.1-2: Parameters for Error Vector Magnitude for power class 1

Parameter	Unit	Level
UE EIRP	dBm	≥ 4
UE EIRP for UL 16 QAM	dBm	≥7
UE EIRP for UL 64 QAM	dBm	≥ 11
Operating conditions		Normal conditions

Table 6.4.2.1-3: Parameters for Error Vector Magnitude for power class 2, 3, and 4

Parameter	Unit	Level
UE EIRP	dBm	≥ -13
UE EIRP for UL 16 QAM	dBm	≥ -10
UE EIRP for UL 64 QAM	dBm	≥ -6
Operating conditions		Normal conditions

6.4.2.2 Carrier leakage

6.4.2.2.1 General

Carrier leakage is an additive sinusoid waveform. The carrier leakage requirement is defined for each component carrier. The measurement interval is one slot in the time domain. The relative carrier leakage power is a power ratio of the additive sinusoid waveform to the power in the modulated waveform.

The requirement is verified with the test metric of Carrier Leakage (Link=TX beam peak direction, Meas=Link angle).

6.4.2.2.2 Carrier leakage for power class 1

When carrier leakage is contained inside the spectrum confined within the configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.2-1 for power class 1 UEs.

Table 6.4.2.2.2-1: Minimum requirements for relative carrier leakage power for power class 1

Parameters	Relative Limit (dBc)
EIRP > 17 dBm	-25
4 dBm ≤ EIRP ≤ 17 dBm	-20

6.4.2.2.3 Carrier leakage for power class 2

When carrier leakage is contained inside the spectrum occupied by the configured UL CCs and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.3-1 for power class 2.

Table 6.4.2.2.3-1: Minimum requirements for relative carrier leakage power for power class 2

Parameters	Relative Limit (dBc)
EIRP > 6 dBm	-25
-13 dBm ≤ EIRP ≤ 6 dBm	-20

6.4.2.2.4 Carrier leakage for power class 3

When carrier leakage is contained inside the spectrum occupied by the configured UL CCs and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.4-1 for power class 3 UEs.

Table 6.4.2.2.4-1: Minimum requirements for relative carrier leakage power for power class 3

Parameters	Relative Limit (dBc)
EIRP > 0 dBm	-25
-13 dBm ≤ EIRP ≤ 0 dBm	-20

6.4.2.2.5 Carrier leakage for power class 4

When carrier leakage is contained inside the spectrum occupied by the configured UL CCs and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4.2.2.5-1 for power class 4.

Table 6.4.2.2.5-1: Minimum requirements for relative carrier leakage power for power class 4

Parameters	Relative Limit (dBc)
EIRP > 11 dBm	-25
-13 dBm ≤ EIRP ≤ 11 dBm	-20

6.4.2.3 In-band emissions

6.4.2.3.1 General

The in-band emission is defined as the average across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is identical to that of the EVM test.

The requirement is verified with the test metric of In-band emission (Link=TX beam peak direction, Meas=Link angle).

6.4.2.3.2 In-band emissions for power class 1

The average of the in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.2-1 for power class 1 UEs.

Parameter description	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - \overline{P_{RB}} \end{bmatrix}$	Any non-allocated (NOTE 2)
IQ Image	dB	-25 Output power > 27 dBm -20 Output power ≤ 27 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25Output power > 17 dBm-204 dBm \leq Output power \leq 17 dBm	Carrier frequency (NOTES 4, 5)
ree	quireme	d emissions combined limit is evaluated in each non-allocated RB. For each such nt is calculated as the higher of (P_{RB} - 25 dB) and the power sum of all limit value akage) that apply. P_{RB} is defined in NOTE 10.	
NOTE 2: Th RE pi/	e meas 3 to the 2 BPSk	urement bandwidth is 1 RB and the limit is expressed as a ratio of measured power measured average power per allocated RB, where the averaging is done across with Spectrum Shaping, the limit is expressed as a ratio of measured power in our power in the allocated RB with highest PSD	all allocated RBs. For
NOTE 3: Th	e applio	cable frequencies for this limit are those that are enclosed in the reflection of the symmetry with respect to the carrier frequency, but excluding any allocated RBs.	
		urement bandwidth is 1 RB and the limit is expressed as a ratio of measured pow measured total power in all allocated RBs.	ver in one non-allocated
Uμ	olinkŤxĽ	cable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> DirectCurrent IE, and are those that are enclosed in the RBs containing the DC front ted RB.	
		Transmission Bandwidth (see Clause 5.3).	
		Transmission Bandwidth Configuration (see Clause 5.3). Imit for the modulation format used in the allocated RBs.	
NOTE 9: Δ_R	_B is the	starting frequency offset between the allocated RB and the measured non-allocated non-allocated RB and the measured non-allocated RB and the mea	ted RB (e.g. $\Delta_{RB} = 1$ or
		or the first adjacent RB outside of the allocated bandwidth).	or of allocated PRs
		in average of the transmitted power over 10 sub-frames normalized by the numb in dBm.	ei ui allucaleu RDS,
		are EIRP in beam peak direction.	

Table 6.4.2.3.2-1: Requirements for in-band emissions for power class 1

In-band emissions for power class 2 6.4.2.3.3

The average of the in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.3-1 for power class 2.

Parameter description	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - \overline{P_{RB}} \end{bmatrix}$	Any non-allocated (NOTE 2)
IQ Image	dB	-25 Output power > 16 dBm -20 Output power ≤ 16 dBm	Image frequencies (NOTES 2, 3)
Carrier		-25 Output power > 6 dBm	Carrier frequency
leakage	dBc	-20 -13 dBm \leq Output power \leq 6 dBm	(NOTES 4, 5)

Table 6.4.2.3.3-1: Requirements for in-band emissions for power class 2

81

NOTE 1:	An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} - 25 dB) and the power sum of all limit values (General, IQ Image or
	Carrier leakage) that apply. P _{RB} is defined in NOTE 10.
NOTE 2:	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD
NOTE 3:	The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.
NOTE 4:	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
NOTE 5:	The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in <i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed in the RBs containing the DC frequency but excluding any allocated RB.
NOTE 6:	L _{CRB} is the Transmission Bandwidth (see Clause 5.3).
NOTE 7:	N _{RB} is the Transmission Bandwidth Configuration (see Clause 5.3).
NOTE 8:	EVM s the limit for the modulation format used in the allocated RBs.
NOTE 9:	Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or
	Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).
NOTE 10	P _{RB} is an average of the transmitted power over 10 sub-frames normalized by the number of allocated RBs,
	measured in dBm.
NOTE 11	All powers are EIRP in beam peak direction.

6.4.2.3.4 In-band emissions for power class 3

The average of the in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.4-1 for power class 3 UEs.

Parameter description	Unit		Limit (NOTE 1)	Applicable Frequencies
General	dB	n	$nax \begin{bmatrix} -25 & -10.\log_{10}\left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20.\log_{10}(EVM) - & 5.\frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ & -55.1dBm - \overline{P_{RB}}, \end{bmatrix}$	Any non-allocated (NOTE 2)
IQ Image	dB	-25	Output power > 10 dBm	Image frequencies
	uБ	-20	Output power ≤ 10 dBm	(NOTES 2, 3)
Carrier	dBc	-25	Output power > 0 dBm	Carrier frequency
leakage		-20	-13 dBm ≤ Output power ≤ 0 dBm	(NOTES 4, 5)
			d limit is evaluated in each non-allocated RB. For e	
			e higher of ($P_{_{RB}}$ - 25 dB) and the power sum of all li	imit values (General, IQ Image or
Ca	arrier lea	akage) that apply. P _{RB}	is defined in NOTE 10.	
NOTE 2: Th	e meas	urement bandwidth is	1 RB and the limit is expressed as a ratio of meas	sured power in one non-allocated
		÷ ·	ower per allocated RB, where the averaging is don	
			ing, the limit is expressed as a ratio of measured p	oower in one non-allocated RB to
		-	cated RB with highest PSD	
		•	his limit are those that are enclosed in the reflection	
		• • •	t to the carrier frequency, but excluding any alloca	
			1 RB and the limit is expressed as a ratio of meas	sured power in one non-allocated
		measured total power		
		-	his limit depend on the parameter txDirectCurrent	
			are those that are enclosed in the RBs containing t	he DC frequency but excluding
		ted RB.		
	IOTE 6: L _{CRB} is the Transmission Bandwidth (see Clause 5.3).			
NOTE 7: N _R	_в is the	Transmission Bandwi	idth Configuration (see Clause 5.3).	
NOTE 8: EV	NOTE 8: EVM s the limit for the modulation format used in the allocated RBs.			
NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or				
$\Delta_{R^{I}}$	_B = -1 fc	or the first adjacent RE	3 outside of the allocated bandwidth).	
NOTE 10: P	_{RB} is a	in average of the trans	smitted power over 10 sub-frames normalized by t	he number of allocated RBs,
me	easured	in dBm		
IIIC		in abin.		

Table 6.4.2.3.4-1: Requirements for in-band emissions for power class 3

83

6.4.2.3.5 In-band emissions for power class 4

The average of the in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.5-1 for power class 4 UEs.

Applicable

Frequencies

Unit

Parameter

description

Ν

1

1

N

1

ין יי יי

1

84

General	l dB		$ax \begin{bmatrix} -25 - 10. \log_{10} \left(\frac{N_{RB}}{L_{CRB}} \right), \\ 20. \log_{10} (EVM) - 5. \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1 dBm - \overline{P_{RB}}, \end{bmatrix}$	Any non-allocated (NOTE 2)	
IQ Image	e dB	-25 -20	Output power > 21 dBm	Image frequencies	
Carrier		-25	Output power ≤ 21 dBm Output power > 11 dBm	(NOTES 2, 3) Carrier frequency	
leakage		-20	-13 dBm \leq Output power \leq 11 dBm	(NOTES 4, 5)	
		nd emissions combined	limit is evaluated in each non-allocated RB. For each such I		
	requiren	nent is calculated as the	higher of (P_{BB} - 25 dB) and the power sum of all limit values	(General, IQ Image or	
	Carrier I	eakage) that apply. P _{RB} i	s defined in NOTE 10.		
NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD					
NOTE 3:	The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth,				
	based on symmetry with respect to the carrier frequency, but excluding any allocated RBs.				
NOTE 4:	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated				
	RB to the measured total power in all allocated RBs.				
NOTE 5:	5: The applicable frequencies for this limit depend on the parameter txDirectCurrentLocation in				
	UplinkTxDirectCurrent IE, and are those that are enclosed in the RBs containing the DC frequency but excluding				
	any allocated RB.				
	6: L _{CRB} is the Transmission Bandwidth (see Clause 5.3).				
NOTE 7:	DTE 7: N _{RB} is the Transmission Bandwidth Configuration (see Clause 5.3).				
NOTE 8:	E 8: EVM s the limit for the modulation format used in the allocated RBs.				
NOTE 9:	DTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or				
Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth).					
NOTE 10:	P _{RB} is	an average of the transi	nitted power over 10 sub-frames normalized by the number	of allocated RBs,	
		ed in dBm.	ally align of the		
NOTE 11: All powers are EIRP in beam peak direction.					

Table 6.4.2.3.5-1: Requirements for in-band emissions for power class 4

Limit (NOTE 1)

6.4.2.4 EVM equalizer spectrum flatness

The EVM measurement process (as described in Annex F) entails generation of a zero-forcing equalizer. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

For Pi/2 BPSK modulation, the minimum requirements are defined in Clause 6.4.2.5.

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirements: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 (Table 6.4.2.4-1) must not be larger than 7 dB, and the relative difference between the maximum coefficient in Range 1 must not be larger than 8 dB (see Figure 6.4.2.4-1).

The requirement is verified with the test metric of EVM SF (Link=TX beam peak direction, Meas=Link angle).

	Frequency range	Maximum ripple (dB)	
	F _{UL_Meas} – F_center ≤ X MHz	6 (p-p)	
	(Range 1)		
	F _{UL_Meas} – F_center > X MHz	9 (p-p)	
	(Range 2)		
NOTE 1:	$F_{\text{UL}_\text{Meas}}$ refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is	
NOTE 2:	NOTE 2: F_center refers to the center frequency of the CC		
NOTE 3:	X, in MHz, is equal to 30 % of the CC bandwidth		

Table 6.4.2.4-2: (Void)

Figure 6.4.2.4-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated under normal conditions

6.4.2.5 EVM spectral flatness for Pi/2 BPSK modulation

These requirements are defined for Pi/2 BPSK modulation. The EVM equalizer coefficients across the allocated uplink block shall be modified to fit inside the mask specified in Table 6.4.2.5-1 for normal conditions, prior to the calculation of EVM. The limiting mask shall be placed to minimize the change in equalizer coefficients in a sum of squares sense.

Frequency range	Parameter	Maximum ripple (dB)	
F _{UL_Meas} – F_center ≤ X MHz (Range 1)	X1	6 (p-p)	
F _{UL_Meas} – F_center > X MHz (Range 2)	X2	14 (p-p)	
NOTE 1:FUL_Measrefers to the sub-carrier frequency for which the equalizer coefficient is evaluatedNOTE 2:F_center refers to the center frequency of an allocated block of PRBsNOTE 3:X, in MHz, is equal to 25% of the bandwidth of the PRB allocationNOTE 4:See Figure 6.4.2.5-1 for description of X1, X2 and X3			

Figure 6.4.2.5-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation. F_center denotes the center frequency of the allocated block of PRBs.

This requirement does not apply to other modulation types. The UE shall be allowed to employ spectral shaping for Pi/2 BPSK. The shaping filter shall be restricted so that the impulse response of the transmit chain shall meet

$$\left| \tilde{a}_{t}(t,0) \right| \geq \left| \tilde{a}_{t}(t,\tau) \right| \quad \forall \tau \neq 0$$

20log₁₀ $\left| \tilde{a}_{t}(t,\tau) \right| < -15 \text{ dB} \quad 1 < \tau < \text{M} - 1$

1,

Where:

 $|\tilde{a}_t(t,\tau)| = IDFT\{ |\tilde{a}_t(t,f)| e^{j\varphi(t,f)} \},$

f is the frequency of the M allocated subcarriers,

 $\tilde{a}(t,f)$ and $\phi(t,f)$ are the amplitude and phase response, respectively of the transmit chain

0dB reference is defined as $20\log_{10}$ | $\tilde{a}_t(t,0)$ |

6.4A Transmit signal quality for CA

The requirements in this clause apply if the UE has at least one of UL or DL configured for CA.

6.4A.1 Frequency error

The requirements in this clause apply to UEs of all power classes.

For intra-band contiguous carrier aggregation, the UE basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequencies per band shall be accurate to within \pm 0.1 PPM observed over a period of 1ms of cumulated measurement intervals compared to the carrier frequency of primary component carrier received from the gNB.

The frequency error is defined as a directional requirement. The requirement is verified in beam locked mode on beam peak direction.

6.4A.2 Transmit modulation quality

6.4A.2.0 General

For intra-band contiguous carrier aggregation, the requirements in clauses 6.4A.2.1, 6.4A.2.2, and 6.4A.2.3.

All the parameters defined in clause 6.4A.2 are defined using the measurement methodology specified in Annex F.

All the requirements in 6.4A.2 are defined as directional requirement. The requirements are verified in beam locked mode on beam peak direction, with both UL polarizations active.

6.4A.2.1 Error Vector magnitude

The requirements in this clause apply to UEs of all power classes. For intra-band contiguous carrier aggregation, the Error Vector Magnitude requirement of clause 6.4.2.2 is defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers. Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform.

In case the parameter 3300 or 3301 is reported from UE via *txDirectCurrentLocation* IE (as defined in TS 38.331 [13]), carrier leakage measurement requirement in clause 6.4A.2.2 and 6.4A.2.3 shall be waived, and the RF correction with regard to the carrier leakage and IQ image shall be omitted during the calculation of transmit modulation quality.

The UE is defined to be configured for CA operation when it has at least one of UL or DL configured for CA.

6.4A.2.2 Carrier leakage

6.4A.2.2.1 General

Carrier leakage is an additive sinusoid waveform. The carrier leakage requirement is defined for each component carrier and is measured on the component carrier with PRBs allocated. The measurement interval is one slot in the time domain.

Note: When UE has DL configured for non-contiguous CA, carrier leakage may land outside the spectrum occupied by all configured UL and DL CC.

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The requirement is verified with the test metric of Carrier Leakage (Link=TX beam peak direction, Meas=Link angle).

6.4A.2.2.2 Carrier leakage for power class 1

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.2-1 for power class 1 UEs.

Table 6.4A.2.2.2-1: Minimum requirements for relative carrier leakage for power class 1

Parameters	Relative Limit (dBc)
EIRP > 17 dBm	-25
4 dBm ≤ EIRP ≤ 17 dBm	-20

6.4A.2.2.3 Carrier leakage for power class 2

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.3-1 for power class 2.

Table 6.4A.2.2.3-1: Minimum requirements for relative carrier leakage power class 2

Parameters	Relative limit (dBc)
EIRP > 6 dBm	-25
-13 dBm ≤ EIRP ≤ 6 dBm	-20

6.4A.2.2.4 Carrier leakage for power class 3

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.4-1 for power class 3 UEs.

Table 6.4A.2.2.4-1: Minimum requirements for relative carrier leakage power class 3

Parameters	Relative limit (dBc)
Output power > 0 dBm	-25
-13 dBm ≤ Output power EIRP ≤ 0 dBm	-20

6.4A.2.2.5 Carrier leakage for power class 4

When carrier leakage is contained inside the spectrum occupied by all configured UL and DL CCs, the relative carrier leakage power shall not exceed the values specified in Table 6.4A.2.2.5-1 for power class 4 UEs.

Table 6.4A.2.2.5-1: Minimum requirements for relative carrier leakage power class 4

Parameters	Relative limit (dBc)
Output power > 11 dBm	-25
-13 dBm ≤ Output power EIRP ≤ 11 dBm	-20

6.4A.2.3 Inband emissions

6.4A.2.3.1 General

Inband emission requirement is defined over the spectrum occupied by all configured UL and DL CCs. The measurement interval is as defined in clause 6.4.2.4. The requirement is verified with the test metric of In-band emission (Link=TX beam peak direction, Meas=Link angle).

For intra-band contiguous carrier aggregation, the requirements in this clause apply with all component carriers active and with one single contiguous PRB allocation in one of uplink component carriers. The inband emission is defined as the interference falling into the non-allocated resource blocks for all component carriers.

6.4A.2.3.2 Inband emissions for power class 1

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.2-1 for power class 1 UEs.

Parameter description	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10}(EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}$	Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)
IQ Image	dB	-25 Output power > 27 dBm -20 Output power ≤ 27 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25 Output power > 17 dBm -20 4 dBm ≤ Output power ≤ 17 dBm	Carrier frequency (NOTES 4, 5)

Table 6.4A.2.3.2-1: Requirements for in-band emissionsfor power class 1

NOTE 1:	An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (P_{RB} - 25 dB) and the power sum of all limit values (General, IQ Image or
	Carrier leakage) that apply. P _{RB} is defined in NOTE 9.
NOTE 2:	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.
NOTE 3:	Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency.
	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
NOTE 5:	
NOTE 6:	L _{CRR} is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1).
	EVM s the limit for the modulation format used in the allocated RBs.
NOTE 8:	Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Δ_{RB} = 1 or
	Δ_{RB} = -1 for the first adjacent RB outside of the allocated bandwidth), and may take non-integer values when the
	carrier spacing between the CCs is not a multiple of RB.
NOTE 9:	P _{RB} is the transmitted power per allocated RB, measured in dBm.
NOTE 10	All powers are EIRP in beam peak direction.

6.4A.2.3.3 Inband emissions for power class 2

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.3-1 for power class 2.

Parameter description	Unit		Applicable Frequencies	
General	dB	m	Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)	
IQ Image	dB	-25	Output power > 16 dBm	Image frequencies
	0.2	-20	Output power ≤ 16 dBm	(NOTES 2, 3)
Carrier	dBc	-25	Output power > 6 dBm	Carrier frequency
leakage		-20	-13 dBm ≤ Output power ≤ 6 dBm imit is evaluated in each non-allocated RB. For each such I	(NOTES 4, 5)
NOTE 2: The RB $Pi/$: NOTE 3: Ima NOTE 3: Ima NOTE 4: The RB NOTE 4: The RB NOTE 5: The the NOTE 6: L_{CR} NOTE 6: L_{CR} NOTE 7: EV NOTE 8: Δ_{RI} Δ_{RI} car	rrier lea e meass to the 2 BPSK e measu age free e meass to the e applice two RI B is the M s the g = -1 for rrier spa B is the	akage) that apply. <i>P_{RB}</i> is urement bandwidth is 1 measured average pow (with Spectrum Shapin ured power in the alloca quencies for UL CA are urement bandwidth is 1 measured total power i able frequencies for this is immediately adjacent a Transmission Bandwid (a limit for the modulation starting frequency offse or the first adjacent RB acing between the CCs	RB and the limit is expressed as a ratio of measured power wer per allocated RB, where the averaging is done across a g, the limit is expressed as a ratio of measured power in on ted RB with highest PSD. specified in relation to either UL or DL carrier frequency. RB and the limit is expressed as a ratio of measured power n all allocated RBs. is limit are those that are enclosed in the RBs containing the to the DC frequency but excluding any allocated RB. dth for kth allocated component carrier (see Figure 5.3.3-1). In format used in the allocated RBs. et between the allocated RB and the measured non-allocated outside of the allocated bandwidth), and may take non-integ is not a multiple of RB. allocated RB, measured in dBm.	er in one non-allocated II allocated RBs. For the non-allocated RB to er in one non-allocated the DC frequency, or in the RB (e.g. $\Delta_{RB} = 1$ or

Table 6.4A.2.3.3-1: Requirements for in-band emissions for power class 2

6.4A.2.3.4 Inband emissions for power class 3

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.4-1 for power class 3 UEs.

Parameter description	Unit	Limit (NOTE 1)		Applicable Frequencies	
General	dB	п	$nax \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}}\right), \\ 20 \cdot \log_{10}(EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1dBm - P_{RB} \end{bmatrix}$	Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)	
IQ Image	dB	-25	Output power > 10 dBm	Image frequencies	
-	uВ	-20	Output power ≤ 10 dBm	(NOTES 2, 3)	
Carrier	dBc	-25	Output power > 0 dBm	Carrier frequency	
V		=-			
Image Lot Comparison power ≤ 0 dBm Control mequation Image -20 -13 dBm ≤ Output power ≤ 0 dBm (NOTES 4, 5) NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of (<i>P_{RB}</i> - 25 dB) and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. <i>P_{RB}</i> is defined in NOTE 9. NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. For Pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD. NOTE 3: Image frequencies for UL CA are specified in relation to either UL or DL carrier frequency. NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs. NOTE 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency, or in the two RBs immediately adjacent to the DC frequency but excluding any allocated RB. NOTE 6: L _{CRB} is the Transmission Bandwidth for kth allocated component carrier (see Figure 5.3.3-1). NOTE 7: EVM s the limit for the modulation format used in the allocated RBs. NOTE 8: Δ _{RB} is the starting frequency					

Table 6.4A.2.3.4-1: Requirements for in-band emissions for power class 3

6.4A.2.3.5 Inband emissions for power class 4

The relative in-band emission shall not exceed the values specified in Table 6.4A.2.3.5-1 for power class 4 UEs.

Table 6.4A.2.3.5-1: Requirements for in-band emissions for power class 4

Parameter description	Unit	Limit (NOTE 1)	Applicable Frequencies
General	dB	$max \begin{bmatrix} -25 - 10 \cdot \log_{10} \left(\frac{N_{RB}}{L_{CRB}} \right), \\ 20 \cdot \log_{10} (EVM) - 5 \cdot \frac{(\Delta_{RB} - 1)}{L_{CRB}}, \\ -55.1 dBm - P_{RB} \end{bmatrix}$	Any non-allocated RB in allocated component carrier and not allocated component carriers (NOTE 2)
IQ Image	dB	-25 Output power > 21 dBm -20 Output power ≤ 21 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25 Output power > 11 dBm -20 -13 dBm ≤ Output power ≤ 11 dBm	Carrier frequency (NOTES 4, 5)

90

6.4A.2.4 EVM equalizer spectrum flatness

6.4D Transmit signal quality for UL MIMO

6.4D.0 General

For a UE supporting UL MIMO, the transmit modulation quality requirements in clause 6.4 apply. The requirements apply when the UE is configured for 2-layer UL MIMO transmission as specified in Table 6.2D.1.3-3.

The requirement may alternatively be verified in each of the single layer UL MIMO configurations as specified in Table 6.4D.0-1.

Table 6.4D.0-1: Alternative UL	MIMO configuration for	r transmit signal quality tests

Transmission scheme	DCI format	TPMI Index
Codebook based uplink	DCI format 0_1	0
Codebook based uplink	DCI format 0_1	1

6.4D.1 Frequency error for UL MIMO

For a UE supporting UL MIMO, the UE basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequency at each layer shall be accurate to within \pm 0.1 PPM observed over a period of 1ms of cumulated measurement intervals compared to the carrier frequency received from the NR Node B.

6.4D.2 Transmit modulation quality for UL MIMO

For UE supporting UL MIMO, the transmit modulation quality requirements are specified at each layer separately.

The transmit modulation quality requirements are specified in terms of:

Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)

EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process

Carrier leakage (caused by IQ offset)

In-band emissions for the non-allocated RB

In case the parameter 3300 or 3301 is reported from UE via *txDirectCurrentLocation* IE (as defined in TS 38.331 [13]), carrier leakage measurement requirement in clause 6.4D.2.2 and 6.4D.2.3 shall be waived, and the RF correction with regard to the carrier leakage and IQ image shall be omitted during the calculation of transmit modulation quality.

6.4D.3 Time alignment error for UL MIMO

For a UE with multiple physical antenna ports supporting UL MIMO, this requirement applies to frame timing differences between transmissions on multiple physical antenna ports in the codebook transmission scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different physical antenna ports.

For a UE with multiple physical antenna ports, the Time Alignment Error (TAE) shall not exceed 130 ns.

6.4D.4 Requirements for coherent UL MIMO

For coherent UL MIMO, Table 6.4D.4-1 lists the maximum allowable difference between the measured relative power and phase errors between different physical antenna ports in any slot within the specified time window from the last transmitted SRS on the same antenna ports, for the purpose of uplink transmission (codebook or non-codebook usage) and those measured at that last SRS. The requirements in Table 6.4D.4-1 apply when the UL transmission power at each physical antenna port is larger than 0 dBm for SRS transmission and for the duration of time window. The requirement is verified with the test metric of EIRP (Link=TX Beam peak direction, Meas=Link angle).

Table 6.4D.4-1: Maximum allowable difference of relative phase and power errors in a given slot compared to those measured at last SRS transmitted

Difference of relative phase error	Difference of relative power error	Time window	
40 degrees	4 dB	20 msec	

The above requirements apply when all of the following conditions are met within the specified time window:

- UE is not signaled with a change in number of SRS ports in SRS-config, or a change in PUSCH-config
- UE remains in DRX active time (UE does not enter DRX OFF time)
- No measurement gap occurs
- No instance of SRS transmission with the usage antenna switching occurs
- Active BWP remains the same
- EN-DC and CA configuration is not changed for the UE (UE is not configured or de-configured with PScell or SCell(s))

6.5 Output RF spectrum emissions

6.5.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.5.1-1.

The occupied bandwidth is defined as a directional requirement. The requirement is verified in beam locked mode with the test metric of OBW (Link=TX beam peak direction, Meas=Link angle).

	Occupied channel bandwidth / Channel bandwidth			
	50 MHz	100 MHz	200 MHz	400 MHz
Channel bandwidth (MHz)	50	100	200	400

Table 6.5.1-1: Occupied channel bandwidth

6.5.2 Out of band emissions

6.5.2.0 General

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio. Additional requirements to protect specific bands are also considered.

The requirements in clause 6.5.2.1 only apply when both UL and DL of a UE are configured for single CC operation, and they are of the same bandwidth. For a UE that is configured for single CC operation with different channel bandwidths in UL and DL, the requirements in clause 6.5A.2.1 apply.

All out of band emissions for frequency range 2 are TRP.

6.5.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned NR channel bandwidth. For frequencies offset greater than F_{OOB} as specified in Table 6.5.2.1-1 the spurious requirements in clause 6.5.3 are applicable.

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.1-1 for the specified channel bandwidth. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

Spect	Spectrum emission limit (dBm) / Channel bandwidth						
Δf _{оов} (MHz)	50 MHz	100 MHz	200 MHz	400 MHz	Measurement bandwidth		
± 0-5	-5	-5	-5	-5	1 MHz		
± 5-10	-13	-5	-5	-5	1 MHz		
± 10-20	-13	-13	-5	-5	1 MHz		
± 20-40	-13	-13	-13	-5	1 MHz		
± 40-100	-13	-13	-13	-13	1 MHz		
± 100-200		-13	-13	-13	1 MHz		
± 200-400			-13	-13	1 MHz		
± 400-800				-13	1 MHz		
NOTE 1: Void							

.....

6.5.2.2 Void

6.5.2.3 Adjacent channel leakage ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirement is specified for a scenario in which adjacent carrier is another NR channel.

NR Adjacent Channel Leakage power Ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The

assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.3-1.

If the measured adjacent channel power is greater than -35 dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5.2.3-1. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

	Channel bandwidth / NR _{ACLR} / Measurement bandwidth			
	50 MHz	100 MHz	200 MHz	400 MHz
NR _{ACLR} for band n257, n258, n261	17 dB	17 dB	17 dB	17 dB
NR _{ACLR} for band n259, n260	16 dB	16 dB	16 dB	16 dB
NR channel measurement bandwidth (MHz)	47.58	95.16	190.20	380.28
Adjacent channel centre frequency offset (MHz)	+50 / -50	+100 / -100	+200 / -200	+400 / -400

Table 6.5.2.3-1: General requirements for NR_{ACLR}

6.5.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with SM.329 [7] and NR operating band requirement to address UE co-existence. Spurious emissions are measured as TRP.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3-1 starting from the edge of the assigned NR channel bandwidth. The spurious emission limits in Table 6.5.3-2 apply for all transmitter band configurations (NRB) and channel bandwidths. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Channel bandwidth	50	100	200	400
	MHz	MHz	MHz	MHz
OOB boundary F _{OOB} (MHz)	100	200	400	800

Frequency Range	Maximum Level	Measurement bandwidth
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz
12.75 GHz \leq f \leq 2 nd harmonic of the upper frequency edge of the UL operating band in GHz	-13 dBm	1 MHz

Table 6.5.3-2: Spurious emissions limits

6.5.3.1 Spurious emission band UE co-existence

This clause specifies the requirements for the specified NR band, for coexistence with protected bands.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

	Spurious emission					
NR Band	Protected band/frequency range		Frequency range (MHz)		Maximum Level (dBm)	MBW (MHz)
n257	NR Band n260	F_{DL_low}	I	F_{DL_high}	-2	100
11257	Frequency range	57000	•	66000	2	100
n258	Frequency range	57000	-	66000	2	100
	NR Band 257	FDL_low	-	FDL_high	-5	100
n259	NR Band 261	FDL_low	-	FDL_high	-5	100
	Frequency range	36000	-	37000	7	1000
	Frequency range	57000	-	66000	2	100
	NR Band 257	$F_{DL_{low}}$	-	F _{DL_high}	-5	100
n260	NR Band 261	F _{DL_low}	-	FDL_high	-5	100
	Frequency range	57000	-	66000	2	100
	NR Band 260	F _{DL_low}	-	FDL_high	-2	100
n261	Frequency range	57000	-	66000	2	100
NOTE 1: F	FoL_low and FoL_high refer to each NR frequer	ncy band s	pecifi	ed in Table	9 5.2-1	

Table 6.5.3.1-1: Requirements

6.5.3.2 Additional spurious emissions

6.5.3.2.1 General

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5.3.2.2 Additional spurious emission requirements for NS_201

When "NS_201" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.2.2-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3-1 from the edge of the channel bandwidth.

Frequency band (GHz)	Channel	bandwidth / S (dE	pectrum emis 8m)	sion limit	Measurement bandwidth	NOTE
	50 MHz	100 MHz	200 MHz	400 MHz		
$23.6 \le f \le 24$	-8	-8	-8	-8	200 MHz	1
NOTE 1: The protection	NOTE 1: The protection of frequency range 23600 - 24000 MHz is meant for protection of satellite passive services.					

Table 6.5.3.2.2-1: Additional requirements (NS_201)

6.5.3.2.3 Additional spurious emission requirements for NS_202

When "NS_202" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.2.3-1.

Frequency Range	Maximum Level	Measurement bandwidth
7.25 GHz \leq f \leq 2 nd harmonic of the upper frequency edge of the UL operating band	-10 dBm	100 MHz
23.6 GHz ≤ f ≤ 24.0 GHz	+1 dBm	200 MHz

Table 6.5.3.2.3-1: Additional requirements (NS_202)

6.5A Output RF spectrum emissions for CA

6.5A.1 Occupied bandwidth for CA

For intra-band contiguous carrier aggregation, the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The occupied bandwidth for CA shall be less than the aggregated channel bandwidth defined in clause 5.3A.

The occupied bandwidth for CA is defined as a directional requirement. The requirement is verified in beam locked mode on beam peak direction.

6.5A.2 Out of band emissions

6.5A.2.1 Spectrum emission mask for CA

The requirement specified in this clause shall apply if the UE has at least one of UL or DL configured for CA or if the UE is configured for single CC operation with different channel bandwidths in UL and DL carriers.

For intra-band contiguous carrier aggregation, the spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the aggregated channel bandwidth (Table 5.3A.5-1). For any bandwidth class defined in Table 5.3A.5-1, the UE emission shall not exceed the levels specified in Table 6.5A.2.1-1. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

Δf _{оов} (MHz)	Any carrier aggregation bandwidth class	Measurement bandwidth				
\pm 0-0.1*BW _{Channel_CA}	-5	1 MHz				
± 0.1*BW _{Channel_CA} -	-13	1 MHz				
2*BWChannel_CA						
NOTE 1: If carrier leakage or I/Q image lands inside the spectrum occupied by the						
configured UL and DL CCs, exception to the general spectrum emission mask limit						
applies. For carrier leakage the requirements specified in clause 6.4A.2.2 shall						
apply. For I/Q image th	e requirements specified in clause	e 6.4A.2.3 shall apply.				

Table 6.5A.2.1-1: General NR spectrum emission mask for intra-band contiguous CA in frequency range 2

6.5A.2.3 Adjacent channel leakage ratio for CA

6.5A.2.3 Adjacent channel leakage ratio for CA

For intra-band contiguous carrier aggregation, the carrier aggregation NR adjacent channel leakage power ratio (CA NR_{ACLR}) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at spacing equal to the aggregated channel bandwidth. The assigned aggregated channel bandwidth power and adjacent aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in 6.5A.2.3-1. If the measured adjacent channel power is greater than -35 dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5A.2.3-1.

_	CA bandwidth class / CA NR _{ACLR} / Measurement bandwidth Any CA bandwidth class
CA NR _{ACLR} for band n257, n258, n261	17 dB
CA NR _{ACLR} for band n259, n260	16 dB
NR channel measurement bandwidth ¹	$BW_{Channel_CA} - 2^*BW_{GB}$
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} / - BW _{Channel_CA}
NOTE 1: BW _{GB} is defined in clause 5.3A.2.	

Table 6.5A.2.3-1: General requirements for CA NR_{ACLR}

6.5A.3 Spurious emissions for CA

This clause specifies the spurious emission requirements for carrier aggregation.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For intra-band contiguous carrier aggregation, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) from the edge of the aggregated channel bandwidth, where F_{OOB} is defined as the twice the aggregated channel bandwidth. For frequencies Δf_{OOB} greater than F_{OOB} , the spurious emission requirements in Table 6.5.3-2 are applicable. If carrier leakage or I/Q image lands inside the spectrum occupied by the configured UL and DL CCs, exception to the spurious emissions requirement applies. For carrier leakage the requirements specified in clause 6.4A.2.2 shall apply. For I/Q image the requirements specified in clause 6.4A.2.3 shall apply.

6.5A.3.1 Spurious emission band UE co-existence for CA

This clause specifies the requirements for the specified carrier aggregation configurations for coexistence with protected bands.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

For intra-band contiguous carrier aggregation, the requirements in Table 6.5A.3-1 apply.

UL CA for	Spurious emission						
any CA bandwidth class	Protected band / frequency range		Frequency range (MHz)		Maximum Level (dBm)	MBW (MHz)	NOTE
CA_n257	NR Band n260	F _{DL_low}	-	F_{DL_high}	-2	100	
CA_II257	Frequency range	57000	-	66000	2	100	
CA_n258	Frequency range	57000	-	66000	2	100	
	NR Band 257	$F_{DL_{low}}$	-	F_{DL_high}	-5	100	
CA 2250	NR Band 261	F_{DL_low}	-	F_{DL_high}	-5	100	
CA_n259	Frequency range	36000	-	37000	7	1000	
	Frequency range	57000	-	66000	2	100	
	NR Band 257	F _{DL_low}	-	FDL_high	-5	100	
CA_n260	NR Band 261	F _{DL_low}	-	FDL_high	-5	100	
	Frequency range	57000	-	66000	2	100	
04 = 201	NR Band 260	F _{DL_low}	-	FDL_high	-2	100	
CA_n261	Frequency range	57000	-	66000	2	100	
NOTE 1: F _{DL_low} and F _{DL_high} refer to each NR frequency band specified in Table 5.2-1 NOTE 2: The protection of frequency range 23600-24000 MHz is meant for protection of satellite passive services.							

Table 6.5A.3-1: Requirements for CA

6.5A.3.2 Additional spurious emissions

6.5A.3.2.1 General

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5A.3.2.2 Additional spurious emission requirements for CA_NS_201

When "CA_NS_201" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.2.2-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) as defined in clause 6.5A.3.

6.5A.3.2.3 Additional spurious emission requirements for CA_NS_202

When "CA_NS_202" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.2.3-1.

6.5D Output RF spectrum emissions for UL MIMO

6.5D.1 Occupied bandwidth for UL MIMO

For UE(s) supporting UL MIMO, the occupied bandwidth requirement in clause 6.5.1 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

6.5D.2 Out of band emissions for UL MIMO

For UE(s) supporting UL MIMO, the out of band emissions requirements in clause 6.5.2 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

6.5D.3 Spurious emissions for UL MIMO

For UE(s) supporting UL MIMO, the spurious emissions requirements in clause 6.5.3 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

6.6 Beam correspondence

6.6.1 General

Beam correspondence is the ability of the UE to select a suitable beam for UL transmission based on DL measurements with or without relying on UL beam sweeping. The beam correspondence requirement is satisfied assuming the presence of both SSB and CSI-RS signals and Type D QCL is maintained between SSB and CSI-RS.

- 6.6.2 (Void)
- 6.6.3 (Void)

6.6.4 Beam correspondence for power class 3

6.6.4.1 General

The beam correspondence requirement for power class 3 UEs consists of three components: UE minimum peak EIRP (as defined in Clause 6.2.1.3), UE spherical coverage (as defined in Clause 6.2.1.3), and beam correspondence tolerance (as defined in Clause 6.6.4.2). The beam correspondence requirement is fulfilled if the UE satisfies one of the following conditions, depending on the UE's beam correspondence capability IE *beamCorrespondenceWithoutUL-BeamSweeping*, as defined in TS 38.306 [14]:

- If *beamCorrespondenceWithoutUL-BeamSweeping* is supported, the UE shall meet the minimum peak EIRP requirement according to Table 6.2.1.3-1 and spherical coverage requirement according to Table 6.2.1.3-3 with its autonomously chosen UL beams and without uplink beam sweeping. Such a UE is considered to have met the beam correspondence tolerance requirement.
- If *beamCorrespondenceWithoutUL-BeamSweeping* is not present, the UE shall meet the minimum peak EIRP requirement according to Table 6.2.1.3-1 and spherical coverage requirement according to Table 6.2.1.3-3 with uplink beam sweeping. Such a UE shall meet the beam correspondence tolerance requirement defined in Clause 6.6.4.2 and shall support uplink beam management, as defined in TS 38.306 [14].

6.6.4.2 Beam correspondence tolerance for power class 3

The beam correspondence tolerance requirement $\Delta EIRP_{BC}$ for power class 3 UEs is defined based on a percentile of the distribution of $\Delta EIRP_{BC}$, defined as $\Delta EIRP_{BC} = EIRP_2 - EIRP_1$ over the link angles spanning a subset of the spherical coverage grid points, such that

- EIRP₁ is the total EIRP in dBm calculated based on the beam the UE chooses autonomously (corresponding beam) to transmit in the direction of the incoming DL signal, which is based on beam correspondence without relying on UL beam sweeping.
- EIRP₂ is the best total EIRP (beam yielding highest EIRP in a given direction) in dBm which is based on beam correspondence with relying on UL beam sweeping.
- The link angles are the ones corresponding to the top N^{th} percentile of the EIRP₂ measurement over the whole sphere, where the value of N is according to the test point of EIRP spherical coverage requirement for power class 3, i.e. N = 50.

For power class 3 UEs, the requirement is fulfilled if the UE's corresponding UL beams satisfy the maximum limit in Table 6.6.4.2-1.

Operating band	Max ∆EIRP _{BC} at 85 th %-tile ∆EIRP _{BC} CDF (dB)			
n257	3.0			
n258	3.0			
n259	3.2			
n260	3.2			
n261	3.0			
NOTE: The requirements in this table are verified only under normal temperature conditions as				
defined in Annex E.2.1				

6.6.4.3 Side Conditions

6.6.4.3.1 Side Condition for SSB and CSI-RS

The beam correspondence requirements are only applied under the following side conditions:

- The downlink reference signals including both SSB and CSI-RS are provided and Type D QCL shall be maintained between SSB and CSI-RS.
- The reference measurement channel for beam correspondence are fulfilled according to the CSI-RS configuration in Annex A.3.
- For beam correspondence, conditions for L1-RSRP measurements are fulfilled according to Table 6.6.4.3.1-1 and Table 6.6.4.3.1-2.

Table 6.6.4.3.1-1: Conditions for SSB based L1-RSRP measurements for beam correspondence

		Minimum SSB_RP Note 2	SSB Ês/lot	
Angle of	NR operating	dBm / SCS _{SSB}		
arrival	bands	SCS _{SSB} = 120 kHz	dB	
	n257	-96.4		
All angles	n258	-96.4	≥6	
Note 1	n260	-92.1	20	
	n261	-96.4		
		iple FR2 bands, the Minimum SSB_RP values for all ang		
		E multi-band relaxation factor in dB specified in clause 6.		
NOTE 2: Va	lues specified at the ra-	diated requirements reference point to give minimum SSE	3 Ês/lot,	
wit	h no applied noise.			

Table 6.6.4.3.1-2: Conditions for CSI-RS based L1-RSRP measurements for beam correspondence

		Minimum CSI-RS_RP Note 2	CSI-RS Ês/lot		
Angle of		dBm / SCS _{CSI-RS}			
arrival	NR operating bands	SCS _{CS⊦RS} = 120 kHz	dB		
	n257	-96.4			
All angles	n258	-96.4	≥6		
Note 1	n260	-92.1	20		
	n261	-96.4	İ.		
NOTE 1: Fo	NOTE 1: For UEs that support multiple FR2 bands, the Minimum CSI-RS_RP values are increased by				
NOTE 2: Va		elaxation factor in dB specified in clause 6.2.1. ated requirements reference point to give minimum CSI	-RS Ês/lot,		

6.6.5 (Void)

6.6A Beam correspondence for CA

For intra-band CA in FR2, the same beam correspondence relationship for beam management is supported across CCs in Rel-15 and no requirement is specified. Beam correspondence performance for intra-band CA is fulfilled if the beam correspondence requirements defined in clause 6.6 is met for non-CA case.

7 Receiver characteristics

7.1 General

Unless otherwise stated, the receiver characteristics are specified over the air (OTA). The reference receive sensitivity (REFSENS) is defined assuming a 0 dBi reference antenna located at the center of the quiet zone.

7.2 Diversity characteristics

The minimum requirements on effective isotropic sensitivity (EIS) apply to two measurements, corresponding to DL signals in orthogonal polarizations.

7.3 Reference sensitivity

7.3.1 General

The reference sensitivity power level REFSENS is defined as the EIS level at the centre of the quiet zone in the RX beam peak direction, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3.2 Reference sensitivity power level

7.3.2.1 Reference sensitivity power level for power class 1

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with peak reference sensitivity specified in Table 7.3.2.1-1. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link Angle).

Operating	REFSENS (dBm) / Channel bandwidth				
band	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-97.5	-94.5	-91.5	-88.5	
n258	-97.5	-94.5	-91.5	-88.5	
n260	-94.5	-91.5	-88.5	-85.5	
n261	-97.5	-94.5	-91.5	-88.5	
NOTE 1: The transmitter shall be set to PUMAX as defined in clause 6.2.4					

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Table 7.3.2.1-2: Uplink configuration for reference sensitivity

Operating	NR Band / Channel bandwidth / NRB / SCS / Duplex mode					
Operating band	50 MHz	100 MHz	200 MHz	400 MHz	SCS	Duplex Mode
n257	32	64	128	256	120 kHz	TDD
n258	32	64	128	256	120 kHz	TDD
n260	32	64	128	256	120 kHz	TDD
n261	32	64	128	256	120 kHz	TDD

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

Operating band	Network Signalling value
n258	NS_201

Table 7.3.2.1-3: Network signaling value for reference sensitivity

7.3.2.2 Reference sensitivity power level for power class 2

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with peak reference sensitivity specified in Table 7.3.2.2-1. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link Angle).

Operating band	REFSENS (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-92.0	-89.0	-86.0	-83.0	
n258	-92.0	-89.0	-86.0	-83.0	
n261	-92.0	-89.0	-86.0	-83.0	
NOTE 1: The transmitter shall be set to PUMAX as defined in clause 6.2.4					

Table 7.3.2.2-1: Reference sensitivity for power class 2

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.2.3 Reference sensitivity power level for power class 3

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with peak reference sensitivity specified in Table 7.3.2.3-1. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link Angle).

For the UEs that support multiple FR2 bands, the minimum requirement for Reference sensitivity in Table 7.3.2.3-1 shall be increased per band, respectively, by the reference sensitivity relaxation parameter $\Delta MB_{P,n}$ as specified in clause 6.2.1.3. The requirement for the UE which supports a single FR2 band is specified in Table 7.3.2.3-1. The requirement for the UE which supports multiple FR2 bands is specified in both Table 7.3.2.3-1 and Table 6.2.1.3-4.

Operating band	REFSENS (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-88.3	-85.3	-82.3	-79.3	
n258	-88.3	-85.3	-82.3	-79.3	
n259	-84.7	-81.7	-78.7	-75.7	
n260	-85.7	-82.7	-79.7	-76.7	
n261	-88.3	-85.3	-82.3	-79.3	
NOTE 1: The trans	mitter shall be set t	o PUMAX as defined in cla	use 6.2.4		

Table	7.3.2.3-1:	Reference	sensitivity
-------	------------	-----------	-------------

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.2.4 Reference sensitivity power level for power class 4

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with peak reference sensitivity specified in Table 7.3.2.4-1. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link Angle).

Operating band	REFSENS (dBm) / Channel bandwidth					
	50 MHz	100 MHz	200 MHz	400 MHz		
n257	-97.0	-94.0	-91.0	-88.0		
n258	-97.0	-94.0	-91.0	-88.0		
n260	-95.0	-92.0	-89.0	-86.0		
n261	-97.0	-94.0	-91.0	-88.0		
NOTE 1: The trans	NOTE 1: The transmitter shall be set to PUMAX as defined in clause 6.2.4					

Table 7.3.2.4-1: Reference sensitivity for power class 4

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.3 Void

7.3.4 EIS spherical coverage

7.3.4.1 EIS spherical coverage for power class 1

The reference measurement channels and throughput criterion shall be as specified in clause 7.3.2.1

The maximum EIS at the 85th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.1-1 below. The requirement is verified with the test metric of EIS (Link=Spherical coverage grid, Meas=Link angle).

Operating	EIS at 85 th %-tile CCDF (dBm) / Channel bandwidth				
band	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-89.5	-86.5	-83.5	-80.5	
n258	-89.5	-86.5	-83.5	-80.5	
n260	-86.5	-83.5	-80.5	-77.5	
n261	-89.5	-86.5	-83.5	-80.5	
NOTE 1: The	NOTE 1: The transmitter shall be set to PUMAX as defined in clause 6.2.4				
NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal					
con	ditions as defined in A	Annex E.2.1.			

Table 7.3.4.1-1: EIS spherical coverage for power class 1

The requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.4.2 EIS spherical coverage for power class 2

The reference measurement channels and throughput criterion shall be as specified in clause 7.3.2.2

The maximum EIS at the 60th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.2-1 below. The requirement is verified with the test metric of EIS (Link=Spherical coverage grid, Meas=Link angle).

Operating band	EIS at 60 th %-tile CCDF (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-81.0	-78.0	-75.0	-72.0	
n258	-81.0	-78.0	-75.0	-72.0	
n261	-81.0	-78.0	-75.0	-72.0	
NOTE 1: The tran	NOTE 1: The transmitter shall be set to PUMAX as defined in clause 6.2.4				
NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal					
condition	conditions as defined in Annex E.2.1.				

Table 7.3.4.2-1: EIS spherical coverage for power class 2

The requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.4.3 EIS spherical coverage for power class 3

The reference measurement channels and throughput criterion shall be as specified in clause 7.3.2.3

The maximum EIS at the 50th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.3-1 below. The requirement is verified with the test metric of EIS (Link=Spherical coverage grid, Meas=Link angle).

For the UEs that support multiple FR2 bands, the minimum requirement for EIS spherical coverage in Table 7.3.4.3-1 shall be increased per band, respectively, by the EIS spherical coveragerelaxation parameter $\Delta MB_{S,n}$ as specified in clause 6.2.1.3. The requirement for the UE which supports a single FR2 band is specified in Table 7.3.4.3-1. The requirement for the UE which supports multiple FR2 bands is specified in both Table 7.3.4.3-1 and Table 6.2.1.3-4.

Operating band Els		t 50 th %-tile CCDF (dBm) / Channel band	width	
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-77.4	-74.4	-71.4	-68.4	
n258	-77.4	-74.4	-71.4	-68.4	
n259	-71.9	-68.9	-65.9	-62.9	
n260	-73.1	-70.1	-67.1	-64.1	
n261	-77.4	-74.4	-71.4	-68.4	
NOTE 1: The transmitter shall be set to PUMAX as defined in clause 6.2.4					
NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal					
condition	conditions as defined in Annex E.2.1.				

Table 7.3.4.3-1: EIS spherical coverage for power class 3

The requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3.4.4 EIS spherical coverage for power class 4

The reference measurement channels and throughput criterion shall be as specified in clause 7.3.2.4

The maximum EIS at the 20th percentile of the CCDF of EIS measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in Table 7.3.4.4-1 below. The requirement is verified with the test metric of EIS (Link=Spherical coverage grid, Meas=Link angle).

Operating band	EIS at 20 th %-tile CCDF (dBm) / Channel bandwidth			
	50 MHz	100 MHz	200 MHz	400 MHz
n257	-88.0	-85.0	-82.0	-79.0
n258	-88.0	-85.0	-82.0	-79.0
n260	-83.0	-80.0	-77.0	-74.0
n261	-88.0	-85.0	-82.0	-79.0
 NOTE 1: The transmitter shall be set to P_{UMAX} as defined in clause 6.2.4 NOTE 2: The EIS spherical coverage requirements are verified only under normal thermal conditions as defined in Annex E.2.1. 				

Table 7.3.4.4-1: EIS spherical coverage for power class 4

The requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 7.3.2.1-2.

Unless given by Table 7.3.2.1-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3-1) configured.

7.3A Reference sensitivity for CA

7.3A.1 General

7.3A.2 Reference sensitivity power level for CA

7.3A.2.1 Intra-band contiguous CA

For each component carrier in the intra-band contiguous carrier aggregation, the throughput in QPSK R = 1/3 shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with peak reference sensitivity values determined from clause 7.3.2, and relaxation applied to peak reference sensitivity requirement as specified in Table 7.3A.2.1-1.

Table 7.3A.2.1-1: ΔR_{IB} EIS Relaxation for CA operation by aggregated channel bandwidth

Aggregated Channel BW 'BW _{Channel_CA} ' (MHz)	ΔR _{IB} (dB)
BW _{Channel_CA} ≤ 800	0.0
800 < BW _{Channel_CA} ≤ 1200	0.5

7.3A.2.2 Intra-band non-contiguous CA

For each component carrier in the intra-band non-contiguous carrier aggregation, the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with peak reference sensitivity values determined from clause 7.3.2, and relaxation applied to peak reference sensitivity requirement as specified in Table 7.3A.2.2-1. The cumulative aggregated channel bandwidth is defined as the frequency band from the lowest edge of the lowest CC to the upper edge of the highest CC of all UL and DL configured CCs.

Table 7.3A.2.2-1: ΔR_{IB} EIS Relaxation for CA operation by cumulative aggregated channel bandwidth

Cumulative Aggregated Channel BW (MHz)	ΔR _{IB} (dB)	
≤ 800	0.0	
> 800 and ≤ 1400	0.5	

7.3D Reference sensitivity for UL MIMO

For UL MIMO, the reference sensitivity requirements in clause 7.3 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

7.4 Maximum input level

The maximum input level is defined as the maximum mean power, for which the throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

The maximum input level is defined as a directional requirement. The requirement is verified in beam locked mode in the direction where peak gain is achieved.

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annex A (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1) with parameters specified in Table 7.4.-1. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

		Channel bandwidth			
Rx Parameter	Units	50 MHz	100 MHz	200 MHz	400 MHz
Power in transmission bandwidth configuration	dBm	-25 (NOTE 2) -27 (NOTE 3)			
NOTE 1: The transmitter shall be set to 4 dB below the PUMAX,f,c as defined in clause 6.2.4, with uplink configuration specified in Table 7.3.2.1-2.					
NOTE 2: Reference measurement channel is specified in Annex A.3.3.2: QPSK, R=1/3 variant with one sided dynamic OCNG Pattern as described in Annex A.					
NOTE 3: Reference measurement channel is specified in Annex A.3.3.5: 256QAM, R=4/5 variant with one sided dynamic OCNG Pattern as described in Annex A.					

Table 7.4-1: N	Maximum i	nput level
----------------	-----------	------------

Table 7.4-2: Void

7.4A Maximum input level for CA

Table 7.4A-1: Void

Table 7.4A-2: Void

7.4A.1 Maximum input level for Intra-band contiguous CA

For intra-band contiguous carrier aggregation the input level is defined as the cumulative received power, summed over the transmission bandwidth configurations of each active DL CC. All DL CCs shall be active throughout the test. The input power shall be distributed among the active DL CCs so their PSDs are aligned with each other. At the maximum input level, the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel over each component carrier. The minimum requirement is specified in Table 7.4A-1.

The maximum input level is defined as a directional requirement. The requirement is verified in beam locked mode in the direction where peak gain is achieved. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).
Rx Parameter	Units	Level			
ower summed over transmission bandwidth configurations of all active DL CCs dBm -25 (NOTE 2) -27 (NOTE 3)					
NOTE 1: The transmitter shall be set to 4 dB below the PUMAX,f,c as defined in clause 6.2.4, with uplink configuration specified in Table 7.3.2.1-2					
OTE 2: Reference measurement channel in each CC is specified in Annex A.3.3.2: QPSK, R=1/3 variant with one sided dynamic OCNG Pattern as described in Annex A.					
NOTE 3: Reference measurement channel is specified in Annex A.3.3.5: 256QAM, R=4/5 variant with one sided dynamic OCNG Pattern as described in Annex A.					

Table 7.4A.1-1: Maximum input level for Intra-band contiguous CA

7.4A.2 Maximum input level for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation the requirement of section 7.4A.1 applies

7.4A.3 void

7.4D Maximum input level for UL MIMO

For UL MIMO, the maximum input level requirements in clause 7.4 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

7.5 Adjacent channel selectivity

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The requirement applies at the RIB when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

The UE shall fulfil the minimum requirement specified in Table 7.5-1 for all values of an adjacent channel interferer up to -25 dBm. However, it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5-2 and Table 7.5-3 where the throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2, with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Operating band	Units	Adjacent channel selectivity / Channel bandwidth				
		50 MHz	100 MHz	200 MHz	400 MHz	
n257, n258, n261	dB	23	23	23	23	
n259, n260	dB	22	22	22	22	

Table 7.5A.1-1: Adjacent channel selectivity

Rx Parameter	Units	Channel bandwidth				
		50 MHz	100 MHz	200 MHz	400 MHz	
Power in Transmission Bandwidth Configuration	dBm	REFSENS + 14 dB				
P _{Interferer} for band n257, n258, n259, n261	dBm	REFSENS + 35.5 dB	REFSENS +35.5 dB	REFSENS +35.5 dB	REFSENS +35.5 dB	
PInterferer for	dBm	REFSENS	REFSENS	REFSENS	REFSENS	
band n260 BW _{Interferer}	MHz	+ 34.5 dB 50	+34.5 dB 100	+34.5 dB 200	+34.5 dB 400	
FInterferer (Offset)	MHz	50 /	100	200	400	
		-50 NOTE 3	-100 NOTE 3	-200 NOTE 3	-400 NOTE 3	
 NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern as described in Annex A.3.2 and set-up according to Annex C. NOTE 2: The REFSENS power level is specified in Clause 7.3.2, which are applicable to different UE power classes. NOTE 3: The absolute value of the interferer offset F_{Interferer} (offset) shall be further adjusted to (CEIL(F_{Interferer}/SCS) + 0.5)*SCS MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same SCS. 						
		shall be set to 4 dB be e 7.3.2.1-2.	elow the PUMAX,f,c as	defined in clause 6.2.4,	with uplink configuration	

Table 7.5A.1-2: Adjacent channel selectivity test parameters, Case 1

Table 7.5A.1-3: Adjacent channel selectivity test parameters, Case 2

Rx Parameter	Units	Channel bandwidth				
		50 MHz	100 MHz	200 MHz	400 MHz	
Power in Transmission Bandwidth Configuration for band n257, n258, n261	dBm	-46.5	-46.5	-46.5	-46.5	
Power in Transmission Bandwidth Configuration for band n259, n260	dBm	-45.5	-45.5	-45.5	-45.5	
PInterferer	dBm			-25		
BWInterferer	MHz	50	100	200	400	
FInterferer (offset)	MHz	50 /	100 /	200 /	400 /	
		-50 NOTE 2	-100 NOTE 2	-200 NOTE 2	-400 NOTE 2	
dynam NOTE 2: The at + 0.5)* signal NOTE 3: The tra	nic OCNG psolute va SCS MHz have sam ansmitter	Pastern TDD as described Pattern TDD as described lue of the interferer offset F with SCS the sub-carrier s e SCS. shall be set to 4 dB below the 7.3.2.1-2.	in Annex A and se interferer (offset) sha spacing of the war	et-up according to Anne all be further adjusted to nted signal in MHz. Wan	x C. (CEIL(F _{Interferer} /SCS) ited and interferer	

7.5A Adjacent channel selectivity for CA

Table 7.5A-1: Void

Table 7.5A-2: Void

Table 7.5A-3: Void

7.5A.1 Adjacent channel selectivity for Intra-band contiguous CA

For intra-band contiguous carrier aggregation, the SCC(s) shall be configured at nominal channel spacing to the PCC. The input power shall be distributed among the active DL CCs so their PSDs are aligned with each other. The UE shall fulfil the minimum requirement specified in Table 7.5A.1-1 for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm.

The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1). The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Table 7.5A.1-1: Adjacent channel selectivity for intra-band contiguous CA

Operating band	Units	Adjacent channel selectivity / CA bandwidth class
Operating band	onits	All CA bandwidth class
n257, n258, n261	dB	23
n260	dB	22

Table 7.5A.1-2: Adjacent channel selectivity test parameters for intra-band contiguous CA, Case 1

Rx Parameter	Units	All CA bandwidth Classes				
Pw in Transmission Bandwidth Configuration, per CC		REFSENS + 14 dB				
Plnterferer for band n257, n258, n261	dBm	Aggregated power + 21.5				
PInterferer for band n260	dBm	Aggregated power + 20.5				
BWInterferer	MHz	BW _{Channel_CA}				
FInterferer (offset) MHz + BW _{channel CA} / - BW _{channel CA} NOTE 3						
NOTE 1: The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern as described in Annex A and set-up according to Annex C.						
	OTE 2: The F _{interferer} (offset) is the frequency separation between the center of the aggregated CA bandwidth and the center frequency of the Interferer signal					
NOTE 3: The absolute value of the inte (CEIL(FInterferer /SCS) + 0.5)*S	3: The absolute value of the interferer offset F _{Interferer} (offset) shall be further adjusted to (CEIL(F _{Interferer} /SCS) + 0.5)*SCS MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interfering signal has the same SCS as					

Rx Parameter	Units	All CA bandwidth classes			
Pw in Transmission Bandwidth Configuration, aggregated power for band n257, n258, n261	dBm	- 46.5			
Pw in Transmission Bandwidth Configuration, aggregated power for band n260	dBm	- 45.5			
Pinterferer	dBm	- 25			
BWInterferer	MHz	BW _{Channel_CA}			
FInterferer (offset) MHz + BW _{channel CA} // NOTE 3					
 NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A.3.3.2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 and set-up according to Annex C. NOTE 2: The F_{interferer} (offset) is the frequency separation between the center of the aggregated CA bandwidth and the center frequency of the Interferer signal NOTE 3: The absolute value of the interferer offset F_{Interferer} (offset) shall be further adjusted to (CEIL(F_{Interferer}/SCS) + 0.5)*SCS MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interfering signal has the same SCS as that of the closest carrier. 					

Table 7.5A.1-3: Adjacent channel selectivity test parameters for intra-band contiguous CA, Case 2

7.5A.2 Adjacent channel selectivity for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with two component carriers, two different requirements apply for out-of-gap and in-gap. For out-of-gap, the UE shall meet the requirements for each component carrier as specified in clauses 7.5. For in-gap, the requirement applies if the following minimum gap condition is met:

$$\Delta f_{ACS} \geq \mathbf{BW}_1/2 + \mathbf{BW}_2/2 + \max(\mathbf{BW}_1, \mathbf{BW}_2),$$

where Δf_{ACS} is the frequency separation between the center frequencies of the component carriers and BW_k/2 are the channel bandwidths of carrier k, k = 1,2.

If the minimum gap condition is met, the UE shall meet the requirements specified in clauses 7.5 for each component carrier considered. The respective channel bandwidth of the component carrier under test will be used in the parameter calculations of the requirement. In case of more than two component carriers, the minimum gap condition is computed for any pair of adjacent component carriers following the same approach as the two component carriers. The in-gap requirement for the corresponding pairs shall apply if the minimum gap condition is met.

For every component carrier to which the requirements apply, the UE shall meet the requirement with one active interferer signal (in-gap or out-of-gap) while all downlink carriers are active and the input power shall be distributed among the active DL CCs so their PSDs are aligned with each other.

7.5A.3 void

7.5D Adjacent channel selectivity for UL MIMO

For UL MIMO, the adjacent channel selectivity requirements in clause 7.5 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

7.6 Blocking characteristics

7.6.1 General

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

The requirement applies at the RIB when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

7.6.2 In-band blocking

Py parameter Units

In-band blocking is a measure of a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an interferer at a given frequency offset from the centre frequency of the assigned channel.

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1). The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Rx parameter	Units	Channel bandwidth						
		50 MHz	100 MHz	200 MHz	400 MHz			
Power in			•					
Transmission Bandwidth	dBm	REFSENS + 14 dB						
Configuration BW _{Interferer}	MHz	50	100	200	400			
P _{Interferer} for bands n257, n258, n261	dBm	REFSENS + 35.5 dB	REFSENS + 35.5 dB	REFSENS + 35.5 dB	REFSENS + 35.5 dB			
P _{Interferer} for band n259, n260	dBm	REFSENS + 34.5 dB	REFSENS + 34.5 dB	REFSENS + 34.5 dB	REFSENS + 34.5 dB			
Floffset	MHz	≤ -100 & ≥ 100 NOTE 5	≤ -200 & ≥ 200 NOTE 5	≤ -400 & ≥ 400 NOTE 5	≤ -800 & ≥ 800 NOTE 5			
FInterferer	MHz	F _{DL_low} + 25	F _{DL_low} + 50	F _{DL_low} + 100	F _{DL_low} + 200			
		to F _{DL_high} - 25	to F _{DL high} - 50	to F _{DL_high} - 100	to F _{DL_high} - 200			
NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A.3.3.2 with one sided dynamic OCNG Pattern OP.1. TDD as described in Annex A.5.2.1 and set-up according to Annex C.								
	I							
NOTE 4: Floffset	 Floffset is the frequency separation between the center of the channel bandwidth and the center frequency of the Interferer signal. 							
NOTE 5: The al	The absolute value of the interferer offset $F_{loffset}$ shall be further adjusted (CEIL($F_{lnterferer}$ /SCS) + 0.5)*SCS MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have same							
NOTE 6: FInterfer NOTE 7: The tra		nall be set to 4 dB below	ulated interfering signal w the $P_{UMAX,f,c}$ as define					

Table 7.6.2-1: In band blocking requirements

Channel bandwidth

- 7.6.3 Void
- 7.6A Blocking characteristics for CA
- 7.6A.1 General
- 7.6A.2 In-band blocking

Table 7.6A.2-1: Void

Table 7.6A.2-2: Void

7.6A.2.1 In-band blocking for Intra-band contiguous CAFor intra-band contiguous carrier aggregation, the SCC(s) shall be configured at nominal channel spacing to the PCC. The input power shall be distributed among the active DL CCs so their PSDs are aligned with each other. The UE shall fulfil the minimum requirement specified in Table 7.6A.2-1 for in the presence of an interferer at a given frequency offset from the centre frequency of the assigned channel and an interferer power shall not exceed -25 dBm. The throughput of each carrier shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.3.2 and A.3.3.2 (with one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in Annex A.5.2.1). The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Rx Paramet	er	Units	All CA bandwidth classes			
Power in Transmission Bandwidth Configuration, per CC		REFSENS + 14 dB				
Pinterferer band n25 n258, n20	57,	dBm	Aggregated power + 21.5			
Pinterferer for band n260 dBm Aggregated power + 20.5		Aggregated power + 20.5				
BWInterfer	rer	MHz	BWChannel_CA			
F _{loffset} MHz +2*BW		MHz	+2*BW _{Channel_CA} / -2*BW _{Channel_CA} NOTE 5			
FInterferen	FInterferer		F _{DL_low} + 0.5*BW _{Channel_CA} To F _{DL_high} - 0.5*BW _{Channel_CA}			
 NOTE 1: The interferer consists of the Reference measurement channel specified in Annex A.3.3.2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1. and set-up according to Annex C. NOTE 2: The REFSENS power level is specified in Table 7.3.2-1. 						
NOTE 3: The wanted signal consists of the reference measurement channel specified in Annex A.3.3.2 QPSK, R=1/3 with one sided dynamic OCNG pattern OP.1 TDD as described in Annex A.5.2.1 and set-up according to Annex C.						
NOTE 4:	NOTE 4: The F _{Interferer} (offset) is the frequency separation between the center of the aggregated CA bandwidth and the center frequency of the Interferer signal.					
NOTE 5: The absolute value of the interferer offset FInterferer (offset) shall be further adjusted (CEIL(FInterferer /SCS) + 0.5)*SCS MHz with SCS the sub-carrier spacing of the carrier closest to the interferer in MHz. The interfering signal has the same SCS as that of the closest carrier.						
		_{ferer} range va Jencies.	alues for unwanted modulated interfering signals are interferer center			
NOTE 7:	The	transmitter	shall be set to 4 dB below the $P_{UMAX,f,c}$ as defined in clause 6.2.4, guration specified in Table 7.3.2.1-2.			

7.6A.2.2 In-band blocking for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation with two component carriers, the requirement applies to out-of-gap and in-gap. For out-of-gap, the UE shall meet the requirements for each component carrier with parameters as specified in 7.6.2-1. The requirement associated to the maximum channel between across the component carriers is selected. For in-gap, the requirement shall apply if the following minimum gap condition is met:

$$\Delta f_{IBB} \ge 0.5(BW_1 + BW_2) + 2 \max(BW_1, BW_2),$$

where Δf_{IBB} is the frequency separation between the center frequencies of the component carriers and BW_k/2 are the channel bandwidths of carrier k, k = 1,2.

If the minimum gap condition is met, the UE shall meet the requirement specified in Table 7.6.2-1 for each component carrier. The respective channel bandwidth of the component carrier under test will be used in the parameter calculations of the requirement. In case of more than two component carriers, the minimum gap condition is computed for any pair of adjacent component carriers following the same approach as the two component carriers. The in-gap requirement for the corresponding pairs shall apply if the minimum gap condition is met. For every component carrier to which the requirements apply, the UE shall meet the requirement with one active interferer signal (in-gap or out-of-gap) while all downlink carriers are active and the input power shall be distributed among the active DL CCs so their PSDs are aligned with each other.

7.6A.2.3 void

7.6D Blocking characteristics for UL MIMO

For UL MIMO, the blocking characteristics requirements in clause 7.6 apply. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-3.

- 7.7 Void
- 7.8 Void

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver. The spurious emissions power level is measured as TRP.

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9-1. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

Frequency range	Measurement bandwidth	Maximum level	NOTE		
30MHz ≤ f < 1GHz	1				
$ \begin{array}{c c} 1 GHz \leq f \leq 2^{nd} \text{ harmonic of } & 1 \text{ MHz} & -47 \text{ dBm} \\ \text{the upper frequency edge of } & & \\ \text{the DL operating band in } & & \\ GHz & & & \\ \end{array} $					
NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH as defined in Annex C.3.1.					

Table 7.9-1: General receiver spurious emission requirements

7.10 Void

Annex A (normative): Measurement channels

- A.1 General
- A.2 UL reference measurement channels
- A.2.1 General
- A.2.2 Void

A.2.3 Reference measurement channels for TDD

For UL RMCs defined below, TDD slot pattern defined in Table A.2.3-1 will be used for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, TDD slot patterns defined for reference sensitivity tests in Table A.3.3.1-1 will be used.

		Va	lue							
	Parameter	SCS 60 kHz	SCS 120 kHz							
		(µ=2)	(µ=3)							
TDD SI	ot Configuration pattern (Note 1)	DDDSUUUU	7DS8U							
Spec	ial Slot Configuration (Note 2)	S=4D+6G+4U	S=12D+2G							
re	eferenceSubcarrierSpacing	60 kHz	120 kHz							
	dl-UL-TransmissionPeriodicity	2 ms	2 ms							
UL-DL	nrofDownlinkSlots	3	7							
configuration	nrofDownlinkSymbols	4	12							
configuration	nrofUplinkSlot	4	8							
	nrofUplinkSymbols	0	0							
	Indexes of active UL slots	mod(slot index,	mod(slot index,							
		40) = {36,,39}	80) = {72,,79}							
	enotes a slot with all DL symbols; S denote									
symbols; U denotes a slot with all UL symbols. The field is for information.										
NOTE 2: D, C	G, U denote DL, guard and UL symbols, res	pectively. The field is	s for information.							

Table A.2.3-1: Additional reference channels parameters for TDD

A.2.3.1 DFT-s-OFDM Pi/2-BPSK

Table A.2.3.1-1: Reference	Channels for DF	FT-s-OFDM pi/2	-BPSK for 60 kHz SCS
----------------------------	-----------------	----------------	----------------------

118

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-200	60	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	50-200	60	16	11	pi/2 BPSK	0	1/4	480	16	2	1	2024	2024
	50	60	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	50	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	100	60	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	200	60	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	200	60	256	11	pi/2 BPSK	0	1/4	7944	24	2	3	33792	33792
1	USCH mappin 1. DMRS is [TI ICS Index is ba	DM'ed] with P	USCH data.		onfiguration Typ	pe-1 with 2	additional	DM-RS symb	ools, such that	the DM-R	S positions a	are set to sy	mbols 2, 7,

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in 38.214.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-400	120	1	11	pi/2 BPSK	0	1/4	32	16	2	1	132	132
	50	120	16	11	pi/2 BPSK	0	1/4	504	16	2	1	2112	2112
	50	120	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	100	120	32	11	pi/2 BPSK	0	1/4	1032	16	2	1	4224	4224
	100	120	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	200	120	64	11	pi/2 BPSK	0	1/4	2024	16	2	1	8448	8448
	200	120	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	400	120	128	11	pi/2 BPSK	0	1/4	3976	24	2	2	16896	16896
	400	120	256	11	pi/2 BPSK	0	1/4	7944	24	2	3	33792	33792

11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in 38.214.

 NOTE 2: Mobility is based of mobility in dominant in contraint a dominant mobility in the dominant mobility specified in A.3.3.1.

A.2.3.2 DFT-s-OFDM QPSK

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-200	60	1	11	QPSK	2	1/6	48	16	2	1	264	132
	50-200	60	16	11	QPSK	2	1/6	808	16	2	1	4048	2024
	50	60	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	50	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	100	60	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	200	60	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	200	60	256	11	QPSK	2	1/6	12808	24	2	4	67584	33792
1	USCH mappir 1. DMRS is [T ICS Index is b	DM'ed] with P	USCH data.		onfiguration Typ 38.214.	pe-1 with 2	2 additional	DM-RS symb	ools, such that	the DM-R	S positions	are set to sy	mbols 2, 7,

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Table A.2.3.2-2: Reference Channels for DFT-s-OFDM QPSK for 120 kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-400	120	1	11	QPSK	2	1/6	48	16	2	1	264	132
	50	120	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	50	120	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	100	120	20	11	QPSK	2	1/6	984	16	2	1	5060	2530
	100	120	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	100	120	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	200	120	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	200	120	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	400	120	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	400	120	256	11	QPSK	2	1/6	12808	24	2	4	67584	33792
NOTE 1: P	USCH mappin	g Type-A and	single-symbol	ol DM-RS co	onfiguration Typ	e-1 with 2	additional	DM-RS symb	ols, such that	the DM-R	S positions a	are set to sy	mbols 2, 7,

1. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in 38.214.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.3 DFT-s-OFDM 16QAM

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-200	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	60	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	50	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	100	60	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	200	60	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	200	60	256	11	16QAM	10	1/3	45096	24	1	6	135168	33792
1 NOTE 2: M	1. DMRS is [T ICS Index is b	DM'ed] with Plased on MCS	USCH data. table 6.1.4.1-	1 defined in	38.214.			·			·	are set to sy	mbols 2, 7,

 NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
 NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Table A.2.3.3-2: Reference Channels for DFT-s-OFDM 16QAM for 120 kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-400	120	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	120	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	50	120	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	100	120	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	100	120	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	200	120	64	11	16QAM	10	1/3	11272	24	1	2	33792	8448
	200	120	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
	400	120	128	11	16QAM	10	1/3	22536	24	1	3	67584	16896
i	400	120	256	11	16QAM	10	1/3	45096	24	1	6	135168	33792

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in 38.214.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.4 DFT-s-OFDM 64QAM

Table A.2.3.4-1: Reference Channels for DFT-s-OFDM 64QAM for 60 kHz SCS

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits		-	Bits	
	50-200	60	1	11	64QAM	18	1/2	408	16	2	1	792	132
	50	60	32	11	64QAM	18	1/2	12808	24	1	2	25344	4224
	50	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	100	60	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	100	60	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	200	60	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	200	60	256	11	64QAM	18	1/2	102416	24	1	13	202752	33792
NOTE 2: M	1. DMRS is [T ICS Index is b	DM'ed] with Pl ased on MCS	USCH data. table 6.1.4.1-	1 defined in	38.214.			·				are set to sy	mbols 2, 7,

 NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
 NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Table A.2.3.4-2: Reference Channels for DFT-s-OFDM 64QAM for 120 kHz SCS

			blocks	OFDM Symbols per slot (Note 1)		Index (Note 2)	Coding Rate	size for UL slots (Note 4)	block CRC	Base Graph	of code blocks per slot for UL slots (Note 3, Note 4)	number of bits per slot for UL slots (Note 4)	modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits		-	Bits	
	50-400	120	1	11	64QAM	18	1/2	408	16	2	1	792	132
	50	120	16	11	64QAM	18	1/2	6400	24	1	1	12672	2112
	50	120	32	11	64QAM	18	1/2	12808	24	1	2	25344	4224
	100	120	32	11	64QAM	18	1/2	12808	24	1	2	25344	4224
	100	120	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	200	120	64	11	64QAM	18	1/2	25608	24	1	4	50688	8448
	200	120	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	400	120	128	11	64QAM	18	1/2	51216	24	1	7	101376	16896
	400	120	256	11	64QAM	18	1/2	102416	24	1	13	202752	33792

NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set 11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 6.1.4.1-1 defined in 38.214.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.5 CP-OFDM QPSK

126

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-200	60	1	11	QPSK	2	1/6	48	16	2	1	264	132
	50-200	60	16	11	QPSK	2	1/6	808	16	2	1	4048	2024
	50	60	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	50	60	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	100	60	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	100	60	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	200	60	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	200	60	264	11	QPSK	2	1/6	13064	24	2	4	69696	34848
1 NOTE 2: M	1. DMRS is [T ICS Index is b	DM'ed] with Pl ased on MCS	USCH data. table 5.1.3.1.	1 defined in	onfiguration Typ 38.214. CRC sequence			Ē				are set to sy	mbols 2, 7,

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots(Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-400	120	1	11	QPSK	2	1/6	48	16	2	1	264	132
	50	120	16	11	QPSK	2	1/6	808	16	2	1	4224	2112
	50	120	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	100	120	33	11	QPSK	2	1/6	1672	16	2	1	8712	4356
	100	120	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	200	120	66	11	QPSK	2	1/6	3368	16	2	1	17424	8712
	200	120	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	400	120	132	11	QPSK	2	1/6	6536	24	2	2	34848	17424
	400	120	264	11	QPSK	2	1/6	13064	24	2	4	69696	34848

Table A.2.3.5-2: Reference Channels for CP-OFDM QPSK for 120 kHz SCS

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in 38.214.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.6 CP-OFDM 16QAM

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits		-	Bits	
	50-200	60	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	60	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	50	60	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	100	60	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	100	60	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	200	60	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	200	60	264	11	16QAM	10	1/3	46104	24	1	6	139392	34848
1 NOTE 2: M	1. DMRS is [T ICS Index is b	DM'ed] with Plased on MCS	USCH data. table 5.1.3.1-	1 defined in	38.214.						·	are set to sy	mbols 2, 7,

 NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
 NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits		-	Bits	
	50-400	120	1	11	16QAM	10	1/3	176	16	2	1	528	132
	50	120	16	11	16QAM	10	1/3	2792	16	2	1	8448	2112
	50	120	32	11	16QAM	10	1/3	5632	24	1	1	16896	4224
	100	120	33	11	16QAM	10	1/3	5760	24	1	1	17424	4356
	100	120	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	200	120	66	11	16QAM	10	1/3	11528	24	1	2	34848	8712
	200	120	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	400	120	132	11	16QAM	10	1/3	23040	24	1	3	69696	17424
	400	120	264	11	16QAM	10	1/3	46104	24	1	6	139392	34848
NOTE 1: P	TE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7,												

11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in 38.214.

 NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
 NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.2.3.7 CP-OFDM 64QAM

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	CP- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for UL slots (Note 4)	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for UL slots (Note 3, Note 4)	Total number of bits per slot for UL slots (Note 4)	Total modulated symbols per slot for UL slots (Note 4)
Unit	MHz	KHz						Bits	Bits			Bits	
	50-200	60	1	11	64QAM	19	1/2	408	16	2	1	792	132
	50	60	33	11	64QAM	19	1/2	13064	24	1	2	26136	4356
	50	60	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
	100	60	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
	100	60	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
	200	60	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
	200	60	264	11	64QAM	19	1/2	106576	24	1	13	209088	34848
1	NOTE 1: PUSCH mapping Type-A and single-symbol DM-RS configuration Type-1 with 2 additional DM-RS symbols, such that the DM-RS positions are set to symbols 2, 7, 11. DMRS is [TDM'ed] with PUSCH data. NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in 38.214.												

 NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
 NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

Table A.2.3.7-2: Reference Channels for CP-OFDM 64QAM for 120 kHz SCS

										for UL slots (Note 3, Note 4)	for UL slots (Note 4)	for UL slots (Note 4)
MHz	KHz						Bits	Bits			Bits	
0-400	120	1	11	64QAM	19	1/2	408	16	2	1	792	132
50	120	16	11	64QAM	19	1/2	6400	24	1	1	12672	2112
50	120	32	11	64QAM	19	1/2	12808	24	1	2	25344	4224
100	120	33	11	64QAM	19	1/2	13064	24	1	2	26136	4356
100	120	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
200	120	66	11	64QAM	19	1/2	26120	24	1	4	52272	8712
200	120	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
400	120	132	11	64QAM	19	1/2	53288	24	1	7	104544	17424
400	120	264	11	64QAM	19	1/2	106576	24	1	13	209088	34848
100 200 200 400 400		120 120 120 120 120 120	120 66 120 66 120 132 120 132 120 264	120 66 11 120 66 11 120 132 11 120 132 11 120 264 11	120 66 11 64QAM 120 66 11 64QAM 120 132 11 64QAM 120 132 11 64QAM 120 132 11 64QAM 120 132 11 64QAM 120 264 11 64QAM	120 66 11 64QAM 19 120 66 11 64QAM 19 120 132 11 64QAM 19 120 264 11 64QAM 19	120 66 11 64QAM 19 1/2 120 66 11 64QAM 19 1/2 120 132 11 64QAM 19 1/2 120 264 11 64QAM 19 1/2	120 66 11 64QAM 19 1/2 26120 120 66 11 64QAM 19 1/2 26120 120 132 11 64QAM 19 1/2 53288 120 264 11 64QAM 19 1/2 106576	120 66 11 64QAM 19 1/2 26120 24 120 66 11 64QAM 19 1/2 26120 24 120 132 11 64QAM 19 1/2 53288 24 120 132 11 64QAM 19 1/2 53288 24 120 132 11 64QAM 19 1/2 53288 24 120 264 11 64QAM 19 1/2 53288 24	120 66 11 64QAM 19 1/2 26120 24 1 120 66 11 64QAM 19 1/2 26120 24 1 120 66 11 64QAM 19 1/2 26120 24 1 120 132 11 64QAM 19 1/2 53288 24 1 120 132 11 64QAM 19 1/2 53288 24 1 120 132 11 64QAM 19 1/2 53288 24 1 120 264 11 64QAM 19 1/2 106576 24 1	120 66 11 64QAM 19 1/2 26120 24 1 4 120 66 11 64QAM 19 1/2 26120 24 1 4 120 66 11 64QAM 19 1/2 26120 24 1 4 120 132 11 64QAM 19 1/2 53288 24 1 7 120 132 11 64QAM 19 1/2 53288 24 1 7 120 132 11 64QAM 19 1/2 53288 24 1 7 120 264 11 64QAM 19 1/2 106576 24 1 13	120 66 11 64QAM 19 1/2 26120 24 1 4 52272 120 66 11 64QAM 19 1/2 26120 24 1 4 52272 120 66 11 64QAM 19 1/2 26120 24 1 4 52272 120 132 11 64QAM 19 1/2 53288 24 1 7 104544 120 132 11 64QAM 19 1/2 53288 24 1 7 104544

11. DMRS is [TDM'ed] with PUSCH data.

NOTE 2: MCS Index is based on MCS table 5.1.3.1-1 defined in 38.214.

NOTE 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

NOTE 4: Indexes of active UL slots are given by Table A.2.3-1 with TDD UL-DL configuration specified in A2.3 for the requirements requiring at least one sub frame (1ms) for the measurement period. For other requirements, indexes of active UL slots are given by the slots satisfying mod(slot index+1, 5) = 0 with TDD UL-DL configuration specified in A.3.3.1.

A.3 DL reference measurement channels

A.3.1 General

Unless otherwise stated, Tables A.3.3.2-1 and A.3.3.2-2 are applicable for measurements of the Receiver Characteristics (clause 7).

Unless otherwise stated, Tables A.3.3.2-1 and A.3.3.2-2 also apply for the modulated interferer used in Clauses 7.5 and 7.6 with test specific bandwidths.

CSI-RS configuration parameter defined in Table A.3.1-2 is used for verifying the beam correspondence requirement, 2 slots of CSI-RS shall be provided at each test grid point. The DL channel shall be configured for zero power on all tones except those used by CSI-RS in slots containing CSI-RS for beam refinement, and the DL and UL channel sizes shall be the same during verification.

Para	meter	Unit	Value
CORESET frequen	cy domain allocation		Full BW
CORESET time	domain allocation		2 OFDM symbols at the begin of each slot
PDSCH m	apping type		Туре А
PDSCH start s	symbol index (S)		2
Number of consecutiv	/e PDSCH symbols (L)		12
PDSCH PI	RB bundling	PRBs	2
	RB bundling		false
MCS table for T	BS determination		64QAM
Overhead value for	r TBS determination		0
First DMRS position for	Type A PDSCH mapping		2
	S type		Type 1
Number of ad	Iditional DMRS		2
FDM between D	MRS and PDSCH		Disable
CSI-RS for tracking	First subcarrier index in the PRB used for CSI-RS		0 for CSI-RS resource 1,2
	(k0)		
	OFDM symbols in the		$l_0 = 8$ for CSI-RS resource 1
	PRB used for CSI-RS		$l_0 = 12$ for CSI-RS resource 2
	Number of CSI-RS ports		1 for CSI-RS resource 1,2
	CDM Type		'No CDM' for CSI-RS resource 1,2
	Density (ρ)		3 for CSI-RS resource 1,2
	CSI-RS periodicity	Slots	60 kHz SCS: 80 for CSI-RS resources 1 and 2
			120 kHz SCS: 160 for CSI-RS resources 1 and 2
	CSI-RS offset	Slots	60 kHz SCS: 40 for CSI-RS resources 1 and 2
			120kHz SCS: 80 for CSI-RS resources 1 and 2
	Frequency Occupation		Start PRB 0
			Number of PRB = BWP size
	QCL info		TCI state #0
PTRS co	nfiguration		PTRS is not configured

Table A.3.1-1: Test parameters

Resource Type	aperiodic
Resource Set Config	·
repetition	on
aperiodicTriggeringOffset	Depending on UE capability
Resource Config	
	30 for resource #0
	31 for resource #1
	32 for resource #2
nzp-CSI-RS-Resourceld	33 for resource #3
	34 for resource #4
	35 for resource #5
	36 for resource #6
	37 for resource #7
powerControlOffset	0
powerControlOffsetSS	db0
nrofPorts	1
	6 for resource #0
	7 for resource #1
	8 for resource #2
firstOEDMSvmbollnTimoDomoin	9 for resource #3
firstOFDMSymbolInTimeDomain	10 for resource #4
	11 for resource #5
	12 for resource #6
	13 for resource #7
cdm-Type	noCDM
density	3
nrofRBs	48 for channel bandwidth≥100MHz 32 for channel bandwidth=50MHz
qcl-info	Type D to SSB

Table A.3.1-2: CSI-RS parameters

A.3.2 Void

A.3.3 DL reference measurement channels for TDD

A.3.3.1 General

	Deveneter	Va	lue		
	Parameter	SCS 60 kHz (µ=2)	SCS 120 kHz (µ=3)		
TDD Slot Conf	iguration pattern (Note 1)	DDDSU DDDSU DDDSU		rn (Note 1) DDDSU DDDSU DDDSU	
Special Slot	Configuration (Note 2)	S=4D+6G+4U	S=10D+2G+2U		
reference	eSubcarrierSpacing	60 kHz	120 kHz		
UL-DL	dI-UL-	1.25 ms	0.625 ms		
configuration	TransmissionPeriodicity				
-	nrofDownlinkSlots	3	3		
	nrofDownlinkSymbols	4	10		
	nrofUplinkSlot	1	1		
	nrofUplinkSymbols	4	2		
Number	of HARQ Processes	8	8		
The number of	slots between PDSCH and	K1 = 4 if mod(i,5) = 0	K1 = 4 if mod(i,5) = 0		
corresponding HA	RQ-ACK information (Note 3)	K1 = 3 if mod(i,5) = 1	K1 = 3 if mod(i,5) = 1		
		K1 =7 if mod(i,5) = 2	K1 =7 if mod(i,5) = 2		
		where i is slot index per frame;	where i is slot index per frame;		
		i = {0,,39}	$i = \{0, \dots, 79\}$		
		enotes a slot with a mix of DL, UL	and guard symbols; U denotes		
	h all UL symbols. The field is for				
		ls, respectively. The field is for info	ormation.		
NOTE 3: i is the slot index per frame.					

Table A.3.3.1-1. Additional test parameters for TDD

A.3.3.2 FRC for receiver requirements for QPSK

	Parameter	Unit		Value	
	Channel bandwidth	MHz	50	100	200
Subca	arrier spacing configuration μ		2	2	2
	Allocated resource blocks		66	132	264
Sul	ocarriers per resource block		12	12	12
ŀ	Allocated slots per Frame		23	23	23
	MCS index		4	4	4
	Modulation		QPSK	QPSK	QPSK
	Target Coding Rate		1/3	1/3	1/3
Maximun	n number of HARQ transmissions		1	1	1
Info	rmation Bit Payload per Slot				
fo	ts 0 and Slot i, if mod(i, 5) = {3,4} r i from {0,,79} (NOTE 5)	Bits	N/A	N/A	N/A
For Slo	t i, if mod(i, 5) = {0,1,2} for i from {1,,79} (NOTE 6)	Bits	4224	8456	16896
	Transport block CRC	Bits	24	24	24
	LDPC base graph		1	1	1
Nun	nber of Code Blocks per Slot				
	ts 0 and Slot i, if mod(i, 5) = {3,4} r i from {0,,79} (NOTE 5)	CBs	N/A	N/A	N/A
For Slo	t i, if mod(i, 5) = {0,1,2} for i from {1,,79} (NOTE 6)	CBs	1	2	2
Bi	nary Channel Bits Per Slot				
	ts 0 and Slot i, if mod(i, 5) = {3,4} r i from {0,,79} (NOTE 5)	Bits	N/A	N/A	N/A
For Slo	t i, if mod(i, 5) = {0,1,2} for i from {1,,79} (NOTE 6)	Bits	10.138	20.294	40.550
	roughput averaged over 1 frame	Mbps	9.715	19.449	38.861
 NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1. NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). NOTE 3: SS/PBCH block is transmitted in slot 0 with periodicity 20 ms NOTE 4: Slot i is slot index per 2 frames NOTE 5: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if mod(i, 8) = {3,4,5,6,7} for i from {0,,79} together with the TDD UL-DL configuration specified in A2.3. NOTE 6: When this DL RMC used together with the UL RMC for the transmitter requirements 					
 NOTE 6: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if mod(i, 8) = {0,1,2} for i from {0,,79} together with the TDD UL-DL configuration specified in A2.3. 					i, if mod(i,

Table A.3.3.2-1 Fixed Reference Channel for Receiver Requirements (SCS 60 kHz, TDD)

Parameter	Unit		Va	lue	
Channel bandwidth	MHz	50 100 200 40			400
Subcarrier spacing configuration μ		3	3	3	3
Allocated resource blocks		32	66	132	264
Subcarriers per resource block		12	12	12	12
Allocated slots per Frame		47	47	47	47
MCS index		4	4	4	4
Modulation		QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1
Information Bit Payload per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159} (NOTE 5)	Bits	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159} (NOTE 6)	Bits	2088	4224	8456	16896
Transport block CRC	Bits	16	24	24	24
LDPC base graph		2	1	1	1
Number of Code Blocks per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159} (NOTE 5)	CBs	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159} (NOTE 6)	CBs	1	1	2	2
Binary Channel Bits Per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159} (NOTE 5)	Bits	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159} (NOTE 6)	Bits	6912	14256	28512	57024
Max. Throughput averaged over 1 frame	Mbps	10.022	20.275	40.589	81.101
 NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1. NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). NOTE 3: SS/PBCH block is transmitted in slot 0 with periodicity 20 ms NOTE 4: Slot i is slot index per 2 frames NOTE 5: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if mod(i, 16) = {7,,15} for i from {0,,159} together with the TDD UL-DL configuration specified in A2.3. NOTE 6: When this DL RMC used together with the UL RMC for the transmitter requirements requiring at least one sub frame (1ms) for the measurement period, Slot i, if mod(i, 16) = {0,,6} for i from {0,,159} together with the TDD UL-DL configuration specified in A2.3. 					

Table A.3.3.2-2 Fixed Reference Channel for Receiver Requirements (SCS 120 kHz, TDD)

A.3.3.3 FRC for receiver requirements for 16QAM

A.3.3.4 FRC for receiver requirements for 64QAM

Parameter	Unit		Value	
Channel bandwidth	MHz	50	100	200
Subcarrier spacing configuration μ		2	2	2
Allocated resource blocks		66	132	264
Subcarriers per resource block		12	12	12
Allocated slots per Frame		23	23	23
MCS index		19	19	19
Modulation		64QAM	64QAM	64QAM
Target Coding Rate		1/2	1/2	1/2
Maximum number of HARQ transmissions		1	1	1
Information Bit Payload per Slot				
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,79}	Bits	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,79}	Bits	20496	40976	81976
Transport block CRC	Bits	24	24	24
LDPC base graph		1	1	1
Number of Code Blocks per Slot				
For Slot i, if mod(i, 10) = {0,1,2} for i from {1,,79}	CBs	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,79}	CBs	3	5	10
Binary Channel Bits Per Slot				
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,79}	Bits	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,79}	Bits	40986	81972	163944
Max. Throughput averaged over 1 frame	Mbps	49.190	98.343	196.742
 NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1. NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). NOTE 3: SS/PBCH block is transmitted in slot 0 with periodicity 20 ms NOTE 4: Slot i is slot index per 2 frames NOTE 5: PTRS is configured on symbols containing PDSCH with 1 port, per 2PRB in frequency domain, per symbol in time domain. Overhead for TBS calculation is assumed to be 6. 				

Table A.3.3.4-1 Fixed Reference Channel for Receiver Requirements (SCS 60 kHz, TDD)

Parameter	Unit	it Value			
Channel bandwidth	MHz	50	100	200	400
Subcarrier spacing configuration $^{\mu}$		3	3	3	3
Allocated resource blocks		32	66	132	264
Subcarriers per resource block		12	12	12	12
Allocated slots per Frame		47	47	47	47
MCS index		19	19	19	19
Modulation		64QAM	64QAM	64QAM	64QAM
Target Coding Rate		1/2	1/2	1/2	1/2
Maximum number of HARQ transmissions		1	1	1	1
Information Bit Payload per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159}	Bits	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159}	Bits	9992	20496	40976	81976
Transport block CRC	Bits	24	24	24	24
LDPC base graph		1	1	1	1
Number of Code Blocks per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159}	CBs	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159}	CBs	2	3	5	10
Binary Channel Bits Per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159}	Bits	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159}	Bits	19872	40986	81972	163944
Max. Throughput averaged over 1 frame	Mbps	47.962	98.381	196.685	393.485
NOTE 1: Additional parameters are specifie NOTE 2: If more than one Code Block is pr attached to each Code Block (oth NOTE 3: SS/PBCH block is transmitted in s	esent, an ado erwise L = 0 I	ditional CRC : Bit).			is

Table A.3.3.4-2 Fixed Reference Channel for Receiver Requirements (SCS 120 kHz, TDD)

NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame

NOTE 4: Slot i is slot index per frame NOTE 5: PTRS is configured on symbols containing PDSCH with 1 port, per 2PRB in frequency

domain, per symbol in time domain. Overhead for TBS calculation is assumed to be 6.

A.3.3.5 FRC for receiver requirements for 256QAM

Parameter	Unit		Value	
Channel bandwidth	MHz	50	100	200
Subcarrier spacing configuration $^{\mu}$		2	2	2
Allocated resource blocks		66	132	264
Subcarriers per resource block		12	12	12
Allocated slots per Frame		23	23	23
MCS index		24	24	24
Modulation		256QAM	256QAM	256QAM
Target Coding Rate		4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1
Information Bit Payload per Slot				
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,79}	Bits	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,79}	Bits	44040	88064	176208
Transport block CRC	Bits	24	24	24
LDPC base graph		1	1	1
Number of Code Blocks per Slot				
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,79}	CBs	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,79}	CBs	6	11	21
Binary Channel Bits Per Slot				
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,79}	Bits	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,79}	Bits	54648	109296	218592
Max. Throughput averaged over 1 frame	Mbps	101.292	202.547	405.278
 NOTE 1: Additional parameters are specifie NOTE 2: If more than one Code Block is pre- is attached to each Code Block (of NOTE 3: SS/PBCH block is transmitted in s NOTE 4: Slot i is slot index per frame NOTE 5: PTRS is configured on symbols co- frequency domain, per symbol in ti 	esent, an add therwise L = 0 lot 0 of each f ontaining PDS	itional CRC s) Bit). rame :CH with 1 pc	equence of l	L = 24 Bits 3 in

Table A.3.3.5-1 Fixed Reference Channel for Receiver Requirements (SCS 60 kHz, TDD)

Parameter	Unit		Va	lue	
Channel bandwidth	MHz	50 100 200 4			400
Subcarrier spacing configuration μ		3	3	3	3
Allocated resource blocks		32	66	132	264
Subcarriers per resource block		12	12	12	12
Allocated slots per Frame		47	47	47	47
MCS index		24	24	24	24
Modulation		256QAM	256QAM	256QAM	256QAM
Target Coding Rate		4/5	4/5	4/5	4/5
Maximum number of HARQ transmissions		1	1	1	1
Information Bit Payload per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159}	Bits	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159}	Bits	21504	44040	88064	176208
Transport block CRC	Bits	24	24	24	24
LDPC base graph		1	1	1	1
Number of Code Blocks per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159}	CBs	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159}	CBs	3	6	11	21
Binary Channel Bits Per Slot					
For Slots 0 and Slot i, if mod(i, 5) = {3,4} for i from {0,,159}	Bits	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 5) = {0,1,2} for i from {1,,159}	Bits	26496	54648	109296	218592
Max. Throughput averaged over 1 frame	Mbps 101.069 206.988 413.901 828.178				
 NOTE 1: Additional parameters are specified in Table A.3.1-1 and Table A.3.3.1-1. NOTE 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). NOTE 3: SS/PBCH block is transmitted in slot 0 of each frame 					

Table A.3.3.5-2 Fixed Reference Channel for Receiver Requirements (SCS 120 kHz, TDD)

BCH block is transmitted in slot 0 of each frame

 NOTE 4:
 Slot i is slot index per frame

 NOTE 5:
 PTRS is configured on symbols containing PDSCH with 1 port, per 2PRB in frequency domain, per symbol in time domain. Overhead for TBS calculation is assumed to be 6.

- A.4 Void
- A.5 OFDMA Channel Noise Generator (OCNG)
- A.5.1 OCNG Patterns for FDD
- A.5.2 OCNG Patterns for TDD
- A.5.2.1 OCNG TDD pattern 1: Generic OCNG TDD Pattern for all unused REs

Table A.5.2.1-1: OP.1 TDD: Generic OCNG TDD Pattern for all unused REs

OCNG Appliance OCNG Parameters	Control Region (Core Set)	Data Region			
Resources allocated	All unused REs (Note 1)	All unused REs (Note 2)			
Structure	PDCCH	PDSCH			
Content	Uncorrelated pseudo random QPSK modulated data	Uncorrelated pseudo random QPSK modulated data			
Transmission scheme for multiple antennas ports transmission	Single Tx port transmission	Spatial multiplexing using any precoding matrix with dimensions same as the precoding matrix for PDSCH			
Subcarrier Spacing	Same as for RMC PDCCH in the active BWP	Same as for RMC PDSCH in the active BWP			
Power Level	Same as for RMC PDCCH	Same as for RMC PDSCH			
Note 1: All unused REs in the active CORESETS appointed by the search spaces in use. Note 2: Unused available REs refer to REs in PRBs not allocated for any physical channels, CORESETs, synchronization signals or reference signals in channel bandwidth.					

Annex B (informative): Void

Annex C (normative): Downlink physical channels

C.1 General

C.2 Setup

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Physical Channel
PBCH
SSS
PSS
PDCCH
PDSCH
PBCH DMRS
PDCCH DMRS
PDSCH DMRS
CSI-RS
PTRS

Table C.2-1: Downlink Physical Channels required for connection set-up

C.3 Connection

C.3.1 Measurement of Receiver Characteristics

Unless otherwise stated, Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (TDD)

	Parameter	Unit	Value		
	SSS transmit power		Test specific		
	EPRE ratio of PSS to SSS	dB	0		
	EPRE ratio of PBCH to SSS	dB	0		
	EPRE ratio of PBCH to PBCH DMRS	dB	0		
	EPRE ratio of PDCCH to SSS	dB	0		
	EPRE ratio of PDCCH to PDCCH DMRS	dB	0		
	EPRE ratio of PDSCH to SSS	dB	0		
	EPRE ratio of PDSCH to PDSCH DMRS (Note 1)	dB	-3		
	EPRE ratio of CSI-RS to SSS	dB	0		
	EPRE ratio of PTRS to PDSCH	dB	Test specific		
	EPRE ratio of OCNG DMRS to SSS	dB	0		
	EPRE ratio of OCNG to OCNG DMRS (Note 1)	dB	0		
Note 1:	No boosting is applied to any of the channels except PDSCH D				
	boosting is applied assuming DMRS Type 1 configuration when DMRS and PDSCH are TDM'ed and only				
	half of the DMRS REs are occupied.				
Note 2:	Number of DMRS CDM groups without data for PDSCH DMRS	s configura	tion for OCNG is set to 1.		
Annex D (normative): Characteristics of the interfering signal

D.1 General

Unless otherwise stated, a modulated full bandwidth NR downlink signal, which equals to channel bandwidth of the wanted signal for Single Carrier case is used as interfering signals when RF performance requirements for NR UE receiver are defined. For intra-band contiguous CA case, a modulated NR downlink signal which equals to the aggregated channel bandwidth of the wanted signal is used.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel bandwidth options.

	С	Intra band				
	50 MHz	100 MHz	200 MHz	400 MHz	contiguous CA	
BWInterferer	50 MHz	100 MHz	200 MHz	400MHz	BW _{Channel_CA}	
RB	NOTE1					
NOTE 1: The RB configured for interfering signal is the same as maximum RB number						
de	defined in Table 5.3.2-1 for each sub-carrier spacing.					

Annex E (normative): Environmental conditions

E.1 General

This annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

E.2 Environmental

The requirements in this clause apply to all types of UE(s).

E.2.1 Temperature

All RF requirements for UEs operating in FR2 are defined over the air and can only be tested in an OTA chamber.

The UE shall fulfil all the requirements in the temperature range for extreme conditions, as defined in Table E.2.1-1, unless explicitly stated otherwise in any requirement.

Table E.2.1-1: Temperature conditions

+ 25 °C ± 10 °C	For normal (room temperature) conditions with relative
	humidity of 25 % to 75 %
-10°C to +55°C	For extreme conditions

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

E.2.2 Voltage

Editor's note: This requirement is incomplete. The following aspects are either missing or not yet determined:

Methodology to control the voltage in a case which a power cable is not connected to DUT is FFS since it is not agreed whether we can connect the power cable to DUT at the OTA measurement situation yet.

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Power source	Lower extreme voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0,9 * nominal	1,1 * nominal	nominal
Regulated lead acid battery	0,9 * nominal	1,3 * nominal	1,1 * nominal
Nonregulated batteries:			
Leclanché	0,85 * nominal	Nominal	Nominal
Lithium	0,95 * nominal	1,1 * Nominal	1,1 * Nominal
Mercury/nickel & cadmium	0,90 * nominal		Nominal

Table E.2.2-1: Voltage conditions

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

E.2.3 Void

Annex F (normative): Transmit modulation

F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

Figure F.1-1: EVM measurement points

F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}}$$

where

 T_m is a set of $|T_m|$ modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.

F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{max(f_{\min}, f_l + 12 \cdot \Delta_{RB} + \Delta f) \\ max(f_{\min}, f_l + 12 \cdot \Delta_{RB} + \Delta f)}} |Y(t, f)|^2, \Delta_{RB} < 0\\ \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{min(f_{\max}, f_h + 12 \cdot \Delta_{RB} + \Delta f) \\ f_h + (12 \cdot \Delta_{RB} - 11) + \Delta f}} |Y(t, f)|^2, \Delta_{RB} > 0 \end{cases}$$

where

 T_s is a set of $|T_s|$ OFDM symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB),

 $f_{\rm min}$ (resp. $f_{\rm max}\,$) is the lower (resp. upper) edge of the UL system BW,

 f_l and f_h are the lower and upper edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the clause (ii)

The relative in-band emissions are, given by

$$Emission_{relative}(\Delta_{RB}) = \frac{Emission_{absolute}(\Delta_{RB})}{\frac{1}{|T_s| \cdot N_{RB}} \sum_{t \in T_s} \sum_{f_l}^{f_l + (12N_{RB} - 1)\Delta f} |Y(t, f)|^2}$$

where

 N_{RR} is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one OFDM symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to $\Delta \tilde{t} = \Delta \tilde{c}$, where sample time offsets $\Delta \tilde{t}$ and $\Delta \tilde{c}$ are defined in clause F.4.

F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.

The DFT-s-OFDM modulated signals or PRACH signal under test is modified and, in the case of DFT-s-OFDM modulated signals, decoded according to:

$$Z'(t,f) = IDFT\left\{\frac{FFT\left\{z(v-\Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{t}v}\right\}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}}\right\}$$

where

 $\mathcal{Z}(\mathcal{V})$ is the time domain samples of the signal under test.

The CP-OFDM modulated signals or PUSCH demodulation reference signal or CP-OFDM modulated signals under test is equalised and, in the case of PUCCH data signal decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}}e^{j2\pi j\Delta \tilde{t}}$$

where

Z(V) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 Δf is the RF frequency offset.

 $\widetilde{\varphi}(t,f)$ is the phase response of the TX chain.

 $\widetilde{a}(t, f)$ is the amplitude response of the TX chain.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in the next clauses) or the last sample of the first window half if W is even.

The EVM analyser shall

- detect the start of each slot and estimate $\Delta \widetilde{t}$ and $\Delta \widetilde{f}$,

- determine $\Delta \widetilde{c}$ so that the EVM window of length W is centred
 - on the time interval determined by the measured cyclic prefix minus 16κ samples of the considered OFDM symbol for symbol 1 for subcarrier spacing configuration μ in a subframe, with 1 = 0 or $1 = 7*2^{\mu}$ for normal CP, i.e. the first 16κ samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of $1/T_c$ is assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
 - on the measured cyclic prefix of the considered OFDM symbol symbol for all other symbols for normal CP and for symbol 0 to 11 for extended CP.
 - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to $\Delta \tilde{c}$ is corrected from the signal under test. The EVM analyser shall then

- correct the RF frequency offset $\Delta \tilde{f}$ for each time slot, and

- apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The carrier leakage shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative carrier leakage power also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH, the UL EVM analyzer shall estimate the TX chain equalizer coefficients $\tilde{a}(t,f)$ and $\tilde{\phi}(t,f)$ used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.
- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients $\tilde{a}(t)$ and $\tilde{\phi}(t)$ used for phase and amplitude correction and are seleted so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e. $\widetilde{a}(t, f) = \widetilde{a}(t)$ and $\widetilde{\varphi}(t, f) = \widetilde{\varphi}(t)$. The TX chain coefficient are chosen independently for each preamble transmission and for each $\Delta \tilde{t}$.

At this stage estimates of $\Delta \tilde{f}$, $\tilde{a}(t,f)$, $\tilde{\varphi}(t,f)$ and $\Delta \tilde{c}$ are available. $\Delta \tilde{t}$ is one of the extremities of the window W, i.e. $\Delta \tilde{t}$ can be $\Delta \tilde{c} + \alpha - \left| \frac{W}{2} \right|$ or $\Delta \tilde{c} + \left| \frac{W}{2} \right|$, where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even.

The EVM analyser shall then

- calculate EVM₁ with
$$\Delta \tilde{t}$$
 set to $\Delta \tilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$

- calculate EVM_h with
$$\Delta \tilde{t}$$
 set to $\Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$.

F.5 Window length

Timing offset F.5.1

As a result of using a cyclic prefix, there is a range of $\Delta \tilde{t}$, which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the

 $\Delta \tilde{t}$ range within which the error vector is close to its minimum.

Window length F.5.2

The window length W affects the measured EVM and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can't be removed.

Window length for normal CP F.5.3

Table F.5.3-1 and Table F.5.3-2 below specify the EVM window length (W) for normal CP for FR2.

Channel Bandwidth (MHz)	FFT size	Cyclic prefix length in FFT samples	EVM window length W	Ratio of W to total CP length ¹ (%)		
50	1024	72	36	50		
100	2048	144	72	50		
200	4096	288	144	50		
OF	Note 1: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 2. Symbol 0 of slot 0 and slot 2 may have a longer CP and therefore a lower percentage.					

 Table F.5.3-1: EVM window length for normal CP for 60 kHz SCS

Table F.5.3-2: EVM window length for normal CP for 120 kHz SCS

Channel Bandwidth (MHz)	FFT size	Cyclic prefix length in FFT samples	EVM window length W	Ratio of W to total CP length ¹ (%)
50	512	36	18	50
100	1024	72	36	50
200	2048	144	72	50
400	4096	288	144	50
Note 1: These percentages are informative and apply to all OFDM symbols within subframe except for symbol 0 of slot 0 and slot 4. Symbol 0 of slot 0 and slot 4 may have a longer CP and therefore a lower percentage.				

F.5.4 Window length for Extended CP

Table F.5.4-1 below specifies the EVM window length (W) for extended CP. The number of CP samples excluded from the EVM window is the same as for normal CP length.

Table F.5.4-1: EVM window	length fo	or extended	CP for 60	kHz SCS
---------------------------	-----------	-------------	-----------	---------

Channel Bandwidth (MHz)	FFT size	Cyclic prefix length in FFT samples	EVM window length W	Ratio of W to total CP length ¹ (%)	
50	1024	256	220	85.9	
100	2048	512	440	85.9	
200	4096	1024	880	85.9	
Note 1: These percentages are informative.					

F.5.5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats for $L_{RA} = 139$ and $\Delta f^{RA} = 15 \cdot 2^{\mu} \text{ kHz}_{where } \mu \in \{2,3\}_{.}$

Preamble format	$\begin{array}{c} {\rm Cyclic} \\ {\rm prefix} \\ N_{cp} \\ {\rm length} \end{array}$	Nominal FFT size ¹	EVM window length <i>W</i> in FFT samples	Ratio of <i>W</i> to CP ²		
A1	1152·2 ^{-µ}	8192·2 ^{-µ}	576·2 ^{-µ}	50.0%		
A2	2304·2 ^{-µ}	8192·2 ^{-µ}	1728·2 ^{-µ}	75.0%		
A3	3456·2 ^{-µ}	8192·2 ^{-µ}	2880·2 ^{-µ}	83.3%		
B1	864·2 ^{-µ}	8192·2 ^{-µ}	288·2 ^{-µ}	33.3%		
B2	1440·2 ^{-µ}	8192·2 ^{-µ}	864·2 ^{-µ}	60.0%		
B3	2016·2 ^{-µ}	8192·2 ^{-µ}	1440·2 ^{-µ}	71.4%		
B4	3744·2 ^{-µ}	8192·2 ^{-µ}	3168·2 ^{-µ}	84.6%		
C0	4960·2 ^{-µ}	8192·2 ^{-µ}	4384·2 ^{-µ}	88.4%		
C2	8192·2 ^{-µ}	8192·2 ^{-µ}	7616·2 ^{-µ}	93.0%		
	scaling of the window length is applied Note 2: These percentages are informative					

Table F.5.5-1: EVM window length for PRACH formats for L_{RA} = 139

F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for n slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} EVM_{i}^{2}}$$

where n is

$$n = \begin{cases} 40, for \ 60 \ kHz \ SCS \\ 80, for \ 120 \ kHz \ SCS \end{cases}$$

for PUCCH, PUSCH.

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\text{EVM}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_l$ in the expressions above and $\overline{\text{EVM}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_h$. Thus we get:

$$EVM = \max(EVM_1, EVM_h)$$

The calculation of the EVM for the demodulation reference signal, EVM_{DMRS} , follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set T_m defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic EVM_{DMRS} measurements are first averaged over n slots in the time domain to obtain an intermediate average \overline{EVM}_{DMRS} .

$$\overline{EVM}_{DMRS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} EVM_{DMRS,i}^2}$$

In the determination of each $EVM_{DMRS,i}$, the timing is set to $\Delta \tilde{t} = \Delta \tilde{t}_i$ if $\overline{EVM}_i > \overline{EVM}_h$, and it is set to

 $\Delta \tilde{t} = \Delta \tilde{t}_h$ otherwise, where $\overline{\text{EVM}}$ and $\overline{\text{EVM}}_h$ are the general average EVM values calculated in the same n slots

over which the intermediate average EVM_{DMRS} is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, EVM_{DMRS} ,

$$EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} \overline{EVM}_{DMRS,j}^2}$$

The PRACH EVM, EVM_{PRACH} , is averaged over 2 preamble sequence measurements for long preamble formats as defined in table 6.3.3.1-1 in [9] and averaged over 10 preamble sequence measurements for short preamble formats as defined in table 6.3.3.1-2 in [9].

The EVM requirements shall be tested against the maximum of the RMS average at the window *W* extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{\text{PRACH,l}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_l$ and $\overline{\text{EVM}}_{\text{PRACH,h}}$ is calculated using $\Delta \tilde{t} = \Delta \tilde{t}_h$.

Thus we get:

$$EVM_{PRACH} = \max(EVM_{PRACH,1}, EVM_{PRACH,h})$$

F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.

Annex G (informative): Void

Annex H (Normative)

Modified MPR behavior

H.1 Indication of modified MPR behavior

This annex contains the definitions of the bits in the field modifiedMPR-Behavior indicated per supported NR band in the IE RF-Parameters [7] by a UE supporting an MPR or A-MPR modified in a given version of this specification. A modified MPR or A-MPR behaviour can apply to a supported NR band in stand-alone operation (including CA and NN-DC operation) or in non-standalone operation with the said NR band as part of an EN-DC or NE-DC band combination.

NOTE 1: In the present release, the modified MPR-Behavior is indicated [7] by an 8-bit bitmap per supported NR band.

NR Band Index of field		Definition	Notes
	(bit number)	(description of the supported functionality if	
		indicator set to one)	
n257	0 (leftmost bit)	 FR2 power class 3 MPR as defined in clause 	- This bit may be set to 1 by
112.57		6.2.2.3 of 38.101-2 v16.2.0	a UE supporting n257
n258	0 (leftmost bit)	- FR2 power class 3 MPR as defined in clause	- This bit may be set to 1 by
11200		6.2.2.3 of 38.101-2 v16.2.0	a UE supporting n258
n260	0 (leftmost bit)	- FR2 power class 3 MPR as defined in clause	- This bit may be set to 1 by
11200		6.2.2.3 of 38.101-2 v16.2.0	a UE supporting n260
n261	0 (loftmost bit)	- FR2 power class 3 MPR as defined in clause	- This bit may be set to 1 by
11201	0 (leftmost bit)	6.2.2.3 of 38.101-2 v16.2.0	a UE supporting n261

Table H.1-1: Definitions of the bits in the field modifiedMPRbehavior

Annex H (normative): Modified MPR behavior

H.1 Indication of modified MPR behavior

This annex contains the definitions of the bits in the field modifiedMPR-Behavior indicated per supported NR band in the IE RF-Parameters [7] by a UE supporting an MPR or A-MPR modified in a given version of this specification. A modified MPR or A-MPR behaviour can apply to a supported NR band in stand-alone operation (including CA and NN-DC operation) or in non-standalone operation with the said NR band as part of an EN-DC or NE-DC band combination.

NOTE 1: In the present release, the *modifiedMPR-Behavior* is indicated [7] by an 8-bit bitmap per supported NR band.

NR Band	Index of field (bit number)	Definition (description of the supported functionality if indicator set to one)	Notes
n258	0 (leftmost bit)	- AMPR for NS_201 as defined in clausue 6.2.3.2 of 38.101-2 v15.7.0	- This bit may be set to 1 by a UE supporting n258

Table H.1-1: Definitions of the bits in the field modifiedMPRbehavior

Annex I (informative): Void

Annex J (normative): UE coordinate system

J.1 Reference coordinate system

This annex defines the measurement coordinate system for the NR UE. The reference coordinate system as defined in IEEE Std 149 [15] is provided in Figure J.1-1 below while Figure J.1.-2 shows the DUT in the default alignment, i.e., the DUT and the reference coordinate systems are aligned with $\alpha = 0^{\circ}$ and $\beta = 0^{\circ}$ and $\gamma = 0^{\circ}$ where α , β , and γ describe the relative angles between the two coordinate systems.

Figure J.1-2: DUT default alignment to coordinate system

The following aspects are necessary:

- A basic understanding of the top and bottom of the device is needed in order to define unambiguous DUT positioning requirements for the test, e.g., in the drawings used in this annex, the three buttons are on the bottom of the device (front) and the camera is on the top of the device (back).
- An understanding of the origin and alignment the coordinate system inside the test system i.e. the directions in which the x, y, z -axes points inside the test chamber is needed in order to define unambiguous DUT orientation, DUT beam, signal, interference, and measurement angles

J.2 Test conditions and angle definitions

Tables J.2-1 through J.2-3 below provides the test conditions and angle definitions for three permitted device alignment for the default test condition, DUT orientation 1, and two different options for each permitted device alignment to reposition the device for DUT Orientation 2 as outlined in Figures J.2-1 and J.2-3.

Test condition	DUT orientation	Link angle	Measurement angle	Diagram
Free space DUT Orientation 1 (default)	$ \begin{aligned} \alpha &= 0^{\circ}; \\ \beta &= 0^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	$\begin{array}{c} \theta_{Link};\\ \phi_{Link}\\ with\\ polarization\\ reference\\ Pol_{Link}=\theta \text{ or}\\ \phi \end{array}$	$\begin{array}{c} \theta_{Meas;} \\ \phi_{Meas} \\ with \\ polarization \\ reference \\ Pol_{Meas} = \theta \text{ or } \\ \phi \end{array}$	Rotation Matrix $R_z(y)$ Hatrix $R_x(a)$ Hatrix $R_y(\beta)$
Free space DUT Orientation 2 – Option 1 (based on re- positioning approach)	$ \begin{aligned} \alpha &= 180^{\circ}; \\ \beta &= 0^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	$\begin{array}{c} \theta_{Link;} \\ \phi_{Link} \\ with \\ polarization \\ reference \\ Pol_{Link} = \theta \text{ or } \\ \phi \end{array}$	$\begin{array}{c} \theta_{Meas;} \\ \phi_{Meas} \\ with \\ polarization \\ reference \\ Pol_{Meas} = \theta \text{ or } \\ \phi \end{array}$	Rotation Matrix $R_{x}(q)$ + x Rotation Matrix $R_{y}(\beta)$
Free space DUT Orientation 2 – Option 2 (based on re- positioning approach)	$ \begin{aligned} \alpha &= 0^{\circ}; \\ \beta &= 180^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	$\begin{array}{c} \theta_{Link;} \\ \varphi_{Link} \\ with \\ polarization \\ reference \\ Pol_{Link} = \theta \text{ or } \\ \varphi \end{array}$	$\begin{array}{l} \theta_{Meas;} \\ \phi_{Meas} \\ with \\ polarization \\ reference \\ Pol_{Meas} = \theta \text{ or } \\ \phi \end{array}$	Rotation Matrix $R_x(q)$ + χ Rotation Matrix $R_y(\beta)$
each	signal angle, lin	k or interferer ang	relation to the refe gle, and measuren ed by matrix $M=R_z($	

Test condition	DUT orientation	Link angle	Measurement angle	Diagram
Free space DUT Orientation 1 (default)	$ \begin{aligned} \alpha &= 0^{\circ}; \\ \beta &= -90^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	$\begin{array}{c} \theta_{Link;} \\ \phi_{Link} \\ with \\ polarization \\ reference \\ Pol_{Link} = \theta \text{ or } \\ \phi \end{array}$	$\theta_{Meas}; \phi_{Meas} with polarization reference PolMeas = \theta or\phi$	+Z Rotation Matrix $R_{z}(\gamma)$ +X Rotation Matrix $R_{x}(\alpha)$ Rotation Matrix $R_{y}(\beta)$
Free space DUT Orientation 2 – Option 1 (based on re- positioning approach)	$ \begin{aligned} \alpha &= 180^{\circ}; \\ \beta &= 90^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	$\begin{array}{c} \theta_{Link;} \\ \phi_{Link} \\ with \\ polarization \\ reference \\ Pol_{Link} = \theta \text{ or } \\ \phi \end{array}$	$\begin{array}{c} \theta_{Meas;} \\ \phi_{Meas} \\ with \\ polarization \\ reference \\ Pol_{Meas} = \theta \text{ or } \\ \phi \end{array}$	+Z Rotation Matrix $R_{z}(\gamma)$ Rotation +x Rotation Matrix $R_{x}(\alpha)$ Rotation Matrix $R_{y}(\beta)$
Free space DUT Orientation 2 – Option 2 (based on re- positioning approach)	$ \begin{aligned} \alpha &= 0^{\circ}; \\ \beta &= 90^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	$\begin{array}{c} \theta_{Link;} \\ \phi_{Link} \\ with \\ polarization \\ reference \\ Pol_{Link} = \theta \text{ or } \\ \phi \end{array}$	$\begin{array}{c} \theta_{Meas;} \\ \phi_{Meas} \\ with \\ polarization \\ reference \\ Pol_{Meas} = \theta \text{ or } \\ \phi \end{array}$	+Z Rotation Matrix $R_{z}(y)$ +X Rotation Matrix $R_{x}(\alpha)$ Rotation Matrix $R_{y}(\beta)$
each	signal angle, link	or interferer angle	elation to the refer e, and measureme l by matrix $M=R_z(\dot{\gamma})$	

 Table J.2-2: Test conditions and angle definitions for Alignment Option 2

Test condition	DUT orientation	Link angle	Measurement angle	Diagram
Free space DUT Orientation 1 (default)	$ \begin{aligned} \alpha &= 90^{\circ}; \\ \beta &= 0^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	θ _{Link;} φ _{Link} with polarization reference Pol _{Link} = θ or φ	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	+Z Rotation Matrix $R_{z}(y)$ Rotation Matrix $R_{x}(\alpha)$ Rotation Matrix $R_{y}(\beta)$
Free space DUT Orientation 2 – Option 1 (based on re- positioning approach)	$ \begin{aligned} \alpha &= -90^{\circ}; \\ \beta &= 0^{\circ}; \\ \gamma &= 0^{\circ} \end{aligned} $	$\begin{array}{c} \theta_{\text{Link};} \\ \varphi_{\text{Link}} \\ \text{with} \\ \text{polarization} \\ \text{reference} \\ \text{Pol}_{\text{Link}} = \theta \text{ or} \\ \varphi \end{array}$	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	+Z Rotation Matrix $R_{z}(y)$ Rotation Matrix $R_{x}(\alpha)$ +X Rotation Matrix $R_{y}(\beta)$
Free space DUT Orientation 2 – Option 2 (based on re- positioning approach)	$ α = 90^{\circ}; $ $ β = 180^{\circ}; $ $ γ = 0^{\circ} $	$\begin{array}{c} \theta_{\text{Link};} \\ \varphi_{\text{Link}} \\ \text{with} \\ \text{polarization} \\ \text{reference} \\ \text{Pol}_{\text{Link}} = \theta \text{ or} \\ \varphi \end{array}$	θ _{Meas;} φ _{Meas} with polarization reference Pol _{Meas} = θ or φ	+Z Rotation Matrix $R_2(\gamma)$ Rotation Matrix $R_x(\alpha)$ +X Rotation Matrix $R_y(\beta)$
each	signal angle, link	or interferer angl	elation to the refer e, and measurem d by matrix M= <i>R</i> z(1	

 Table J.2-3: Test conditions and angle definitions for Alignment Option 3

For each UE requirement and test case, each of the parameters in Table J.2-1 through J.2-3 need to be recorded, such that DUT positioning, DUT beam direction, and angles of the signal, link/interferer, and measurement are specified in terms of the fixed coordinate system.

Due to the non-commutative nature of rotations, the order of rotations is important and needs to be defined when multiple DUT orientations are tested.

The rotations around the x, y, and z axes can be defined with the following rotation matrices

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with the respective angles of rotation, α , β , γ , and

$$\begin{bmatrix} x'\\y'\\z'\\1 \end{bmatrix} = R \begin{bmatrix} x\\y\\z\\1 \end{bmatrix}$$

Additionally, any translation of the DUT can be defined with the translation matrix

$$T(t_x, t_y, t_z) = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with offsets t_x , t_y , t_z in x, y, and z, respectively and with

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = T \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

The combination of rotations and translation is captured by the multiplication of rotation and translation matrices.

For instance, the matrix M

$$M = T(t_x, t_y, t_z) \cdot R_z(\gamma) \cdot R_y(\beta) \cdot R_x(\alpha)$$

describes an initial rotation of the DUT around the x axis with angle α , a subsequent rotation around the y axis with angle β , and a final rotation around the z axis with angle γ . After those rotations, the DUT is translated by t_x , t_y , t_z in x, y, and z, respectively.

J.3 DUT positioning guidelines

The centre of the reference coordinate system shall be aligned with the geometric centre of the DUT in order to minimize the offset between antenna arrays integrated at any position of the UE and the centre of the quiet zone.

Near-field coupling effects between the antenna and the pedestals/positioners/fixtures generally cause increased signal ripples. Re-positioning the DUT by directing the beam peak away from those areas can reduce the effect of signal ripple on EIRP/EIS measurements. Figure J.3-1 and J.3-2 illustrate how to reposition the DUT in distributed axes and combined axes system, when the beam peak is directed to the DUTs upper hemisphere (DUT orientation 1) or the DUTs lower hemisphere (DUT orientation 2). While these figures are examples of different positioning systems and other implementations are not precluded, the relative orientation of the coordinate system with respect to the antennas/reflectors and the axes of rotation shall apply to any measurement setup.

Figure J.3-1: DUT re-positioning for an example of distributed-axes system

Figure J.3-2: DUT re-positioning for an example of combined-axes system

For EIRP/EIS measurements, re-positioning the DUT makes sure the pedestal is not obstructing the beam path and that the pedestal is not in closer proximity to the measurement antenna/reflector than the DUT. For TRP measurements, re-positioning the DUT makes sure that the beam peak direction is not obstructed by the pedestal and the pedestal is in the measurement path only when measuring the back-hemisphere. No re-positioning during the TRP measurement is required.

Annex K (informative): Void

Annex L (informative): Change history

	Change history									
Date	Meeting	TDoc	CR	Rev	Cat	Subject/Comment	New versio n			
2017-08	RAN4#84					Initial Skeleton	0.0.1			
2017-10	RAN4#84 Bis	R4- 1711979				TPs from R4#84Bis by editors	0.1.0			
2017-12	RAN4#85					Approved TPs from R4#85 R4-1714537, TP for TS 38.101-2: Channel Bandwidth Definition, Qualcomm Incorporated R4-1714115, TP for TS 38.101-2: Channel Arrangement, : Qualcomm Incorporated (Note: this TP was further discussed and edited in the reflector) R4-1713205, TP on general parts for 38.101-2 NR FR, : Ericsson R4-1712884, TP to TS 38.101-2 on environmental conditions, Intel Corporation R4-1714018, TP to TS 38.101-2 for definition of UE RF terminologies, Anritsu Corporation R4-171447, TP on UE power class for FR2, Intel Corporation R4-1714372, TP to TS 38.101-2 on EVM equalizer spectrum flatness requirements, Intel Corporation R4-1714364, TP to TR 38.101-02 v0.1.0: ON/OFF mask design for NR UE transmissions for FR2, Ericsson R4-1714364, TP to TR 38.101-2 on spurious emissions requirements for FR2, Intel Corporation (Note: this TP was further discussed and edited in the reflector) R4-1714365, TP on REFSENS for FR2, Intel Corporation R4-1714337 TP to TS 38.101-2 ACS requirement for mmW (section 7.5), Qualcomm Incorporated R4-1714338, TP to TS 38.101-2 IBB requirement for mmW (section 7.6.1), Qualcomm Incorporated R4-1714348, TP to TS 38.101-2 on Rx spurious emissions for FR2, Intel Corporation Min power for EVM requirement according to R4-1711568, TP to TR 38.xxx - UE minimum transmit power for range 2, CATT Band list according to R4-1714542, List of bands and band combinations to be introduced into RAN4 NR core requirements by December 2017, RAN4 Chairmen	0.2.0			
2017-12	RAN4#85	R4- 1714570				Further corrections and alignments with 38.104 after email review	0.3.0			
2017-12	RAN#78	RP-172476				v1.0.0 submitted for plenary approval. Contents same as 0.3.0	1.0.0			
2017-12 2018-03	RAN#78 RAN#79	RP-180264	0004		F	Approved by plenary – Rel-15 spec under change control Implementation of endorsed CR on to 38.101-2 Endorsed draft CRs in RAN4-NR-AH#1801 F: R4-1800918, Draft CR to 38.101-2 on channel bandwidth corrections (5.3.5), Nokia F: R4-1801097, Modification for TS38.101-2, CATT F: R4-1801098 Draft CR for TS38.101-2; On requirement metrics. Sumitomo Elec. Industries, Ltd F: R4-1800401, Editorial corections to 38.101-2, Qualcomm F: R4-1801122: Draft pCR for TS 38.101-2 version 15.0.0: Remaining ON/OFF masks for FR2 NR UE transmissions, Ericsson F: R4-1800418, Correction of NR SEM for FR2 table, vivo F: R4-1800316 Draft CR to 38.101-2: Tx spurious emission for NR FR2 (section 6.5.3), ZTE Corporation F: R4-1800918 Draft CR to 38.101-2 on channel bandwidth corrections (5.3.5), Nokia F: R4-1801013, Draft CR to 38.101-2: Clarifications to UE spectrum utilization section 5.3, Ericsson F: R4-1801229, Draft CR to 38.101-2: Channel spacing for CA for NR FR2(section 5.4.1.2), ZTE Corporation F: R4-1801232, Correction CR for channel spacing:38.101-2, Samsung	15.0.0			

2018-06 RP-181220 Dot10 F R-1803660, Connections of GSCN, Nokia R-1803661, Connections of GSCN, Nokia Endoneed draft CRs in RAN4866 R-1803664, Draft CR for new spec structure of 38.101-2, Ericsson R-1803664, Draft CR for new spec structure of 38.101-2, Ericsson R-1801667, CR on EVM spectrum fatherss for FR2, Huawei R-1801667, CR on EVM spectrum fatherss for FR2, Huawei R-1801667, CR on EVM spectrum fatherss for FR2, Huawei R-1801667, CR on EVM spectrum fatherss for FR2, Huawei R-1803360, Draft CR to 38.101-2, Clarifications on peak directions and REFSENS, ROHDE & SCHWARZ R-1801667, CR and RC to 38.101-2, Clarification on mixed numeroloxy guardinate size. Ericsson R-1803360, Draft CR to 38.101-2, Clarification on REFSENS Definition, Huawei R-1803363, Draft CR to 38.101-2, Clarification on REFSENS Definition, Huawei R-1803363, Draft CR to 38.101-2, Spin catacit offset in re- laming bands in Sci. Ericsson R-1803453, draft CR to 138.101-2, Spin catacit offset in re- laming bands in Sci. Ericsson R-1803453, Draft CR to 38.101-2, Spin catacit offset in re- laming bands in Sci. Ericsson R-1803453, Draft CR to 138.101-2, Spin catacit offset in re- laming bands in Sci. Ericsson R-1803453, Draft CR to 138.101-2, Spin catacit offset in re- laming bands in Sci. Ericsson R- R-1804677, Introduction of UR to UE coexistence requirements R-1804667, Draft CR to 138.101-2, BE Section Update, Qualcomm, Inc. R-1814066 R-1804668, Draft CR to 133.175.38.101-2, Nokia R-1804667, Draft CR to 133.171-2, BE Section 7.1, Rohdo & Schwarz, R-1804667, Draft CR to 133.171-2, Nokia CA Schwarz, R-1805667, Draft CR to 133.8101-2, Draft R- R-1805667, Draft CR to 133.8101-2, Cualcomm Incorporated R-1805667, Draft CR to 138.101-2, Cupretion R-18056768, Draft CR to 138.101-2, Dre Response R-1					 		
2018-06 RAN890 RP-181262 0010 F RAN890 RP-181262 0010 F 2018-06 RAN890 RP-181262 0010 F RAN890 RP-181262 0010 F 2018-06 RAN890 RP-181262 0010 F RAN890 RP-181262 0010 F 2018-06 RAN890 RP-181262 0010 F RAN890 RP-181262 0010 F 2018-06 RAN890 RP-181262 0010 F RAN800 RP-181262 0010 F 2018-06 RAN890 RP-181262 0010 F RAN800 RAN800 RP-181262 0010 F RAN800 RP-181262 0010 F RAN800 RP-181262 0010 F RAN800 RP-181262 0010 F RAN800 RAN800 RP-181262 0010 F RAN800 RAN800 RP-181262 0010 F RAN800 RAN800 RP-181262 0010 F							
2018-06 RAN880 RP-181262 0010 F C Rotorsed draft CRs in RAN4#86 2018-06 RAN880 RP-181262 0010 F C Rotorsed draft CRs in RAN4#86 2018-06 RAN880 RP-181262 0010 F C Rotorsed Crass Sciences 2018-06 RAN800 RP-181262 0010 F C Rotorsed Crass Sciences 2018-06 RAN800 RP-181262 0010 F C Rotorsed Crass Sciences Rand C Rotorsed Crass Sciences 2018-06 RAN800 RP-181262 0010 F C Rotorsed Crass Sciences Rand C Rotorsed Crass Sciences 2018-06 RAN800 RP-181262 0010 F C Rotorsed Crass Sciences Rand C Rotorsed Crass Sciences Rand C Rotorsed Crass Sciences Rand C Rotorsed Crass Sciences Rank86 Reservers Rank860 RP-181262 0010 F C Rotorsed Crass Sciences Rank860 Reservers Rank860 Reservers Rank860 Reservers Rank860 Reservers Rank860 Reservers Rank860 Reservers Rank860 Reservers <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2018-06 RA-1803054, Draft CR for new spec structure of 38.101-2. Encision R4-1801729, Dial CR to 38.101-2. Corrections to In-band blocking the R2. CATT R4-1801729, Dial CR to 38.101-2. Corrections to In-band blocking the R4-180230, Draft CR to 38.101-2. Corrections to In-band blocking the R4-180230, Draft CR to 38.101-2. Conficiation on peak directions and REFSENS, ROHDE & SCHWARZ R4-1802367, Draft CR to TS 38.101-2. Confication on mixed numeroloxy quarkband size, Enfossion R4-180238, Draft CR to TS 38.101-2. Confication on REFSENS Definition. ROHDE & SCHWARZ R4-180238, Draft CR to TS 38.101-2. Confication on REFSENS Definition. ROHDE & SCHWARZ 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2. Confication on REFSENS Definition. ROHDE & SCHWARZ 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2. Confication of address for RAH-1803465, Draft CR to TS 38.101-2. Confication of set in re- tarming bands (5.4.3). Encisson RAH-180247, Introduction of endorsed draft CRs from RAH-480508, Draft CR to R 38.101-2. Consistence frequirements for RAH-80508, Draft CR to R 38.101-2. Consistence requirements for RAH-80508, Draft CR to R 38.101-2. Dispensition for NR FR2 CA BW Classes, Nokia R4-1805468, Draft CR to TS 38.101-2. UB Section Update, Qualcomm, inc. 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2. Dispensition for NR FR2 CA BW Classes, Nokia R4-1805468, Draft CR to TS 38.101-2. Dispensition for NR FR2 CA BW Classes, Nokia R4-180568, Draft CR to TS 38.101-2. Dispensition for NR FR2 CA BW Classes, Draft CR to TS 38.101-2. Dispensition for NR FR2 CA BW Classese in the Calor Control CR CA CR Frestence requirements for A1-1						F: R4-1800860, Corrections of GSCN, Nokia	
2018-06 RA-1803054, Draft CR for new spec structure of 38.101-2, Ericeson R4-1801729, Delt CR to 38.101-2; Corrections to In-band blocking in R4-1801729, Delt CR to 38.101-2; Corrections to In-band blocking in R4-1801729, Delt CR to 38.101-2; Corrections to In-band blocking in R4-18018239, Draft CR to 38.101-2; Confrication on peak directions and REFSENS, ROHDE & SCHWARZ R4-1802239, Draft CR to TS 38.101-2; Confrication on peak directions and REFSENS, ROHDE & SCHWARZ R4-1802339, Draft CR to TS 38.101-2; Confrication on mixed numerolocy quarithmad size, Ericsson R4-180238, Draft CR to TS 38.101-2; Confrication on REFSENS Definition, ROHDE & SCHWARZ 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2; Confrication on REFSENS Definition, ROHDE & SCHWARZ 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2; Schemental charing bands (5.4.3), Ercisson 15.2.0 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2; Confraster offset in re- faming bands (5.4.3), Ercisson 15.2.0 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2; Confraster offset in re- faming bands (5.4.3), Ercisson 15.2.0 2018-06 RAN#80 RP-181262 0010 F C R to TS 38.101-2; Constater offset in re- faming bands (5.4.3), Ercisson 15.2.0 2018-06 RAN#80						Endorsed draft CPs in PAN4#86	
2018-06 RA180146, Modification for NF UE time mask requirement for FR2, CAT R4.1801720, Draft OR to 38.101-2: Corrections to In-band blocking requirements, Rohde & Schwarz RA1801567, CR on EVM spectrum fluenses for FR2, Huawei And REFESTIN, ROHDE & SCHWARZ R4.1801867, DR OT EX 38.101-2: Clarification or pesk directions and REFESTIN, ROHDE & SCHWARZ Reference R4.1802367, Draft CR to TS 38.101-2: Clarification or REFESTINS Berlinston, RA1803230, Draft CR to TS 38.101-2: Clarification or REFESTINS Berlinston, ROHDE & SCHWARZ Reference 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2: Clarification or REFESTINS Berlinston, ROHDE & SCHWARZ Statistication or ROHDE & SCH							
2018-06 RA180146, Modification for NF UE time mask requirement for FR2, CAT R4.1801720, Draft OR to 38.101-2: Corrections to In-band blocking requirements, Rohde & Schwarz RA1801567, CR on EVM spectrum fluenses for FR2, Huawei And REFESTIN, ROHDE & SCHWARZ R4.1801867, DR OT EX 38.101-2: Clarification or pesk directions and REFESTIN, ROHDE & SCHWARZ Reference R4.1802367, Draft CR to TS 38.101-2: Clarification or REFESTINS Berlinston, RA1803230, Draft CR to TS 38.101-2: Clarification or REFESTINS Berlinston, ROHDE & SCHWARZ Reference 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2: Clarification or REFESTINS Berlinston, ROHDE & SCHWARZ Statistication or ROHDE & SCH						R4-1803054. Draft CR for new spec structure of 38.101-2. Ericsson	
2018-06 RA-1801729, Draft CR to 38.101-2: Corrections to In-band blocking requirements, Rohde & Schwarz R4-1801867, CR on EVM spectrum fitamess for FR2, Huaweil R4-1802303, Draft CR to 38.501-22; Calification of mixed m4-1802363, Draft CR to 15: 38.101-2; Calification of mixed m4-1802363, Draft CR to 15: 38.101-2; Calification on REFSENS Definition, ROHE & SCHWARZ R4-1802365, Draft CR to 15: 38.101-2; Calification on REFSENS Definition, ROHE & SCHWARZ R4-1802365, Draft CR to 15: 38.101-2; Calification on REFSENS Definition, ROHE & SCHWARZ 2018-06 RAN#80 RP-181262 0010 F C R to 15: 38.101-2; Sign caster offset in re- farming bands (5.4.3); Ericsson 2018-06 RAN#80 RP-181262 0010 F C R to 15: 38.101-2; Sign caster offset in re- farming bands (5.4.3); Ericsson 2018-06 RAN#80 RP-181262 0010 F C R to 15: 38.101-2; Sign caster offset in re- farming bands (5.4.3); Ericsson 2018-06 RAN#80 RP-181262 0010 F C R to 15: 38.101-2; Sign caster offset in re- farming bands (5.4.3); Ericsson 2018-06 RAN#80 RP-181262 0010 F C R to 15: 38.101-2; Sign caster offset in re- farming bands (5.4.3); Ericsson 2018-06 RAN#80 RP-181262 0010 F C R to 15: 38.101-2; Sign caster set in response <							
2018-06 RAN#80 RP-181262 0010 F Construction in the sector of R2, Huawei R4-180233, Draft CR to 38.101-2; Clarifications on pask directions and REFSENS, ROHDE & SCHWARZ R4-1801267, Draft CR to TS 38.101-2; Clarification of mixed numerology quarificant size, Ericsson R4-1802367, Draft CR to TS 38.101-2; ACLR requirement directions in R4-1802367, Draft CR to TS 38.101-2; Clarification on REFSENS Definition, ROHDE & SCHWARZ R4-1802367, Draft CR to TS 38.101-2; Sync raster offset in refaming bands (5.4.3), Ericsson 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Sync raster offset in refaming bands (5.4.3), Ericsson 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Inplementation of endorsed draft CRs from RAM#86Bis 2018-06 RAN#80 RP-181262 0010 F CR to TS 30.101-2; INPL Sync raster offset in refaming bands (5.4.3), Ericsson 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 30.101-2; INPL Sync raster offset in refaming bands (5.4.3), Ericsson 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 30.101-2; INPL Sync raster offset in refaming bands (5.4.3), Ericsson 15.2.0 2018-06 RAN#80 RP-181262 0010 F Consterad						FR2, CATT	
RA-1801967. CR on EVM spectrum flatmess for FR2. Huweii R4-1802305, Draft CR 103 St. 30:10-2: Califications on peak directions and REFSENS, ROHDE & SCHWARZ R4-1802565, Draft CR for TS 38:101-2: Calification of mixed numerology guardhand size, Ericsson R4-1802365, Draft CR for TS 38:101-2: CALR requirement clarification, Huweii R4-1603365, Draft CR for TS 38:101-2: CALR requirement clarification, Huweii R4-1603265, Draft CR for TS 38:101-2: CALR requirement clarification, Huweii R4-1603265, Draft CR for TS 38:101-2: Spic raster offset in re- faming baracia (5.4.3), Ericsson R4-1803266, Draft CR for TS 38:101-2: Spic raster offset in re- faming baracia (5.4.3), Ericsson 2018-06 RAN#60 RP-181262 0010 F CR for TS 38:101-2: Timplementation of endorsed draft CRs from RAV# #86bis and RAV# #87 2018-06 RAN#60 RP-181262 0010 F CR for TS 38:101-2: Timplementation of endorsed draft CRs from RAV# #86bis and RAV# #87 2018-06 RAN#60 RP-181262 0010 F CR for TS 38:101-2: Call Call RAV# 88058, Draft CR or Asing RAV# RAV# 88058, Draft CR or Asing RAV# RAV# 88058, Draft CR or Asing RAV# RAV# 1800572, Update of the UE coexistence requirements requirements for FR2, Audicomm Incorporated RAV# 1800572, Update of RCs for n257 intrabend contiguous CA in 38:101-2; ZI Wiston Telecon A8 RAV# 180577, Update of ACS requirement for FR2, Qualcomm Incorporated RAV# 180577, Update of ACS requirement for FR2, Qualcomm Incorporated RAV# 180577, Update of ACS requirement for FR2, Qualcomm Incorporated RAV# 180577, Update of ACS requirement for CR2, Qualcomm Incorporated RAV# 1805774, draft CR introfuction completed band combinations 3							
RA1802330, Draft CR to 35.101-2; Clarifications on peak directions and REFENS. ROHDE & SOHWARZ R41802567, Draft CR to TS 38.101-2; Clarification of mixed numerology guarchand size, Eficisson R41802363, Draft CR for TS 38.101-2; ACLR requirement clarification, Hawei R4180336, Draft CR for TS 38.101-2; ACLR requirement clarification, Charles CR for TS 38.101-2; ACLR requirement clarification, Charles CR for TS 38.101-2; Clarification on REFSENS Draft CR for TS 38.101-2; Exploration on Store 10.2; Exploration R4180336, Draft CR for TS 38.101-2; Exploration R4180336, Draft CR for TS 38.101-2; Exploration R4180336, Draft CR for TS 38.101-2; Exploration R4180365, Draft CR for TS 38.101-2; Exploration R4180365, Draft CR for TS 38.101-2; Exploration R4180365, Draft CR for TS 38.101-2; Draft CR for for R41480467; CR for TS 38.101-2; CR for modifications and charlifications for NR FR2 CA BW Classes, Notia R4180404; Corrections of DES for r257 intraband configures requirements for FR2, Qualcomm Incorporated R41804685, Draft CR for TS 38.101-2; Notia R41804685, Draft CR for TS 38.101-2; Notia R41805685, Draft CR for TS 38.101-2; Notia R41805685, Draft CR for TS 38.101-2; Notia R41805675, draft CR for TS 38.101-2; Notia R41805677, Update of UE emission requirements for FR2, Qualcomm Incorporated Schwarz R41805775, draft CR for TS 38.101-2; Notia R41804787 R41805775, draft CR for TS 38.101-2; Notia R4180487 R41805775, draft CR for TS 38.101-2; Notia R41804787 R41805775, draft CR for TS 38.101-2; Notia R41807882, Draft CR on TS 38.101-2; Notia R41807892, Draft CR on TS 38.101-2; Notia R41807893, Draft CR on TS 38.101-2; Note R41807893, Draft CR on TS 38.101-2; Notia R4180787 R41							
and REFSENS, ROHDE & SCHWARZ R4-18025C, Dart CR to 1538.101-2: Clarification of mixed numerology guardband size, Encisson R4-180233D, Dart CR for 1538.101-2: ACLR requirement clarification, Huawei R4-18034S, Draft CR for 1538.101-2; Clarification on REFSENS Definition, ROHDE & SCHWARZ R4-18034S, Draft CR for 1538.101-2; Diresson 2018-06 RAN#80 RP-181262 0010 F CR for 1538.101-2; Implementation of endorsed draft CRs from RAM #80615 and RAN4 #87 Endorseed draft CRs from RAN4#87 R-1802462, Draft CR to 1538.101-2; Implementation of endorsed draft CRs from RAM #806183, Draft CR to make and the state rentry of band n258 for TS 38.101-2; TE Wiston Telecom AB R4-1804685, Draft CR to 38.101-2; IBE Section Update, Qualcomm Inc. R4-1804685, Draft CR to 38.101-2; IBE Section Update, Qualcomm Inc, 20.20, Draft CR to 38.101-2; Ibe Section Update, Qualcomm Inc, 20.20, Draft CR to 38.101-2; Introbut configuous CA R4-1805685, Draft CR to 38.101-2; Ibrahand configuous CA R4-1805685, Draft CR to 38.101-2; Channel Raster D Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-1805675, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805675, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805682, draft CR from RAW87 R4-1806167, Draft CR on mainimun guardband of SCS 240 kHz S							
2018-06 RAH-1802567, Draft CR to TS 38.101-2: Clarification of mixed numerology guardband size, Ericsson R4-1803238, Draft CR to TS 38.101-2: ACLR requirement clarification, Huawei R4-1803366, Draft CR to 38.101-2: Clarification on REFSENS Definition, NGHDE & SCHWARZ R4-1803660, Draft CR to TS 38.101-2; Ericsson R4-1803660, Draft CR to TS 38.101-2; Ericsson R4-1803660, Draft CR for TS 38.101-2; Ericsson R4-1803660, Draft CR for TS 38.101-2; Ericsson R4-1803660, Draft CR for TS 38.101-2; Ericsson R4-1803650, Draft CR to TS 38.101-2; Ericsson R4-1803650, Draft CR to TS 38.101-2; Ericsson R4-1803650, Draft CR to TS 38.101-2; Ericsson R4-1802627; CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Implementation of endorsed draft CRs from RAN4#805851 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Implementation of endorsed draft CRs from RAN4#80551 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Channe Rankerseine requirements for TS 38.101-2; Channe Rankerseine requirements for TS 38.101-2; Channe Rankerseine requirements for R2, Cualcomm Incorporated R4-1805652, Draft CR to 38.101-2; Channe Rankerseine CR 2, R2, R2, R2, R2, R2, R2, R2, R2, R2,							
2018-06 RA+80323, Draft CR for 15 33:101-2: ACLR requirement clarification, Huawei R4+80332, Draft CR for 15 33:101-2: MCLR requirement clarification, Huawei R4+8035, draft CR for 15 33:101-2; Encisson R4+80366, Draft CR for 15 33:101-2; Encisson R4+80366, Draft CR for 15 33:101-2; MCLR for R4+80366, Draft CR for 15 33:101-2; MCLR for R4+80366, Draft CR for 15 33:101-2; MCLR for R4+803736, Draft CR for RAN4#868 R4+80422, CR for mcRAN4#868 R4+80422, CR for mcRAN4#868 R4+80422, CR for mcRAN4#868 R4+80422, CR for mcRAN4#868, Draft CR for 15 33:101-2; MCLR R4+80457, Introduction of UE to UE coexistence requirements requirements for FR2, Outcomm (ncorporated R4+804657, Introduction of UE to UE coexistence requirements requirements for FR2, Outcomm (ncorporated R4+804657, Introduction of UE to UE coexistence requirements requirements for FR2, Outcomm (ncorporated R4+80467, Introduction of UE to UE coexistence requirements requirements for FR2, Outcomm (ncorporated R4+804677, Introduction of UE to UE coexistence requirements requirements for FR2, Outcomm (ncorporated R4+80467, Introduction of UE to UE coexistence requirements requirements for FR2, Outcomm (ncorporated R4+80567, UC orrections 06:53 in T3: 38:101-2, Nokia R4+805676, UC to T538:101-2; Unkate of DE secource Element Mapping (Section 5.4.2.2) and R8 alignment with different numerologies (Section 5.4.2, 2) and R8 alignment with different R4+80577, Update of LB requirement for FR2, Qualcomm Incorporated R4+80577, Update of LB requirement for FR2, Qualcomm Incorporated R4+80577, Update of LB requirement for FR2, Qualcomm Incorporated R4+805677, Update of LB requirement for FR2, Qualcomm R4+805677, Update of R4 red R4; R1FT Endorsed draft CRs from RAW#87 R4+805482, priat CR for 38:101-2; Sync raster, Samung R4+805675, Updat CR for T3: 38:101-2; ZFE corporation R4+805682, priat CR for T3: 38:101-2; ZFE corporation R4+805682, priat CR for T3: 38:101-2; ZFE corporation R4+8056962, priat CR for T3: 38:101-2; ZFE requirements							
clainfication, Huawei R4-160356, Dart CR to 38.101-2: Clainfication on REFSENS Definition, ROHDE & SCHWARZ 2018-06 RAN#80 RP-181262 0010 F F Charlos 33.01-2: Encisson 2018-06 RAN#80 RP-181262 0010 F C C R 15.20 2018-06 RAN#80 RP-181262 0010 F C C R 15.20 2018-06 RAN#80 RP-181262 0010 F C C R 15.20 2018-06 RAN#80 RP-181262 0010 F C C R 1603730, Data CR on channel raster entry of band n258 for TS 38.101-2: Distance in the family of the comparison of the							
At 1803365, Draft CR to 38.101-2: Clarification on REFSENS Definitions, ROHDE & SCHWARZ R41803453, draft CR for introduction of completed band combinations from 37.865-01-01 this 38.101-2; Ericsson R41803366, Draft CR for TS 38.101-2; Ericsson 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Implementation of endorsed draft CRs from RAN4 #805bis and RAN4 #87 Endorsed draft CRs from RAN4#96Bis R4-1803736, Draft CR on channel raster entry of band n258 for TS 38.101-2; ZTE Wistron Telecom AB R4-1804022, CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1804650, Draft CR to 38.101-2; Ibs Section Update, Qualcomm, Inc. R4-1804650, Draft CR to TS38.101-2; Nokia R4-180457, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-180457, Update of LC Ro TS 38.101-2; Nokia R4-180457, Update of LC Ro TS 38.101-2; Channel Raster to Resource Element Mapping (Section 5.4.2)? Er Corporation R4-1805704, Update of LC Ro TS 38.101-2; Channel Raster to Resource Element Mapping (Section 5.4.2)? Er Corporation R4-1805771, Update of ACS requirements for FR2, Qualcomm Incorporated R4-1805764, Draft CR to TS 38.101-2; Channel R							
2018-06 RA-1803453, draft CR for introduction of completed band combinations from 37.865-01-01 into 38.101-2, creason R4-1803566, Draft CR for TS 38.101-2; Increason 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Implementation of endorsed draft CRs from RAN4#805is and RAN4 #87 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Implementation of endorsed draft CRs from RAN4#86Bis R4-1803736, Draft CR on channel raster entry of band n258 for TS 38.101-2; UTE Wiston Telecom AB 15.2.0 R4-1804052, CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804052, CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804055, Draft CR to 38.101-2; IBE Section Update, Qualcomm, Inc. R4-1804057, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-18004697, Introduction 5.4.2; and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-180570, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-180570, Update of UE emission requirement for FR2, Qualcomm Incorporated R4-180570, Update of UE emission requirement for FR2, Qualcomm Incorporated R4-180577, Update of IBB requirement for FR2, Qualcomm Incorporated R4-180577, Update of IBB requirement for FR2, Qualcomm Incorporated R4-180577, Update of IBB requirement for FR2, Qualcomm Incorporated R4-180577, Update of R3.101-2; zync raster, Samsung R4-1804878, raft CR nor 33.101-2; zync raster, Samsung R4-1804878, raft CR nor 33.101-2; zync raster, Samsung R4-1804878, raft CR nor 33.101-2; zync raster, Samsung R4-18048682, praft CR on 33.10							
2018-06 RAN#80 RP-181262 0010 F CR to TS 38, 101-2; Encisson 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38, 101-2; Implementation of endorsed draft CRs from RAN4 #86bis and RAN4 #87 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38, 101-2; Implementation of endorsed draft CRs from RAN4 #86bis and RAN4 #87 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38, 101-2; Implementation of endorsed draft CRs from RAN4 #86bis and RAN4 #87 2018-06 RAN#80 RP-181262 0010 F CR to TS 38, 101-2; Integration of the to the constance requirements requirements for FR2, Qualcomn Incorporated RA+1804052, Draft CR to 38, 101-2; Integration requirements requirements for FR2, Qualcomn Incorporated RA+1804563, Draft CR to TS 38, 101-2; Nokia RA+18065641, Corrections to 5.3.4, 2TE Corporation RA+1805705, Draft CR to TS 38, 101-2; Nokia RA+1805705, Draft CR to TS 38, 101-2; Update of section 7.1, Rohde & Schwarz RA+1805940, Draft CR to TS 38, 101-2; Update of section 7.1, Rohde & Schwarz RA+1805771, Update of IBB requirement for FR2, Qualcomm Incorporated RA+1805787, Update of IBB requirement for FR2, Qualcomm Incorporated RA+1805780, Draft CR to TS 38, 101-2; Ou US 28 Grz 30 AHz SSB RA+1805780, Draft CR on S3, 101-2; Drust CR and number, RA+1805780, Draft CR on S3, 101-2; Drust CR and number, RA+1805780, Draft CR on S3, 101-2; Drust CR and number, RA+1805780, Draft CR on S38, 101-2; Crust CR and RA RA+180577							
2018-06 RAN#80 RP-181262 0010 F CR 107 53.8.101-2; Implementation of endorsed draft CRs from RAM #86bis and RAM #87 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2; Implementation of endorsed draft CRs from RAM #86bis and RAM #87 15.2.0 2018-06 RAM.#80 RP-181262 0010 F CR to TS 38.101-2; Implementation of endorsed draft CRs from RAM #86bis and RAM #87 15.2.0 2018-06 RAM.#80 RP-181262 0010 F CR to TS 38.101-2; CRS on channel raster entry of band n258 for TS 38.101-2; ZFW Wiston Telecom AB 15.2.0 R4 180455, Draft CR to 38.101-2; IBE Section Update, Qualcomm, Inc. R4 1804455, Draft CR to 38.101-2; IBE Section Update, Qualcomm, Inc. R4 1804494, Corrections of SCS for n257, intraband contiguous CA in 38.101-2; Nokia R4 18045641, Corrections of SCS for n257, intraband contiguous CA in 38.101-2; Nokia R4 1805641, Corrections of AD2 and RB alignment with different numerologies (Section 5.2.4), NTE Corporation R4 1805670, Update of UE emission requirements for FR2, Qualcomm Incorporated R4 1405750, Update Of UE emission requirement for FR2, Qualcomm Incorporated R4 180577, Update of ACS requirement for FR2, Qualcomm Incorporated R4 1405751, Update of IBB requirement for FR2, Qualcomm Incorporated R4 140575, Introduction completed band combinations 37.866-01-01-3.8.101-2; Cr som reaster, asmsung R4 1804582, prid CR or 38.101-							
R4-1803566. Draft CR for TS 38.101-2: Sync raster offset in re- familing bands (6.4).3. Encsson 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2: Implementation of endorsed draft CRs from RAN4 #80bis and RAN4 #80Fis 15.2.0 2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2: Implementation of endorsed draft CRs from RAN4 #80bis and RAN4 #80Fis 15.2.0 2018-06 RAM500 RC To TS 38.101-2: CR for channel raster entry of band n258 for TS 38.101-2.2 TE Witsmo Telecom AB 15.2.0 RA-1804565. Draft CR to 38.101-2: IBE Section Update, Qualcomm, Inc. RA-1804565. Introduction of UE to UE coexistence requirements requirements for F22. Qualcomm Incorporated RA-1805641. Corrections to 5.3.3 in TS 38.101-2. Nkia RA-1805645. Draft CR to TS 38.101-2. Nkia RA-1805645. Draft CR to TS 38.101-2. Nkia RA-1805645. Draft CR to TS 38.101-2. Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.4.3.2) and RB alignment with different numerologies (Section 5.3.4). ZTE Corporation RA-180576. Update of ACS requirement for FR2. Qualcomm Incorporated RA-1805775. Update of ACS requirement for FR2. Qualcomm Incorporated RA-1805775. draft CR no minimum guardband of SCS 240 kHz SSB for TS 38.101-2. ZTE Wistron Telecom AB RA-18036940. Draft CR on TS 38.101-2. On US 28 GHz band number, Qualcomm Incorporated RA-18036775. draft CR for TS 38.101-2. Job 22 GHz band number, RA-18036940. Draft CR for TS 38.101-2. ZTE Wiston Telecom AB RA-18036940. Draft CR for TS 38.101-2. ZTE Wiston Telecom AB RA-18036940. Draft CR for TS 38.101-2. ZTE Wiston							
2018-06 RAN#80 RP-181262 0010 F GR to TS 38 101-2; Implementation of endorsed draft CRs from RAN4 #86bis and RAN4 #87 2018-06 RAN#80 RP-181262 0010 F GR to TS 38 101-2; Implementation of endorsed draft CRs from RAN4 #86bis and RAN4 #87 2018-06 RAN#80 RP-181262 0010 F GR to TS 38 101-2; Implementation of endorsed draft CRs from RAN4 #80578, Draft CR on channel raster entry of band n258 for TS 38 101-2; ZTE Wistron Telecom AB R4-1804563, Draft CR to Ro channel raster entry of band n258 for TS 38 101-2; ZTE Wistron Telecom AB R4-1804563, Draft CR to 30.101-2; IBE Section Update, Qualcomm, Inc. R4-1804564, Corrections of DS ST entraband contiguous CA in 38.101-2, Nokia R4-1805643, Draft CR to TS38.101-2; Nokia R4-1805643, Draft CR to TS38.101-2; Update of Resource Element Mapping (Section 5.4, 22) and R8 alignment with different numerologies (Section 5.4, 22) and R8 alignment with different numerologies (Section 5.4, 22) and R8 alignment with different numeroporated R4-1805750, Draft CR to TS 38.101-2; Update of section 7.1, Rohde & Schwarz R4-1805770, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805750, Draft CR to 7S 38.101-2; DuS 28 GHz band number, Qualcomm Incorporated R4-1805764, Draft CR on TS 38.101-2; sync raster, Samsung R4-1805780, Draft CR for GR 30.112; Sync raster, Samsung R4-1805780, Draft CR for GR 30.112; Sync raster, Samsung R4-18058640, Draft CR for GR 30.112; Sync raster, Samsung R4-18058640,							
2018-06 RAN#80 RP-181262 0010 F CR to TS 38.101-2: Implementation of endorsed draft CRs from RAN4 #86bis and RAN4 #87 2018-06 RAM4 #86bis and RAN4 #86bis RA-14803786, Draft CR on channel raster entry of band n258 for TS 38.101-2; ZTE Winstrom Telecom AB RA-1804982; CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804985, Draft CR to 38.101-2; IBE Section Update, Qualcomm, Inc. RA-1804985, Draft CR to 38.101-2; IBE Section Update, Qualcomm, Inc. R4-1804967, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated RA-1805641, Corrections of DCS for n257 intraband contiguous CA in 38.101-2; Nokia R4-180569, Draft CR to TS38, 101-2; Channel Raster to Resource Element Mapping (Section 5.4, 22) and RB alignment with different numerologies (Section 5.4, 22) and RB alignment with different numeroproteid Ra-180575, Update of IBB requirement for FR2, Qualcomm Incorporated Ra-1805761, Draft CR on S8, 101-2; Update of Section 7.1, Rohde & Schwarz R0 R0 R0 R0							
RAN4 #86bis and RAN4 #87 Endorsed draft CRs from RAN4#86Bis R4-1803736, Draft CR on channel raster entry of band n258 for TS 38.101-2, ZTE Wistron Telecom AB R4-1804022, CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804686, Draft CR to 38.101-2: IBE Section Update, Qualcomm, Inc. R4-18046947, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-18046949, Corrections to 5.3.3 in TS 38.101-2, Nokia R4-1805641, Corrections to 5.3.3 in TS 38.101-2, Nokia R4-1805645, Draft CR to TS38.101-2: Channel Raster to Resource Element Mapping (Section 5.4, 2.2) and RB alignment with different numerologies (Section 5.4, 2.2) and RB alignment with different numerologies (Section 5.4, 2.2) and RB alignment with different numerologies (Section 5.3.4), TE Corporation R4-180570, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-180577, Update of ACS requirement for FR2, Qualcomm Incorporated R4-180577, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805982, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805849, Draft CR nor minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805862, draft CR for R3.101-2; secsion R4-1805862, draft CR for R3.101-2; secsion R4-1805862, draft CR for R12, 2.4 crission R4-1805862, draft CR for R12, 2.4 crission R4-1805862, priz BPSK related CR, IITH Endorsed draft CR for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806783, That CR or Clarifications on TRx RF test metrics for mmWave, Anitis Corporation R4-1807684, That CR for TS 38.101-2; Channel raster and NR- R4F160Chalfication (5.4.2), Ericsson R4-1807685, FR2 UE ACLR requirements	2018-06	RAN#80	RP-181262	0010	F		15.2.0
R4-1803736. Draft CR on channel raster entry of band n258 for TS 38,101-2, ZTE Witstom Telecom AB R4-1804022, CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1804847, Corrections to 5.3 on TS 38.101-2, Nokia R4-180565, Draft CR to TS38.101-2; Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-1805764, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805774, Update of ACR requirement for FR2, Qualcomm Incorporated R4-1805757, Update of Sequirement for FR2, Qualcomm Incorporated R4-1805774, Update of BB requirement for FR2, Qualcomm Incorporated R4-1805775, Update of BB requirement for FR2, Qualcomm Incorporated R4-1805774, Update of BB requirement for FR2, Qualcomm Incorporated R4-1805775, Update of BC ron minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Witson Telecom AB R4-180582, Draft CR to 38.101-2; sync sams gams gams gams gams gams gams gams							
R4-1803736. Draft CR on channel raster entry of band n258 for TS 38,101-2, ZTE Witstom Telecom AB R4-1804022, CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1804847, Corrections to 5.3 on TS 38.101-2, Nokia R4-180565, Draft CR to TS38.101-2; Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-1805764, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805774, Update of ACR requirement for FR2, Qualcomm Incorporated R4-1805757, Update of Sequirement for FR2, Qualcomm Incorporated R4-1805774, Update of BB requirement for FR2, Qualcomm Incorporated R4-1805775, Update of BB requirement for FR2, Qualcomm Incorporated R4-1805774, Update of BB requirement for FR2, Qualcomm Incorporated R4-1805775, Update of BC ron minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Witson Telecom AB R4-180582, Draft CR to 38.101-2; sync sams gams gams gams gams gams gams gams							
 38.101-2, ZTE Wistron Telecom AB R4-1804022, CR for modifications and clarifications for NR FR2 CA BW Classes, Nokia R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1804697, Corrections 0 ECS for n257 intraband contiguous CA in 38.101-2, Nokia R4-1805681, Corrections 0 ECS for n257 intraband contiguous CA in 38.101-2, Nokia R4-1805691, Corrections 01 ECS for n257 intraband contiguous CA in 38.101-2, Nokia R4-18056704, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-18057705, Draft CR to T38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805775, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805777, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805776, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805782, praft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-180582, praft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Corporation R4-1804878, draft CR for RS 101-2: sync raster, Samsung R4-1804878, draft CR for SSB clarification for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806483, Draft CR for TS 38.101-2, ZTE Corporation R4-180646, Draft CR for TS 38.101-2, ZTE Corporation R4-180646, Draft CR for TS 38.101-2, ZTE Corporation R4-180646, Draft CR for TS 38.101-2, ZTE Corporation R4-1807652, FR2 UE A							
R4-1804022, CR for modifications and clarifications for NR FR2 CA WC Classes, Nokia R4-1804565, Draft CR to 38.101-2: IBE Section Update, Qualcomm, Inc. R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4+18046641, Corrections to 55.3 in TS 38.101-2, Nokia R4+18066641, Corrections of BCS for n257 intraband contiguous CA in 38.101-2, Nokia R4+1805665, Draft CR to TS38.101-2; Channel Raster to Resource Element Mapping (Section 5.3.4), ZTE Corporation R4+1805704, Update of UE emission requirements for FR2, Qualcomm Incorporated R4+1805705, Draft CR to 38.101-2; Update of section 7.1, Rohde & Schwarz R4+1805770, Update of ACS requirement for FR2, Qualcomm Incorporated R4+1805775, Update of BB requirement for FR2, Qualcomm Incorporated R4+1805775, draft CR for TS 38.101-2; on US 28 GHz band number, Qualcomm Incorporated R4+1805877, Update of IBB requirement of SCS 240 kHz SSB for TS 38.101-2, zTE Wistron Telecoma R4+180588, draft CR for TS 38.101-2; sync raster, Samsung R4+180588, draft CR for no minimum guardband of SCS 240 kHz SSB for TS 38.101-2; zTE Wistron Telecoma R4+180588, draft CR for no RAN#87 R4+1806868, Draft CR no raster, Samsung R4+1806868, Draft CR no TS 38.101-2; ZTE Corporation R4+1806869, Draft CR no TS 38.101-2; ZTE Corporation R4+1806167, Draft CR nor TS 38.101-2; ZTE Corporat							
BW Classes, Nokia R4-1804585, Draft CR to 38.101-2: IBE Section Update, Qualcomm, Inc. R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1804949, Corrections to 5.3.3 in T3.38.101-2, Nokia R4-180467, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-180566, Draft CR to TS38.101-2; Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.4.4, ZTE Corporation R4-180576), Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805775, Update of CB emission requirements for FR2, Qualcomm Incorporated R4-1805775, Update of CS requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805877, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805849, Draft CR to ris 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805849, Draft CR for TS 38.101-2, ZTE Wistron Telecom AB R4-1805849, Draft CR for TS 38.101-2, Section SC 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-180582, draft CR for R8.101-2: sync raster, Samsung R4-1803628, pi/2 BPSK related CR, ITH Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR or TS 38.101-2, ZTE Corporation R4-1806167, Draft CR for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR for TS 38.101-2, Channel raster and NR- ARFCN clarification (54.2), Ercsson R4-1807652, FR2 UE ACLR requirements for CA, Qualcomm R4-1807655, Fruther refinements for UE Rx requirements in FR2, Qualcomm R4-1807652, FR2 UE ACLR requirements for CA, oualcomm R4-1807652, FR2 UE ACLR requirements for							
Inc. R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1806641, Corrections of BCS for R257 intraband contiguous CA in 38.101-2, Nokia R4-1806656, Draft CR to TS38.101-2; Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.4.3.4), ZTE Corporation R4-1805665, Draft CR to 33.101-2; Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.0.2.1), ZTE Write Corporation R4-1805705, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-180577, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-180577, Update of IBB requirement for SCS 240 kHz SSB for TS 38.101-2, ZTE Writson Telecon AB R4-1805982, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2; Ericsson R4-1805982, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2; Ericsson R4-1806167, Draft CR on SB clarification for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR on SBs clarification for TS 38.101-2; ZTE Corporation R4-1806169, Draft CR on SBs clarification for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR on SBs clarification for TS 38.101-2; ZTE Corporation R4-1806169, Draft CR or SB Clarifications on TRx RF test metrics for mmWave, Anritsu Corporation							
R4-1804657, Introduction of UE to UE coexistence requirements requirements for FR2, Qualcomm Incorporated R4-1804949, Corrections of BCS for n257 intraband contiguous CA in 38.101-2, Nokia R4-1805664, Corrections of BCS for n257 intraband contiguous CA in 38.101-2, Nokia R4-1805665, Draft CR to TS38.101-2: Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805775, Update of LE emission requirements for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805982, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2; sinc raster, Samsung R4-18069849, pir2 EPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Vistorn Telecon n0 R4-1806168, Draft CR on Channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806168, Draft CR on Channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806168, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806168, Draft CR on Channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-180765, For UE ACLR requirement for CA, Qualcomm R4-180765, Praft CR on TS 38.101-2: Channel raster and NR- ARFCN clarification (54.2), Ericsson R4-1807661, Draft CR on TS 38.101-2: Channel raster and NR- ARFCN clarification (54.2), Ericsson R4-1807661, Draft CR on 38.101-2: On channel raster to achieve </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>R4-1804585, Draft CR to 38.101-2: IBE Section Update, Qualcomm,</td> <td></td>						R4-1804585, Draft CR to 38.101-2: IBE Section Update, Qualcomm,	
requirements for FR2, Qualcomm Incorporated R4-1805641, Corrections to 5.3.3 in TS 38.101-2, Nokia R4-180565, Draft CR to TS38.101-2: Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4), ZTE corporation R4-1805663, Draft CR to TS38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805704, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805705, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805775, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-18059768, draft CR for TS 38.101-2, respect and number, Qualcomm Incorporated R4-1805771, Update of INC vor 38.101-2; sync raster, Samsung R4-1805774, draft CR for TS 38.101-2; sync raster, Samsung R4-1805775, draft CR for 38.101-2; sync raster, Samsung R4-1805788, draft CR Introduction completed band combinations 37,865-01-01 -> 38.101-2; Ericsson R4-1803628, piz2 BPSK related CR, IITH Endorsed draft CRs from RAN#87							
R4-1804949, Corrections to 5.3.3 in Ts 38.101-2, Nokia R4-1805641, Corrections of BCS for n257 intraband contiguous CA in 38.101-2, Nokia R4-1805685, Draft CR to TS38.101-2: Channel Raster to Resource Element Mapping (Section 5.4.2,2) and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-1805704, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805771, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805978, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805978, draft CR no minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1805978, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2; Ericsson R4-1803628, pi/2 BPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806169, Draft CR on SSB clarification for TS 38.101-2; ZTE							
R4-1805641, Corrections of BCS for n257 intraband contiguous CA in 38.101-2, Nokia R4-180568, Draft CR to TS38.101-2: Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805757, Update of ACS requirements for FR2, Qualcomm Incorporated R4-1805757, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805757, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805757, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805757, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805757, Update of IBB requirement of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-18058949, Draft CR for 38.101-2; sonr caster, Samsung R4-1805805, pi/2 BPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR or SSB 10-12: Channel raster and NR-ARFCN clarification (5.4.2), Ericsson R4-1806383, Draft CR for TS 38.101-2; ZTE Corporation R4-1806169, Draft CR or SSB 10-12: Channel raster and NR-ARFCN clarification (5.4.2), Ericsson R4-1806383, Draft CR for TS 38.101-2; CTE Corporation R4-1806383, Draft CR for TS 38.101-2; C							
 in 38.101-2, Nokia R4-1805685, Draft CR to TS38.101-2: Channel Raster to Resource Element Mapping (Section 5.4.2.2) and RB alignment with different numerologies (Section 5.3.4), ZTE Corporation R4-1805704, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805771, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805977, Update of IBB requirement of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2; sync raster, Samsung R4-180478, draft CR for introduction completed band combinations 37.865-01-01 -> 38.101-2, Effcsson R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR or channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806187, Draft CR of Carlication for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806383, Draft CR for TS 38.101-2; Channel raster and NR-ARFCN clarification (5.4.2), Ericsson R4-1806946, Draft CR for TS 38.101-2; Channel raster and NR-ARFCN clarification (5.4.2), Ericsson R4-1806765, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807661, Draft CR on 38.101-2 on channel raster to achieve 							
R4-1805685, Draft CR to TS3. 101-2: Channel Raster to Resource Element Mapping (Section 5.3.4), ZTE Corporation R4-1805704, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805777, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805975, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805982, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805982, draft CR for TS 38.101-2; sync raster, Samsung R4-1805982, draft CR for 38.101-2; sync raster, Samsung R4-1804878, draft CR for 38.101-2; sync raster, Samsung R4-1804876, draft CR for MRAM87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2; ZTE Corporation R4-1806167, Draft CR or SSB clarification for TS 38.101-2; ZTE Corporation R4-1806189, Draft CR for TS 38.101-2; Channel raster and NR- R4-1806480, Draft CR for TS 38.101-2; Channel raster and NR- R4-1806948, Draft CR for TS 38.101-2; Channel raster and NR- R4-1806948, Draft CR for TS 38.101-2; Channel raster to achieve							
numerologies (Section 5.3.4), ZTE Corporation R4-1805704, Update of UE emission requirements for FR2, Qualcomm Incorporated R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805777, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805979, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecon AB R4-1805949, Draft CR on a minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecon AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1805982, draft CR for an Initroduction completed band combinations 37.865-01-01 -> 38.101-2, Ericsson R4-1806160, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Wistron Telecon AD R4-1806160, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806180, Draft CR of Con SSB clarification for TS 38.101-2, ZTE Corporation R4-1806180, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1807652, Fr22 UE ACLR requirement for CA, Qualcomm R4-1807655, Further reginements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2: on channel raster to achieve							
R4-1805704, Úpdate of UE émission réquirements for FR2, Qualcomm Incorporated R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805757, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-180582, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2; Ericsson R4-1804878, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2; Ericsson R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806167, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1807682, Fr2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
Qualcomm Incorporated R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805757, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1804878, draft CR for 38.101-2; pricsson R4-1804878, draft CR for 38.101-2; pricsson R4-1803628, pi/2 BPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2; ZTE Corporation R4-1806183, Draft CR of Carifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806483, Draft CR of CR of TS 38.101-2; Channel raster and NR-ARFCN clarification (5.4.2), Ericsson R4-18076655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-18076651, Draft CR on 38.101-2 on channel raster to achieve							
R4-1805705, Draft CR to 38.101-2: Update of section 7.1, Rohde & Schwarz R4-1805757, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1803628, pi/2 BPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806946, Draft CR of CR or SSB clarification for TS 38.101-2, ZTE Corporation R4-1806946, Draft CR of CR or SSB clarification for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR-ARFCN clarification (5.4.2), Ericsson R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm							
Schwarz R4-1805757, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-180548, draft CR for introduction completed band combinations 37.865-01-01 >> 38.101-2; Ericsson R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2; ZTE Corporation R4-1806167, Draft CR on SSB clarification for TS 38.101-2; ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2; ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2; Channel raster and NR- ARFCN clarification (5.4.2); Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-18076611, Draft CR on 38.101-2; on channel raster to achieve							
R4-1805757, Update of ACS requirement for FR2, Qualcomm Incorporated R4-1805771, Update of IBB requirement for FR2, Qualcomm Incorporated R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 78.38.101-2: sync raster, Samsung R4-1804584, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2; Ericsson R4-1803628, pi/2 BPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of Carification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-18076611, Draft CR on 38.101-2: on channel raster to achieve						•	
IncorporatedR4-1805771, Update of IBB requirement for FR2, QualcommIncorporatedR4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number,Qualcomm IncorporatedR4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSBfor TS 38.101-2, ZTE Wistron Telecom ABR4-1805982, draft CR for 38.101-2: sync raster, SamsungR4-1804878, draft CR introduction completed band combinations37.865-01-01 -> 38.101-2; EricssonR4-1803628, pi/2 BPSK related CR, IITHEndorsed draft CRs from RAN#87R4-1806167, Draft CR on channel raster entry of band n261 for TS38.101-2, ZTE CorporationR4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTECorporationR4-1806383, Draft CR of clarifications on TRx RF test metrics formmWave, Anritsu CorporationR4-1806946, Draft CR for TS 38.101-2: Channel raster and NR-ARFCN clarification (5.4.2), EricssonR4-1807655, FR2 UE ACLR requirement for CA, QualcommR4-1807655, FR2 UE ACLR requirement for CA, QualcommR4-1807661, Draft CR on 38.101-2 on channel raster to achieve							
IncorporatedR4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm IncorporatedR4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom ABR4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1804878, draft CR for 38.101-2; sync raster, Samsung R4-1803628, pi/2 BPSK related CR, IITHEndorsed draft CRs from RAN#87R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2; ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2; ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anrits COrporation R4-1806946, Draft CR for TS 38.101-2; Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve						Incorporated	
R4-1805775, draft CR for TS 38.101-2 on US 28 GHz band number, Qualcomm Incorporated R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1804878, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2, Ericsson R4-1803628, pi/2 BPSK related CR, IITHEndorsed draft CRs from RAN#87R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
Qualcomm IncorporatedR4-1805942, Draft CR on minimum guardband of SCS 240 kHz SSBfor TS 38.101-2, ZTE Wistron Telecom ABR4-1805982, draft CR for 38.101-2: sync raster, SamsungR4-180582, draft CR for 38.101-2: sync raster, SamsungR4-1803628, pi/2 BPSK related CR, IITHEndorsed draft CRs from RAN#87R4-1806167, Draft CR on channel raster entry of band n261 for TS38.101-2, ZTE CorporationR4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTECorporationR4-1806169, Draft CR of Clarifications on TRx RF test metrics formmWave, Anritsu CorporationR4-180646, Draft CR for TS 38.101-2: Channel raster and NR-ARFCN clarification (5.4.2), EricssonR4-1807652, FR2 UE ACLR requirement for CA, QualcommR4-1807655, Further refinements for UE Rx requirements in FR2,QualcommR4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
R4-1805949, Draft CR on minimum guardband of SCS 240 kHz SSB for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1804878, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2, Ericsson R4-1803628, pi/2 BPSK related CR, IITHEndorsed draft CRs from RAN#87R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-180633, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807651, Draft CR on 38.101-2 on channel raster to achieve							
for TS 38.101-2, ZTE Wistron Telecom AB R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-180478, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2, Ericsson R4-1803628, pi/2 BPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
R4-1805982, draft CR for 38.101-2: sync raster, Samsung R4-1804878, draft CR introduction completed band combinations 37.865-01-01 -> 38.101-2, Ericsson R4-1803628, pi/2 BPSK related CR, IITHEndorsed draft CRs from RAN#87R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SBB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve						,	
37.865-01-01 -> 38.101-2, Ericsson R4-1803628, pi/2 BPSK related CR, IITH Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807655, FR2 UE ACLR requirement for CA, Qualcomm R4-1807656, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve						R4-1805982, draft CR for 38.101-2: sync raster, Samsung	
R4-1803628, pi/2 BPSK related CR, IITHEndorsed draft CRs from RAN#87R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-180633, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
Endorsed draft CRs from RAN#87 R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve						К4-1003028, р⊮2 ВНЭК related CR, IITH	
R4-1806167, Draft CR on channel raster entry of band n261 for TS 38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve						Endorsed draft CRs from RAN#87	
38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
38.101-2, ZTE Corporation R4-1806169, Draft CR on SSB clarification for TS 38.101-2, ZTE Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve						R4-1806167, Draft CR on channel raster entry of band n261 for TS	
Corporation R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
R4-1806383, Draft CR of clarifications on TRx RF test metrics for mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
mmWave, Anritsu Corporation R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
R4-1806946, Draft CR for TS 38.101-2: Channel raster and NR- ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
ARFCN clarification (5.4.2), Ericsson R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm R4-1807655, Further refinements for UE Rx requirements in FR2, Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
Qualcomm R4-1807681, Draft CR on 38.101-2 on channel raster to achieve						R4-1807652, FR2 UE ACLR requirement for CA, Qualcomm	
R4-1807681, Draft CR on 38.101-2 on channel raster to achieve							
Lalidoment of data and SSB subcarrier drids. Nokia						alignment of data and SSB subcarrier grids, Nokia	
R4-1807853, Draft CR to TS 38.101-2: UE maximum output power							
for UL CA, Nokia							

		-				
					R4-1807855, Draft CR on 38.101-2: Transmit ON/OFF time mask for	
					UL CA, Nokia R4-1807857, Draft CR on 38.101-2: Occupied BW for UL CA, Nokia	
					R4-1808101, Draft CR to 38.101-2: On EVM Averaging Length,	
					Wording, Qualcomm Incorporated	
					R4-1808105, Configured maximum output power for FR2, Ericsson R4-1808124, draft CR on UE RF requirement for UE type 2 in FR2,	
					LG Electronics	
					R4-1808125, Draft CR to TS 38.101-2: Minimum output and OFF	
					Power, Nokia	
					R4-1808147, Draft CR for NR FR2 CA BW class modifications,	
					MediaTek Inc. R4-1808148, EVM equaliser spectral flatness for FR2, Ericsson	
					R4-1808149, UE Shaping Filter Requirement for pi/2 BPSK, Indian	
					Institute of Tech (M)	
					R4-1808152, Draft CR for Finalizing UE RF Requirement for FWA,	
					Samsung R4-1808266, Draft CR for TS 38.101-2: Channel and sync raster	
					corrections (5.4), Ericsson	
					R4-1808545, Draft CR on UE RF requirement for UE type 3 in FR2,	
					Verizon	
					R4-1808546, Power class 3 Spherical coverage introduction and peak EIRP requirement update, Qualcomm	
					R4-1808206, Draft CR to 38.101-2: FR2 Type 1 UE Power Control,	
					Qualcomm	
					R4-1808208, Draft CR to 38.101-2: FR2 Type 1 UE CA EIS update,	
					Qualcomm	
					R4-1808191, TP to TS38.101-2 - UE ON/OFF masks, Ericsson R4-1807102, draft CR introduction completed band combinations	
					37.865-01-01 -> 38.101-2, Ericsson	
2018-09	RAN#81	RP-181896	0015	F	Big CR for 38.101-2	15.3.0
					Enderoad droft CPa from DAN/4#ND AH 1907	
					Endorced draft CRs from RAN4#NR-AH-1807 R4-1809336, Draft CR on UL RMC for FR2 RF tests, Qualcomm	
					Incorporated	
					R4-1809338, Draft CR on NR UE REFSENS SNR FRC for FR2, Intel	
					Corporation R4-1809397, Draft CR on measurement of receiver characteristics	
					for FR2 RF Tests, Qualcomm Incorporated	
					R4-1809566, Draft CR on OCNG pattern for FR2 REFSENS test,	
					Qualcomm Incorporated	
					Endorced draft CR s from RAN4#88	
					P_{4} 1900917, TD to TS 29 101 2 on ON/OEE time model intol	
					R4-1809817, TP to TS 38.101-2 on ON/OFF time mask, Intel Corporation	
					R4-1809976, Draft CR for TS 38.101-2: Channel raster corrections	
					(5.4.2), Ericsson	
					R4-1810092, Draft CR TS 38.101-2 - UE ON-OFF mask clean up, Ericsson	
					R4-1810211, Draft CR for TS 38.101-2: MPR inner and outer RB	
					allocations formula correction, MediaTek Inc.	
					R4-1810228, draft CR on UL-MIMO requirement for Power Class 2	
					in FR2, LG Electronics Inc R4-1810373, Draft CR to 38.101-2: Corrections on symbols and	
					abbreviations in section 3, ZTE Corporation	
					R4-1810805, Draft CR to TS 38.101-2: Spurious emissions, Nokia	
					R4-1810863, Draft CR to 38.101-2: Addition of Transmit Modulation	
					Annex, Rohde & Schwarz R4-1811026, Draft CR to 38.101-2: FR2 UE CA Transmit Signal	
					Quality update, Qualcomm Incorporated	
					R4-1811104, Finalization of SEM requirements in FR2, Qualcomm	
					Incorporated R4-1811140, FR2 ULMIMO Updates and enhancements, Qualcomm	
					Incorporated	
					R4-1811322, Draft CR to 38.101-2: REFSENS of power class 1,	
					Intel Corporation	
					R4-1811456, Draft CR on DL Physical Channel for FR2 RF tests, Qualcomm Inc	
					R4-1811460, Draft CR to 38.101-2: Correct both Table 5.5A.2-1 and	
					Table 5.5A.2-2, Verizon	
					R4-1811489, Draft CR to 38.101-2: FR2 Power Control, Qualcomm	
					Incorporated R4-1811499, Implementation of additional requirement to protect	
					passive EESS in 23.6-24GHz, Qualcomm Incorporated	
					R4-1811515, Draft CR to TS 38.101-2: Clarification on OCNG,	
					Keysight Technologies UK Ltd	

-	1		r				
						R4-1811517, Draft CR on NR DL FRCs for FR2 UE RF requirements, Intel Corporation	
						R4-1811519, Draft CR to 38.101-2: On FR2 MPR for single CC PC1	
						and PC3, Qualcomm	
						R4-1811520, Draft CR to 38.101-2: FR2 Max. Input Power, Qualcomm Incorporated	
						R4-1811524, Clearification of UL MIMO for FR2, OPPO	
						R4-1811551, Draft CR to TS 38.101-2 on channel bandwidth and spacing descriptions, Ericsson	
						R4-1811554, Draft CR to 38.101-2: Corrections on description of	
						channel raster entries, ZTE Corporation	
						R4-1811802, Draft CR to TS 38.101-2 update the Pumax tolerance table for configured transmitted power, Intel Corporation	
						R4-1811807, Draft CR to 38.101-2: FR2 UE Transmit Signal Quality	
						update, Qualcomm Incorporated R4-1811813, Correction on UE transmitter requirement for FR2,	
						CATT	
						R4-1811817, Updated ON/OFF mask for FR2, vivo	
						R4-1811800, DRAFT CR for PCmax FR2 correction, Qualcomm Incorporated	
2018-12	RAN#82	RP-182899	0016		F	Endorced draft CR s from RAN4#88Bis:	15.4.0
						R4-1812122, Draft CR for FR2 ACLR Measurement BW, Qualcomm	
						R4-1812134, CR on Out of Band Blocking for FR2, Intel Corporation R4-1812426, draft CR of MPR for Power Class 2 in FR2, LG	
						Electronics	
						R4-1812428, draft CR of transmit signal quality for Power Class 2 in FR2. LG Electronics	
						R4-1812453, Draft CR to TS 38.101-2 Adjust placement of 0dB MPR	
						reference waveform, Intel Corporation	
						R4-1812495, Draft CR to 38.101-2: Corrections on channel raster & SS raster, ZTE Corporation	
						R4-1813470, draftCR on applicability of TDD configuratiin for CA in	
						TS 38.101-2, Huawei R4-1813472, draftCR on CA spectrum Emission for TS 38.101-2,	
						Huawei	
						R4-1813473, draftCR on coherent UL MIMO for TS 38.101-2, Huawei	
						R4-1813527, Correction to FR2 spurious emission requirement,	
						Nokia R4-1813585, Draft CR to Specify UL Power for FR2 REFSENS Test	
						Cases, Keysight	
						R4-1813815, Draft CR to 38.101-2: Corrections on configurations for intra-band non-contiguous CA, ZTE Corporation	
						R4-1814149, Changes to FR2 UL MIMO, OPPO	
						R4-1814180, Draft CR to TS 38.101-2 on channel arrangement	
						descriptions, LG Electronics Inc. R4-1814181, Draft CR to 38.101-2: Corrections on the descriptions	
						of UE channel bandwidth for CA, ZTE Corporation	
				2		R4-1814163, draft CR of operating band for Power Class 2 in FR2, LG Electronics	
						R4-1813834, Draft CR to 38.101-2: Update of Annex F, Rohde &	
						Schwarz	
						R4-1814164, draftCR on MPR for TS 38.101-2, Huawei R4-1814165, Draft CR to 38.101-2: FR2 Power Control for CA,	
						Qualcomm Incorporated	
						R4-1814170, Draft CR to 38.101-2: FR2 UL Config for EIS Testing, Qualcomm Incorporated	
						Endorsed draft CR's from RAN4#89 R4-1815951, dCR on TS38.101-2 merging draft CRs from	
						RAN4#89, Qualcomm Incorporated	
						R4-1814497, Correction on UL MIMO requirement for PC1 UE, Samsung	
						R4-1814585, Draft CR to TS 38.101-2 UL CA power control in FR2,	
						Intel Corporation	
						R4-1814698, Draft CR to TS38.101-2 updating references, Apple Inc.	
						R4-1815623, Draft CR to 38.101-2: FR2 Max. Input Power UL	
						Configuration, Qualcomm Incorporated R4-1815801, draft CR editorial correction in 38.101-2, Ericsson	
						R4-1815810, draft Rel-15 CR to 38.101-2 to include n260 fallbacks	
						needed, Ericsson P4 1815042, dCP on P MPP for EP2, Qualcomm Incorporated	
						R4-1815942, dCR on P-MPR for FR2, Qualcomm Incorporated R4-1815943, dCD Coherent UL MIMO parameters for FR2,	
						Qualcomm Incorporated	
						R4-1816205, Draft CR to TS38.101-2 correcting the Pcmax requirement, Apple Inc.	
L	I	I	I	1	1		

						R4-1816206, draft CR on Pcmax for ULCA and limitation on max	
						aggregated ULCA BW, Qualcomm Incorporated	
						R4-1816217, Draft CR to 38.101-2 on UE maximum output power with additional requirements, ZTE Corporation	
						R4-1816218, Draft CR for Introducing missing requirement for power	
						class 4 in FR2 for TS 38.101-2, NTT DOCOMO, INC.	
						R4-1816219, draft CR of MPR for Power Class 2 in FR2, LG	
						Electronics	
						R4-1816220, Draft CR to 38.101-2: On FR2 CA MPR v2, Qualcomm	
						Incorporated R4-1816239, Draft CR to 38.101-2: On FR2 EESS A-MPR for n258,	
						Qualcomm Incorporated	
						R4-1816245, Draft CR to 38.101-2: FR2 EIS DL Signal Polarization	
						Clarification, Qualcomm Incorporated	
						R4-1816257, Draft CR to TS38.101-2 to correct UL CA scope for	
						FR2 in Rel-15, Apple Inc.	
						R4-1816605, TDD configuration for UE Tx test in FR2, Ericsson	
						R4-1816664, Draft CR to 38.101-2 (5.3.4) RB alignment, Huawei R4-1816751, Draft CR for RF exposure compliance in TS38.101-2,	
						LG Electronics France	
						R4-1816626, Draft CR to TS 38.101-2: Introducing multi-band	
						applicability for PC3, Apple Inc.	
						R4-1816634, Draft CR to 38.101-2: FR2 EIS Spherical Coverage	
						Requirement, Qualcomm Incorporated	
						R4-1816639, Verification of beam correspondence, Ericsson, Sony	
						R4-1816633, draft CR on UE type for Power Class 2 in FR2, LG Electronics	
						R4-1816644, Draft CR to TS 38.101-2: Temperature Condition for	
						testing EIRP Spherical Coverage requirement, Apple Inc.	
2019-03	RAN#83	RP-190747	0018		F	CR to TS 38.101-2: Implementation of endorsed draft CRs from	15.5.0
						RAN4#90 plus PC3 MPR changes to accommodate FR2 OBW	
						Endorced draft CRs from RAN4#90	
						R4-1900049, Draft CR on UL RMC for FR2 UE RF Tests, Qualcomm	
						Incorporated	
						R4-1900050, Draft CR on DL RMC for FR2 UE RF Tests, Qualcomm	
						Incorporated	
						R4-1900131, draft CR to 38101-2 Correction to EVM equalizer	
						spectrum flatness for Pi2 BPSK, Intel Corporation R4-1900132, draft CR to 38101-2 FR2 transmit modulation quality	
						for CA, Intel Corporation	
						R4-1900254, Draft CR on clarification of maxUplinkDutyCycle in	
						FR2, OPPO	
						R4-1900301, Draft CR: Introduction of Annex on Characteristics of	
						the Interfering Signal, Samsung R4-1900386, CR to 38.101-2 on CA BW Classes fallback groups,	
						Intel Corporation	
						R4-1900443, CR to chance Annex E2.1, Qualcomm Incorporated	
						R4-1900509, Draft CR to TS 38.101-2 on BCS definition for intra-	
						band non-contiguous CA, ZTE Corporation	
						R4-1900531, draft CR on A-MPR for power class 2 in FR2, LG	
				1		Electronics R4-1900533, draft CR on maximum output power reduction for CA	
				·		for power class 2 in FR2, LG Electronics	
						R4-1900535, draft CR on A-MPR for CA for power class 2 in FR2,	
						LG Electronics	
						R4-1900542, Draft CR on Measurement period of PRACH time mask, Qualcomm Incorporated	
						R4-1900677, Draft CR to 38.101-2: FR2 ULMIMO max. output	
						power, Qualcomm Incorporated	
						R4-1900674, Draft CR to 38.101-2: UL config for DL NC CA,	
						Qualcomm Incorporated	
						R4-1900678, Draft CR to 38.101-2: EVM Requirement for PRACH, Qualcomm Incorporated	
						R4-1900679, Draft CR to 38.101-2: IBB requirement update,	
						Qualcomm Incorporated	
						R4-1900680, Draft CR to 38.101-2: Complete Pmin requirement for	
						CA, Qualcomm Incorporated	
						R4-1900728, Update to PRACH EVM window length for FR2, Rohde	
						& Schwarz R4-1900736, Draft CR on editorial error of TS38.101-2, LG	
						Electronics Inc.	
						R4-1900755, Draft CR on spurious emission limit in 38.101-2,	
						Qualcomm Incorporated	
						R4-1902005, Draft CR to 38.101-2: Add annex for UE coordinate	
Ì	1			1	1	system, Qualcomm Incorporated	

					R4-1902152, E	ditorial corrections for 38.101-2, Qualcomm	
					between minim	raft CR to 38.101-2: correction of the relationship um requirements and test requirements, Apple Inc. raft_CR TS 38.101-2 FR1 frequency range extension,	
					Skyworks Solut R4-1902474, D	ions Inc. raft CR to 38.101-2: correction of multi-band aspects	
					in REFSENS fo	r PC3, Apple Inc. raftCR on maximum output power for TS 38.101-2,	
					Huawei		
					DOCOMO, INC		
					R4-1902590, D	raft CR on max input power in FR2, OPPO raft CR to TS 38.101-2: Introduction of the beam correspondence, Apple Inc	
					Further change		
					Section 6.2.2.3 requirements	tion 6.2.2.0 to modify the MPR=0dB waveform and to modify the MPR tables to accommodate the OBW	
2019-06	RAN#84	RP-191240	0021	F	CR to TS 38.10 RAN4#90bis ar	1-2: Implementation of endorsed draft CRs from nd RAN4#91	15.6.0
						CRs from RAN4#90Bis:	
					R4-1902932: D	Draft CR to TS 38.101-2 Correction to Pcmax,	
					R4-1902976	Intel Corporation Draft CR on PRACH and PUCCH format	
					R4-1903121	description for EVM in FR2Anritsu corporation Draft CR on DL power allocation for TS 38.101-2	
						Intel Corporation	
					R4-1903242 R4-1903474	Adding BCS definition in TS38.101-2 CATT draft CR of in-band emission for FR2 PC2 LG	
						Electronics	
					R4-1903888	Draft CR: Alignment of FR2 DL scheduling of DL RMC with UL RMCEricsson	
					R4-1904001	Draft CR for TS 38.101-2 – UE coordinate system Rohde & Schwarz	
					R4-1904411	draft Rel-15 CR for editorial corrections in 38.101-2 Ericsson	
					R4-1904553	Draft CR to 38.101-2: FR2 power dynamics DTX removal Qualcomm Incorporated	
					R4-1904930	Draft CR to 38.101-2: Updating MPR wording in	
					R4-1904931	ULMIMO section Qualcomm Incorporated Draft CR to clarify frequency of carrier leakage in	
					R4-1904932	RBs for FR2 Anritsu corporation Draft CR on editorial error of TS38.101-2 LG	
					R4-1904933	Electronics France Draft CR on UE optional bandwidth for FR2	
						Huawei, HiSilicon	
					R4-1904956	Draft CR for TS 38.101-2: Corrections to configurations for intra-band non-contiguous CA	
					R4-1904961	MediaTek Inc. Draft CR for TR38.101-2 – Update to EVM	
					R4-1904962	averaging Rohde & Schwarz Draft CR to 38.101-2: FR2 ULMIMO EVM	
						Qualcomm Incorporated	
					R4-1904966	Draft CR to TS 38.101-2 CA maximum input level Intel Corporation	
					R4-1904986	Draft CR for TS 38.101-2: Corrections to EVM equalizer spectrum flatness requirements	
					.	MediaTek Inc.	
					R4-1904994	draft CR to 38.101-2 Correction to ACS and In-band Blocking notes Intel Corporation	
					R4-1905003	Draft CR to 38.101-2: FR2 PC3 and PC1 MPR Qualcomm Incorporated	
					R4-1905005	Draft CR for 38.101-2 frequency separation class Huawei, HiSilicon	
					Endorsed draft	CRs from RAN4#91:	
					R4-1905504	Change description 4.2(d) in Applicability of minimum requirements for TS 38.101-2 vivo	
					R4-1905685	Draft CR to 38.101-2: FR2 Sensitivity Qualcomm	
					R4-1905764	Incorporated draft CR to 38.101-2 UE maximum output power	
						reduction for UL-MIMOIntel Corporation	
					R4-1905765	draft CR to 38.101-2 UE maximum output power for UL-MIMO Intel Corporation	

				· · · ·				
						R4-1905796	Correction to a description of PRB for in-band emission in FR2 Anritsu Corporation	
						R4-1905798	Correction to power control in FR2 Anritsu	
						R4-1905821	Corporation draft CR of loosening EIS for FR2 PC2 LG	
						1303021	Electronics Inc.	
						R4-1907003	Draft CR for editorial corrections in TS 38.101-2 Google Inc.	
						R4-1907420	draft CR of simple application for FR2 PC2 and 4	
							requirements with PC3 same requirements LG	
						R4-1907423	Electronics Inc. Draft CR for TS 38.101-2 Correction of channel	
							bandwidth set for NR CA Huawei, HiSilicon,	
						R4-1907437	CMCC Draft CR to 38.101-2: Insert definitions Qualcomm	
							Incorporated	
						R4-1907443	Draft CR to TS38.101-2 Complete FR2 MPR/A- MPR Intel Corporation	
						R4-1907444	Amendment of the relative power tolerance	
						D 4 4007 4 40	requirement Ericsson, Qualcomm Incorporated	
						R4-1907446	Draft CR to 38.101-2: FR2 CA REFESNS Qualcomm Incorporated	
						R4-1907447	Draft CR to 38.101-2 on UL RMC slot patterns	
						R4-1907466	Apple Inc. Draft CR to 38.101-2: FR2 CA MPR enhancement	
							Qualcomm Incorporated	
						R4-1907468	Draft CR to 38.101-2: FR2 MPR Wording CleanUp Qualcomm Incorporated	
						R4-1907473	Draft CR to TS38.101-2 on FR2 PC3 UE	
						R4-1907478	maxUplinkDutyCycle Nokia, Nokia Shanghai Bell Draft CR to TS 38.101-2 on configurations for intra-	
						K4-1907476	band contiguous CA ZTE Corporation	
						R4-1907493	Correction to Pcmax and Pumax for CA Ericsson	
						R4-1907611	Draft CR to TS38.101-2 on beam correspondence Samsung, Apple, Verizon	
						R4-1907688	Correction to CA carrier spacing Ericsson	
2019-06	RAN#84	RP-191241	0020		В	CR to REL-16	TS 38.101-2: Implementation of endorsed draft CRs	16.0.0
						on NR combina	ations and dual Connectivity combinations	
2019-06	RAN#84	RP-191241	0022	1	В	CR introduction 38.101-2	n completed band combinations 38.716-01-01 ->	16.0.0
2019-09	RAN#85	RP-192049	0028		Α	CR to TS 38.10	01-2: Implementation of endorsed draft CRs from	16.1.0
						RAN4#92 (Rel-	·16) es in R4-1910352 for Rel-15 TS 38.101-2	
						Winters chang		
						Endorsed draft R4-1907999	CRs from RAN4#92 Draft CR for NR non-contiguous CA configuration	
							bkia, Ericsson, Qualcomm	
						R4-1908082	draft CR to TS 38.101-2 on channel spacing for CA	
						Samsung, 2 R4-1908137	Update to FR2 EVM definition ROHDE &	
						SCHWARZ		
						D / / 0 0 0 / T 0		
1						R4-1908153 Qualcomm	dCR to 38.101-2: Editorial corrections for 38.101-2 Incorporated	
						Qualcomm R4-1908573	Incorporated Draft CR to TS 38.101-2: corrections on Rx	
						Qualcomm R4-1908573 requirements fo	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length R4-1908708	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length R4-1908708	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length R4-1908708 spurious emissi R4-1909117 Huawei	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation	
						Qualcomm R4-1908573 requirements for R4-1908633 window length R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS38.101-2 for Rx RF requirements LG	
						Qualcomm R4-1908573 requirements for R4-1908633 window length (R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235 Electronics Finl	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS38.101-2 for Rx RF requirementsLG land	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length (R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235 Electronics Finl R4-1910238 contiguous and	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS 38.101-2 for Rx RF requirements LG land CR for Handling of fallbacks for combined I non-contiguous CA in FR2 Apple	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length (R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235 Electronics Finl R4-1910238 contiguous and R4-1910241	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS 38.101-2 for Rx RF requirements LG land CR for Handling of fallbacks for combined I non-contiguous CA in FR2 Apple Draft CR to TS 38.101-2 on NR CA configurations	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length (R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235 Electronics Finl R4-1910238 contiguous and	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS 38.101-2 for Rx RF requirements LG land CR for Handling of fallbacks for combined I non-contiguous CA in FR2 Apple Draft CR to TS 38.101-2 on NR CA configurations	
						Qualcomm R4-1908573 requirements for R4-1908633 window length (R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235 Electronics Finl R4-1910238 contiguous and R4-1910241 for FR2 ZTE Co R4-1910259 Qualcomm	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS38.101-2 for Rx RF requirementsLG land CR for Handling of fallbacks for combined I non-contiguous CA in FR2 Apple Draft CR to TS 38.101-2 on NR CA configurations orporation dCR to 38.101-2: Reference signal clarifications Incorporated	
						Qualcomm R4-1908573 requirements for R4-1908633 window length R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235 Electronics Finl R4-1910238 contiguous and R4-1910241 for FR2 ZTE Co R4-1910259 Qualcomm R4-1910261	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS 38.101-2 for Rx RF requirements LG land CR for Handling of fallbacks for combined I non-contiguous CA in FR2 Apple Draft CR to 38.101-2: n NR CA configurations orporation dCR to 38.101-2: Reference signal clarifications Incorporated dCR to 38.101-2: FR2 AMPR updates, including	
						Qualcomm R4-1908573 requirements fo R4-1908633 window length (R4-1908708 spurious emissi R4-1909117 Huawei R4-1909316 Corporation R4-1910235 Electronics Finl R4-1910238 contiguous and R4-1910241 for FR2 ZTE Co R4-1910259 Qualcomm R4-1910261 ERC 74-01 cha R4-1910287	Incorporated Draft CR to TS 38.101-2: corrections on Rx or intra-band CA ZTE Corporation Draft CR to TS38.101-2: Corrections on EVM (Section F.5)ZTE Corporation Draft CR to TS38.101-2: corrections on the receiver ion (section 7.9) ZTE Corporation Draft CR for 38.101-2 applicability for intra-band CA Draft CR to TS 38.101-2 on symbols correction ZTE Draft CR to TS 38.101-2 for Rx RF requirements LG land CR for Handling of fallbacks for combined I non-contiguous CA in FR2 Apple Draft CR to 38.101-2: n NR CA configurations orporation dCR to 38.101-2: Reference signal clarifications Incorporated dCR to 38.101-2: FR2 AMPR updates, including	

						R4-1910328 Draft CR to TS 38.101-2: Corrections for UL and DL	
						RMC for FR2 tests Intel Corporation	
						R4-1910333 Draft CR for 38.101-2 reference measurement channel for beam correspondence Huawei	
						R4-1910334 Draft CR for TS38.101-2, Editorial corrections	
						CATT	
						R4-1910412 Draft CR for 38.101-2 correction for channel raster Huawei	
						R4-1910614 Draft CR for TS 38.101-2: Channel spacing for	
						adjacent NR carriers ZTE	
						Conditional agreements for BC for PC1/2/4 from R4-1902252	
2019-09	RAN#85	RP-192027	0025	1	F	Minor corrections of intra-band non-contiguous CA operating bands	16.1.0
0040.00	DANINOF	DD 400007	0000		_	in TS 38.101-2	40.4.0
2019-09	RAN#85	RP-192027 RP-193030			D	Rel-16 CR for further simplification of 38.101-2 Table 5.5A.2-2 CR to 38.101-2: DMRS exceptions	<u>16.1.0</u> 16.2.0
2019-12	RAN#86 RAN#86	RP-193030 RP-193030			A	Sync raster to SSB resource element mapping	16.2.0
2019-12	RAN#86	RP-193030			A	CR to 38.101-2 (Rel-16) to clarify measurement interval and	16.2.0
2010 12	10,00	11 100000	0000		~	observation window on frequency error	10.2.0
2019-12	RAN#86	RP-193031	0041		А	CR to TS 38.101-2 on beam correspondence side condition	16.2.0
0040 40		DD 402024	0044		^	applicability	40.0.0
2019-12 2019-12	RAN#86 RAN#86	RP-193031 RP-193030	0044		A	CR to TS 38.101-2: Correctin on FInterferer (offset) for CA ACS CR for TS 38.101-2: Editorial correction on MPR for contiguous CA	16.2.0 16.2.0
2019-12	KAIN#00	KF-193030	0046		A	notation	10.2.0
2019-12	RAN#86	RP-193031	0050	1	Α	CR for TS 38.101-2: CA bandwidth class definition amendment	16.2.0
2019-12	RAN#86	RP-193030	0052		A	CR to TS 38.101-2 on corrections to channel raster entries for NR	16.2.0
						band (Rel-16)	
2019-12	RAN#86	RP-193030			Α	CR to transmit modulation quality in FR2	16.2.0
2019-12	RAN#86	RP-193030			Α	Frequency separation class clarification REL-16	16.2.0
2019-12	RAN#86	RP-193012	0064		В	CR introduction completed band combinations 38.716-01-01 ->	16.2.0
0040 40		DD 402044	0005		F	38.101-2	40.0.0
2019-12	RAN#86	RP-193011	0065	1	F	CR to 38.101-2-g10 Corrections to maximum output power reduction for power class 3	16.2.0
2019-12	RAN#86	RP-193030	0067		А	CR for TS 38.101-2: power classes and maxUplinkDutyCycle-FR2	16.2.0
2019-12	RAN#86	RP-193031			A	CR for agreed MPR CA for FR2 intra-band contiguous	16.2.0
2019-12	RAN#86	RP-193031		1	A	CR for 38.101-2 on NS_202 band definition	16.2.0
2019-12	RAN#86	RP-193031			A	CR to TS 38.101-2: Correctin on CA NRACLR	16.2.0
2020-03	RAN#87	RP-200395			Α	Correction of the FR2 RMC slot patterns for MOP test cases	16.3.0
2020-03	RAN#87	RP-200395			Α	CR to 38.101-2 (Rel-16) MPR for CA	16.3.0
2020-03	RAN#87	RP-200395	0106		F	CR FR2 CA tables REL16	16.3.0
2020-03	RAN#87	RP-200395	0108		А	CR to TS 38.101-2 on corrections to intra-band contiguous CA for FR2 bands (Rel-16)	16.3.0
2020-03	RAN#87	RP-200395	0110		Α	CR to 38.101-2: Align Rx CA requirements structure with TS38.101-	16.3.0
						1	
2020-03	RAN#87	RP-200395	0114		А	CR for TS 38.101-2: Editorial addition of CBW and CABW definitions in Abbreviations section	16.3.0
2020-03	RAN#87	RP-200395	0118		А	CR to TS 38.101-2: Correction on FRC table for FR2 DL 64QAM	16.3.0
2020-03	RAN#87	RP-200469		2	A	CR for 38.101-2 side condition for BC_Rel16	16.3.0
2020-03	RAN#87	RP-200380		-	F	Editorial corrections	16.3.0
2020-03	RAN#87	RP-200378			F	Correction of Inner Allocation Definition for Powerclass 3	16.3.0
2020-03	RAN#87	RP-200395			A	R16 CR to 38.101-2: TRS and SSB configurations in FR2	16.3.0
2020-04			0147		Α	Change history corrected	16.3.1
2020-06	RAN#88	RP-200985			F	CR on ACLR MBW definition in FR2	16.4.0
2020-06	RAN#88	RP-201046			Α	CR to 38.101-2: Revision to Multiband Relaxations	16.4.0
2020-06	RAN#88	RP-200985	0164		A	CR to 38.101-2 on correction of reference point for beam	16.4.0
2020-06	RAN#88	RP-200985	0168		А	correspondence side conditions R16 CR to 38.101-2 to correct Link and Meas Angles	16.4.0
2020-06	RAN#88	RP-200985 RP-200985			A	CR to 38.101-2 to correct Link and Meas Angles CR to 38.101-2: NS_202 update after changes to EU regulations	16.4.0
2020-06	RAN#88	RP-200985			A	CR for TS 38.101-2: Intra-band non-contiguous CA configuration	16.4.0
2020 00	10.00	200000				clarifications	10.4.0
2020-06	RAN#88	RP-200985	0174		Α	CR for TS 38.101-2: Correction for configured transmitted power for	16.4.0
0000 00	DANINGS		0475				40.1.0
2020-06	RAN#88	RP-200985	0175		F	CR for TS 38.101-2: Clarifications on transmitter power for receiver requirements	16.4.0
2020-06	RAN#88	RP-200959	0181		Α	CR for TS 38.101-2: Intra-band non-contiguous CA configuration	16.4.0
2020.02	DANHOG		0100		^	clarifications	10.4.0
2020-06	RAN#88	RP-200985			A	Update of CSI-RS definition for FR2 DL RMCs	16.4.0
2020-06 2020-06	RAN#88 RAN#88	RP-200985 RP-200985			F	Correction to FR2 QPSK UL RMC Correction of Rel-16 UL RMCs	16.4.0
2020-00	RAN#88 RAN#88	RP-200985 RP-200972		+	Б F	CR to TS 38.101-2: Introduction of FR2 DL 256QAM	16.4.0 16.4.0
2020-06		111 200312		ļ			16.4.0
2020-06		RP-200985	0198		А	AUS requirement correction	
2020-06	RAN#88	RP-200985 RP-200985			A	ACS requirement correction CR for intra-band CA DL Rx requirement-FR2 Rel-16	
		RP-200985 RP-200985 RP-200985	0200		A A A	CR for intra-band CA DL Rx requirement-FR2_Rel-16 CR for modified MPR_Rel-16	<u>16.4.0</u> 16.4.0

2020-06	RAN#88	RP-200959	0209			CR to 38.101-2: Introduce mmWave intra-band uplink CA configurations	16.4.0
2020-06	RAN#88	RP-200985	0161	1	В	CR to K1 value in Annex A.3.3 of 38.101-2	16.4.0
2020-06	RAN#88	RP-201046	0211		Α	CR to 38.101-2 on FR2 frequency separation class enhancement	16.4.0
2020-06	RAN#88	RP-200985	0191	2	В	CR on Pcmax correction for CA	16.4.0
2020-06	RAN#88	RP-200978	0155	1	В	CR to 38.101-2 for Introduction of band n259	16.4.0
2020-06	RAN#88	RP-201046	0147		Α	FR2 new MPR and modifiedmpr	16.4.0

History

Document history		
V16.4.0	July 2020	Publication