ETSITS 136 521-1 V9.6.0 (2012-01)

LTE;

Evolved Universal Terrestrial Radio Access (E-UTRA);
User Equipment (UE) conformance specification;
Radio transmission and reception;
Part 1: Conformance testing
(3GPP TS 36.521-1 version 9.6.0 Release 9)

Reference
RTS/TSGR-0536521-1v960

Keywords
LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2012. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intelle	ectual Property Rights	2
Forew	vord	2
Forew	vord	17
Introd	luction	17
1	Scope	18
2	References	19
3	Definitions, symbols and abbreviations	20
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
4	General	24
5	Frequency bands and channel arrangement	25
5.1	General	
5.2	Operating bands	25
5.3	TX-RX frequency separation	26
5.4	Channel arrangement	26
5.4.1	Channel spacing	26
5.4.2	Channel bandwidth	26
5.4.2.1	Channel bandwidths per operating band	27
5.4.3	Channel raster	28
5.4.4	Carrier frequency and EARFCN	28
6	Transmitter Characteristics	30
6.1	General	
6.2	Transmit power	
6.2.1	Void	
6.2.2	UE Maximum Output Power	30
6.2.2.1		
6.2.2.2	2 Test applicability	30
6.2.2.3	Minimum conformance requirements	30
6.2.2.4	4 Test description	31
6.2.2.4	4.1 Initial condition	31
6.2.2.4	4.2 Test procedure	32
6.2.2.4		33
6.2.2.5	5 Test requirements	33
6.2.3	Maximum Power Reduction (MPR)	34
6.2.3.1	1 Test purpose	34
6.2.3.2	2 Test applicability	34
6.2.3.3		34
6.2.3.4		
6.2.3.4		
6.2.3.4	1	35
6.2.3.4	4.3 Message contents	36
6.2.3.5	<u>.</u>	
6.2.4	Additional Maximum Power Reduction (A-MPR)	
6.2.4.1		
6.2.4.2	11 ,	
6.2.4.3	•	
6.2.4.4		
6.2.4.4		39
6.2.4.4	1	46
6.2.4.4	4.3 Message contents	47

6.2.4.5	Test requirements	49
6.2.5	Configured UE transmitted Output Power	
6.2.5.1	Test purpose	59
6.2.5.2	Test applicability	59
6.2.5.3	Minimum conformance requirements	59
6.2.5.4	Test description	
6.2.5.4.1	Initial conditions	60
6.2.5.4.2	Test procedure	60
6.2.5.4.3	Message contents	
6.2.5.5	Test requirement	61
6.3	Output Power Dynamics	61
6.3.1	Void	61
6.3.2	Minimum Output Power	61
6.3.2.1	Test purpose	61
6.3.2.2	Test applicability	61
6.3.2.3	Minimum conformance requirements	62
6.3.2.4	Test description	62
6.3.2.4.1	Initial conditions	62
6.3.2.4.2	Test procedure	63
6.3.2.4.3	Message contents	63
6.3.2.5	Test requirement	63
6.3.3	Transmit OFF power	63
6.3.3.1	Test purpose	63
6.3.3.2	Test applicability	
6.3.3.3	Minimum conformance requirement	64
6.3.3.4	Test description	64
6.3.3.5	Test requirement	
6.3.4	ON/OFF time mask	
6.3.4.1	General ON/OFF time mask	
6.3.4.1.1	Test purpose	64
6.3.4.1.2	Test applicability	
6.3.4.1.3	Minimum conformance requirement	
6.3.4.1.4	Test description	
6.3.4.1.4.1		
6.3.4.1.4.2	1	
6.3.4.1.4.3	8	
6.3.4.1.5	Test requirement	
6.3.4.2	PRACH and SRS time mask	
6.3.4.2.1	PRACH time mask	
6.3.4.2.2	SRS time mask	
6.3.5	Power Control	
6.3.5.1	Power Control Absolute power tolerance	
6.3.5.1.1	Test purpose	
6.3.5.1.2	Minimum conformance requirement	
6.3.5.1.3	Test applicability	
6.3.5.1.4	Test description	
6.3.5.1.5	Test requirement	
6.3.5.2	Power Control Relative power tolerance	
6.3.5.2.1	Test purpose	
6.3.5.2.2	Test applicability	
6.3.5.2.3	Minimum conformance requirement	
6.3.5.2.4	Test description	
6.3.5.2.5	Test requirement	
6.3.5.3	Aggregate power control tolerance	
6.3.5.3.1	Test purpose	
6.3.5.3.2	Test applicability	
6.3.5.3.3	Minimum conformance requirement	
6.3.5.3.4	Test description	
6.3.5.3.5	Test requirement	
6.4 6.5	Void	
6.5 6.5.1	Transmit signal quality	

6.5.1.1	Test purpose	
6.5.1.2	Test applicability	
6.5.1.3	Minimum conformance requirements	101
6.5.1.4	Test description	101
6.5.1.4.1	Initial condition	101
6.5.1.4.2	Test procedure	102
6.5.1.4.3	Message contents	
6.5.1.5	Test requirement	
6.5.2	Transmit modulation	
6.5.2.1	Error Vector Magnitude (EVM)	
6.5.2.1.1	Test Purpose	
6.5.2.1.2	Test applicability	
6.5.2.1.3	Minimum conformance requirements	
6.5.2.1.4	Test description	
6.5.2.1.5	Test requirement	
6.5.2.1A	PUSCH-EVM with exclusion period	
6.5.2.1A.1		
6.5.2.1A.2		
6.5.2.1A.3	Tr · · · ·	
6.5.2.1A.4	•	
6.5.2.1A.5	•	
6.5.2.1A.3	Carrier leakage	
6.5.2.2.1	· · · · · · · · · · · · · · · · · · ·	
6.5.2.2.1	Test emplies hility	
6.5.2.2.3	Test applicability	
	Minimum conformance requirements	
6.5.2.2.4	Test description	
6.5.2.2.5	Test requirement.	
6.5.2.3	In-band emissions for non allocated RB	
6.5.2.3.1	Test Purpose	
6.5.2.3.2	Test applicability	
6.5.2.3.3	Minimum conformance requirements	
6.5.2.3.4	Test description	
6.5.2.3.5	Test requirement	
6.5.2.4	EVM equalizer spectrum flatness	
6.5.2.4.1	Test Purpose	
6.5.2.4.2	Test applicability	
6.5.2.4.3	Minimum conformance requirements	
6.5.2.4.4	Test description	
6.5.2.4.5	Test requirement	
6.6	Output RF spectrum emissions.	
6.6.1	Occupied bandwidth	121
6.6.1.1	Test purpose	121
6.6.1.2	Test applicability	
6.6.1.2	Minimum conformance requirements	121
6.6.1.4	Test description	
6.6.1.4.1	Initial conditions	
6.6.1.4.2	Test procedure	123
6.6.1.4.3	Message contents	123
6.6.1.5	Test requirement	
6.6.2	Out of band emission	
6.6.2.1	Spectrum Emission Mask	
6.6.2.1.1	Test purpose	
6.6.2.1.2	Test applicability	
6.6.2.1.3	Minimum conformance requirements	
6.6.2.1.4	Test description	
6.6.2.1.5	Test requirements	
6.6.2.2	Additional Spectrum Emission Mask	
6.6.2.2.1	Test purpose	
6.6.2.2.2	Test applicability	
6.6.2.2.3	Minimum conformance requirements.	
6.6.2.2.4	Test description	
66225	Test requirements	120 134

6.6.2.3	Adjacent Channel Leakage power Ratio	
6.6.2.3.1	Test purpose	
6.6.2.3.2	Test applicability	
6.6.2.3.3	Minimum conformance requirements	136
6.6.2.3.4	Test description	138
6.6.2.3.5	Test requirement	140
6.6.2.4	Void	141
6.6.3	Spurious emissions	141
6.6.3.1	Transmitter Spurious emissions	141
6.6.3.1.1	Test purpose	141
6.6.3.1.2	Test applicability	141
6.6.3.1.3	Minimum conformance requirements	141
6.6.3.1.4	Test description	142
6.6.3.1.5	Test requirement	143
6.6.3.2	Spurious emission band UE co-existence	144
6.6.3.2.1	Test purpose	144
6.6.3.2.2	Test applicability	144
6.6.3.2.3	Minimum conformance requirements	144
6.6.3.2.4	Test description	147
6.6.3.2.5	Test requirement	148
6.6.3.3	Additional spurious emissions	151
6.6.3.3.1	Test purpose	151
6.6.3.3.2	Test applicability	151
6.6.3.3.3	Minimum conformance requirements	151
6.6.3.3.3.	4 Minimum requirement (network signalled value "NS_09")	152
6.6.3.3.4	Test description	
6.6.3.3.5	Test requirement	
6.7	Transmit intermodulation	160
6.7.1	Test purpose	160
6.7.2	Test applicability	
6.7.3	Minimum conformance requirements	
6.7.4	Test description	
6.7.4.1	Initial conditions	160
6.7.4.3	Test procedure	
6.7.4.3	Message contents	162
6.7.5	Test requirement	162
7 D		1.00
	eceiver Characteristics	
7.1	General	
7.2	Diversity characteristics	
7.3	Reference sensitivity level	
7.3.1	Test purpose	
7.3.2	Test applicability	
7.3.3	Minimum conformance requirements	
7.3.4	Test description	
7.3.4.1	Initial conditions	
7.3.4.2	Test procedure	
7.3.4.3	Message contents	
7.3.5	Test requirement	
7.4	Maximum input level	
7.4.1	Test purpose	
7.4.2	Test applicability	
7.4.3	Minimum conformance requirements	
7.4.4	Test description	
7.4.4.1	Initial conditions	
7.4.4.2	Test procedure	
7.4.4.3	Message contents	
7.4.5	Test requirement	
7.5	Adjacent Channel Selectivity (ACS)	
7.5.1	Test purpose	
7.5.2	Test applicability	
753	Minimum conformance requirements	173

7.5.4	Test description	174
7.5.4.1	Initial conditions	
7.5.4.2	Test procedure	
7.5.4.3	Message contents	
7.5.5	Test requirement	
7.6	Blocking characteristics	
7.6.1	In-band blocking	
7.6.1.1	Test Purpose	
7.6.1.2	Test Applicability	
7.6.1.3	Minimum Conformance Requirements	
7.6.1.4	Test Description	
7.6.1.4.1	Initial Conditions	
7.6.1.4.2	Test Procedure	
7.6.1.4.3	Message Contents	
7.6.1.5	Test Requirement	
7.6.2	Out-of-band blocking	
7.6.2.1	Test Purpose	
7.6.2.2	Test Applicability	
7.6.2.3	Minimum Conformance Requirements	
7.6.2.4	Test Description	
7.6.2.4.1	Initial Conditions	
7.6.2.4.2	Test Procedure	
7.6.2.4.3	Message Contents	
7.6.2.5	Test Requirement	
7.6.3	Narrow band blocking	
7.6.3.1	Test Purpose	
7.6.3.2	Test Applicability	
7.6.3.3	Minimum Conformance Requirements	
7.6.3.4	Test Description	
7.6.3.4.1	Initial Conditions	
7.6.3.4.2	Test Procedure	187
7.6.3.4.3	Message Contents	187
7.6.3.5	Test Requirement	
7.7	Spurious response	188
7.7.1	Test Purpose	188
7.7.2	Test Applicability	188
7.7.3	Minimum Conformance Requirements	188
7.7.4	Test Description	
7.7.4.1	Initial Conditions	188
7.7.4.2	Test Procedure	
7.7.4.3	Message Contents	
7.7.5	Test Requirement	189
7.8	Intermodulation characteristics	
7.8.1	Wide band Intermodulation	190
7.8.1.1	Test purpose	190
7.8.1.2	Test applicability	
7.8.1.3	Minimum conformance requirements	
7.8.1.4	Test description	
7.8.1.4.1	Initial condition	
7.8.1.4.2	Test procedure	
7.8.1.4.3	Message contents	
7.8.1.5	Test requirements	
7.8.2	Void	
7.9	Spurious emissions	
7.9.1	Test Purpose	
7.9.2	Test Applicability	
7.9.3	Minimum Conformance Requirements	
7.9.4	Test Description	
7.9.4.1	Initial Conditions	
7.9.4.2	Test Procedure	
7.9.4.3 7.9.5	Message Contents Test Requirement	194 197
/ Y 🗅	Lest Kedlifement	Į U/

8	Performanc	e Requirement	196
8.1	General.		196
8.1.1	Dual-	antenna receiver capability	196
8.1.1.1	Si	multaneous unicast and MBMS operations	196
8.1.1.2	. D	ual-antenna receiver capability in idle mode	196
8.2		ation of PDSCH (Cell-Specific Reference Symbols)	
8.2.1		(Fixed Reference Channel)	
8.2.1.1		DD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)	
8.2.1.1		FDD PDSCH Single Antenna Port Performance	
8.2.1.1		FDD PDSCH Single Antenna Port Performance (Release 9 and forward)	
8.2.1.1		FDD PDSCH Single Antenna Port Performance with 1 PRB in presence of MBSFN	
8.2.1.2		DD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)	
8.2.1.2		FDD PDSCH Transmit Diversity 4x2	
8.2.1.2		FDD PDSCH Transmit Diversity 4x2 (Release 9 and forward)	
8.2.1.3		DD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)	
8.2.1.3		FDD PDSCH Open Loop Spatial Multiplexing 2x2	
8.2.1.3		FDD PDSCH Open Loop Spatial Multiplexing 4x2	
8.2.1.4		DD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)	
8.2.1.4		FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 2x2	
8.2.1.4		FDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 2x2 (Release 9 and forward)	
8.2.1.4	2	FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 4x2	
8.2.1.4	.2_1	FDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 4x2 (Release 9 and forward)	225
8.2.2	TDD	(Fixed Reference Channel)	226
8.2.2.1	T	DD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)	228
8.2.2.1	.1	TDD PDSCH Single Antenna Port Performance	228
8.2.2.1	.1 1	TDD PDSCH Single Antenna Port Performance (Release 9 and forward)	
8.2.2.1		TDD PDSCH Single Antenna Port Performance with 1 PRB in the presence of MBSFN	
8.2.2.2		DD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)	
8.2.2.2		TDD PDSCH Transmit Diversity 2x2	
8.2.2.2		TDD PDSCH Transmit Diversity 2x2 (Release 9 and forward)	
8.2.2.2		TDD PDSCH Transmit Diversity 4x2	
8.2.2.2		TDD PDSCH Transmit Diversity 4x2 (Release 9 and forward)	
8.2.2.3		DD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)	
8.2.2.3		TDD PDSCH Open Loop Spatial Multiplexing 4x2	
8.2.2.4		DD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference	244
0.2.2.4			244
0 2 2 4	•	ymbols)	
8.2.2.4		TDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 2x2	
8.2.2.4		TDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 2x2 (Release 9 and forward)	
8.2.2.4		TDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 4x2	
8.2.2.4	_	TDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 4x2 (Release 9 and forward)	
8.3		ation of PDSCH (User-Specific Reference Symbols)	
8.3.1			
8.3.2			
8.3.2.1		DD PDSCH Single-layer Spatial Multiplexing Performance (UE-Specific Reference Symbols)	
8.3.2.1	.1	TDD PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 8 and forward)	
8.3.2.1	.1.1	Test purpose	258
8.3.2.1	.1.2	Test applicability	
8.3.2.1	.1.3	Minimum conformance requirements	259
8.3.2.1	.1.4	Test description	259
8.3.2.1	.1.4.2	Test procedure	
8.3.2.1		Message contents	
8.3.2.1		Test requirement	
8.3.2.1		TDD PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 9 and forward)	
8.3.2.1		Test purpose	
	.1_1.2	Test applicability	
8.3.2.1		Minimum conformance requirements	
	.1_1.4	Test description	
8.3.2.1		Test description	
8.3.2.1		TDD PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 without a	202
0.2.2.1	. • 🗠	simultaneous transmission	263
0271	2.1		
8.3.2.1 8.3.2.1		Test applies hility	
0.3.Z.I	.4.4	Test applicability	∠0.1

8.3.2.1.2.3	Minimum conformance requirements	263
8.3.2.1.2.4	Test description	
8.3.2.1.2.4.1	Initial conditions	
8.3.2.1.2.4.2	Test procedure	264
8.3.2.1.2.4.3	Message contents	
8.3.2.1.2.5	Test requirement	
8.3.2.1.3	TDD PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 with a simultaneous	
	transmission	265
8.3.2.1.3.1	Test purpose	
8.3.2.1.3.2	Test applicability	
8.3.2.1.3.3	Minimum conformance requirements	
8.3.2.1.3.4	Test description	
8.3.2.1.3.4.1	Initial conditions	
8.3.2.1.3.4.2	Test procedure	
8.3.2.1.3.4.3	Message contents	
8.3.2.1.3.5	Test requirement	
8.3.2.2	TDD PDSCH Dual-layer Spatial Multiplexing Performance (UE-Specific Reference Symbols)	
8.3.2.2.1	TDD PDSCH Dual-layer Spatial Multiplexing	
8.3.2.2.1.1	Test purpose	
8.3.2.2.1.2	Test applicability	
8.3.2.2.1.3	Minimum conformance requirements	
8.3.2.2.1.4	Test description	
8.3.2.2.1.4.1	Initial conditions	
8.3.2.2.1.4.2	Test procedure	
8.3.2.1.2.4.3	Message contents	
8.3.2.2.1.5	Test requirement	
	rest requirement	
8.4.1.1	DDFDD PCFICH/PDCCH Single-antenna Port Performance	
8.4.1.1		
8.4.1.1.2	Test purpose	
8.4.1.1.3	Test applicability	
	Minimum conformance requirements	
8.4.1.1.4 8.4.1.1.5	Test description	
	Test requirement	
8.4.1.2	FDD PCFICH/PDCCH Transmit Diversity Performance	
8.4.1.2.1	FDD PCFICH/PDCCH Transmit Diversity 2x2	
8.4.1.2.1.1	Test purpose	
8.4.1.2.1.2	Test applicability	
8.4.1.2.1.3	Minimum conformance requirements	
8.4.1.2.1.4	Test description	
8.4.1.2.1_1	FDD PCFICH/PDCCH Transmit Diversity 2x2	
8.4.1.2.1_1.1	Test purpose	
8.4.1.2.1_1.2	Test applicability	
8.4.1.2.1_1.3	Minimum conformance requirements	
8.4.1.2.1_1.4	Test description	
8.4.1.2.2	FDD PCFICH/PDCCH Transmit Diversity 4x2	
8.4.1.2.2.1	Test purpose	
8.4.1.2.2.2	Test applicability	
8.4.1.2.2.3	Minimum conformance requirements	
8.4.1.2.2.4	Test description	
8.4.1.2.2.5	Test requirement	
8.4.1.2.2_1	FDD PCFICH/PDCCH Transmit Diversity 4x2	
8.4.1.2.2_1.1	Test purpose	
8.4.1.2.2_1.2	Test applicability	
8.4.1.2.2_1.3	Minimum conformance requirements	
8.4.1.2.2_1.4	Test description	
8.4.1.2.2_1.5	Test requirement	
	TDD	
8.4.2.1	TDD PCFICH/PDCCH Single-antenna Port Performance	
8.4.2.1.1	Test purpose	
8.4.2.1.2	Test applicability	
8 1 2 1 3	Minimum conformance requirements	282

0.4.2.1.4	The state of the s	200
8.4.2.1.4	Test description	
8.4.2.1.5	Test requirement	
8.4.2.2	TDD PCFICH/PDCCH Transmit Diversity Performance	
8.4.2.2.1	TDD PCFICH/PDCCH Transmit Diversity 2x2	
8.4.2.2.1.1	Test purpose	
8.4.2.2.1.2	Test applicability	
8.4.2.2.1.3	Minimum conformance requirements	
8.4.2.2.1.4	Test description	
8.4.2.2.1.5	Test requirement	286
8.4.2.2.1_1	TDD PCFICH/PDCCH Transmit Diversity 2x2	287
8.4.2.2.1_1.1	Test purpose	
8.4.2.2.1_1.2	Test applicability	
8.4.2.2.1_1.3	Minimum conformance requirements	
8.4.2.2.1_1.4	Test description	
8.4.2.2.1_1.5	Test requirement	
8.4.2.2.2	TDD PCFICH/PDCCH Transmit Diversity 4x2	
8.4.2.2.2.1	Test purpose	
8.4.2.2.2.2	Test applicability	
8.4.2.2.2.3	Minimum conformance requirements	
8.4.2.2.2.4	Test description	
8.4.2.2.2.4.1	Initial conditions	
8.4.2.2.2.4.2	Test procedure	
8.4.2.2.2.4.3	Message contents	
8.4.2.2.2.5	Test requirement	
8.4.2.2.2_1	TDD PCFICH/PDCCH Transmit Diversity 4x2	
8.4.2.2.2_1.1	Test purpose	292
8.4.2.2.2_1.2	Test applicability	292
8.4.2.2.2_1.3	Minimum conformance requirements	
8.4.2.2.2_1.4	Test description	
8.4.2.2.2_1.4.1	Initial conditions	
8.4.2.2.2_1.4.2	Test procedure	
8.4.2.2.2 1.4.3	Message contents	
8.4.2.2.2.5	Test requirement	
	odulation of PHICH	
	DD	
8.5.1.1		
	FDD PHICH Single-antenna Port Performance	
8.5.1.1.1	Test purpose	
8.5.1.1.2	Test applicability	
8.5.1.1.3	Minimum conformance requirements	
8.5.1.1.4	Test description	
8.5.1.1.5	Test requirement	
8.5.1.2	FDD PHICH Transmit Diversity Performance	
8.5.1.2.1	FDD PHICH Transmit Diversity 2x2	297
8.5.1.2.1_1	FDD PHICH Transmit Diversity 2x2	
8.5.1.2.2	FDD PHICH Transmit Diversity 4x2	302
8.5.1.2.2.1	Test purpose	302
8.5.1.2.2.2	Test applicability	302
8.5.1.2.2.3	Minimum conformance requirements	
8.5.1.2.2.4	Test description	
8.5.1.2.2.5	Test requirement	
8.5.1.2.2_1	FDD PHICH Transmit Diversity 4x2	
8.5.1.2.2_1.1	Test purpose	
8.5.1.2.2_1.1	Test applicability	
8.5.1.2.2_1.3	Minimum conformance requirements	
8.5.1.2.2_1.4	Test description	
8.5.1.2.2_1.4	<u>-</u>	
	Test requirement	
	TDD DUICH Single ontonne Dout Doufermones	
8.5.2.1	TDD PHICH Single-antenna Port Performance	
8.5.2.1.1	Test purpose	
8.5.2.1.2	Test applicability	
8.5.2.1.3	Minimum conformance requirements	
85214	Test description	308

8.5.2.1.5	Test requirement	310
8.5.2.2	TDD PHICH Transmit Diversity Performance	
8.5.2.2.1	TDD PHICH Transmit Diversity 2x2	
8.5.2.2.1	·	
8.5.2.2.2	TDD PHICH Transmit Diversity 4x2	
8.5.2.2.2		
8.6	Demodulation of PBCH	
8.7	Sustained downlink data rate provided by lower layers	
8.7.1	FDD	
8.7.1.1	FDD sustained data rate performance	
8.7.1.1.1	Test purpose	
8.7.1.1.2	Test applicability	
8.7.1.1.3	Minimum requirements	
8.7.1.1.4	Test description	
8.7.1.1.5	Test description Test requirement	
8.7.1	TDD	
8.7.2.1	TDD sustained data rate performance	
8.7.2.1		
8.7.2.1.1	Test purpose	
	Test applicability	
8.7.2.1.3	Minimum requirements	
8.7.2.1.4	Test description	
8.7.2.1.5	Test requirement	331
9 Re	porting of Channel State Information	333
9.1	General	
9.2	CQI Reporting under AWGN conditions	
9.2.1	CQI Reporting under AWGN conditions - PUCCH 1-0	
9.2.1.1	FDD CQI Reporting under AWGN conditions – PUCCH 1-0	
9.2.1.1	Test purpose	
9.2.1.1.2	Test applicability	
9.2.1.1.2	Minimum conformance requirements	
9.2.1.1.3		
9.2.1.1.4	Test description	
	Test requirement	
9.2.1.2	TDD CQI Reporting under AWGN conditions – PUCCH 1-0	
9.2.1.2.1	Test purpose	
9.2.1.2.2	Test applicability	
9.2.1.2.3	Minimum conformance requirements	
9.2.1.2.4	Test description	
9.2.1.2.5	Test requirement	
9.2.2	CQI Reporting under AWGN conditions - PUCCH 1-1	
9.2.2.1	FDD CQI Reporting under AWGN conditions – PUCCH 1-1	
9.2.2.1.1	Test purpose	
9.2.2.1.2	Test applicability	
9.2.2.1.3	Minimum conformance requirements	
9.2.2.1.4	Test description	
9.2.2.1.5	Test requirement	
9.2.2.2	TDD CQI Reporting under AWGN conditions – PUCCH 1-1	
9.2.2.2.1	Test purpose	344
9.2.2.2.2	Test applicability	344
9.2.2.2.3	Minimum conformance requirements	344
9.2.2.2.4	Test description	345
9.2.2.2.5	Test requirement	348
9.3	CQI Reporting under fading conditions	348
9.3.1	Frequency-selective scheduling mode	348
9.3.1.1	CQI Reporting under fading conditions – PUSCH 3-0	
9.3.1.1.1	FDD CQI Reporting under fading conditions – PUSCH 3-0	
9.3.1.1.2	TDD CQI Reporting under fading conditions – PUSCH 3-0	
9.3.2	Frequency non-selective scheduling mode	
9.3.2.1	CQI Reporting under fading conditions – PUCCH 1-0	
9.3.2.1.1	FDD CQI Reporting under fading conditions – PUCCH 1-0	
9.3.2.1.2	TDD CQI Reporting under fading conditions – PUCCH 1-0	
9.3.3	Frequency-selective interference	
	= 1 1	

9.3.3.1	CQI Reporting under fading conditions and frequency-selective interference – PUSCH 3-0	362
9.3.3.1.1		
02216	3-0	362
9.3.3.1.2		265
9.3.4	PUSCH 3-0UE-selected subband CQI	
9.3.4.1	CQI Reporting under fading conditions – PUSCH 2-0	
9.3.4.1.1		
9.3.4.1.2		
9.3.4.2	CQI Reporting under fading conditions – PUCCH 2-0	
9.3.4.2.1		374
9.3.4.2.2		
9.4	Reporting of Precoding Matrix Indicator (PMI)	
9.4.1	Single PMI	
9.4.1.1	PMI Reporting – PUSCH 3-1 (Single PMI)	
9.4.1.1.1		
9.4.1.1.2 9.4.1.2	1 6 , 5 ,	
9.4.1.2 9.4.1.2.1	PMI Reporting – PUCCH 2-1 (Single PMI)	
9.4.1.2.2		
9.4.2	Multiple PMI	
9.4.2.1	PMI Reporting – PUSCH 1-2 (Multiple PMI)	
9.4.2.1.1		
9.4.2.1.1	1_1 FDD PMI Reporting – PUSCH 1-2 (Multiple PMI)	398
9.4.2.1.2		
9.4.2.1.2		
9.4.2.2	PMI Reporting – PUSCH 2-2 (Multiple PMI)	
9.4.2.2.1	1 0	
9.4.2.2.2	1 6	
9.5	Reporting of Rank Indicator (RI)	
9.5.1 9.5.1.1	RI Reporting	
9.5.1.1 9.5.1.1.1		
9.5.1.1.2	1 1	
9.5.1.1.3		
9.5.1.1.4	•	
9.5.1.1.5		
9.5.1.2	TDD RI Reporting – PUSCH 3-1	417
9.5.1.2.1	1 Test purpose	417
9.5.1.2.2	11 2	
9.5.1.2.3	1	
9.5.1.2.4		
9.5.1.2.5	<u>.</u>	
10 10.1	MBMS Performance	
10.1	Test purpose	
10.1.2	Test applicability	
10.1.3	Minimum conformance requirements	
10.1.4	Test description	
10.1.5	Test requirement	
10.2	TDD MBMS performance (Fixed Reference Channel)	
10.2.1	Test purpose	423
10.2.2	Test applicability	
10.2.3	Minimum conformance requirements	
10.2.4	Test description	
10.2.5	Test requirement	
	A (normative): Measurement Channels	
	General	
	JL reference measurement channels	
A.2.1	General	427

A.2.1.1	Applicability and common parameters	
A.2.1.2	Determination of payload size	
A.2.2	Reference measurement channels for FDD	
A.2.2.1	Full RB allocation	
A.2.2.1.1	(- w	
A.2.2.1.2		
A.2.2.2	Partial RB allocation	
A.2.2.2.1	(- w	
A.2.2.2.2		
A.2.2.3	Reference measurement channels for sustained downlink data rate provided by lower layers	
A.2.3	Reference measurement channels for TDD	
A.2.3.1	Full RB allocation	
A.2.3.1.1		
A.2.3.1.2		
A.2.3.2	Partial RB allocation	
A.2.3.2.1 A.2.3.2.2		
A.2.3.2.2 A.2.3.3	2 16-QAM	
A.3 D	L reference measurement channels	
A.3.1	General	
A.3.2	Reference measurement channel for receiver characteristics	
A.3.2A	Downlink Reference measurement channel for TX characteristics	
A.3.3	Reference measurement channel for PDSCH performance requirements (FDD)	
A.3.3.1	Single-antenna transmission (Common Reference Symbols)	
A.3.3.2	Multi-antenna transmission (Common Reference Symbols)	
A.3.3.2.1		
A.3.3.2.2		
A.3.4	Reference measurement channel for PDSCH performance requirements (TDD)	
A.3.4.1	Single-antenna transmission (Common Reference Symbols)	
A.3.4.2	Multi-antenna transmission (Common Reference Symbols)	
A.3.4.2.1	- · · · · · · · · · · · · · · · · · · ·	
A.3.4.2.2		
A.3.4.3	Reference Measurement Channels for UE-Specific Reference Symbols	
A.3.5	Reference measurement channels for PDCCH/PCFICH performance requirements	
A.3.5.1 A.3.5.2	FDD	
	Reference measurement channels for PHICH performance requirements	
A.3.6 A.3.7	[FFS]	
A.3.7 A.3.8	Reference measurement channels for MBMS performance requirements	475
A.3.8.1	FDD	
A.3.8.2	TDD	
A.3.9	Reference measurement channels for sustained downlink data rate provided by lower layers	
A.3.9.1	FDD	
A.3.9.2	TDD	
A.4 C	QI reference measurement channels	480
A.5 O	FDMA Channel Noise Generator (OCNG)	487
A.5.1	OCNG Patterns for FDD	
A.5.1.1	OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern	487
A.5.1.2	OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern	
A.5.1.3	OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	
A.5.2	OCNG Patterns for TDD	
A.5.2.1	OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern	
A.5.2.2	OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern	
A.5.2.3	OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	
Annos	B (normative): Propagation Conditions	402
B.0 N	o interference	492
B.1 S	tatic propagation condition	492
B.1.1	Definition of Additive White Gaussian Noise (AWGN) Interferer	

B.2	Multi-path fading Propagation Conditions	492
B.2.1	Delay profiles	
B.2.2	1	
B.2.3	MIMO Channel Correlation Matrices	494
B.2.3.		
B.2.3.		
B.2.4	1 6	
B.2.5		
B.2.6	MBSFN Propagation Channel Profile	498
B.3	High speed train scenario	498
B.4	Beamforming Model	499
B.4.1	Single-layer beamforming (Antenna port 5, 7 or 8)	
Anne	ex C (normative): Downlink Physical Channels	501
C.0	Downlink signal levels	501
C.1	General	501
C.2	Set-up	504
C.3	Connection	505
C.3.0		
C.3.1	Measurement of Receiver Characteristics	
C.3.1		
	1	
	ex D (normative): Characteristics of the Interfering Signal	
D.1	General	509
D.2	Interference signals	509
Anne	ex E (normative): Global In-Channel TX-Test	510
E.1	General	510
E.2	Signals and results	
E.2.1	Basic principle	
E.2.2	Output signal of the TX under test	
E.2.3	Reference signal	
E.2.4	Measurement results	
E.2.5	Measurement points	511
E.3	Signal processing	512
E.3.1	Pre FFT minimization process	
E.3.2	Timing of the FFT window	
E.3.3	Post FFT equalisation	
	•	
E.4	Derivation of the results	
E.4.1	EVM	
E.4.2	Averaged EVM	515
E.4.3	In-band emissions measurement	515
E.4.4	EVM equalizer spectrum flatness	517
E.4.5	Frequency error and Carrier leakage	517
E.4.6	EVM of Demodulation reference symbols (EVM _{DMRS})	518
E.4.6.	1 1 st average for EVM _{DMRS}	518
E.4.6.	2 Final average for EVM _{DMRS}	519
E.5	EVM and inband emissions for PUCCH	519
E.5.1	Basic principle	
E.5.2	Output signal of the TX under test	
E.5.3	Reference signal	
E.5.4	Measurement results	
E.5.5	Measurement points	
F 5 6	1	

E.5.7	Timing of the FFT window	520
E.5.8	Post FFT equalisation	520
E.5.9	Derivation of the results	521
E.5.9.	recen	
E.5.9.	e recen	
E.5.9.	3 In-band emissions measurement	522
E.6	EVM for PRACH	523
E.6.1	Basic principle	
E.6.2	Output signal of the TX under test	
E.6.3	Reference signal	
E.6.4	Measurement results	524
E.6.5	Measurement points	524
E.6.6	Pre FFT minimization process.	
E.6.7	Timing of the FFT window	
E.6.8	Post FFT equalisation	
E.6.9	Derivation of the results	
E.6.9.	I MACII	
E.6.9.	2 Averaged EVM _{PRACH}	526
E.7	EVM with exclusion period	526
E.7.1	General	
E.7.2	The model	
E.7.3	Illustration	
E.7.4	Formula	530
Anne	ex F (normative): Measurement uncertainties and Test Tolerances	532
F.1	Acceptable uncertainty of Test System (normative)	
F.1.1	Measurement of test environments	
F.1.2	Measurement of transmitter	
F.1.3	Measurement of receiver	
F.1.4 F.1.5	Measurement of Channel State Information reporting	
Г.1.Э	Measurement of Channel State Information reporting	
F.2	Interpretation of measurement results (normative)	
F.3	Test Tolerance and Derivation of Test Requirements (informative)	
F.3.1	Measurement of test environments	
F.3.2	Measurement of transmitter	
F.3.3	Measurement of receiver	
F.3.4	Measurement of performance requirements	
F.3.5	Measurement of Channel State Information reporting	569
Anne	ex G (normative): Statistical Testing	571
G.1	General	571
C^{2}	Statistical testing of receiver characteristics	<i>57</i> 1
G.2		
G.2.1	General	
G.2.2	Mapping throughput to error ratio	
G.2.3	Design of the test	
G.2.4 G.2.5	Numerical definition of the pass fail limits	
G.2.5 G.2.6	Pass fail decision rules	
G.3	Statistical testing of Performance Requirements with throughput	
G.3.1	General	
G.3.2	Mapping throughput to error ratio	
G.3.3	Design of the test	
G.3.4	Pass Fail limit	
G.3.5	Minimum Test time	
G.3.6	Test conditions for receiver performance tests	582
G4	Statistical testing of Performance Requirements with probability of misdetection	587

G.4.1 Genera	1	587
	ng the UE reaction to error ratio	
	of the test	
	ical definition of the pass fail limits	
	il decision rules	
	um Test timeonditions for receiver performance tests	
	•	
	g throughput ratio	
	1	
G.5.2 Establi	shing t_{rnd}	593
G.5.3 Measur	ring T-put	593
G.5.4 Number	er of samples for throughput ratios	593
G.X Theory to	derive the numbers in Table G.2.1.3-1 (Informative)	595
	Ratio (ER)	
	esign	
G.X.3 Confid	ence level	595
	action: Supplier Risk versus Customer Risk	
	er Risk versus Customer Risk	
	action: Standard test versus early decision concept	
	rd test versus early decision concept	
	vity	
	of the testtion to derive the pass fail limits in Table G.2.1.3-1	
G.71.10 Simula	don to don'to the pass ran minus in ruble 0.2.11.5 1	
Annex H (norn	native): Uplink Physical Channels	601
H.0 Uplink Si	gnal Levels	601
H.1 General		601
H.2 Set-up		602
H.3 Connection	on	602
H.3.0 Measur	rement of Transmitter Characteristics	602
	rement of Receiver Characteristics	
H.3.2 Measur	rement of Performance Requirements	603
Annex I (inform	mative): Handling of different releases	604
I.1 Mapping	of minimum requirements to conformance tests	604
I.2 Structure	and numbering of subclauses	605
I.3 Specifica	tion of the additional tests	606
Annex J (inform	mative): Change history	607
History		620

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 1 of a multi-parts TS:

3GPP TS 36.521-1: Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification Radio transmission and reception; Part 1: Conformance Testing.

3GPP TS 36.521-2 [11]: Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification Radio transmission and reception; Part 2: Implementation Conformance Statement (ICS).

 3GPP TS 36.521-3 [12]: Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification Radio transmission and reception; Part 3: Radio Resource Management (RRM) conformance testing.

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain transmitting characteristics, receiving characteristics and performance requirements as part of the 3G Long Term Evolution (3G LTE). Conformance test for the support of RRM (Radio Resource Management) are specified in TS 36.521-3 [12].

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "definition and applicability" part of the test.

For example only Release 8 and later UE declared to support LTE shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [1] [2] 3GPP TS 36.101: "E-UTRA UE radio transmission and reception". ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain" [3] [4] 3GPP TS 36.133: "E-UTRA requirements for support of radio resource management". [5] 3GPP TS 36.331: "E-UTRA Radio Resource Control (RRC): protocol specification". [6] 3GPP TS 36.304: "E-UTRA UE procedures in idle mode". 3GPP TS 36.508: "Common test environments for User Equipment (UE)". [7] [8] 3GPP TS 36.211: "Physical Channels and Modulation". 3GPP TS 36.212: "E-UTRA Multiplexing and channel coding". [9] [10] 3GPP TS 36.213: "E-UTRA Physical layer procedures". 3GPP TS 36.521-2: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment [11] (UE) conformance specification; Radio transmission and reception; Part 2: Implementation Conformance Statement (ICS)". 3GPP TS 36.521-3: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment [12] (UE) conformance specification; Radio transmission and reception; Part 3: Radio Resource Management (RRM) conformance testing".

3 Definitions, symbols and abbreviations

Definitions 3.1

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Maximum Output Power: The mean power level per carrier of UE measured at the antenna connector in a specified reference condition.

Mean power: When applied to E-UTRA transmission this is the power measured in the operating system bandwidth of the carrier. The period of measurement shall be at least one subframe (1ms) unless otherwise stated.

Occupied bandwidth: The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission.

Output power: The mean power of one carrier of the UE, delivered to a load with resistance equal to the nominal load impedance of the transmitter.

PMI delay: The rate in basic time unit at which PMI is updated.

Reference bandwidth: The bandwidth in which an emission level is specified.

Transmission bandwidth: Bandwidth of an instantaneous transmission from a UE or BS, measured in Resource Block units.

Transmission bandwidth configuration: The highest transmission bandwidth allowed for uplink or downlink in a given channel bandwidth, measured in Resource Block units.

Transmit Diversity: Transmit diversity is based on space-frequency block coding techniques complemented with frequency-shift time diversity when four transmit antennas is used.

3.2 **Symbols**

 F_{UL_high}

For the purposes of the present document, the following symbols apply:

$\mathrm{BW}_{\mathrm{Channel}}$	Channel bandwidth
$E_{\scriptscriptstyle RS}$	Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.
	excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{E}_s	The received energy per RE of the wanted signal during the useful part of the symbol, i.e.
	excluding the cyclic prefix, averaged across the allocated RB(s) (average power within the allocated RB(s), divided by the number of RE within this allocation, and normalized to the subcarrier spacing) at the UE antenna connector
F	Frequency
F _{Interferer} (offset)	Frequency offset of the interferer
$F_{Interferer}$	Frequency of the interferer
F_{C}	Frequency of the carrier centre frequency
F_{DL_low}	The lowest frequency of the downlink operating band
F_{DL_high}	The highest frequency of the downlink operating band
F_{UL_low}	The lowest frequency of the uplink operating band

The highest frequency of the uplink operating band

 I_o

 N_{DL}

 N_{oc}

The power spectral density of the total input signal (power averaged over the useful part of the

Editor's note: one of the two following definitions for Io will be used (TBD in RAN4)

symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal
The power spectral density of the total input signal at the UE antenna connector (power averaged
over the useful part of the symbols within a given bandwidth and normalised to the said bandwidth), including the own-cell downlink signal
The total transmitted power spectral density of the own-cell downlink signal (power averaged over
the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector
The total received power spectral density of the own-cell downlink signal (power averaged over
the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector
The received power spectral density of the total noise and interference for a certain RE (average
power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector
The number of resource blocks allocated in the uplink transmission bandwidth.
Cyclic prefix length

 $\begin{array}{c} measured \ at \ the \ UE \ antenna \ connector \\ N_{Offs\text{-}DL} & Offset \ used \ for \ calculating \ downlink \ EARFCN \\ N_{Offs\text{-}UL} & Offset \ used \ for \ calculating \ uplink \ EARFCN \end{array}$

Downlink EARFCN

 N_{otx} The power spectral density of a white noise source (average power per RE normalised to the subcarrier spacing) simulating eNode B transmitter impairments as at the eNode B transmit antenna connector

The power spectral density of a white noise source (average power per RE normalised to the subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

N_{UL} Uplink EARFCN
P Number of cell-specific antenna ports

p Antenna port number

 P_{CMAX} The measured configured maximum UE output power..

P_{EMAX} Maximum allowed UE output power signalled by higher layers. Same as IE *P-Max*, defined in [5].

 $P_{PowerClass}$ $P_{PowerClass}$ is the nominal UE power (i.e., no tolerance).

P_{UMAX} Maximum UE Power with possible power reduction due to modulation type, network signalling

values and location near the edge of the band; it equals P_{CMAX} when the IE P-Max, defined in [5],

is not signalled.

 $\begin{array}{lll} Rav & Minimum \ average \ throughput \ per \ RB \\ P_{Interferer} & Modulated \ mean \ power \ of \ the \ interferer \\ \Delta F_{OOB} & \Delta \ Frequency \ of \ Out \ Of \ Band \ emission \\ RB \ \# & Position \ of \ the \ RB \ in \ the \ channel \ bandwidth. \\ \end{array}$

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity
A-MPR Additional Maximum Power Reduction

AWGN Additive White Gaussian Noise BCCH Broadcast Control Channel

BCH Broadcast ChannelBS Base Station

CP Cyclic Prefix

CQI Channel Quality Indicator CW Continuous Wave

Cw Continuous wave

DCI Downlink Control Information

DL Downlink

DTX Discontinuous Transmission
DwPTS Downlink Pilot Time-Slot

EARFCN E-UTRA Absolute Radio Frequency Channel Number

EPRE Energy Per Resource Element

E-UTRA Evolved UMTS Terrestrial Radio Access

EUTRAN Evolved UMTS Terrestrial Radio Access Network

EVM Error Vector Magnitude
FDD Frequency Division Duplex
FRC Fixed Reference Channel
FSTD Frequency-Shift Time Diversity

HARQ Hybrid ARQ
HD-FDD Half- Duplex FDD
MAC Medium Access Control

MBMS Multimedia Broadcast Multicast Service

MCS Modulation and Coding Scheme
MOP Maximum Output Power
MPR Maximum Power Reduction
MSR Maximum Sensitivity Reduction
OCNG OFDMA Channel Noise Generator

OFDMA Orthogonal Frequency Division Multiple Access

OOB Out-of-band PA Power Amplifier

PBCH Physical Broadcast Channel PCCH Paging Control Channel

PCFICH Physical Control Format Indicator Channel
PDCCH Physical Downlink Control Channel
PDSCH Physical Downlink Shared Channel

PDU Packet Data Unit

PHICH Physical Hybrid ARQ Indicator Channel

Pm-dsg Probability of miss-detection of the Downlink Scheduling Grant

PMI Precoding Matrix Indicator
PRACH Physical Random Access Channel
PRB Physical Resource Block

PSS Primary Synchronization Signal
PSS_RA PSS-to-EPRE ratio for the channel PSS
PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared ChannelRE Resource Element

REFSENS Reference Sensitivity power level

RI Rank Indicator RLC Radio Link Control

RMC Reference Measurement Channel

r.m.s Root Mean Square

RNTI Radio Network Temporary Identifier

RRC Radio Resource Control
RS Reference Signal

RSRP Reference Signal Received Power

SCH Synchronization Channel SDU Service Data Unit

SFBC Space-Frequency Block Coding

SNR Signal-to-Noise Ratio
SRS Sounding Reference Signal
SSS Secondary Synchronization Signal

SSS_RA SSS-to-RS EPRE ratio for the channel SSS

TDD Time Division Duplex TPC Transmit Power Control

TPMI Transmitted Precoding Matrix Indicator

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunications System

UpPTS Uplink Pilot Time-Slot

UTRA UMTS Terrestrial Radio Access

UTRAN UMTS Terrestrial Radio Access Network

xCH_RA xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS xCH_RB xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols containing RS

4 General

Unless otherwise stated, the following reference conditions used by all test cases in this document are specified in TS 36.508 [7]:

- Connection Diagrams,
- Test Frequencies,
- Cell Settings,
- Reference Environments,
- Environmental Conditions,
- Generic Connection Setup Procedures,
- System Information (SI),
- Message Contents.

Where a test requires one of the above reference conditions that are different, this will be specified within the test itself.

The Minimum Requirements defined in each test make no allowance for Measurement Uncertainty. Therefore, Test Tolerances are used to relax the Minimum Requirements. If the Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for that test is non-zero. For each test the Test Tolerances are individually calculated to create the Test Requirements. The Test Tolerance for each test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex F.3.

Downlink and Uplink transmissions are organized into radio frames with $T_f = 307200 \times T_s = 10 \text{ ms}$ duration. Two radio frame structures are supported in this document:

- Type 1, applicable to FDD,
- Type 2, applicable to TDD.

In clauses 6 and 7 TX and RX test cases for FDD/TDD test cases are defined. FDD and TDD test scenarios/ requirements are included within the same test case. For test cases with any difference between the FDD and TDD branches the test description part of the test case has been separated in two sections to cover the two technologies. The applicability for the FDD and TDD branches are specified in TS 36-521-2.

In clause 8 the performance requirement test cases are defined. FDD and TDD performance requirement test cases are defined in different clauses accordingly to the requirements specified in TS 36.101.

Unless otherwise stated, each test case is tested for every operating band supported by the UE and repeated with the applicable test configurations (i.e. test environment, test frequencies, test channel bandwidths, channel bandwidth parameters) indicated in each test case. For test cases in clauses 6, 7, 8 the initial conditions of the downlink physical channels signal levels and downlink physical channels required are specified in Annex C.0, Annex C.1 and Annex C.2.

For test cases in clauses 6 and 7 that require measurements with maximum output power, the UE shall transmit at its maximum output power state with output power level of P_{UMAX} level. This range of maximum output power shall not be modified for any further additional relaxation.

For test cases in clauses 6 and 7, the partial RB allocations refer to any RB allocation less than full RB allocation except 1 RB allocation.

5 Frequency bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the frequency bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

5.2 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.2-1.

Table 5.2-1: E-UTRA operating bands

E-UTRA Operating Band	Uplink (UL) eNode B receive UE transmit					Duplex Mode	
	F _{UL_low}	_	F _{UL_high}			F _{DL_high}	
1	1920 MHz	_	1980 MHz	2110 MHz	_	2170 MHz	FDD
2	1850 MHz	_	1910 MHz	1930 MHz	_	1990 MHz	FDD
3	1710 MHz	_	1785 MHz	1805 MHz	_	1880 MHz	FDD
4	1710 MHz	_	1755 MHz	2110 MHz	_	2155 MHz	FDD
5	824 MHz	_	849 MHz	869 MHz	_	894MHz	FDD
6	830 MHz	_	840 MHz	875 MHz	_	885 MHz	FDD
7	2500 MHz	_	2570 MHz	2620 MHz	_	2690 MHz	FDD
8	880 MHz	_	915 MHz	925 MHz	_	960 MHz	FDD
9	1749.9 MHz	_	1784.9 MHz	1844.9 MHz	_	1879.9 MHz	FDD
10	1710 MHz	_	1770 MHz	2110 MHz	_	2170 MHz	FDD
11	1427.9 MHz	_	1447.9 MHz	1475.9 MHz	_	1495.9 MHz	FDD
12	699 MHz	_	716 MHz	729 MHz	_	746 MHz	FDD
13	777 MHz	_	787 MHz	746 MHz	_	756 MHz	FDD
14	788 MHz	_	798 MHz	758 MHz	_	768 MHz	FDD
15	Reserved			Reserved			FDD
16	Reserved			Reserved			FDD
17	704 MHz	_	716 MHz	734 MHz	_	746 MHz	FDD
18	815 MHz	_	830 MHz	860 MHz	_	875 MHz	FDD
19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD
20	832 MHz	_	862 MHz	791 MHz	_	821 MHz	FDD
21	1447.9 MHz	_	1462.9 MHz	1495.9 MHz	_	1510.9 MHz	FDD
24	1626.5 MHz	_	1660.5 MHz	1525 MHz	_	1559 MHz	FDD
25	1850 MHz	_	1915 MHz	1930 MHz	_	1995 MHz	FDD
33	1900 MHz	_	1920 MHz	1900 MHz	_	1920 MHz	TDD
34	2010 MHz	_	2025 MHz	2010 MHz	_	2025 MHz	TDD
35	1850 MHz	_	1910 MHz	1850 MHz	_	1910 MHz	TDD
36	1930 MHz	_	1990 MHz	1930 MHz	_	1990 MHz	TDD
37	1910 MHz	_	1930 MHz	1910 MHz	_	1930 MHz	TDD
38	2570 MHz	_	2620 MHz	2570 MHz	_	2620 MHz	TDD
39	1880 MHz	-	1920 MHz	1880 MHz	_	1920 MHz	TDD
40	2300 MHz	_	2400 MHz	2300 MHz	_	2400 MHz	TDD
41	2496 MHz	-	2690 MHz	2496 MHz	-	2690 MHz	TDD
42	3400 MHz	_	3600 MHz	3400 MHz	_	3600 MHz	TDD
43	3600 MHz	_	3800 MHz	3600 MHz	_	3800 MHz	TDD
Note: Band	6 is not applicab	ole.		· · · · · · · · · · · · · · · · · · ·			·

5.3 TX–RX frequency separation

a) The default EUTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.3-1 for the TX and RX channel bandwidths defined in Table 5.4.2.1-1

Table 5.3-1: Default UE TX-RX frequency separation

E-UTRA Operating Band	TX - RX				
	carrier centre frequency				
	separation				
1	190 MHz				
2	80 MHz.				
3	95 MHz.				
4	400 MHz				
5	45 MHz				
6	45 MHz				
7	120 MHz				
8	45 MHz				
9	95 MHz				
10	400 MHz				
11	48 MHz				
12	30 MHz				
13	-31 MHz				
14	-30 MHz				
17	30 MHz				
18	45 MHz				
19	45 MHz				
20	-41 MHz				
21	48 MHz				
25	80 MHz				
24	-101.5 MHz				

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

5.4 Channel arrangement

5.4.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

$$Nominal\ Channel\ spacing = (BW_{Channel(1)} + BW_{Channel(2)})/2$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.4.2 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.4.2-1

Table 5.4.2-1 Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration N_{RB}	6	15	25	50	75	100

Figure 5.4.2-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- $BW_{Channel}$ /2.

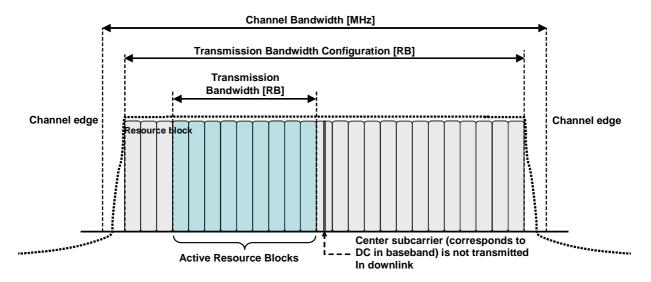


Figure 5.4.2-1 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one E-UTRA carrier.

5.4.2.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.4.2.1-1. The transmission bandwidth configuration in Table 5.4.2-1 shall be supported for each of the specified supported channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

E-UTRA band / channel bandwidth E-UTRA 1.4 MHz 3 MHz 5 MHz 15 MHz 20 MHz 10 MHz **Band** Yes Yes Yes Yes Yes Yes^[1] Yes^[1] 2 Yes Yes Yes Yes^[1] Yes^[1] 3 Yes Yes Yes Yes 4 Yes Yes Yes Yes Yes Yes Yes^[1] 5 Yes Yes Yes Yes^[1] 6 Yes Yes[1] 7 Yes Yes Yes Yes^[1] 8 Yes Yes Yes Yes[1] 9 Yes Yes Yes[1] 10 Yes Yes Yes Yes Yes^{[1} 11 Yes Yes^[1] Yes^[1] 12 Yes Yes 13 Yes^[1] Yes^[1] Yes^[1] Yes^[1] 14 Yes^[1] Yes^[1] 17 Yes^[1] Yes^[1] 18 Yes Yes^[1] Yes^[1] 19 Yes Yes^[1] Yes^[1] Yes^[1] 20 Yes Yes^[1] Yes^[1] 21 Yes 24 Yes Yes Yes^[1] Yes Yes Yes^[1] 25 Yes Yes 33 Yes Yes Yes Yes 34 Yes Yes Yes 35 Yes Yes Yes Yes Yes Yes 36 Yes Yes Y<u>es</u> Yes Yes Yes 37 Yes Yes Yes Yes 38 Yes Yes Yes Yes 39 Yes Yes Yes Yes 40 Yes Yes Yes Yes 41 Yes Yes Yes Yes 42

Table 5.4.2.1-1: E-UTRA channel bandwidth

b) The use of different (asymmetrical)) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

requirement (Clause 7.3) is allowed

Yes

Yes

bandwidth for which a relaxation of the specified UE receiver sensitivity

Yes

Yes

Yes

Yes

Yes

Yes

5.4.3 Channel raster

43

Note 1:

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.4.4 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where $F_{DL low}$ and $N_{Offs-DL}$ are given in table 5.4.4-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL_low} + 0.1(N_{DL} - N_{Offs-DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where $F_{UL\ low}$ and $N_{Offs-UL}$ are given in table 5.4.4-1 and N_{UL} is the uplink EARFCN.

 $F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs\text{-}UL})$

Table 5.4.4-1 E-UTRA channel numbers

		Downlink		Uplink				
Band	F _{DL_low} (MHz)	N _{Offs-DL}	Range of N _{DL}	F _{UL_low} (MHz)	N _{Offs-UL}	Range of N _{UL}		
1	2110	0	0 – 599	1920	18000	18000 – 18599		
2	1930	600	600 – 1199	1850	18600	18600 – 19199		
3	1805	1200	1200 – 1949	1710	19200	19200 - 19949		
4	2110	1950	1950 – 2399	1710	19950	19950 - 20399		
5	869	2400	2400 - 2649	824	20400	20400 - 20649		
6	875	2650	2650 - 2749	830	20650	20650 - 20749		
7	2620	2750	2750 - 3449	2500	20750	20750 - 20449		
8	925	3450	3450 - 3799	880	21450	21450 – 21799		
9	1844.9	3800	3800 - 4149	1749.9	21800	21800 – 22149		
10	2110	4150	4150 – 4749	1710	22150	22150 - 22749		
11	1475.9	4750	4750 – 4949	1427.9	22750	22750 - 22949		
12	729	5010	5010 - 5179	699	23010	23010 – 23179		
13	746	5180	5180 - 5279	777	23180	23180 - 23279		
14	758	5280	5280 - 5379	788	23280	23280 - 23379		
17	734	5730	5730 - 5849	704	23730	23730 - 23849		
18	860	5850	5850 - 5999	815	23850	23850 - 23999		
19	875	6000	6000 - 6149	830	24000	24000 -		
						24149		
20	791	6150	6150 – 6449	832	24150	24150 – 24449		
21	1495.9	6450	6450 – 6599	1447.9	24450	24450 – 24599		
24	1525	7700	7700 - 8039	1626.5	25700	25700 – 26039		
25	1930	8040	8040 - 8689	1850	26040	26040 - 26689		
33	1900	36000	36000 –36199	1900	36000	36000 – 36199		
34	2010	36200	36200 –36349	2010	36200	36200 – 36349		
35	1850	36350	36350 -36949	1850	36350	36350 - 36949		
36	1930	36950	36950 –37549	1930	36950	36950 – 37549		
37	1910	37550	37550 –37749	1910	37550	37550 – 37749		
38	2570	37750	37750 –38249	2570	37750	37750 – 38249		
39	1880	38250	38250 -38649	1880	38250	38250 - 38649		
40	2300	38650	38650 -39649	2300	38650	38650 - 39649		
41	2496	39650	39650 - 41589	2496	39650	39650 - 41589		
42	3400	41590	41590 – 43589	3400	41590	41590 – 43589		
43	3600	43590	43590 – 45589	3600	43590	43590 – 45589		
NI-4	The state of the state of the state of	la a da Ala a 4 al a a 1 a		!		-11		

Note:

The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively.

6 Transmitter Characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single transmit antenna. For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

The transient periods due to power steps, OFF/ON and ON/OFF transitions could occur at slot or symbol boundary with transients, on one or both sides of the boundary. The measurement period and whether to exclude the transient periods are specified in the respective sections below.

Unless otherwise stated, the Test Equipment shall be synchronised to the Uplink signal for measurement of TDD transmitter characteristics.

6.2 Transmit power

6.2.1 Void

Editor's note: this "void" section was introduced because TS 36.101 v8.1.0 also contains a "void" sub-clause with in the transmit power clause 6.2, and there is a strong desire in RAN5 to keep the test cases clauses numbering matching their specific core requirements as much as possible.

6.2.2 UE Maximum Output Power

6.2.2.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.2.2.3 Minimum conformance requirements

The following UE Power Classes defines the maximum output power for any transmission bandwidth within the channel bandwidth. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.2.3-1: UE Power Class

EUTRA	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance
band	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
1					23	±2		
2					23	±2 ²		
3					23	±2 ²		
4					23	±2		
5					23	±2		
6					23	±2		
7					23	±2 ²		
8					23	±2 ²		
9					23	±2		
10					23	±2		
11					23	±2		
12					23	±2 ²		
13					23	±2		
14					23	±2		
17					23	±2		
18					23	±2		
19					23	±2		
20					23	±2 ²		
21					23	±2		
24					23	±2		
25					23	±2 ±2 ²		
33					23	±2		
34					23	±2		
35					23	±2		
36					23	±2		
37					23	±2		
38					23	±2		
39					23	±2		
40					23	±2		
41					23	±2		
						_		

- Note 1: The above tolerances are applicable for UE(s) that support up to 4 E-UTRA operating bands. For UE(s) that support 5 or more E-UTRA bands the maximum output power is expected to decrease with each additional band and is FFS
- Note 2: For transmission bandwidths (Figure 5.4.2-1) confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} 4$ MHz and F_{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB
- Note 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance
- Note 4: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.

The normative reference for this requirement is TS 36.101 clause 6.2.2.

6.2.2.4 Test description

6.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.2.4.1-1: Test Configuration Table

Initial Conditions	
Test Environment as specified in TS 36.508[7] subclause 4.1	Normal, TL/VL, TL/VH, TH/VL, TH/VH
Test Frequencies as specified in	Low range, Mid range, High range
TS36.508 [7] subclause 4.3.1	
Test Channel Bandwidths as specified in	Lowest, 5MHz, Highest
TS 36.508 [7] subclause 4.3.1	
Toot Parameters for Channel Bandwidth	

Test Parameters for Channel Bandwidths									
	Downlink Configuration	Uplink Configuration							
Ch BW	N/A for Max UE output power testing	Mod'n	RB all	ocation					
			FDD	TDD					
1.4MHz		QPSK	1	1					
1.4MHz		QPSK	5	5					
3MHz		QPSK	1	1					
3MHz		QPSK	4	4					
5MHz		QPSK	1	1					
5MHz		QPSK	8	8					
10MHz		QPSK	1	1					
10MHz		QPSK	12	12					
15MHz		QPSK	1	1					
15MHz		QPSK	16	16					
20MHz		QPSK	1	1					
20MHz		OPSK	18	18					

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2: For E-UTRA bands not applied with Note 2 in Table 6.2.2.3-1:
 - The 1 RB allocation shall be tested at RB#0 for low and mid range, RB #max for high range test frequency.
 - The starting resource block of non-1RB allocation shall be RB #0 for low and mid range, RB# (max +1 - RB allocation) for high range test frequency.
- Note 3: For E-UTRA bands applied with Note 2 in Table 6.2.2.3-1:
 - If the test channel bandwidth is larger than 4MHz, then the 1 RB allocation shall be tested at both RB #0 and RB #max.
 - If the test channel bandwidth is smaller or equal to 4MHz, then the 1 RB allocation shall be tested at RB #0.
 - If the test channel bandwidth = (F_{UL_high} F_{UL_low}) specified by the operating band, then only one frequency range shall be tested and the 1 RB allocation shall be tested at RB #0, RB # $\left\lceil N_{RB}^{UL}/2 \right\rceil$ and RB #max.
 - For non-1RB allocation, test frequency is middle range, and the starting resource block shall be RB #0.
- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508[7] Annex A Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channel is set according to Table 6.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RFaccording to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.2.2.4.3.

6.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.2.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms for the UE to reach P_{UMAX} level.

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.

6.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.2.2.5 Test requirements

The maximum output power, derived in step 3 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.2.5-1.

Table 6.2.2.5-1: UE Power Class test requirements

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1	(dbiii)	(ub)	(ubiii)	(ub)	23	±2.7	(dBiii)	(ub)
2					23	±2.7 ²		
3					23	±2.7 ²		
4					23	±2.7		
5					23	±2.7 ±2.7		i
6					23	±2.7 ±2.7		i
7					23	±2.7 ²		i
8					23	±2.7 ±2.7 ²		
9					23	±2.7 ±2.7		
10					23	±2.7		
11					23	±2.7		
12					23	±2.7 ²		
13					23	±2.7		
14					23	±2.7		
17					23	±2.7		
18					23	±2.7		
19					23	±2.7		
20					23	±2.7 ²		
21					23	±2.7		
24					23	±2.7		
25					23	±2.7 ²		
33					23	±2.7		
34					23	±2.7		
35					23	±2.7		
36					23	±2.7		
37					23	±2.7		
38					23	±2.7		i
39					23	±2.7		i
40					23	±2.7		
41					23	±2.7		

- Note 1: The above tolerances are applicable for UE(s) that support up to 4 E-UTRA operating bands. For UE(s) that support 5 or more E-UTRA bands the maximum output power is expected to decrease with each additional band and is FFS
- Note 2: For transmission bandwidths (Figure 5.4.2-1, Table 5.4.4-1) confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} 4 MHz and F_{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB (Tolerance = +2.7 / -4.2)
- Note 3: For the UE which supports both Band 11 and Band 21 operating frequencies, the tolerance is FFS.

6.2.3 Maximum Power Reduction (MPR)

6.2.3.1 Test purpose

The number of RB identified in Table 6.2.2.3-1 is based on meeting the requirements for adjacent channel leakage ratio and the maximum power reduction (MPR) due to Cubic Metric (CM).

Simple scaling can be used to derive the requirement for other bandwidth based on the previously agreed value for 5MHz channel bandwidth.

6.2.3.2 Test applicability

The requirements of this test apply in test cases 6.6.2.3 Adjacent Channel Leakage power Ratio to all types of E-UTRA UE release 8 and forward.

6.2.3.3 Minimum conformance requirements

For UE Power Class 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2.3-1 due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3.3-1.

Table 6.2.3.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Channel	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5.3 apply.

The normative reference for this requirement is TS 36.101 clause 6.2.3.

6.2.3.4 Test description

6.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.3.4.1-1: Test Configuration Table

Initial Conditions									
	ment as specified in	Normal, TL/VL, TL/VH, TH/VL, TH/VH							
TS 36.508[7] subclause 4.1									
Test Frequencies as specified in		Low range, Mid range, High range							
TS36.508 [7] subclause 4.3.1									
Test Channel Bandwidths as specified in		Lowest, 5MHz, 10MHz, Highest							
TS 36.508 [7] subclause 4.3.1									
Test Parameters for Channel Bandwidths									
	Downlink Configur								
Ch BW	N/A for Maximum Power Re	duction	Mod'n	RB allocation					
	(MPR) test case			FDD	TDD				
1.4MHz			QPSK	5	5				
1.4MHz			QPSK	6	6				
1.4MHz			16QAM	5	5				
1.4MHz			16QAM	6	6				
3.0MHz			QPSK	4	4				
3.0MHz			QPSK	15	15				
3.0MHz			16QAM	4	4				
3.0MHz			16QAM	15	15				
5MHz			QPSK	8	8				
5MHz			QPSK	25	25				
5MHz			16QAM	8	8				
5MHz			16QAM	25	25				
10MHz			QPSK	12	12				
10MHz			QPSK	50	50				
10MHz			16QAM	12	12				
10MHz			16QAM	50	50				
				(Note 3)	(Note 3)				
15MHz			QPSK	16	16				
15MHz			QPSK	75	75				
15MHz			16QAM	16	16				
15MHz			16QAM	75	75				
				(Note 3)	(Note 3)				
20MHz			QPSK	18	18				
20MHz			QPSK	100	100				
20MHz			16QAM	18	18				
20MHz			16QAM	100	100				
				(Note 3)	(Note 3)				
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable									

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2: The starting resource block of partial RB allocation shall be RB#0 and RB# (max + 1 RB allocation) of the channel bandwidth.
- Note 3: Applies only for UE-Categories 2-5
- 1. Connect the SS and interfering sources to the UE antenna connectors as shown in TS 36.508[7] Annex A Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.2.3.4.1-1.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.2.2.4.3.

6.2.3.4.2 Test procedure

 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC

- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure that the UE transmits at P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration one sub-frame (1ms). For TDD slots with transient periods are not under test.

6.2.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.2.3.5 Test requirements

The maximum output power, derived in step 2 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.3.5-1.

Table 6.2.3.5-1: UE Power Class test requirements

E- UTRA Band	Class 1 (dBm)	Tol. (Db)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	QPSK partial RB allocation Tol. (dB))	QPSK full RB allocation Tol. (dB))	16QAM partial RB allocation Tol. (dB)	16QAM full RB allocation Tol. (dB)
1					23	±2.7	+2.7 /	+2.7 /	+2.7 /
					_	±2.7 ¹	-3.7 +2.7 / ^{1,2}	-3.7 +2.7 / ^{1,2}	-4./ +2.7 / ^{1,2}
2					23		-3.7	-3.7 +2.7 / ^{1,2}	-4.7
3					23	±2.7 ¹			
4					23	±2.7	-3.7 +2.7 / -3.7	-3.7 +2.7 / -3.7	-4.7 +2.7 / -4.7
5					23	±2.7	+2.7 /	+2.7 /	+2.7 /
6					23	±2.7	-3.7 +2.7 / -3.7	-3.7 +2.7 / -3.7	-4.7 +2.7 / -4.7
7					23	±2.7 ¹	+2.7 / ^{1,2} -3.7	-3.7 +2.7 / ^{1,2} -3.7 +2.7 / ^{1,2}	+2.7 / ^{1,2} -4.7
8					23	±2.7 ¹	+2.7 / ^{1,2} -3.7	+2.7 / ^{1,2} -3.7	+2.7 / ^{1,2} -4.7
9					23	±2.7	-3.7 +2.7 / -3.7	-3.7 +2.7 / -3.7	-4.7 +2.7 / -4.7
10					23	±2.7	+2.7 /	-3.7 +2.7 /	-4.7 +2.7 /
10						±2.7	-3.7 +2.7 /	-3.7 +2.7 /	-4.7 +2.7 /
11					23		-3.7 +2.7 / ^{1,2}	-3.7	-4.7 +2.7 / ^{1,2}
12					23	±2.7 ¹	+2.7 / ^{1,2} -3.7 +2.7 /	+2.7 / ^{1,2} -3.7	+2.7 / ^{1,2} -4.7 +2.7 /
13					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	-4.7
14					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
							0.7.	0.7./	0.7./
17					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
18					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
19					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
20					23	±2.7 ¹	-3.7 +2.7 / ^{1,2} -3.7	-3.7 +2.7 / ^{1,2} -3.7	-4.7 +2.7 / ^{1,2} -4.7
21					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
							0.7./	0.7./	0.7./
24					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
					20	±2.7	+2.7 /	+2.7 /	+2.7 /
33					23	±2.7	-3.7 +2.7 /	-3.7 +2.7 /	-4.7 +2.7 /
34					23	±2.7	-3.7 +2.7 /	-3.7 +2.7 /	-4.7 +2.7 /
35					23		-3.7	-3.7	-4.7
36					23	±2.7	+2.7 /	+2.7 /	+2.7 /
37					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
38					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
39					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7
40					23	±2.7	+2.7 / -3.7	+2.7 / -3.7	+2.7 / -4.7

41					23	±2.7	+2.7 /	+2.7 /	+2.7 /	
							-3.7	-3.7	-4.7	
Note 1:	Note 1: For transmission configurations (Figure 5.4.2-1) confined within FUL_low and FUL_low + 4									
	MHz or FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed									
	by reducing the lower tolerance limit by 1.5 dB.									
Note 2:	For the	,								
	6.2.5.3-1 apply									

6.2.4 Additional Maximum Power Reduction (A-MPR)

6.2.4.1 Test purpose

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction A-MPR is allowed for the output power as specified in Table 6.2.2.3-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

6.2.4.2 Test applicability

The requirements of this test apply in test case 6.6.2.2 Additional Spectrum Emission Mask for network signalled values NS_03, NS_04, NS_06 and NS_07 to all types of E-UTRA UE release 8 and forward.

The requirements of this test apply in test case 6.6.3.3 Additional Spurious Emissions for network signalled values NS_05, NS_07 and NS_08, NS_09 to all types of E-UTRA UE release 8 and forward.

6.2.4.3 Minimum conformance requirements

For UE Power Class 3 the specific requirements and identified sub-clauses are specified in Table 6.2.4.3-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4.3-1 and 6.2.4.3-2 are in addition to the allowed MPR requirements specified in clause 6.2.3. For the UE maximum output power modified by A-MPR, the power limits specified in clause 6.2.5 apply.

Table 6.2.4.3-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.2-1	1.4,3,5,10,1 5,20	Table 5.4.2- 1	NA
			3	>5	≤1
			5	>6	≤ 1
NS_03	6.6.2.2.3.1	2,4,10, 25,35,36	10	>6	≤1
			15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.3.2	41	5	>6	≤1
143_04	0.0.2.2.3.2	41	10, 15, 20	See Table 6.2.4.3-4	
NS_05	6.6.3.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.4.2- 1	n/a
NS_07	6.6.2.2.3.3 6.6.3.3.3.2	13	10	Table 6.2.4.3-2	Table 6.2.4.3-2
NS_08	6.6.3.3.3.3	19	10, 15	> 44	≤3
NS_09	6.6.3.3.3.4	21	10, 15	> 40	≤ 1
143_09	0.0.3.3.3.4	21	10, 13	> 55	≤2
NS_10		20	15, 20	Table 6.2.4.3-3	Table 6.2.4.3-3
NS_32	-	-	-	-	-

Table 6.2.4.3-2: A-MPR for "NS_07"

Parameters	Region A			Regio	n B		Region C		
RB_start ¹	0 – 12		13 –18		19 -	19 – 42		43 – 49	
L_CRB ² [RBs]	6 – 8	1 to 5 and 9-50	<8	≥8	<18	≥18	≤2	>2	
A-MPR [dB]	≤8	≤12	0	≤12	0	≤6	≤3	0	

Note 1: RB_start indicates the lowest RB index of transmitted resource blocks

Note 2: L_CRB is the length of a contiguous resource block allocation

Note 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a

per slot basis.

Note 4: For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.

Table 6.2.4.3-3: A-MPR for "NS_10"

Channel BW	Parameters	Region A
	RB_start ¹	0 – 10
15	L_CRB [RBs]	1 -20
	A-MPR [dB]	≤ 2
	RB_start ¹	0 – 15
20	L_CRB [RBs]	1 -20
	A-MPR [dB]	≤5

Note 1: RB_start indicates the lowest RB index of transmitted resource blocks.

Note 2: L_CRB is the length of a contiguous resource block allocation.

Note 3: For intra-subframe frequency hopping which intersects Region A, notes 1 and 2 apply on a per slot basis.

Note 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR value may be applied for both slots in the subframe.

Table 6.2.4.3-4 A-MPR for NS_04 for bandwidths > 5MHz

Channel BW	Parameters	Region A	Region B		Region C
10	RB_start ¹	0 – 12	13	- 36	37 – 49
	RB_start ¹ + L_CRB ²	NA	14 - 37	>37	NA
	[RBs]	(Note 3)			(Note 3)
	A-MPR [dB]	≤3dB	0	≤2dB	≤3dB
15	RB_start ¹	0 – 18	19	– 55	56 – 74
	RB_start ¹ + L_CRB ²	NA	20 - 56	>56	NA
	[RBs]	(Note 3)			(Note 3)
	A-MPR [dB]	≤3dB	0	≤2dB	≤3dB
20	RB_start ¹	0 – 24	25	- 74	75 – 99
	RB_start ¹ + L_CRB ²	NA	26 - 75	>75	NA
	[RBs]	(Note 3)			(Note 3)
	A-MPR [dB]	≤3dB	0	≤2dB	≤3dB

Note 1: RB_start indicates the lowest RB index of transmitted resource blocks

Note 2: L_CRB is the length of a contiguous resource block allocation

Note 3: Any RB allocation that starts in Region A or C is allowed the specified A-MPR

Note 4: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis

Note 5: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe

6.2.4.4 Test description

6.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in tables 6.2.4.4.1-1 through table 6.2.4.4.1-6. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.4.4.1-1: Test Configuration Table (network signalled value "NS_03")

Initial Condition	one		_				-
Test Environme							
(as specified in		71 subclause	4 1)		NC		
Test Frequenc		r] subclause	, 1 .1)				
(as specified in		71 subclause	431)		Low range, Mid range, High range		
Test Channel E		1 000010000	1.0.1)				
(as specified in		71 subclause	4.3.1)		Lowest, 5MHz	z, 10MHz, High	nest
Test Paramete					II.		
		Downli	ation	Uplir	nk Configurat	ion	
Configuration	Ch BW	Mod'n	RB alloc		Mod'n		ocation
ĬD							
			FDD	TDD		FDD	TDD
1	1.4MHz	N/A fo	r A-MPR testi	ing.	QPSK	6	6
2	1.4MHz				QPSK	5	5
3	1.4MHz				16QAM	5	5
4	3MHz				QPSK	15	15
5	3MHz				QPSK	4	4
6	3MHz				16QAM	15	15
7	3MHz				16QAM	4	4
8	5MHz				QPSK	25	25
9	5MHz				QPSK	8	8
10	5MHz				QPSK	6	6
11	5MHz				16QAM	25	25
12	5MHz				16QAM	8	8
13	10MHz				QPSK	50	50
14	10MHz				QPSK	12	12
15	10MHz				QPSK	6	6
16	10MHz				16QAM	50	50
						(Note 4)	(Note 4)
17	10MHz				16QAM	12	12
18	15MHz				QPSK	75	75
19	15MHz				QPSK	16	16
20	15MHz				QPSK	8	8
21	15MHz				16QAM	75	75
						(Note 4)	(Note 4)
22	15MHz				16QAM	16	16
23	20MHz				QPSK	100	100
24	20MHz				QPSK	18	18
25	20MHz				QPSK	10	10
26	20MHz				16QAM	100	100
						(Note 4)	(Note 4)
27	20MHz				16QAM	18	18
					or each E-UTR	hand, the ap	plicable
			ified in Table			. ,	
					cable Test Conf		
					4.5 as not all cor	ndinations are	necessarily
required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB							
	starting resc cation) of the			illocation	snall be RB# 0 a	and KB# (ma)	(+1 - KB

Applies only for UE-Categories 2-5

Table 6.2.4.4.1-2: Test Configuration Table for 5, 10, 15, 20MHz (network signalled value "NS_04")

Initial Conditions Test Environment (as specified in TS 36.508 [7] subclause 4.1)	Initial Conditi	one							
(as specified in TS 36.508 [7] subclause 4.3.1) Test Frequencies (as specified in TS 36.508 [7] subclause 4.3.1) Test Channel Bandwidths (as specified in TS 36.508 [7] subclause 4.3.1) Test Parameters for NS_04 A-MPR Downlink Configuration Ch BW Mod'n RB allocation TDD TDD TDD									
Test Frequencies			l [7] subclaus	e 4 1)	NC				
(as specified in TS36.508 [7] subclause 4.3.1) Low range, might range Test Channel Bandwidths (as specified in TS 36.508 [7] subclause 4.3.1) 5MHz, 10 MHz, 15 MHz, 20MHz Test Parameters for NS 04 A-MPR Downlink Configuration Uplink Configuration Configuration (D Uplink Configuration RB allocation (D CPSK 8 Note 3			, [r] cabolado	0 1.1)					
Test Channel Bandwidths (as specified in Ts 36.508 [7] subclause 4.3.1)			[7] subclause	4 3 1)	Low range, Mid range, High range				
As specified in TS 36.508 [7] subclause 4.3.1) SMHz, 10 MHz, 15 MHz, 20MHz				7 1.0.17					
Note 3 Test Parameters for NS 04 A-MPR Downlink Configuration Configuration Downlink Configuration Downlink Configuration RB allocation RB allocation TDD TDD				e 4.3.1)	5MHz, 10 MHz, 15 MHz, 20MHz				
Downlink Configuration Configuration Configuration Configuration Configuration Configuration Configuration Configuration RB allocation RB allocation TDD TDD				<u> </u>					
Configuration Ch BW Mod'n RB allocation TDD TDD TDD				k Configuration	Uplink Configuration				
TDD	Configuration	Ch BW							
QPSK				TDD		TDD			
3	1	5MHz	N/A for	A-MPR testing	QPSK	25	Note 3		
16QAM 25	2	5MHz			QPSK	8	Note 3		
5 5MHz 6 10MHz 7 10MHz 8 10MHz 9 10MHz 10 10MHz 11 10MHz 11 10MHz 12 10MHz 13 10MHz 14 10MHz 15 15MHz 16 15MHz 16 15MHz 17 15MHz 18 15MHz 19 15MHz 20 15MHz 21 15MHz 22 15MHz 23 15MHz 24 20MHz 25 20MHz 26 20MHz 27 20MHz 29 20MHz 29 20MHz 29 20MHz 20 20MHz 26 20MHz 27 20MHz 29 20MHz 29 20MHz	3	5MHz			QPSK	6	Note 3		
6 10MHz QPSK 1 0 7 10MHz QPSK 12 0 9 10MHz QPSK 50 0 10 10MHz QPSK 24 13 11 10MHz QPSK 24 13 12 10MHz QPSK 36 13 13 10MHz QPSK 12 37 14 10MHz QPSK 12 37 15 15MHz QPSK 1 49 15 15MHz QPSK 1 49 15 15MHz QPSK 1 49 15 15MHz QPSK 16 0 17 15MHz QPSK 16 0 18 15MHz QPSK 36 19 20 15MHz QPSK 36 19 21 15MHz QPSK 36 19 <trr> 22 15MHz QPSK<td>4</td><td>5MHz</td><td></td><td></td><td>16QAM</td><td>25</td><td>Note 3</td></trr>	4	5MHz			16QAM	25	Note 3		
T	5	5MHz			16QAM	8	Note 3		
Note 3		10MHz					0		
10							0		
10									
10	9	10MHz			16QAM		0		
11						(Note 4)			
12									
13									
13	12	10MHz			QPSK		13		
14									
15						12			
16									
17									
18									
19									
19	18	15MHz			16QAM		0		
15MHz	40	450411			0.0014		4.0		
21									
QPSK									
QPSK 1									
QPSK 18 0 QPSK 18 0 QPSK 100 0 0 QPSK 100 QPSK 100 0 QPSK 100 0 QPSK 100 0 QPSK 100 QPSK 100 0 QPSK 100 0 QPSK 100 0 QPSK 100 QPSK 10									
25 20MHz 26 20MHz 27 20MHz 28 20MHz 28 20MHz 29 20MHz 30 20MHz 31 20MHz 31 20MHz Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.									
QPSK 100 0 16QAM 100 0 16QAM 100 0 (Note 4) 28 20MHz 29 20MHz 16QAM 50 25 25 29 20MHz QPSK 75 25 (Note 4) 31 20MHz QPSK 25 75 25 (Note 4) QPSK 1 99 Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.									
27 20MHz 28 20MHz 29 20MHz 30 20MHz 31 20MHz Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.									
Control Cont									
28 20MHz 29 20MHz 30 20MHz 4 QPSK 50 25 QPSK 75 25 QPSK 75 25 (Note 4) 31 20MHz 32 20MHz Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.		ZUIVITZ			IOQAIVI		U		
29 20MHz 30 20MHz QPSK 75 25 QPSK 75 25 (Note 4) 31 20MHz QPSK 25 75 32 20MHz Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.	28	20MHz			OPSK		25		
30 20MHz QPSK 75 25 (Note 4) 31 20MHz QPSK 25 75 32 20MHz QPSK 1 99 Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.									
Solution Solution									
31 20MHz QPSK 25 75 32 20MHz QPSK 1 99 Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.	30	ZOIVII IZ			Qi Oit		20		
Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.	31	20MHz			OPSK		75		
Note 1: Test Channel Bandwidths are checked separately for E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.						1			
bandwidths are specified in Table 5.4.2.1-1. Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.			Bandwidths ar	e checked separate		band, the applica			
Note 2: The configuration ID will be used to map the applicable Test Configuration to be corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.					, = 31101	дррпоо			
corresponding Test Requirement in subclause 6.2.4 as not all combinations are necessarily required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.					licable Test C	onfiguration to be			
required based on the applicability of the UE. Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.									
Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.							-		
allocation) of the channel bandwidth.									
Note 4: Applies only for UE-Categories 2-5	allo								
<u> </u>	Note 4: App	lies only for	r UE-Categori	ies 2-5					

Table 6.2.4.4.1-3: Test Configuration Table (network signalled value "NS_05")

Initial Canditia								
Initial Conditions Test Environment								
		[7] oubolouse	4.4\	Normal				
(as specified in Test Frequencie		[/] Subclause 2	+. 1)	Low range, Mid range				
(as specified in		71 aubalauga 4	2.1\	Low range, wild range				
(as specified in	1 330.306 [/] Subclause 4	·.3.1)	In case of Low range:				
				- For 5MHz channel				
				- For SMHz channel bandwidth: UL 1927.2MHz				
				(N_UL = 18				
					z (N_DL = 72)			
					31.1MHz (N_UL			
			L 2121.1 MHz					
		(N_DL = 1						
				- For 10MHz				
				1934.7MHz	z (N_UL =			
				18147), DL	. 2124.7MHz			
				(N_DL = 14	47)			
				- For 20MHz				
					Not available			
Test Channel B				5MHz, 10MHz	, 15MHz,			
(as specified in			4.3.1)	20MHz				
Test Paramete	rs for NS_0							
			Configuration	Uplink Configuration				
Configuration	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation			
ID	1							
			FDD		FDD			
1	5MHz	N/A for A-	MPR testing	QPSK	1			
1 2	5MHz	N/A for A-		QPSK	1 25			
1 2 3	5MHz 10MHz	N/A for A-		QPSK QPSK	1 25 1			
1 2 3 4	5MHz 10MHz 10MHz	N/A for A-		QPSK QPSK QPSK	1 25 1 12			
1 2 3 4 5	5MHz 10MHz 10MHz 10MHz	N/A for A-		QPSK QPSK QPSK QPSK	1 25 1 12 48			
1 2 3 4 5 6	5MHz 10MHz 10MHz 10MHz 10MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50			
1 2 3 4 5 6 7	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK 16QAM	1 25 1 12 48 50 50			
1 2 3 4 5 6 7 8	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK QPSK 16QAM QPSK	1 25 1 12 48 50 50			
1 2 3 4 5 6 7 8	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK	1 25 1 12 48 50 50 1 16			
1 2 3 4 5 6 7 8 9	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK	1 25 1 12 48 50 50 1 16 48			
1 2 3 4 5 6 7 8 9	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 16 48 75			
1 2 3 4 5 6 7 8 9 10 11	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 15MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 16 48 75 75			
1 2 3 4 5 6 7 8 9 10 11 12	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 15MHz 20MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 16 48 75 75			
1 2 3 4 5 6 7 8 9 10 11 12 13	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 1 16 48 75 75 1			
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 1 16 48 75 75 75 1 18 48			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz 20MHz 20MHz	N/A for A-		QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 50 1 1 6 48 75 75 75 1 18 48			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz 20MHz 20MHz 20MHz		MPR testing	QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 1 16 48 75 75 75 1 18 48			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Note 1. The 1 R	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz 20MHz 20MHz 20MHz 20MHz 20MHz 8 allocation	n shall be teste	MPR testing	QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 1 16 48 75 75 75 1 18 48 100 100			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Note 1. The 1 R Note 2. The sta	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz 20MHz 20MHz 20MHz 20MHz 20MHz 20MHz 20MHz rting resour	n shall be teste	MPR testing ed at both RB #0 artial RB allocation	QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 12 48 50 50 1 1 16 48 75 75 75 1 18 48 100 100			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Note 1. The 1 R Note 2. The sta +1 - I	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz 20MHz 20MHz 20MHz RB allocation	n shall be testerce block of par	ed at both RB #0 artial RB allocation nel bandwidth.	QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 1 12 48 50 50 50 1 1 16 48 75 75 1 1 18 48 100 100 and RB# (max			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Note 1. The 1 R Note 2. The sta +1 - I Note 3: The	5MHz 10MHz 10MHz 10MHz 10MHz 10MHz 15MHz 15MHz 15MHz 15MHz 20MHz 20MHz 20MHz 20MHz 20MHz 20MHz COMHz CONFIGURATION TO THE TENSION TO THE TENS	n shall be testerce block of paron) of the chanion ID will be u	MPR testing ed at both RB #0 artial RB allocation	QPSK QPSK QPSK QPSK QPSK 16QAM QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 25 1 1 12 48 50 50 50 1 1 16 48 75 75 1 1 18 48 100 100 and RB# (max configuration to			

Note 3: The Configuration ID will be used to map the applicable Test Configuration to the corresponding Test Requirement in subclause 6.2.4.5 as not all combinations are necessarily required based on the applicability of the UE.

Note 4: Low range frequencies for 5MHz channel bandwidth in case of network

Note 4: Low range frequencies for 5MHz channel bandwidth in case of network signalled "NS_05" shall be reviewed after June 2012 because of PHS band operation change.

Table 6.2.4.4.1-4: Test Configuration Table (network signalled value "NS_06")

Initial Conditions								
Test Envir								
			[7] subclause 4	1.1)	Normal	Normai		
Test Frequ			[-]	/	Low range, Mid range,			
			7] subclause 4	.3.1)	High rang			
Test Chan				- ,		MHz, 10MHz,		
(as specifi	ed in	TS 36.508	[7] subclause 4	1.3.1)	Highest	, - ,		
Test Para				,	,			
			Downlink (Configuration	Uplink (Configuration		
Configura	tion	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation		
ĬD				FDD		FDD		
1		1.4MHz	N/A for A-	MPR testing	QPSK	6		
2		1.4MHz		· ·	QPSK	5		
3		1.4MHz			16QAM	5		
4		3MHz			QPSK	15		
5		3MHz			QPSK	4		
6		3MHz			16QAM	4		
7		5MHz			QPSK	25		
8		5MHz			QPSK	8		
9		5MHz			16QAM	8		
10		10MHz			QPSK	50		
11		10MHz			QPSK	12		
12		10MHz			16QAM	12		
13		15MHz			QPSK	75		
14		15MHz			QPSK	16		
15		15MHz			16QAM	16		
16		20MHz			QPSK	100		
17		20MHz			QPSK	18		
18		20MHz			16QAM	18		
Note 1:	Test	Channel Ba	andwidths are	checked separate	ly for each	E-UTRA band,		
				dths are specified				
Note 2:				sed to map the a				
				ding Test Require				
	as not all combinations are necessarily required based on the applicability							
of the UE.								
Note 3:	Note 3: The starting resource block of partial RB allocation shall be RB# 0 and							
RB# (max +1 - RB allocation) of the channel bandwidth.								

Table 6.2.4.4.1-5: Test Configuration Table (network signalled value "NS_07")

Initial Condition	ns						
Test Environme	ent			NC			
(as specified in	TS 36.508	[7] subclaus	e 4.1)	INC			
Test Frequenci				Mid range			
(as specified in	TS36.508	[7] subclause	e 4.3.1)	Wild range			
Test Channel B				10MHz			
(as specified in			e 4.3.1)	TOWNIE			
Test Paramete	rs for NS_			T		-	
			k Configuration		plink Configurat		
Configuration	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation	RB_start	
ID			FDD		FDD	FDD	
1	10MHz	N/A for	A-MPR testing	QPSK	1	0	
2	10MHz			QPSK	8	0	
3	10MHz			QPSK	6	13	
4	10MHz			QPSK	20	13	
5	10MHz			QPSK	12	13	
6	10MHz			16QAM	36	13	
					(Note 2)		
7	10MHz			QPSK	16	19	
8	10MHz			QPSK	12	19	
9	10MHz			16QAM	16	19	
10	10MHz			QPSK	30	19	
11	10MHz			16QAM	30	19	
					(Note 2)		
12	10MHz			QPSK	6	43	
13	10MHz			QPSK	2	48	
14	10MHz			QPSK	50	0	
15	10MHz		QPSK	12	0		
16	50	0					
Note 1: The Configuration ID will be used to map the applicable Test Configuration to the							
corresponding Test Requirement in subclause 6.2.4.5 as not all combinations are necessarily							

required based on the applicability of the UE.
Applies only for UE-Categories 2-5

Table 6.2.4.4.1-6: Test Configuration Table (network signalled value "NS_08")

Initial Conditions										
Test Environme										
(as specified in	TS 36.508	[7] subclause 4	1.1)	Normal						
Test Frequenci		High rang	. =							
	(as specified in TS36.508 [7] subclause 4.3.1)									
Test Channel B			,	5M11- 40	MIL 45ML					
(as specified in	TS 36.508	[7] subclause 4	1.3.1)	SIVINZ, TU	MHz, 15MHz					
Test Paramete	Test Parameters for NS_08 A-MPR									
		Downlink (Configuration	Uplink (Configuration					
Configuration	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation					
ĬD			FDD		FDD					
1	5MHz	N/A for A-	MPR testing	QPSK	1					
2	5MHz			QPSK	8					
3	5MHz			QPSK	25					
4	10MHz			QPSK	1					
5	10MHz			QPSK	12					
6	10MHz			QPSK	40					
7	10MHz			QPSK	50					
8	10MHz			16QAM	50					
					(Note 4)					
9	15MHz			QPSK	1					
10	15MHz			QPSK	16					
11	15MHz			QPSK	40					
12	15MHz			QPSK	75					
13	15MHz			16QAM	75					
					(Note 4)					

The Configuration ID will be used to map the applicable Test Configuration to the corresponding Test Requirement in subclause 6.2.4.5 as not all combinations are necessarily required based on the applicability of the UE.

Note 2. The 1 RB allocation shall be tested at both RB #0 and RB #max.

Note 3: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max + 1 - RB allocation) of the channel bandwidth Applies only for UE-Categories 2-5

Note 4:

Table 6.2.4.4.1-7: Test Configuration Table (network signalled value "NS_09")

Initial Condition	ons						
Test Environme				Normal	Normal		
(as specified in		[7] subclause 4	1.1)	Nomai			
Test Frequenci				High rang	ıΔ		
(as specified in		7] subclause 4	.3.1)	riigirrang			
Test Channel E				5MHz 10	MHz, 15MHz		
(as specified in				0111112, 10	1011 12, 101011 12		
Test Paramete	rs for Chai			T			
			Configuration		Configuration		
Configuration	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation		
ID			FDD		FDD		
1	5MHz	N/A for A-	MPR testing	QPSK	1		
2	5MHz			QPSK	8		
3	5MHz			QPSK	25		
4	10MHz			QPSK	1		
5	10MHz			QPSK	12		
6	10MHz			QPSK	40		
7	10MHz			QPSK	50		
8	10MHz			16QAM	50		
					(Note 4)		
9	15MHz			QPSK	1		
10	15MHz			QPSK	16		
11	15MHz			QPSK	40		
12	15MHz			QPSK	54		
13	15MHz			QPSK	75		
14	15MHz			16QAM	75		
					(Note 4)		
			ed to map the ap				
			ding Test Require				
		nations are ned	cessarily required	based on t	the applicability		
- · · · ·	of the UE.						
Note 2. The 1 RB allocation shall be tested at both RB #0 and RB #max.							
Note 3: The starting resource block of partial RB allocation shall be RB# 0 and							
RB# (max + 1 - RB allocation) of the channel bandwidth							
Note 4: Applies only for UE-Categories 2-5							

Table 6.2.4.4.1-8: Test Configuration Table (network signalled value "NS_10")

Editor's note: no requirements are specified in the core specification for the table above

- 1. Connect the SS to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to the applicable table from Table 6.2.4.4.1-1 to Table 6.2.4.4.1-6.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.2.4.4.3.

6.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to the applicable table from Table 6.2.4.4.1-1 to Table 6.2.4.4.1-6. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration one sub-frame (1ms). For TDD slots with transient periods are not under test.

6.2.4.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions for each network signalled value.

6.2.4.4.3.1 Message contents exceptions (network signalled value "NS_03")

1. Information element additionalSpectrumEmission is set to NS_03. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.1-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS 03"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element Value/remark Comment Condi					
additionalSpectrumEmission	3 (NS_03)				

6.2.4.4.3.2 Message contents exceptions (network signalled value "NS_04")

1. Information element additional Spectrum Emission is set to NS_04. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.2-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS 04"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element Value/remark Comment Condition					
additionalSpectrumEmission	4 (NS_04)				

6.2.4.4.3.3 Message contents exceptions (network signalled value "NS_05")

1. Information element additional Spectrum Emission is set to NS_05. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.3-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS_05"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element Value/remark Comment Condi					
additionalSpectrumEmission	5 (NS_05)				

6.2.4.4.3.4 Message contents exceptions (network signalled value "NS_06")

1. Information element additional Spectrum Emission is set to NS_06. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.4-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS_06"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1				
Information Element Value/remark Comment Conditi				
additionalSpectrumEmission	6 (NS_06)			

6.2.4.4.3.5 Message contents exceptions (network signalled value "NS 07")

1. Information element additional Spectrum Emission is set to NS_07. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.5-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS 07"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1				
Information Element Value/remark Comment Condition				
additionalSpectrumEmission	7 (NS_07)			

6.2.4.4.3.6 Message contents exceptions (network signalled value "NS_08")

1. Information element additional Spectrum Emission is set to NS_08. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.6-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS 08"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1				
Information Element Value/remark Comment Condit				
additionalSpectrumEmission	8 (NS_08)			

6.2.4.4.3.7 Message contents exceptions (network signalled value "NS 09")

1. Information element additional Spectrum Emission is set to NS_09. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.7-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS 09"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element Value/remark Comment Conditi					
additionalSpectrumEmission	9 (NS_09)				

6.2.4.4.3.8 Message contents exceptions (network signalled value "NS_10")

1. Information element additionalSpectrumEmission is set to NS_10. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.8-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS_10"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element Value/remark Comment Condit					
additionalSpectrumEmission	10 (NS_10)				

6.2.4.5 Test requirements

The maximum output power, derived in step 2 shall be within the range prescribed by the nominal maximum output power and tolerance in the applicable table from Table 6.2.4.5-1 to Table 6.2.4.5-8. The allowed A-MPR values specified in Table 6.2.4.3-1 are in addition to the allowed MPR requirements specified in clause 6.2.3. For the UE maximum output power modified by MPR and/or A-MPR, the power limits specified in Table 6.2.5.3-1 apply.

Table 6.2.4.5-1: UE Power Class test requirements (network signalled value "NS_03" for Bands 4, 10, 35, and 36)

Configuration ID	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	4,10,35,36					23	+2.7 / -3.7
2	4,10,35,36					23	+2.7 / -2.7
3	4,10,35,36					23	+2.7 / -3.7
4	4,10,35,36					23	+2.7 / -4.7
5	4,10,35,36					23	+2.7 / -2.7
6	4,10,35,36					23	+2.7 / -6.2
7	4,10,35,36					23	+2.7 / -3.7
8	4,10,35,36					23	+2.7 / -4.7
9	4,10,35,36					23	+2.7 /
10	4,10,35,36					23	+2.7 / -2.7
11	4,10,35,36					23	+2.7 / -6.2
12	4,10,35,36					23	+2.7 / -4.7
13	4,10,35,36					23	+2.7 / -4.7
14	4,10,35,36					23	+2.7 / -3.7
15	4,10,35,36					23	+2.7 / -2.7
16	4,10,35,36					23	+2.7 / -6.2
17	4,10,35,36					23	+2.7 / -4.7
18	4,10,35,36					23	+2.7 / -4.7
19	4,10,35,36					23	+2.7 / -3.7
20	4,10,35,36					23	+2.7 / -2.7
21	4,10,35,36					23	+2.7 / -6.2
22	4,10,35,36					23	+2.7 / -4.7
23	4,10,35,36					23	+2.7 / -4.7
24	4,10,35,36					23	+2.7 / -3.7
25	4,10,35,36					23	+2.7 / -2.7
26	4,10,35,36					23	+2.7 / -6.2
27	4,10,35,36					23	+2.7 / -4.7

Table 6.2.4.5-2: UE Power Class test requirements (network signalled value "NS_03" for Bands 2 and 25)

Configuration ID	EUTRA band	Test Freq.	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	2, 25	Mid					23	+2.7 / -3.7
1	2, 25	Low, High					23	+2.7 / -5.7
2	2, 25	Mid					23	+2.7 / -2.7
2	2, 25	Low, High					23	+2.7 / -4.2
3	2, 25	Mid					23	+2.7 /
3	2, 25	Low, High					23	+2.7 / -5.7
4	2, 25	Mid					23	+2.7 /
4	2, 25	Low, High					23	+2.7 / -7.7
5	2, 25	Mid					23	+2.7 / -2.7
5	2, 25	Low, High					23	+2.7 /
6	2, 25	Mid					23	+2.7 / -6.2
6	2, 25	Low, High					23	+2.7 / -9.2
7	2, 25	Mid					23	+2.7 / -3.7
7	2, 25	Low, High					23	+2.7 / -5.7
8	2, 25	All					23	+2.7 /
9	2, 25	Low @ RB#(max+1-RB allocation), Mid, High @ RB#0					23	+2.7 /
9	2, 25	Low @ RB#0, High @ RB#(max+1-RB allocation)					23	+2.7 / -5.7
10	2, 25	Low @ RB#(max+1-RB allocation), Mid, High @ RB#0					23	+2.7 / -2.7
10	2, 25	Low @ RB#0, High @ RB#(max+1-RB allocation)					23	+2.7 / -4.2
11	2, 25	All					23	+2.7 / -6.2
12	2, 25	Low @ RB#(max+1-RB allocation), Mid, High @ RB#0					23	+2.7 / -4.7
12	2, 25	Low @ RB#0, High @ RB#(max+1-RB allocation)					23	+2.7 / -7.7
13	2, 25	All					23	+2.7 / -4.7
14	2, 25	Low @ RB#(max+1-RB allocation), Mid, High @ RB#0					23	+2.7 /
14	2, 25	Low @ RB#0, High @ RB#(max+1-RB					23	+2.7 / -5.7

				•			
		allocation)					
15	2, 25	Low @ RB#(max+1-RB				23	+2.7 /
		allocation), Mid,					-2.7
		High @ RB#0					
15	2, 25	Low @ RB#0,				23	+2.7 /
10	2, 20	High @ RB#(max+1-RB				20	-4.2
		allocation)					
16	2, 25	All				23	+2.7 /
							-6.2
17	2, 25	Low @ RB#(max+1-RB				23	+2.7 /
		allocation),					-4.7
		Mid,					
17	2, 25	High @ RB#0 Low @ RB#0,				23	+2.7 /
17	2, 25	High @ RB#(max+1-RB				23	-7.7
		allocation)					'.'
18	2, 25	All				23	+2.7 /
	, -						-4.7
19	2, 25	Low @ RB#(max+1-RB				23	+2.7 /
		allocation),					-3.7
		Mid,					
40	0.05	High @ RB#0				00	.07/
19	2, 25	Low @ RB#0, High @ RB#(max+1-RB				23	+2.7 / -5.7
		allocation)					-5.7
20	2, 25	Low @ RB#(max+1-RB				23	+2.7 /
	2, 20	allocation),					-2.7
		Mid,					
		High @ RB#0					
20	2, 25	Low @ RB#0,				23	+2.7 /
		High @ RB#(max+1-RB					-4.2
04	0.05	allocation)				00	.07/
21	2, 25	All				23	+2.7 /
22	2, 25	Low @ RB#(max+1-RB				23	-6.2 +2.7 /
22	2, 25	allocation),				23	-4.7
		Mid,					
		High @ RB#0					
22	2, 25	Low @ RB#0,				23	+2.7 /
		High @ RB#(max+1-RB					-7.7
		allocation)					
23	2, 25	All				23	+2.7 /
24	2.25	All				22	-4.7
24	2, 25	All				23	+2.7 / -3.7
25	2, 25	Low @ RB#(max+1-RB				23	+2.7 /
		allocation),					-2.7
	1	Mid,					
		High @ RB#0					
25	2, 25	Low @ RB#0,				23	+2.7 /
	1	High @ RB#(max+1-RB					-4.2
00	0.05	allocation)				00	.07/
26	2, 25	All				23	+2.7 / -6.2
27	2, 25	All				23	+2.7 /
		, 111				_0	-4.7
		1	1		Ĭ.		

Table 6.2.4.5-3: UE Power Class test requirements (network signalled value "NS_04")

Configuration ID EUTRA band band band (MHz) Class 3 (Bm) (MHz) Tol. (dB) 1 41 5 MHz 23 +2.7/ 2 41 5 MHz 23 +2.7/ 3 41 5 MHz 23 +2.7/ 4 41 5 MHz 23 +2.7/ 5 41 5 MHz 23 +2.7/ 4,7 4,7 -6.2 -4.7 6 41 10MHz 23 +2.7/ 6 41 10MHz 23 +2.7/ 6.2 42 +2.7/ -6.2 8 41 10MHz 23 +2.7/ 9 41 10MHz 23 +2.7/ 10 41 10MHz 23 +2.7/ 11 41 10MHz 23 +2.7/ 12 41 10MHz 23 +2.7/ 14 41 10MHz 23 +2.7/ 13 41 <					
1					Tol. (dB)
2 41 5 MHz 23 +2.7/ 3 41 5 MHz 23 +2.7/ 3 41 5 MHz 23 +2.7/ 4 41 5 MHz 23 +2.7/ 4 5 MHz 23 +2.7/ 6.2 5 41 5 MHz 23 +2.7/ 6.2 6 41 10MHz 23 +2.7/ 6.2 7 41 10MHz 23 +2.7/ 6.2 8 41 10MHz 23 +2.7/ 8.2 9 41 10MHz 23 +2.7/ 10 41 10MHz 23 +2.7/ 11 41 10MHz 23 +2.7/ 12 41 10MHz 23 +2.7/ 12 41 10MHz 23 +2.7/ 13 41 10MHz 23 +2.7/ 6.2 13 41 10MHz 23 +2.7/ 6.2 14 41 10MHz 23 +2.7/ 6.2 15 41 15MHz 23 +2.7/ 16 20 +2.7/ 17 41 15MHz 23 +2.7/ 18 20 41 15MHz 23 +2.7/ 19 41 15MHz 23 +2.7/ 20 41 15MHz 23 +2.7/ 21 41 15MHz 23 +2.7/ 22 41 15MHz 23 +2.7/ 23 42 +2.7/ 24 41 15MHz 23 +2.7/ 25 41 15MHz 23 +2.7/ 26 22 41 15MHz 23 +2.7/ 27 41 15MHz 23 +2.7/ 28 41 15MHz 23 +2.7/ 29 41 20MHz 23 +2.7/ 30 41 20MHz 23 +2.7/ 30 41 20MHz 23 +2.7/ 31 42 20MHz 23 +2.7/ 31 42 20MHz 23 +2.7/ 32 42 27/ 33 41 20MHz 23 +2.7/ 34 20MHz 23 +2.7/ 36 22 29 41 20MHz 23 +2.7/ 37 29 41 20MHz 23 +2.7/ 38 27 42.7/ 39 41 20MHz 23 +2.7/ 30 41 20MHz 23 +2.7/ 31 41 20MHz 23 +2.7/ 31 41 20MHz 23 +2.7/ 32 42.7/ 33 41 20MHz 23 +2.7/ 34 20MHz 23 +2.7/ 35 24 27/ 36 22 24 24 20MHz 23 +2.7/ 37 29 41 20MHz 23 +2.7/ 38 24 27/ 39 29 41 20MHz 23 +2.7/ 30 41 20MHz 23 +2.7/ 30 41 20MHz 23 +2.7/ 31 41 20MHz 23 +2.7/ 32 31 41 20MHz 23 +2.7/ 38 24 27/ 39 24 20MHz 23 42.7/ 30 41 20MHz 23 42.7/ 31 42 20MHz 23 42.7/ 32 42 27/ 33 44 20MHz 23 42.7/ 34 20MHz 23 42.7/ 35 24 27/ 36 22 27/ 37 38 31 41 20MHz 23 42.7/ 38 24 27/ 39 24 24 24 24 20MHz 23 24 27/ 30 41 20MHz 23 42.7/ 30 41 20MHz 23 42.7/ 31 42 20MHz 23 42.7/ 31 42 20MHz 23 42.7/ 32 42 27/ 33 42 27/ 34 20MHz 23 42.7/ 34 20MHz 23 42.7/ 35 24 27/ 36 28 28 28 28 28 28 28 28 28 28 28 28 28	1	41	5 MHz		
3	2	41	5 MHz	23	+2.7 /
4 41 5 MHz 23 +2.7 / 6.2 5 41 5 MHz 23 +2.7 / 4.7 6 41 10MHz 23 +2.7 / 6.2 7 41 10MHz 23 +2.7 / 6.2 8 41 10MHz 23 +2.7 / 8.2 9 41 10MHz 23 +2.7 / 8.2 9 41 10MHz 23 +2.7 / 8.2 10 41 10MHz 23 +2.7 / 4.7 11 41 10MHz 23 +2.7 / 4.7 12 41 10MHz 23 +2.7 / 6.2 13 41 10MHz 23 +2.7 / 6.2 14 41 10MHz 23 +2.7 / 6.2 14 41 15MHz 23 +2.7 / 6.2 15 41 15MHz 23 +2.7 / 6.2 16 41 15MHz 23 +2.7 / 6.2 18 41 15MHz 23 +2.7 / 6.2 19 41 15MHz 23 +2.7 / 6.2	3	41	5 MHz	23	
S		44			
6 41 10MHz 23 +2.7/ -6.2 7 41 10MHz 23 +2.7/ -6.2 8 41 10MHz 23 +2.7/ -6.2 8 41 10MHz 23 +2.7/ -8.2 9 41 10MHz 23 +2.7/ -9.7 10 41 10MHz 23 +2.7/ -9.7 11 41 10MHz 23 +2.7/ -4.7 12 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -6.2 14 41 10MHz 23 +2.7/ -6.2 15 41 15MHz 23 +2.7/ -6.2 16 41 15MHz 23 +2.7/ -6.2 17 41 15MHz 23 +2.7/ -6.2 18 41 15MHz 23 +2.7/ -7.2 19 41 15MHz 23 +2.7/ -7.2 20 41 15MHz 23 +2.7/ -7.3 21 41 15MHz 23 +2.7/ -7.3 22 41 15MHz 23 +2.7/ -7.3 23 42 15MHz 23 +2.7/ -7.3 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -6.2 28 41 20MHz 23 +2.7/ -6.2 29 41 20MHz 23 +2.7/ -6.2 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2 4.7 -6.2 -7/ -8.2					-6.2
6	5	41	5 MHz	23	
7	6	41	10MHz	23	
8 41 10MHz 23 +2.7/ -8.2 9 41 10MHz 23 +2.7/ -9.7 10 41 10MHz 23 +2.7/ -9.7 11 41 10MHz 23 +2.7/ -4.7 12 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -6.2 14 41 10MHz 23 +2.7/ -6.2 15 41 15MHz 23 +2.7/ -6.2 16 41 15MHz 23 +2.7/ -6.2 17 41 15MHz 23 +2.7/ -8.2 18 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -4.7 20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 23 41 20MHz 23 +2.7/ -6.2 </td <td>7</td> <td>41</td> <td>10MHz</td> <td>23</td> <td>+2.7/</td>	7	41	10MHz	23	+2.7/
9 41 10MHz 23 +2.7/ -9.7 10 41 10MHz 23 +2.7/ -9.7 11 41 10MHz 23 +2.7/ -4.7 12 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -6.2 14 41 10MHz 23 +2.7/ -6.2 15 41 15MHz 23 +2.7/ -6.2 16 41 15MHz 23 +2.7/ -6.2 17 41 15MHz 23 +2.7/ -6.2 18 41 15MHz 23 +2.7/ -6.2 18 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -9.7 20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -6.2 28 41 20MHz 23 +2.7/ -6.2 29 41 20MHz 23 +2.7/ -6.2 29 41 20MHz 23 +2.7/ -8.2 29 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -6.2 29 41 20MHz 23 +2.7/ -6.2 29 41 20MHz 23 +2.7/ -6.2 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	8	41	10MHz	23	+2.7/
10 41 10MHz 23 +2.7/ -3.7 11 41 10MHz 23 +2.7/ -4.7 12 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -6.2 14 41 10MHz 23 +2.7/ -6.2 15 41 15MHz 23 +2.7/ -6.2 16 41 15MHz 23 +2.7/ -6.2 17 41 15MHz 23 +2.7/ -6.2 18 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -9.7 20 41 15MHz 23 +2.7/ -3.7 20 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -8.2 28 41 20MHz 23 +2.7/ -8.2 29 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -6.2 29 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -6.2 28 41 20MHz 23 +2.7/ -6.2 29 41 20MHz 23 +2.7/ -6.2 -6.2 -7.7 -7.7 -7.7 -7.7 -7.7 -7.7 -7.7 -7	9	41	10MHz	23	
11					-9.7
12 41 10MHz 23 +2.7/ -6.2 13 41 10MHz 23 +2.7/ -8.2 14 41 10MHz 23 +2.7/ -8.2 15 41 15MHz 23 +2.7/ -6.2 16 41 15MHz 23 +2.7/ -6.2 17 41 15MHz 23 +2.7/ -6.2 18 41 15MHz 23 +2.7/ -8.2 18 41 15MHz 23 +2.7/ -8.2 19 41 15MHz 23 +2.7/ -9.7 20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -8.2 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -6.2 4.7 30 41 20MHz 23 +2.7/ -6.2 4.7 4.7 30 41 20MHz 23 +2.7/ -6.2 4.7 4.7 30 41 20MHz 23 +2.7/ -6.2	10	41	TUIVIHZ	23	
12	11	41	10MHz	23	
13	12	41	10MHz	23	+2.7/
14 41 10MHz 23 +2.7/ -6.2 15 41 15MHz 23 +2.7/ -6.2 16 41 15MHz 23 +2.7/ -6.2 17 41 15MHz 23 +2.7/ -8.2 18 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -9.7 20 41 15MHz 23 +2.7/ -6.2 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7	13	41	10MHz	23	+2.7/
15 41 15MHz 23 +2.7/ -6.2 16 41 15MHz 23 +2.7/ -6.2 17 41 15MHz 23 +2.7/ -8.2 18 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -9.7 20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -8.2 28 41 20MHz 23 +2.7/ -8.2 29 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -4.7 31 41 20MHz 23 +2.7/ -4.7 -6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	14	41	10MHz	23	
16	15	41	15MHz	23	
17 41 15MHz 23 +2.7/ -8.2 18 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -9.7 20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -6.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 30 41 20MHz 23 +2.7/ -9.7 31 41 20MHz 23 +2.7/ -6.2					-6.2
18					-6.2
18 41 15MHz 23 +2.7/ -9.7 19 41 15MHz 23 +2.7/ -3.7 20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -8.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	17	41	15MHz	23	
19 41 15MHz 23 +2.7/ -3.7 20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -8.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -8.2 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -4.7 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	18	41	15MHz	23	+2.7/
20 41 15MHz 23 +2.7/ -4.7 21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -8.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -8.2 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	19	41	15MHz	23	+2.7/
21 41 15MHz 23 +2.7/ -6.2 22 41 15MHz 23 +2.7/ -8.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	20	41	15MHz	23	+2.7/
-6.2 22 41 15MHz 23 +2.7/ -8.2 23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -8.2 28 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -4.7 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	21	41	15MHz	23	
23 41 15MHz 23 +2.7/ -6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -6.2 27 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2		44			-6.2
-6.2 24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2					-8.2
24 41 20MHz 23 +2.7/ -6.2 25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -8.2	23	41	15MHz	23	
25 41 20MHz 23 +2.7/ -6.2 26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -6.2	24	41	20MHz	23	+2.7/
26 41 20MHz 23 +2.7/ -8.2 27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -9.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -8.2	25	41	20MHz	23	+2.7/
27 41 20MHz 23 +2.7/ -9.7 28 41 20MHz 23 +2.7/ -3.7 29 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -8.2	26	41	20MHz	23	+2.7/
28 41 20MHz 23 +2.7/ 29 41 20MHz 23 +2.7/ 30 41 20MHz 23 +2.7/ 6.2 31 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -8.2	27	41	20MHz	23	
30 41 20MHz 23 +2.7/ -4.7 30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -8.2					-9.7
30 41 20MHz 23 +2.7/ -6.2 31 41 20MHz 23 +2.7/ -8.2					-3.7
31 41 20MHz 23 +2.7/ -8.2		41			
31 41 20MHz 23 +2.7/ -8.2	30	41	20MHz	23	
	31	41	20MHz	23	+2.7/
	32	41	20MHz	23	

-6.2

Table 6.2.4.5-4: UE Power Class test requirements (network signalled value "NS_05")

Configuration ID	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	1					23	+2.7 /
							-2.7
2	1					23	+2.7 /
							-3.7
3	1					23	+2.7 / -2.7
4	1					23	+2.7 /
4	ı					23	+2.7 / -2.7
5	1					23	+2.7 /
	•						-3.7
6	1					23	+2.7 /
							-4.7
7	1					23	+2.7 /
							-6.2
8	1					23	+2.7 /
							-2.7
9	1					23	+2.7 /
							-2.7
10	1					23	+2.7 /
44							-3.7
11	1					23	+2.7 /
							-4.7
12	1					23	+2.7 /
13	1					23	-6.2 +2.7 /
13	ı					23	+2.7 / -2.7
14	1					23	+2.7 /
14						20	-2.7
15	1					23	+2.7 /
							-3.7
16	1					23	+2.7 /
							-4.7
17	1					23	+2.7 /
							-6.2

Table 6.2.4.5-5: UE Power Class test requirements (network signalled value "NS_06" for Bands 13, 14, and 17)

Configuration ID	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	13,14,17					23	+2.7 / -3.7
2	13,14,17					23	+2.7 / -2.7
3	13,14,17					23	+2.7 / -2.7
4	13,14,17					23	+2.7 / -3.7
5	13,14,17					23	+2.7 / -2.7
6	13,14,17					23	+2.7 / -3.7
7	13,14,17					23	+2.7 / -3.7
8	13,14,17					23	+2.7 / -2.7
9	13,14,17					23	+2.7 /
10	13,14,17					23	+2.7 /
11	13,14,17					23	+2.7 /
12	13,14,17					23	+2.7 /
13	13,14,17					23	+2.7 / -3.7
14	13,14,17					23	+2.7 / -2.7
15	13,14,17					23	+2.7 / -3.7
16	13,14,17					23	+2.7 / -3.7
17	13,14,17					23	+2.7 /
18	13,14,17					23	+2.7 /

Table 6.2.4.5-6: UE Power Class test requirements (network signalled value "NS_06" for Band 12)

Configuration ID	EUTRA band	Test Freq.	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	12	Mid					23	+2.7 / -3.7
1	12	Low, High					23	+2.7 / -5.7
2	12	Mid					23	+2.7 / -2.7
2	12	Low, High					23	+2.7 / -4.2
3	12	Mid					23	+2.7 / -2.7
3	12	Low, High					23	+2.7 / -4.2
4	12	Mid					23	+2.7 / -3.7
4	12	Low, High					23	+2.7 / -5.7
5	12	Mid					23	+2.7 / -2.7
5	12	Low, High					23	+2.7 / -4.2
6	12	Mid					23	+2.7 / -3.7
6	12	Low, High					23	+2.7 / -5.7
7	12	All					23	+2.7 / -3.7
8	12	Low @ RB#(max+1- RB allocation), Mid, High @ RB#0					23	+2.7 / -2.7
8	12	Low @ RB#0, High @ RB#(max+1- RB allocation)					23	+2.7 / -4.2
9	12	Low @ RB#(max+1- RB allocation), Mid, High @ RB#0					23	+2.7 / -3.7
9	12	Low @ RB#0, High @ RB#(max+1- RB allocation)					23	+2.7 / -5.7
10	12	All					23	+2.7 / -3.7
11	12	Low @ RB#(max+1- RB allocation), Mid, High @ RB#0					23	+2.7 / -2.7
11	12	Low @ RB#0, High @ RB#(max+1- RB allocation)					23	+2.7 / -4.2
12	12	Low @ RB#(max+1- RB allocation), Mid, High @ RB#0					23	+2.7 / -3.7
12	12	Low @ RB#0, High @ RB#(max+1- RB allocation)					23	+2.7 / -5.7

Table 6.2.4.5-7: UE Power Class test requirements (network signalled value "NS_07")

Configuration ID	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	13	()	()	(,	()	23	+2.7 /
							-18.7
2	13					23	+2.7 /
							-13.7
3	13					23	+2.7 /
							-2.7
4	13					23	+2.7 /
							-19.7
5	13					23	+2.7 /
							-18.7
6	13					23	+2.7 /
							-20.7
7	13					23	+2.7 /
							-3.7
8	13					23	+2.7 /
							-2.7
9	13					23	+2.7 /
							-4.7
10	13					23	+2.7 /
							-12.7
11	13					23	+2.7 /
							-13.7
12	13					23	+2.7 /
							-2.7
13	13					23	+2.7 /
	10						-6.2
14	13					23	+2.7 /
45	40					00	-19.7
15	13					23	+2.7 /
10	40					00	-18.7
16	13					23	+2.7 /
							-20.7

Table 6.2.4.5-8: UE Power Class test requirements (network signalled value "NS_08")

Configuration ID	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	19					23	+2.7 /
							-2.7
2	19					23	+2.7 /
							-2.7
3	19					23	+2.7 /
							-3.7
4	19					23	+2.7 /
							-2.7
5	19					23	+2.7 /
							-2.7
6	19					23	+2.7 /
							-6.2
7	19					23	+2.7 /
							-8.2
8	19					23	+2.7 /
							-9.7
9	19					23	+2.7 /
							-2.7
10	19					23	+2.7 /
							-2.7
11	19					23	+2.7 /
							-6.2
12	19					23	+2.7 /
							-8.2
13	19					23	+2.7 /
							-9.7

Table 6.2.4.5-9: UE Power Class test requirements (network signalled value "NS_09")

Configuration ID	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	Tol. (dB)
1	21	,	()	,	(33)	23	+2.7 /
2	24					22	-2.7
2	21					23	+2.7 / -2.7
3	21					23	+2.7 /
3	21					25	-3.7
4	21					23	+2.7 /
							-2.7
5	21					23	+2.7 /
							-2.7
6	21					23	+2.7 /
							-3.7
7	21					23	+2.7 /
							-4.7
8	21					23	+2.7 /
	0.4					00	-6.2
9	21					23	+2.7 /
19	21					23	-2.7 +2.7 /
19	۷۱					23	+2.7 / -2.7
11	21					23	+2.7 /
1 ''	21					25	-3.7
12	21					23	+2.7 /
·-							-4.7
13	21					23	+2.7 /
							-6.2
14	21					23	+2.7 /
							-8.2

Table 6.2.4.5-10: UE Power Class test requirements (network signalled value "NS_10" for Bands 15 and 20)

• Editor's note: no requirements are specified in the core specification for the table above

6.2.5 Configured UE transmitted Output Power

6.2.5.1 Test purpose

To verify the UE does not exceed the minimum between the P_{EMAX} maximum allowed UL TX Power signalled by the E-UTRAN and the P_{UMAX} maximum UE power for the UE power class.

6.2.5.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.2.5.3 Minimum conformance requirements

The UE is allowed to set its configured maximum output power P_{CMAX} . The configured maximum output power P_{CMAX} is set within the following bounds:

$$P_{CMAX_L} \leq PCMAX \ \leq P_{CMAX_H}$$

Where

- $P_{CMAX_L} = MIN \{PEMAX \Delta T_C, P_{PowerClass} MPR A-MPR \Delta T_C\}$
- $P_{CMAX_H} = MIN \{P_{EMAX}, P_{PowerClass}\}$
- P_{EMAX} is the value given to IE *P-Max*, defined in [5]
- P_{PowerClass} is the maximum UE power specified in Table 6.2.2.3-1 without taking into account the tolerance specified in the Table 6.2.2.3-1
- MRP and A-MPR are specified in Section 6.2.3 and Section 6.2.4, respectively
- $\Delta T_C = 1.5$ dB when Note 2 in Table 6.2.2.3-1 applies
- $\Delta T_C = 0$ dB when Note 2 in Table 6.2.2.3-1 does not apply

The measured maximum output power P_{CMAX} shall be within the following bounds:

$$P_{CMAX\ L}\ -\ T(P_{CMAX\ L})\ \le\ P_{CMAX}\ \le\ P_{CMAX\ H}\ +\ T(P_{CMAX\ H})$$

Where

T(P_{CMAX}) is defined by the tolerance table below and applies to P_{CMAX}_L and P_{CMAX}_H separately.

Table 6.2.5-1: P_{CMAX} tolerance

P _{CMAX} (dBm)	Tolerance T(P _{CMAX}) (dB)
21 ≤ P _{CMAX} ≤ 23	2.0
20 ≤ P _{CMAX} < 21	2.5
19 ≤ P _{CMAX} < 20	3.5
18 ≤ P _{CMAX} < 19	4.0
13 ≤ P _{CMAX} < 18	5.0
8 ≤ P _{CMAX} < 13	6.0
-40 ≤ P _{CMAX} < 8	7.0

The normative reference for this requirement is TS 36.101 [2] clause 6.2.5.

6.2.5.4 Test description

6.2.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2.5.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.2.5.4.1-1: Test Configuration Table

	In	itial Condition	าร		
	ment as specified in	Normal, TL/V	L, TL/VH, TH/V	/L, TH/VH	
TS 36.508[7]	subclause 4.1				
	cies as specified in	Mid range			
TS36.508 [7]	subclause 4.3.1				
Test Channel	Bandwidths as specified in	Lowest, 5MH	z, Highest		
TS 36.508 [7]	subclause 4.3.1				
	Test Paramete	ers for Channe	el Bandwidths		
	Downlink Configur	ation	Upli	ink Configura	tion
Ch BW	N/A for Configured UE trans	smitted	Mod'n	RB allo	ocation
	Output Power test case			FDD	TDD
1.4MHz			QPSK	5	5
3MHz			QPSK	4	4
5MHz			QPSK	8	8
10MHz			QPSK	12	12
15MHz			QPSK	16	16
20MHz			QPSK	18	18
	Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1.				
	r the uplink RB allocation the			oe RB #0.	

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channel is set according to Table 6.2.5.4.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.2.5.4.3.

6.2.5.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.2.5.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send transmit uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms for the UE to reach the Pumax level of the test point.
- 3. Measure the mean power of the UE in the channel bandwidth for each test point in table 6.2.5.5-1 according to the test configuration from Table 6.2.5.4.1-1. The period of measurement shall be at least continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.

6.2.5.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.2.5.4.3-1: SystemInformationBlockType1: Test point 1

Derivation Path: TS 36.508 [7] clause 4.4.3.2, Table 4.4.3.2-3 SystemInformationBlockType1						
Information Element Value/remark Comment Condition						
p-Max -10						

Table 6.2.5.4.3-2: SystemInformationBlockType1: Test point 2

Derivation Path: TS 36.508 [7] clause 4.4.3.2, Table 4.4.3.2-3 SystemInformationBlockType1						
Information Element Value/remark Comment Condition						
p-Max 10						

Table 6.2.5.4.3-3: SystemInformationBlockType1: Test point 3

Derivation Path: TS 36.508 [7] clause 4.4.3.2, Table 4.4.3.2-3 SystemInformationBlockType1					
Information Element Value/remark Comment Condition					
p-Max 15					

6.2.5.5 Test requirement

The maximum output power measured shall not exceed the values specified in Table 6.2.5.5-1.

Table 6.2.5.5-1: P_{CMAX} configured UE output power

		Channel bandwidth / maximum output power				
	1.4	3.0	5	10	15	20
	MHz	MHz	MHz	MHz	MHz	MHz
Measured UE output power test point 1	-10 dBm ± 7.7					
Measured UE output power test point 2	10 dBm ± 6.7					
Measured UE output power test point 3	15 dBm ± 5.7					
Note: In addition	note 2 in Ta	ble 6.2.2.3-1	shall apply t	to the tolerar	nces.	

6.3 Output Power Dynamics

6.3.1 Void

6.3.2 Minimum Output Power

6.3.2.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3.2.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.2.3 Minimum conformance requirements

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.3-1.

Channel bandwidth / minimum output power / measurement bandwidth 15 1.4 3.0 5 10 20 MHz MHz MHz MHz MHz MHz Minimum output -40 dBm power Measurement 1.08 MHz 2.7 MHz 4.5 MHz 9.0 MHz 13.5 MHz 18 MHz bandwidth

Table 6.3.2.3-1: Minimum output power

The normative reference for this requirement is TS 36.101 [2] clause 6.3.2.1.

Minimum output power test verifies the UE's ability to transmit with a broadband output power below the specified limit when the power is set to a minimum value. The broadband output power is defined as the power in the channel bandwidth, for all transmit bandwidth configurations (resource blocks).

An excess minimum output power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3.2.4 Test description

6.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.2.4.1-1: Test Configuration Table

Initial Conditions						
Test Environment as specified in		Normal, TL/V	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
TS 36.508[7]	subclause 4.1					
Test Frequen	cies as specified in	Low range, M	lid range, High	range		
TS36.508 [7]	subclause 4.3.1					
Test Channel	Bandwidths as specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]	subclause 4.3.1					
Test Parameters for Channel Bandwidths						
	Downlink Configur	ation	Uplink Configuration			
Ch BW	N/A for min output power te	st	Mod'n	RB allocation		
				FDD	TDD	
1.4MHz			QPSK	6	6	
3MHz			QPSK	15	15	
5MHz			QPSK	25	25	
10MHz			QPSK	50	50	
15MHz			QPSK	75	75	
20MHz			QPSK	100	100	
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable						
channel bandwidths are specified in Table 5.4.2.1-1.						

1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A.3.

- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channel is set according to Table 6.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.2.4.3.

6.3.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.3.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC
- 2. Send continuous uplink power control "down" commands in the uplink scheduling information to the UE to ensure that the UE transmits at its minimum output power.
- 3. Measure the mean power of the UE in the associated measurement bandwidth specified in Table 6.3.2.5-1 for the specific channel bandwidth under test. The period of measurement shall be the continuous duration of one subframe (1ms). For TDD slots with transient periods are not under test.

6.3.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.3.2.5 Test requirement

The minimum output power measured shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3.2.5-1: Minimum output power

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power		-39 dBm				
Measurement bandwidth (Note 1)	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
Note 1: Different implementations such as FFT or spectrum analyzer approach are						

Note 1: Different implementations such as FFT or spectrum analyzer approach are allowed. For spectrum analyzer approach the measurement bandwidth is defined as an equivalent noise bandwidth.

6.3.3 Transmit OFF power

6.3.3.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3.3.2 Test applicability

The requirements of this test apply in test cases 6.3.4.1 General ON/OFF time mask and 6.3.4.2 PRACH and SRS time mask to all types of E-UTRA UE release 8 and forward.

6.3.3.3 Minimum conformance requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.3.3-1.

Table 6.3.3.3-1: Transmit OFF power

	Channel bandwidth / Transmit OFF power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-50 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

The normative reference for this requirement is TS 36.101 [2] clause 6.3.3.

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

An excess transmit OFF power power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs

6.3.3.4 Test description

This test is covered by clause 6.3.4.1 General ON/OFF time mask and 6.3.4.2 PRACH and SRS time mask.

6.3.3.5 Test requirement

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.3.5-1.

Table 6.3.3.5-1: Transmit OFF power

	Channel bandwidth / Transmit OFF power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-48.5 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.4 ON/OFF time mask

6.3.4.1 General ON/OFF time mask

Editor's note: The measurement period in the minimum requirement is defined to be 1 subframe (14 symbols). Due to practical reasons the TDD measurement period for off power prior the PUSCH is 10 symbols. It is FFS, if this deviation is acceptable.

6.3.4.1.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3.4.1.5.

The time mask for transmit ON/OFF defines the ramping time allowed for the UE between transmit OFF power and transmit ON power.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.4.1.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.4.1.3 Minimum conformance requirement

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3.

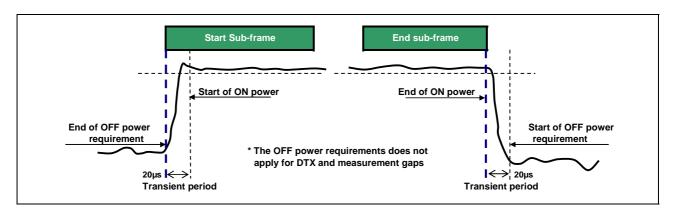


Figure 6.3.4.1.3-1: General ON/OFF time mask

The normative reference for this requirement is TS 36.101 [2] clause 6.3.4.1.

6.3.4.1.4 Test description

6.3.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.3.4.1.4.1-1: Test Configuration Table

Initial Conditions					
Test Environment as specified in		Normal, TL/V	L, TL/VH, TH/\	/L, TH/VH	
	subclause 4.1				
	icies as specified in	Low range, M	1id range, High	range	
TS36.508 [7]	subclause 4.3.1				
Test Channe	Bandwidths as specified in	Lowest, 5MH	z, Highest		
TS 36.508 [7]	subclause 4.3.1		_		
Test Parameters for Channel Bandwidths					
	Downlink Configur	ation	Uplink Configuration		
Ch BW	N/A for General On/Off Time	e Mask test	Mod'n	RB allocation	
	case			FDD	TDD
1.4MHz			QPSK	6	6
3MHz			QPSK	15	15
5MHz			QPSK	25	25
10MHz			QPSK	50	50
15MHz			QPSK	75	75
20MHz			QPSK	100	100
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable					

1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.

2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.

channel bandwidths are specified in Table 5.4.2.1-1.

- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.4.1.4.3. Note that PDCCH DCI format 0 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3.4.1.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.4.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on UL sub-frame 2 of every radio frame.
- 2. For FDD: Measure the UE transmission OFF power during the sub-frame prior to the PUSCH subframe. For TDD: Measure the UE transmission OFF power during the 10 SCFDMA symbols prior to the PUSCH subframe.
- 3. Measure the output power of the UE PUSCH transmission during one sub-frame, excluding a transient period of 20 µs at the beginning of the subframe.
- 4. Measure the UE transmission OFF power during one sub-frame following the PUSCH subframe, excluding a transient period of 20 µs at the beginning of the subframe.

6.3.4.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.3.4.1.4.3-1: UplinkPowerControlCommon: Test point 1

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-25 UplinkPowerControlCommon-DEFAULT					
Information Element	Value/remark	Comment	Condition		
UplinkPowerControlCommon-DEFAULT ::=	-105	Test point 1 to			
SEQUENCE {		verify a UE			
p0-NominalPUSCH		relative low initial			
		power			
		transmission			

Table 6.3.4.1.4.3-2: PhysicalConfigDedicated

Derivation Path: TS 36.508 [7] clause 5.5.1.2, Table 5.5.1.2.1 PhysicalConfigDedicated-DEFAULT				
Information Element	Value/remark	Comment	Condition	
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {				
UplinkPowerControlDedicated	UplinkPowerControlDedic	See subclause	SRB1	
	ated-DEFAULT	4.6.3		
	UplinkPowerControlDedic	See subclause	RBC	
	ated-DEFAULT	4.6.3		

Table 6.3.4.1.4.3-3: UplinkPowerControlDedicated

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-26 UplinkPowerControlDedicated-DEFAULT				
Information Element	Value/remark	Comment	Condition	
UplinkPowerControlDedicated-DEFAULT ::=				
SEQUENCE {				
p0-UE-PUSCH	1		SRB1	
	0		RBC	
}				

Table 6.3.4.1.3-4: TDD-Config-DEFAULT: On/OFF time mask measurement

Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	sa1		
specialSubframePatterns	ssp5	To enable two symbol UpPTS, and to have 9 symbols GP.	

6.3.4.1.5 Test requirement

The requirement for the power measured in steps (2), (3) and (4) of the test procedure shall not exceed the values specified in Table 6.3.4.1.5-1.

Table 6.3.4.1.5-1: General ON/OFF time mask

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-48.5 dBm					
Transmission OFF Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
Expected Transmission ON Measured power	-14.8 ± 7.5	-10.8 ± 7.5	-8.6 ± 7.5	-5.6 ± 7.5	-3.9 ± 7.5	-2.6 ± 7.5

6.3.4.2 PRACH and SRS time mask

6.3.4.2.1 PRACH time mask

6.3.4.2.1.1 Test purpose

To verify that the PRACH time mask meets the requirements given in 6.3.4.2.1.5.

The time mask for PRACH time mask defines the ramping time allowed for the UE between transmit OFF power and transmit ON power when transmitting the PRACH.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.4.2.1.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.4.2.1.3 Minimum conformance requirement

For the PRACH Power / Time mask defines the observation period for PRACH transmissions. The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2.1.3-1.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

Table 6.3.4.2.1.3-1: PRACH ON power measurement period

PRACH preamble format	Measurement period (ms)
0	0.9031
1	1.4844
2	1.8031
3	2.2844
4	0.1479

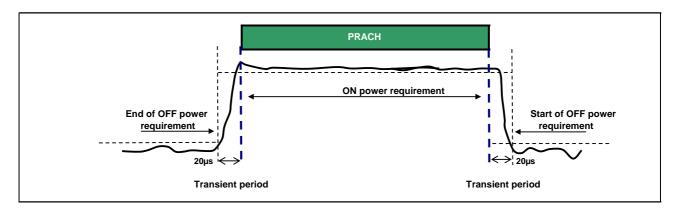


Figure 6.3.4.2.1.3-1: PRACH ON/OFF time mask

The normative reference for this requirement is TS 36.101 [2] clause 6.3.4.2.1.

6.3.4.2.1.4 Test description

6.3.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.4.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3.

Initial Conditions			
Test Environment (as specified in TS 36.508 [7] subclause 4.1)	Normal, TL/VL, TL/VH, TH/VL, TH/VH		
Test Frequencies (as specified in TS36.508 [7] subclause 4.3.1)	Mid range		
Test Channel Bandwidths (as specified in TS 36.508 [7] subclause 4.3.1)	Lowest, 5MHz, Highest		
PRACH preamble format			
	FDD	TDD	
PRACH Configuration Index	3	51	

Table 6.3.4.2.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.4.2.1.4.3.

6.3.4.2.1.4.2 Test procedure

1. The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.

- 2. The UE shall send the signalled preamble to the SS.
- 3. For FDD UE, the SS measure the UE transmission OFF power during the sub-frame preceding the PRACH preamble excluding a transient period of $20~\mu s$ according to Figure 6.3.4.2.1.3-1. For TDD UE, the SS measure the UE transmission OFF power starting (20us+the duration of 8 OFDM symbols) before the PRACH starts, and ending 20us before PRACH starts. Note, the nominal PRACH timing for TDD is not aligned with the sub frame and symbol raster.
- 4. Measure the output power of the transmitted PRACH preamble according to Figure 6.3.4.2.1.3-1.
- 5. Measure the UE transmission OFF power, starting 20 μs after the PRACH preamble ends for a measurement period of 980 μs ..

6.3.4.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.3.4.2.1.4.3-1: RACH-ConfigCommon-DEFAULT: PRACH measurement

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-12 RACH-ConfigCommon-DEFAULT				
Information Element	Value/remark Comment		Condition	
RACH-ConfigCommon-DEFAULT ::= SEQUENCE {				
powerRampingParameters SEQUENCE {				
powerRampingStep	dB0			
preambleInitialReceivedTargetPower	dBm-104		PRACH	
			Format 0	
	dBm-112		PRACH	
			Format 4	
}				

Table 6.3.4.2.1.4.3-2: PRACH-Config-DEFAULT: PRACH measurement for TDD

Derivation Path: TS 36.508 [7] clause 5.3.1, Table 5.3.1-3: PRACH-Config-DEFAULT				
Information Element	Value/remark	Comment	Condition	
PRACH-Config-DEFAULT ::= SEQUENCE {				
prach-ConfigIndex	51		TDD	
}				

Table 6.3.4.2.1.4.3-3: TDD-Config-DEFAULT: PRACH measurement for TDD

Derivation Path: TS 36.508 [7] clause 5.3.1, Table 5.3.1-1: TDD-Config-DEFAULT				
Information Element	Value/remark	Comment	Condition	
TDD-Config-DEFAULT ::= SEQUENCE {				
subframeAssignment	sa1			
specialSubframePatterns	ssp5	To enable two symbol UpPTS, and to have 9 symbols GP.		
}				

6.3.4.2.1.5 Test requirement

The requirement for the power measured in steps (3), (4) and (5) of the test procedure shall not exceed the values specified in Table 6.3.4.2.1.5-1.

	Channel bandwidth / Output Power [dBm] bandwidth] / measure	ement
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	≤ -48.5 dBm					
Transmission OFF Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
Expected PRACH Transmission ON Measured power	-1± 7.5	-1 ± 7.5	-1 ± 7.5	-1 ± 7.5	-1 ± 7.5	-1 ± 7.5

Table 6.3.4.2.1.5-1: PRACH time mask

6.3.4.2.2 SRS time mask

6.3.4.2.2.1 Test purpose

To verify that the SRS time mask meets the requirements given in 6.3.4.2.2.5.

The time mask for SRS time mask defines the ramping time allowed for the UE between transmit OFF power and transmit ON power when transmitting the SRS.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.4.2.2.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.4.2.2.3 Minimum conformance requirement

In the case a single SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2.3-1.

In the case a dual SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2.3-2.

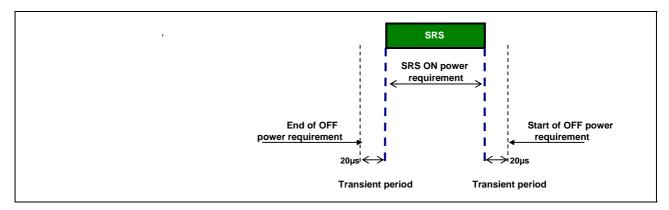


Figure 6.3.4.2.2.3-1: Single SRS time mask

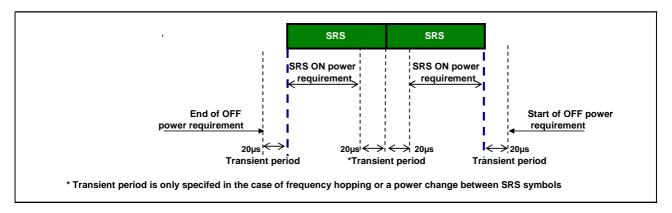


Figure 6.3.4.2.2.3-2: Dual SRS time mask for the case of UpPTS transmissions

6.3.4.2.2.4 Test description

6.3.4.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.4.2.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3.

Initial Conditions			
Test Environment (as specified in TS 36.508 [7] subclause 4.1)	Normal, TL/VL, TL/VH, TH/VL, TH/VH		
Test Frequencies (as specified in TS36.508 [7] subclause 4.3.1)	Mid range		
Test Channel Bandwidths (as specified in TS 36.508 [7] subclause 4.3.1)	Lowest, 5MHz, High	nest	
SRS configuration			
	FDD	TDD	
srs-BandwidthConfig	bw7	bw7 (for BW 1.4 MHz) bw5 (for BW 3 MHz) bw2 (for BW 5 MHz) bw0 (for BW 10, 15, 20 MHz)	
srs-SubframeConfig	sc3	sc0	
ackNackSRS-SimultaneousTransmission	FALSE	FALSE	
srsMaxUpPts	N/A	N/A	
srs-Bandwidth	bw3	bw3	
srs-HoppingBandwidth	hbw3	hbw0	
freqDomainPosition	0	0	
Duration	TRUE	TRUE	
srs-ConfigIndex	7	0	
transmissionComb	0	0	
cyclicShift	cs0	cs0	

Table 6.3.4.2.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.

- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.4.2.2.4.3. Note that PDCCH DCI format 0 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3.4.2.2.4.2 Test procedure

- 1. For FDD UE, the SS measure the UE transmission OFF power during the 13 symbols preceding the SRS symbol excluding a transient period of 20 µs according to Figure 6.3.4.2.2.3-1. For TDD UE, the SS measure the UE transmission OFF power during the 8 symbols preceding the two SRS symbols excluding a transient period of 20µs according to Figure 6.3.4.2.2.3-2.
- 2 Measure the output power of the transmitted SRS according to Figure 6.3.4.2.2.3-1 for FDD UE and according to Figure 6.3.4.2.2.3-2 for TDD UE, The transient periods are excluded from measurement accordingly.
- 3. Measure the UE transmission OFF power during the sub-frame following the SRS under test, excluding a transient period of $20~\mu s$ according to Figure 6.3.4.2.2.3-1 for FDD UE and according to Figure 6.3.4.2.2.3-2 for TDD UE.

6.3.4.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.3.4.2.2.4.3-1: RadioResourceConfigCommonSIB-DEFAULT: SRS measurement

Information Element	Value/remark	Comment	Condition
RadioResourceConfigCommon-DEFAULT ::= SEQUENCE {			
rach-ConfigCommon	RACH-ConfigCommon- DEFAULT		
bcch-Config	BCCH-Config-DEFAULT		
pcch-Config	PCCH-Config-DEFAULT		
prach-Config	PRACH-ConfigSIB- DEFAULT		
pdsch-ConfigCommon	Not present		
pusch-ConfigCommon	PUSCH-ConfigCommon- DEFAULT		
pucch-ConfigCommon	PUCCH-ConfigCommon- DEFAULT		
soundingRSUL-ConfigCommon	SoundingRS-UL- ConfigCommon- DEFAULT		
uplinkPowerControlCommon	UplinkPowerControlCom mon-DEFAULT		
ul-CyclicPrefixLength	len1		

Table 6.3.4.2.2.4.3-2: SoundingRS-UL-ConfigCommon-DEFAULT: SRS time mask measurement

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-21 SoundingRS-UL-ConfigCommon-DEFAULT			
Information Element	Value/remark	Comment	Condition
SoundingRS-UL-ConfigCommon-DEFAULT ::= SEQUENCE {			
setup SEQUENCE {			
srs-BandwidthConfig	bw7		FDD
·	bw7		TDD (BW 1.4 MHz)
	bw5		TDD (BW 3 MHz)
	bw2		TDD (BW 5 MHz)
	bw0		TDD (BW 10, 15, 20 MHz)
srs-SubframeConfig	sc3	Periodicity of 5ms, with offset of 0.	FDD
	sc0	Periodicity of 5ms, with offset of 1.	TDD
ackNackSRS-SimultaneousTransmission	FALSE		
srsMaxUpPts	Not present		
}			
}			

Table 6.3.4.2.2.4.3-3: PhysicalConfigDedicated-DEFAULT: SRS time mask measurement

Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE			
cqi-ReportConfig	Not present		
soundingRS-UL-ConfigDedicated	SoundingRSUL- ConfigDedicated- DEFAULT		

Table 6.3.4.2.2.4.3-4: SoundingRSUL-ConfigDedicated-DEFAULT: SRS time mask measurement

Derivation Path: TS 36.508 [7] clause 4.6.3, Table	4.6.3-22 SoundingRS-UL-C	onfigDedicated-DEFAUL	T
Information Element	Value/remark	Comment	Condition
SoundingRS-UL-ConfigDedicated-DEFAULT ::= CHOICE {			
setup SEQUENCE {			
srs-Bandwidth	bw3	bw3 used to ensure that the bandwidth is constantly 4 RBs irrespective of channel bandwidth.	
srs-HoppingBandwidth	hbw3	This is selected so that hopping is disabled	FDD
	hbw0	This is selected so that hopping is enabled	TDD
freqDomainPosition	0		
Duration	TRUE	Indefinite duration	
srs-ConfigIndex	7	SRS periodicity of 10ms, Toffset=0.	FDD
	0	SRS periodicity of 2ms, Ksrs=0,1, this is two symbols UpPTS in first half subframe.	TDD
transmissionComb	0		
cyclicShift	cs0	No cyclic shift	
}			

Table 6.3.4.2.2.4.3-5: TDD-Config-DEFAULT: SRS time mask measurement

Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	sa1		
specialSubframePatterns	ssp5	To enable two symbol UpPTS, and to have 9 symbols GP.	

Table 6.3.4.2.2.4.3-6: PhysicalConfigDedicated

Derivation Path: TS 36.508 [7] clause 5.5.1.2, Table 5.5.1.2.1 PhysicalConfigDedicated-DEFAULT					
Information Element	Value/remark	Comment	Condition		
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {					
uplinkPowerControlDedicated	UplinkPowerControlDedic	See subclause	SRB1		
	ated-DEFAULT	4.6.3			
	UplinkPowerControlDedic	See subclause	RBC		
	ated-DEFAULT	4.6.3			

Table 6.3.4.2.2.4.3-7: UplinkPowerControlDedicated

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-26 UplinkPowerControlDedicated-DEFAULT				
Information Element	Value/remark	Comment	Condition	
UplinkPowerControlDedicated-DEFAULT ::=				
SEQUENCE {				
p0-UE-PUSCH	1		SRB1	
	0		RBC	
}				

Condition	Explanation
FDD	FDD cell environment
TDD	TDD cell environment

6.3.4.2.2.5 Test requirement

The requirement for the power measured in steps (1), (2) and (3) of the test procedure shall not exceed the values specified in Table 6.3.4.2.2.5-1.

Table 6.3.4.2.2.5-1: SRS time mask

	Channel bandwidth / Output Power [dBm] / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	≤ -48.5 dBm					
Transmission OFF Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
Expected SRS Transmission ON Measured power	-2.6± 7.5	-2.6 ± 7.5	-2.6 ± 7.5	-2.6 ± 7.5	-2.6 ± 7.5	-2.6 ± 7.5

6.3.5 Power Control

Power control is used to limit the interference level and compensate the channel fading. The UE power is defined as the mean power in a subframe or ON power duration, whichever is available.

The UE transmission can be in two contiguity modes, i.e. contiguous transmission and non-contiguous transmission. The former has a transmission gap of 0 and the later has a transmission gap larger than 0. The transmission gap is the time interval between the end of the last UE transmission subframe and the beginning of the next UE transmission subframe or the UpPTS (for TDD).

6.3.5.1 Power Control Absolute power tolerance

6.3.5.1.1 Test purpose

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3.5.1.2 Minimum conformance requirement

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms.

The minimum requirement on absolute power tolerance is given in Table 6.3.5.1.2-1 over the power range bounded by the Maximum output power as defined in sub-clause 6.2.2 and the Minimum output power as defined in sub clause 6.3.2.

For operating bands under Note 2 in Table 6.2.2.3-1, the absolute power tolerance as specified in Table 6.3.5.1.2-1 is relaxed by reducing the lower limit by 1.5 dB when the transmission bandwidth is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} .

Table 6.3.5.1.2-1: Absolute power tolerance

Conditions	Tolerance
Normal conditions	± 9.0 dB
Extreme conditions	± 12.0 dB

The normative reference for this requirement is TS 36.101 [2] clause 6.3.5.1.1.

6.3.5.1.3 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.5.1.4 Test description

6.3.5.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.5.1.4.1-1. The details of the uplink reference measurement channel (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.5.1.4.1-1: Test Configuration Table

Initial Condi	tions				
Test Environment as specified in Normal, TL/VL, TL/VH, TH/VL, TH/VH TS 36.508[7] subclause 4.1					
Test Frequencies as specified in Mid range TS36.508 [7] subclause 4.3.1					
Test Channel	Bandwidths as specified in	Lowest, 5MH	z, Highest		
TS 36.508 [7] subclause 4.3.1					
Test Parameters for Channel Bandwidths					
	Downlink Configur	c Configuration		link Configuration	
Ch BW	N/A for Power Control Absolute power		Mod'n	RB allocation	
	tolerance test case			FDD	TDD
1.4MHz			QPSK	6	6
3MHz			QPSK	15	15
5MHz			QPSK	25	25
10MHz			QPSK	50	50
15MHz			QPSK	75	75
20MHz			QPSK	100	100
Note 1: Te	st Channel Bandwidths are c	hecked separa	tely for each E-	·UTRA band, th	ne applicable
chann	channel bandwidths are specified in Table 5.4.2.1-1.				

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channel is set according to Table 6.3.5.1.4.1-1.

5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.5.1.4.3. Note that PDCCH DCI format 0 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3.5.1.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.5.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Measure the initial output power of the first subframe of UE PUSCH first transmission. The transient periods of 20us are excluded.
- 3. Repeat for the two test points as indicated in section 6.3.5.1.4.3. The timing of the execution between the two test points shall be larger than 20ms.

6.3.5.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.3.5.1.4.3-1: UplinkPowerControlCommon: Test point 1

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-25 UplinkPowerControlCommon-DEFAULT						
Information Element	Value/remark	Comment	Condition			
UplinkPowerControlCommon-DEFAULT ::= SEQUENCE { p0-NominalPUSCH	-105	Test point 1 to verify a UE relative low initial				
		power transmission				

Table 6.3.5.1.4.3-2: UplinkPowerControlCommon: Test point 2

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-25 UplinkPowerControlCommon-DEFAULT						
Information Element	Value/remark	Comment	Condition			
UplinkPowerControlCommon-DEFAULT ::= SEQUENCE { p0-NominalPUSCH	-93	Test point 2 to verify a UE relative high initial				
		power transmission				

Table 6.3.5.1.4.3-3: PhysicalConfigDedicated

Derivation Path: TS 36.508 [7] clause 5.5.1.2, Table 5.5.1.2.1 PhysicalConfigDedicated-DEFAULT						
Information Element	Value/remark	Comment	Condition			
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {						
uplinkPowerControlDedicated	UplinkPowerControlDedic	See subclause	SRB1			
	ated-DEFAULT	4.6.3				
	UplinkPowerControlDedic	See subclause	RBC			
	ated-DEFAULT	4.6.3				

Table 6.3.5.1.4.3-4: UplinkPowerControlDedicated

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-26 UplinkPowerControlDedicated-DEFAULT						
Information Element	Value/remark	Comment	Condition			
UplinkPowerControlDedicated-DEFAULT ::=						
SEQUENCE {						
p0-UE-PUSCH	1		SRB1			
	0		RBC			
}						

6.3.5.1.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table 6.3.5.1.5-1 and 6.3.5.1.5-2.

Table 6.3.5.1.5-1: Absolute power tolerance: test point 1

	Channel bandwidth / expected output power (dBm)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Expected Measured power Normal conditions	-14.8 ± 10.0	-10.8 ± 10.0	-8.6 ± 10.0	-5.6 ± 10.0	-3.9 ± 10.0	-2.6 ± 10.0
Expected Measured power Extreme conditions	-14.8 ± 13.0	-10.8 ± 13.0	-8.6 ± 13.0	-5.6 ± 13.0	-3.9 ± 13.0	-2.6 ± 13.0

Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3

Table 6.3.5.1.5-2: Absolute power tolerance: test point 2

	Channel bandwidth / expected output power (dBm)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Expected Measured power Normal conditions	-2.8 ± 10.0	1.2 ± 10.0	3.4 ± 10.0	6.4 ± 10.0	8.2 ± 10.0	9.4 ± 10.0
Expected Measured power Extreme conditions	-2.8 ± 13.0	1.2 ± 13.0	3.4 ± 13.0	6.4 ± 13.0	8.2 ± 13.0	9.4 ± 13.0

Note 1: The upper power limit shall not exceed the maximum output power requirements defined by the power class in sub-clause 6.2.2.3

6.3.5.2 Power Control Relative power tolerance

6.3.5.2.1 Test purpose

To verify the ability of the UE transmitter to set its output power relatively to the power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is \leq 20 ms.

6.3.5.2.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.5.2.3 Minimum conformance requirement

The UE shall meet the requirements specified in Table 6.3.5.2.3-1.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in clauses 6.3.2.3 and 6.2.2.3. For these exceptions the power tolerance limit is a maximum of ± 6.0 dB in Table 6.3.5.2.3-1.

Table 6.3.5.2.3-1 Relative Power Tolerance for Transmission (normal conditions)

Power step ΔP (Up or down) [dB]	All combinations of PUSCH and PUCCH transitions [dB]	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames [dB]	PRACH [dB]
ΔP < 2	±2.5 (Note 3)	±3.0	±2.5
2 ≤ ΔP < 3	±3.0	±4.0	±3.0
3 ≤ ΔP < 4	±3.5	±5.0	±3.5
4 ≤ ΔP ≤ 10	±4.0	±6.0	±4.0
10 ≤ ΔP < 15	±5.0	±8.0	±5.0
15 ≤ ΔP	±6.0	±9.0	±6.0

Note 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed

Note 2: For operating bands under Note 2 in Table 6.2.2.3-1, the relative power
tolerance is relaxed by increasing the upper limit by 1.5 dB if the
transmission bandwidth of the reference sub-frames is confined within
FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high and the
target sub-frame is not confined within any one of these frequency
ranges; if the transmission bandwidth of the target sub-frame is confined
within FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high and
the reference sub-frame is not confined within any one of these
frequency ranges, then the tolerance is relaxed by reducing the lower
limit by 1.5 dB.

Note 3: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods for TDD: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is ± 1.0 dB.

The power step (ΔP) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to Clause 5.1 of TS 36.213. The error is the difference between ΔP and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2.3-1.

The normative reference for this requirement is TS 36.101 clause 6.3.5.2.

6.3.5.2.4 Test description

6.3.5.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.5.4.2.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.5.2.4.1-1: Test Configuration Table

	In	itial Condition					
Took Covinsor				1071 T 110711			
Test Environment as specified in TS 36.508[7] subclause 4.1		Normal, TL/V	/L, IL/VH, IF	H/VL, IH/VH			
Test Frequer	ncies as specified in	Mid range					
TS36.508 [7]	subclause 4.3.1						
Test Channe	I Bandwidths as specified in	Lowest, 5MH	lz, Highest				
TS 36.508 [7] subclause 4.3.1						
	Test Paramete	ers for Chann					
	Downlink Configur	ation	U	plink Configura	ation		
Ch BW	N/A for Power Control Relat	ive power	Mod'n	RB allo	ocation		
	tolerance test case			FDD	TDD		
1.4MHz			QPSK	See table	See table		
				6.3.5.2.5-1	6.3.5.2.5-1		
				6.3.5.2.5-2	6.3.5.2.5-2		
				6.3.5.2.5-13	6.3.5.2.5-13		
3MHz			QPSK	See table	See table		
				6.3.5.2.5-3	6.3.5.2.5-3		
				6.3.5.2.5-4	6.3.5.2.5-4		
				6.3.5.2.5-13	6.3.5.2.5-13		
5MHz			QPSK	See table	See table		
				6.3.5.2.5-5	6.3.5.2.5-5		
				6.3.5.2.5-6	6.3.5.2.5-6		
				6.3.5.2.5-13	6.3.5.2.5-13		
10MHz			QPSK	See table	See table		
				6.3.5.2.5-7	6.3.5.2.5-7		
				6.3.5.2.5-8	6.3.5.2.5-8		
				6.3.5.2.5-13	6.3.5.2.5-13		
15MHz			QPSK	See table	See table		
				6.3.5.2.5-9	6.3.5.2.5-9		
				6.3.5.2.5-10	6.3.5.2.5-10		
				6.3.5.2.5-13	6.3.5.2.5-13		
20MHz			QPSK	See table	See table		
				6.3.5.2.5-11	6.3.5.2.5-11		
				6.3.5.2.5-12	6.3.5.2.5-12		
N =				6.3.5.2.5-13	6.3.5.2.5-13		
	est Channel Bandwidths are cl			E-UTRA band,	the applicable		
channel bandwidths are specified in Table 5.4.2.1-1							

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channel is set according to table 6.3.5.4.2.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.5.2.4.3.

6.3.5.2.4.2 Test procedure

The procedure is separated in various subtests to verify different aspects of relative power control. The power patterns of the subtests are described in figure 6.3.5.2.4.2-1.

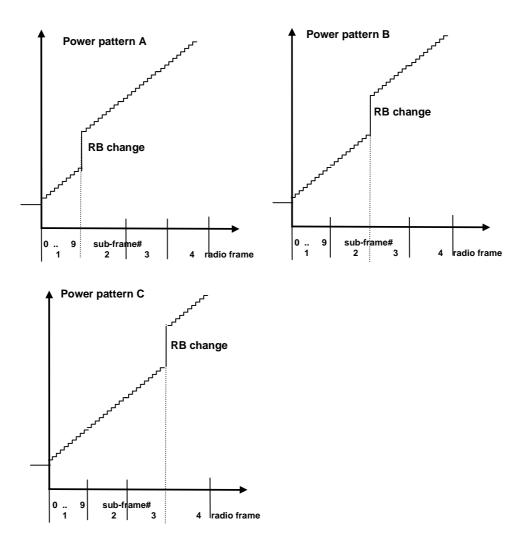
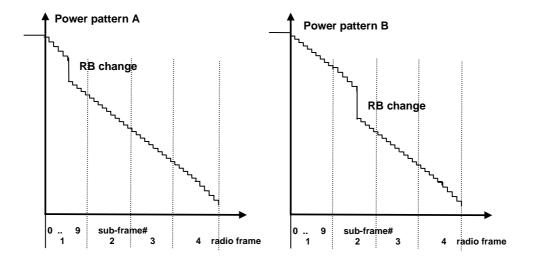



Figure 6.3.5.2.4.2-1: FDD ramping up test power patterns

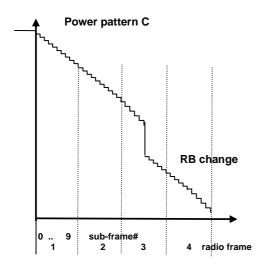
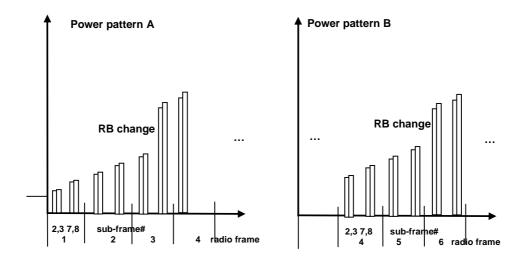



Figure 6.3.5.2.4.2-2: FDD ramping down test power patterns

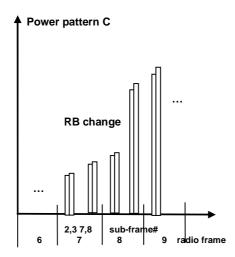
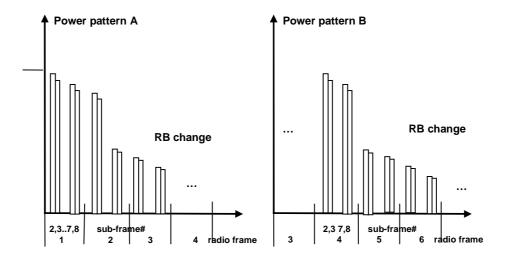



Figure 6.3.5.2.4.2-3: TDD ramping up test power patterns

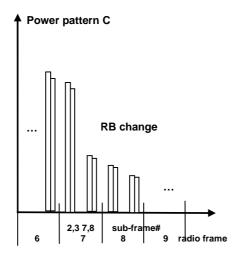


Figure 6.3.5.2.4.2-4: TDD ramping down test power patterns

86

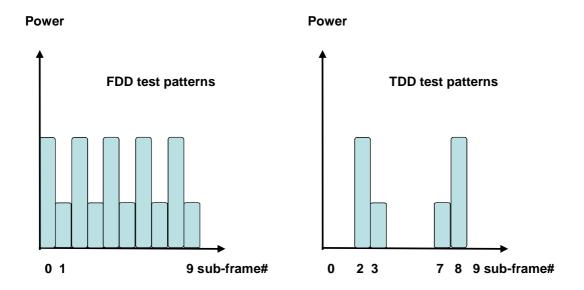


Figure 6.3.5.2.4.2-5: Alternating Test Power patterns

1. Sub test: ramping up pattern

- 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at -36.8dBm +/- 3.2 dB.
- 1.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.5.2.4.2-1 (FDD pattern A: sub-test is divided in 4 arbitrary radio frames with 10 active uplink sub-frames per radio frame) and Figure 6.3.5.2.4.2-3 (TDD pattern A: sub-test is divided in 10 arbitrary radio frames with 4 active uplink sub-frames per radio frame) with an uplink RB allocation as defined in tables 6.3.5.2.5-1 thru 6.3.5.2.5-12 depending on channel bandwidth. On the PDCCH format 0 for the scheduling of the PUSCH the SS will transmit a +1dB TPC command. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.
- 1.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements 6.3.5.2.5. For power transients between subframes, transient periods of 40us between subframes are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the subframe are excluded.
- 1.4. Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.5.2.5-1 thru Table 6.3.5.2.5-12 to force bigger UE power steps at various points in the power range.
- 2. Sub test: ramping down pattern
- 2.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at +18.0dBm +/- 3.2 dB.
- 2.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.5.2.4.2-2 (FDD pattern A: sub-test is divided in 4 arbitrary radio frames with 10 active uplink sub-frames per radio frame) and Figure 6.3.5.2.4.2-4 (TDD pattern A: sub-test is divided in 10 arbitrary radio frames with 4 active uplink sub-frames per radio frame) with an uplink RB allocation as defined in tables 6.3.5.2.5-1 thru 6.3.5.2.5-12 depending on channel bandwidth. On the PDCCH format 0 for the scheduling of the PUSCH the SS will transmit a -1dB TPC command. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.

- 2.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements 6.3.5.2.5. For power transients between subframes, transient periods of 40us between subframes are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the subframe are excluded.
- 2.4. Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.5.2.5-1 thru Table 6.3.5.2.5-12 to force bigger UE power steps at various points in the power range.
- 3. Sub test: alternating pattern
- 3.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at -10dBm +/- 3.2 dB. The initial uplink RB allocation is defined as the smaller uplink RB allocation value specified in tables 6.3.5.2.5-13. The power level and RB allocation are reset for each sub-test.
- 3.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.5.2.4.2-5 for 10 sub-frames with an uplink RB allocation alternating pattern as defined in table 6.3.5.2.5-13 while transmitting 0dB TPC command for PUSCH via the PDCCH.
- 3.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements specified in clause 6.3.5.2.5. For power transients between subframes, transient periods of 40us between subframes are excluded. For ON/OFF or OFF/ON transients, transient periods of 20 us at the beginning of the subframe are excluded.

6.3.5.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.3.5.2.5 Test requirement

Each UE power step measured in the test procedure 6.3.5.2.4.2 should satisfy the test requirements specified in Table 6.3.5.2.5-1, thru 6.3.5.2.5-13 for normal conditions; for extreme conditions an additional ± 2.0 dB relaxation is allowed.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of ramping up and ramping down test patterns. For these exceptions the power tolerance limit is a maximum of ± 6.7 dB. If there is an exception in the power step caused by the RB change for all test patterns (A, B, C) then fail the UE.

Table 6.3.5.2.5-1: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 1.4MHz (ramping up)

Sub-test (ramp up)	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 1	TPC=+1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 1 to 6 RBs	TPC=+1dB	8.78	4 ≤ ΔP < 10	8.78 ± (4.7) Note 2 8.78 +6.2/-4.7 Note 3
Subframes after RB change	Fixed = 6	TPC=+1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 10 active uplink subframes

Pattern B the position of RB uplink allocation change is after 20 active uplink subframes

Pattern C the position of RB uplink allocation change is after 30 active uplink subframes

Note 2: When Note 3 does not apply.

Note 3: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} - 4 MHz and F_{UL_high} and the target sub-frame is not confined within any one of these frequency ranges.

Note 4: N/A

Table 6.3.5.2.5-2: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 1.4MHz (ramping down)

Sub-test (ramp down)	Uplink RB allocation	TPC command	Expected power step size (down) ΔP [dB]	Power step size range (down) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 5	TPC=-1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 5 to 1 RBs	TPC=-1dB	7.99	4 ≤ ΔP < 1	7.99 ± (4.7) Note 2 7.99 +4.7/-6.2 Note 4
Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP < 2	1 ± (1.7)

Note 1: Position of RB change:

Pattern A the position of RB uplink allocation change is after 6 active uplink subframes

Pattern B the position of RB uplink allocation change is after 16 active uplink subframes

Pattern C the position of RB uplink allocation change is after 26 active uplink subframes

Note 2: When Note 4 does not apply.

Note 3: N/A

Note 4: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges.

Table 6.3.5.2.5-3: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 3MHz (ramping up)

Sub-test (ramp up)	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 1	TPC=+1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 1 to 4 RBs	TPC=+1dB	7.02	4 ≤ ΔP < 10	7.02 ± (4.7) Note 2 7.02 +6.2/-4.7 Note 3
Subframes after RB change	Fixed =4	TPC=+1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 10 active uplink subframes

Pattern B the position of RB uplink allocation change is after 20 active uplink subframes

Pattern C the position of RB uplink allocation change is after 30 active uplink subframes

Note 2: When Note 3 does not apply.

Note 3: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the target sub-frame is not confined within any one of these frequency ranges.

Note 4: N/A

Table 6.3.5.2.5-4: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 3MHz (ramping down)

Sub-test (ramp down)	Uplink RB allocation	TPC command	Expected power step size (down) ΔP [dB]	Power step size range (down) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 15	TPC=-1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 15 to 1 RBs	TPC=-1dB	12.76	10 ≤ ΔP < 15	12.76 ± (5.7) Note 2 12.76 +5.7/-7.2 Note 4
Subframes after RB change	Fixed =1	TPC=-1dB	1	ΔP < 2	1 ± (1.7)

Note 1: Position of RB change:

Pattern A the position of RB uplink allocation change is after 6 active uplink subframes

Pattern **A** the position of RB uplink allocation change is after 16 active uplink subframes

Pattern C the position of RB uplink allocation change is after 26 active uplink subframes

Note 2: When Note 4 does not apply.

Note 3: N/A

Note 4: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges.

Table 6.3.5.2.5-5: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 5MHz (ramping up)

Sub-test (ramp up)	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 1	TPC=+1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 1 to 20	TPC=+1dB	14.01	10 ≤ ΔP < 15	14.01 ± (5.7) Note 2 14.01 +7.2/-5.7 Note 3
Subframes after RB change	Fixed = 20	TPC=+1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 10 active uplink subframes

Pattern B the position of RB uplink allocation change is after 20 active uplink subframes

Pattern C the position of RB uplink allocation change is after 30 active uplink subframes

Note 2: When Note 3 does not apply.

Note 3: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the target sub-frame is not confined within any one of these frequency ranges.

Note 4: N/A

Table 6.3.5.2.5-6: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 5MHz (ramping down)

Sub-test (ramp down)	Uplink RB allocation	TPC command	Expected power step size (down) ΔP [dB]	Power step size range (down) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 25	TPC=-1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 25 to 1	TPC=-1dB	14.98	10 ≤ ΔP < 15	14.98 ± (5.7) Note 2 14.98 +5.7/-7.2 Note 4
Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP < 2	1 ± (1.7)

Note 1: Position of RB change:

Pattern A the position of RB uplink allocation change is after 6 active uplink subframes

Pattern B the position of RB uplink allocation change is after 16 active uplink subframes

Pattern C the position of RB uplink allocation change is after 26 active uplink subframes

Note 2: When Note 4 does not apply.

Note 3: N/A

Note 4: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges.

Table 6.3.5.2.5-7: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 10MHz (ramping up)

Sub-test (ramp up)	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 1	TPC=+1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 1 to 25	TPC=+1dB	14.98	10 ≤ ΔP < 15	14.98 ± (5.7) Note 2 14.98 +7.2/-5.7 Note 3
Subframes after RB change	Fixed = 25	TPC=+1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 10 active uplink subframes

Pattern B the position of RB uplink allocation change is after 20 active uplink subframes

Pattern C the position of RB uplink allocation change is after 30 active uplink subframes

Note 2: When Note 3 does not apply.

Note 3: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the target sub-frame is not confined within any one of these frequency ranges.

Note 4: N/A

Table 6.3.5.2.5-8: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 10MHz (ramping down)

Sub-test (ramp down)	Uplink RB allocation	TPC command	Expected power step size (down)	Power step size range (down) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 50 (UE Cat 2- 5) Fixed = 48 (UE Cat 1)	TPC=-1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 50 to 1 (UE cat 2-5) Change from 48 to 1 (UE cat	TPC=-1dB	17.99 17.81	15 ≤ Δ	17.99 ± (6.7) Note 2 17.99 +6.7/-8.2 Note 4 17.81 ± (6.7) Note 2 17.81 +6.7/-8.2 Note 4
Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 6 active uplink subframes

Pattern B the position of RB uplink allocation change is after 16 active uplink subframes

Pattern C the position of RB uplink allocation change is after 26 active uplink subframes

Note 2: When Note 3 does not apply.

Note 3: N/A

Note 4: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges.

Table 6.3.5.2.5-9: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 15MHz (ramping up)

Sub-test (ramp up)	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 1	TPC=+1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 1 to 50	TPC=+1dB	17.99	15 ≤ ΔP	17.99±(6.7) Note 2 17.99 +8.2/-6.7 Note 3
Subframes after RB change	Fixed = 50	TPC=+1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 10 active uplink subframes

Pattern B the position of RB uplink allocation change is after 20 active uplink subframes

Pattern C the position of RB uplink allocation change is after 30 active uplink subframes

Note 2: When Note 3 does not apply.

Note 3: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the target sub-frame is not confined within any one of these frequency ranges.

Note 4: N/A

Table 6.3.5.2.5-10: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 15MHz (ramping down)

Sub-test (ramp down)	Uplink RB allocation	TPC command	Expected power step size (down)	Power step size range (down) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 75 (UE Cat 2- 5) Fixed = 50	TPC=-1dB	1	ΔP < 2	1 ± (1.7)
RB change	(UE Cat 1) Change from 75 to 1 (UE Cat 2-5) Change from 50 to 1 (UE Cat	TPC=-1dB	19.75 17.99	15 ≤ΔP	19.75 ± (6.7) Note 2 19.75 +6.7/-8.2 Note 4 17.99 ± (6.7) Note 2 17.99 +6.7/-8.2 Note 4
Subframes after RB change	1) Fixed = 1	TPC=-1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 6 active uplink subframes

Pattern B the position of RB uplink allocation change is after 16 active uplink subframes

Pattern C the position of RB uplink allocation change is after 26 active uplink subframes

Note 2: When Note 4 does not apply.

Note 3: N/A

Note 4: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges.

Table 6.3.5.2.5-11: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 20MHz (ramping up)

Sub-test (ramp up)	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 1	TPC=+1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 1 to 75	TPC=+1dB	19.75	15 ≤ ΔP	19.75 ± (6.7) Note 2 19.75 +8.2/-6.7 Note 3
Subframes after RB change	Fixed = 75	TPC=+1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 10 active uplink subframes

Pattern B the position of RB uplink allocation change is after 20 active uplink subframes

Pattern C the position of RB uplink allocation change is after 30 active uplink subframes

Note 2: When Note 3 does not apply.

Note 3: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the target sub-frame is not confined within any one of these frequency ranges.

Note 4: N/A

Table 6.3.5.2.5-12: Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 20MHz (ramping down)

Sub-test (ramp down)	Uplink RB allocation	TPC command	Expected power step size (down)	Power step size range (down) ΔP [dB]	PUSCH [dB]
Subframes before RB change	Fixed = 100 (UE Cat 2-5) Fixed = 75 (UE Cat 1)	TPC=-1dB	1	ΔP < 2	1 ± (1.7)
RB change	Change from 100 to 1 (UE Cat 2-5) Change from 75 to 1 (UE Cat 1)	TPC=-1dB	21.0	15 ≤ΔP	21.0 ± (6.7) Note 2 21.0 +6.7/-8.2 Note 4 19.75 ± (6.7) Note 2 19.75 +6.7/-8.2 Note 4
Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP < 2	1 ± (1.7)

Pattern A the position of RB uplink allocation change is after 6 active uplink subframes

Pattern B the position of RB uplink allocation change is after 16 active uplink subframes

Pattern C the position of RB uplink allocation change is after 26 active uplink subframes

Note 2: When Note 4 does not apply.

Note 3: N/A

Note 4: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges.

Table 6.3.5.2.5-13: Test Requirements Relative Power Tolerance for Transmission (normal conditions) (Alternating pattern)

Sub-test	Uplink RB allocation	TPC command	Expected power step size (Up or down)	Power step size range (Up or down) ΔP [dB]	PUSCH [dB]
1.4 MHz	Alternating 1 and 6	TPC=0dB	7.78	4 ≤ ΔP < 10	7.78 ± (6.7) Note 1,2 7.78 +8.2/-6.7 Note 3 7.78 +6.7/-8.2 Note 4
3 MHz	Alternating 1 and 15	TPC=0dB	11.76	10 ≤ ΔP < 15	11.76 ± (6.7) Note 1,2 11.76 +8.2/-6.7 Note 3 11.76 +6.7/-8.2 Note 4
5 MHZ	Alternating 1 and 25	TPC=0dB	13.98	10 ≤ ΔP < 15	13.98 ± (6.7) Note 1 13.98 +8.2/-6.7 Note 2 13.98 +6.7/-8.2 Note 3
10 MHZ	Alternating 1 and 50 (UE Cat 2- 5)	TPC=0dB	16.99		16.99 ± (6.7) Note 1,2 16.99 +8.2/-6.7 Note 3 16.99 +6.7/-8.2 Note 4
	Alternating 1 and 48 (UE Cat 1)		16,81	15 ≤ ΔP	16.81 ± (6.7) Note 1,2 16.81 +8.2/-6.7 Note 3 16.81 +6.7/-8.2 Note 4
15 MHZ	Alternating 1 and 75 (UE Cat 2- 5)	TPC=0dB	18.75	15 ≤ Δ P	18.75 ± (6.7) Note 1,2 18.75 +8.2/-6.7 Note 3 18.75 +6.7/-8.2 Note 4
	Alternating 1 and 50 (UE Cat 1)		16.99		16.99 ± (6.7) Note 1,2 16.99 +8.2/-6.7 Note 3 16.99 +6.7/-8.2 Note 4
20 MHZ	Alternating 1 and 100 (UE Cat 2- 5)	TPC=0dB	20.00	15 ≤ΔP	20.00 ± (6.7) Note 1,2 20.00 +8.2/-6.7 Note 3 20.00 +6.7/-8.2 Note 4
	Alternating 1 and 75 (UE Cat 1)		18.75	ιυ ΣΔΓ	18.75 ± (6.7) Note 1,2 18.75 +8.2/-6.7 Note 3 18.75 +6.7/-8.2 Note 4

Note 1: Test tolerance +/- 6.7 dB was selected to allow PA switch possible exceptions to occur.

Note 2: When neither Note 3 nor Note 4 applies.

Note 3: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the reference sub-frames is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} and the target sub-frame is not confined within any one of these frequency ranges.

Note 4: For operating bands under Note 2 in Table 6.2.2.3-1, if the transmission bandwidth of the target sub-frame is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} and the reference sub-frame is not confined within any one of these frequency ranges.

6.3.5.3 Aggregate power control tolerance

6.3.5.3.1 Test purpose

To verify the ability of the UE to maintain its power level in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

6.3.5.3.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.5.3.3 Minimum conformance requirement

The UE shall meet the requirements specified in Table 6.3.5.3.3-1 for relative power control over the power range bounded by the minimum output power as defined in sub clause 6.3.2 and the maximum output power in sub-clause 6.2.2.

Table 6.3.5.3.3-1: Power control tolerance

TPC command	UL channel	Aggregate power tolerance within 21 ms						
0 dB	dB PUCCH ±2.5 dB							
0 dB	PUSCH	±3.5 dB						
	Note: 1: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.							

The normative reference for this requirement is TS 36.101 [2] clause 6.3.5.3.1.

6.3.5.3.4 Test description

6.3.5.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.5.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.5.3.4.1-1: Test Configuration Table: PUCCH sub-test

Initial Conditions							
Test Environ	Test Environment as specified in						
TS 36.508[7]	subclause 4.1						
Test Frequen	ncies as specific	ed in	Mid range				
TS36.508 [7]	subclause 4.3.	.1	_				
Test Channe	l Bandwidths a	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]] subclause 4.3	3.1					
Test Parame	ters for Chan	nel Bandwidth	ns				
	Down	nlink Configur	ation	Uplink Configuration			
Ch BW	Mod'n	RB allo	ocation	FDD: PUCCH format = Format 1a			
		FDD	TDD	TDD: PUCCH format = Format 1a/1b			
			100	TDD: T GOOT TOTTIAL TOTTIAL TATE			
1.4MHz	QPSK	3	3	155.1 Coortionnat = 1 onnat 14/15			
1.4MHz 3MHz	QPSK QPSK			TBB. 1 00011101111at = 1 01111at 1a/15			
		3	3	TBB. T GGGTTIGITILAT = T GITTIAL TATE			
3MHz	QPSK	3	3 4	TBB. T GGGTTIGITILAT = T GITTIAL TATE			
3MHz 5MHz	QPSK QPSK	3 4 8	3 4 8	TBB. T GGGTTIGITILAT = T GITTIAL TATE			
3MHz 5MHz 10MHz	QPSK QPSK QPSK	3 4 8 16	3 4 8 16	TBB. T GGGTTIGITIAL TATIS			

Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1.

Table 6.3.5.3.4.1-2: Test Configuration Table: PUSCH sub-test

Initial Conditions						
Test Environment as specified in		Normal				
	subclause 4.1					
	cies as specified in	Mid range				
TS36.508 [7]	subclause 4.3.1					
Test Channel	Bandwidths as specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]	subclause 4.3.1					
Test Parame	ters for Channel Bandwidth	าร				
	Downlink Configur	ration	Uplink Configuration			
Ch BW	N/A for PUSCH sub-test		Mod'n	RB allocation		
				FDD	TDD	
1.4MHz			QPSK	1	1	
3MHz			QPSK	4	4	
5MHz			QPSK	8	8	
10MHz			QPSK	12	12	
15MHz			QPSK	16	16	
20MHz	20MHz QPSK 18 18					
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable						
channel bandwidths are specified in Table 5.4.2.1-1.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3.5.3.4.1-1 (PUCCH sub-test) and Table 6.3.5.3.4.1-2 (PUSCH sub-test).
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.5.3.4.3.

6.3.5.3.4.2 Test procedure

The procedure is separated in two subtests to verify PUCCH and PUSCH aggregate power control tolerance respectively. The uplink transmission patterns are described in figure 6.3.5.3.4.2-1.

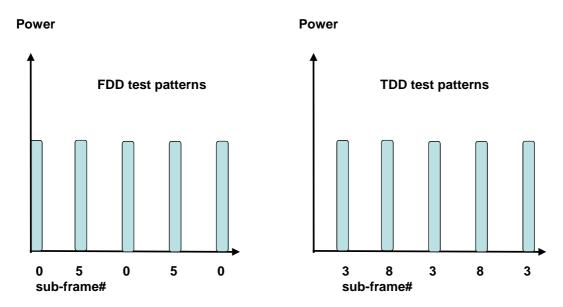


Figure 6.3.5.3.4.2-1 Test uplink transmission

1. PUCCH sub test:

- 1.1 The SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 6.3.5.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. Send the appropriate TPC commands for PUCCH to the UE to ensure that the UE transmits PUCCH at 0dBm +/- 3.2 dB.
- 1.2. Every 5 subframes transmit to the UE downlink PDSCH MAC padding bits as well as 0 dB TPC command for PUCCH via the PDCCH to make the UE transmit ACK/NACK on the PUCCH with transmission gap of 4 subframes. The downlink transmission is scheduled in the appropriate sub-frames to make the UE transmit PUCCH as described in figure 6.3.5.3.4.2-1.
- 1.3. Measure the power of 5 consecutive PUCCH transmissions to verify the UE transmitted PUCCH power is maintained within 21 ms. The transient periods of 20us are excluded from the power measurement.

2. PUSCH sub test:

- 2.1. The SS sends uplink scheduling information via PDCCH DCI format 0 for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at 0dBm +/- 3.2.dB
- 2.2. Every 5 subframes schedule the UE's PUSCH data transmission and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH with 4 subframes gap. The uplink transmission patterns are described in figure 6.3.5.3.4.2-1.
- 2.3. Measure the power of 5 consecutive PUSCH transmissions to verify the UE transmitted PUSCH power is maintained within 21 ms. The transient periods of 20us are excluded from the power measurement.

6.3.5.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.3.5.3.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3.5.3.5-1. The power measurement period shall be 1 sub-frame excluding transient periods.

Table 6.3.5.3.5-1: Power control tolerance

TPC command	UL channel	Test requirement measured power	
0 dB	PUCCH	Given 5 power measurements in the pattern, the 2 nd , 3 rd , 4 th , and 5 th measurements shall be within ± 3.2 dB of the 1 st measurement.	
0 dB	PUSCH	Given 5 power measurements in the pattern, the 2 nd , 3 rd , 4 th , and 5 th measurements shall be within ± 4.2 dB of the 1 st measurement.	
Note 1: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.			

6.4 Void

6.5 Transmit signal quality

Editor's note:

The test cases for transmit signal quality: frequency error, EVM, carrier leakage, IBE, EVM equalizer spectrum flatness are complete, except the following aspect is not determined:

• Reference signal EVM and PRACH EVM minimum requirements from the core specification are still in brackets

In this clause a multitude of results are derived, all using one common algorithm returning these results: Global In-Channels TX-Test (Annex E). Each sub clause of this clause contains a procedure and test requirements described for a specific measurement. If all relevant test parameters in different sub clauses are the same, then the results, returned by the Global In-Channel TX-Test, may be used across the applicable sub clauses.

6.5.1 Frequency Error

6.5.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.5.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.1.3 Minimum conformance requirements

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5ms) compared to the carrier frequency received from the E-UTRA Node B.

The normative reference for this requirement is TS 36.101 clause 6.5.1

6.5.1.4 Test description

6.5.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.1.4.1-1: Test Configuration Table

		l _m	itial Canditia	•				
			itial Condition		F1 1 / / / I			
Test Environment as specified in TS 36.508[7] subclause 4.1		NC, TL/VL, TL/VH, TH/VL, TH/VH						
				4.1				
Test Frequencies as specified in			Low range, N	Low range, Mid range, High range				
TS36.508 [7] subclause 4.3.1								
Test Channel Bandwidths as specified in TS 36.508 [7] subclause 4.3.1			Lowest, 5MH	z, Hignest				
15 36.508 [7				al Dan decidele				
	•			el Bandwidths				
OL DIA		nlink Configur			Uplink Configuration			
Ch BW	Mod'n		ocation	Mod'n		ocation		
	0.501/	FDD	TDD	0.701/	FDD	TDD		
1.4MHz	QPSK	6	6	QPSK	6	6		
3MHz	QPSK	15	15	QPSK	15	15		
5MHz	QPSK	25	25	QPSK	25	25		
5MHz	QPSK	25	N/A	QPSK	20	N/A		
5MHz	QPSK	25	N/A	QPSK	15	N/A		
10MHz	QPSK	50	50	QPSK	50	50		
10MHz	QPSK	50	N/A	QPSK	25	N/A		
10MHz	QPSK	50	N/A	QPSK	20	N/A		
10MHz	QPSK	50	N/A	QPSK	15	N/A		
15MHz	QPSK	75	75	QPSK	75	75		
15MHz	QPSK	75	N/A	QPSK	50	N/A		
15MHz	QPSK	75	N/A	QPSK	25	N/A		
15MHz	QPSK	75	N/A	QPSK	20	N/A		
20MHz	QPSK	100	100	QPSK	100	100		
20MHz	QPSK	100	N/A	QPSK	75	N/A		
20MHz	QPSK	100	N/A	QPSK	50	N/A		
20MHz	QPSK	100	N/A	QPSK	25	N/A		
20MHz	QPSK	PSK 100 N/A QPSK 20 N/A						

Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508[7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.5.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.5.1.4.3.

6.5.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 6.5.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5.1.4.1-1, since the UE has no payload data to send, the UE transmit uplink MAC padding bits on the UL RMC

Note 2. Depending on E-UTRA band, only the appropriate Uplink RB allocation value according to table 7.3.3-2 is tested per Test Channel Bandwidth.

- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.5-1. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test.
- 4. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

6.5.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the exceptions in subclause 7.3.4.3 and Table 7.3.3-3.

6.5.1.5 Test requirement

The 20 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \le (0.1 \text{ PPM} + 15 \text{ Hz})$

6.5.2 Transmit modulation

Transmit modulation defines the modulation quality for expected in-channel RF transmissions from the UE. This transmit modulation limit is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resources blocks (RB),
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)

In-band emissions for the non-allocated RB

6.5.2.1 Error Vector Magnitude (EVM)

6.5.2.1.1 Test Purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power, modulation or allocation between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 μ s and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the slot boundary.

6.5.2.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.1.3 Minimum conformance requirements

EVM measurements are evaluated for 10 uplink sub-frames excluding any transient period for the average EVM case, and 60 subframes excluding any transient period for the reference signal EVM case, the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.3-1 for the parameters defined in Table 6.5.2.1.3-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and] all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Table 6.5.2.1.3-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
QPSK or BPSK	%	17.5	[17.5]
16QAM	%	12.5	[12.5]

Table 6.5.2.1.3-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ -40
Operating conditions		Normal conditions

The normative reference for this requirement is TS 36.101 [2] clause 6.5.2.1.1.

6.5.2.1.4 Test description

6.5.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.2.1.4.1-1: Test Configuration Table for PUSCH

Initial Condi	tions				
Test Environ	ment	NO			
(as specified in TS 36.508 [7] subclause 4.1)		NC	NC		
Test Frequencies		O T-bl- C	See Table 6.5.1.4.1-1		
(as specified in TS36.508 [7] subclause 4.3.1)		See Table 6.			
Test Channel Bandwidths (as specified in TS 36.508 [7] subclause 4.3.1)		See Table 6.5.1.4.1-1			
	Downlink Configuration	n Uplink Configuration			
Ch BW	N/A for PUSCH EVM testing	Mod'n	RB all	ocation	
]		FDD	TDD	
1.4MHz		QPSK	6	6	
1.4MHz]	QPSK	1	1	
1.4MHz]	16QAM	6	6	
1.4MHz		16QAM	1	1	
3MHz]	QPSK	15	15	
3MHz		QPSK	4	4	
3MHz		16QAM	15	15	
3MHz		16QAM	4	4	
5MHz		QPSK	25	25	
5MHz		QPSK	8	8	
5MHz		16QAM	25	25	
5MHz		16QAM	8	8	
10MHz		QPSK	50	50	
10MHz		QPSK	12	12	
10MHz		16QAM	50	50	
			(Note 3)	(Note 3)	
10MHz		16QAM	12	12	
15MHz		QPSK	75	75	
15MHz		QPSK	16	16	
15MHz		16QAM	75	75	
			(Note 3)	(Note 3)	
15MHz		16QAM	16	16	
20MHz		QPSK	100	100	
20MHz		QPSK	18	18	
20MHz		16QAM	100	100	
			(Note 3)	(Note 3)	
20MHz		16QAM	18	18	

Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.

Note 2: For partial RB allocation, the starting resource block shall be RB #0 and RB# (max+1 -

RB allocation) of the channel bandwidth.

3: Applies only for UE-Categories 2-5

Table 6.5.2.1.4.1-2: Test Configuration Table for PUCCH

Initial Conditions					
Test Environment as specified in			NC		
TS 36.508[7] subclause 4.1					
Test Frequencies as specified in		See Table 6.5.1.4.1-1			
TS36.508 [7]	subclause 4.3	.1			
Test Channe	I Bandwidths a	s specified in	See Table 6.	5.1.4.1-1	
TS 36.508 [7] subclause 4.3	3.1			
Test Parameters for Channel Bandwidths					
	Dowi	nlink Configur	ation	Uplink Configuration	
Ch BW	Mod'n	RB allocation		FDD: PUCCH format = Format 1a	
		FDD TDD		TDD: PUCCH format = Format 1a / 1b	
1.4MHz	QPSK	3	3		
	~ •	_			
3MHz	QPSK	4	4		
3MHz 5MHz					
	QPSK	4	4		
5MHz	QPSK QPSK	4 8	4 8		
5MHz 10MHz	QPSK QPSK QPSK	4 8 16	4 8 16		

channel bandwidths are specified in Table 5.4.2.1-1.

Initial Conditions					
Test Environment (as specified in TS 36.508 [7] subclause 4.1)	NC				
Test Frequencies (as specified in TS36.508 [7] subclause 4.3.1) See Table 6.5.1.4.1-1					
Test Channel Bandwidths (as specified in TS 36.508 [7] subclause 4.3.1)	See Table 6.5.1.4.1-1				
PRACH preamble format					
	FDD	TDD			
PRACH Configuration Index	4	53			
RS EPRE setting for test point 1 (dBm/15kHz)	-71	-63			
RS EPRE setting for test point 2 (dBm/15kHz)	-86	-78			

Table 6.5.2.1.4.1-3: Test Configuration for PRACH

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508[7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to in Table 6.5.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.5.2.1.4.3.

6.5.2.1.4.2 Test procedure

Test procedure for PUSCH:

- 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 1.2 Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at $P_{UMAX\ level}$.
- 1.3 Measure the EVM and EVM DMRS using Global In-Channel Tx-Test (Annex E).

- 1.4 Send power control "down" commands in the uplink scheduling information to the UE until UE output power is -36.8dBm, with ± 3.2 dB tolerance.
- 1.5 Measure the EVM and EVM DMRS using Global In-Channel Tx-Test (Annex E).

Test procedure for PUCCH:

- 2.1. PUCCH are set according to Table 6.5.2.1.4.1-2.
- 2.2. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 6.5.2.1.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UEsend uplink ACK/NACK using PUCCH. There is no PUSCH transmission.
- 2.3. SS send appropriate TPC commands for PUCCH to the UE until the UE transmit PUCCH at P_{UMAX} level.
- 2.4. Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).
- 2.5. SS send appropriate TPC commands for PUCCH to the UE until the UE transmits PUCCH at -36.8dbm, with ±3.2dB tolerance.2.6. Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).

Test procedure for PRACH:

- 3.1. The SS shall set RS EPRE according to Table 6.5.2.1.4.1-3.
- 3.2. PRACH is set according to Table 6.5.2.1.4.1-3.
- 3.3. The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure
- 3.4. The UE shall send the signalled preamble to the SS.
- 3.5. In response to the preamble, the SS shall transmit a random access response not corresponding to the transmitted random access preamble, or send no response.
- 3.6. The UE shall consider the random access response reception not successful then re-transmit the preamble with the calculated PRACH transmission power.
- 3.7. Repeat step 5 and 6 until the SS collect enough PRACH preambles (2 preambles for format 0 and 10 preambles for format 4). Measure the EVM in PRACH channel using Global In-Channel Tx-Test (Annex E).

6.5.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.5.2.1.4.3-1: PRACH-ConfCommonDEFAULT: PRACH EVM measurement for FDD

Derivation Path: TS 36.508 [7] clause	4.6.3, Table 4.6.3-7 PRACH-ConfCommonDEFAULT		
Information Element	Value/remark	Comment	Condition
PRACH-ConfigInfo SEQUENCE {			
prach-ConfigIndex	4		

Table 6.5.2.1.4.3-2: PRACH-ConfCommonDEFAULT: PRACH EVM measurement for TDD

Derivation Path: TS 36.508 [7] clause 5.3.1, Table 5.3.1-1 PRACH-ConfCommonDEFAULT					
Information Element	Value/remark	Comment	Condition		
PRACH-ConfigInfo SEQUENCE {					
prach-ConfigIndex	53				

Table 6.5.2.1.4.3-4: RACH-ConfigCommon-DEFAULT: PRACH EVM measurement

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.		1	
Information Element	Value/remark	Comment	Condition
RACH-ConfigCommon-DEFAULT ::= SEQUENCE {			
preambleInfo SEQUENCE {			
numberOfRA-Preambles	nF2		
	n52		
preamblesGroupAConfig SEQUENCE {}	Not present		
}			
powerRampingParameters SEQUENCE {			
powerRampingStep	dB0		
preambleInitialReceivedTargetPower	dBm-104		PRACH
			Format 0
	dBm-112		PRACH
			Format 4
}			
preambleInitialReceivedTargetPower	dBm-120 Test point 1		
•	dBm-90 Test point 2		
}			
ra-SupervisionInfo SEQUENCE {			
preambleTransMax	n10		FDD
	n20		TDD
ra-ResponseWindowSize	Sf10		
mac-ContentionResolutionTimer	sf48		
}			
ra-SupervisionInfo SEQUENCE {			

Table 6.5.2.1.4.3-5: TDD-Config-DEFAULT: PRACH EVM measurement for TDD

Derivation Path: TS 36.508 [7] clause 5.3.1, Table 5.3.1-1: TDD-Config-DEFAULT				
Information Element	Value/remark	Comment	Condition	
TDD-Config-DEFAULT ::= SEQUENCE {				
subframeAssignment	sa1			
specialSubframePatterns	ssp5	To enable two symbol UpPTS, and to have 9 symbols GP.		
}				

6.5.2.1.5 Test requirement

The PUSCH EVM derived in E.4.2 shall not exceed 17,5 % for QPSK and BPSK, 12,5% for 16 QAM.

The PUSCH EVM_{DMRS} derived in E.4.8.2 shall not exceed [17,5 %] when embedded with data symbols of QPSK and BPSK, [12,5%] for 16 QAM.

The PUCCH EVM and derived in E.5.9.2 shall not exceed 17,5 %.

The PRACH EVM derived in FFS shall not exceed 17.5%.

6.5.2.1A PUSCH-EVM with exclusion period

Editor's note:

• Test Tolerances in Annex F.3.2 are defined to be zero and are applicable to clause 6.5.2.1 (EVM). It is FFS, if the same test tolerances are applicable for this test as well.

6.5.2.1A.1 Test purpose

To verify the ability of the UE transmitter to keep the EVM minimum requirements, even in the presence of transients according to subclause 6.5.2.1.1 third paragraph:

.....In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 µs and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT.

6.5.2.1A.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.5.2.1A.3 Minimum conformance requirement

EVM measurements are evaluated for 10 uplink sub-frames in a reduced time interval due to exclusion periods for the average EVM. The different modulations schemes shall not exceed the values specified in Table 6.5.2.1.3-1 for the parameters defined in Table 6.5.2.1.3-2.

6.5.2.1A.4 Test description

6.5.2.1A.4.1 Initial conditions

10MHz

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.2.1A.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions Test Environment as specified in **Normal Conditions** TS 36.508[7] subclause 4.1 Test Frequencies as specified in Low range TS36.508 [7] subclause 4.3.1 Test Channel Bandwidths as specified in 10 MHz TS 36.508 [7] subclause 4.3.1 **Test Parameters for Channel Bandwidths Downlink Configuration Uplink Configuration** Ch BW N/A Mod'n RB allocation **FDD** TDD 10MHz **QPSK** Alternating Alternating 12 and 1 12 and 1

16 QAM

Alternating

12 and 1

Alternating

12 and 1

Table 6.5.2.1A.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channel is set according to table 6.5.2.1A.4.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.3.5.2.4.3.

6.5.2.1A.4.2 Test procedure

The test pattern is illustrated in figure 6.5.2.1A.4.2-1.

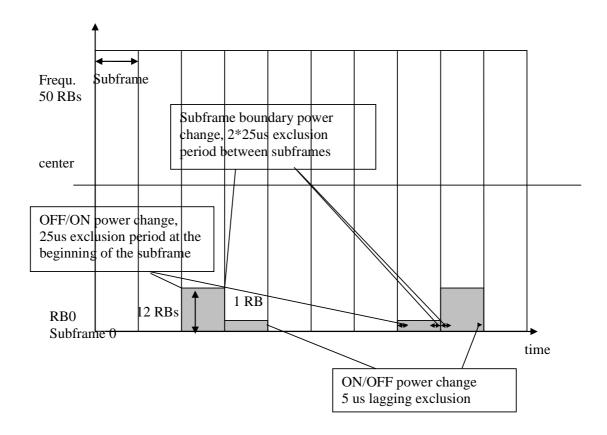


Figure 6.5.2.1A.4.2-1: Test pattern

NOTE 1: In TDD the free subframes are special subframes or DL, in FDD the free subframes are OFF.

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the PUSCH... Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The initial uplink RB allocation is 12 as specified in Table 6.3.5.2A.1.4.1. Send appropriate TPC commands for PUSCH to the UE to ensure UE transmit PUSCH at 0dB with ±3.2dB tolerance.
- 2. Schedule the UE's PUSCH data transmission as described in Figure 6.5.2.1A.4.2-1 for 16¹⁾ active time slots with an uplink RB allocation alternating pattern as described in table 6.5.2.1A.4.1-1 while transmitting 0dB TPC command for PUSCH via the PDCCH.
- 3. Measure the EVM using Global In-Channel Tx-Test. The averaging across 16¹⁾ timeslots is done across mixed RB allocations, as illustrated in Figure 6.5.2.1A.4.2-1

NOTE 1: Averaging across 16 timeslots is used to represent each type of transition equally in the average.

6.5.2.1A.5 Test requirement

The PUSCH EVM derived in Annex E.4.2 taking into account Annex E.7 shall not exceed 17,5 % for QPSK and 12,5% for 16 QAM. The test requirements shall be fullfilled for early and late EVM window.

6.5.2.2 Carrier leakage

6.5.2.2.1 Test Purpose

Carrier leakage (the I/Q origin offset) is an interference caused by crosstalk or DC offset and expresses itself as unmodulated sine wave with the carrier frequency. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. I/Q origin offset interferes with the centre sub carriers of the UE under test (if allocated), especially, when their amplitude is small. The measurement interval is defined over one slot in the time domain.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.5.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.2.3 Minimum conformance requirements

The relative carrier leakage power (IQ origin offset power) is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2.2.3-1.

Table 6.5.2.2.3-1: Minimum requirements for Relative Carrier Leakage Power

LO Leakage	Parameters	Relative Limit (dBc)
	Output power >0 dBm	-25
	-30 dBm ≤ Output power ≤0 dBm	-20
	-40 dBm ≤ Output power < -30 dBm	-10

The normative reference for this requirement is TS 36.101 clause 6.5.2.2.1

6.5.2.2.4 Test description

6.5.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.2.2.4.1-1: Test Configuration Table

Initial Condit	tions			
Test Environment		See Table 6.5.1.4.1-1		
(as specified	in TS 36.508 [7] subclause 4.1)		1 4010 01011111	
Test Frequen		Soc	Table 6.5.1.4.	1_1
(as specified	in TS36.508 [7] subclause 4.3.1)	56	1 4016 0.5.1.4.	1-1
Test Channel	Bandwidths	Soc	Table 6.5.1.4.	1 1
(as specified	in TS 36.508 [7] subclause 4.3.1)	566	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1 - 1
Test Parameters for Channel Bandwidths				
	Downlink Configuration	Uplink Configuration		
Ch BW	N/A for carrier leakage testing	Mod'n	RB allocation	
			FDD	TDD
1.4MHz		QPSK	1	1
3MHz		QPSK	4	4
5MHz		QPSK	8	8
10MHz		QPSK	12	12
15MHz		QPSK	16	16
20MHz		QPSK	18	18
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.				

1. Connect the SS to the UE to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.

For partial RB allocation, the starting resource block shall be RB #0 and RB# (max +1-

2. The parameter settings for the cell are set up according to TS 36.508[7] subclause 4.4.3.

RB allocation) of the channel bandwidth.

- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to in Table 6.5.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.5.2.2.4.3.

6.5.2.2.4.2 Test procedure

Note 2:

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC
- 2. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 3.2 dBm, with $\pm 3.2 \text{dB}$ tolerance.
- 3. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 4. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is -26.8 dBm, with ±3.2dB tolerance.
- 5. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test
- 6. Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is -36.8dBm, with $\pm 3.2dB$ tolerance.
- 7. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test

6.5.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.5.2.2.5 Test requirement

Each of the 20 IQ offset results, derived in Annex E.3.1, shall not exceed the values in table 6.5.2.2.5-1

Table 6.5.2.2.5-1: Test requirements for Relative Carrier Leakage Power

LO Leakage	Parameters	Relative Limit (dBc)
	3.2 dBm ±3.2dB	-24.2
	-26.8 dBm ±3.2dB	-19.2
	-36.8dBm±3.2dB	-9.2

6.5.2.3 In-band emissions for non allocated RB

6.5.2.3.1 Test Purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB. The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

6.5.2.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.3.3 Minimum conformance requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.3-1.

Table 6.5.2.3.3-1: Minimum requirements for in-band emissions

Parameter Description	Unit	Limit (Note 1)		Applicable Frequencies
General	dB	$\max \left\{ -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRBs}), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot (\left \Delta_{RB}\right - 1) / L_{CRBs}, \\ -57 \ dBm / 180 \ kHz - P_{RB} \right\}$		Any non-allocated (Note 2)
IQ Image	dB	-25		Image frequencies (Notes 2, 3)
		-25	Output power > 0 dBm	
Carrier leakage	dBc	-20	-30 dBm ≤ Output power ≤ 0 dBm	LO frequency (Notes 4, 5)
		-10	-40 dBm ≤ Output power < -30 dBm	,

- Note 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 10.
- Note 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- Note 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.
- Note 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs.
- Note 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the DC frequency if N_{RB} is even, but excluding any allocated RB.
- Note 6: L_{CRBs} is the Transmission Bandwidth (see Figure 5.4.2-1).
- Note 7: N_{RR} is the Transmission Bandwidth Configuration (see Figure 5.4.2-1).
- Note 8: *EVM* is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
- Note 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- Note 10: P_{RR} is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

The normative reference for this requirement is TS 36.101 [2] clause 6.5.2.3.1.

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB. The basic in-band emissions measurement interval is defined over one slot in the time domain.

6.5.2.3.4 Test description

6.5.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.2.3.4.1-1: Test Configuration Table for PUSCH

Initial Conditions				
Test Environment		See Table 6.5.1.4.1-1		1-1
(as specified	in TS 36.508 [7] subclause 4.1)	000	7 14510 0.0.1111	
Test Frequen	cies	Soc	See Table 6.5.1.4.1-1	
(as specified	in TS36.508 [7] subclause 4.3.1)	366	5 Table 0.5.1.4.	. 1-1
Test Channel	Bandwidths	Soci	e Table 6.5.1.4.	1_1
(as specified	in TS 36.508 [7] subclause 4.3.1)	366	5 Table 0.5.1.4.	. 1-1
Test Parame	ters for Channel Bandwidths			
	Downlink Configuration	Uplink Configuration		tion
Ch BW	N/A for in-band emissions testing	Mod'n	RB allocation	
			FDD	TDD
1.4MHz		QPSK	1	1
3MHz		QPSK	4	4
5MHz		QPSK	8	8
10MHz		QPSK	12	12
15MHz		QPSK	16	16
20MHz		QPSK	18	18

Note 1. Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.

Note 2. For partial RB allocation, the starting resource block shall be RB #0 and RB# (max+1 - RB allocation) of the channel bandwidth.

Table 6.5.2.3.4.1-2: Test Configuration Table for PUCCH

Initial Conditions						
Test Environment as specified in TS 36.508[7] subclause 4.1			See Table 6.	5.1.4.1-1		
Test Frequer	ncies as specifi		See Table 6.	5.1.4.1-1		
TS36.508 [7]	subclause 4.3.	.1				
Test Channe	I Bandwidths a	s specified in	See Table 6.	5.1.4.1-1		
TS 36.508 [7] subclause 4.3	.1				
Test Parame	Test Parameters for Channel Bandwidths					
	Down	nlink Configuration		Uplink Configuration		
Ch BW	Mod'n	RB allo	ocation	FDD: PUCCH format = Format 1a		
		FDD	TDD	TDD: PUCCH format = Format 1a /		
1.4MHz	QPSK	3	3	1b		
3MHz	QPSK	4	4			
5MHz	QPSK	8	8			
10MHz	QPSK	16	16 16			
15MHz	QPSK	25	25			
20MHz	QPSK	30	30 30			
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable						

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to in Table 6.5.2.3.4.1-1.

channel bandwidths are specified in Table 5.4.2.1-1.

- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.5.2.3.4.3.

6.5.2.3.4.2 Test procedure

Test procedure for PUSCH:

1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC

- 1.2 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 3.2 dBm, with $\pm 3.2 \text{dBtolerance}$.
- 1.3 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 1.4 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is 26.8 dBm, with ±3.2dB tolerance.
- 1.5 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test
- 1.6 Send the appropriate TPC commands in the uplink scheduling information to the UE until UE output power is to -36.8 dBm, with ± 3.2 dB tolerance.
- 1,7 Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test

Test procedure for PUCCH:

- 2.1 PUCCH is set according to Table 6.5.2.3.4.1-2. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 6.5.2.3.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH.
- 2.2 Send the appropriate TPC commands in the uplink scheduling information for PUCCH to the UE until UE output power is 3.2 dBm, with ± 3.2 dBtolerance.
- 2.3 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.4 Send the appropriate TPC commands for PUCCH in the uplink scheduling information to the UE until UE output power is -26.8 dBm, with ± 3.2 dB tolerance.
- 2.5 Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.6 Send the appropriate TPC commands for PUCCH in the uplink scheduling information to the UE until UE output power is to -36.8 dBm, with \pm 3.2dB tolerance.
- 2.7 Measure In-band emission using Global In-Channel Tx-Test (Annex E)

6.5.2.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 4.6.3-8: PUCCH-ConfigCommon: PUCCH in-band emissions measurement

Derivation Path: 36.331 clause 6.3.2, Table 4.6.3-8: PUCCH-ConfigCommon-DEFAULT				
Information Element Value/remark Comment Condition				
PUCCH-ConfigCommon-DEFAULT ::= SEQUENCE {				
nRB-CQI	0			
}				

6.5.2.3.5 Test requirement

Each of the 20 In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.5.2.3.5-1

LO frequency (Notes

4, 5)

General

IQ Image

DC

Parameter Description	Unit	Limit (Note 1)	Applicable Frequencies
neral	dB	$\max \left\{ -25 - 10 \cdot \log_{10} \left(N_{RB} / L_{CRBs} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left(\left \Delta_{RB} \right - 1 \right) / L_{CRBs}, +0.8 \\ -57 \ dBm \ / 180 \ kHz - P_{RB} \right\}$	Any non-allocated (Note 2)
Image	dB	-24.2	Image frequencies (Notes 2, 3)

Output power =3.2dBm ±3.2dB Output power =-26.8 dBm

±3.2dB

Output power =-36.8 dBm

±3.2dB

Table 6.5.2.3.5-1: Test requirements for in-band emissions

An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the test Note 1: requirement is calculated as the higher of P_{RB} – 29.2 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 10.

-24.2

-19.2

-9.2

- The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-Note 2: allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated Note 3: bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.
- Note 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.
- The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if Note 5: $N_{\it RB}$ is odd, or in the two RBs immediately adjacent to the DC frequency if $N_{\it RB}$ is even, but excluding any allocated RB.
- Note 6: $L_{\it CRBs}$ is the Transmission Bandwidth (see Figure 5.4.2-1).

dBc

- $N_{\it RB}$ is the Transmission Bandwidth Configuration (see Figure 5.4.2-1). Note 7:
- Note 8: EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
- $\Delta_{\it RB}$ is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. Note 9:
 - $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- Note 10: P_{RB} is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

6.5.2.4 EVM equalizer spectrum flatness

6.5.2.4.1 **Test Purpose**

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectrum flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block variation in dB of the equalizer coefficients generated by the EVM measurement process. The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements. The basic measurement interval is the same as for EVM.

6.5.2.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.4.3 Minimum conformance requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple. The EVM equalizer spectrum flatness shall not exceed the values specified in Table 6.5.2.4.3-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the

minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.5.2.4.3-1).

The EVM equalizer spectrum flatness shall not exceed the values specified in Table 6.5.2.4.3-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.5.2.4.3-1).

Table 6.5.2.4.3-1: Minimum requirements for EVM equalizer spectrum flatness (normal conditions)

	Frequency Range	Maximum Ripple [dB]
F _{UL_Mea}	as - F _{UL_Low} ≥ 3 MHz and F _{UL_High} - F _{UL_Meas} ≥ 3 MHz	4 (p-p)
	(Range 1)	
F_{UL_Me}	_{las} – F _{UL_Low} < 3 MHz or F _{UL_High} – F _{UL_Meas} < 3 MHz	8 (p-p)
	(Range 2)	
Note 1:	$F_{\text{UL_Meas}}$ refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
Note 2:	$F_{\text{UL_Low}}$ and $F_{\text{UL_High}}$ refer to each E-UTRA frequency 5.2-1	band specified in Table

Table 6.5.2.4.3-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

F _{UL_Mea}	as – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 (p-p)			
	(Range 1)				
F _{UL_Me}	eas - F _{UL_Low} < 5 MHz or F _{UL_High} - F _{UL_Meas} < 5 MHz	12 (p-p)			
	(Range 2)				
Note 1:	Note 1: F _{UL_Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated				
Note 2: F _{UL_Low} and F _{UL_High} refer to each E-UTRA frequency band specified in Table 5.2-1					

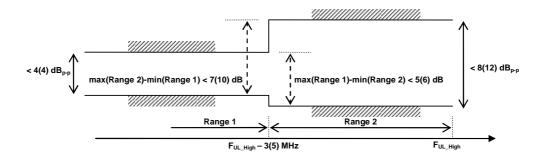


Figure 6.5.2.4.3-1: The limits for EVM equalizer spectrum flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

The normative reference for this requirement is TS 36.101 clause 6.5.2.4.1.

6.5.2.4.4 Test description

6.5.2.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.4.2.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.2.4.4.1-1: Test Configuration Table

Initial Conditions								
Test Environr		See	See Table 6.5.1.4.1-1					
(as specified	in TS 36.508 [7] subclause 4.1)	000	7 14510 0.5.1.4					
Test Frequen		Soc	e Table 6.5.1.4	1_1				
(as specified	in TS36.508 [7] subclause 4.3.1)	5	5 Table 0.5.1.4	. 1-1				
Test Channel	Bandwidths	Soc	e Table 6.5.1.4	1_1				
(as specified	in TS 36.508 [7] subclause 4.3.1)	56	1 Table 0.5.1.4	. 1-1				
Test Parameters for Channel Bandwidths								
	Downlink Configuration	Upl	Uplink Configuration					
Ch BW	N/A for EVM equalizer spectrum flatness	Mod'n	RB allo	ocation				
	testing		FDD	TDD				
1.4MHz		QPSK	6	6				
3MHz		QPSK	15	15				
5MHz		QPSK	25	25				
10MHz		QPSK	50	50				
15MHz		QPSK	75	75				
20MHz		QPSK 100 100						
Note 1: Te	Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which							
ар	plicable channel bandwidths are specified in	Table 5.4.2.1-	·1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to in Table 6.5.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.5.2.4.4.3.

6.5.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

6.5.2.4.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.5.2.4.5 Test requirement

Each of the 20 spectrum flatness functions, shall derive four ripple results in Annex E.4.4, The derived results shall not exceed the values in Figure 6.5.2.4.5-1:

For normal conditions, the maximum ripple in Range 1 and Range 2 shall not exceed the values specified in Table 6.5.2.4.5-1 and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.5.2.4.5-1).

For extreme conditions, the maximum ripple in Range 1 and Range 2 shall not exceed the values specified in Table 6.5.2.4.5-2 and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 11.4 dB (see Figure 6.5.2.4.5-1).

Table 6.5.2.4.5-1: Test requirements for EVM equalizer spectrum flatness (normal conditions)

	Frequency Range	Maximum Ripple [dB]
F _{UL_Mea}	as – F _{UL_Low} ≥ 3 MHz and F _{UL_High} – F _{UL_Meas} ≥ 3 MHz	5.4 (p-p)
	(Range 1)	
F_{UL_Me}	$_{\text{las}}$ - $F_{\text{UL_Low}}$ < 3 MHz or $F_{\text{UL_High}}$ - $F_{\text{UL_Meas}}$ < 3 MHz	9.4 (p-p)
	(Range 2)	
Note 1:	$F_{\text{UL_Meas}}$ refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
Note 2:	$F_{\text{UL_Low}}$ and $F_{\text{UL_High}}$ refer to each E-UTRA frequency 5.2-1	band specified in Table

Table 6.5.2.4.5-2: Test requirements for spectrum flatness (extreme conditions)

	Frequency Range	Maximum Ripple [dB]
F _{UL_Mea}	as – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	5.4 (p-p)
	(Range 1)	
F _{UL_Me}	_{eas} – F _{UL_Low} < 5 MHz or F _{UL_High} – F _{UL_Meas} < 5 MHz	13.4 (p-p)
	(Range 2)	
Note 1:	$F_{\text{UL_Meas}}$ refers to the sub-carrier frequency for which evaluated	·
Note 2:	F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequency 5.2-1	band specified in Table

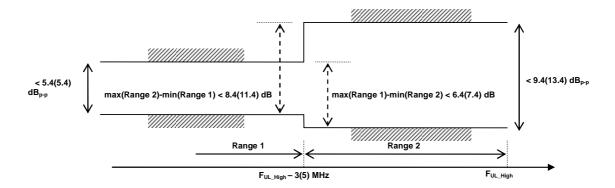


Figure 6.5.2.4.5-1: The limits for EVM equalizer spectrum flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

6.6 Output RF spectrum emissions

Unwanted emissions are divided into "Out-of-band emission" and "Spurious emissions" in 3GPP RF specifications. This notation is in line with ITU-R recommendations such as SM.329 [2] and the Radio Regulations [3].

ITU defines:

Out-of-band emission = Emission on a frequency or frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions.

Spurious emission = Emission on a frequency, or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products but exclude out-of-band emissions.

Unwanted emissions = Consist of spurious emissions and out-of-band emissions.

The UE transmitter spectrum emission consists of the three components; the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

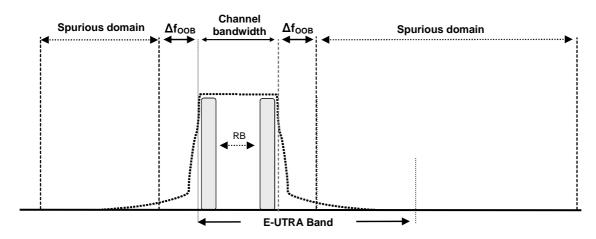


Figure 6.6-1: Transmitter RF spectrum

6.6.1 Occupied bandwidth

6.6.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits

6.6.1.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.6.1.2 Minimum conformance requirements

Occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied channel bandwidth for all transmission bandwidth configurations (Resources Blocks) should be less than the channel bandwidth specified in Table 6.6.1.2-1

Table 6.6.1.2-1: Occupied channel bandwidth

	Occupied channel bandwidth / channel bandwidth						
	1.4 3.0 5 10 15 20 MHz MHz MHz MHz MHz MHz						
Channel bandwidth [MHz]	1.4	3	5	10	15	20	

The normative reference for this requirement is TS 36.101 [2] clause 6.6.1.

6.6.1.4 Test description

6.6.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6. 1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.1.4.1-1: Test Configuration Table

Initial Conditions								
	nent as specified in	Normal						
	subclause 4.1	Normal						
	cies as specified in	Mid range						
TS36.508 [7]	subclause 4.3.1							
Test Channel	Bandwidths as specified in	All						
TS 36.508 [7] subclause 4.3.1								
Test Parameters for Channel Bandwidths								
	Downlink Configur	ation	Upli	link Configuration				
Ch BW	N/A for Occupied bandwidth)	Mod'n	RB all	ocation			
				FDD	TDD			
1.4MHz			QPSK	6	6			
3MHz			QPSK	15	15			
5MHz			QPSK	25	25			
10MHz			QPSK	50	50			
15MHz			QPSK	75	75			
20MHz			QPSK	100	100			
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable								
chann	el bandwidths are specified ir	n Table 5.4.2.1-	·1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.6.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.6.1.4.3

6.6.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power spectrum distribution within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristic of the filter shall be approximately Gaussian (typical spectrum analyzer filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is one active uplink subframe. For TDD slots with transient periods are not under test.
- 4. Calculate the total power within the range of all frequencies measured in '3)' and save this value as "Total Power".
- 5. Sum up the power upward from the lower boundary of the measured frequency range in '3)' and seek the limit frequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Lower Frequency".
- 6. Sum up the power downward from the upper boundary of the measured frequency range in '3)' and seek the limit frequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Upper Frequency".
- 7. Calculate the difference ("Upper Frequency" "Lower Frequency" = "Occupied Bandwidth") between two limit frequencies obtained in '5)' and '6)'.

6.6.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6

6.6.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed values in Table 6.6.1.5-1.

Table 6.6.1.5-1: Occupied channel bandwidth

	Occupied channel bandwidth / channel bandwidth						
	1.4 3.0 5 10 15 20 MHz MHz MHz MHz MHz MH						
Channel bandwidth [MHz]	1.4	3	5	10	15	20	

6.6.2 Out of band emission

Out of band emissions are unwanted emissions immediately outside the nominal channel resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a Spectrum Emission Mask and Adjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum Emission Mask

6.6.2.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.6.2.1.2 Test applicability

This test case applies to all types of E-UTRA FDD UE release 8 and forward.

6.6.2.1.3 Minimum conformance requirements

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.3-1 the spurious requirements in clause 6.6.3 are applicable.

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.3-1 for the specified channel bandwidth.

Spectrum emission limit (dBm)/ Channel bandwidth Measurement Δf_{OOB} 1.4 3.0 10 15 20 MHz MHz MHz MHz (MHz) MHz MHz bandwidth -13 -20 -21 30 kHz $\pm 0-1$ -10 -15 -18 -10 -10 -10 -10 -10 -10 1 MHz $\pm 1 - 2.5$ -25 -10 -10 -10 -10 -10 1 MHz $\pm 2.5 - 2.8$ -10 -10 -10 -10 -10 1 MHz $\pm 2.8-5$ 1 MHz -25 -13 -13 -13 -13 \pm 5-6 -25 -13 -13 -13 1 MHz \pm 6-10 -13 -13 1 MHz $\pm 10 - 15$ -25 $\pm 15-20$ -25 -13 1 MHz 1 MHz \pm 20-25 -25

Table 6.6.2.1.3-1: General E-UTRA spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.1.

6.6.2.1.4 Test description

6.6.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.2.1.4.1-1: Test Configuration Table

Initial Conditions								
Test Environ								
	I in TS 36.508 [7] subclause 4.1)	NC						
Test Freque	ncies	Laurana A	Low range, Mid range, High range					
(as specified	I in TS36.508 [7] subclause 4.3.1)	Low range, iv	ild range, High	range				
	el Bandwidths	Lowest 5MH	z, 10MHz, High	nost				
(as specified	l in TS 36.508 [7] subclause 4.3.1)	Lowest, Sivin	z, Tulvinz, nigi	iesi				
	Test Parameters for Channel Bandwidths							
	Downlink Configuration		ink Configura					
Ch BW	N/A for SEM testing	Mod'n		ocation				
			FDD	TDD				
1.4MHz		QPSK	6	6				
1.4MHz		QPSK	5	5				
1.4MHz		16QAM	5	5				
1.4MHz		16QAM	6	6				
3MHz		QPSK	15	15				
3MHz		QPSK	4	4				
3MHz		16QAM	4	4				
3MHz		16QAM	15	15				
5MHz]	QPSK	25	25				
5MHz]	QPSK	8	8				
5MHz]	16QAM	8	8				
5MHz]	16QAM	25	25				
10MHz]	QPSK	50	50				
10MHz]	QPSK	12	12				
10MHz]	16QAM	12	12				
10MHz]	16QAM	50	50				
			(Note 4)	(Note 4)				
15MHz		QPSK	75	75				
15MHz		QPSK	16	16				
15MHz		16QAM	16	16				
15MHz		16QAM	75	75				
			(Note 4)	(Note 4)				
20MHz		QPSK	100	100				
20MHz]	QPSK	18	18				
20MHz]	16QAM	18	18				
20MHz]	16QAM	100	100				
			(Note 4)	(Note 4)				
	est Channel Bandwidths are checked separa			hich				
	oplicable channel bandwidths are specified in							
	he allowed MPR for maximum output power	UE might apply	is described ir	n clause				
6.2.3.3.								

- Note 3: The starting resource block of partial RB allocation shall be RB#0 and RB# (max+1 -RB allocation) of the channel bandwidth.
- Note 4: Applies only for UE-Categories 2-5
- 1. Connect the SS to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.6.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.6.2.1.4.3.

6.6.2.1.4.2 Test procedure

- SS sends uplink scheduling information via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 and 6.2.3.5-1. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.6.2.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to table 6.6.2.1.5-1. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

6.6.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.2.1.5 Test requirements

The power of any UE emission shall fullfil requirements in Table.6.6.2.1.5-1.

Table 6.6.2.1.5-1: General E-UTRA spectrum emission mask

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth			
0-1	-8.5	-11.5	-13.5	-16.5	-18.5	-19.5	30 kHz			
1-2.5	-8.5						1 MHz			
2.5-2.8	-23.5	-8.5	-8.5	-8.5	-8.5	-8.5	1 MHz			
2.8-5							1 MHz			
5-6		-23.5	-11.5	-11.5	-11.5	-11.5	1 MHz			
6-10			-23.5				1 MHz			
10-15				-23.5]		1 MHz			
15-20					-23.5		1 MHz			
20-25						-23.5	1 MHz			

Note 1: The first and last measurement position with a 30 kHz filter is at Δf_{OOB} equals to 0.015 MHz and 0.985 MHz.

Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel

Note 4: For the 2.5-2.8 MHz offset range with 1.4 MHz channel bandwidth, the measurement position is at Δf_{OOB} equals to 3 MHz.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2 Additional Spectrum Emission Mask

6.6.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.6.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.2.2.3 Minimum conformance requirements

6.6.2.2.3.1 Minimum requirement (network signalled value "NS_03")

When "NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3.1-1.

Table 6.6.2.2.3.1-1: Additional requirements (network signalled value "NS_03")

	Spectrum emission limit (dBm)/ Channel bandwidth							
Δf_{OOB}	1.4	3.0	5	10	15	20	Measurement	
(MHz)	MHz	MHz	MHz	MHz	MHz	MHz	bandwidth	
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz	
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz	
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz	
± 2.8-5		-13	-13	-13	-13	-13	1 MHz	
± 5-6		-25	-13	-13	-13	-13	1 MHz	
± 6-10			-25	-13	-13	-13	1 MHz	
± 10-15				-25	-13	-13	1 MHz	
± 15-20					-25	-13	1 MHz	
± 20-25						-25	1 MHz	

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.2.1.

6.6.2.2.3.2 Minimum requirement (network signalled value "NS_04")

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3.2-1.

Table 6.6.2.2.3.2-1: Additional requirements (network signalled value "NS_04")

	Spectrum emission limit (dBm)/ Channel bandwidth							
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth	
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz	
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz	
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz	
± 2.8-5		-13	-13	-13	-13	-13	1 MHz	
± 5-6		-25	-25	-25	-25	-25	1 MHz	
± 6-10			-25	-25	-25	-25	1 MHz	
± 10-15				-25	-25	-25	1 MHz	
± 15-20					-25	-25	1 MHz	
± 20-25						-25	1 MHz	

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.2.2.

6.6.2.2.3.3 Minimum requirement (network signalled value "NS_06" or NS_07)

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3.3-1.

Table 6.6.2.2.3.3-1: Additional requirements (network signalled value "NS_06" or "NS_07")

	Spectrum emission limit (dBm)/ Channel bandwidth								
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	Measurement bandwidth				
± 0-0.1	-13	-13	-15	-18	30 kHz				
± 0.1-1	-13	-13	-13	-13	100 kHz				
± 1-2.5	-13	-13	-13	-13	1 MHz				
± 2.5-2.8	-25	-13	-13	-13	1 MHz				
± 2.8-5		-13	-13	-13	1 MHz				
± 5-6		-25	-13	-13	1 MHz				
± 6-10			-25	-13	1 MHz				
± 10-15				-25	1 MHz				

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.2.3.

6.6.2.2.4 Test description

6.6.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in tables 6.6.2.2.4.1-1, 6.6.2.2.4.1-2, and 6.6.2.2.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.2.2.4.1-1: Test Configuration Table (network signalled value "NS_03")

Initial Condi	tions					
Test Environr			NO			
(as specified in TS 36.508 [7] subclause 4.1)			NC			
Test Frequen		,		Low range, Mid range, High range		
] subclause 4.3.1)	Low range, N	lid range, High	range	
Test Channel	Bandwidths		Lowest EMU	z, 10MHz, High	noot.	
		7] subclause 4.3.1)	Lowest, Sivin	z, Tulvinz, nigi	iest	
Test Parame		nel Bandwidths				
	Dowi	nlink Configuration	Upl	ink Configura	tion	
Ch BW	Mod'n	RB allocation	Mod'n	RB allo	ocation	
		FDD TDD		FDD	TDD	
1.4MHz	N/A for Add	litional Spectrum Emission	QPSK	6	6	
1.4MHz		Mask testing.	QPSK	5	5	
1.4MHz			16QAM	5	5	
3MHz			QPSK	15	15	
3MHz			QPSK	4	4	
3MHz			16QAM	15	15	
3MHz			16QAM	4	4	
5MHz			QPSK	25	25	
5MHz			QPSK	8	8	
5MHz			QPSK	6	6	
5MHz			16QAM	25	25	
5MHz			16QAM	8	8	
10MHz			QPSK	50	50	
10MHz			QPSK	12	12	
10MHz			QPSK	6	6	
10MHz			16QAM	50	50	
				(Note 3)	(Note 3)	
10MHz			16QAM	12	12	
15MHz			QPSK	75	75	
15MHz			QPSK	16	16	
15MHz			QPSK	8	8	
15MHz			16QAM	75	75	
				(Note 3)	(Note 3)	
15MHz			16QAM	16	16	
20MHz			QPSK	100	100	
20MHz			QPSK	18	18	
20MHz			QPSK	10	10	
20MHz			16QAM	100	100	
				(Note 3)	(Note 3)	
20MHz		ndwidtha are abadyad aanar	16QAM	18	18	

Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1.

Note 2: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.

Note 3: Applies only for UE-Categories 2-5

Table 6.6.2.2.4.1-2: Test Configuration Table (network signalled value "NS_06")

Initial Condit	ions					
Test Environn	nent		NC			
(as specified	in TS 36.508 [7	7] subclause 4	.1)	NC .		
Test Frequen				Low range M	lid range, High	range
	in TS36.508 [7] subclause 4.	3.1)	Low range, iv	ila range, riigir	range
Test Channel				Lowest 5MH	z, 10MHz, High	nest
	in TS 36.508 [7			2011001, 011111	_, .o.v <u>_</u> ,g.	
Test Parame	ters for Chani		_			
		nlink Configu		•	ink Configurat	
Ch BW	Mod'n		ocation	Mod'n	RB allo	
		FDD	TDD		FDD	TDD
1.4MHz	N/A for Add	litional Spectru		QPSK	6	NA
1.4MHz		Mask testing.		QPSK	5	
1.4MHz				16QAM	5	
3MHz				QPSK	15	
3MHz				QPSK	4	
3MHz				16QAM	4	
5MHz				QPSK	25	7
5MHz				QPSK	8	
5MHz				16QAM	8	
10MHz				QPSK	50	
10MHz				QPSK	12	
10MHz				16QAM	12	
15MHz				QPSK	75	
15MHz				QPSK	16	
15MHz				16QAM	16	
20MHz				QPSK	100	
20MHz				QPSK	18	
20MHz				16QAM	18	
Note 1: Tes			hecked separa	tely for each E-	UTRA band, th	ne applicable

channel bandwidths are specified in Table 5.4.2.1-1.

Note 2: The starting resource block of partial RB allocation shall be RB# 0 and RB# (max $\,^{+1}$ $\,^{-}$ RB allocation) of the channel bandwidth.

Table 6.6.2.2.4.1-3: Test Configuration Table (network signalled value "NS_07")

Initial Cond	litions						
Test Environment				NC	NC		
(as specified in TS 36.508 [7] subclause 4.1)				INC	NC		
Test Freque	encies			Mid rango			
	d in TS36.508		e 4.3.1)	Mid range			
Test Chann	el Bandwidths	3		10MHz			
	d in TS 36.508			TOWN 12			
Test Param	eters for Cha						
		Downlin	k Configuration	U	plink Configurat	ion	
Test	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation	RB_start	
Number			FDD		FDD		
1	10MHz	N/A for Ad	ditional Spectrum	QPSK	1	0	
2	10MHz	Emissio	n Mask testing.	QPSK	8	0	
3	10MHz			QPSK	6	13	
4	10MHz			QPSK	20	13	
5	10MHz			QPSK	12	13	
6	10MHz			16QAM	36	13	
					(Note 1)		
7	10MHz			QPSK	16	19	
8	10MHz			QPSK	12	19	
9	10MHz			16QAM	16	19	
10	10MHz			QPSK	30	19	
11	10MHz			16QAM	30	19	
					(Note 1)		
12	10MHz			QPSK	6	43	
13	10MHz			QPSK	2	48	
14 10MHz			QPSK	50	0		
15	10MHz			QPSK	12	0	
16	10MHz			16QAM	50	0	
					(Note 1)		
Note 1: A	pplies only fo	r UE-Categor	ies 2-5				

Table 6.6.2.2.4.1-4: Test Configuration Table (network signalled value "NS_04")

Initial Condition	ns						
Test Environme	ent		NC	NC			
(as specified in	TS 36.508	[7] subclaus	e 4.1)	NC			
Test Frequencies			Low range, Mid range, High range				
(as specified in	TS36.508	[7] subclause	e 4.3.1)	Low range, i	viid range, riigirra	arige	
Test Channel E				5MHz 10 M	Hz, 15 MHz, 20M	Н	
(as specified in			e 4.3.1)	Sivil 12, 10 ivil	112, 13 1011 12, 20101	1 12	
Test Paramete	rs for NS_						
			k Configuration		plink Configurat		
Configuration ID	Ch BW	Mod'n	RB allocation TDD	Mod'n	RB allocation TDD	RB_start TDD	
1	5MHz	N/A for Ad	ditional Spectrum	QPSK	25	Note 2	
2	5MHz		n Mask testing.	QPSK	8	Note 2	
3	5MHz			QPSK	6	Note 2	
4	5MHz			16QAM	25	Note 2	
5	5MHz			16QAM	8	Note 2	
6	10MHz			QPSK	1	0	
7	10MHz			QPSK	12	0	
8	10MHz			QPSK	50	0	
9	10MHz			16QAM	50	0	
					(Note 3)	· ·	
10	10MHz			QPSK	24	13	
11	10MHz			16QAM	24	13	
12	10MHz			QPSK	36	13	
					(Note 3)		
13	10MHz			QPSK	12	37	
14	10MHz			QPSK	1	49	
15	15MHz			QPSK	1	0	
16	15MHz			QPSK	16	0	
17	15MHz			QPSK	75	0	
18	15MHz			16QAM	75	0	
					(Note 3)		
19	15MHz			QPSK	36	19	
20	15MHz			16QAM	36	19	
21	15MHz			QPSK	50	19	
22	15MHz			QPSK	18	56	
23	15MHz			QPSK	1	74	
24	20MHz			QPSK	1	0	
25	20MHz			QPSK	18	0	
26	20MHz			QPSK	100	0	
27	20MHz			16QAM	100 (Note 3)	0	
28	20MHz			QPSK	50	25	
29	20MHz			16QAM	50	25	
30	20MHz			QPSK	75	25	
					(Note 3)		
31	20MHz			QPSK	25	75	
32	20MHz			QPSK	1	99	
			e checked separate Table 5.4.2.1-1.	ely for E-UTRA	band, the applica	ble channel	
			of partial RB allocat	ion shall he PR	# 0 and RR# (ma	av +1 - RR	
		ne channel ba		ion shall be ND		W -1 1/D	
alloc		ie Glalliel Da	i idwidtii.				

Note 3: Applies only for UE-Categories 2-5

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The DL Reference Measurement channels are set according to Tables 6.6.2.2.4.1-1, 6.6.2.2.4.1-2, 6.6.2.2.4.1-3 and 6.6.2.2.4.1-4.

- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.6.2.2.4.3.

6.6.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to the corresponding Table 6.6.2.2.4.1-1, 6.6.2.2.4.1-2, 6.6.2.2.4.1-3 or 6.6.2.2.4.1-4. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- a) 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1, 6.2.3.5-1, 6.2.4.5-1, and 6.2.4.5-2. The period of the measurement shall be at least one sub-frame (1ms).4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.6.2.2.5.1-1, 6.6.2.2.5.2-1, 6.6.2.2.5.3-1. The centre frequency of the filter shall be stepped in continuous steps according to table 6.6.2.2.5.1-1, 6.6.2.2.5.2-1, 6.6.2.2.5.3-1. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

6.6.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions for each network signalled value.

6.6.2.2.4.3.1 Message contents exceptions (network signalled value "NS_03")

1. Information element additional Spectrum Emission is set to NS_03. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.2.2.4.3.1-1: SystemInformationBlockType2: Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1						
Information Element Value/remark Comment Condition						
additionalSpectrumEmission	3 (NS_03)					

6.6.2.2.4.3.2 Message contents exceptions (network signalled value "NS_04")

1. Information element additional Spectrum Emission is set to NS_04. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.2.2.4.3.2-1: SystemInformationBlockType2 :Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element Value/remark Comment Condition							
additionalSpectrumEmission	4 (NS_04)						

6.6.2.2.4.3.3 Message contents exceptions (network signalled value "NS 06")

1. Information element additional Spectrum Emission is set to NS_06. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.2.2.4.3.3-1: SystemInformationBlockType2: Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element Value/remark Comment Condition							
additionalSpectrumEmission	6 (NS_06)						

6.6.2.2.4.3.4 Message contents exceptions (network signalled value "NS_07")

a) 1. Information element additionalSpectrumEmission is set to NS_07. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.2.2.4.3.4-1: SystemInformationBlockType2: Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element Value/remark Comment Condition							
additionalSpectrumEmission	7 (NS_07)						

6.6.2.2.5 Test requirements

6.6.2.2.5.1 Test requirements (network signalled value "NS_03")

When "NS_03" is indicated in the cell, the power of any UE emission shall fulfil requirements in Table 6.6.2.2.5.1-1.

Table 6.6.2.2.5.1-1: Additional requirements (network signalled value "NS_03")

		Spectrum emission limit (dBm)/ Channel bandwidth								
Δf _{OOB}	1.4	3.0	5	10	15	20	Measurement			
(MHz)	MHz	MHz	MHz	MHz	MHz	MHz	bandwidth			
0-1	-8.5	-11.5	-13.5	-16.5	-18.5	-19.5	30 kHz			
1-2.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	1 MHz			
2.5-2.8	-23.5						1 MHz			
2.8-5							1 MHz			
5-6		-23.5					1 MHz			
6-10			-23.5				1 MHz			
10-15				-23.5			1 MHz			
15-20					-23.5		1 MHz			
20-25						-23.5	1 MHz			

Note 1: The first and last measurement position with a 30 kHz filter is at Δ fOOB equals to 0.015 MHz and 0.985 MHz.

Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively.

Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel

Note 4: Above SEM requirement applies to bands corresponding to network signalling value NS_03 as defined in TS 36.101 [2] subclause 6.2.4 Table 6.2.4-1.

Note 5: For the 2.5-2.8 MHz offset range with 1.4 MHz channel bandwidth, the measurement position is at Δf_{OOB} equals to 3 MHz.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.5.2 Test requirements (network signalled value "NS_04")

When "NS_04" is indicated in the cell, the power of any UE emission shall fulfil requirements in Table 6.6.2.2.5.2-1.

Table 6.6.2.2.5.2-1: Additional requirements (network signalled value "NS_04")

		Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth				
0-1	-8.5	-11.5	-13.5	-16.5	-18.5	-19.5	30 kHz				
1-2.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	1 MHz				
2.5-2.8	-23.5						1 MHz				
2.8-5							1 MHz				
5-6		-23.5	-23.5	-23.5	-23.5	-23.5	1 MHz				
6-10							1 MHz				
10-15							1 MHz				
15-20							1 MHz				
20-25							1 MHz				
Note 1: Note 2:	to 0.015 M	Hz and 0.9	85 MHz.				ΔfOOB equals				
Note 2.	At the bour position wit						z, respectively.				
Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel											
Note 4:	<u> </u>										
Note 5:	For the 2.5	-2.8 MHz c	ffset range	with 1.4 N	1Hz channe	el bandwidt	h, the				

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

measurement position is at Δf_{OOB} equals to 3 MHz.

6.6.2.2.5.3 Test requirements (network signalled value "NS_06" or "NS_07")

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall fulfil requirements in Table 6.6.2.2.5.3-1.

Table 6.6.2.2.5.3-1: Additional requirements (network signalled value "NS_06" or "NS_07")

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf_{OOB}	1.4	3.0	5	10	Measurement					
(MHz)	MHz	MHz	MHz	MHz	bandwidth					
0-0.1	-11.5	-11.5	-13.5	-16.5	30 kHz					
0.1-1	-11.5	-11.5	-11.5	-11.5	100 kHz					
1-2.5	-11.5	-11.5	-11.5	-11.5	1 MHz					
2.5-2.8	-23.5				1 MHz					
2.8-5					1 MHz					
5-6		-23.5			1 MHz					
6-10			-23.5		1 MHz					
10-15				-23.5	1 MHz					
Note 1:	is at $\Delta fOOE$ The first an filter is at Δ	B equals to d last mea fOOB equa	0.015 MH surement p als to 0.15	z and 0.089 position wit MHz and 0	h a 100 kHz .95 MHz.					
Note 3:	Note 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0.5MHz and -0.5MHz, respectively. Note 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel									
Note 4: Note 5:	Above SEN network sig TS 36.101 For the 2.5	nalling val [2] subclau -2.8 MHz c	ue NS_06 a se 6.2.4 Ta iffset range	and NS_07 able 6.2.4- with 1.4 M	corresponding to as defined in 1. 1Hz channel Δf _{OOB} equals to					

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage power Ratio

6.6.2.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.6.2.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.2.3.3 Minimum conformance requirements

ACLR requirements are specified for two scenarios for an adjacent E -UTRA $_{ACLR}$ and UTRA $_{ACLR1/2}$ as shown in Figure 6.6.2.3.3-1.

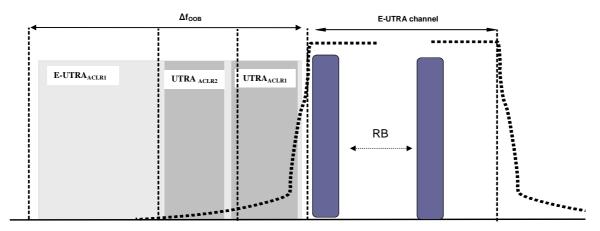


Figure 6.6.2.3.3-1: Adjacent Channel Leakage Power Ratio requirements

6.6.2.3.3.1 Minimum conformance requirements for E-UTRA

E-UTRA ACLR (E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidth specified in Table 6.6.2.3.3.1-1.

If the measured adjacent channel power is greater than -50 dBm then the E-UTRA_{ACLR} shall be higher than the valued specified in Table 6.6.2.3.3.1-1.

/ E-UTRA_{ACLR1} / measurement bandwidth Channel bandwidth 1.4 3.0 5 10 15 20 MHz MHz MHz MHz MHz MHz E-UTRA_{ACLR1} 30 dB 30 dB 30 dB 30 dB 30 dB 30 dB E-UTRA channel 1.08 MHz 2.7 MHz 4.5 MHz 9.0 MHz 13.5 MHz 18 MHz

Table 6.6.2.3.3.1-1: General requirements for E-UTRA_{ACLR}

The normative reference for this requirement is TS 36.101 [2] subclause 6.6.2.3.1.

6.6.2.3.3.2 Minimum conformance requirements for UTRA

Measurement bandwidth

UTRA ACLR (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent UTRA channel frequency.

UTRA ACLR is specified for both the first UTRA adjacent channel (UTRA_{ACLR1}) and the 2^{nd} UTRA adjacent channel (UTRA_{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor $\alpha = 0.22$. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.3.2-1.

If the measured UTRA channel power is greater than -50dBm then the UTRA_{ACLR1}, and UTRA_{ACLR2} shall be higher than the valued specified in Table 6.6.2.3.3.2-1.

Table 6.6.2.3.3.2-1: General requirements for UTRA_{ACLR1/2}

Channel bandwidth		/ UTRA _{ACL}	R1/2 / meas	/ measurement bandwidt	
1.4	3.0	5	10	15	20
MHz	MHz	MHz	MHz	MHz	MHz

UTRA _{ACLR1}	33 dB					
Adjacent	0.7+BW _∪	1.5+BW _∪	2.5+BW _∪	5+BW _{UTR}	7.5+BW _∪	10+BW _{∪T}
channel centre	TRA/2	TRA/2	TRA/2	_A /2	TRA/2	_{RA} /2
frequency offset	/	/	/	/	/	/
(in MHz)	-0.7-	-1.5-	-2.5-	-5-	-7.5-	-10-
	BW _{UTRA} /2					
UTRA _{ACLR2}	-	-	36 dB	36 dB	36 dB	36 dB
Adjacent	-	-	2.5+3*B	5+3*BW _U	7.5+3*B	10+3*BW
channel centre			W _{UTRA} /2	TRA/2	W _{UTRA} /2	utra/2
frequency offset			/	/	/	/
(in MHz)			-2.5-	-5-	-7.5-	-10-
			3*BW _{UTR}	3*BW _{UTR}	3*BW _{UTR}	3*BW _{UTR}
			_A /2	_A /2	_A /2	_A /2
E-UTRA channel						
Measurement	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
bandwidth						
UTRA 5MHz						
channel	3.84 MHz					
Measurement	3.04 WII IZ	3.04 IVII IZ	3.04 WII IZ	3.04 IVII IZ	3.04 IVII IZ	3.04 1/11 12
bandwidth ¹						
UTRA 1.6MHz						
channel	1.28 MHz					
measurement	1.20 1011 12	1.20 1011 12	1.20 1011 12	1.20 1011 12	1.20 1011 12	1.20 1011 12
bandwidth ²						
Nista 4. Applianti	- t E LITD	^ EDD		LITO A EDD :		-4

Note 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.

Note 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.

The normative reference for this requirement is TS 36.101 subclause 6.6.2.3.2.

6.6.2.3.4 Test description

6.6.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in AnnexeA.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.2.3.4.1-1: Test Configuration Table

Initial Conditions							
Test Environment			NO TLAZE TLAZE THAZE				
(as specified in TS 36.508 [7] subclause 4.1)			NC, TL/VL, TL/VH, TH/VL, TH/VH				
Test Frequencies			Low rongo A	Lawrence Midneses High reason			
(as specified	in TS36.508 [7	'] subclause 4.3.1)	Low range, iv	Low range, Mid range, High range			
Test Channe			Lowest 5MH	z 10MHz Hial	neet		
(as specified		7] subclause 4.3.1)	Lowest, 5MHz, 10MHz, Highest				
		Test Parameters for Chan					
		nlink Configuration	•	Uplink Configuration			
Ch BW	Mod'n	RB allocation	Mod'n	RB allocation			
		FDD TDD		FDD	TDD		
1.4MHz	N/A	A for ACLR testing	QPSK	6	6		
1.4MHz			QPSK	5	5		
1.4MHz			16QAM	6	6		
1.4MHz			16QAM	5	5		
3MHz			QPSK	15	15		
3MHz			QPSK	4	4		
3MHz			16QAM	15	15		
3MHz			16QAM	4	4		
5MHz			QPSK	25	25		
5MHz			QPSK	8	8		
5MHz			16QAM	25	25		
5MHz			16QAM	8	8		
10MHz			QPSK	50	50		
10MHz			QPSK	12	12		
10MHz			16QAM	50	50		
				(Note 3)	(Note 3)		
10MHz			16QAM	12	12		
15MHz			QPSK	75	75		
15MHz			QPSK	16	16		
15MHz			16QAM	75	75		
				(Note 3)	(Note 3)		
15MHz			16QAM	16	16		
20MHz			QPSK	100	100		
20MHz			QPSK	18	18		
20MHz			16QAM	100	100		
				(Note 3)	(Note 3)		
20MHz			16QAM	18	18		

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2: The starting resource block of partial RB allocation shall be RB#0 and RB# (max + 1 RB allocation) of the channel bandwidth.
- Note 3: Applies only for UE-Categories 2-5
- 1. Connect the SS to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.6.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.6.2.3.4.3.

6.6.2.3.4.2 Test procedure

1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.2.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 and 6.2.3.5-1. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.
- 4. Measure the rectangular filtered mean power for E-UTRA.
- 5. Measure the rectangular filtered mean power of the first E-UTRA adjacent channel.
- 6. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel.
- 7. Calculate the ratio of the power between the values measured in step 4 over step 5 for E-UTRA_{ACLR}.
- 8. Calculated the ratio of the power between the values measured in step 4 over step 6 for $UTRA_{ACLR1}$, $UTRA_{ACLR2}$.

6.6.2.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.2.3.5 Test requirement

6.6.2.3.5.1 Test requirements E-UTRA

If the measured adjacent channel power is greater than -50 dBm then the measured E-UTRA_{ACLR}, derived in step 7, shall be higher than the limits in table 6.6.2.3.5.1-1.

Channel bandwidth / E-UTRA_{ACLR1} / measurement bandwidth 1.4 3.0 10 15 20 5 MHz MHz MHz MHz MHz MHz E-UTRA_{ACLR1} 29.2 dB 29.2 dB 29.2 dB 29.2 dB 29.2 dB 29.2 dB E-UTRA channel 1.08 MHz 2.7 MHz 4.5 MHz 9.0 MHz 13.5 MHz 18 MHz Measurement bandwidth **UE** channel +10MHz or +1.4 MHz +3 MHz or +5MHz or +15MHz or +20MHz or or -1.4 MHz -3 MHz -5MHz -10MHz -15MHz -20MHz

Table 6.6.2.3.5.1-1: E-UTRA UE ACLR

6.6.2.3.5.2 Test requirements UTRA

If the measured UTRA channel power is greater than -50dBm then the measured UTRA_{ACLR1}, UTRA_{ACLR2}, derived in step 8, shall be higher than the limits in table 6.6.2.3.5.2-1.

Table 6.6.2.3.5.2-1: UTRA UE ACLR

Cha	annel bandwid	th / UTRA _{ACL}	_{R1/2} / measu	/ measurement bandwidth			
1.4	3.0	5	10	15	20		
MHz	MHz	MHz	MHz	MHz	MHz		

UTRA _{ACLR1}	32.2 dB					
Adjacent	0.7+BW _{UTR}	1.5+BW _{UTR}	2.5+BW _{UTR}	5+BW _{UTRA} /	7.5+BW _{UTR}	10+BW _{UTRA}
channel centre	_A /2	_A /2	_A /2	2	_A /2	/2
frequency offset	/	/	/	/	/	/
(in MHz)	-0.7-	-1.5-	-2.5-	-5-	-7.5-	-10-
	BW _{UTRA} /2					
UTRA _{ACLR2}	-	-	35.2 dB	35.2 dB	35.2 dB	35.2 dB
Adjacent	-	-	2.5+3*BW _U	5+3*BW _{UTR}	7.5+3*BW _U	10+3*BW _{UT}
channel centre			TRA/2	_A /2	TRA/2	_{RA} /2
frequency offset			/	/	/	/
(in MHz)			-2.5-	-5-	-7.5-	-10-
			3*BW _{UTRA} /2	3*BW _{UTRA} /2	3*BW _{UTRA} /2	3*BW _{UTRA} /2
E-UTRA channel						
Measurement	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
bandwidth						
UTRA 5MHz						
channel	3.84 MHz					
Measurement	3.0 4 Wii 12	3.0 4 Wil 12	3.04 IVII 12	3.04 WII 12	3.04 WII 12	3.04 WII IZ
bandwidth ¹						
UTRA 1.6MHz						
channel	1.28 MHz					
measurement	1.20 111112	1.20 111112	1.20 111112	1.20 111112	1.20 1011 12	1.20 111112
bandwidth ²						

Note 1: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.

Note 2: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.

Note 3: BW_{UTRA} for UTRA FDD is 5MHz and for UTRA TDD is 1.6MHz.

6.6.2.4 Void

6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions. The spurious emission limits are specified in terms of general requirements inline with SM.329 [3] and E-UTRA operating band requirement to address UE co-existence.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table6.6.3.1.3-1 from the edge of the channel bandwidth. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.3.1 Transmitter Spurious emissions

6.6.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.6.3.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.3.1.3 Minimum conformance requirements

The spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) from the edge of the channel bandwidth.

Table 6.6.3.1.3-1: Δf_{OOB} boundary between E-UTRA channel and spurious emission domain

Channel	1.4	3.0	5	10	15	20
bandwidth	MHz	MHz	MHz	MHz	MHz	MHz
Δf _{OOB} (MHz)	2.8	6	10	15	20	25

The spurious emission limits in Table 6.6.3.1.3-2 apply for all transmitter band configurations (RB) and channel bandwidths.

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than $\Delta fOOB~(MHz)$ from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be $\Delta fOOB + MBW/2$. MBW denotes the measurement bandwidth defined in Table 6.6.3.1.3-2.

Table 6.6.3.1.3-2: Spurious emissions limits

Frequency Range	Maximum Level	Measurement Bandwidth
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz

The normative reference for this requirement is TS 36.101 [2] subclause 6.6.3.1.

6.6.3.1.4 Test description

6.6.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 6.6.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.3.1.4.1-1: Test Configuration Table

Initial Conditions							
Test Environment				NC			
(as specified	in TS 36.508 [7	7] subclause 4	.1)	NO			
Test Frequen	cies			Low range, Mid range, High range			
(as specified	in TS36.508 [7] subclause 4.	3.1)				
Test Channel				Lowest, 5MHz, Highest			
(as specified	in TS 36.508 [7						
			ers for Chann				
	Downlink Configuration			Upli	ink Configuration		
Ch BW	Mod'n	RB all	ocation	Mod'n	RB allocation		
		FDD	TDD		FDD	TDD	
1.4MHz	N/A for Spurious Emissions testing			QPSK	6	6	
1.4MHz				QPSK	1	1	
3MHz				QPSK	15	15	
3MHz				QPSK	1	1	
5MHz				QPSK	25	25	
5MHz				QPSK	1	1	
10MHz				QPSK	50	50	
10MHz				QPSK	1	1	
15MHz				QPSK	75	75	
15MHz				QPSK	1	1	
20MHz				QPSK	100	100	
20MHz				QPSK	1	1	
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which							
applicable channel bandwidths are specified in Table 5.4.2.1-1.							
Note 2: The 1 RB allocation shall be tested at both RB #0 and RB #max.							

- 1. Connect the SS to the UE to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.6.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.6.3.1.4.3.

6.6.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.6.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.6.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.6.3.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.3.1.5 Test requirement

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in tables 6.6.3.1.5-1.

The spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) from the edge of the channel bandwidth shown in Table 6.6.3.1.3-1.

Table 6.6.3.1.5-1: General spurious emissions test requirements

Frequency Range	Maximum Level	Measurement Bandwidth
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than $\Delta fOOB$ (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be $\Delta fOOB + MBW/2$. MBW denotes the measurement bandwidth defined in Table 6.6.3.1.3-2.

6.6.3.2 Spurious emission band UE co-existence

6.6.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.6.3.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.3.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified E-UTRA band for coexistence with protected bands as indicated in Table 6.6.3.2.3-1.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.6.3.2.3-1: Spurious emission band UE co-existence limits

E-UTRA	<u>•</u>							
Band	Protected band		enc:	y range z)	Maximum Level (dBm)	MBW (MHz)	Comment	
1	E-UTRA Band 1, 3, 7, 8, 9, 11, 20, 21, 34, 38, 40	FDL_low	-	FDL_high	-50	1		
	E-UTRA band 33	FDL_low	-	FDL_high	-50	1	Note 3	
	E-UTRA band 39	FDL_low	-	FDL_high	-50	1	Note 3	
	Frequency range	860	-	895	-50	1		
	Frequency range	1884.5	-	1919.6	-41	0.3	Note 6, 7	
		1884.5	-	1915.7			Note 6, 8	
2	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1		
3	E-UTRA Band 1, 3, 7, 8, 20, 33, 34, 38	FDL_low	-	FDL_high	-50	1		
	E-UTRA Band 11, 21	FDL_low	-	FDL_high	-50	1	Note ¹³	
	Frequency range	860	-	895	-50	1	Note ¹³	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ¹³	
4	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 41	FDL_low	-	FDL_high	-50	1		
5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17 24, 25	FDL_low	-	FDL_high	-50	1		
	E-UTRA Band 41	FDL_low	-	FDL_high	-50	1	Note ²	
6	E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1		
	Frequency range	860	-	875	-37	1		
	Frequency range	875	-	895	-50	1		
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷	
		1884.5	-	1915.7			Note ⁸	
7	E-UTRA Band 1, 3, 7, 8, 20, 33, 34	FDL_low	-	FDL_high	-50	1		
	E-UTRA Band 38	FDL_low	-	FDL_low	-50	1	Note 3	
8	E-UTRA Band 1, 8, 20, 33, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	7	
	E-UTRA band 3	FDL_low	-	FDL_high	-50	1	Note ²	
	E-UTRA band 7	FDL_low	-	FDL_high	-50	1	Note ²	
9	E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	1		
	Frequency range	860	-	895	-50	1	7	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷	
10	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,	1884.5 FDL_low	-	1915.7 FDL_high	-50	1	Note ⁸	
11	24, 25, 41 E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	1		
	Frequency range	860	-	895	-50	1		
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷	
	, , ,	1884.5	-	1915.7			Note ⁸	
12	E-UTRA Band 2, 5, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1		
	E-UTRA Band 4, 10	FDL_low	-	FDL_high	-50	1	Note ²	
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 25, 41	FDL_low	-	FDL_high	-50	1		
	Frequency range	769	-	775	-35	0.00625		
	Frequency range	799		805	-35	0.00625	Note ¹¹	
	E-UTRA Band 24	FDL_low	-	FDL_high	-50	1	Note ²	

14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1	
	Frequency range	763	-	775	-35	0.00625	Note ¹²
	Frequency range	799		805	-35	0.00625	Note ¹¹ Note ¹²
17	E-UTRA Band 2, 5, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 4, 10	FDL low	-	FDL_high	-50	1	Note 2
18	E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	895	-40	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
19	E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	895	-40	1	Note ⁹
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
20	E-UTRA Band 1, 3, 7, 8, 20, 33, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range 38	FDL_low	-	FDL_high	-50	1	Note ²
21	E-UTRA Band 11, 21	FDL_low	-	FDL_high	-35	1	Note ¹⁰
	E-UTRA Band 1, 9, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
24	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 41, 25	FDL_low	_	FDL_high	-50	1	
25	E-UTRA Band 2, 4, 5, 10,12, 13, 14, 17, 24, 25, 41, 42, 43	FDL_low	-	FDL_high	-50	1	
33	E-UTRA Band 1, 3, 7, 8, 20, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	Note ⁵
34	E-UTRA Band 1, 3, 7, 8, 9, 11, 20, 21, 33, 38,39, 40	FDL_low	-	FDL_high	-50	1	Note 5
	Frequency range	860		895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
35							
36							
37			-				
38	E-UTRA Band 1,3, 8, 33, 34	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 7	FDL_low	-	FDL_high	-50	1	Note ³
39	E-UTRA Band 34, 40	FDL_low	-	FDL_high	-50	1	
	·		—	•			+
40	E-UTRA Band 1, 3, 33, 34, 39	FDL_low	-	FDL_high	-50	1	

146

Note 1: FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.2-1

As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1.3-2 are Note 2: permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RE within the transmission bandwidth (see Figure 5.4.2-1) for which the 2nd or 3rd harmonic, i.e. the frequency equal to two or three times the frequency of that RE, is within the measurement bandwidth (MBW).

- Note 3: To meet these requirements some restriction will be needed for either the operating band or protected band
- Note 4:
- Note 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- Note 6: Applicable when NS_05 in section 6.6.3.3.3.1 is signalled by the network.
- Note 7: Applicable when co-existence with PHS system operating in 1884.5 -1919.6MHz.
- Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz. Note 8:
- Note 9: Applicable when NS_08 in section 6.6.3.3.3 is signalled by the network
- Note 10: Applicable when NS_09 in section 6.6.3.3.4 is signalled by the network
- Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD Note 11:
- The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB Note 12:
- Note 13: Applicable when the assigned E-UTRA UL operating channel is ≥1749.9MHz and ≤ 1784.9MHz.

NOTE: Bands 1,6,9,11,34 in the tables shall be reviewed after June 2012 because of PHS band operation change The normative reference for this requirement is TS 36.101 [2] subclause 6.6.3.2.

6.6.3.2.4 Test description

6.6.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 6.6.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.3.2.4.1-1: Test Configuration Table

Initial Conditions								
Test Environr			NC					
(as specified	in TS 36.508 [7	7] subclause 4	.1)	NC				
Test Frequen	cies			Low range M	lid range, High	rango		
(as specified	in TS36.508 [7] subclause 4.	3.1)	Low range, iv	ilu range, riign	range		
Test Channel				Lowest, 5MH	z Highest			
(as specified	in TS 36.508 [7							
			ers for Channe					
		nlink Configu			ink Configura			
Ch BW	Mod'n		ocation	Mod'n	RB allo			
		FDD	TDD		FDD	TDD		
1.4MHz	N/A for Sp	ourious Emissi	ons testing	QPSK	6	6		
1.4MHz				QPSK	1	1		
3MHz				QPSK	15	15		
3MHz				QPSK	1	1		
5MHz				QPSK	25	25		
5MHz				QPSK	1	1		
10MHz				QPSK	50	50		
10MHz				QPSK	1	1		
15MHz				QPSK	75	75		
15MHz				QPSK	1	1		
20MHz				QPSK	100	100		
20MHz QPSK					1	1		
Note 1: Te	st Channel Bai	ndwidths are c	hecked separa	tely for each E-	UTRA band, w	hich		
ар	plicable chann	el bandwidths	are specified in	Table 5.4.2.1-	1.			
Note 2: Th	e 1 RB allocati	on shall be tes	sted at both RB	#0 and RB #m	ax.			

- 1. Connect the SS to the UE to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.6.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.6.3.2.4.3.

6.6.3.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.6.3.2.5- For band 14 measurements made in a bandwidth of 6.25kHz, measurement parameter settings defined in table 6.6.3.2.4.2-1 shall be used. 1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.6.3.2.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

Table 6.6.3.2.4.2-1: Measurement setup for band 14

	Option 1: Measurement with No RMS VBW available	Option2 Measurement with VBW Filtering on Power scale
VBW	>=62.5 kHz (10 times or more the RBW)	<=43Hz
RBW	<=6.25kHz	<=6.25kHz
Detector type	Averages signal envelope during each measurement point, such as "RMS detector"	Peak
Averaging mode (Trace averaging)	Power (RMS voltage)	Power (RMS voltage), as controlled by "Average Type"
Average Type (applies to detector)	Power (RMS voltage) (automatically occurs with "RMS detector")	Not applicable
Average Type (applies to VBW filter)	Not applicable	Power (RMS voltage)
Number of averages	30, to reduce variance as required, or use an even longer sweep time	1 or use an even narrower VBW filter, thus a longer sweep time
Sweep time	[Don't specify]	Sweep rate (span divided by sweep time) <= 0.8 * RBW*VBW

6.6.3.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.3.2.5 Test requirement

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in tables 6.6.3.2.5-1.

Table 6.6.3.2.5-1: Spurious emission band UE co-existence limits

E-UTRA		Spurio	us e	mission			
Band	Protected band	Protected band Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Comment
1	E-UTRA Band 1, 3, 7, 8, 9, 11, 20, 21, 34, 38, 40	FDL_low	-	FDL_high	-50	1	
	E-UTRA band 33	FDL_low	-	FDL_high	-50	1	Note 3
	E-UTRA band 39	FDL_low	-	FDL_high	-50	1	Note 3
	Frequency range	860	-	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note 6, 8
2	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 41	1884.5 FDL_low	-	1915.7 FDL_high	-50	1	Note
3	E-UTRA Band 1, 3, 7, 8, 20, 33, 34, 38	FDL_low	-	FDL_high	-50	1	
Ū	E-UTRA Band 11, 21	FDL_low	-	FDL_high	-50	<u>.</u> 1	Note ¹³
	Frequency range	860	-	895	-50	<u>.</u> 1	Note ¹³
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ¹³
4	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1	Note
5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17 24, 25	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 41	FDL_low	-	FDL_high	-50	1	Note ²
6	E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	875	-37	1	
	Frequency range	875	-	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
7	E-UTRA Band 1, 3, 7, 8, 20, 33, 34	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 38	FDL_low	-	FDL_low	-50	1	Note ³
8	E-UTRA Band 1, 8, 20, 33, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	
	E-UTRA band 3	FDL_low	-	FDL_high	-50	1	Note ²
	E-UTRA band 7	FDL_low	-	FDL_high	-50	1	Note ²
9	E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
10	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1	
11	E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	11	
	Frequency range	860	-	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
12	E-UTRA Band 2, 5, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1	2
40	E-UTRA Band 4, 10	FDL_low	-	FDL_high	-50	1	Note 2
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 25, 41	FDL_low	-	FDL_high	-50	1	
	Frequency range	769	-	775	-35	0.00625	NI - / 11
	Frequency range	799		805	-35	0.00625	Note ¹¹
14	E-UTRA Band 24 E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,	FDL_low FDL_low	-	FDL_high FDL_high	-50 -50	1	Note ²
	24, 25, 41 Frequency range	763	-	775	-35	0.00625	Note ¹²
	Frequency range	799		805	-35	0.00625	Note ¹¹ Note ¹²
17	E-UTRA Band 2, 5, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1	.10.0
	E-UTRA Band 4, 10	FDL_low	-	FDL_high	-50	1	Note 2
18	E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	895	-40	1	

	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
19	E-UTRA Band 1, 9, 11, 21, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	895	-40	1	Note ⁹
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
20	E-UTRA Band 1, 3, 7, 8, 20, 33, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range 38	FDL_low	•	FDL_high	-50	1	Note ²
21	E-UTRA Band 11, 21	FDL_low	•	FDL_high	-35	1	Note ¹⁰
	E-UTRA Band 1, 9, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	•	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
24	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 41	FDL_low	-	FDL_high	-50	1	
25	E-UTRA Band 2, 4, 5, 10,12, 13, 14, 17, 24, 25, 41, 42, 43	FDL_low	_	FDL_high	-50	1	
		_					
33	E-UTRA Band 1, 3, 7, 8, 20, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	Note 5
34	E-UTRA Band 1, 3, 7, 8, 9, 11, 20, 21, 33, 38,39, 40	FDL_low	-	FDL_high	-50	1	Note ⁵
	Frequency range	860	-	895	-50	1	
	Frequency range	1884.5	-	1919.6	-41	0.3	Note ⁷
		1884.5	-	1915.7			Note ⁸
35							
36							
37			-				
38	E-UTRA Band 1,3, 8, 33, 34	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 7	FDL_low	-	FDL_high	-50	1	Note ³
39	E-UTRA Band 34, 40	FDL_low	-	FDL_high	-50	1	
40	E-UTRA Band 1, 3, 33, 34, 39	FDL_low	-	FDL_high	-50	1	
41	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25	FDL_low	-	FDL_high	-50	1	

Note 1: FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.2-1

Note 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1.3-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RE within the transmission bandwidth (see Figure 5.4.2-1) for which the 2nd or 3rd harmonic, i.e. the frequency equal to two or three times the frequency of that RE, is within the measurement bandwidth (MBW).

- Note 3: To meet these requirements some restriction will be needed for either the operating band or protected band
- Note 4: N/A
- Note 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band
- Note 6: Applicable when NS_05 in section 6.6.3.3.3.1 is signalled by the network.
- Note 7: Applicable when co-existence with PHS system operating in 1884.5 -1919.6MHz.
- Note 8: Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
- Note 9: Applicable when NS_08 in section 6.6.3.3.3.3 is signalled by the network
- Note 10: Applicable when NS_09 in section 6.6.3.3.4 is signalled by the network
- Note 11: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD
- Note 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB
- Note 13: Applicable when the assigned E-UTRA UL operating channel is ≥1749.9MHz and ≤ 1784.9MHz.

NOTE 1: Bands 1,6,9,11,34 in the tables shall be reviewed after June 2012 because of PHS band operation change

NOTE 2: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

NOTE 3: The frequency range applicable with network signalled values of NS_05, NS_08, and NS_09 are covered in 6.6.3.3 Additional Spurious Emissions.

6.6.3.3 Additional spurious emissions

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• NS_07 Test tolerances are undefined

6.6.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.6.3.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.3.3.3 Minimum conformance requirements

6.6.3.3.3.1 Minimum conformance requirements (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3.1-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Table 6.6.3.3.3.1-1: Additional requirements (PHS)

Frequency band (MHz)			ridth / Spe limit (dBr	Measurement bandwidth	
	5 MHz	10 MHz	15 MHz	20 MHz	
$1884.5 \le f \le 1919.6^{*1}$	-41	-41	-41	-41	300 KHz
1884.5 ≤ f ≤1915.7 ^{*2}	-41	-41	-41	-41	300 KHz

Note 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1919.6 MHz) + 4 MHz + the Channel BW assigned, where Channel BW is as defined in sub-clause 5.4.2. Operations below this point are for further study.

Note 2: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the Channel BW assigned, where Channel BW is as defined in sub-clause 5.4.2. Operations below this point are for further study.

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

NOTE 2: Notes in the tables shall be reviewed after June 2012 because of PHS band operation change

The normative reference for this requirement is TS 36.101[2] subclause 6.6.3.3.1.

6.6.3.3.3.2 Minimum conformance requirements (network signalled value "NS_07")

When "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3.2-1.

Table 6.6.3.3.3.2-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth					
	10 MHz						
769 ≤ f ≤ 775	-57	6.25 kHz					
Note: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB							

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (6.25 kHz).

The normative reference for this requirement is TS 36.101[2] subclause 6.6.3.3.2.

6.6.3.3.3.3 Minimum requirement (network signalled value "NS_08")

When "NS_08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Table 6.6.3.3.3-1 Additional requirement

Frequency band	Measurement bandwidth						
(MHz)	band (dBm) (MHz) 5MHz 10MHz 15MHz						
860 ≤ f ≤ 895	-40	-40	-40	1 MHz			

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

6.6.3.3.3.4 Minimum requirement (network signalled value "NS_09")

When "NS 09" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3.4-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Table 6.6.3.3.3.4-1 Additional requirement

Frequency band (MHz)	Channel ban	Measurement bandwidth		
	5MHz	10MHz	15MHz	
1475.9 ≤ f ≤ 1510.9	-35	-35	-35	1 MHz

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

NOTE 2: To improve measurement accuracy, A-MPR values for NS_09 specified in Table 6.2.4.3-1 in sub-clause 6.2.4 are derived based on both the above NOTE 1 and 100 kHz RBW.

6.6.3.3.4 Test description

6.6.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6.3.3.4.1-1, 6.6.3.3.4.1-2, and 6.6.3.3.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.6.3.3.4.1-1: Test Configuration Table (network signalled value "NS_05")

Initial Condit	ions					
Test Environment as specified in Normal						
TS 36.508[7] subclause 4.1			Normal			
	cies as specifi	ed in	Low range, M	lid range		
	subclause 4.3		J 33 93,	3.		
			In case of Lo	w range:		
			- For 5MH	z channel band	dwidth: UL 192	7.2MHz
			(N_UL =	18072), DL 21	17.2MHz (N_D	L = 72) and
			UL 1931	.1MHz (N_UL =	= 18111) DL 21	21.1 MHz
			(N_DL =			
					$MHz (N_UL = 1)$	8147), DL
				Hz (N_DL = 14		
T (6)	Б. 1	.,			ndwidth: Not av	allable
	Bandwidths a		5MHz, 10MH	z, 20MHz		
	subclause 4.3					
Test Parame		nel Bandwidth		1115		•
OL DIA/		nlink Configur			nk Configurat	
Ch BW	Mod'n		ocation	Mod'n	RB allocation	
5141 I	NI/A f = A -l =	FDD	TDD	ODOK	FDD	TDD
5MHz	N/A for Add	litional Spuriou	s emissions	QPSK	1	N/A
5MHz		testing		QPSK	25 1	
10MHz				QPSK		
10MHz				QPSK QPSK	12 48	
10MHz 10MHz				QPSK QPSK	50	
10MHz				16QAM	50	
15MHz				QPSK	1	
15MHz				QPSK	16	
15MHz				QPSK	48	
15MHz				QPSK	75	
15MHz				16QAM	75 75	
20MHz				QPSK	1	
20MHz				QPSK	18	
20MHz				QPSK	48	
20MHz				QPSK	100	
20MHz				16QAM	100	

Note 1. The 1 RB allocation shall be tested at both RB #0 and RB #max.

Note 2. The starting resource block of partial RB allocation shall be RB# 0 and RB# (max +1 - RB allocation) of the channel bandwidth.

Note 3: Low range frequencies for 5MHz and 10MHz channel bandwidth in case of network signalled "NS_05" shall be reviewed after June 2012 because of PHS band operation change.

Table 6.6.3.3.4.1-2: Test Configuration Table (network signalled value "NS_07")

Initial Cond	Initial Conditions						
Test Enviro	Test Environment						
(as specified in TS 36.508 [7] subclause 4.1)				NC			
Test Frequencies				Mid range			
(as specifie	d in TS36.508	[7] subclause	e 4.3.1)	Mid range			
	el Bandwidths			10MHz			
	d in TS 36.508			TOWNIZ			
Test Param	eters for Cha						
			k Configuration		plink Configurat	ion	
Test	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation	RB_start	
Number							
1	10MHz		Iditional Spurious	QPSK	1	0	
2	10MHz	Emiss	sions testing.	QPSK QPSK	8	0	
3	10MHz				6	13	
4	10MHz			QPSK	20	13	
5	10MHz			QPSK	12	13	
6	10MHz			16QAM	36	13	
					(Note 1)		
7	10MHz			QPSK	16	19	
8	10MHz			QPSK	12	19	
9	10MHz			16QAM	16	19	
10	10MHz			QPSK	30	19	
11	10MHz			16QAM	30	19	
					(Note 1)		
12	10MHz			QPSK	6	43	
13	10MHz			QPSK	2	48	
14	10MHz			QPSK	50	0	
15	10MHz			QPSK	12	0	
16	10MHz			16QAM	50	0	
					(Note 1)		
Note 1: Applies only for UE-Categories 2-5							

(Note 3)

16

40

75

75 (Note 3)

QPSK

QPSK

QPSK

QPSK

16QAM

15MHz

15MHz

15MHz

15MHz

15MHz

Table 6.6.3.3.4.1-3: Test Configuration Table (network signalled value "NS_08")

Initial Conditions						
Test Environment as specified in		Normal				
TS 36.508[7]	subclause 4.1					
Test Frequen	icies as specific	ed in	High range			
TS36.508 [7]	subclause 4.3.	1				
	l Bandwidths as		5MHz, 10MH	z, 15MHz		
	subclause 4.3					
Test Parame	ters for Chani					
	Downlink Configuration			Uplink Configuration		
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allocation	
		FDD	TDD		FDD	TDD
5MHz	N/A for Add	tional Spuriou	s Emissions	QPSK	1	N/A
5MHz		testing		QPSK	8	
5MHz				QPSK	25	
10MHz				QPSK	1	
10MHz]			QPSK	12	
10MHz				QPSK	40	
10MHz				QPSK	50	
10MHz				16QAM	50	

Note 1:

The 1 RB allocation shall be tested at both RB #0 and RB #max.

The starting resource block of partial RB allocation shall be RB#0 and RB# (max + 1 -Note 2: RB allocation) of the channel bandwidth

Applies only for UE-Categories 2-5

Table 6.6.3.3.4.1-4: Test Configuration Table (network signalled value "NS_09")

Initial Conditions						
Test Environment as specified in			Normal			
TS 36.508[7] subclause 4.1						
Test Frequencies as specified in			High range			
	subclause 4.3					
	l Bandwidths a		5MHz, 10MH	łz, 15MHz		
	subclause 4.3					
Test Parame	ters for Chan					
		nlink Configur			ink Configurat	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	cation
		FDD	TDD		FDD	TDD
5MHz	N/A for Add	itional Spuriou	s Emissions	QPSK	1	N/A
5MHz		testing		QPSK	8	
5MHz				QPSK	25	
10MHz				QPSK	1	
10MHz				QPSK	12	
10MHz				QPSK	40	
10MHz				QPSK	50	
10MHz				16QAM	50	
					(Note 3)	
15MHz				QPSK	1	
15MHz				QPSK	16	
15MHz				QPSK	40	
15MHz				QPSK	54	
15MHz				QPSK	75	
15MHz				16QAM	75	
					(Note 3)	
Note 1: The 1 RB allocation shall be tested at both RB #0 and RB #max.						

- Note 1: The 1 RB allocation shall be tested at both RB #0 and RB #max.
- Note 2: The starting resource block of partial RB allocation shall be RB#0 and RB# (max + 1 RB allocation) of the channel bandwidth
- Note 3: Applies only for UE-Categories 2-5
- 1. Connect the SS to the UE to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.6.3.3.4.1-1, Table 6.6.3.3.4.1-2 or Table 6.6.3.3.4.1-3 depending on network signal value.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.6.3.3.4.3.

6.6.3.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.6.3.3.4.1-1 and Table 6.6.3.3.4.1-2. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at $P_{\rm UMAX}$ level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1, 6.2.3.5-1, 6.2.4.5-1, 6.2.4.5-2, and 6.2.4.5-3. The period of the measurement shall be at least one sub-frame (1ms).
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.6.3.3.5.1-1, 6.6.3.3.5.2-1 and 6.6.3.3.5.3-1. For NS_07 measurements made in a bandwidth of 6.25kHz, measurement parameter settings defined in table 6.6.3.3.4.2-1 shall be used. The centre frequency of the filter

157

shall be stepped in contiguous steps according to table 6.6.3.3.5.1-1, 6.6.3.3.5.2-1 and 6.6.3.3.5.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

Table 6.6.3.3.4.2-1: Measurement setup for NS_07

	Option 1: Measurement with No RMS VBW available	Option2 Measurement with VBW Filtering on Power scale
VBW	>=62.5 kHz (10 times or more the RBW)	<=43Hz
RBW	<=6.25kHz	<=6.25kHz
Detector type	Averages signal envelope during each measurement point, such as "RMS detector"	Peak
Averaging mode (Trace averaging)	Power (RMS voltage)	Power (RMS voltage), as controlled by "Average Type"
Average Type (applies to detector)	Power (RMS voltage) (automatically occurs with "RMS detector")	Not applicable
Average Type (applies to VBW filter)	Not applicable	Power (RMS voltage)
Number of averages	30, to reduce variance as required, or use an even longer sweep time	1 or use an even narrower VBW filter, thus a longer sweep time
Sweep time	[Don't specify]	Sweep rate (span divided by sweep time) <= 0.8 * RBW*VBW

6.6.3.3.4.3 Message contents

6.6.3.3.4.3.1 Message contents (network signalled value "NS_05")

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_05. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2 :Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	5 (NS_05)		

6.6.3.3.4.3.2 Message contents (network signalled value "NS_07")

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions:

1. Information element additional Spectrum Emission is set to NS_07. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.2-1: SystemInformationBlockType2: Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1				
Information Element	Value/remark	Comment	Condition	
additionalSpectrumEmission	7 (NS 07)			

6.6.3.3.4.3.3 Message contents (network signalled value "NS 08")

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_08. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.3-1: SystemInformationBlockType2: Additional spurious emissions requirement

ivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	8 (NS_08)		

6.6.3.3.4.3.4 Message contents (network signalled value "NS_09")

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_09. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.4-1: SystemInformationBlockType2: Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	9 (NS_09)		

6.6.3.3.5 Test requirement

6.6.3.3.5.1 Test requirement (network signalled value "NS_05")

The measured average power of spurious emission, derived in step 2, shall not exceed the described value in tables 6.6.3.3.5.1-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Table 6.6.3.3.5.1-1: Additional requirements (PHS) test requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)			Measurement bandwidth	
, ,	5 MHz	10 MHz	15 MHz	20 MHz	
1884.5 ≤ f ≤1919.6 ^{*1}	-41	-41	-41	-41	300 KHz
1884.5 ≤ f ≤1915.7 ^{*2}	-41	-41	-41	-41	300 KHz
Note 1: Applicable when the lower ledge of the assigned E-LITPA III channel					

Note 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1919.6 MHz) + 4 MHz + the Channel BW assigned, where Channel BW is as defined in sub-clause 5.4.2. Operations below this point are for further study

Note 2: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the Channel BW assigned, where Channel BW is as defined in sub-clause 5.4.2. Operations below this point are for further study.

NOTE 1: Notes in the tables shall be reviewed after June 2012 because of PHS band operation change

NOTE 2: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

6.6.3.3.5.2 Test requirement (network signalled value "NS_07")

The measured average power of spurious emission, derived in step 4, shall not exceed the described value in tables 6.6.3.3.5.2-1.

Table 6.6.3.3.5.2-1: Additional requirements (network signalled value "NS_07")

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth		
	10 MHz			
769 ≤ f ≤ 775	-57+TT	6.25 kHz		
Note: The emissions measurement shall be sufficiently power averaged to ensure a				

Note: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB,

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (6.25 kHz).

6.6.3.3.5.3 Test requirement (network signalled value "NS_08")

The measured average power of spurious emission, derived in step 4, shall not exceed the described value in tables 6.6.3.3.5.3-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Table 6.6.3.3.5.3-1: Additional requirements (network signalled value "NS_08")

Frequency band Channel bandwidth / Spectrum emission limit (MHz) (dBm)			Measurement bandwidth	
	5MHz	10MHz	15MHz	
860 ≤ f ≤ 895	-40	-40	-40	1 MHz

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

6.6.3.3.5.4 Test requirement (network signalled value "NS_09")

The measured average power of spurious emission, derived in step 4, shall not exceed the described value in table 6.6.3.3.5.4-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Table 6.6.3.3.5.4-1: Additional requirements (network signalled value "NS 09")

Frequency band (MHz)	Channel ban	Measurement bandwidth		
	5MHz	10MHz	15MHz	
1475.9 ≤ f ≤ 1510.9	-35	-35	-35	1 MHz

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

NOTE 2: To improve measurement accuracy, A-MPR values for NS_09 specified in Table 6.2.4.3-1 in sub-clause 6.2.4 are derived based on both the above NOTE 1 and 100 kHz RBW.

6.7 Transmit intermodulation

6.7.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.7.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.7.3 Minimum conformance requirements

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.3-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.3-1.

BWChannel (UL) 5MHz 10MHz 15MHz 20MHz Interference Signal 5MHz 10MHz 10MHz 15MHz 30MHz 20MHz 40MHz 20MHz Frequency Offset -40dBc Interference CW Signal Level Intermodulation Product -29dBc -35dBc -29dBc -35dBc -29dBc -35dBc -29dBc -35dBc Measurement bandwidth 4.5MHz 4.5MHz 9.0MHz 9.0MHz 13.5MHz 13.5MHz 18MHz 18MHz

Table 6.7.3-1: Transmit Intermodulation

The normative reference for this requirement is TS 36.101 [2] clause 6.7.1.

6.7.4 Test description

6.7.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.7.4.1-1. The details of the uplink reference

measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.7.4.1-1: Test Configuration Table

Initial Condi	tions					
Test Environr	nent as specified in	Normal				
TS 36.508[7]	subclause 4.1					
Test Frequen	cies as specified in	Mid range				
TS36.508 [7]	subclause 4.3.1					
Test Channel	Bandwidths as specified in	5MHz and Hi	ghest			
TS 36.508 [7]	subclause 4.3.1					
Test Parame	Test Parameters for Channel Bandwidths					
	Downlink Configur	ration	Upl	ink Configura	tion	
Ch BW	N/A for Transmit Intermodul	lation	Mod'n	RB allo	B allocation	
				FDD	TDD	
5MHz			QPSK	8	8	
10MHz			QPSK	12	12	
15MHz			QPSK	16	16	
20MHz QPSK 18 18					18	
Note 1: Te	Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable					
chann	el bandwidths are specified ir	n Table 5.4.2.1	-1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.2.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.7.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 6.7.4.3.

6.7.4.3 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.7.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power of the UE. For TDD slots with transient periods are not under test for the wanted signal and for the intermodulation product.
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.7.5-1.
- 5. Set the interference CW signal level according to table 6.7.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.7.5-1.
- 8. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.7.5-1.

6.7.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.7.5 Test requirement

The ratio derived in step 5 and 7, shall not exceed the described value in table 6.7.5-1

Table 6.7.5-1: Transmit Intermodulation

BWChannel (UL)	5M	5MHz		10MHz		15MHz		20MHz	
Interference Signal Frequency Offset	5MHz	10MHz	10MHz	20MHz	15MHz	30MHz	20MHz	40MHz (Note 1)	
Interference CW Signal Level		-40dBc							
Intermodulation Product	-29dBc	-35dBc	-29dBc	-35dBc	-29dBc	-35dBc	-29dBc	-35dBc	
Measurement bandwidth	4.5MHz	4.5MHz	9.0MHz	9.0MHz	13.5MHz	13.5MHz	18MHz	18MHz	
Note 1: For Band 20, only applicable for interference signal frequency above the UL carrier frequency.									

7 Receiver Characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

Unless otherwise stated, the test signal levels are defined at each antenna port, and specified in the respective sections below. Any specific test conditions are defined in the paragraph for each test. Unless stated otherwise, power control of the Downlink is OFF.

In general, the UE is set into the correct state in the "Initial conditions" part of the test, using normal SS signalling procedures over the air interface under easy radio conditions to ensure reliable message exchange. In the "Test procedure" part of the test, specific radio conditions are applied according to the test requirement and the desired measurement is made or the desired response is tested.

The ACS, blocking, spurious emissions and intermodulation requirements in sections 7.5, 7.6, 7.7 and 7.8 are defined for full band width signals i.e. for signals where all resource blocks are allocated for a specific user.

With the exception of Clause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.4.3-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1

7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. Requirements for 4 ports are FFS. With the exception of clause 7.9, All requirements shall be verified by using both (all) antenna ports simultaneously.

7.3 Reference sensitivity level

Editor's note: FDD/TDD aspects missing or not yet determined:

• The Maximum Sensitivity Degradation figures for large transmission configurations are not finalised in the core specification.

7.3.1 Test purpose

To verify the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area of an e-NodeB.

7.3.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.3.3 Minimum conformance requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.3-1, Table 7.3.3-2 and Table 7.3.3-3.

Table 7.3.3-1: Reference sensitivity QPSK PREFSENS

		Ch	annel bar	dwidth			
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
1	-	-	-100	-97	-95.2	-94	FDD
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD
3	-101.7	-98.7	-97	-94	-92.2	-91	FDD
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD
5	-103.2	-100.2	-98	-95			FDD
6	-	-	-100	-97			FDD
7	-	-	-98	-95	-93.2	-92	FDD
8	-102.2	-99.2	-97	-94			FDD
9	-	-	-99	-96	-94.2	-93	FDD
10	-	-	-100	-97	-95.2	-94	FDD
11	-	-	-100	-97			FDD
12	-101.7	-98.7	-97	-94			FDD
13			-97	-94			FDD
14		-	-97	-94			FDD
17	-	-	-97	-94			FDD
18	-	-	-100	-97	-95.2	-	FDD
19	-	-	-100	-97	-95.2	-	FDD
20			-97	-94	-91.2	-90	FDD
21			-100	-97	-95.2		FDD
24			-100	-97			FDD
25	-101.2	-98.2	-96.5	-93.5	-91.7	-90.5	FDD
33	-	-	-100	-97	-95.2	-94	TDD
34	-	-	-100	-97	-95.2	-	TDD
35	-106.2	-102.2	-100	-97	-95.2	-94	TDD
36	-106.2	-102.2	-100	-97	-95.2	-94	TDD
37	-	-	-100	-97	-95.2	-94	TDD
38	-	-	-100	-97	-95.2	-94	TDD
39	-	-	-100	-97	-95.2	-94	TDD
40	-	-	-100	-97	-95.2	-94	TDD
41	-	-	-99	-96	-94.2	-93	TDD

Note 1: The transmitter shall be set to P_{UMAX} as defined in clause 6.2.5

Note 2: The reference measurement channel is specified in A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Note 3: The signal power is specified per port

Note 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

Note 5: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.3-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.3-2.

NOTE: Table 7.3.3-2 does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors.

Table 7.3.3-2: Uplink configuration for reference sensitivity

	E-UTRA	Band / Cl	hannel ba	ndwidth /	<i>N</i> _{RB} / Dup	lex mode	
E- UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
1	-	-	25	50	75	100	FDD
2	6	15	25	50	50 ¹	50 ¹	FDD
3	6	15	25	50	50 ¹	50 ¹	FDD
4	6	15	25	50	75	100	FDD
5	6	15	25	25 ¹	-	-	FDD
6	-	-	25	25 ¹	-	-	FDD
7	-	-	25	50	75 ¹	75 ¹	FDD
8	6	15	25	25 ¹	-	-	FDD
9	-	-	25	50	50 ¹	50 ¹	FDD
10	-	-	25	50	75	100	FDD
11	-	-	25	25 ¹			FDD
12	6	15	20 ¹	20 ¹			FDD
13			20 ¹	20 ¹			FDD
14		-	15 ¹	15 ¹			FDD
17	-	-	20 ¹	20 ¹			FDD
18	-	-	25	25 ¹	25 ¹	-	FDD
19	-	-	25	25 ¹	25 ¹	-	FDD
20			25	20 ¹	20 ³	20 ³	FDD
21			25	25 ¹	25 ¹		FDD
24			25	50			FDD
25	6	15	25	50	50 ¹	50 ¹	FDD
33	-	-	25	50	75	100	TDD
34	-	-	25	50	75	-	TDD
35	6	15	25	50	75	100	TDD
36	6	15	25	50	75	100	TDD
37	-	-	25	50	75	100	TDD
38	-	-	25	50	75	100	TDD
39			25	50	75	100	TDD
40			25	50	75	100	TDD
41			25	50	75	100	TDD
Note 1:	The UL re	source blo	ocks shall	be located	as close a	s possible	to the
	downlink o	perating l	band but o	confined wi	thin the tra	nsmission	bandwidth

Note 1: The UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.4.2-1).

Note 2: For the UE which supports both Band 11 and Band 21 the uplink configuration for reference sensitivity is FFS.

Note 3: For Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RBstart_11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RBstart_16

Unless given by Table 7.3.3-3, the minimum requirements specified in Tables 7.3.3-1 and 7.3.3-2 shall be verified with the network signalling value NS_01 (Table 6.2.4.3-1) configured.

Table 7.3.3-3: Network Signalling Value for reference sensitivity

E-UTRA Band	Network Signalling value
2	NS_03
4	NS_03
10	NS_03
12	NS_06
13	NS_06
14	NS_06
17	NS_06
19	NS_08
21	NS_09

The normative reference for this requirement is TS 36.101 [2] clause 7.3.1.

7.3.4 Test description

7.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.3.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.3.4.1-1: Test Configuration Table

	Initial Conditions									
Test Environ	ment as specifi	ed in	NC, TL/VL, T	L/VH, TH/VL, T	ΓH/VH					
TS 36.508[7]	subclause 4.1									
	ncies as specifi		Low range, M	1id range, High	range					
	subclause 4.3.									
	I Bandwidths a		Lowest, 5MH	z, Highest						
TS 36.508 [7] subclause 4.3									
			ers for Channe							
		nlink Configur			ink Configura					
Ch BW	Mod'n		ocation	Mod'n		ocation				
		FDD	TDD		FDD	TDD				
1.4MHz	QPSK	6	6	QPSK	6	6				
3MHz	QPSK	15	15	QPSK	15	15				
5MHz	QPSK	25	25	QPSK	25	25				
5MHz	QPSK	25	N/A	QPSK	20	N/A				
5MHz	QPSK	25	N/A	QPSK	15	N/A				
10MHz	QPSK	50	50	QPSK	50	50				
10MHz	QPSK	50	N/A	QPSK	25	N/A				
10MHz	QPSK	50	N/A	QPSK	20	N/A				
10MHz	QPSK	50	N/A	QPSK	15	N/A				
15MHz	QPSK	75	75	QPSK	75	75				
15MHz	QPSK	75	N/A	QPSK	50	N/A				
15MHz	QPSK	75	N/A	QPSK	25	N/A				
15MHz	QPSK	75	N/A	QPSK	20	N/A				
20MHz	QPSK	100	100	QPSK	100	100				
20MHz QPSK 100			N/A	QPSK	75	N/A				
20MHz	QPSK	100	N/A	QPSK	50	N/A				
20MHz	QPSK	100	N/A	QPSK	25	N/A				
20MHz	QPSK	100	N/A	QPSK	20	N/A				

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2. Depending on E-UTRA band, only the appropriate Uplink RB allocation value according to table 7.3.3-2 is tested per Test Channel Bandwidth.
- Note 3: For the DL signal one sided dynamic OCNG Pattern OP.1 FDD/TDD is used.
- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.3.4.3.

7.3.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.5-1. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure the UE transmits P_{UMAX} level for at least the duration of the Throughput measurement.

4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions.

7.3.4.3.1 Message contents exceptions (network signalled value "NS_01")

Message contents according to TS 36.508 [7] subclause 4.6 can be used without exceptions.

7.3.4.3.2 Message contents exceptions (network signalled value "NS 03")

1. Information element additional Spectrum Emission is set to NS_03. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.4.3.2-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS 03"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element	Value/remark	Comment	Condition		
additionalSpectrumEmission	3 (NS_03)				

7.3.4.3.3 Message contents exceptions (network signalled value "NS_06")

1. Information element additional Spectrum Emission is set to NS_06. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.4.3.3-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS 06"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element	Value/remark	Comment	Condition		
additionalSpectrumEmission	6 (NS_06)				

7.3.4.3.4 Message contents exceptions (network signalled value "NS_[09]")

1. Information element additional Spectrum Emission is set to NS_[09]. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 7.3.4.3.4-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS_[09]"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1					
Information Element Value/remark Comment Condition					
additionalSpectrumEmission	TBD				

7.3.5 Test requirement

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.3.5-1 and Table 7.3.5-2.

Table 7.3.5-1: Reference sensitivity QPSK PREFSENS

Channel bandwidth							
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode
1	-	-	-99.3	-96.3	-94.5	-93.3	FDD
2	-102.0	-99.0	-97.3	-94.3	-92.5	-91.3	FDD
3	-101.0	-98.0	-96.3	-93.3	-91.5	-90.3	FDD
4	-104.0	-101	-99.3	-96.3	-94.5	-93.3	FDD
5	-102.5	-99.5	-97.3	-94.3			FDD
6	-	-	-99.3	-96.3			FDD
7	-	-	-97.3	-94.3	-92.5	-91.3	FDD
8	-101.5	-98.5	-96.3	-93.3			FDD
9	-	-	-98.3	-95.3	-93.5	-92.3	FDD
10	-	-	-99.3	-96.3	-94.5	-93.3	FDD
11	-	-	-99.3	-96.3			FDD
12	-101.0	-98.0	-96.3	-93.3			FDD
13			-96.3	-93.3			FDD
14		-	-96.3	-93.3			FDD
17	-	-	-96.3	-93.3			FDD
18	-	-	-99,3	-96.3	-94.5	-	FDD
19	-	-	-99,3	-96.3	-94.5	-	FDD
20			-96.3	-93.3	-90.5	-89.3	FDD
21			-99.3	-96.3	-94.5		FDD
24			-99.3	-96.3			FDD
25	-100.5	-97.5	-95.8	-92.8	-91.0	-89.8	FDD
33	-	-	-99,3	-96.3	-94.5	-93.3	TDD
34	-	-	-99.3	-96.3	-94.5	-	TDD
35	-105.5	-101.5	-99.3	-96.3	-94.5	-93.3	TDD
36	-105.5	-101.5	-99.3	-96.3	-94.5	-93.3	TDD
37	-	-	-99.3	-96.3	-94.5	-93.3	TDD
38	-	-	-99.3	-96.3	-94.5	-93.3	TDD
39	-	-	-99.3	-96.3	-94.5	-93.3	TDD
40	-	-	-99.3	-96.3	-94.5	-93.3	TDD
41	-	-	-98.3	-95.3	-93.5	-92.3	TDD

Note 1: The transmitter shall be set to maximum output power level (Table 7.3.5-2)

Note 3: The signal power is specified per port

Note 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

Note 5: For the UE which supports both Band 11 and Band 21 the reference sensitivity level is FFS.

NOTE: The relation to the received PSD is $\langle \text{REF} \hat{I}_{or} \rangle = P_{REFSENS} (N_{sc}^{RB} N_{RB} \Delta f)^{-1}$ with N_{RB} is the maximum transmission configuration according to Table 5.4.2-1.

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.5-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.5-2.

NOTE: Table 7.3.5-2 does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors.

Note 2: The reference measurement channel is specified in A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Table 7.3.5-2: Uplink configuration for reference sensitivity

	E-UTRA	Band / Cl	hannel ba	ndwidth /	N _{RB} / Dup	ex mode	
E- UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
1	-	-	25	50	75	100	FDD
2	6	15	25	50	50 ¹	50 ¹	FDD
3	6	15	25	50	50 ¹	50 ¹	FDD
4	6	15	25	50	75	100	FDD
5	6	15	25	25 ¹	-	-	FDD
6	-	-	25	25 ¹	-	-	FDD
7	-	-	25	50	75 ¹	75 ¹	FDD
8	6	15	25	25 ¹	-	-	FDD
9	-	-	25	50	50 ¹	50 ¹	FDD
10	-	-	25	50	75	100	FDD
11	-	-	25	25 ¹			FDD
12	6	15	20 ¹	20 ¹			FDD
13			20 ¹	20 ¹			FDD
14		-	15 ¹	15 ¹			FDD
17	-	-	20 ¹	20 ¹			FDD
18	-	-	25	25 ¹	25 ¹	-	FDD
19	-	-	25	25 ¹	25 ¹	-	FDD
20			25	20 ¹	20 ³	20 ³	FDD
21			25	25 ¹	25 ¹		FDD
24			25	50			FDD
25	6	15	25	50	50 ¹	50 ¹	FDD
33	-	-	25	50	75	100	TDD
34	-	-	25	50	75	-	TDD
35	6	15	25	50	75	100	TDD
36	6	15	25	50	75	100	TDD
37	-	-	25	50	75	100	TDD
38	-	-	25	50	75	100	TDD
39			25	50	75	100	TDD
40			25	50	75	100	TDD
41			25	50	75	100	TDD
Note 1:	The UL re	source blo	ocks shall	be located	as close a	s possible	

Note 1: The UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.4.2-1).

Note 2: For the UE which supports both Band 11 and Band 21 the uplink configuration for reference sensitivity is FFS.

Note 3: For Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RBstart_11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RBstart_16

7.4 Maximum input level

7.4.1 Test purpose

Maximum input level tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to an e-NodeB.

7.4.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.4.3 Minimum conformance requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.3-1.

Table 7.4.3-1: Maximum input level

R	x Parameter	Units								
			1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
	Transmission h Configuration	dBm	-25							
Note 2:	Reference measure dynamic OCNG Pat							sided		

The normative reference for this requirement is TS 36.101 [2] clause 7.4.1.

7.4.4 Test description

7.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.4.4.1-1: Test Configuration Table

			Ini	itial Co	nditions				
Test Enviro	nment as spe	ecified in		NC					
TS 36.508[7] subclause	4.1							
	encies as spe			Mid ra	ınge				
	7] subclause								
Test Channel Bandwidths as specified in TS 36.508 [7] subclause 4.3.1				Lowes	st, 5MHz, Hig	hest			
		Test Para	amete	rs for	Channel Bar	ndwidths			
Downlink Configuration Uplink Configuration									
Ch BW	Mod'n	RB allo	ocation	า	Mod'n	RB allo	ocation	UE	
		FDD	TI	DD		FDD	TDD	Category	
1.4MHz	64-QAM	6	(6	QPSK	5	5	1-5	
3MHz	64-QAM	15	1	5	QPSK	4	4	1-5	
5MHz	64-QAM	25	2	25	QPSK	8	8	2-5	
5MHz	64-QAM	18	1	8	QPSK	8	8	1	
10MHz	64-QAM	50	5	50	QPSK	12	12	2-5	
10MHz	64-QAM	17	1	7	QPSK	12	12	1	
15MHz	64-QAM	75	7	7 5	QPSK	16	16	2-5	
15MHz	64-QAM	17	1	7	QPSK	16	16	1	
20MHz	64-QAM	100	1	00	QPSK	18	18	3-5	
20MHz	64-QAM	83	8	33	QPSK	18	18	2	
20MHz	20MHz 64-QAM 17 17 QPSK 18 18 1								
á	Test Channel applicable cha For the DL sig	annel bandwi	dths a	re spe	cified in Tabl	e 7.3.3-2.		е	

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.4.4.3.

7.4.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.4.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value defined in Table 7.4.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in Table 7.4.5-1 for at least the duration of the Throughput measurement.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.4.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Table 7.4.4.3-1: UplinkPowerControlDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement variation	
}		variation	

7.4.5 Test requirement

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.4.5-1.

Table 7.4.5-1: Maximum input level

R	x Parameter	Units	Channel bandwidth						
			1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
	ower in Transmission dBm andwidth Configuration -25.7								
Note 1:	The transmitter shall be set to 4dB below P _{CMAX_L} with P _{CMAX_L} as defined in clause 6.2.5.								
Note 2:	Reference measure dynamic OCNG Pat							sided	

7.5 Adjacent Channel Selectivity (ACS)

7.5.1 Test purpose

Adjacent channel selectivity tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when other e-NodeB transmitters exist in the adjacent channel.

7.5.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.5.3 Minimum conformance requirements

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive an E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The UE shall fulfil the minimum requirement specified in Table 7.5.3-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.3-2 and Table 7.5.3-3 where the throughput R_{av} shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

Table 7.5.3-1: Adjacent channel selectivity

		Channel bandwidth					
Rx Parameter	Units	1.4	3	5	10	15	20
		MHz	MHz	MHz	MHz	MHz	MHz
ACS	dB	33.0	33.0	33.0	33.0	30	27

Table 7.5.3-2: Test parameters for Adjacent channel selectivity, Case 1

Rx	Units	Channel bandwidth							
Parameter		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in Transmission Bandwidth Configuration	dBm			REFSENS	S + 14 dB				
P _{Interferer}	dBm	REFSENS +45.5dB	REFSENS +45.5dB	REFSENS +45.5dB*	REFSENS +45.5dB	REFSENS +42.5dB	REFSENS +39.5dB		
BW _{Interferer}	MHz	1.4	3	5	5	5	5		
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002 5		

Note 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.3-2 with Pcmax_L as defined in clause 6.2.5.

Note 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

Table 7.5.3-3: Test parameters for Adjacent channel selectivity, Case 2

Rx Parameter	Units			Channel b	andwidth		
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm	-56.5	-56.5	-56.5	-56.5	-53.5	-50.5
P _{Interferer}	dBm			-2	5		
BW _{Interferer}	MHz	1.4	3	5	5	5	5
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002 5

Note 1: The transmitter shall be set to 24dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.3-2 with Pcmax L as defined in clause 6.2.5.

Note 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

The normative reference for this requirement is TS 36.101 [2] clause 7.5.1.

7.5.4 Test description

7.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.5.4.1-1: Test Configuration Table

		Ir	nitial Conditio	ns				
Test Enviro	nment as specif	fied in	NC					
TS 36.508[7] subclause 4.1							
Test Freque	encies as specif	ied in	Mid range					
TS36.508 [7] subclause 4.3.1								
Test Chann	el Bandwidths a	as specified in	Lowest, 5MF	lz, Highest				
TS 36.508	[7] subclause 4.	3.1 [°]	·					
		Test Paramet	ers for Chann	el Bandwidth	S			
	Dow	nlink Configu	ration	ation Uplink Configuration				
Ch BW	Mod'n	RB all	ocation	Mod'n	RB al	RB allocation		
		FDD	TDD		FDD	TDD		
1.4MHz	QPSK	Full	Full	QPSK	5	5		
3MHz	QPSK	Full	Full	QPSK	4	4		
5MHz	QPSK	Full	Full	QPSK	8	8		
10MHz	QPSK	Full	Full	QPSK	12	12		
15MHz	QPSK	Full	Full	QPSK	16	16		
20MHz	QPSK	Full	Full	QPSK	18	18		
Note 1:	Test Channel Ba	andwidths are c	hecked separa	tely for each E	-UTRA band.	The		
a	applicable chanr	nel bandwidths	are specified in	n Table 7.3.3-2				
Note 2: For the DL signal one sided dynamic OCNG Pattern OP.1 FDD/TDD is used.								

- 1. Connect the SS and interfering source to the UE antenna connectors as shown in TS 36.508 [7] Figure A.4.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.5.4.3.

7.5.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.5.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.5.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.5.5-2 (Case 1). Send Uplink power control commands to the UE(less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in Table 7.5.5-2 (Case 1) for at least the duration of the Throughput measurement.
- 4. Set the Interferer signal level to the value as defined in Table 7.5.5-2 (Case 1), using a modulated interferer bandwidth as defined in Annex D of the present document.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

- 6. Set the Downlink signal level to the value as defined in Table 7.5.5-3 (Case 2). Send Uplink power control commands to the UE(less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in Table 7.5.5-3 (Case 2) for at least the duration of the Throughput measurement.
- 7. Set the Interferer signal level to the value as defined in Table 7.5.5-3 (Case 2), using a modulated interferer bandwidth as defined in Annex D of the present document.
- 8. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.
- 9. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

7.5.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception

Table 7.5.4.3-1: UplinkPowerControlDedicated

Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::= SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement variation	

7.5.5 Test requirement

The throughput R_{av} shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 under the conditions specified in table 7.5.5-2, and also under the conditions specified in table 7.5.5-3.

Table 7.5.5-1: Adjacent channel selectivity

		Channel bandwidth						
Rx Parameter	Units	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
ACS	dВ	33.0	33.0	33.0	33.0	30	27	

Table 7.5.5-2: Test parameters for Adjacent channel selectivity, Case 1

Rx Parameter	Units			Channel b	andwidth			
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in	dBm							
Transmission Bandwidth				REFSENS	S + 14 dB			
Configuration								
	dBm	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	
P _{Interferer}		+45.5dB	+45.5dB	+45.5dB*	+45.5dB	+42.5dB	+39.5dB	
BW _{Interferer}	MHz	1.4	3	5	5	5	5	
F _{Interferer}	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002	
(offset)							5	
Note 1: The t	ransmitte	r shall be set to	4dB below P	CMAX_L with PCM	AX_L as define	d in clause 6.2	2.5.	
Note 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one								
sided	dynamic	OCNG Pattern	OP.1 FDD/T	DD as described	l in Annex A.5	.1.1/A.5.2.1 ar	nd set-up	
accor	ding to A	nnex C.3.1.						

Table 7.5.5-3: Test parameters for Adjacent channel selectivity, Case 2

Rx Parameter	Units		Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
Power in Transmission Bandwidth Configuration	dBm	-56.5	-56.5	-56.5	-56.5	-53.5	-50.5			
P _{Interferer}	dBm			-2	5					
BW _{Interferer}	MHz	1.4	3	5	5	5	5			
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002 5			

Note 1: The transmitter shall be set to 24dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.5.

Note 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 In-band blocking

7.6.1.1 Test Purpose

In-band blocking is defined for an unwanted interfering signal falling into the range from 15MHz below to 15MHz above the UE receive band, at which the relative throughput shall meet or exceed the requirement for the specified measurement channels.

The lack of in-band blocking ability will decrease the coverage area when other e-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6.1.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward..

7.6.1.3 Minimum Conformance Requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.3-1 and 7.6.1.3-2.

Table 7.6.1.3-1: In band blocking parameters

Rx Parameter	Units			Channel b	andwidth				
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in			REFSENS + channel bandwidth specific value below						
Transmission	dBm								
Bandwidth		6	6	6	6	7	9		
Configuration									
BW _{Interferer}	MHz	1.4	3	5	5	5	5		
F _{loffset, case 1}	MHz	2.1+0.0125	4.5+0.0075	7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
F _{loffset, case 2}	MHz	3.5+0.0075	7.5+0.0075	12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007		
					5	5	5		

Note 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.3-2 with Pcmax_L as defined in clause 6.2.5.

Note 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

Table 7.6.1.3-2: In-band blocking

E-UTRA band	Parameter	Unit	Case 1	Case 2	Case 3	Case 4
	P _{Interferer}	dBm	-56	-44	-30	[-30]
	F _{Interferer} (offset)	MHz	=-BW/2 - F _{loffset,case 1} & =+BW/2 + F _{loffset,case 1}	≤-BW/2 - F _{loffset,case 2} & ≥+BW/2 + F _{loffset,case 2}	-BW/2 – 15 & -BW/2 – 9	-BW/2 – 10
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 20, 21, 25,33, 34, 35, 36, 37, 38, 39, 40, 41	F _{Interferer}	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15		
12	F _{Interferer}	MHz	(Note 2)	$F_{DL_low} - 10$ to $F_{DL_high} + 15$		F _{DL_low} – 10
17	F _{Interferer}	MHz	(Note 2)	F _{DL_low} – 9 to F _{DL_high} + 15	F _{DL_low} – 15 and F _{DL_low} – 9	

Note 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band

Note 2: For each carrier frequency the requirement is valid for two frequencies:

a. the carrier frequency -BW/2 - $F_{\text{loffset, case 1}}$ and

b. the carrier frequency +BW/2 + F_{loffset, case 1}

Note 3: Finterferer range values for unwanted modulated interfering signal are interferer centre frequencies

Note 4: Case 3 and Case 4 only apply to assigned UE channel bandwidth of 5 MHz

The normative reference for this requirement is TS 36.101 [2] clause 7.6.1.

7.6.1.4 Test Description

7.6.1.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.6.1.4.1-1. The details of the uplink and downlink reference

measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6.1.4.1-1: Test Configuration Table

		In	itial Canditian						
Initial Conditions Test Environment as specified in NC									
		ea in	NC						
	subclause 4.1								
	ncies as specifi		Mid range						
TS36.508 [7] subclause 4.3.1									
Test Channel Bandwidths as specified in			Lowest, 5MHz, Highest						
TS 36.508 [7] subclause 4.3								
				el Bandwidths					
		nlink Configur							
Ch BW	Mod'n		ocation	Mod'n		ocation			
		FDD	TDD		FDD	TDD			
1.4MHz	QPSK	6	6	QPSK	6	6			
3MHz	QPSK	15	15	QPSK	15	15			
5MHz	QPSK	25	25	QPSK	25	25			
5MHz	QPSK	25	N/A	QPSK	20	N/A			
5MHz	QPSK	25	N/A	QPSK	15	N/A			
10MHz	QPSK	50	50	QPSK	50	50			
10MHz	QPSK	50	N/A	QPSK	25	N/A			
10MHz	QPSK	50	N/A	QPSK	20	N/A			
10MHz	QPSK	50	N/A	QPSK	15	N/A			
15MHz	QPSK	75	75	QPSK	75	75			
15MHz	QPSK	75	N/A	QPSK	50	N/A			
15MHz	QPSK	75	N/A	QPSK	25	N/A			
15MHz	QPSK	75	N/A	QPSK	20	N/A			
20MHz	QPSK	100	100	QPSK	100	100			
20MHz	QPSK	100	N/A	QPSK	75	N/A			
20MHz	QPSK	100	N/A	QPSK	50	N/A			
20MHz	QPSK	100	N/A	QPSK	25	N/A			
20MHz	QPSK	100	N/A	QPSK	20	N/A			

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2. Depending on E-UTRA band, only the appropriate Uplink RB allocation value according to table 7.3.3-2 is tested per Test Channel Bandwidth.
- Note 3: For the DL signal one sided dynamic OCNG Pattern OP.1 FDD/TDD is used.
- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A.4.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to in Table 7.6.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.6.1.4.3.

7.6.1.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.6.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.6.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 3. Set the parameters of the signal generator for an interfering signal below the wanted signal in Case 1 according to Tables 7.6.1.5-1 and 7.6.1.5-2.
- 4. Set the downlink signal level according to the table 7.6.1.5-1. Send uplink power control commands to the UE(less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in table 7.6.1.5-1 for at least the duration of the throughput measurement.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.
- 6. Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 3.
- 7. Repeat steps from 3 to 6, using interfering signals in Case 2 at step 3 and 6. The ranges of case 2 are covered in steps equal to the interferer bandwidth. The test frequencies are chosen in analogy to table 7.6.1.4.2-1.
- 8. Repeat steps from 3 to 5, using successively all interfering signals in Case 3 and Case 4 at step 3.

Table 7.6.1.4.2-1: Example for interferer frequencies

	Lower frequency	Upper frequency
Band 1 DL	2110 MHz	2170 MHz
Band 1 Midrange	214	0 MHz
Receive band wanted signal (BW 5MHz)	2137.5 MHz	2142.5 MHz
Interferer case 1	2129.9875 MHz	2150.0125 MHz
Interferer case 2 (inner frequency)	2124.9925 MHz	2155.0075 MHz
Interferer case 2 (outer frequency)	2099.9925 MHz	2180.0075 MHz
Outer limit for inband blocking	2095MHz	2185MHz
Number of test frequencies case 2	6	6
Number of test frequencies for Band 17(asymmetric!), BW 5MHz, case 2	0	2

7.6.1.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception

Table 7.6.1.4.3-1: UplinkPowerControlDedicated

Value/remark	Comment	Condition
0		
en0		
TRUE		
0		
3 (-6 dB)		
fc8	larger filter length is used to reduce the RSRP measurement variation	
	0 en0 TRUE 0 3 (-6 dB)	0 en0 TRUE 0 3 (-6 dB) fc8 larger filter length is used to reduce the RSRP measurement

7.6.1.5 Test Requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.1.5-1 and 7.6.1.5-2.

Table 7.6.1.5-1: In band blocking parameters

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in			REFSENS + channel bandwidth specific value below						
Transmission	dBm		0		0	7	0		
Bandwidth Configuration		6	6	6	6	/	9		
BW _{Interferer}	MHz	1.4	3	5	5	5	5		
F _{loffset, case 1}	MHz	2.1+0.0125	4.5+0.0075	7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
F _{loffset, case 2}	MHz	3.5+0.0075		12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007		
·			7.5+0.0075		5	5	5		

Note 1: The transmitter shall be set to 4dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.5.

Note 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.

Table 7.6.1.5-2: In-band blocking

E-UTRA band	Parameter	Unit	Case 1	Case 2	Case 3	Case 4
	P _{Interferer}	dBm	-56	-44	-30	[-30]
	F _{Interferer} (offset)	MHz	=-BW/2 - F _{loffset,case 1} & =+BW/2 + F _{loffset,case 1}	≤-BW/2 − F _{loffset,case 2} & ≥+BW/2 + F _{loffset,case 2}	-BW/2 – 15 & -BW/2 – 9	-BW/2 – 10
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 20, 21, 25, 33, 34, 35, 36, 37, 38, 39, 40, 41	F _{Interferer}	MHz	(Note 2)	F _{DL_low} – 15 to F _{DL_high} + 15		
12	F _{Interferer}	MHz	(Note 2)	F_{DL_low} – 10 to F_{DL_high} + 15		F _{DL_low} – 10
17	F _{Interferer}	MHz	(Note 2)	$F_{DL_low} - 9$ to $F_{DL_high} + 15$	F _{DL_low} – 15 and F _{DL_low} – 9	

Note 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the

first 15 MHz below or above the UE receive band

Note 2: For each carrier frequency the requirement is valid for two frequencies:

a. the carrier frequency -BW/2 - $F_{\text{loffset, case 1}}$ and

b. the carrier frequency +BW/2 + F_{loffset, case 1}

Note 3: F_{Interferer} range values for unwanted modulated interfering signal are interferer centre frequencies

Note 4: Case 3 and Case 4 only apply to assigned UE channel bandwidth of 5 MHz

7.6.2 Out-of-band blocking

7.6.2.1 Test Purpose

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in sub-clause 7.5.1 and sub-clause 7.6.1 shall be applied.

The lack of out-of-band blocking ability will decrease the coverage area when other e-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6.2.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.6.2.3 Minimum Conformance Requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.3-1 and 7.6.2.3-2.

For Table 7.6.2.3-2 in frequency range 1, 2 and 3, up to $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.4.2-1). For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

For Table 7.6.2.3-2 in frequency range 4, up to $\max(8, \lceil (N_{RB}+2\cdot L_{CRBs})/8 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.4.2-1) and L_{CRBs} is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Table 7.6.2.3-1: Out-of-band blocking parameters

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFS	ENS + ch	annel ban	dwidth sp	ecific valu	e below
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9

Note 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.3-2 with Pcmax_L as defined in clause 6.2.5.

Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.6.2.3-2: Out of band blocking

E-UTRA band	Parameter	Units		Fred	quency	
			range 1	range 2	range 3	range 4
	P _{Interferer}	dBm	-44	-30	-15	-15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,			F_{DL_low} -15 to F_{DL_low} -60	F_{DL_low} -60 to F_{DL_low} -85	F _{DL_low} -85 to 1 MHz	-
11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 33, 34, 35, 36, 37, 38, 39, 40, 41	F _{Interferer} (CW)	MHz	F _{DL_high} +15 to F _{DL_high} +60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz	-
2, 5, 12, 17	F _{Interferer}	MHz	-	-	-	F _{UL_low} - F _{UL_high}
Note: For the UE		s both Bar	nd 11 and Band 21	the out of blockin	g is FFS.	

The normative reference for this requirement is TS 36.101 [2] clause 7.6.2.

7.6.2.4 Test Description

7.6.2.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.6.2.4.1-1. The details of the uplink and downlink reference

measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6.2.4.1-1: Test Configuration Table

		In	itial Condition	าร					
Test Environ	ment as specifi	ed in	NC						
	subclause 4.1								
	ncies as specific	ed in	Low range fo	Low range for F _{Interferer} below F _{DL low}					
	subclause 4.3.			or F _{Interferer} abov					
Test Channe	l Bandwidths a	s specified in	Lowest, 5MH						
TS 36.508 [7] subclause 4.3	3.1		-					
	,	Test Paramete	ers for Channe	el Bandwidths	3				
	Down	nlink Configur	ation	Upl	ink Configura	tion			
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation			
		FDD	TDD		FDD	TDD			
1.4MHz	QPSK	6	6	QPSK	6	6			
3MHz	QPSK	15	15	QPSK	15	15			
5MHz	QPSK	25	25	QPSK	25	25			
5MHz	QPSK	25	N/A	QPSK	20	N/A			
5MHz	QPSK	25	N/A	QPSK	15	N/A			
10MHz	QPSK	50	50	QPSK	50	50			
10MHz	QPSK	50	N/A	QPSK	25	N/A			
10MHz	QPSK	50	N/A	QPSK	20	N/A			
10MHz	QPSK	50	N/A	QPSK	15	N/A			
15MHz	QPSK	75	75	QPSK	75	75			
15MHz	QPSK	75	N/A	QPSK	50	N/A			
15MHz	QPSK	75	N/A	QPSK	25	N/A			
15MHz	QPSK	75	N/A	QPSK	20	N/A			
20MHz	QPSK	100	100	QPSK	100	100			
20MHz QPSK 100		N/A	QPSK	75	N/A				
20MHz	QPSK	100	N/A	QPSK	50	N/A			
20MHz	QPSK	100	N/A	QPSK	25	N/A			
20MHz	QPSK	100	N/A	QPSK	20	N/A			

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2. Depending on E-UTRA band, only the appropriate Uplink RB allocation value according to table 7.3.3-2 is tested per Test Channel Bandwidth.
- Note 3: For the DL signal one sided dynamic OCNG Pattern OP.1 FDD/TDD is used.
- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A.5.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.6.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.6.2.4.3.

7.6.2.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.6.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 3. Set the parameters of the CW signal generator for an interfering signal according to Table 7.6.2.5-2. The frequency step size is 1MHz.
- 4. Set the downlink signal level according to the table 7.6.2.5-1. Send uplink power control commands to the UE(less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in table 7.6.2.5-1 for at least the duration of the throughput measurement.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.
- 6. Record the frequencies for which the throughput doesn't meet the requirements.

7.6.2.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Derivation Path: 36.331 clause 6.3.2 Information Element Value/remark Comment Condition UplinkPowerControlDedicated-DEFAULT ::= SEQUENCE { p0-UePUSCH 0 deltaMCS-Enabled en0 accumulationEnabled **TRUE** p0-uePUCCH pSRS-Offset 3 (-6 dB) filterCoefficient larger filter length fc8 is used to reduce the RSRP measurement variation

Table 7.6.2.4.3-1: UplinkPowerControlDedicated

7.6.2.5 Test Requirement

Except for the spurious response frequencies recorded at the final step $\,$ of test procedure, the throughput measurement derived in test procedure $\,$ shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.2.5-1 and 7.6.2.5-2.

For frequency range 1, 2, and 3, the number of spurious response frequencies recorded in the final step of test procedure shall not exceed $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

For frequency range 4, the number of spurious response frequencies recorded in the final step of test procedure shall not exceed $\max(8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil)$ in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Table 7.6.2.5-1: Out-of-band blocking parameters

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFSENS + channel bandwidth specific value below					
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9

Note 1: The transmitter shall be set to 4dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.5.

Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.6.2.5-2: Out of band blocking

E-UTRA band	Parameter	Units	Frequency				
			range 1	range 2	range 3	range 4	
	P _{Interferer}	dBm	-44	-30	-15	-15	
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,			F_{DL_low} -15 to F_{DL_low} -60	F_{DL_low} -60 to F_{DL_low} -85	F _{DL_low} -85 to 1 MHz	-	
11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 33, 34, 35, 36, 37, 38, 39, 40, 41	F _{Interferer} (CW)	MHz	F _{DL_high} +15 to F _{DL_high} +60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz	-	
2, 5, 12, 17	F _{Interferer}	MHz	-	-	-	Ful_low - Ful_high	

Note 1: Range 3 shall be tested only with the highest channel bandwidth.

Note 2: For the UE which supports both Band 11 and Band 21 the out of blocking is FFS.

7.6.3 Narrow band blocking

7.6.3.1 Test Purpose

Verifies a receiver's ability to receive an E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

The lack of narrow-band blocking ability will decrease the coverage area when other e-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6.3.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.6.3.3 Minimum Conformance Requirements

The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.3-1.

Table 7.6.3.3-1: Narrow-band blocking

Parameter	Unit	Channel Bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
P _w	dBm	P_R	P _{REFSENS} + channel-bandwidth specific value below				
		22	18	16	13	14	16
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55
F_{uw} (offset for $\Delta f = 15 \text{ kHz}$)	MHz	0.9075	1.7025	2.7075	5.2125	7.7025	10.2075
F_{uw} (offset for $\Delta f = 7.5 \text{ kHz}$)	MHz						

Note 1: The transmitter shall be set a 4 dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.3-2 with Pcmax_L as defined in clause 6.2.5.

Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

The normative reference for this requirement is TS 36.101 [2] clause 7.6.3.

7.6.3.4 Test Description

7.6.3.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.6.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.6.3.4.1-1: Test Configuration Table

		In	itial Condition	าร		
Test Environ	ment as specifi	ed in	NC			
	subclause 4.1					
Test Frequer	ncies as specifi	ed in	Mid range			
TS36.508 [7]	subclause 4.3	.1	_			
Test Channe	I Bandwidths a	s specified in	Lowest, 5MH	z, Highest		
TS 36.508 [7] subclause 4.3	3.1				
	,	Test Paramete	ers for Chann	el Bandwidths	1	
	Dowi	nlink Configur	ation	Upl	ink Configura	tion
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation
		FDD	TDD		FDD	TDD
1.4MHz	QPSK	6	6	QPSK	6	6
3MHz	QPSK	15	15	QPSK	15	15
5MHz	QPSK	25	25	QPSK	25	25
5MHz	QPSK	25	N/A	QPSK	20	N/A
5MHz	QPSK	25	N/A	QPSK	15	N/A
10MHz	QPSK	50	50	QPSK	50	50
10MHz	QPSK	50	N/A	QPSK	25	N/A
10MHz	QPSK	50	N/A	QPSK	20	N/A
10MHz	QPSK	50	N/A	QPSK	15	N/A
15MHz	QPSK	75	75	QPSK	75	75
15MHz	QPSK	75	N/A	QPSK	50	N/A
15MHz	QPSK	75	N/A	QPSK	25	N/A
15MHz	QPSK	75	N/A	QPSK	20	N/A
20MHz	QPSK	100	100	QPSK	100	100
20MHz	QPSK	100	N/A	QPSK	75	N/A
20MHz	QPSK	100	N/A	QPSK	50	N/A
20MHz	QPSK	100	N/A	QPSK	25	N/A
20MHz	QPSK	100	N/A	QPSK	20	N/A
Note 1: Te	est Channel Ba	ndwidths are c	hecked separa	tely for each E	-UTRA band, w	hich

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2. Depending on E-UTRA band, only the appropriate Uplink RB allocation value according to table 7.3.3-2 is tested per Test Channel Bandwidth.
- Note 3: For the DL signal one sided dynamic OCNG Pattern OP.1 FDD/TDD is used.
- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.5.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1
- 4. The UL and DL Reference Measurement channels are set according to Table 7.6.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.6.3.4.3.

7.6.3.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.6.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.6.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the parameters of the CW signal generator for an interfering signal according to Table 7.6.3.5-1.
- 4. Set the downlink signal level according to the table 7.6.3.5-1. Send uplink power control commands to the UE(less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in table 7.6.3.5-1 for at least the duration of the throughput measurement.
- Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.6.3.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Table 7.6.3.4.3-1: UplinkPowerControlDedicated

Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement	
1		variation	

7.6.3.5 Test Requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.6.3.5-1.

Table 7.6.3.5-1: Narrow-band blocking

Parameter	Unit	Channel Bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
P _w	dBm	P_R	_{EFSENS} + cha	nnel-bandwid	dth specific	value belo	W
		22	18	16	13	14	16
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55
F_{uw} (offset for $\Delta f = 15 \text{ kHz}$)	MHz	0.9075	1.7025	2.7075	5.2125	7.7025	10.2075
F_{uw} (offset for $\Delta f = 7.5 \text{ kHz}$)	MHz						

Note 1: The transmitter shall be set a 4 dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.5.

Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

7.7 Spurious response

7.7.1 Test Purpose

Spurious response verifies the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6.2 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.7.3 Minimum Conformance Requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.3-1 and 7.7.3-2.

Table 7.7.3-1: Spurious response parameters

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3	MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REF	REFSENS + channel bandwidth specific value below					
Transmission Bandwidth Configuration	dBm	6		6	6	6	7	9

Note 1:The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.3-2 with Pcmax_L as defined in clause 6.2.5.

Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Table 7.7.3-2: Spurious Response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

The normative reference for this requirement is TS 36.101 [2] clause 7.7.

7.7.4 Test Description

7.7.4.1 Initial Conditions

The initial conditions shall be the same as in clause 7.6.2.4.1 in order to test spurious responses obtained in clause 7.6.2 under the same conditions.

7.7.4.2 Test Procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.6.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 3. Set the parameters of the CW signal generator for an interfering signal according to Table 7.7.5-2. The spurious frequencies are taken from records in the final step of test procedures in clause 7.6.2.4.2.
- 4. Set the downlink signal level according to the table 7.7.5-1. Send uplink power control commands to the UE(less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in table 7.7.5-1 for at least the duration of the throughput measurement.
- 5. For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.7.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Table 7.7.4.3-1: UplinkPowerControlDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement variation	

7.7.5 Test Requirement

The throughput measurement derived in test procedure shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.7.5-1 and 7.7.5-2.

Table 7.7.5-1: Spurious response parameters

Rx Parame	eter U	Inits	Channel bandwidth						
			1.4 MHz	3	MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in	1		REF	SENS	S + c	hannel ban	dwidth spec	ific value be	low
Transmissi Bandwidt Configurati	h C	dBm	6		6	6	6	7	9
Note 1: The transmitter shall be set to 4dB below P _{CMAX_L} with P _{CMAX_L} as defined in clause 6.2.5.									
Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.									

Table 7.7.5-2: Spurious Response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

7.8 Intermodulation characteristics

7.8.1 Wide band Intermodulation

7.8.1.1 Test purpose

Intermodulation response tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when two or more interfering signals exist which have a specific frequency relationship to the wanted signal.

7.8.1.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.8.1.3 Minimum conformance requirements

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1.3-1 for the specified wanted signal mean power in the presence of two interfering signals.

Rx Parameter	Units	Channel bandwidth						
		1.4 MHz	3	MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REI	FSENS	+ cha	nnel bandv	vidth specific	value belov	N
Transmission Bandwidth Configuration	dBm	12		8	6	6	7	9
P _{Interferer 1} (CW)	dBm	-46						
P _{Interferer 2} (Modulated)	dBm				-46			
BW _{Interferer 2}		1.4		3			5	
F _{Interferer 1} (Offset)	MHz	-BW/2 -2.1 -BW/2 -4.5 -BW/2 - 7.5						
(=::==,		+BW/2+ 2.1						
F _{Interferer 2} (Offset)	MHz	2*F _{Interferer 1}						

Table 7.8.1.3-1: Wide band intermodulation

Note 1: The transmitter shall be set to 4dB below PcMAX_L at the minimum uplink configuration specified in Table 7.3.3-2 with PcMAX_L as defined in clause 6.2.5.

Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Note 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 with set-up according to Annex C.3.1.The interfering modulated signal is 5MHz E-UTRA signal as described in Annex D for channel bandwidth ≥5MHz

The normative reference for this requirement is TS 36.101 [2] clause 7.8.1 and TS 36.101 [2] Annexes A and D.

[FFS: Although it is not explicitly stated in TS 36.101 [2] whether the modulated interferer defined in 36.101 Annex D applies to wanted channel bandwidths of less than 5MHz, this test specification has assumed that the modulated interferer definition applies to all channel bandwidths. The content of TS 36.101 [2] Annex D.2 has been copied into Annex FFS of the present document]

7.8.1.4 Test description

7.8.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.8.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. The details of the OCNG patterns used are specified in Annex A.5. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 7.8.1.4.1-1: Test Configuration Table

Initial Conditions							
Test Environment as specified in			NC				
	subclause 4.1						
Test Frequer	cies as specifi	ed in	Mid range				
TS36.508 [7]	subclause 4.3.	.1					
Test Channe	I Bandwidths as	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7	subclause 4.3						
		Test Paramete	ers for Chann	el Bandwidths			
	Dowr	nlink Configur	ation	•	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	6	6	QPSK	6	6	
3MHz	QPSK	15	15	QPSK	15	15	
5MHz	QPSK	25	25	QPSK	25	25	
5MHz	QPSK	25	N/A	QPSK	20	N/A	
5MHz	QPSK	25	N/A	QPSK	15	N/A	
10MHz	QPSK	50	50	QPSK	50	50	
10MHz	QPSK	50	N/A	QPSK	25	N/A	
10MHz	QPSK	50	N/A	QPSK	20	N/A	
10MHz	QPSK	50	N/A	QPSK	15	N/A	
15MHz	QPSK	75	75	QPSK	75	75	
15MHz	QPSK	75	N/A	QPSK	50	N/A	
15MHz	QPSK	75	N/A	QPSK	25	N/A	
15MHz	QPSK	75	N/A	QPSK	20	N/A	
20MHz	QPSK	100	100	QPSK	100	100	
20MHz	QPSK	100	N/A	QPSK	75	N/A	
20MHz	QPSK	100	N/A	QPSK	50	N/A	
20MHz	QPSK	100	N/A	QPSK	25	N/A	
20MHz	QPSK	100	N/A	QPSK	20	N/A	

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.
- Note 2. Depending on E-UTRA band, only the appropriate Uplink RB allocation value according to table 7.3.3-2 is tested per Test Channel Bandwidth.
- Note 3: For the DL signal one sided dynamic OCNG Pattern OP.1 FDD/TDD is used.
- 1. Connect the SS and interfering sources to the UE antenna connectors as shown in TS 36.508 [7] Figure A.6.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.8.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.8.1.4.3.

7.8.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 7.8.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 7.8.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the value as defined in Table 7.8.1.5-1. Send Uplink power control commands to the UE (less or equal to 1dB step size should be used), to ensure that the UE output power is within +0, 3.4 dB of the target level in Table 7.8.1.5-1 for at least the duration of the Throughput measurement.
- 4. Set the Interfering signal levels to the values as defined in Table 7.8.1.5-1, using a modulated interferer bandwidth as defined in Annex D of the present document.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.8.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Derivation Path: 36.331 clause 6.3.2 Information Element Value/remark Comment Condition UplinkPowerControlDedicated-DEFAULT ::= SEQUENCE { p0-UePUSCH 0 deltaMCS-Enabled en0 **TRUE** accumulationEnabled p0-uePUCCH 0 pSRS-Offset 3 (-6 dB) filterCoefficient larger filter length fc8 is used to reduce the RSRP measurement

Table 7.8.1.4.3-1: UplinkPowerControlDedicated

7.8.1.5 Test requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.8.1.5-1 for the specified wanted signal mean power in the presence of two interfering signals.

variation

+BW/2 + 7.5

Units Channel bandwidth **Rx Parameter** 15 MHz 1.4 MHz MHz 5 MHz 10 MHz 20 MHz channel bandwidth specific value below Power in REFSENS + Transmission dBm 9 Bandwidth 12 8 6 6 7 Configuration dBm P_{Interferer 1} -46 (CW) P_{Interferer 2} dBm -46 (Modulated) BW_{Interferer 2} 1.4 MHz -BW/2 -2.1 -BW/2 -4.5 -BW/2 -7.5F_{Interferer 1} (Offset)

Table 7.8.1.5-1: Test parameters for Wide band intermodulation

Note 1: The transmitter shall be set to 4dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.5.

Note 2: The reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

+BW/2 + 4.5

Note 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex

A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1.The interfering modulated signal is 5MHz E-

2*F_{Interferer 1}

UTRA signal as described in Annex D for channel bandwidth ≥5MHz

+BW/2+ 2.1

MHz

7.8.2 Void

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Test Purpose

F_{Interferer 2}

(Offset)

Test verifies the UE's spurious emissions meet the requirements described in clause 7.9.3.

Excess spurious emissions increase the interference to other systems.

7.9.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.9.3 Minimum Conformance Requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.3-1

Table 7.9.3-1: General receiver spurious emission requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	

The normative reference for this requirement is TS 36.101 [2] clause 7.9.

7.9.4 Test Description

7.9.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.9.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively.

Table 7.9.4.1-1: Test Configuration Table

Initial Conditions								
Test Environ	Test Environment as specified in							
TS 36.508[7]	subclause 4.1							
Test Frequer	cies as specific	ed in	Low range, M	lid range, High	range			
TS36.508 [7]	subclause 4.3.	.1						
Test Channe	I Bandwidths as	s specified in	Highest					
TS 36.508 [7	subclause 4.3							
			ers for Channe					
	Dowr	nlink Configur	ation	Upl	ink Configura	tion		
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allocation			
		FDD	TDD		FDD	TDD		
1.4MHz	QPSK	0	0	QPSK	0	0		
3MHz	QPSK	0	0	QPSK	0	0		
5MHz	QPSK	0	0	QPSK	0	0		
10MHz	QPSK	0	0 0		0	0		
15MHz	QPSK	0 0		QPSK	0	0		
20MHz	QPSK	0	0	QPSK	0	0		

- Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band. The applicable channel bandwidths are specified in Table 7.3.3-2.
- 1. Connect a spectrum analyzer (or other suitable test equipment) to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.8.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1.
- 4. The DL Reference Measurement channels are set according to Table 7.9.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 7.9.4.3.

7.9.4.2 Test Procedure

- 1. Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.
- 2. Repeat step 1 for all E-UTRA Rx antennas of the UE.

7.9.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6.

7.9.5 Test Requirement

The measured spurious emissions derived in step 1), shall not exceed the maximum level specified in Table 7.9.5-1

Table 7.9.5-1: General receiver spurious emission requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	

8 Performance Requirement

8.1 General

The performance requirements for the physical channels specified in TS 36.211 [8] clause 6 (for downlink physical channels) shall be as defined in the respective sections below.

The requirements for the UE in this clause are specified for the downlink reference measurement channels specified in Annex A, the propagation conditions specified in Annex B and the downlink physical channels specified in Annex C.

Unelss otherwise stated the throughput measurements in clause 8 shall be performed according to the general rules for statistical testing in Annex G clause G.3.

The requirement for a UE that support E-UTRA in downlink shall be tested according to the declared UE PDSCH category.

The fading of the signals and the AWGN signals applied to each receiver antenna connector shall be uncorrelated. The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective test cases.

The UE performance in this section is considered to be operating band independent. Therefore, the required performance in the respective test cases can be verified in one of the operating bands supported by the UE under test. All the test points supported by the bands of the multiband UE (based on channel bandwidth, DL and UL configuration) need to be tested.

8.1.1 Dual-antenna receiver capability

The performance requirements are based on UE(s) that utilize a dual-antenna receiver.

For all test cases, the SNR is defined as:

$$SNR = \frac{\hat{E}_s^{(1)} + \hat{E}_s^{(2)}}{N_{cc}^{(1)} + N_{cc}^{(2)}},$$

where the superscript indicates the receiver antenna connector. The SNR requirement applies for the UE categories given for each test.

The normative reference for this requirement is TS 36.101 [2] clause 8.1.1.

- 8.1.1.1 Simultaneous unicast and MBMS operations
- 8.1.1.2 Dual-antenna receiver capability in idle mode

8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.2.1-1: Common Test Parameters (FDD)

Parameter	Unit	Value	Comments
Inter-TTI Distance		1	
Number of HARQ processes	Processes	8	For FDD, 8 HARQ processes in the DL, as specified in TS 36.213 [10] clause 7. All 8 HARQ processes are used.
Scheduling of retransmissions			Retransmissions use the same Transport Block Size (TBS) as the initial transmission. HARQ processes are scheduled consecutively, independent of the fact, whether retransmissions (for negatively acknowledged HARQ processes) or new transmissions (for positively acknowledged HARQ processes) occur.
Maximum number of HARQ transmission		4	It is always 4 for FDD, as specified in TS 36.213 [10] clause 8
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM	
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths	The PCFICH carries information about the number of OFDM symbols used for transmission of PDCCHs in a subframe, as specified in TS 36.211 [8] clause 6.7
Cyclic Prefix		Normal	CP consist of the following physical resource blocks (RBs) parameters: 12 consecutive subcarriers at a 15 kHz spacing and 7 OFDM symbols, as specified in TS 36.211 [8] clause 6.2.3
Cell ID		0	The Cell ID is uniquely defined by a number in the range of 0 to 503, representing the physical-layer cell identity, as specified in TS 36.211 [8] clause 6.11.

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.

8.2.1.1 FDD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)

8.2.1.1.1 FDD PDSCH Single Antenna Port Performance

8.2.1.1.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port with different channel models and MCS.

8.2.1.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.1, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.1.1.3-2 for the specified SNR. For QPSK and 64QAM performance the bandwidths specified in Table 5.4.2.1-1 are verified.

Table 8.2.1.1.1.3-1: Test Parameters for Testing

Parameter		Unit	Test 1- 5	Test 6- 8	Test 9- 15	Test 16- 18
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98	-98	-98	-98
Symbols for unused	I PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation			QPSK	16QAM	64QAM	16QAM

Note 1: $P_{R} = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.2.1.1.1.3-2: Minimum performance (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0	1-5
2	10 MHz	R.2 FDD	OP.1 FDD	ETU70	1x2 Low	70	-0.4	1-5
3	10 MHz	R.2 FDD	OP.1 FDD	ETU300	1x2 Low	70	0.0	1-5
4	10 MHz	R.2 FDD	OP.1 FDD	HST	1x2 Low	70	-2.4	1-5
5	1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	0.0	1-5
6	10 MHz	R.3 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	2-5
7	10 MHz	R.3 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	2-5
8	10 MHz	R.3 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	2-5
9	3 MHz	R.5 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	1-5
10	5 MHz	R.6 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.4	2-5
11	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	2-5
12	10 MHz	R.7 FDD	OP.1 FDD	ETU70	1x2 Low	70	19.0	2-5
13	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 High	70	19.1	2-5
14	15 MHz	R.8 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	2-5
15	20 MHz	R.9 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	3-5
16	3 MHz	R.0 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	1-5
17	10 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	1-5
18	20 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.1.

8.2.1.1.4 Test description

8.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested for full allocation: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Frequencies to be tested for 1PRB allocation: Low Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.1.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 8.2.1-1 and 8.2.1.1.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.1.1.4.3.

8.2.1.1.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.1.1.1.3-1 and 8.2.1.1.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Tables 8.2.1.1.1.5-1as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 4. Repeat steps from 1 to 3 for each subtest in Table 8.2.1.1.1.5-1 as appropriate.

8.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

8.2.1.1.1.5 Test requirement

Table 8.2.1.1.3-1defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.1 for each throughput test shall meet or exceed the specified value in Table 8.2.1.1.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.1.1.5-1: Test requirement (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-0.2	1-5
2	10 MHz	R.2 FDD	OP.1 FDD	ETU70	1x2 Low	70	+0.4	1-5
3	10 MHz	R.2 FDD	OP.1 FDD	ETU300	1x2 Low	70	+0.8	1-5
4	10 MHz	R.2 FDD	OP.1 FDD	HST	1x2 Low	70	-1.8	1-5
5	1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	+0.8	1-5
6	10 MHz	R.3 FDD	OP.1 FDD	EVA5	1x2 Low	70	+7.5	2-5
7	10 MHz	R.3 FDD	OP.1 FDD	ETU70	1x2 Low	30	+2.2	2-5
8	10 MHz	R.3 FDD	OP.1 FDD	ETU300	1x2 High	70	+10.2	2-5
9	3 MHz	R.5 FDD	OP.1 FDD	EVA5	1x2 Low	70	+18.4 1	1-5
10	5 MHz	R.6 FDD	OP.1 FDD	EVA5	1x2 Low	70	+18.2	2-5
11	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 Low	70	+18.5	2-5
12	10 MHz	R.7 FDD	OP.1 FDD	ETU70	1x2 Low	70	+19.8	2-5
13	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 High	70	+19.9	2-5
14	15 MHz	R.8 FDD	OP.1 FDD	EVA5	1x2 Low	70	+18.5	2-5
15	20 MHz	R.9 FDD	OP.1 FDD	EVA5	1x2 Low	70	+18.4	3-5
16	3 MHz	R.0 FDD	OP.1 FDD	ETU70	1x2 Low	30	+2.7	1-5
17	10 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	+2.7	1-5
18	20 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	+2.7	1-5

8.2.1.1.1_1 FDD PDSCH Single Antenna Port Performance (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test tolerance is undefined

8.2.1.1.1_1.1 Test purpose

Same test purpose as in clause 8.2.1.1.1.1.

8.2.1.1.1_1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.2.1.1.1_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.1.1.1.3 with the following exceptions:

- Instead of Table 8.2.1.1.1.3-1 \rightarrow use Table 8.2.1.1.1_1.3-1.

- Instead of Table 8.2.1.1.1.3-2 \rightarrow use Table 8.2.1.1.1_1.3-2.

Table 8.2.1.1.1_1.3-1: Test Parameters for Testing

Parameter	Parameter		Test 1- 5	Test 6- 8	Test 9- 15	Test 16- 18
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98	-98	-98	-98
Symbols for unused	I PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation			QPSK	16QAM	64QAM	16QAM

Note 1: $P_B = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.2.1.1.1_1.3-2: Minimum performance (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1				N/	'A			
2				N/	'A			
3				N/				
4				N/				
5				N/				
6	5 MHz	R.3-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	1
7	5 MHz	R.3-1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	1
8	5 MHz	R.3-1 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	1
9				N/	'A			
10	5 MHz	R.6-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.5	1
11	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.5	1
12	10 MHz	R.7-1 FDD	OP.1 FDD	ETU70	1x2 Low	70	18.1	1
13	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 High	70	17.8	1
14	15 MHz	R.8-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.8	1
15	20 MHz	R.9-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.3	2
	20 MHz	R.9-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7	1
16				N/				
17				N/				
18				N/	'A	<u>-</u>		

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.1.

8.2.1.1.1_1.4 Test description

Same test description as in clause 8.2.1.1.1.4 with the following exceptions:

- Instead of Table 8.2.1.1.1.3-1 \rightarrow use Table 8.2.1.1.1_1.3-1.

- Instead of Table 8.2.1.1.1.3-2 \rightarrow use Table 8.2.1.1.1_1.3-2.
- Instead of Table 8.2.1.1.1.5-1 \rightarrow use Table 8.2.1.1.1_1.5-1.

8.2.1.1.1_1.5 Test requirement

Same test requirements as in clause 8.2.1.1.1.5 with the following exceptions:

- Instead of Table 8.2.1.1.1.3-1 \rightarrow use Table 8.2.1.1.1_1.3-1.
- Instead of Table 8.2.1.1.1.5-1 \rightarrow use Table 8.2.1.1.1_1.5-1.

Table 8.2.1.1.1_1.5-1: Test requirement (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE	
number	Channel	Pattern Condition		Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category		
1				N/					
2				N/					
3				N/					
4				N/					
5				N/					
6	5 MHz	R.3-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	+7.5	1	
7	5 MHz	R.3-1 FDD	OP.1 FDD	ETU70	1x2 Low	30	+2.2	1	
8	5 MHz	R.3-1 FDD	OP.1 FDD	ETU300	1x2 High	70	+10.2	1	
9		•		N/	'A				
10	5 MHz	R.6-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.5+ TT	1	
11	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.5+ TT	1	
12	10 MHz	R.7-1 FDD	OP.1 FDD	ETU70	1x2 Low	70	18.1+ TT	1	
13	10 MHz	R.7-1 FDD	OP.1 FDD	EVA5	1x2 High	70	17.8+ TT	1	
14	15 MHz	R.8-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.8+ TT	1	
15	20 MHz	R.9-2 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.3+ TT	2	
	20 MHz	R.9-1 FDD	OP.1 FDD	EVA5	1x2 Low	70	16.7+ TT	1	
16				N/	'A				
17				N/	'A				
18				N/	'A	·			

8.2.1.1.2 FDD PDSCH Single Antenna Port Performance with 1 PRB in presence of MBSFN

8.2.1.1.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port with different channel models and MCS for 1 PRB allocation in presence of MBSFN.

8.2.1.1.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.1.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.1, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.1.2.3-1, and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.1.1.2.3-2, for the specified SNR.

Table 8.2.1.1.2.3-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)

Note 1: $P_{R} = 0$

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the

first slot.

Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are

not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.

Table 8.2.1.1.2.3-2: Minimum performance 1 PRB allocation (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.29 FDD	OP.3 FDD	ETU70	1x2 Low	30	2.0	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.1.

8.2.1.1.2.4 Test description

8.2.1.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Low Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Tables 8.2.1.1.2.3-2as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1, 8.2.1.1.2.3-1as appropriate.

- Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.1.2.4.3.

8.2.1.1.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.1.1.2.3-1 and 8.2.1.1.2.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.2.1.1.2.5-1as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.1.2.4.3-1: SystemInformationBlockType2: Additional FDD PDSCH Single Antenna Port Performance for 1 PRB allocation with MBSFN subframes test point 1 requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table	4.4.3.3-1 SystemInformation	BlockType2	
Information Element	Value/remark	Comment	Condition
SystemInformationBlockType2 ::= SEQUENCE {			
mbsfn-SubframeConfig ::= SEQUENCE {			
radioframeAllocationPeriod	n1	Every radio frame is with MBSFN subframe	
radioframeAllocationOffset	0		
subframeAllocation CHOICE {			
oneFrame	111111	Subframe 1, 2, 3, 6, 7, 8 is used for MBSFN	FDD
}			
}			

8.2.1.1.2.5 Test requirement

Table 8.2.1.1.2.3-1defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.1 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.1.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.1.2.5-1: Test requirement 1 PRB allocation with MBSFN subframes (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE	l
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz	R.29 FDD	OP.3 FDD	ETU70	1x2 Low	30	+2.8	1-5	

8.2.1.2 FDD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)

8.2.1.2.1 FDD PDSCH Transmit Diversity 2x2

8.2.1.2.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using transmit diversity (SFBC).

8.2.1.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.2.1.3Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.2.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.3.2.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.2.1.3-2 for the specified SNR. For transmit diversity (SFBC) performance with 2 transmitter antennas as specified.

Table 8.2.1.2.1.3-1: Test Parameters for Testing Transmit Diversity Performance

Parameter		Unit	Test 1-2
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
N_{oc} at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Table 8.2.1.2.1.3-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Medium	70	6.8	2-5
2	10 MHz	R 10 FDD	OP 1 FDD	HST	2x2 Low	70	-23	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.2.

8.2.1.2.1.4 Test description

8.2.1.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.2.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.2.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.2.1.4.3.

8.2.1.2.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.1.2.1.3-1 and 8.2.1.2.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.2.1.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 4. Repeat steps from 1 to 3 for each test interval in Table 8.2.1.2.1.5-1 as appropriate.

8.2.1.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

8.2.1.2.1.5 Test requirement

Table 8.2.1.2.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Table 8.2.1.2.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.2.1.5-1: Test requirement Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Medium	70	7.7	2-5
2	10 MHz	R.10 FDD	OP.1 FDD	HST	2x2 Low	70	-1.7	1-5

8.2.1.2.1_1 FDD PDSCH Transmit Diversity 2x2 (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test tolerance is undefined

8.2.1.2.1 1.1 Test purpose

Same test purpose as in clause 8.2.1.2.1.1.

8.2.1.2.1_1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.2.1.2.1_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.1.2.1.3 with the following exceptions:

- Instead of Table 8.2.1.2.1.3-1 \rightarrow use Table 8.2.1.2.1_1.3-1.
- Instead of Table 8.2.1.2.1.3-2 → use Table 8.2.1.2.1_1.3-2.

Table 8.2.1.2.1_1.3-1: Test Parameters for Testing Transmit Diversity Performance

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Table 8.2.1.2.1_1.3-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	5 MHz	R.11.2 FDD	OP.1 FDD	EVA5	2x2 Medium	70	5.9	1

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.2.

8.2.1.2.1_1.4 Test description

Same test description as in clause 8.2.1.2.1.4 with the following exceptions:

- Instead of Table 8.2.1.2.1.3-1 → use Table 8.2.1.2.1_1.3-1.
- Instead of Table 8.2.1.2.1.3-2 \rightarrow use Table 8.2.1.2.1_1.3-2.
- Instead of Table 8.2.1.2.1.5-1 \rightarrow use Table 8.2.1.2.1_1.5-1.

8.2.1.2.1 1.5 Test requirement

Same test requirements as in clause 8.2.1.2.1.5 with the following exceptions:

- Instead of Table 8.2.1.2.1.3-1 \rightarrow use Table 8.2.1.2.1_1.3-1.
- Instead of Table 8.2.1.2.1.5-1 \rightarrow use Table 8.2.1.2.1_1.5-1.

Table 8.2.1.2.1_1.5-1: Test requirement Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	5 MHz	R.11.2 FDD	OP.1 FDD	EVA5	2x2 Medium	70	5.9+ TT	1

8.2.1.2.2 FDD PDSCH Transmit Diversity 4x2

8.2.1.2.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using transmit diversity (SFBC-FSTD).

8.2.1.2.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.2.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.2.2.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.3.2.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.2.2.3-2 for the specified SNR. For transmit diversity (SFBC) performance with 4 transmitter antennas as specified.

Table 8.2.1.2.2.3-1: Test Parameters for Testing Transmit Diversity Performance

Parameter		Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Table 8.2.1.2.2.3-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 FDD	OP.1 FDD	EPA5	4x2 Medium	70	0.6	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.2.

8.2.1.2.2.4 Test description

8.2.1.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.2.2.3-2 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.2.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.2.2.4.3.

8.2.1.2.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.1.2.2.3-1 and 8.2.1.2.2.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.2.2.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.2.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH transmit diversity performance downlink power allocation test point 1 requirement

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {			
p-a	dB-3		
}			

8.2.1.2.2.5 Test requirement

Table 8.2.1.2.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Table 8.2.1.2.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.2.2.5-1: Test requirement Transmit Diversity (FRC)

Ī	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
	number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
						Antenna	Maximum	(dB)	
						Configuration	Throughput		
							(%)		
Ī	1	1.4 MHz	R.12 FDD	OP.1 FDD	EPA5	4x2 Medium	70	1.5	1-5

8.2.1.2.2 1 FDD PDSCH Transmit Diversity 4x2 (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Test tolerance is undefined

8.2.1.2.2_1.1 Test purpose

Same test purpose as in clause 8.2.1.2.2.1.

8.2.1.2.2_1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.2.1.2.2 1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.1.2.2.3 with the following exceptions:

- Instead of Table 8.2.1.2.2.3-1 \rightarrow use Table 8.2.1.2.2_1.3-1.
- Instead of Table 8.2.1.2.2.3-2 \rightarrow use Table 8.2.1.2.2_1.3-2.

Table 8.2.1.2.2_1.3-1: Test Parameters for Testing Transmit Diversity Performance

Parameter		Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Table 8.2.1.2.2_1.3-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 FDD	OP.1 FDD	ETU70	4x2 Low	70	-0.9	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.2.

8.2.1.2.2_1.4 Test description

Same test description as in clause 8.2.1.2.2.4 with the following exceptions:

- Instead of Table 8.2.1.2.2.3-1 \rightarrow use Table 8.2.1.2.2_1.3-1.
- Instead of Table 8.2.1.2.2.3-2 \rightarrow use Table 8.2.1.2.2_1.3-2.
- Instead of Table 8.2.1.2.2.5-1 \rightarrow use Table 8.2.1.2.2_1.5-1.

8.2.1.2.2_1.5 Test requirement

Same test requirements as in clause 8.2.1.2.2.5 with the following exceptions:

- Instead of Table 8.2.1.2.2.3-1 \rightarrow use Table 8.2.1.2.2_1.3-1.
- Instead of Table 8.2.1.2.2.5-1 \rightarrow use Table 8.2.1.2.2_1.5-1.

Table 8.2.1.2.2_1.5-1: Test requirement Transmit Diversity (FRC)

211

Ī	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
	number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.13 FDD	OP.1 FDD	ETU70	4x2 Low	70	- 0.9+ TT	1-5

8.2.1.3 FDD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

8.2.1.3.1 FDD PDSCH Open Loop Spatial Multiplexing 2x2

8.2.1.3.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using large delay CDD.

8.2.1.3.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.3.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.3.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.3.1.3-1 for the specified SNR. For open-loop spatial multiplexing performance with large delay CDD is specified.

Table 8.2.1.3.1.3-1: Test Parameters for Large Delay CDD (FRC)

Paramete	•	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Table 8.2.1.3.1.3-2: Minimum performance Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.0	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.3.

8.2.1.3.1.4 Test description

8.2.1.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.3.1.3-1, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.3.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.3.1.4.3.

8.2.1.3.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL RMC according to Tables 8.2.1.3.1.3-1 and 8.2.1.3.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.2.1.3.1.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.3.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.3.1.4.3-1: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH open loop spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.331 clause 6.3.2				
Information Element	Value/remark	Comment	Condition	
PhysicalConfigDedicated-DEFAULT ::=				
SEQUENCE {				
antennaInfo CHOICE {				
antennaInfoDedicated ::= SEQUENCE {				
transmissionMode	tm3			
codebookSubsetRestriction CHOICE {				
n2TxAntenna-tm3	11			
}				
ue-TransmitAntennaSelection CHOICE {				
release	NULL			
}				
}				
}				
}				

8.2.1.3.1.5 Test requirement

Table 8.2.1.3.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.3.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.3.1.5-1: Test Requirement Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.9	2-5

8.2.1.3.2 FDD PDSCH Open Loop Spatial Multiplexing 4x2

8.2.1.3.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using large delay CDD.

8.2.1.3.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.3.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.3.2.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.3.2.3-1 for the specified SNR. For open-loop spatial multiplexing performance with large delay CDD is specified.

Table 8.2.1.3.2.3-1: Test Parameters for Large Delay CDD (FRC)

Paramete	er	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
$N_{\it oc}$ at antenna por	t	dBm/15kHz	-98
Note 1: $P_{B} = 1$		•	

Table 8.2.1.3.2.3-2: Minimum performance Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.14 FDD	OP.1 FDD	EVA70	4x2 Low	70	14.3	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.3.

8.2.1.3.2.4 Test description

8.2.1.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.3.1.3-1, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.3.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.3.2.4.3.

8.2.1.3.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL RMC according to Tables 8.2.1.3.2.3-1 and 8.2.1.3.2.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.2.1.3.2.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.3.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.3.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH open loop spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.331 clause 6.3.2									
Information Element	Value/remark	Comment	Condition						
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {									
p-a	dB-6								
}									

Table 8.2.1.3.2.4.3-2: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH open loop spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm3		
codebookSubsetRestriction CHOICE {			
n4TxAntenna-tm3	1111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.2.1.3.2.5 Test requirement

Table 8.2.1.3.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.3.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.3.2.5-1: Test Requirement Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		Reference value	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz	R.14 FDD	OP.1 FDD	EVA70	4x2 Low	70	15.2	2-5	

8.2.1.4 FDD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

8.2.1.4.1 FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 2x2

8.2.1.4.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using closed-loop spatial multiplexing.

8.2.1.4.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.4.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.4.1.3-1 and 8.2.1.4.1.3-3 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.1.4.1.3-2 and 8.2.1.4.1.3-4 for the specified SNR. For single-layer spatial multiplexing closed loop rank-one performance with wideband and frequency selective precoding is specified. For multi-layer spatial multiplexing closed loop rank-two performance with wideband and frequency selective precoding is specified.

Table 8.2.1.4.1.3-1: Test Parameters for Testing Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98	-98
Precoding granu	larity	PRB	6	50
PMI delay (Not	PMI delay (Note 2)		8	8
Reporting inte	Reporting interval		1	1
Reporting mo	de		PUSCH 1-2	PUSCH 3-1

Note 1: $P_{R} = 1$

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 8.2.1.4.1.3-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.10 FDD	OP.1 FDD	EVA5	2x2 Low	70	-2.5	1-5
2	10 MHz	R.10 FDD	OP.1 FDD	EPA5	2x2 High	70	-2.3	1-5

Table 8.2.1.4.1.3-3: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter		Unit	Test 3	Test 4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
N_{oc} at antenna	port	dBm/15kHz	-98	-98
Precoding grant	ularity	PRB	50	50
PMI delay (Not	te 2)	ms	8	8
Reporting inte	Reporting interval		1	1
Reporting mode			PUSCH 3-1	PUSCH 3-1
CodeBookSubsetR bitmap	CodeBookSubsetRestriction		110000	110000

Note 1: $P_B = 1$

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this

reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 8.2.1.4.1.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Ī	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
	number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	3	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Low	70	12.9	2-5
Γ	4	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Low	70	14.3	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.4.

8.2.1.4.1.4 Test description

8.2.1.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Tables 8.2.1.4.1.3-2 and 8.2.1.4.1.3-4 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1, 8.2.1.4.1.3-1 and 8.2.1.4.1.3.-3 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.4.1.4.3.

8.2.1.4.1.4.2 Test procedure

- 1. For single-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC according to Tables 8.2.1.4.1.3-1 and 8.2.1.4.1.3-2. For multi-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Tables 8.2.1.4.1.3-3 and 8.2.1.4.1.3-4. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4.
- 3. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.4.1.5-1 and 8.2.1.4.1.5-2 as appropriate.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 5. Repeat steps from 1 to 4 for each test interval in Tables 8.2.1.4.1.5-1 and 8.2.1.4.1.5-2 as appropriate.

8.2.1.4.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.4.1.4.3-1: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH closed loop single-layer spatial multiplexing performance downlink power allocation for Test number 1, 2

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm6	1111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

Table 8.2.1.4.1.4.3-2: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH closed loop multi-layer spatial multiplexing performance downlink power allocation for Test number 3, 4

Derivation Path: 36.331 clause 6.3.2				
Information Element	Value/remark	Comment	Condition	
PhysicalConfigDedicated-DEFAULT ::=				
SEQUENCE {				
antennaInfo CHOICE {				
antennaInfoDedicated ::= SEQUENCE {				
transmissionMode	tm4			
codebookSubsetRestriction CHOICE {				
n2TxAntenna-tm4	110000			
}				
ue-TransmitAntennaSelection CHOICE {				
release	NULL			
}				
}				
}				
}				

Table 8.2.1.4.1.4.3-3: CQI-ReportConfig-DEFAULT: Additional FDD PDSCH closed loop single -layer spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

Table 8.2.1.4.1.4.3-4: *CQI-ReportConfig-DEFAULT:* Additional FDD PDSCH closed loop single/multi-layer spatial multiplexing performance downlink power allocation for Test number 2, 3, 4

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm31		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

8.2.1.4.1.5 Test requirement

Tables 8.2.1.4.3-1 and 8.2.1.4.3-3 define the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.4.1.5-1 and 8.2.1.4.1.5-2 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.4.1.5-1: Test requirement Single-Layer Spatial Multiplexing (FRC)

ſ	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
	number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
ſ	1	10 MHz	R.10 FDD	OP.1 FDD	EVA5	2x2 Low	70	-1.6	1-5
ſ	2	10 MHz	R.10 FDD	OP.1 FDD	EPA5	2x2 High	70	-1.4	1-5

Table 8.2.1.4.1.5-2: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
3	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Low	70	13.8	2-5
4	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Low	70	15.2	2-5

8.2.1.4.1_1 FDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 2x2 (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Test tolerance is undefined

8.2.1.4.1_1.1 Test purpose

Same test purpose as in clause 8.2.1.4.1.1

8.2.1.4.1 1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.2.1.4.1_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.1.4.1.3 with the following exceptions:

- Instead of Table 8.2.1.4.1.3-1 → use Table 8.2.1.4.1_1.3-1.
- Instead of Table 8.2.1.4.1.3-2 \rightarrow use Table 8.2.1.4.1_1.3-2.

Table 8.2.1.4.1_1.3-1: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	50
PMI delay (Not	e 2)	ms	8
Reporting inter	val	ms	1
Reporting mo	de		PUSCH 3-1
CodeBookSubsetRe	estriction		110000
bitmap			

Note 1: $P_B = 1$

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 8.2.1.4.1_1.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
4	10 MHz	R.35 FDD	OP.1 FDD	EPA5	2x2 Low	70	18.9	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.4.

8.2.1.4.1_1.4 Test description

Same test description as in clause 8.2.1.4.1.4 with the following exceptions:

- Instead of Table 8.2.1.4.1.3-1 \rightarrow use Table 8.2.1.4.1_1.3-1.
- Instead of Table 8.2.1.4.1.3-2 \rightarrow use Table 8.2.1.4.1_1.3-2.
- Instead of Table 8.2.1.4.1.5-1 → use Table 8.2.1.4.1_1.5-1.

8.2.1.4.1_1.5 Test requirement

Same test requirement as in clause 8.3.2.1.1.5 with the following exceptions:

- Instead of Table 8.2.1.4.1.3-1 \rightarrow use Table 8.2.1.4.1_1.3-1.
- Instead of Table 8.2.1.4.1.5-1 \rightarrow use Table 8.2.1.4.1_1.5-1.

Table 8.2.1.4.1_1.5-1: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.35 FDD	OP.1 FDD	EPA5	2x2 Low	70	18.9 + TT	2-5

8.2.1.4.2 FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 4x2

8.2.1.4.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using closed-loop spatial multiplexing.

8.2.1.4.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.4.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.4.2.3-1 and 8.2.1.4.2.3-3 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.1.4.2.3-2 and 8.2.1.4.2.3-4 for the specified SNR. For single-layer spatial multiplexing closed loop rank-one performance with wideband and frequency selective precoding is specified. For multi-layer spatial multiplexing closed loop rank-two performance with wideband and frequency selective precoding is specified.

Table 8.2.1.4.2.3-1: Test Parameters for Testing Single-Layer Spatial Multiplexing

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
$N_{_{oc}}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	6
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 1-2

Note 1: $P_{p} = 1$

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF

subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

at the end downlink before SF#(11+4)

Table 8.2.1.4.2.3-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.13 FDD	OP.1 FDD	EVA5	4x2 Low	70	-3.2	1-5

Table 8.2.1.4.2.3-3: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter		Unit	Test 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	6
PMI delay (Not	PMI delay (Note 2)		8
Reporting inter	val	ms	1
Reporting mo	de		PUSCH 1-2
			00000000000000
CodeBookSubsetRe	actriction		00000000000000
	SUICUOII		00001111111111
bitmap			11111100000000
			00000000

Note 1: $P_{R} = 1$

Note 2: If the UE reports in an available uplink reporting instance at

subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied

at the eNB downlink before SF#(n+4)

Table 8.2.1.4.2.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
2	10 MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.5	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.4.

8.2.1.4.2.4 Test description

8.2.1.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Tables 8.2.1.4.2.3-2 and 8.2.1.4.2.3-4 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1, 8.2.1.4.2.3-1 and 8.2.1.4.2.3-3 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.1.4.2.4.3.

8.2.1.4.2.4.2 Test procedure

- 1. For single-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC according to Tables 8.2.1.4.2.3-1 and 8.2.1.4.2.3-2. For multi-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Tables 8.2.1.4.2.3-3 and 8.2.1.4.2.3-4. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4.
- 3. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.4.2.5-1 and 8.2.1.4.2.5-2 as appropriate.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 5. Repeat steps from 1 to 4 for each test interval in Tables 8.2.1.4.2.5-1 and 8.2.1.4.2.5-2 as appropriate.

8.2.1.4.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.4.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH closed loop spatial multiplexing performance downlink power allocation for Test numbers 1, 2

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-6 PDSCH-ConfigDedicated-DEFAULT						
Information Element	Value/remark	Comment	Condition			
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {						
p-a	dB-6					
}						

Table 8.2.1.4.2.4.3-2: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH closed loop single-layer spatial multiplexing performance downlink power for Test number 1

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE {			
n4TxAntenna-tm6	1111111111111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

Table 8.2.1.4.2.4.3-3: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH closed loop multi-layer spatial multiplexing performance downlink power allocation Test number 2

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n4TxAntenna-tm4	0000000000000000000 000000000001111111 111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

Table 8.2.1.4.2.4.3-4: CQI-ReportConfig-DEFAULT: Additional FDD PDSCH closed loop single/multilayer spatial multiplexing performance downlink power allocation Test number 1, 2

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

8.2.1.4.2.5 Test requirement

Tables 8.2.1.4.2.3-1 and 8.2.1.4.2.3-3 define the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.4.25-1 and 8.2.1.4.2.5-2 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.4.2.5-1: Test requirement Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 FDD	OP.1 FDD	EVA5	4x2 Low	70	-2.3	1-5

Table 8.2.1.4.2.5-2: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
2	10 MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	11.4	2-5

8.2.1.4.2_1 FDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 4x2 (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

Test tolerance is undefined

8.2.1.4.2_1.1 Test purpose

Same test purpose as in clause 8.2.1.4.2.1

8.2.1.4.2 1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.2.1.4.2_1.3 Minimum conformance requirements

- Instead of Table 8.2.1.4.2.3-1 \rightarrow use Table 8.2.1.4.2_1.3-1.
- Instead of Table 8.2.1.4.2.3-2 → use Table 8.2.1.4.2_1.3-2.

Table 8.2.1.4.2_1.3-1: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	6
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe	estriction		0000000000000
bitmap			0000000000000
_			0000001111111
			1111111110000
			000000000000

Note 1: $P_{R} = 1$

Note 2: If the UE reports in an available uplink reporting instance at

subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be

applied at the eNB downlink before SF#(n+4)

Table 8.2.1.4.2_1.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.36 FDD	OP.1 FDD	EPA5	4x2 Low	70	14.7	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.4.

8.2.1.4.2_1.4 Test description

Same test description as in clause 8.2.1.4.2.4 with the following exceptions:

- Instead of Table 8.2.1.4.2.3-1 \rightarrow use Table 8.2.1.4.2_1.3-1.
- Instead of Table 8.2.1.4.2.3-2 \rightarrow use Table 8.2.1.4.2_1.3-2.

- Instead of Table 8.2.1.4.2.5-1 \rightarrow use Table 8.2.1.4.2_1.5-1.

8.2.1.4.2_1.5 Test requirement

Same test requirement as in clause 8.3.2.1.2.5 with the following exceptions:

- Instead of Table 8.2.1.4.2.3-1 → use Table 8.2.1.4.2_1.3-1.
- Instead of Table 8.2.1.4.2.5-1 \rightarrow use Table 8.2.1.4.2_1.5-1.

Table 8.2.1.4.2_1.5-1: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.36 FDD	OP.1 FDD	EPA5	4x2 Low	70	14.7 +TT	2-5

8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.2.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value	Comments
Uplink downlink configuration (Note 1)		1	
Special subframe configuration (Note 2)		4	
Inter-TTI Distance		1	
Number of HARQ processes	Processes	7	For TDD, 7 HARQ processes in the DL, as specified in TS 36.213 [10] clause 7. All 7 HARQ processes are used.
Scheduling of retransmissions			1. Retransmissions use the same Transport Block Size (TBS) as the initial transmission. 2. HARQ processes are scheduled consecutively, independent of the fact, whether retransmissions (for negatively acknowledged HARQ processes) or new transmissions (for positively acknowledged HARQ processes) occur. 3. In case when the initial transmission and the retransmissions are scheduled in subframes with a different N_{PRB} (in terms of TS 36.213 [10] subclause 7.1.7) $29 \le I_{MCS} \le 31$ according to TS 36.213 [10] subclause 7.1.7.2 and the appropriate modulation is used.
Maximum number of HARQ transmission		4	It is always 4 for TDD, as specified in TS 36.213 [10] clause 8
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM	
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths	The PCFICH carries information about the number of OFDM symbols used for transmission of PDCCHs in a subframe, as specified in TS 36.211 [8] clause 6.7
Cyclic Prefix		Normal	CP consist of the following physical resource blocks (RBs) parameters: 12 consecutive subcarriers at a 15 kHz spacing and 7 OFDM symbols, as specified in TS 36.211 [8] clause 6.2.3
Cell ID		0	The Cell ID is uniquely defined by a number in the range of 0 to 503, representing the physical-layer cell identity, as specified in TS 36.211 [8] clause 6.11.
		in TS 36.211 [8] in TS 36.211 [8]	

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.

8.2.2.1 TDD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)

8.2.2.1.1 TDD PDSCH Single Antenna Port Performance

8.2.2.1.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port with different channel models and MCS and also for the transmission on a single-antenna port with full RB allocation.

8.2.2.1.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.1.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.1, with the addition of the relevant parameters in Tables 8.2.2-1, 8.2.2.1.1.3-1 and the downlink physical channel setup according to table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.1.1.3-2 for the specified SNR.

Table 8.2.2.1.1.3-1: Test Parameters

Parameter	Parameter		Test 1- 5	Test 6- 8	Test 9- 15	Test 16- 18
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98	-98	-98	-98
Symbols for unuse	d PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation			QPSK	16QAM	64QAM	16QAM
ACK/NACK feedba	ck mode		Multiplexing	Multiplexing	Multiplexing	Multiplexing

Note 1: $P_n = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.2.2.1.1.3-2: Minimum performance (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuratio n	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2	1-5
2	10 MHz	R.2 TDD	OP.1 TDD	ETU70	1x2 Low	70	-0.6	1-5
3	10 MHz	R.2 TDD	OP.1 TDD	ETU300	1x2 Low	70	-0.2	1-5
4	10 MHz	R.2 TDD	OP.1 TDD	HST	1x2 Low	70	-2.6	1-5
5	1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	0.0	1-5
6	10 MHz	R.3 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	2-5
7	10 MHz	R.3 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	2-5
8	10 MHz	R.3 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	2-5
9	3 MHz	R.5 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1-5
10	5 MHz	R.6 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	2-5
11	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	2-5
12	10 MHz	R.7 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	2-5
13	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	2-5
14	15 MHz	R.8 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.8	2-5
15	20 MHz	R.9 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	3-5
16	3 MHz	R.0 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	1-5
17	10 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.0	1-5
18	20 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.

8.2.2.1.1.4 Test description

8.2.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Frequencies to be tested for 1PRB allocation: Low Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Bandwidths to be tested: As specified per test number in Tables 8.2.2.1.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.2.

1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.

- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1, 8.2.2.1.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.1.1.4.3.

8.2.2.1.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.2.1.1.3-1 and 8.2.2.1.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the reference channel, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Tables 8.2.2.1.1.5-1as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 4. Repeat steps from 1 to 3 for each subtest in Tables 8.2.2.1.1.5-1 as appropriate.

8.2.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

8.2.2.1.1.5 Test requirement

Table 8.2.2.1.1.3-1 defines the primary level settings including test tolerances for all throughput tests.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A for each throughput test shall meet or exceed the specified value in Tables 8.2.2.1.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.1.1.5-1: Test Requirement (FRC)

Test	Bandwidth		OCNG	Propagation	Correlation	Reference	value	UE	
number		Channel	Pattern	Condition	Matrix and Antenna Configuratio n	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-0.4	1-5	
2	10 MHz	R.2 TDD	OP.1 TDD	ETU70	1x2 Low	70	0.2	1-5	
3	10 MHz	R.2 TDD	OP.1 TDD	ETU300	1x2 Low	70	0.6	1-5	
4	10 MHz	R.2 TDD	OP.1 TDD	HST	1x2 Low	70	-2.0	1-5	
5	1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	0.8	1-5	
6	10 MHz	R.3 TDD	OP.1 TDD	EVA5	1x2 Low	70	7.5	2-5	
7	10 MHz	R.3 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.2	2-5	
8	10 MHz	R.3 TDD	OP.1 TDD	ETU300	1x2 High	70	10.1	2-5	
9	3 MHz	R.5 TDD	OP.1 TDD	EVA5	1x2 Low	70	18.4	1-5	
10	5 MHz	R.6 TDD	OP.1 TDD	EVA5	1x2 Low	70	18.4	2-5	
11	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 Low	70	18.4	2-5	
12	10 MHz	R.7 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.9	2-5	
13	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 High	70	19.9	2-5	
14	15 MHz	R.8 TDD	OP.1 TDD	EVA5	1x2 Low	70	18.6	2-5	
15	20 MHz	R.9 TDD	OP.1 TDD	EVA5	1x2 Low	70	18.5	3-5	
16	3 MHz	R.0 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.9	1-5	
17	10 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.8	1-5	
18	20 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.9	1-5	

8.2.2.1.1_1 TDD PDSCH Single Antenna Port Performance (Release 9 and forward)

8.2.2.1.1_1.1 Test purpose

Same test purpose as in clause 8.2.2.1.1.1.

8.2.2.1.1_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.2.2.1.1_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.2.1.1.3 with the following exceptions:

- Instead of Table 8.2.2.1.1.3-1 → use Table 8.2.2.1.1_1.3-1.
- Instead of Table 8.2.2.1.1.3-2 → use Table 8.2.2.1.1_1.3-2.

Table 8.2.2.1.1_1.3-1: Test Parameters

Parameter		Unit	Test 1- 5	Test 6- 8	Test 9- 15	Test 16- 18
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98	-98	-98	-98
Symbols for unuse	d PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation			QPSK	16QAM	64QAM	16QAM
ACK/NACK feedba	ck mode		Multiplexing	Multiplexing	Multiplexing	Multiplexing

Note 1: $P_B = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.2.2.1.1_1.3-2: Minimum performance (FRC)

Test	Bandwidth	Referenc	OCNG	Propagation	Correlation	Reference	value	UE			
number		e Channel	Pattern	Condition	Matrix and Antenna Configuratio n	Fraction of Maximum Throughput (%)	SNR (dB)	Category			
1				N/A							
2		N/A									
3				N/A							
4				N/A							
5		·		N/A							
6	5 MHz	R.3-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	1			
7	5 MHz	R.3-1 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	1			
8	5 MHz	R.3-1 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	1			
9		•		N/A				•			
10	5 MHz	R.6-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.5	1			
11	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	16.7	1			
12	10 MHz	R.7-1 TDD	OP.1 TDD	ETU70	1x2 Low	70	18.1	1			
13	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 High	70	17.8	1			
14	15 MHz	R.8-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	16.8	1			
15	20 MHz	R.9-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.3	2			
	20 MHz	R.9-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	16.7	1			
16	N/A										
17	N/A										
18				N/A	<u> </u>						

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.

8.2.2.1.1_1.4 Test description

Same test description as in clause 8.2.2.1.1.4 with the following exceptions:

- Instead of Table 8.2.2.1.1.3-1 \rightarrow use Table 8.2.2.1.1_1.3-1.
- Instead of Table 8.2.2.1.1.3-2 → use Table 8.2.2.1.1_1.3-2.
- Instead of Table 8.2.2.1.1.5-1 \rightarrow use Table 8.2.2.1.1_1.5-1.

8.2.2.1.1_1.5 Test requirement

Same test requirements as in clause 8.2.2.1.1.5 with the following exceptions:

- Instead of Table 8.2.2.1.1.3-1 → use Table 8.2.2.1.1_1.3-1.
- Instead of Table 8.2.2.1.1.5-1 → use Table 8.2.2.1.1_1.5-1.

Table 8.2.2.1.1_1.5-1: Test Requirement (FRC)

Test	Bandwidth	Referenc	OCNG	Propagation	Correlation	Reference	value	UE			
number		e Channel	Pattern	Condition	Matrix and Antenna Configuratio n	Fraction of Maximum Throughput (%)	SNR (dB)	Category			
1		N/A									
2				N/A							
3				N/A							
4				N/A							
5		1		N/A			1	1			
6	5 MHz	R.3-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	7.5	1			
7	5 MHz	R.3-1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.2	1			
8	5 MHz	R.3-1 TDD	OP.1 TDD	ETU300	1x2 High	70	10.1	1			
9				N/A			•				
10	5 MHz	R.6-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.5+ TT	1			
11	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	16.7+ TT	1			
12	10 MHz	R.7-1 TDD	OP.1 TDD	ETU70	1x2 Low	70	18.1+ TT	1			
13	10 MHz	R.7-1 TDD	OP.1 TDD	EVA5	1x2 High	70	17.8+ TT	1			
14	15 MHz	R.8-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	16.8+ TT	1			
15	20 MHz	R.9-2 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.3+ TT	2			
	20 MHz	R.9-1 TDD	OP.1 TDD	EVA5	1x2 Low	70	16.7+ TT	1			
16				N/A	<u> </u>	•					
17		N/A									
18		·		N/A							

8.2.2.1.2 TDD PDSCH Single Antenna Port Performance with 1 PRB in the presence of MBSFN

8.2.2.1.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port with different channel models and MCS and also for the transmission on a single-antenna port with single RB allocation in the presence of MBSFN.

8.2.2.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.1.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.1, with the addition of the relevant parameters in Tables 8.2.2-1, 8.2.2.1.2.3-1 and the downlink physical channel setup according to table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.1.2.3-2 for the specified SNR.

Table 8.2.2.1.2.3-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)
ACK/NACK feedba	ck mode		Multiplexing

Note 1: $P_R = 0$

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the first slot.

Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes,

QPSK modulated MBSFN data is used instead.

Table 8.2.2.1.2.3-2: Minimum performance 1 PRB allocation (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.29 TDD	OP.3 TDD	ETU70	1x2 Low	30	2.0	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.

8.2.2.1.2.4 Test description

8.2.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Low Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Bandwidths to be tested: As specified per test number in Tables 8.2.2.1.2.3-2 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1, 8.2.2.1.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.

- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.1.2.4.3.

8.2.2.1.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.2.1.2.3-1 and 8.2.2.1.2.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the reference channel, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Tables 8.2.2.1.1.2.5-1as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.2.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.1.2.4.3-1: SystemInformationBlockType2: Additional TDD PDSCH Single Antenna Port Performance for 1 PRB allocation with MBSFN subframes test point 1 requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4	.4.3.3-1 SystemInformationE	llockType2	
Information Element	Value/remark	Comment	Condition
SystemInformationBlockType2 ::= SEQUENCE {			
mbsfn-SubframeConfig ::= SEQUENCE {			
radioframeAllocationPeriod	n1	Every radio frame is with MBSFN subframe	
radioframeAllocationOffset	0		
subframeAllocation CHOICE {			
oneFrame	01001x	subframe 4 and 9 is used for MBSFN.	TDD
}			
}			
}			

8.2.2.1.2.5 Test requirement

Table 8.2.2.1.2.3-1 defines the primary level settings including test tolerances for all throughput tests.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A for each throughput test shall meet or exceed the specified value in Tables 8.2.2.1.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.1.2.5-1: Test Requirement 1PRB with MBSFN subframes (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.29 TDD	OP.3 TDD	ETU70	1x2 Low	30	2.8	1-5

8.2.2.2 TDD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)

8.2.2.2.1 TDD PDSCH Transmit Diversity 2x2

8.2.2.2.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using transmit diversity (SFBC).

8.2.2.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.2.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1 and 8.2.2.2.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.3.2.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.2.2.1.3-2 for the specified SNR. For transmit diversity (SFBC) performance with 2 and 4 transmitter antennas as specified.

Table 8.2.2.2.1.3-1: Test Parameters for Testing Transmit Diversity Performance (FRC)

Parameter	•	Unit	Test 1-2			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3			
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)			
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98			
ACK/NACK feedba	ck mode		Multiplexing			
Note 1: $P_B = 1$						

Table 8.2.2.2.1.3-2: Minimum performance Transmit Diversity (FRC)

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Correlation Matrix and Antenna Configuration	Reference v Fraction of Maximum Throughput (%)	/alue SNR (dB)	UE Category
1	10 MHz	R.11 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	2-5
2	10 MHz	R.10 TDD	OP.1 TDD	HST	2x2 Low	70	-2.3	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.2.

8.2.2.2.1.4 Test description

8.2.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Table 8.2.2.2.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1 and 8.2.2.2.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.2.1.4.3.

8.2.2.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.2.2.1.3-1 and 8.2.2.2.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Table 8.2.2.2.1.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 4. Repeat steps from 1 to 3 for each test interval in Table 8.2.2.2.1.5-1 as appropriate.

8.2.2.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

8.2.2.2.1.5 Test requirement

Table 8.2.2.2.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Table 8.2.2.2.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.2.1.5-1: Test requirement Transmit Diversity (FRC)

	Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
n	number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.11 TDD	OP.1 TDD	EVA5	2x2 Medium	70	7.7	2-5
	2	10 MHz	R.10 TDD	OP.1 TDD	HST	2x2 Low	70	-1.7	1-5

8.2.2.2.1_1 TDD PDSCH Transmit Diversity 2x2 (Release 9 and forward)

8.2.2.1_1.1 Test purpose

Same test purpose as in clause 8.2.2.2.1.1

8.2.2.2.1_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.2.2.2.1_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.2.2.1.3 with the following exceptions:

- Instead of Table 8.2.2.2.1.3-1 \rightarrow use Table 8.2.2.2.1_1.3-1.
- Instead of Table 8.2.2.2.1.3-2 \rightarrow use Table 8.2.2.2.1_1.3-2.

Table 8.2.2.2.1_1.3-1: Test Parameters for Testing Transmit Diversity Performance (FRC)

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
N_{oc} at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Multiplexing
Note 1: $P_B = 1$			

Table 8.2.2.2.1_1.3-2: Minimum performance Transmit Diversity (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	5 MHz	R.11.1 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	1

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.2.

8.2.2.2.1_1.4 Test description

Same test description as in clause 8.2.2.2.1.4 with the following exceptions:

- Instead of Table 8.2.2.2.1.3-1 \rightarrow use Table 8.2.2.2.1_1.3-1.
- Instead of Table 8.2.2.2.1.3-2 \rightarrow use Table 8.2.2.2.1_1.3-2.
- Instead of Table 8.2.2.2.1.5-1 \rightarrow use Table 8.2.2.2.1_1.5-1.

8.2.2.1_1.5 Test requirement

Same test requirements as in clause 8.2.1.2.1.5 with the following exceptions:

- Instead of Table 8.2.1.2.1.3-1 \rightarrow use Table 8.2.1.2.1_1.3-1.
- Instead of Table 8.2.1.2.1.5-1 \rightarrow use Table 8.2.1.2.1_1.5-1.

Table 8.2.2.2.1_1.5-1: Test requirement Transmit Diversity (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	5 MHz	R.11.1 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8+T T	1

8.2.2.2.2 TDD PDSCH Transmit Diversity 4x2

8.2.2.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on four antenna ports using transmit diversity (SFBC-FSTD).

8.2.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1 and 8.2.2.2.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.3.2.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.2.2.2.3-2 for the specified SNR. For transmit diversity (SFBC) performance with 2 and 4 transmitter antennas as specified.

Table 8.2.2.2.3-1: Test Parameters for Testing Transmit Diversity Performance (FRC)

Paramete	r	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
N_{oc} at antenna	a port	dBm/15kHz	-98
ACK/NACK feedba	ack mode		Multiplexing
Note 1: $P_B = 1$			

Table 8.2.2.2.3-2: Minimum performance Transmit Diversity (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 TDD	OP.1 TDD	EPA5	4x2 Medium	70	0.2	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.2.

8.2.2.2.4 Test description

8.2.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Table 8.2.2.2.2.3-2 as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1 and 8.2.2.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.2.2.4.3.

8.2.2.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Tables 8.2.2.2.2.3-1 and 8.2.2.2.2.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Table 8.2.2.2.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.2.4.3-1: *PDSCH-ConfigDedicated-DEFAULT*: Additional TDD PDSCH transmit diversity performance downlink power allocation test point 1 requirement

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {			
p-a	dB-3		
}			

8.2.2.2.5 Test requirement

Table 8.2.2.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Table 8.2.2.2.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.2.5-1: Test requirement Transmit Diversity (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 TDD	OP.1 TDD	EPA5	4x2 Medium	70	1.1	1-5

8.2.2.2.2_1 TDD PDSCH Transmit Diversity 4x2 (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test tolerance is undefined

8.2.2.2_1.1 Test purpose

Same test purpose as in clause 8.2.2.2.1.

8.2.2.2_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.2.2.2.2 1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.1.2.2.3 with the following exceptions:

- Instead of Table 8.2.2.2.3-1 \rightarrow use Table 8.2.2.2.1.3-1.
- Instead of Table 8.2.2.2.2.3-2 → use Table 8.2.2.2.2_1.3-2.

Table 8.2.2.2.2_1.3-1: Test Parameters for Testing Transmit Diversity Performance (FRC)

Paramete	r	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\it oc}$ at antenna	a port	dBm/15kHz	-98
ACK/NACK feedba	ick mode		Multiplexing
Note 1: $P_B = 1$			

Table 8.2.2.2.2 1.3-2: Minimum performance Transmit Diversity (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 TDD	OP.1 TDD	ETU70	4x2 Low	70	-0.5	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.2.

8.2.2.2_1.4 Test description

Same test description as in clause 8.2.2.2.2.4 with the following exceptions:

- Instead of Table 8.2.2.2.3-1 \rightarrow use Table 8.2.2.2.2_1.3-1.
- Instead of Table 8.2.2.2.3-2 → use Table 8.2.2.2.2_1.3-2.
- Instead of Table 8.2.2.2.5-1 → use Table 8.2.2.2.2_1.5-1.

8.2.2.2.2 1.5 Test requirement

Same test requirements as in clause 8.2.2.2.5 with the following exceptions:

- Instead of Table 8.2.2.2.3-1 \rightarrow use Table 8.2.2.2.2_1.3-1.
- Instead of Table 8.2.2.2.5-1 \rightarrow use Table 8.2.2.2.1.5-1.

Table 8.2.2.2_1.5-1: Test requirement Transmit Diversity (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 TDD	OP.1 TDD	ETU70	4x2 Low	70	-0.5 +TT	1-5

8.2.2.3 TDD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

8.2.2.3.1 TDD PDSCH Open Loop Spatial Multiplexing 2x2

8.2.2.3.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using large delay CDD.

8.2.2.3.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.3.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1 and 8.2.2.3.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.3.1.3-2 for the specified SNR. For open-loop spatial multiplexing performance with large delay CDD is specified.

Table 8.2.2.3.1.3-1: Test Parameters for Large Delay CDD (FRC)

Parameter	•	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Bundling
Note 1: $P_B = 1$			

Table 8.2.2.3.1.3-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.1	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.3.

8.2.2.3.1.4 Test description

8.2.2.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Table 8.2.2.3.1.3-1 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1 and 8.2.2.3.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.3.1.4.3.

8.2.2.3.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL RMC according to Tables 8.2.2.3.1.3-1 and 8.2.2.3.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Table 8.2.2.3.1.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.2.3.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.3.1.4.3-1: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH open loop spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.331 clause 6.3.2				
Information Element	Value/remark	Comment	Condition	
PhysicalConfigDedicated-DEFAULT ::=				
SEQUENCE {				
antennalnfo CHOICE {				
antennaInfoDedicated ::= SEQUENCE {				
transmissionMode	tm3			
codebookSubsetRestriction CHOICE {				
n2TxAntenna-tm3	11			
}				
ue-TransmitAntennaSelection CHOICE {				
release	NULL			
}				
}				
}				
}				

8.2.2.3.1.5 Test requirement

Table 8.2.2.3.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Tables 8.2.2.3.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.3.5-1: Test requirement Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	14.0	2-5

8.2.2.3.2 TDD PDSCH Open Loop Spatial Multiplexing 4x2

8.2.2.3.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on four antenna ports using large delay CDD.

8.2.2.3.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.3.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1 and 8.2.2.3.2.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.3.2.3-2 for the specified SNR. For open-loop spatial multiplexing performance with large delay CDD is specified.

Table 8.2.2.3.2.3-1: Test Parameters for Large Delay CDD (FRC)

Parameter	•	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Bundling
Note 1: $P_B = 1$			

Table 8.2.2.3.2.3-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 TDD	OP.1 TDD	EVA70	4x2 Low	70	14.2	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.3.

8.2.2.3.2.4 Test description

8.2.2.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Table 8.2.2.3.2.3-1 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1 and 8.2.2.3.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.3.2.4.3.

8.2.2.3.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2A for C_RNTI to transmit the DL RMC according to Tables 8.2.2.3.2.3-1 and 8.2.2.3.2.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Table 8.2.2.3.2.5-1 as appropriate.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.2.3.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.3.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional TDD PDSCH open loop spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-6		
}			

Table 8.2.2.3.2.4.3-2: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH open loop spatial multiplexing performance downlink power for Test number 1

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm3		
codebookSubsetRestriction CHOICE {			
n4TxAntenna-tm3	1111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.2.2.3.2.5 Test requirement

Table 8.2.2.3.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Tables 8.2.2.3.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.3.2.5-1: Test requirement Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 TDD	OP.1 TDD	EVA70	4x2 Low	70	15.1	2-5

8.2.2.4 TDD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

8.2.2.4.1 TDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 2x2

8.2.2.4.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using closed loop spatial multiplexing with wideband and frequency selective precoding.

8.2.2.4.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.4.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1, 8.2.2.4.1.3-1 and 8.2.2.4.1.3-3 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.4.1.3-2 and 8.2.2.4.1.3-4 for the specified SNR. For single-layer spatial multiplexing closed loop rank-one performance with wideband and frequency selective precoding is specified. For multi-layer spatial multiplexing closed loop rank-two performance with wideband and frequency selective precoding is specified.

Table 8.2.2.4.1.3-1: Test Parameters for Testing Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
$N_{\it oc}$ at antenna po	ort	dBm/15kHz	-98	-98
Precoding granula	rity	PRB	6	50
PMI delay (Note 2	2)	ms	10 or 11	10 or 11
Reporting interva	al	ms	1 or 4 (Note 3)	1or 4 (Note 3)
Reporting mode			PUSCH 1-2	PUSCH 3-1
ACK/NACK feedback mode			Multiplexing	Multiplexing

Note 1: $P_{R} = 1$

Note 2: If the UE reports in an available uplink reporting instance at SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms

Table 8.2.2.4.1.3-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Ī	Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
	number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
I	1	10 MHz	R.10 TDD	OP.1 TDD	EVA5	2x2 Low	70	-3.1	1-5
ſ	2	10 MHz	R.10 TDD	OP.1 TDD	EPA5	2x2 High	70	-2.8	1-5

Table 8.2.2.4.1.3-3: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter		Unit	Test 3	Test 4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98	-98
Precoding grant	ularity	PRB	50	50
PMI delay (Not	te 2)	ms	10 or 11	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)	1 or 4 (Note 3)
Reporting mo	de		PUSCH 3-1	PUSCH 3-1
ACK/NACK feedback mode			Bundling	Bundling
CodeBookSubsetRestriction			110000	110000
bitmap				

Note 1: $P_B = 1$

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms

Table 8.2.2.4.1.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	

					Configuration	Throughput		
						(%)		
3	10 MHz	R.11-1 TDD	OP.1 TDD	EVA5	2x2 Low	70	12.8	2-5
4	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Low	70	13.9	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.4.

8.2.2.4.1.4 Test description

8.2.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Tables 8.2.2.4.1.3-2 and 8.2.2.4.1.3-4 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1, 8.2.2.4.1.3-1 and 8.2.2.4.1.3-3 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.4.1.4.3.

8.2.2.4.1.4.2 Test procedure

- 1. For single-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC according to Tables 8.2.2.4.1.3-1 and 8.2.2.4.1.3-2. For multi-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Tables 8.2.2.4.1.3-3 and 8.2.2.4.1.3-4. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4.
- 3. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.2.4.1.5-1 and 8.2.2.4.1.5-2 as appropriate.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 5. Repeat steps from 1 to 4 for each test interval in Tables 8.2.2.4.1.5-1 and 8.2.2.4.1.5-2 as appropriate.

8.2.2.4.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.4.1.4.3-1: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop single-layer spatial multiplexing performance downlink power allocation for Test number 1,2

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm6	1111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

Table 8.2.2.4.1.4.3-2: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop multi-layer spatial multiplexing performance downlink power allocation for Test number 3,4

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	110000		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

Table 8.2.2.4.1.4.3-3: CQI-ReportConfig-DEFAULT: Additional TDD PDSCH closed loop single -layer spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

Table 8.2.2.4.1.4.3-4: *CQI-ReportConfig-DEFAULT:* Additional TDD PDSCH closed loop single/multi-layer spatial multiplexing performance downlink power allocation for Test number 2, 3, 4

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm31		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

8.2.2.4.1.5 Test requirement

Tables 8.2.2.4.1.3-1 and 8.2.2.4.1.3-3 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Tables 8.2.2.4.1.5-1 and 8.2.2.4.1.5-2 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.4.1.5-1: Test requirement Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.10 TDD	OP.1 TDD	EVA5	2x2 Low	70	-2.2	1-5
2	10 MHz	R.10 TDD	OP.1 TDD	EPA5	2x2 High	70	-2.0	1-5

Table 8.2.2.4.1.5-2: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
3	10 MHz	R.11-1 TDD	OP.1 TDD	EVA5	2x2 Low	70	13.7	2-5
4	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Low	70	14.8	2-5

8.2.2.4.1_1 TDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 2x2 (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test tolerance is undefined

8.2.2.4.1_1.1 Test purpose

Same test purpose as in clause 8.2.2.4.1.1.

8.2.2.4.1_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.2.2.4.1_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.2.4.1.3 with the following exceptions:

- Instead of Table 8.2.2.4.1.3-1 \rightarrow use Table 8.2.2.4.1_1.3-1.
- Instead of Table 8.2.2.4.1.3-2 → use Table 8.2.2.4.1_1.3-2.

Table 8.2.2.4.1_1.3-1: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter	•	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)

N_{oc} at antenna port	dBm/15kHz	-98			
Precoding granularity	PRB	50			
PMI delay (Note 2)	ms	10 or 11			
Reporting interval	ms	1 or 4 (Note 3)			
Reporting mode		PUSCH 3-1			
ACK/NACK feedback mode		Bundling			
CodeBookSubsetRestriction		110000			
bitmap					
Note 1: $P_B = 1$					
Note 2: If the UE reports in an available uplink reporting instance at					
and forms OF the based on DMI action tion at a described OF					

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms

Table 8.2.2.4.1_1.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

T	Гest	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
nu	mber		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.35 TDD	OP.1 TDD	EPA5	2x2 Low	70	19.5	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.4.

8.2.2.4.1_1.4 Test description

Same test description as in clause 8.2.2.4.1.4 with the following exceptions:

- Instead of Table 8.2.2.4.1.3-1 → use Table 8.2.2.4.1_1.3-1.
- Instead of Table 8.2.2.4.1.3-2 → use Table 8.2.2.4.1_1.3-2.
- Instead of Table 8.2.2.4.1.5-1 \rightarrow use Table 8.2.2.4.1_1.5-1.

8.2.2.4.1_1.5 Test requirement

Same test requirements as in clause 8.2.2.4.1.5 with the following exceptions:

- Instead of Table 8.2.2.4.1.3-1 \rightarrow use Table 8.2.2.4.1_1.3-1.
- Instead of Table 8.2.2.4.1.5-1 \rightarrow use Table 8.2.2.4.1_1.5-1.

Table 8.2.2.4.1_1.5-1: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.35 TDD	OP.1 TDD	EPA5	2x2 Low	70	19.5+T T	2-5

8.2.2.4.2 TDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 4x2

8.2.2.4.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement

Channel (RMC) not falling below a specified value for transmission on four antenna ports using closed loop spatial multiplexing with wideband and frequency selective precoding.

8.2.2.4.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.4.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1, 8.2.2.4.2.3-1 and 8.2.2.4.2.3-3 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.4.3-2 and 8.2.2.4.2.3-4 for the specified SNR. For single-layer spatial multiplexing closed loop rank-one performance with wideband and frequency selective precoding is specified. For multi-layer spatial multiplexing closed loop rank-two performance with wideband and frequency selective precoding is specified.

Table 8.2.2.4.2.3-1: Test Parameters for Testing Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6			
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)			
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98			
Precoding granul	arity	PRB	6			
PMI delay (Note	2)	ms	10 or 11			
Reporting inter	/al	ms	1 or 4 (Note 3)			
Reporting mod	le		PUSCH 1-2			
ACK/NACK feedl	oack		Multiplexing			
mode						
Note 1: $P_B = 1$						
Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)						
•		link configuration 1 ate between 1ms a	. •			

Table 8.2.2.4.2.3-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

	Test	Bandwidt	Referenc	OCNG	Propagati	Correlation	Reference	value	UE
	number	h	е	Pattern	on	Matrix and	Fraction	SNR	Catego
			Channel		Condition	Antenna	of	(dB)	ry
						Configurati	Maximum		
						on	Throughp ut (%)		
ŀ	1	10 MHz	R.13 TDD	OP.1	EVA5	4x2 Low	70	-3.5	1-5
		10 101112	11.10 100	TDD	LV/IO	TAZ LOW	70	0.0	10

Table 8.2.2.4.2.3-3: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter	•	Unit	Test 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
N_{oc} at antenna port		dBm/15kHz	-98
Precoding granu	ılarity	PRB	6
PMI delay (Not	e 2)	ms	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)
Reporting mo	de		PUSCH 1-2
ACK/NACK feedba	ck mode		Bundling
CodeBookSubsetRo	estriction		0000000000000
bitmap			0000000000000
·			0000001111111
			1111111110000
			00000000000
Note 1: D = 1		•	_

Note 1: $P_B = 1$

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF

not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval

will alternate between 1ms and 4ms

Table 8.2.2.4.2.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

ſ	Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
	number		Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
						Antenna	Maximum	(dB)	
						Configuration	Throughput		
							(%)		
	2	10 MHz	R.14 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.7	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.4.

8.2.2.4.2.4 Test description

8.2.2.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Tables 8.2.2.4.2.3-2 and 8.2.2.4.2.3-4 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1, 8.2.2.4.2.3-1 and 8.2.2.4.2.3-3 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.

5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.2.2.4.2.4.3.

8.2.2.4.2.4.2 Test procedure

- 1. For single-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC according to Tables 8.2.2.4.2.3-1 and 8.2.2.4.2.3-2. For multi-layer spatial multiplexing, SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Tables 8.2.2.4.2.3-3 and 8.2.2.4.2.3-4. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4.
- 3. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.2.4.2.5-1 and 8.2.2.4.2.5-2 as appropriate.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 5. Repeat steps from 1 to 4 for each test interval in Tables 8.2.2.4.2.5-1 and 8.2.2.4.2.5-2 as appropriate.

8.2.2.4.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.4.2.4.3-1: *PDSCH-ConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop spatial multiplexing performance downlink power allocation for Test numbers 1,2

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {			
p-a	dB-6		
}			

Table 8.2.2.4.2.4.3-2: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop single-layer spatial multiplexing performance downlink power allocation for Test number 1

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE {			
n4TxAntenna-tm6	1111111111111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

Table 8.2.2.4.2.4.3-3: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop multi-layer spatial multiplexing performance downlink power allocation for Test number 2

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n4TxAntenna-tm4	0000000000000000000 0000000000001111111 111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}		<u> </u>	
}			

Table 8.2.2.4.2.4.3-4: *CQI-ReportConfig-DEFAULT:* Additional TDD PDSCH closed loop single/multi-layer spatial multiplexing performance downlink power allocation for Test number 1, 2

Derivation Path: 36.331 clause 6.3.2					
Information Element Value/remark Comment Cond					
CQI-ReportConfig-DEFAULT ::= SEQUENCE {					
cqi-ReportModeAperiodic	rm12				
nomPDSCH-RS-EPRE-Offset	0				
cqi-ReportPeriodic	Not present				
}					

8.2.2.4.2.5 Test requirement

Tables 8.2.2.4.2.3-1 and 8.2.2.4.2.3-3 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Tables 8.2.2.4.2.5-1 and 8.2.2.4.2.5-2 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.4.2.5-1: Test requirement Single-Layer Spatial Multiplexing (FRC)

Test number	Bandwidt h	Reference Channel	OCNG Pattern	Propagati on Condition	Correlation Matrix and Antenna Configuration	Reference of Fraction of Maximum Throughput (%)	value SNR (dB)	UE Catego ry
1	10 MHz	R.13 TDD	OP.1 TDD	EVA5	4x2 Low	70	-2.6	1-5

Table 8.2.2.4.2.5-2: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Correlation Matrix and Antenna Configuration	Reference v Fraction of Maximum Throughput (%)	value SNR (dB)	UE Category
2	10 MHz	R.14 TDD	OP.1 TDD	EVA5	4x2 Low	70	11.6	2-5

8.2.2.4.2_1 TDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 4x2 (Release 9 and forward)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.2.2.4.2_1.1 Test purpose

Same test purpose as in clause 8.2.2.4.2.1.

8.2.2.4.2_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.2.2.4.2_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.2.2.4.2.3 with the following exceptions:

- Instead of Table 8.2.2.4.2.3-1 \rightarrow use Table 8.2.2.4.2_1.3-1.
- Instead of Table 8.2.2.4.2.3-2 → use Table 8.2.2.4.2_1.3-2.

Table 8.2.2.4.2_1.3-1: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	6
PMI delay (Not	e 2)	ms	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)
Reporting mo	de		PUSCH 1-2
ACK/NACK feedba	ck mode		Bundling
CodeBookSubsetRe	estriction		0000000000000
bitmap			0000000000000
			0000001111111
			1111111110000
			00000000000
Note 1: $P_B = 1$			

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF

not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Note 3: For Uplink - downlink configuration 1 the reporting interval

will alternate between 1ms and 4ms

Table 8.2.2.4.2_1.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.36 TDD	OP.1 TDD	EPA5	4x2 Low	70	15.7	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.4.

8.2.2.4.2_1.4 Test description

Same test description as in clause 8.2.2.4.1.4 with the following exceptions:

- Instead of Table 8.2.2.4.2.3-1 → use Table 8.2.2.4.2_1.3-1.
- Instead of Table 8.2.2.4.2.3-2 \rightarrow use Table 8.2.2.4.2_1.3-2.
- Instead of Table 8.2.2.4.2.5-1 \rightarrow use Table 8.2.2.4.2_1.5-1.

8.2.2.4.2_1.5 Test requirement

Same test requirements as in clause 8.2.2.4.1.5 with the following exceptions:

- Instead of Table 8.2.2.4.2.3-1 \rightarrow use Table 8.2.2.4.2_1.3-1.
- Instead of Table 8.2.2.4.2.5-1 \rightarrow use Table 8.2.2.4.2_1.5-1.

Table 8.2.2.4.2_1.5-1: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.36 TDD	OP.1 TDD	EPA5	4x2 Low	70	15.7+ TT	2-5

8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

8.3.1 FDD

[FFS]

8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Table 8.3.2-1: Common Test Parameters for User-specific Reference Symbols

Parameter	Unit	Value					
Uplink downlink configuration (Note 1)		1					
Special subframe configuration (Note 2)		4					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Number of HARQ processes. All these HARQ processes are used.	Processes	7					
Maximum number of HARQ transmission		4					
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM					
Number of OFDM symbols for PDCCH	OFDM symbols	2					
Beamforming Model		As specified in Section B.4					
Precoder update granularity		Frequency domain: 1 PRB Time domain: 1 ms					
ACK/NACK feedback mode		Multiplexing					
Note 1: as specified in Table 4.2-2 in TS 36.211 [8] Note 2: as specified in Table 4.2-1 in TS 36.211 [8]							

For all test cases, the SNR is defined as:

$$SNR = \frac{\hat{E}_s^{(1)} + \hat{E}_s^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}},$$

where the superscript indicates the receiver antenna connector. The SNR requirement applies for the UE categories given for each test.

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.1 TDD PDSCH Single-layer Spatial Multiplexing Performance (UE-Specific Reference Symbols)

8.3.2.1.1 TDD PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 8 and forward)

8.3.2.1.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for single-layer transmission on antenna port 5 using user-specific reference signals with full RB or single RB allocation.

8.3.2.1.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.3.2.1.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.3.1, with the addition of the relevant parameters in Tables 8.3.2-1, 8.3.2.1. 1.3-1, and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.3.2.1. 1.3-2 for the specified SNR.

Table 8.3.2.1.1.3-1: Test Parameters for Testing DRS

parameter		Unit	Test 1	Test 2	Test 3	Test 4		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)		
Cell-specific reference	signals	Antenna port 0						
N_{oc} at antenna po	ort	dBm/15kHz	-98	-98	-98	-98		
Symbols for unused F	PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)		
Number of allocated resource blocks		PRB	50	50	50	1 (Note 2)		

Note 1: $P_{R} = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2.1.1.3-2: Minimum performance DRS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.25 TDD	OP.1 TDD	EPA5	2x2 Low	70	-0.8	1-5
2	10 MHz 16QAM 1/2	R.26 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	2-5
3	10 MHz 64QAM 3/4	R.27 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	2-5
4	10 MHz 16QAM 1/2	R.28 TDD	OP.1 TDD	EPA5	2x2 Low	30	1.7	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.1.1.4 Test description

8.3.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.

- 2. The parameter settings for the cell are set up according to Tables 8.3.2-1 and 8.3.2.1. 1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.3.2.1.1.4.3.

8.3.2.1.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1 for C_RNTI to transmit the DL RMC according to Tables 8.3.2.1.1.3-1, 8.3.2.1.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.3.2.1.1.5-1 as appropriate.
- BCH/CRS/PDCCH/PCFICH are sent on antenna port 0 using one Tx antenna, while DRS/Dedicated data for the test UE are sent on antenna port 5 using two Tx antennas with beam-forming model as specified in Annex B.4.1 and precoder update granularity specified in Table 8.3.2-1.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 4. Repeat steps from 1 to 3 for each test interval in Tables 8.3.2.1.1.5-1 as appropriate.

8.3.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.3.2.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT: Additional TDD PDSCH DRS performance downlink power allocation test point 1 requirement for Test number 1 - 4

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm7		
ue-TransmitAntennaSelection CHOICE {			
Release	NULL		
}			
}			
}			
}			

8.3.2.1.1.5 Test requirement

Table 8.3.2.1.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.3.1 for each throughput test shall meet or exceed the specified value in Table 8.3.2.1.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.3.2.1.1.5-1: Test requirement DRS

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.25 TDD	OP.1 TDD	EPA5	2x2 Low	70	0.1	1-5
2	10 MHz 16QAM 1/2	R.26 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.9	2-5
3	10 MHz 64QAM 3/4	R.27 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.9	2-5
4	10 MHz 16QAM 1/2	R.28 TDD	OP.1 TDD	EPA5	2x2 Low	30	2.6	1-5

8.3.2.1.1_1 TDD PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 9 and forward)

8.3.2.1.1 1.1 Test purpose

Same test purpose as in clause 8.3.2.1.1.1.

8.3.2.1.1_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.3.2.1.1_1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 8.3.2.1.1.3 with the following exceptions:

- Instead of Table 8.3.2.1.1.3-1 \rightarrow use Table 8.3.2.1.1_1.3-1.
- Instead of Table 8.3.2.1.1.3-2 \rightarrow use Table 8.3.2.1.1_1.3-2.

Table 8.3.2.1.1_1.3-1: Test Parameters for Testing DRS (Antenna port 5)

Parameter		Unit	Test 1 (Note 4)	Test 2	Test 3	Test 4 (Note 4)	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	N/A	0	0	NA	
allocation	$ ho_{\scriptscriptstyle B}$	dB	IN/A	0 (Note 1)	0 (Note 1)	INA	
Cell-specific reference	signals	Antenna port 0					
$N_{\it oc}$ at antenna po	ort	dBm/15kHz		-98	-98		
Symbols for unused F		N/A	OCNG (Note 2)	OCNG (Note 2)	NA		
Number of allocated re- blocks	source	PRB		50	50		

Note 1: $P_{R} = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 3: The modulation symbols of the signal under test are mapped onto antenna port 5.

Note 4: This tests are covered in subclause 8.3.2.1.1

Table 8.3.2.1.1_1.3-2: Minimum performance DRS (FRC) (Antenna port 5)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE		
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category		
1		N/A								
(Note 1)										
2	5MHz	R.26-1	OP.1 TDD	EPA5	2x2 Low	70	7.0	1		
	16QAM 1/2	TDD								
3	10 MHz	R.27-1	OP.1 TDD	EPA5	2x2 Low	70	17.0	1		
	64QAM 3/4	TDD								
4				N	/A					
(Note 1)										
Note 1:	These tests ar	e covered in s	ubclause 8.3.2.1	1.1						

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.1.1_1.4 Test description

Same test description as in clause 8.3.2.1.1.4 with the following exceptions:

- Instead of Table 8.3.2.1.1.3-1 \rightarrow use Table 8.3.2.1.1_1.3-1.
- Instead of Table 8.3.2.1.1.3-2 → use Table 8.3.2.1.1_1.3-2.
- Instead of Table 8.3.2.1.1.5-1 \rightarrow use Table 8.3.2.1.1_1.5-1.

8.3.2.1.1_1.5 Test requirement

Same test requirement as in clause 8.3.2.1.1.5 with the following exceptions:

- Instead of Table 8.3.2.1.1.3-1 \rightarrow use Table 8.3.2.1.1_1.3-1.
- Instead of Table 8.3.2.1.1.5-1 \rightarrow use Table 8.3.2.1.1_1.5-1.

Table 8.3.2.1.1_1.5-1: Test requirement DRS (FRC) (Antenna port 5)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE		
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category		
1		N/A								
(Note 1)										
2	5MHz	R.26-1	OP.1 TDD	EPA5	2x2 Low	70	7.9	1		
	16QAM 1/2	TDD								
3	10 MHz	R.27-1	OP.1 TDD	EPA5	2x2 Low	70	17.9	1		
	64QAM 3/4	TDD								
4			·	N	/A					
(Note 1)										
Note 1:	These tests ar	e covered in s	ubclause 8.3.2.	1.1						

8.3.2.1.2 TDD PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 without a simultaneous transmission

8.3.2.1.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for single-layer transmission on antenna port 7 or 8 without a simultaneous transmission on the other antenna port using DM-RS with full RB allocation.

8.3.2.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.3.2.1.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.3.1, with the addition of the relevant parameters in Tables 8.3.2-1, 8.3.2.1.2.3-1, and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.3.2.1.2.3-2 for the specified SNR.

Table 8.3.2.1.2.3-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer)

parameter		Unit	Test 1	Test 2	Test 3	Test 4 (Note 3)	Test 5 (Note 3)
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	N/A	N/A
allocation	$\rho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	N/A	N/A
Cell-specific referer signals		Antenna port 0 and antenna port 1					
$N_{\it oc}$ at antenna po	ort	dBm/15kHz	-98	-98	-98	N/A	N/A
Symbols for unused F		OCNG (Note 4,5)	OCNG (Note 4,5)	OCNG (Note 4,5)	N/A	N/A	
Number of allocated resource blocks (Note 2)		PRB	50	50	50	N/A	N/A
Simultaneous transmi	ssion		No	No	No	N/A	N/A

Note 1: $P_B = 1$

Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Note 3: Test 4 and Test 5 are covered in subclause 8.3.2.1.3.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Note 5: OCNG_RA = ρ_A – 3 dB, OCNG_RB = ρ_B – 3 dB in order to have the same PDSCH and OCNG power pro subcarrier at the receiver.

Table 8.3.2.1.2.3-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC)

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	-1.0	1-5
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	7.7	2-5
	5MHz 16QAM 1/2	R.32-1 TDD	OP.1 TDD	EPA5	2x2 Medium	70	[7.7]	1
3	10 MHz 64QAM 3/4	R.33 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.7	2-5
	10 MHz 64QAM 3/4	R.33-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	[17.7]	1

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.1.2.4 Test description

8.3.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Tables 8.3.2-1 and 8.3.2.1.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.3.2.1.2.4.3.

8.3.2.1.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2B for C_RNTI to transmit the DL RMC according to Tables 8.3.2.1.2.3-1, 8.3.2.1.2.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.3.2.1.2.5-1 as appropriate.

 BCH/CRS/PDCCH/PCFICH are sent on antenna ports 0 and 1 using two Tx antennas, while DRS/Dedicated data for the test UE are sent on antenna port 7 (or 8) using two Tx antennas with beam-forming model as specified in Annex B.4.1 and precoder update granularity specified in Table 8.3.2-1.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

4. Repeat steps from 1 to 3 for each test interval in Tables 8.3.2.1.2.5-1 as appropriate.

8.3.2.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions .

Table 8.3.2.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm8		
}			
}			
}			

8.3.2.1.2.5 Test requirement

Table 8.3.2.1.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.3.1 for each throughput test shall meet or exceed the specified value in Table 8.3.2.1.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.3.2.1.2.5-1: Test requirement for CDM-multiplexed DM RS without simultaneous transmission (FRC)

Test	Bandwidt	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughpu t (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	-0.1	1-5
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	8.6	2-5
	5 MHz 16QAM 1/2	R.32-1 TDD	OP.1 TDD	EPA5	2x2 Medium	70	[8.6]	1
3	10 MHz 64QAM 3/4	R.33 TDD	OP.1 TDD	EPA5	2x2 Low	70	18.6	2-5
	10 MHz 64QAM 3/4	R.33-1 TDD	OP.1 TDD	EPA5	2x2 Low	70	[18.6]	1

8.3.2.1.3 TDD PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 with a simultaneous transmission

8.3.2.1.3.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for single-layer transmission on antenna port 7 or 8 with a simultaneous transmission on the other antenna port using DM-RS with full RB allocation.

8.3.2.1.3.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.3.2.1.3.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.3.1, with the addition of the relevant parameters in Tables 8.3.2-1, 8.3.2.1.3.3-1, and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.3.2.1.3.3-2 for the specified SNR.

Table 8.3.2.1.3.3-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer)

parameter		Unit	Test 1 (Note 6)	Test 2 (Note 6)	Test 3 (Note 6)	Test 4	Test 5	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	N/A	N/A	N/A	0	0	
allocation	$\rho_{\scriptscriptstyle B}$	dB	N/A	N/A	N/A	0 (Note 1)	0 (Note 1)	
Cell-specific referer signals	ice		Antenna port 0 and antenna port 1					
N_{oc} at antenna port		dBm/15kHz	N/A	N/A	N/A	-98	-98	
Symbols for unused F	PRBs		N/A	N/A	N/A	OCNG (Note 4,5)	OCNG (Note 4,5)	
Number of allocated resource blocks (Note 2)		PRB	N/A	N/A	N/A	50	50	
Simultaneous transmission			N/A	N/A	N/A	Yes (Note 3)	Yes (Note 3)	

Note 1:

Note 2: The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.

Note 3: Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the

input signal under test.

These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH Note 4: per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random

data, which is QPSK modulated.

OCNG_RA = ρ_{A} – 3 dB, OCNG_RB = ρ_{B} – 3 dB in order to have the same PDSCH and OCNG Note 5:

power pro subcarrier at the receiver.

Test 1, Test 2 and Test 3 are covered in subclause 8.3.2.1.2 Note 6:

Table 8.3.2.1.3.3-2: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
4	10 MHz	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.9	2-5
	16QAM 1/2	(Note 1)						
5	10 MHz	R.34 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.0	2-5
	64QAM 1/2	(Note 1)						
Note 1:	The reference of	channel applie	s to both the i	nput signal unde	er test and the inte	rfering signal.		

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.1.3.4 Test description

8.3.2.1.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Tables 8.3.2-1 and 8.3.2.1.3.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.3.2.1.3.4.3.

8.3.2.1.3.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2B for C_RNTI to transmit the DL RMC according to Tables 8.3.2.1.3.3-1, 8.3.2.1.3.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.3.2.1.3.5-1 as appropriate. BCH/CRS/PDCCH/PCFICH are sent on antenna ports 0 and 1 using two Tx antennas, while DRS/Dedicated data for the test UE are sent on antenna port 7 (or 8) and another simultaneous transmission of DRS/Dedicated data not for the test UE is sent on antenna port 8 (or 7). The DRS/Dedicated data transmissions use two Tx antennas with different beam-forming model as specified in Annex B.4.1 and precoder update granularity specified in Table 8.3.2-1.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 4. Repeat steps from 1 to 3 for each test interval in Tables 8.3.2.1.3.5-1 as appropriate.

8.3.2.1.3.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.3.2.1.3.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2									
Information Element	Value/remark	Comment	Condition						
PhysicalConfigDedicated-DEFAULT ::=									
SEQUENCE {									
antennalnfo CHOICE {									
antennalnfoDedicated ::= SEQUENCE {									
transmissionMode	tm8								
}									
}									
}									

8.3.2.1.3.5 Test requirement

Table 8.3.2.1.3.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.3.1 for each throughput test shall meet or exceed the specified value in Table 8.3.2.1.3.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.3.2.1.3.5-1: Test requirement for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
4	10 MHz	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	22.8	2-5
	16QAM 1/2	(Note 1)						
5	10 MHz	R.34 TDD	OP.1 TDD	EPA5	2x2 Low	70	22.9	2-5
	64QAM 1/2	(Note 1)						
Note 1:	The reference of	channel applie	s to both the	input signal unde	er test and the inte	rfering signal.		

8.3.2.2 TDD PDSCH Dual-layer Spatial Multiplexing Performance (UE-Specific Reference Symbols)

8.3.2.2.1 TDD PDSCH Dual-layer Spatial Multiplexing

8.3.2.2.1.1 Test purpose

To verify the UE's rank-2 performance and ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for dual-layer transmission on antenna ports 7 and 8 using DM-RS with full RB allocation.

8.3.2.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.3.2.2.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.3.2, with the addition of the relevant parameters in Tables 8.3.2-1, 8.3.2.2.1.3-1, and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.3.2.2.1.3-2 for the specified SNR.

Table 8.3.2.2.1.3-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

Parame	ter	Unit	Test 1	Test 2	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	
Cell-specific reference symbols			Antenna port 0 ar	nd antenna port 1	
N_{oc} at ant	enna	dBm/15kHz	-98	-98	
Symbols unused P			OCNG (Note 2)	OCNG (Note 2)	
Number allocate resource b	ed	PRB	50	50	

Note 1: $P_B = 1$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo

Table 8.3.2.2.1.3-2: Minimum performance for CDM-multiplexed DM RS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	4.5	2-5	
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	21.7	2-5	

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.2.1.4 Test description

8.3.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Tables 8.3.2-1 and 8.3.2.2.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.3.2.2.1.4.3.

8.3.2.2.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2B for C_RNTI to transmit the DL RMC according to Tables 8.3.2.2.1.3-1, 8.3.2.2.1.3-2. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.3.2.2.1.5-1 as appropriate.

 BCH/CRS/PDCCH/PCFICH are sent on antenna ports 0 and 1 using two Tx antennas, while DRS/Dedicated data for test UE are sent on antenna ports 7 and 8 using two Tx antennas with beam-forming model as specified in Annex B.4.2 and precoder update granularity specified in Table 8.3.2-1.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 4. Repeat steps from 1 to 3 for each test interval in Tables 8.3.2.2.1.5-1 as appropriate.

8.3.2.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions .

Table 8.3.2.2.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm8		
}			
}			
}			

8.3.2.2.1.5 Test requirement

Table 8.3.2.2.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.3.2 for each throughput test shall meet or exceed the specified value in Table 8.3.2.2.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.3.2.2.1.5-1: Test requirement for CDM-multiplexed DM RS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE	
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category	
1	10 MHz QPSK 1/3	R.31 TDD	OP.1 TDD	EVA5	2x2 Low	70	5.4	2-5	
2	10 MHz 16QAM 1/2	R.32 TDD	OP.1 TDD	EPA5	2x2 Medium	70	22.6	2-5	

8.4 Demodulation of PCFICH/PDCCH

8.4.1 FDD

8.4.1.1 FDD PCFICH/PDCCH Single-antenna Port Performance

8.4.1.1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for a single-antenna port with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.1 remains below a given reference value.

8.4.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.4.1.1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.1.1.3-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Single antenna port
Number of PDC	CH symbols	symbols	2
Number of PHICH	H groups (N _g)		1
PHICH du	ration		Normal
Unused RE-s a	and PRB-s		OCNG
Cell II)		0
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	0
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0
N_{oc} at anter	nna port	dBm/15kHz	-98
Cyclic pi	efix		Normal
Note: PHICH power of			ver, i.e. the total in a PHICH group.

For the parameters specified in Table 8.4.1.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.1.1.3-2.

Table 8.4.1.1.3-2: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
						and Correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 FDD	OP.1 FDD	ETU70	1x2 Low	1	-1.7

The normative reference for this requirement is TS 36.101 [2] clause 8.4.1.

8.4.1.1.4 Test description

8.4.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 8.4.1.1.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.1.1.4.3.

8.4.1.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1 for C_RNTI to transmit the DL RMC according to Table 8.4.1.1.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.1-1 and Table A.3.5.1-2 respectively. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.4.1.1.5-1 as appropriate.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the ratio (statDTX)/(NACK+ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.1.1.5-1, pass the UE. Otherwise fail the UE.

If Pm-dsg is less than the value specified in table 8.4.1.1.5-1, pass the UE. Otherwise fail the UE.

8.4.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

8.4.1.1.5 Test requirement

For the parameters specified in Table 8.4.1.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.1.1.5-1.

Table 8.4.1.1.5-1: Test requirement PDCCH/PCFICH

Tes num	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration		rence lue
						and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 FDD	OP.1 FDD	ETU70	1x2 Low	1	-0.9

8.4.1.2 FDD PCFICH/PDCCH Transmit Diversity Performance

8.4.1.2.1 FDD PCFICH/PDCCH Transmit Diversity 2x2

8.4.1.2.1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.1 remains below a given reference value.

8.4.1.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8.

8.4.1.2.1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.1.2.1.3-1: Test Parameters for PDCCH/PCFICH

Parame	Parameter		Transmit diversity	
Number of PDC	Number of PDCCH symbols		2	
Number of PHICH	H groups (N _g)		1	
PHICH du	ration		Normal	
Unused RE-s a	and PRB-s		OCNG	
Cell II	D		0	
Downlink power allocation	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA PCFICH_RB	dB	-3	
	PDCCH_RB PHICH_RB OCNG_RB	dB	-3	
N_{oc} at anter	nna port	dBm/15kHz	-98	
Cyclic prefix			Normal	
Note: PHICH power setting refer to PHICH group power, i.e. the total power of all active PHICH sequences within a				

PHICH group.

For the parameters specified in Table 8.4.1.2.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.1.2.1.3-2.

Table 8.4.1.2.1.3-2: Minimum performance PDCCH/PCFICH 2 Tx Antenna Port

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	1.4 MHz	2 CCE	R.16 FDD	OP.1 FDD	EPA5	2 x 2 Low	1	4.3

The normative reference for this requirement is TS 36.101 [2] clause 8.4.1.

8.4.1.2.1.4 Test description

8.4.1.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 1.4MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 8.4.1.2.1.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.

5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.1.2.1.4.3.

8.4.1.2.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.1.2.1.3-2.The details of PDCCH and PDSCH are specified in Table A.3.5.1-1 and Table A.3.5.1-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.4.1.2.1.5-1.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the ratio (statDTX)/(NACK+ACK+statDTX).

 If Pm-dsg is less than the value specified in table 8.4.1.2.1.5-1, pass the UE. Otherwise fail the UE.

8.4.1.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.4.1.2.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.4.1.2.1.5 Test requirement

For the parameters specified in Table 8.4.1.2.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.1.2.1.5-1.

Table 8.4.1.2.1.5-1: Test requirement PDCCH/PCFICH 2 Tx Antenna Port

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Refere	nce value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	1.4 MHz	2 CCE	R.16 FDD	OP.1 FDD	EPA5	2 x 2 Low	1	5.3

8.4.1.2.1_1 FDD PCFICH/PDCCH Transmit Diversity 2x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.4.1.2.1_1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.1 remains below a given reference value.

8.4.1.2.1 1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.4.1.2.1_1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.1.2.1_1.3-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Transmit diversity	
Number of PDC	CH symbols	symbols	2	
Number of PHICH	l groups (Ng)		1	
PHICH du	ration		Normal	
Unused RE-s a	and PRB-s		OCNG	
Cell I	O		0	
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	
N _{oc} at ante	nna port	dBm/15kHz	-98	
Cyclic p	refix		Normal	
Note: PHICH power setting refer to PHICH group power in the				

Note: PHICH power setting refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.4.1.2.1_1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1_1.3-2.

Table 8.4.1.2.1_1.3-2: Minimum performance PDCCH/PCFICH 2 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ice value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.16-1 FDD	OP.1 FDD	EVA70	2 x 2 Low	1	-0.6

The normative reference for this requirement is TS 36.101 [2] clause 8.4.1

8.4.1.2.1_1.4 Test description

8.4.1.2.1 1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 8.4.1.2.1_1.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.1.2.1_1.4.3.

8.4.1.2.1_1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.1.2.1_1.3-2.The details of PDCCH and PDSCH are specified in Table A.3.5.1-1 and Table A.3.5.1-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.4.1.2.1_1.5-1.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the ratio (statDTX)/(NACK+ACK+statDTX).

If Pm-dsg is less than the value specified in table 8.4.1.2.1_1.5-1, pass the UE. Otherwise fail the UE.

8.4.1.2.1_1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.4.1.2.1 1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2						
Information Element	Value/remark	Comment	Condition			
PhysicalConfigDedicated-DEFAULT ::=						
SEQUENCE {						
antennalnfo CHOICE {						
antennaInfoDedicated ::= SEQUENCE {						
transmissionMode	tm4					
codebookSubsetRestriction CHOICE {						
n2TxAntenna-tm4	111111					
}						
ue-TransmitAntennaSelection CHOICE {						
release	NULL					
}						
}						
}						
}						

8.4.1.2.1_1.5 Test requirement

For the parameters specified in Table 8.4.1.2.1_1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1_1.5-1.

Table 8.4.1.2.1_1.5-1: Test requirement PDCCH/PCFICH 2 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Reference	ce value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.16-1 FDD	OP.1 FDD	EVA70	2 x 2 Low	1	- 0.6+TT

8.4.1.2.2 FDD PCFICH/PDCCH Transmit Diversity 4x2

8.4.1.2.2.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.1 remains below a given reference value.

8.4.1.2.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8.

8.4.1.2.2.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.1.2.2.3-1: Test Parameters for PDCCH/PCFICH

Parameter		Unit	Transmit diversity
Number of PDC	CH symbols	symbols	2
Number of PHICH	groups (N _g)		1
PHICH du	ration		Normal
Unused RE-s a	and PRB-s		OCNG
Cell II	O		0
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
N_{oc} at antenna port		dBm/15kHz	-98
Cyclic p		_	Normal

Note: PHICH power setting refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.4.1.2.2.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.1.2.2.3-2.

Table 8.4.1.2.2.3-2: Minimum performance PDCCH/PCFICH 4 Tx Antenna Port

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.17 FDD	OP.1 FDD	EVA5	4 x 2 Medium	1	0.9

The normative reference for this requirement is TS 36.101 [2] clause 8.4.1.

8.4.1.2.2.4 Test description

8.4.1.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.11.
- 2. The parameter settings for the cell are set up according to Table 8.4.1.2.2.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.1.2.2.4.3.

8.4.1.2.2.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.1.2.2.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.1-1 and Table A.3.5.1-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.4.1.2.2.5-1.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the ratio (statDTX)/(NACK+ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.1.2.2.5-1, pass the UE. Otherwise fail the UE.

8.4.1.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.4.1.2.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.4.1.2.2.5 Test requirement

For the parameters specified in Table 8.4.1.2.2.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.1.2.2.5-1.

Table 8.4.1.2.2.5-1: Test requirement PDCCH/PCFICH 4 Tx Antenna Port

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Refere	ence value
number		level	Channel	Pattern	Condition	configuration	Pm-	SNR (dB)
						and	dsg	
						correlation	(%)	
						Matrix		
1	10 MHz	4 CCE	R.17 FDD	OP.1 FDD	EVA5	4 x 2 Medium	1	1.9

8.4.1.2.2_1 FDD PCFICH/PDCCH Transmit Diversity 4x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.4.1.2.2_1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.1 remains below a given reference value.

8.4.1.2.2_1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.4.1.2.2_1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.1.2.2_1.3-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Transmit diversity
Number of PDC	CH symbols	symbols	2
Number of PHICH	H groups (N _g)		1
PHICH du	ration		Normal
Unused RE-s a	and PRB-s		OCNG
Cell II	D		0
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
N_{oc} at anter	nna port	dBm/15kHz	-98
Cyclic prefix			Normal
Note: PHICH powe total pov		PHICH group pov PHICH sequences	

PHICH group.

For the parameters specified in Table 8.4.1.2.2_1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2_1.3-2.

Table 8.4.1.2.2_1.3-2: Minimum performance PDCCH/PCFICH 4 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	5 MHz	2 CCE	R.17-1 FDD	OP.1 FDD	EPA5	4 x 2 Medium	1	6.3

The normative reference for this requirement is TS 36.101 [2] clause 8.4.1.

8.4.1.2.2_1.4 Test description

8.4.1.2.2_1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 5MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.11.
- 2. The parameter settings for the cell are set up according to Table 8.4.1.2.2_1.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.

5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.1.2.2_1.4.3.

8.4.1.2.2_1.4.2 Test procedure

- SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.1.2.2_1.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.1-1 and Table A.3.5.1-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.4.1.2.2_1.5-1.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the ratio (statDTX)/(NACK+ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.1.2.2_1.5-1, pass the UE. Otherwise fail the UE.

8.4.1.2.2 1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.4.1.2.2_1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.4.1.2.2_1.5 Test requirement

For the parameters specified in Table 8.4.1.2.2_1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2_1.5-1.

Table 8.4.1.2.2_1.5-1: Test requirement PDCCH/PCFICH 4 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Reference	ce value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	5 MHz	2 CCE	R.17-1 FDD	OP.1 FDD	EPA5	4 x 2 Medium	1	6.3+TT

8.4.2 TDD

8.4.2.1 TDD PCFICH/PDCCH Single-antenna Port Performance

8.4.2.1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for a single-antenna port with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.2 remains below a given reference value.

8.4.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.4.2.1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.2.1.3-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Single antenna port	
Uplink downlink (Note	•		0	
Special subframe (Note	-		4	
Number of PDC	CH symbols	symbols	2	
Number of PHICH	H groups (N _g)		1	
PHICH du			Normal	
Unused RE-s	and PRB-s		OCNG	
Cell I	D		0	
Downlink power allocation	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA PCFICH_RB PDCCH_RB	dB	0	
	PHICCH_RB PHICCH_R B OCNG_RB	dB	0	
$N_{\it oc}$ at ante	nna port	dBm/15kHz	-98	
Cyclic p	refix	_	Normal	
ACK/NACK feed	dback mode		Multiplexing	
Note 1: as specified in Table 4.2-2 in TS 36.211 [8] Note 2: as specified in Table 4.2-1 in TS 36.211 [8] Note 3: PHICH power setting refer to PHICH group power, i.e. the				

Note 3: PHICH power setting refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.4.2.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.2.1.3-2.

Table 8.4.2.1.3-2: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configurati	Refere valu	
						on and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 TDD	OP.1 TDD	ETU70	1x2Low	1	-1.6

The normative reference for this requirement is TS 36.101 [2] clause 8.4.2.

8.4.2.1.4 Test description

8.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to 8.4.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.2.1.4.3.

8.4.2.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1 for C_RNTI to transmit the DL RMC according to Table 8.4.2.1.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.2-1 and Table A.3.5.2-2 respectively. The SS sends downlink MAC padding bits on the DL RMC.
- 2. Set the parameters of the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.4.2.1.5-1 as appropriate.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the radio (statDTX)/(NACK +ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.2.2.1.5-1, pass the UE. Otherwise fail the UE.

8.4.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exception:.

Table 8.4.2.1.4.3-1: TDD-Configuration-DEFAULT

Derivation Path: 36.508 clause 4.6.4			
Information Element	Value/remark	Comment	Condition
TDD-Configuration-DEFAULT ::= SEQUENCE {			
subframeAssignment	sa0		
specialSubframePatterns	Ssp4		
}			

8.4.2.1.5 Test requirement

For the parameters specified in Table 8.4.2.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.2.1.5-1.

Table 8.4.2.1.5-1: Test requirement PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuratio n and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	8 CCE	R.15 TDD	OP.1 TDD	ETU70	1x2Low	1	-0.8

8.4.2.2 TDD PCFICH/PDCCH Transmit Diversity Performance

8.4.2.2.1 TDD PCFICH/PDCCH Transmit Diversity 2x2

8.4.2.2.1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.2 remains below a given reference value.

8.4.2.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8.

8.4.2.2.1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.2.2.1.3-1: Test Parameters for PDCCH/PCFICH

Parameter		Unit	Transmit diversity
Uplink downlink (0
Special subframe (Note:			4
Number of PDC	CH symbols	symbols	2
Number of PHICH	Hgroups (Ng)		1
PHICH du	ration		Normal
Unused RE-s a	and PRB-s		OCNG
Cell II)		0
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
N_{oc} at anter	nna port	dBm/15kHz	-98
Cyclic pi	efix		Normal
ACK/NACK feed	back mode		Multiplexing
Note 2: as speci Note 3: PHICH p	fied in Table 4.2 power setting ref power of all act	2-2 in TS 36.211 [8 2-1 in TS 36.211 [8 fer to PHICH group ive PHICH sequen] o power, i.e.

For the parameters specified in Table 8.4.2.2.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.2.2.1.3-2.

Table 8.4.2.2.1.3-2: Minimum performance PDCCH/PCFICH 2 Tx Antenna Port

	Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configurati	Refere valu	
							on and correlation Matrix	Pm- dsg (%)	SNR (dB)
I	1	1.4 MHz	2 CCE	R.16 TDD	OP.1 TDD	EPA5	2 x 2 Low	1	4.2

The normative reference for this requirement is TS 36.101 [2] clause 8.4.2.

8.4.2.2.1.4 Test description

8.4.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 1.4MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to 8.4.2.2.1.3-1.

- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.2.2.1.4.3.

8.4.2.2.1.4.2 Test procedure

- SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.2.2.1.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.2-1 and Table A.3.5.2-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.4.2.2.1.5-1 as appropriate.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the radio (statDTX)/(NACK +ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.2.2.1.5-1, pass the UE. Otherwise fail the UE

8.4.2.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exception:.

Table 8.4.2.2.1.4.3-1: TDD-Configuration-DEFAULT

Derivation Path: 36.508 clause 4.6.4			
Information Element	Value/remark	Comment	Condition
TDD-Configuration-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa0		
specialSubframePatterns	Ssp4		
}			

Table 8.4.2.2.1.4.3-2: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.4.2.2.1.5 Test requirement

For the parameters specified in Table 8.4.2.2.1.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.2.2.1.5-1.

Table 8.4.2.2.1.5-1: Test requirement PDCCH/PCFICH 2 Tx Antenna Port

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference value	
number		level	Channel	Pattern	Condition	configuratio	Pm-	SNR
						n and	dsg (%)	(dB)
						correlation		
						Matrix		
1	1.4 MHz	2 CCE	[R.16 TDD]	OP.1 TDD	EPA5	2 x 2 Low	1	5.2

8.4.2.2.1_1 TDD PCFICH/PDCCH Transmit Diversity 2x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.4.2.2.1_1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.2 remains below a given reference value.

8.4.2.2.1_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.4.2.2.1_1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.2.2.1_1.3-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Transmit diversity
Uplink downlink (•		0
Special subframe (Note	•		4
Number of PDC	CH symbols	symbols	2
Number of PHICH	H groups (N _g)		1
PHICH du	ration		Normal
Unused RE-s a	and PRB-s		OCNG
Cell II	<u> </u>		0
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
N_{oc} at anter	nna port	dBm/15kHz	-98
Cyclic p			Normal
ACK/NACK feed	dback mode		Multiplexing

Note 1: as specified in Table 4.2-2 in TS 36.211 [8]

Note 2: as specified in Table 4.2-1 in TS 36.211 [8]

Note 3: PHICH power setting refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group

For the parameters specified in Table 8.4.2.2.1_1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1_1.3-2.

Table 8.4.2.2.1_1.3-2: Minimum performance PDCCH/PCFICH 2 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Reference	e value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.16-1 TDD	OP.1 TDD	EVA70	2 x 2 Low	1	0.1

The normative reference for this requirement is TS 36.101 [2] clause 8.4.2.

8.4.2.2.1_1.4 Test description

8.4.2.2.1 1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to 8.4.2.2.1_1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.2.2.1_1.4.3.

8.4.2.2.1_1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.2.2.1_1.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.2-1 and Table A.3.5.2-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.4.2.2.1 1.5-1 as appropriate.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the radio (statDTX)/(NACK+ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.2.2.1_1.5-1, pass the UE. Otherwise fail the UE

8.4.2.2.1_1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exception:.

Table 8.4.2.2.1_1.4.3-1: TDD-Configuration-DEFAULT

Derivation Path: 36.508 clause 4.6.4			
Information Element	Value/remark	Comment	Condition
TDD-Configuration-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa0		
specialSubframePatterns	Ssp4		
}			

Table 8.4.2.2.1_1.4.3-2: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennalnfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.4.2.2.1_1.5 Test requirement

For the parameters specified in Table 8.4.2.2.1_1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1_1.5-1.

Table 8.4.2.2.1_1.5-1: Test requirement PDCCH/PCFICH 2 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Reference	ce value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.16-1 TDD	OP.1 TDD	EVA70	2 x 2 Low	1	0.1+TT

8.4.2.2.2 TDD PCFICH/PDCCH Transmit Diversity 4x2

8.4.2.2.2.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.2 remains below a given reference value.

8.4.2.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8.

8.4.2.2.2.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.2.2.3-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Transmit diversity		
Uplink downlink	•		0		
(Note			,		
Special subframe			4		
(Note					
Number of PDC		symbols	2		
Number of PHICH	H groups (N _g)		1		
PHICH du	ration		Normal		
Unused RE-s	and PRB-s		OCNG		
Cell I	D		0		
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3		
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3		
$N_{\it oc}$ at ante	nna port	dBm/15kHz	-98		
Cyclic p	refix		Normal		
ACK/NACK feed	dback mode		Multiplexing		
Note 1: as specified in Table 4.2-2 in TS 36.211 [8] Note 2: as specified in Table 4.2-1 in TS 36.211 [8] Note 3: PHICH power setting refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.					

For the parameters specified in Table 8.4.2.2.2.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.2.2.2.3-2.

Table 8.4.2.2.2.3-2: Minimum performance PDCCH/PCFICH 2 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configurati	Refere val	
						on and correlation Matrix	Pm- dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.17 TDD	OP.1 TDD	EVA5	4 x 2 Medium	1	1.2

The normative reference for this requirement is TS 36.101 [2] clause 8.4.2.

8.4.2.2.2.4 Test description

8.4.2.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10 MHz, as defined in TS 36.508 [7] clause 4.3.1.1

1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11.

- 2. The parameter settings for the cell are set up according to 8.4.2.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.2.2.2.4.3.

8.4.2.2.4.2 Test procedure

- SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.2.2.2.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.2-1 and Table A.3.5.2-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.4.2.2.2.5-1 as appropriate.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the radio (statDTX)/(NACK +ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.2.2.2.5-1, pass the UE. Otherwise fail the UE

8.4.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exception:.

Table 8.4.2.2.2.4.3-1: TDD-Configuration-DEFAULT

Derivation Path: 36.508 clause 4.6.4			
Information Element	Value/remark	Comment	Condition
TDD-Configuration-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa0		
specialSubframePatterns	Ssp4		
}			

Table 8.4.2.2.2.4.3-2: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2 Information Element	Value/remark	Comment	Condition
	value/Terrial K	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennalnfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.4.2.2.5 Test requirement

For the parameters specified in Table 8.4.2.2.2.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.2.2.2.5-1.

Table 8.4.2.2.5-1: Test requirement PDCCH/PCFICH 2 Tx Antenna Port

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referer	nce value
number		level	Channel	Pattern	Condition	configuratio	Pm-	SNR
						n and	dsg (%)	(dB)
						correlation		
						Matrix		
1	10 MHz	4 CCE	R.17 TDD	OP.1 TDD	EVA5	4 x 2 Medium	1	2.2

8.4.2.2.2_1 TDD PCFICH/PDCCH Transmit Diversity 4x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.4.2.2.2_1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.2 remains below a given reference value.

8.4.2.2.2 1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.4.2.2.2_1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Table 8.4.2.2.2_1.3-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Transmit diversity
Uplink downlink (0
Special subframe (Note	•		4
Number of PDC		symbols	2
Number of PHICH	I groups (N_g)		1
PHICH du	ration		Normal
Unused RE-s a			OCNG
Cell II	D		0
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
N_{oc} at anter	nna port	dBm/15kHz	-98
Cyclic pi	refix		Normal
ACK/NACK feed	dback mode		Multiplexing

Note 1: as specified in Table 4.2-2 in TS 36.211 [8]

Note 2: as specified in Table 4.2-1 in TS 36.211 [8]

Note 3: PHICH power setting refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.4.2.2.2_1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.2_1.3-2.

Table 8.4.2.2.2_1.3-2: Minimum performance PDCCH/PCFICH 2 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Reference	ce value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	5 MHz	2 CCE	R.17-1 TDD	OP.1 TDD	EPA5	4 x 2 Medium	1	6.5

The normative reference for this requirement is TS 36.101 [2] clause 8.4.2.

8.4.2.2.2_1.4 Test description

8.4.2.2.2_1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 5 MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11.
- 2. The parameter settings for the cell are set up according to 8.4.2.2.2_1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.4.2.2.2_1.4.3.

8.4.2.2.2_1.4.2 Test procedure

- SS transmits PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to Table 8.4.2.2.2.3-2. The details of PDCCH and PDSCH are specified in Table A.3.5.2-1 and Table A.3.5.2-2 respectively. The SS sends downlink MAC padding bits on the DL RMC. Transmission scheme for the PDSCH shall be transmit diversity.
- 2. Set the parameters of the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.4.2.2.2_1.5-1 as appropriate.
- 3. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.4. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the radio (statDTX)/(NACK +ACK+statDTX). If Pm-dsg is less than the value specified in table 8.4.2.2.2_1.5-1, pass the UE. Otherwise fail the UE

8.4.2.2.2_1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exception:.

Table 8.4.2.2.2_1.4.3-1: TDD-Configuration-DEFAULT

Derivation Path: 36.508 clause 4.6.4			
Information Element	Value/remark	Comment	Condition
TDD-Configuration-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa0		
specialSubframePatterns	Ssp4		
}			

Table 8.4.2.2.2_1.4.3-2: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	111111		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			
}			

8.4.2.2.5 Test requirement

For the parameters specified in Table 8.4.2.2.2.3-1 the average probability of a missed downlink scheduling grant (Pmdsg) shall be below the specified value in Table 8.4.2.2.2_1.5-1.

Table 8.4.2.2.2_1.5-1: Test requirement PDCCH/PCFICH 2 Tx Antenna Port

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Reference	ce value
						and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	5 MHz	2 CCE	R.17-1 TDD	OP.1 TDD	EPA5	4 x 2 Medium	1	6.5+TT

8.5 Demodulation of PHICH

8.5.1 FDD

8.5.1.1 FDD PHICH Single-antenna Port Performance

8.5.1.1.1 Test purpose

This test verifies the demodulation performance of PHICH for a single antenna port with a given SNR for which the average probability of miss detection of Hybrid Indicator ("ACK to NACK") of the specified reference measurement channels remains below a specified value.

8.5.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.5.1.1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.1.1.3-1: Test Parameters for PHICH

Param	eter	Unit	Single antenna port
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	0
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0
PHICH du	uration		Normal
Number of PHICH	groups (Note 1)		Ng = 1
PDCCH C	Content	with the pro	ould be included per information with A.3.6.
Unused RE-s	and PRB-s	Ŭ	OCNG
Cell I	D		0
$N_{\it oc}$ at ante	nna port	dBm/15kHz	-98
Cyclic p	refix		Normal
Note 2: PHICH p	g to Clause 6.9 in ower settings refe er of all active PH	er to PHICH grou	

For the parameters specified in Table 8.5.1.1.3-1 the average probability of a miss-detecting an ACK for a NACK (Pman) shall be below the specified value in Table 8.5.1.1.3-2.

Table 8.5.1.1.3-2: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 FDD	ETU70	1 x 2 Low	0.1	5.5
2	10 MHz	R.24	OP.1 FDD	ETU70	1 x 2 Low	0.1	0.6

The normative reference for this requirement is TS 36.101 [2] clause 8.5.

8.5.1.1.4 Test description

8.5.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10 MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 8.5.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.1.1.4.3.

8.5.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.1.1.5-1 Test 1 as appropriate.
- 2. SS shall schedule PUSCH transmissions according to Annex A.2.2.1.1 Table A.2.2.1.1-1 to happen during 8 consecutive uplink TTIs via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions will transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.1.1.4.2-1 indicates the transmissions for one cycle.

Table 8.5.1.1.4.2-1: PHICH test pattern

TTI	1-4	5-8	9-12	13-16	17-20	21-24
PDCCH	S	S	-	-	S	S
PHICH	-	-	Α	Α	-	-
PUSCH		Т	Т	R	R	Т
UL HARQ Process	1-4	5-8	1-4	5-8	1-4	5-8

Note 1: This table gives an example test pattern for HARQ process for FDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. Such re-transmissions (if they occur) will potentially happen in TTI 13 to 20. DTXs on TTI 13 to 20 are counted as successful ACK receptions while any transmission on these TTIs is counted as NACKs.
- 4. Repeat steps 1 − 3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

 If Pm-an is less than the value specified in table 8.5.1.1.5-1, pass the UE. Otherwise fail the UE.
- 5. Repeat the same procedure (steps 1 to 3) with test conditions according to the Table 8.5.1.1.5-1 for Test 2.

8.5.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions

Table 8.5.1.1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1							
Information Element	Value/remark	Comment	Condition				
MAC-MainConfig-RBC ::= SEQUENCE {							
dl-SCH-Config SEQUENCE {}	Not present						
ul-SCH-Config SEQUENCE {							
maxHARQ-Tx	n2	Only one retransmission per UL HARQ					

8.5.1.1.5 Test requirement

For the parameters specified in Table 8.5.1.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-dsg) shall be below the specified value in Table 8.5.1.1.5-1.

Table 8.5.1.1.5-1: Test requirement PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 FDD	ETU70	1 x 2 Low	0.1	6.4
2	10 MHz	R.24	OP.1 FDD	ETU70	1 x 2 Low	0.1	1.5

8.5.1.2 FDD PHICH Transmit Diversity Performance

8.5.1.2.1 FDD PHICH Transmit Diversity 2x2

8.5.1.2.1.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which the average probability of miss detection of Hybrid Indicator ("ACK to NACK") of the specified reference measurement channels remains below a specified value.

8.5.1.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8.

8.5.1.2.1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.1.2.1.3-1: Test Parameters for PHICH

Paramo	eter	Unit	Transmit diversity	
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3	
PHICH du	ıration		Normal	
Number of PHICH	groups (Note 1)		Ng = 1	
PDCCH C	content	UL Grant should be included with the proper information aligned with A.3.6.		
Unused RE-s	and PRB-s	_	OCNG	
Cell I	D		0	
N_{oc} at ante	nna port	dBm/15kHz	-98	
Cyclic p	refix		Normal	
-	up power, i.e. the within a PHICH			

For the parameters specified in Table 8.5.1.2.1.3-1 the average probability of a miss-detecting an ACK for a NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.1.3-2

Table 8.5.1.2.1.3-2: Minimum performance PHICH 2 Tx Antenna Port

ſ	Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
	number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
						and		
						correlation		
						Matrix		
	1	1.4 MHz	R.19	OP.1 FDD	EPA5	2 x 2 Low	0.1	5.6

The normative reference for this requirement is TS 36.101 [2] clause 8.5.1.

8.5.1.2.1.4 Test description

8.5.1.2.1.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 1.4 MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 8.5.1.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.1.2.1.4.3.

8.5.1.2.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.1.2.1.5-1.
- 2. SS shall schedule PUSCH transmissions according to Annex A.2.2.1.1 Table A.2.2.1.1-1 to happen during 8 consecutive uplink TTIs via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions will transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.1.2.1.4.2-1 indicates the transmissions for one cycle.

Table 8.5.1.2.1.4.2-1: PHICH test pattern

TTI	1-4	5-8	9-12	13-16	17-20	21-24
PDCCH	S	S	-	-	S	S
PHICH	-	-	Α	Α	-	-
PUSCH		T	Т	R	R	Т
UL HARQ Process	1-4	5-8	1-4	5-8	1-4	5-8

Note 1: This table gives an example test pattern for HARQ process for FDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. Such re-transmissions (if they occur) will potentially happen in TTI 13 to 20. DTXs on TTI 13 to 20 are counted as successful ACK receptions while any transmission on these TTIs is counted as NACKs.
- 4. Repeat steps 1 − 3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

 If Pm-an is less than the value specified in table 8.5.1.2.1.5-1, pass the UE. Otherwise fail the UE.

8.5.1.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions

Table 8.5.1.2.1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table	Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1								
Information Element	Value/remark	Comment	Condition						
MAC-MainConfig-RBC ::= SEQUENCE {									
dl-SCH-Config SEQUENCE {}	Not present								
ul-SCH-Config SEQUENCE {									
maxHARQ-Tx	n2	Only one retransmission per UL HARQ							

8.5.1.2.1.5 Test requirement

For the parameters specified in Table 8.5.1.2.1.3-1 the average probability of a miss-detecting ACK for NACK (Pmdsg) shall be below the specified value in Table 8.5.1.2.1.5-1.

Table 8.5.1.2.1.5-1: Test requirement PHICH 2 Tx Antenna Port

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	1.4 MHz	R.19	OP.1 FDD	EPA5	2 x 2 Low	0.1	6.7

8.5.1.2.1_1 FDD PHICH Transmit Diversity 2x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.5.1.2.1_1.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which the average probability of miss detection of Hybrid Indicator ("ACK to NACK") of the specified reference measurement channels remains below a specified value.

8.5.1.2.1_1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.5.1.2.1_1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.1.2.1_1.3-1: Test Parameters for PHICH

Param	eter	Unit	Transmit diversity
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
PHICH du	ıration		Normal
Number of PHICH	groups (Note 1)		Ng = 1
PDCCH C	content	with the pro	ould be included per information with A.3.6.
Unused RE-s	and PRB-s	0	CNG
Cell ID			0
N_{oc} at antenna port		dBm/15kHz	-98
Cyclic p	refix		Normal
Note 1: according to	Clause 6.9 in TS	36.211 [8]	•

Note 2: PHICH power settings refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.5.1.2.1_1.3-1 the average probability of a miss-detecting an ACK for a NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.1_1.3-2

Table 8.5.1.2.1_1.3-2: Minimum performance PHICH 2 Tx Antenna Port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
					and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19-1	OP.1 FDD	EVA70	2 x 2 Low	0.1	4.4

The normative reference for this requirement is TS 36.101 [2] clause 8.5.1.

8.5.1.2.1_1.4 Test description

8.5.1.2.1_1.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10 MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 8.5.1.2.1_1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.1.2.1_1.4.3.

8.5.1.2.1_1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.1.2.1_1.5-1.
- 2. SS shall schedule PUSCH transmissions according to Annex A.2.2.1.1 Table A.2.2.1.1-1 to happen during 8 consecutive uplink TTIs via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions will transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.1.2.1_1.4.2-1 indicates the transmissions for one cycle.

Table 8.5.1.2.1_1.4.2-1: PHICH test pattern

TTI	1-4	5-8	9-12	13-16	17-20	21-24
PDCCH	S	S	-	-	S	S
PHICH	-	-	Α	Α	-	-
PUSCH		Т	Т	R	R	Т
UL HARQ Process	1-4	5-8	1-4	5-8	1-4	5-8

Note 1: This table gives an example test pattern for HARQ process for FDD PHICH test Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

3. SS will only monitor for uplink retransmissions due to ACK missed-detections. Such re-transmissions (if they occur) will potentially happen in TTI 13 to 20. DTXs on TTI 13 to 20 are counted as successful ACK receptions while any transmission on these TTIs is counted as NACKs.

4. Repeat steps 1 − 3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

If Pm-an is less than the value specified in table 8.5.1.2.1_1.5-1, pass the UE. Otherwise fail the UE.

8.5.1.2.1_1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions

Table 8.5.1.2.1_1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1								
Information Element	Value/remark	Comment	Condition					
MAC-MainConfig-RBC ::= SEQUENCE {								
<pre>dl-SCH-Config SEQUENCE {}</pre>	Not present							
ul-SCH-Config SEQUENCE {								
maxHARQ-Tx	n2	Only one retransmission per UL HARQ						

8.5.1.2.1_1.5 Test requirement

For the parameters specified in Table 8.5.1.2.1_1.3-1 the average probability of a miss-detecting ACK for NACK (Pmdsg) shall be below the specified value in Table 8.5.1.2.1_1.5-1.

Table 8.5.1.2.1_1.5-1: Test requirement PHICH 2 Tx Antenna Port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
					and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19-1	OP.1 FDD	EVA70	2 x 2 Low	0.1	4.4+TT

8.5.1.2.2 FDD PHICH Transmit Diversity 4x2

8.5.1.2.2.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which the average probability of miss detection of Hybrid Indicator ("ACK to NACK") of the specified reference measurement channels remains below a specified value.

8.5.1.2.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8.

8.5.1.2.2.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.1.2.2.3-1: Test Parameters for PHICH

Param	eter	Unit	Transmit diversity
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
PHICH du	uration		Normal
Number of PHICH	groups (Note 1)		Ng = 1
PDCCH C	Content	with the pro	ould be included per information with A.3.6.
Unused RE-s	and PRB-s		OCNG
Cell I	D		0
$N_{\it oc}$ at antenna port		dBm/15kHz -98	
Cyclic p	refix		Normal
Note 2: PHICH p	g to Clause 6.9 in ower settings referer of all active Ph	er to PHICH grou	• •

group

For the parameters specified in Table 8.5.1.2.2.3-1 the average probability of a miss-detecting an ACK for a NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2.3-2.

Table 8.5.1.2.2.3-2: Minimum performance PHICH 4 Tx Antenna Port

Ī	Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
	number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
	1	10 MHz	R.20	OP.1 FDD	EVA5	4 x 2 Medium	0.1	6.0

The normative reference for this requirement is TS 36.101 [2] clause 8.5.1.

8.5.1.2.2.4 Test description

8.5.1.2.2.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10 MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.11.
- 2. The parameter settings for the cell are set up according to Table 8.5.1.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.1.2.2.4.3.

8.5.1.2.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.1.2.2.5-1.
- 2. SS shall schedule PUSCH transmissions according to Annex A.2.2.1.1 Table A.2.2.1.1-1 to happen during 8 consecutive uplink TTIs via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions will transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.1.2.2.4.2-1 indicates the transmissions for one cycle.

Table 8.5.1.2.2.4.2-1: PHICH test pattern

TTI	1-4	5-8	9-12	13-16	17-20	21-24
PDCCH	S	S	-	-	S	S
PHICH	-	-	Α	Α	-	-
PUSCH		T	Т	R	R	Т
UL HARQ Process	1-4	5-8	1-4	5-8	1-4	5-8

Note 1: This table gives an example test pattern for HARQ process for FDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. Such re-transmissions (if they occur) will potentially happen in TTI 13 to 20. DTXs on TTI 13 to 20 are counted as successful ACK receptions while any transmission on these TTIs is counted as NACKs.
- 4. Repeat steps 1 3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK). If Pm-an is less than the value specified in table 8.5.1.2.2.5-1, pass the UE. Otherwise fail the UE.

8.5.1.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions

Table 8.5.1.2.2.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1								
Information Element	Value/remark	Comment	Condition					
MAC-MainConfig-RBC ::= SEQUENCE {								
dl-SCH-Config SEQUENCE {}	Not present							
ul-SCH-Config SEQUENCE {								
maxHARQ-Tx	n2	Only one retransmission per UL HARQ						

8.5.1.2.2.5 Test requirement

For the parameters specified in Table 8.5.1.2.2.3-1 the average probability of a miss-detecting ACK for NACK (Pmdsg) shall be below the specified value in Table 8.5.1.2.2.5-1.

Table 8.5.1.2.2.5-1: Test requirement PHICH 4 Tx Antenna Port

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	10 MHz	R.20	OP.1 FDD	EVA5	4 x 2 Medium	0.1	7.0

8.5.1.2.2_1 FDD PHICH Transmit Diversity 4x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.5.1.2.2_1.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which the average probability of miss detection of Hybrid Indicator ("ACK to NACK") of the specified reference measurement channels remains below a specified value.

8.5.1.2.2 1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

8.5.1.2.2_1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.1.2.2_1.3-1: Test Parameters for PHICH

Param	eter	Unit	Transmit diversity
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
PHICH du	ıration		Normal
Number of PHICH	groups (Note 1)		Ng = 1
PDCCH C	content	with the pro	ould be included per information with A.3.6.
Unused RE-s	and PRB-s	0	CNG
Cell ID			0
$N_{\it oc}$ at antenna port		dBm/15kHz	-98
Cyclic p	refix		Normal
Note 1: according to	Clause 6.9 in TS	36.211 [8]	_

Note 2: PHICH power settings refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.5.1.2.2_1.3-1 the average probability of a miss-detecting an ACK for a NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2_1.3-2.

Table 8.5.1.2.2_1.3-2: Minimum performance PHICH 4 Tx Antenna Port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
					and correlation Matrix	Pm-an (%)	SNR (dB)
1	5 MHz	R.20-1	OP.1 FDD	EPA5	4 x 2 Medium	0.1	6.1

The normative reference for this requirement is TS 36.101 [2] clause 8.5.1.

8.5.1.2.2_1.4 Test description

8.5.1.2.2_1.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 5 MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.11.
- 2. The parameter settings for the cell are set up according to Table 8.5.1.2.2_1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.1.2.2_1.4.3.

8.5.1.2.2_1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.1.2.2_1.5-1.
- 2. SS shall schedule PUSCH transmissions according to Annex A.2.2.1.1 Table A.2.2.1.1-1 to happen during 8 consecutive uplink TTIs via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions will transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.1.2.2_1.4.2-1 indicates the transmissions for one cycle.

Table 8.5.1.2.2_1.4.2-1: PHICH test pattern

TTI	1-4	5-8	9-12	13-16	17-20	21-24
PDCCH	S	S	-	-	S	S
PHICH	-	-	Α	Α	-	-
PUSCH		Т	Т	R	R	Т
UL HARQ Process	1-4	5-8	1-4	5-8	1-4	5-8

Note 1: This table gives an example test pattern for HARQ process for FDD PHICH test Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

3. SS will only monitor for uplink retransmissions due to ACK missed-detections. Such re-transmissions (if they occur) will potentially happen in TTI 13 to 20. DTXs on TTI 13 to 20 are counted as successful ACK receptions while any transmission on these TTIs is counted as NACKs.

4. Repeat steps 1 – 3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK). If Pm-an is less than the value specified in table 8.5.1.2.2_1.5-1, pass the UE. Otherwise fail the UE.

8.5.1.2.2_1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions

Table 8.5.1.2.2_1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5,	Table 4.8.2.1.5-1		
Information Element	Value/remark	Comment	Condition
MAC-MainConfig-RBC ::= SEQUENCE {			
dl-SCH-Config SEQUENCE {}	Not present		
ul-SCH-Config SEQUENCE {			
maxHARQ-Tx	n2	Only one retransmission per UL HARQ	

8.5.1.2.2 1.5 Test requirement

For the parameters specified in Table 8.5.1.2.2_1.3-1 the average probability of a miss-detecting ACK for NACK (Pmdsg) shall be below the specified value in Table 8.5.1.2.2_1.5-1.

Table 8.5.1.2.2_1.5-1: Test requirement PHICH 4 Tx Antenna Port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration and	Referen Pm-an (%)	ce value SNR (dB)
					correlation Matrix		
1	5 MHz	R.20-1	OP.1 FDD	EPA5	4 x 2 Medium	0.1	6.1+TT

8.5.2 TDD

8.5.2.1 TDD PHICH Single-antenna Port Performance

8.5.2.1.1 Test purpose

This test verifies the demodulation performance of PHICH for a single antenna port with a given SNR for which a certain Hybrid Indicator detection error rate (i.e. missed detection of "NACK to ACK" and "ACK to NACK") of the specified reference measurement channels is achieved.

8.5.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.5.2.1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.2.1.3-1: Test Parameters for PHICH

Param	eter	Unit	Single antenna port
Uplink downlink cor 1)	nfiguration (Note		1
Special subframe (Note			4
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	0
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0
PHICH do	ıration		Normal
Number of PHICH	groups (Note 3)		Ng = 1
Cell I	D		0
PDCCH C	content	with the pro	ould be included per information with A.3.6.
Unused RE-s	and PRB-s		OCNG
N_{oc} at ante	nna port	dBm/15kHz	-98
Cyclic p	refix		Normal
ACK/NACK fee			Multiplexing
Note 2: as specification Note 3: according	ied in Table 4.2-2 ied in Table 4.2-1 g to Clause 6.9 in ower settings refe	in TS 36.211 [8 TS 36.211 [8]]

For the parameters specified in Table 8.5.2.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1.3-2.

total power of all active PHICH sequences within a PHICH

Table 8.5.2.1.3-2: Minimum performance of PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 TDD	ETU70	1 x 2 Low	0.1	5.8
2	10 MHz	R.24	OP.1 TDD	ETU70	1 x 2 Low	0.1	1.3

The normative reference for this requirement is TS 36.101 [2] clause 8.5.2.

group.

8.5.2.1.4 Test description

8.5.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1

Bandwidths to be tested: As specified per test number in Tables 8.5.2.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex a, Figure A.9.
- 2. The parameter settings for the cell are set up according to 8.5.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.2.1.4.3.

8.5.2.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.2.1.5-1 Test 1 as appropriate.
- 2. In Each HARQ process (4 HARQ processes for UL/DL configuration 1); SS shall schedule PUSCH transmissions according to Annex A.2.3.1.1 Table A.2.3.1.1-1 via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions shall transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.2.1.4.2-1 indicates the transmissions for one cycle.
- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. DTX from the UE side is counted as successful ACK reception, while any transmission on these subframes is counted as NACKs.

Table 8.5.2.1.4.2-1: PHICH test pattern

Subframe Index	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
PDCCH		S			S		S			S										
PHICH												Α			Α		Α			Α
PUSCH			R?	R?				Т	Т				Т	Т				R?	R?	
HARQ		1	3	4	2		3	1	2	4		1	3	4	2		3	1	2	4
process																				

Note 1: This table gives an example test pattern for HARQ process for TDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

Note 3:TDD UL/DL configuration 1 is used here, special subframe is denoted as blue

4. Repeat steps 1 – 3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

If Pm-an is less than the value specified in table 8.5.2.1.5-1, pass the UE. Otherwise fail the UE.

5. Repeat the same procedure (steps 1 to 4) with test conditions according to the Table 8.5.2.1.5-1 for Test 2.

8.5.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions

Table 8.5.1.1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5,	Table 4.8.2.1.5-1		
Information Element	Value/remark	Comment	Condition
MAC-MainConfig-RBC ::= SEQUENCE {			
dl-SCH-Config SEQUENCE {}	Not present		
ul-SCH-Config SEQUENCE {			
maxHARQ-Tx	n2	Only one retransmission per UL HARQ	

8.5.2.1.5 Test requirement

For the parameters specified in Table 8.5.2.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1.5-1.

Table 8.5.2.1.5-1: Test requirement of PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 TDD	ETU70	1 x 2 Low	0.1	6.7
2	10 MHz	R.24	OP.1 TDD	ETU70	1 x 2 Low	0.1	2.2

8.5.2.2 TDD PHICH Transmit Diversity Performance

8.5.2.2.1 TDD PHICH Transmit Diversity 2x2

8.5.2.2.1.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which a certain Hybrid Indicator detection error rate (i.e. missed detection of "NACK to ACK" and "ACK to NACK") of the specified reference measurement channels is achieved.

8.5.2.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8.

8.5.2.2.1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.2.2.1.3-1: Test Parameters for PHICH

Paramo	eter	Unit	Transmit diversity
Uplink downlink cor 1)	nfiguration (Note		1
Special subframe (Note			4
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3
PHICH du	ıration		Normal
Number of PHICH	groups (Note 3)		Ng = 1
Cell I	D		0
PDCCH C	content	with the pro	ould be included per information with A.3.6.
Unused RE-s	and PRB-s		OCNG
$N_{\it oc}$ at ante	nna port	dBm/15kHz	-98
Cyclic p	refix		Normal
ACK/NACK fee	dback mode		Multiplexing
Note 2: as specif	ied in Table 4.2-2 ied in Table 4.2-1 g to Clause 6.9 in	in TS 36.211 [8	

PHICH power settings refer to PHICH group power, i.e. the Note 4: total power of all active PHICH sequences within a PHICH

For the parameters specified in Table 8.5.2.2.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1.3-2.

Table 8.5.2.2.1.3-2: Minimum performance of PHICH 2 Tx Antenna Port

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	1.4 MHz	R.19	OP.1 TDD	EPA5	2 x 2 Low	0.1	5.3

The normative reference for this requirement is TS 36.101 [2] clause 8.5.2.

8.5.2.2.1.4 Test description

8.5.2.2.1.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2

Bandwidths to be tested: 1.4 MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 8.5.2.2.1.3-1.

- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.2.2.1.4.3.

8.5.2.2.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.2.2.1.5-1.
- 2. In Each HARQ process (4 HARQ processes for UL/DL configuration 1), SS shall schedule PUSCH transmissions according to Annex A.2.3.1.1 Table A.2.3.1.1-1 via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions shall transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.2.2.1.4.2-1 indicates the transmissions for one cycle.
- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. DTX from the UE side is counted as successful ACK reception, while any transmission on these subframes is counted as NACKs.
- 4. Repeat steps 1-3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

If Pm-an is less than the value specified in table 8.5.2.2.1.5-1, pass the UE. Otherwise fail the UE.

Table 8.5.2.2.1.4.2-1: PHICH test pattern

Subframe Index	0	1	2	3	4	5	6	7	8	9	0	1	2	თ	4	5	6	7	8	9
PDCCH		Ø			Ø		ഗ			S										
PHICH												Α			Α		Α			Α
PUSCH			R?	R?				Т	Т				Т	Т				R?	R?	
HARQ		1	3	4	2		3	1	2	4		1	3	4	2		3	1	2	4
process																				

Note 1: This table gives an example test pattern for HARQ process for TDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

Note 3: TDD UL/DL configuration 1 is used here, special subframe is denoted as blue

8.5.2.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions:

Table 8.5.2.2.1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table	4.8.2.1.5-1		
Information Element	Value/remark	Comment	Condition
MAC-MainConfig-RBC ::= SEQUENCE {			
dl-SCH-Config SEQUENCE {}	Not present		
ul-SCH-Config SEQUENCE {			
maxHARQ-Tx	n2	Only one	
		retransmission per	
		UL HARQ	

8.5.2.2.1.5Test requirement

For the parameters specified in Table 8.5.2.2.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1.5-1.

Table 8.5.2.2.1.5-1: Test requirement of PHICH 2 Tx Antenna Port

Ī	Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
	number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
	1	1.4 MHz	R.19	OP.1 TDD	EPA5	2 x 2 Low	0.1	6.4

8.5.2.2.1_1 TDD PHICH Transmit Diversity 2x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.5.2.2.1_1.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which a certain Hybrid Indicator detection error rate (i.e. missed detection of "NACK to ACK" and "ACK to NACK") of the specified reference measurement channels is achieved.

8.5.2.2.1_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.5.2.2.1_1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.2.2.1_1.3-1: Test Parameters for PHICH

Param	eter	Unit	Transmit diversity					
Uplink downlink cor 1)	nfiguration (Note		1					
Special subframe (Note	•		4					
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3					
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3					
PHICH do	uration		Normal					
Number of PHICH	groups (Note 3)		Ng = 1					
Cell I	D		0					
PDCCH C	Content	with the pro	ould be included oper information with A.3.6.					
Unused RE-s	and PRB-s	0	CNG					
N_{oc} at ante	enna port	dBm/15kHz	-98					
Cyclic p	refix		Normal					
ACK/NACK fee			Multiplexing					
Note 1: as specified	Note 1: as specified in Table 4.2-2 in TS 36.211 [8]							

Note 1: as specified in Table 4.2-2 in TS 36.211 [8]

Note 2: as specified in Table 4.2-1 in TS 36.211 [8]

Note 3: according to Clause 6.9 in TS 36.211 [8]

Note 4: PHICH power settings refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.5.2.2.1_1.3-1 the average probability of a miss-detecting ACK for NACK (Pman) shall be below the specified value in Table 8.5.2.2.1_1.3-2.

Table 8.5.2.2.1_1.3-2: Minimum performance of PHICH 2 Tx Antenna Port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
					and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19-1	OP.1 TDD	EVA70	2 x 2 Low	0.1	4.2

The normative reference for this requirement is TS 36.101 [2] clause 8.5.2.

8.5.2.2.1_1.4 Test description

8.5.2.2.1 1.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2

Bandwidths to be tested: 10 MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 8.5.2.2.1_1.3-1.

- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.2.2.1_1.4.3.

8.5.2.2.1_1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.2.2.1 1.5-1.
- 2. In Each HARQ process (4 HARQ processes for UL/DL configuration 1), SS shall schedule PUSCH transmissions according to Annex A.2.3.1.1 Table A.2.3.1.1-1 via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions shall transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.2.2.1_1.4.2-1 indicates the transmissions for one cycle.
- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. DTX from the UE side is counted as successful ACK reception, while any transmission on these subframes is counted as NACKs.
- 4. Repeat steps 1-3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

If Pm-an is less than the value specified in table 8.5.2.2.1_1.5-1, pass the UE. Otherwise fail the UE.

Table 8.5.2.2.1_1.4.2-1: PHICH test pattern

Subframe Index	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
PDCCH		S			S		S			S										
PHICH												Α			Α		Α			Α
PUSCH			R?	R?				Т	Т				Т	Т				R?	R?	
HARQ		1	3	4	2		3	1	2	4		1	3	4	2		3	1	2	4
process																				

Note 1: This table gives an example test pattern for HARQ process for TDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

Note 3: TDD UL/DL configuration 1 is used here, special subframe is denoted as blue

8.5.2.2.1 1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions:

Table 8.5.2.2.1_1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table	e 4.8.2.1.5-1		
Information Element	Value/remark	Comment	Condition
MAC-MainConfig-RBC ::= SEQUENCE {			
dl-SCH-Config SEQUENCE {}	Not present		
ul-SCH-Config SEQUENCE {			
maxHARQ-Tx	n2	Only one retransmission per UL HARQ	

8.5.2.2.1_1.5 Test requirement

For the parameters specified in Table 8.5.2.2.1_1.3-1 the average probability of a miss-detecting ACK for NACK (Pman) shall be below the specified value in Table 8.5.2.2.1_1.5-1.

Table 8.5.2.2.1.5-1: Test requirement of PHICH 2 Tx Antenna Port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
					and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.19-1	OP.1 TDD	EVA70	2 x 2 Low	0.1	4.2+TT

8.5.2.2.2 TDD PHICH Transmit Diversity 4x2

8.5.2.2.2.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which a certain Hybrid Indicator detection error rate (i.e. missed detection of "NACK to ACK" and "ACK to NACK") of the specified reference measurement channels is achieved.

8.5.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8.

8.5.2.2.2.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.2.2.3-1: Test Parameters for PHICH

Param	eter	Unit	Transmit diversity			
Uplink downlink co 1)	nfiguration (Note		1			
Special subframe (Note	•		4			
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3			
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3			
PHICH d	uration		Normal			
Number of PHICH	groups (Note 3)		Ng = 1			
Cell			0			
PDCCH (Content	with the pro	ould be included oper information with A.3.6.			
Unused RE-s	and PRB-s		OCNG			
$N_{\it oc}$ at ante	enna port	dBm/15kHz	-98			
Cyclic			Normal			
ACK/NACK fee	dback mode		Multiplexing			
Note 1: as specified in Table 4.2-2 in TS 36.211 [8] Note 2: as specified in Table 4.2-1 in TS 36.211 [8] Note 3: according to Clause 6.9 in TS 36.211 [8]						
Note 4: PHICH r	nowar sattings rafe	er to PHICH arou	in nower i.e. the			

Note 4: PHICH power settings refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH

group.

For the parameters specified in Table 8.5.2.2.2.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.2.3-2.

Table 8.5.2.2.3-2: Minimum performance of PHICH 4 Tx Antenna port

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	10 MHz	R.20	OP.1 TDD	EVA5	4 x 2 Medium	0.1	6.1

The normative reference for this requirement is TS 36.101 [2] clause 8.5.2.

8.5.2.2.4 Test description

8.5.2.2.2.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2

Channel Bandwidths to be tested: 10 MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.11.
- 2. The parameter settings for the cell are set up according to Table 8.5.2.2.3-1.

- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.2.2.2.4.3.

8.5.2.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.2.2.2.5-1.
- 2. In Each HARQ process (4 HARQ processes for UL/DL configuration 1), SS shall schedule PUSCH transmissions according to Annex A.2.3.1.1 Table A.2.3.1.1-1 via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions shall transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.2.2.2.4.2-1 indicates the transmissions for one cycle.
- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. DTX from the UE side is counted as successful ACK reception, while any transmission on these subframes is counted as NACKs.
- 4. Repeat steps 1 3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

If Pm-an is less than the value specified in table 8.5.2.2.2.5-1, pass the UE. Otherwise fail the UE.

Table 8.5.2.2.4.2-1: PHICH test pattern

Subframe Index	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
PDCCH		S			S		S			S										
PHICH												Α			Α		Α			Α
PUSCH			R?	R?				Т	Т				Т	Т				R?	R?	
HARQ		1	3	4	2		3	1	2	4		1	3	4	2		3	1	2	4
process																				

Note 1: This table gives an example test pattern for HARQ process for TDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

Note 3: TDD UL/DL configuration 1 is used here, special subframe is denoted as blue

8.5.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions:

Table 8.5.2.2.2.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, T	able 4.8.2.1.5-1		
Information Element	Value/remark	Comment	Condition
MAC-MainConfig-RBC ::= SEQUENCE {			
dl-SCH-Config SEQUENCE {}	Not present		
ul-SCH-Config SEQUENCE {			
maxHARQ-Tx	n2	Only one retransmission per UL HARQ	

8.5.2.2.5 Test requirement

For the parameters specified in Table 8.5.2.2.2.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.2.5-1.

Table 8.5.2.2.5-1: Test requirement of PHICH 4 Tx Antenna Port

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	10 MHz	R.20	OP.1 TDD	EVA5	4 x 2 Medium	0.1	7.1

8.5.2.2.2_1 TDD PHICH Transmit Diversity 4x2

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

8.5.2.2.2_1.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which a certain Hybrid Indicator detection error rate (i.e. missed detection of "NACK to ACK" and "ACK to NACK") of the specified reference measurement channels is achieved.

8.5.2.2.2_1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.5.2.2.2_1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Table 8.5.2.2.2_1.3-1: Test Parameters for PHICH

Param	eter	Unit	Transmit diversity				
Uplink downlink cor 1)	nfiguration (Note		1				
Special subframe (Note	•		4				
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA OCNG_RA	dB	-3				
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	-3				
PHICH do	uration		Normal				
Number of PHICH	groups (Note 3)		Ng = 1				
Cell	D		0				
PDCCH C	Content	with the pro aligned wi PDCCH res	ould be included oper information the A.3.6, other source shall be non-zero data.				
Unused RE-s	and PRB-s		CNG				
N_{oc} at ante		dBm/15kHz	-98				
Cyclic p	refix		Normal				
ACK/NACK fee			Multiplexing				
Note 1: as specified in Table 4 2-2 in TS 36 211 [8]							

Note 1: as specified in Table 4.2-2 in TS 36.211 [8]

Note 2: as specified in Table 4.2-1 in TS 36.211 [8]

Note 3: according to Clause 6.9 in TS 36.211 [8]

Note 4: PHICH power settings refer to PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

For the parameters specified in Table 8.5.2.2.2_1.3-1 the average probability of a miss-detecting ACK for NACK (Pman) shall be below the specified value in Table 8.5.2.2.2_1.3-2.

Table 8.5.2.2.2_1.3-2: Minimum performance of PHICH 4 Tx Antenna port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
					and correlation Matrix	Pm-an (%)	SNR (dB)
1	5 MHz	R.20-1	OP.1 TDD	EPA5	4 x 2 Medium	0.1	6.2

The normative reference for this requirement is TS 36.101 [2] clause 8.5.2.

8.5.2.2_1.4 Test description

8.5.2.2.2_1.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2

Channel Bandwidths to be tested: 5 MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.11.
- 2. The parameter settings for the cell are set up according to Table 8.5.2.2.2_1.3-1.

- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 8.5.2.2.2_1.4.3.

8.5.2.2.2_1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.5.2.2.2 1.5-1.
- 2. In Each HARQ process (4 HARQ processes for UL/DL configuration 1), SS shall schedule PUSCH transmissions according to Annex A.2.3.1.1 Table A.2.3.1.1-1 via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions shall transmit the associated ACKs. PHICH is set according to Annex 3.6 Table A.3.6-1. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.2.2.2_1.4.2-1 indicates the transmissions for one cycle.
- 3. SS will only monitor for uplink retransmissions due to ACK missed-detections. DTX from the UE side is counted as successful ACK reception, while any transmission on these subframes is counted as NACKs.
- 4. Repeat steps 1-3 for a duration sufficient to achieve statistical significance according to Annex G clause G.4 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).

If Pm-an is less than the value specified in table 8.5.2.2.2 1.5-1, pass the UE. Otherwise fail the UE.

Table 8.5.2.2.2_1.4.2-1: PHICH test pattern

Subframe Index	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
PDCCH		S			S		S			S										
PHICH												Α			Α		Α			Α
PUSCH			R?	R?				Т	Т				Т	Т				R?	R?	
HARQ		1	3	4	2		3	1	2	4		1	3	4	2		3	1	2	4
process																				

Note 1: This table gives an example test pattern for HARQ process for TDD PHICH test

Note 2: Following notation is used:

S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

Note 3: TDD UL/DL configuration 1 is used here, special subframe is denoted as blue

8.5.2.2.2 1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions:

Table 8.5.2.2.2_1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table	e 4.8.2.1.5-1		
Information Element	Value/remark	Comment	Condition
MAC-MainConfig-RBC ::= SEQUENCE {			
dl-SCH-Config SEQUENCE {}	Not present		
ul-SCH-Config SEQUENCE {			
maxHARQ-Tx	n2	Only one retransmission per UL HARQ	

8.5.2.2.2_1.5 Test requirement

For the parameters specified in Table 8.5.2.2.2_1.3-1 the average probability of a miss-detecting ACK for NACK (Pman) shall be below the specified value in Table 8.5.2.2.2_1.5-1.

Table 8.5.2.2.2_1.5-1: Test requirement of PHICH 4 Tx Antenna Port

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration	Referen	ce value
					and correlation Matrix	Pm-an (%)	SNR (dB)
1	5 MHz	R.20-1	OP.1 TDD	EPA5	4 x 2 Medium	0.1	6.2+TT

8.6 Demodulation of PBCH

RAN4 will specify the PBCH performance requirements and has recommended that these requirements do not need to be tested.

8.7 Sustained downlink data rate provided by lower layers

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test tolerances are undefined
- The minimum requirements are not confirmed and within []

8.7.1 FDD

8.7.1.1 FDD sustained data rate performance

8.7.1.1.1 Test purpose

The purpose of the test is to verify that the Layer 1 and Layer 2 correctly process in a sustained manner the received packets corresponding to the maximum number of DL-SCH transport block bits received within a TTI for the UE category indicated. The sustained downlink data rate shall be verified in terms of the success rate of delivered PDCP SDU(s) by Layer 2. The test case below specifies the RF conditions and the required success rate of delivered TB by Layer 1 to meet the sustained data rate requirement. The size of the TB per TTI corresponds to the largest possible DL-SCH transport block for each UE category using the maximum number of layers for spatial multiplexing. Transmission modes 1 and 3 are used with radio conditions resembling a scenario where sustained maximum data rates are available.

8.7.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE Release 9 and forward.

8.7.1.1.3 Minimum requirements

The parameters specified in Table 8.7.1.1.3-1 are valid for all FDD tests unless otherwise stated.

Table 8.7.1.1.3-1: Common Test Parameters (FDD)

Parameter	Unit	Value
Cyclic prefix		Normal
Cell ID		0
Inter-TTI Distance		1
Number of HARQ processes	Processes	Downlink: 8 Uplink: 8
Maximum number of HARQ transmission		Downlink: 4 Uplink: 1
Redundancy version coding sequence		{0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH	OFDM symbols	1

The requirements are specified in Table 8.7.1.1.3-3, with the addition of the parameters in Table 8.7.1.1.3-2 and the downlink physical channel setup according to Annex C.3.2. The PDCP SDU success rate shall be sustained during at least 300 frames.

Table 8.7.1.1.3-2: Test Parameters for sustained downlink data rate (FDD)

Parameter		Unit	Test 1	Test 2	Test 3,4	Test 3A		
Bandwidth		MHz	10	10	20	10		
Transmission m	ode		1	3	3	3		
Antenna configui	ration		1 x 2	2 x 2	2 x 2	2 x 2		
Propagation con-	dition		S	tatic propagation	tic propagation condition (Note 1)			
CodeBookSubsetRestriction bitmap			n/a	10	10	10		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3	-3		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0	-3	-3	-3		
$\hat{E}_{\scriptscriptstyle s}$ at antenna port		dBm/15kHz	-85	-85	-85	-85		
Symbols for unuse	d PRBs		[OCNG]	[OCNG]	[OCNG]	[OCNG]		
Note 1: No externa	al noise so	urces are applie	d	-				

Table 8.7.1.1.3-3: Minimum Requirement (FDD)

Test	UE Category	Number of bits of a DL-SCH	Measurement channel	Reference value						
		transport block received within		TB success						
		a TTI		rate [%]						
1	Category 1	10296	R31-1 FDD	95						
2	Category 2	25456	R31-2 FDD	95						
3	Category 3 (Note 1)	51024	R31-3 FDD	95						
3A	Category 3 (Note 2)	36696 (Note 4)	R31-3A FDD	85						
4	Category 4	75376 (Note 5)	R31-4 FDD	85						
5	Category 5	FFS	FFS	FFS						
Note 1:	If the operating band	under test does not	support 20 MHz cha	annel bandwidth,						
	then test is executed	according to Test 3/	۹.							
Note 2:	Applicable to operating									
Note 3:	For 2 layer transmiss	ions, 2 transport blo	cks are received wit	hin a TTI						
Note 4:	35160 bits for sub-fra	me 5								
Note 5:	71112 bits for sub-fra	me 5								
Note 6:	The TB success rate is defined as TB success rate = 100%*N _{DL_correct_rx} /									
	$(N_{DL_newtx} + N_{DL_retx})$, where N_{DL_newtx} is the number of newly transmitted DL									
	transport blocks, N _{DL_retx} is the number of retransmitted DL transport blocks,									
	and N _{DL_correct_rx} is the	number of correctly	received DL transp	ort blocks.						

The normative reference for this requirement is TS 36.101[2] clause 8.7.1

8.7.1.1.4 Test description

8.7.1.1.4.1 Initial conditions

Table 8.7.1.1.4.1-1: Applicable test and Transport Block Size for different UE categories

UE	Applicable	DL	UL	TB _{size} per	Number of	PDCP SDU size [bits]
Category	test	Measurement	Measurement	Codeword	PDCP SDU per	Note 3
		channel	channel		Codeword	
1	Test 1	[R31-1 FDD]	R.1-1 FDD	10296	1	8*FLOOR((TB _{size} -
						96)/8)
2	Test 2	[R31-2 FDD]	R.1-2 FDD	25456	3	8*FLOOR((TB _{size} –
						152)/24))
3	Test 3 (Note	[R31-3 FDD]	R.1-3 FDD	51024	5	8*FLOOR((TB _{size}
	1)					208)/40))
3	Test 3A	[R31-3A FDD]	R.1-3A FDD	36696	4	8*FLOOR((TB _{size} –
	(Note 2)			(Note 5)		184)/32))"
4	Test 4 (Note	[R31-4 FDD]	R.1-4 FDD	75376	7	8*FLOOR((TB _{size} -
	2)			(Note 6)		264)/56))
5	FFS	FFS	TBD	FFS	FFS	FFS

- Note 1: If the operating band under test does not support 20 MHz channel bandwidth, then test is executed according to Test 3A.
- Note 2: Applicable to operating bands supporting up to 10 MHz channel bandwidths.
- Note 3: Transport block size under test according to applicable Fixed Reference Channel for sustained data-rate test in annex A.3.9.
- Note 4: Each PDCP SDU is limited to 1500 octets (to keep below maximum SDU size of ESM as specified in TS 24.301 clause 9.9.4.12).

The PDCP SDU size of each PDCP SDU is:

PDCP SDU size = (TBsize - N*PDCP header size - AMD PDU header size - MAC header size - Size of RLC STATUS PDU) / N,

where PDCP header size is 16 bits for the RLC AM and 12-bit SN case; AMD PDU header size is CEIL[(16+(N-1)*12)/8] bytes which includes 16 bit standard AM header and (N-1) Length indicators; and MAC header size = R/R/E/LCID/F/L MAC subheader (24 bits for MAC SDU for RLC STATUS PDU with 15 bit LI) + R/R/E/LCID MAC subheader (8 bits for MAC SDU for RLC Data PDU) = 32 bits. The size of RLC STATUS PDU including one ACK_SN field and one NACK_SN field is 32 bits (if no STATUS PDU is sent or if the size of the STATUS PDU is less than 32 bits then padding will be used to fill the 32 bits). This gives: PDCP SDU size = 8*FLOOR((TBsize - N*16-8*CEIL((16+(N-1)*12)/8) - 64)/(8*N)) bits.

The calculation of PDCP SDU sizes does not consider timing advance MAC CE as timing advance is not transmitted by SS for RF test cases.

Note 5: 35160 bits for sub-frame 5 Note 6: 71112 bits for sub-frame 5

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: According to table 8.7.1.1.3-2.

- 1. Connect the SS to the UE antenna connector(s) as shown in TS 36.508 [7] Annex A, Figure A.3 for test 1 and Figure A.10 for tests 2-5 (without using faders and AWGN generators).
- 2. The parameter settings for the cell are set up according to Table 8.7.1.1.5-1 and Table 8.7.1.1.5-2.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.

5. Ensure the UE is in State 4 (Loopback activated) according to TS 36.508 [7] clause 4.5.4. Message contents are defined in clause 8.7.1.1.4.3.

8.7.1.1.4.2 Test procedure

- 1. The SS looks up TB_{size} in table 8.7.1.1.4.1-1 according to the UE category under test.
- 2. SS sets the counters N_{DL_newtx} , N_{DL_retx} , N_{UL_PDCP} , and ND_{DL_PDCP} to 0.
- 3. If PHY requests a new DL HARQ transmission this TTI, the SS creates one or more PDCP SDUs to fill up the TB [Note 1], depending on TB_{size}, in accordance with Table 8.7.1.1.4.1-1. and cipher the PDCP SDUs. The SS then concatenates the resultant PDCP PDUs to form an RLC PDU and then a MAC PDU. The SS then transmits the MAC PDU. The SS then increments the transmitted DL subframe (N_{DL_newtx}) by one and N_{DL_PDCP} by the number of PDCP SDUs included in the MAC PDU.
- 4. If PHY requests a DL HARQ retransmission in this TTI, the SS performs a HARQ retransmission and increments the retransmitted subframe (N_{DL retx}) by one. [Note 2]
- 5. Steps 3 to 4 are repeated at every TTI for at least [300] frames or until statistical significance is fulfilled according to [Annex G FFS] and the SS waits for [300ms] to let any HARQ retransmissions and RLC retransmissions to finish.
- 6. For each PDCP SDU received at the SS, if the content of the data matches that of the truncated version of the original PDCP SDU generated at the SS, the SS increments N_{UL PDCP} by one
- 7. The SS calculates the TB success rate as A = 100% * N_{DL_newtx} / (N_{DL_newtx} + N_{DL_retx})
- 8. The SS calculates the PDCP SDU loss as $B = N_{DL_PDCP} N_{UL_PDCP}$
- 9. The UE passes the test if $A \ge$ "corresponding TB success rate according to Table 8.7.1.1.3-3" and B = 0.
- NOTE 1: if there is RLC PDU retransmission in this TTI, the SS forms as many number of new PDCP SDUs to fill the rest of the TB.
- NOTE 2: the SS should prioritize the HARQ retransmissions over new HARQ transmissions. This is to minimize the RLC buffering/processing load at the UE in case of HARQ transmission error.

8.7.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 and 4.7A, with the following exceptions:

Table 8.7.1.1.4.3-1: CLOSE UE TEST LOOP (in the preamble)

Derivation Path: 36.509 clause 6.1			•
Information Element	Value/remark	Comment	Condition
Protocol discriminator	1111		
Skip indicator	0000		
Message type	1000000		
UE test loop mode	0000000	UE test loop mode A	
UE test loop mode A LB setup			1
Length of UE test loop mode A LB setup list in bytes	00000011	Length of one LB setup DRB (3 bytes)	
LB setup DRB	0 0 0 0 0 0 0 0, 0 0 1 0 1 0 0 0, 0 0 0 Q4 Q3 Q2 Q1 Q0	UL PDCP SDU size = 40 bits (5 bytes) Q4Q0 = Data Radio Bearer identity number for the default radio bearer. See 36.509 clause 6.1	
UE test loop mode B LB setup	Not present		1

Table 8.7.1.1.4.3-2: SecurityModeCommand (in the preamble)

Derivation Path: TS36.508 clause 4.6.1 table 4.6.1-1	19		
Information Element	Value/remark	Comment	Condition
SecurityModeCommand ::= SEQUENCE {			
criticalExtensions CHOICE {			
c1 CHOICE{			
securityModeCommand-r8 SEQUENCE {			
securityConfiguration SEQUENCE {			
cipheringAlgorithm	eea2		
nextHopChainingCount	Not present		
}			
nonCriticalExtension SEQUENCE {}	Not present		
}			
}			
}			
}			

8.7.1.1.5 Test requirement

The requirements are specified in Table 8.7.1.1.5-1. The PDCP SDU success rate shall be sustained during at least [100] frames.

Table 8.7.1.1.5-1: Test requirements for sustained downlink data rate (FDD)

Test	UE Category	Number of bits of a DL-SCH transport block received within a TTI per Codeword	Measurement channel	Number of PDCP SDU per Codeword	PDCP SDU size [Octets]	Reference value TB success rate [%]
1	Category 1	10296	R31-1 FDD	1	1275	95
2	Category 2	25456	R31-2 FDD	3	1054	95
3	Category 3 (Note 1)	51024	R31-3 FDD	5	1270	95
3A	Category 3 (Note 2)	36696 (Note4)	R31-3A FDD	4	1141	85
4	Category 4	75376 (Note5)	R31-4 FDD	7	1341	85

Note 1: If the operating band under test does not support 20 MHz channel bandwidth, then test is executed according to Test 3A.

Note 2: Applicable to operating bands supporting up to 10 MHz channel bandwidths

Note 3: For 2 layer transmissions, 2 transport blocks are received within a TTI

Note 4: 35160 bits for sub-frame 5

Note 5: 71112 bits for sub-frame 5

Note 6: The TB success rate is defined as TB success rate = $100\%*N_{DL_correct_rx}/(N_{DL_newtx} + N_{DL_retx})$, where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and $N_{DL_correct_rx}$ is the number of correctly received DL transport blocks.

Table 8.7.1.1.5-2: Test Parameters for sustained downlink data rate (FDD)

Parameter	Parameter		Test 1	Test 2	Test 3,4	Test 3A	
Bandwidth		MHz	10	10	20	10	
Transmission m	node		1	3	3	3	
Antenna configu	ration		1 x 2	2 x 2	2 x 2	2 x 2	
Propagation con	dition		S	tatic propagation	condition (Note	1)	
CodeBookSubsetRe bitmap	CodeBookSubsetRestriction bitmap		n/a	10	10	10	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3	-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB	0	-3	-3	-3	
$\hat{E}_{\scriptscriptstyle s}$ at antenna port		dBm/15kHz	-85+TT	-85 +TT	-85 +TT	-85 +TT	
Symbols for unused PRBs			[OCNG]	[OCNG]	[OCNG]	[OCNG]	
Note 1: No externa							

8.7.2 TDD

8.7.2.1 TDD sustained data rate performance

8.7.2.1.1 Test purpose

The purpose of the test is to verify that the Layer 1 and Layer 2 correctly process in a sustained manner the received packets corresponding to the maximum number of DL-SCH transport block bits received within a TTI for the UE category indicated. The sustained downlink data rate shall be verified in terms of the success rate of delivered PDCP SDU(s) by Layer 2. The test case below specifies the RF conditions and the required success rate of delivered TB by Layer 1 to meet the sustained data rate requirement. The size of the TB per TTI corresponds to the largest possible DL-SCH transport block for each UE category using the maximum number of layers for spatial multiplexing. Transmission modes 1 and 3 are used with radio conditions resembling a scenario where sustained maximum data rates are available.

8.7.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

8.7.2.1.3 Minimum requirements

The parameters specified in Table 8.7.1.1.3-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.2.1.3-1: Common Test Parameters (TDD)

Parameter	Unit	Value			
Uplink downlink configuration (Note 1)		5			
Special subframe configuration (Note 2)		4			
Cyclic prefix		Normal			
Cell ID		0			
Inter-TTI Distance		1			
Number of HARQ processes	Processes	Downlink: 7 Uplink: 1			
Maximum number of HARQ transmission		Downlink: 4 Uplink: 1			
Redundancy version coding sequence		{0,0,1,2} for 64QAM			
Number of OFDM symbols for PDCCH	OFDM symbols	1			
Note 1: as specified in Table 4.2-2 in TS 36.211 [4] Note 2: as specified in Table 4.2-1 in TS 36.211 [4]					

The requirements are specified in Table 8.7.2.1.3-3, with the addition of the parameters in Table 8.7.2.1.3-2 and the downlink physical channel setup according to Annex C.3.2. The PDCP SDU success rate shall be sustained during at least 300 frames.

Table 8.7.2.1.3-2: test parameters for sustained downlink data rate (TDD)

Parameter		Unit	Test 1	Test 2	Test 3,4	Test 3B
Bandwidth		MHz	10	10	20	15
Transmission m	ode		1	3	3	3
Antenna configui	ation		1 x 2	2 x 2	2 x 2	2 x 2
Propagation con	dition		S	tatic propagation	condition (Note	1)
CodeBookSubsetRestriction bitmap			n/a	10	10	10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	0	-3	-3	-3
$\hat{E}_{\scriptscriptstyle s}$ at antenna port		dBm/15kHz	-85	-85	-85	-85
Symbols for unused PRBs			[OCNG]	[OCNG]	[OCNG]	[OCNG]
ACK/NACK feedback mode			Bundling	Bundling	Bundling	Bundling
Note 1: No external noise sources are applied						

Table 8.7.2.1.3-3: Minimum requirement (TDD)

Test	UE Category	Number of bits of a DL-SCH	Measurement channel	Reference value				
		transport block received within		TB success				
		a TTI for		rate [%]				
		normal/special						
		sub-frame						
	0 1 1		DOL 4 TDD	05				
1	Category 1	10296/0	R31-1 TDD	95				
2	Category 2	25456/0	R31-2 TDD	95				
3	Category 3 (Note 1)	51024/0	R31-3 TDD	95				
3B	Category 3 (Note 2)	51024/0	R31-3B TDD	85				
4	Category 4	75376/0 (Note 4)	R31-4 TDD	90				
5	Category 5	FFS	FFS	FFS				
Note 1:	If the operating band then test is executed		• •	annel bandwidth,				
Note 2:	Applicable to operatir	ng bands supporting	up to 15 MHz chan	nel bandwidths.				
Note 3:	For 2 layer transmiss	ions, 2 transport blo	cks are received wit	hin a TTI				
Note 4:	71112 bits for sub-fra							
Note 5:	The TB success rate	is defined as TB suc	ccess rate = 100%*N	V _{DL_correct_rx} /				
	$(N_{DL_newtx} + N_{DL_retx}), v$	where N _{DL newtx} is the	number of newly tr	ansmitted DL				
	transport blocks, N _{DL_retx} is the number of retransmitted DL transport blocks,							
and N _{DL correct rx} is the number of correctly received DL transport blocks.								

The normative reference for this requirement is TS 36.101[2] clause 8.7.2

8.7.2.1.4 Test description

8.7.2.1.4.1 Initial conditions

Table 8.7.2.1.4.1-1: Applicable test and Transport Block Size for different UE categories

UE Category	Applicable test	DL Measurement channel	UL Measurement Channel	TB _{size} per Codeword	Number of PDCP SDU per Codeword for normal/special sub-frame	PDCP SDU size [bits] Note 3
1	Test 1	R31-1 TDD	R.1-1 TDD	10296	1/0	8*FLOOR((TB _{size} - 96)/8)
2	Test 2	R31-2 TDD	R.1-2 TDD	25456	3/0	8*FLOOR((TB _{size} - 152)/24))
3	Test 3 (Note 1)	R31-3 TDD	R.1-3 TDD	51024	5/0	8*FLOOR((TB _{size} – 208)/40))
3	Test 3B (Note 2)	R31-3B TDD	R.1-3B TDD	TBD	4/0	8*FLOOR((TB _{size} – 184)/32))"
4	Test 4 (Note 2)	R31-4 TDD	R.1-4 TDD	75376 (Note 5)	7/0	8*FLOOR((TB _{size} – 264)/56))
5	FFS	FFS	FFS	FFS	FFS	FFS

- Note 1: If the operating band under test does not support 20 MHz channel bandwidth, then test is executed according to Test 3B.
- Note 2: Applicable to operating bands supporting up to 15 MHz channel bandwidths
- Note 3: Transport block size under test according to applicable Fixed Reference Channel for sustained data-rate test in annex A.3.9.
- Note 4: Each PDCP SDU is limited to 1500 octets (to keep below maximum SDU size of ESM as specified in TS 24.301 clause 9.9.4.12).

The PDCP SDU size of each PDCP SDU is:

PDCP SDU size = (TBsize - N*PDCP header size - AMD PDU header size - MAC header size - Size of Timing Advance - Size of RLC STATUS PDU) / N,

where PDCP header size is 16 bits for the RLC AM and 12-bit SN case; AMD PDU header size is CEIL[(16+(N-1)*12)/8] bytes which includes 16 bit standard AM header and (N-1) Length indicators; and MAC header size = R/R/E/LCID/F/L MAC subheader (24 bits for MAC SDU for RLC STATUS PDU with 15 bit LI) + R/R/E/LCID MAC subheader (8 bits for MAC SDU for RLC data PDU) = 32 bits. The size of RLC STATUS PDU including one ACK_SN field and one NACK_SN field is 32 bits (if no STATUS PDU is sent or if the size of the STATUS PDU is less than 32 bits then padding will be used to fill the 32 bits). This gives: PDCP SDU size = 8*FLOOR((TBsize - N*16- 8*CEIL((16+(N-1)*12)/8) - 64)/(8*N)) bits.

The calculation of PDCP SDU sizes does not consider timing advance MAC CE as timing advance is not transmitted by SS for RF test cases.

Note 5: 71112 bits for sub-frame 5

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: According to table 8.7.2.1.3-2.

- 1. Connect the SS, to the UE antenna connector(s) as shown in TS 36.508 [7] Annex A, Figure A.3 for test 1 and Figure A.10 for tests 2-5 (without using faders and AWGN generators).
- 2. The parameter settings for the cell are set up according to Table 8.7.2.1.5-1 and Table 8.7.2.1.5-2.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.

- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 (Loopback activated) according to TS 36.508 [7] clause 4.5.4. Message contents are defined in clause 8.7.2.1.4.3.

8.7.2.1.4.2 Test procedure

- 1. The SS looks up TB_{size} in table 8.7.2.1.4.1-1 according to the UE category under test.
- 2. SS sets the counters N_{DL_newtx} , N_{DL_retx} , N_{UL_PDCP} , and ND_{DL_PDCP} to 0.
- 3. If PHY requests a new DL HARQ transmission this TTI, the SS creates one or more PDCP SDUs to fill up the TB [Note 1], depending on TB_{size} , in accordance with Table 8.7.2.1.4.1-1. and cipher the PDCP SDUs The SS then concatenates the resultant PDCP PDUs to form an RLC PDU and then a MAC PDU. The SS then transmits the MAC PDU. The SS then increments the transmitted DL subframe (N_{DL_newtx}) by one and N_{DL_PDCP} by the number of PDCP SDUs included in the MAC PDU.
- 4. If PHY requests a DL HARQ retransmission in this TTI, the SS performs a HARQ retransmission and increments the retransmitted subframe (N_{DL retx}) by one. [Note 2]
- 5. Steps 3 to 4 are repeated at every TTI for at least [300] frames or until statistical significance is fulfilled according to [Annex G FFS] and the SS waits for [300ms] to let any HARQ retransmissions and RLC retransmissions to finish.
- 6. For each PDCP SDU received at the SS, if the content of the data matches that of the truncated version of the original PDCP SDU generated at the SS, the SS increments N_{UL, PDCP} by one.
- 7. The SS calculates the TB success rate as $A = 100\% * N_{DL \text{ newtx}} / (N_{DL \text{ newtx}} + N_{DL \text{ retx}})$
- 8. The SS calculates the PDCP SDU loss as $B = N_{DL PDCP} N_{UL PDCP}$
- 9. The UE passes the test if $A \ge$ "corresponding TB success rate according to Table 8.7.2.1.3-3" and B = 0
- NOTE 1: if there is RLC PDU retransmission in this TTI, the SS forms as many number of new PDCP SDUs to fill the rest of the TB.
- NOTE 2: the SS should prioritize the HARQ retransmissions over new HARQ transmissions. This is to minimize the RLC buffering/processing load at the UE in case of HARQ transmission error.

8.7.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 and 4.7A, with the following exceptions:

Table 8.7.2.1.4.3-1: CLOSE UE TEST LOOP (in the preamble)

Derivation Path: 36.509 clause 6.1			
Information Element	Value/remark	Comment	Condition
Protocol discriminator	1111		
Skip indicator	0000		
Message type	1000000		
UE test loop mode	0000000	UE test loop mode A	
UE test loop mode A LB setup			
Length of UE test loop mode A LB setup list in	00000011	Length of one LB	
bytes		setup DRB (3 bytes)	
LB setup DRB	00000000,	UL PDCP SDU size	
	0 0 101 0 0 0,	= 40 bits (5 bytes)	
	0 0 0 Q4 Q3 Q2 Q1	Q4Q0 = Data	
	Q0	Radio Bearer	
		identity number for	
		the default radio	
		bearer. See 36.509	
		clause 6.1.	
UE test loop mode B LB setup	Not present		

Table 8.7.2.1.4.3-2: SecurityModeCommand (in the preamble)

Derivation Path: TS36.508 clause 4.6.1 table 4.6.1-19			
Information Element	Value/remark	Comment	Condition
SecurityModeCommand ::= SEQUENCE {			
criticalExtensions CHOICE {			
c1 CHOICE{			
securityModeCommand-r8 SEQUENCE {			
securityConfiguration SEQUENCE {			
cipheringAlgorithm	eea2		
nextHopChainingCount	Not present		
}			
nonCriticalExtension SEQUENCE {}	Not present		
}			
}			
}			
}			

8.7.2.1.5 Test requirement

The requirements are specified in Table 8.7.2.1.5-1. The PDCP SDU success rate shall be sustained during at least [100] frames.

Table 8.7.2.1.5-1: Test requirements for sustained downlink data rate (TDD)

Test	UE Category	Number of bits of a DL-SCH transport block received within a TTI per codeword for normal/special sub-frame	Measurement channel	Number of PDCP SDU per TTI per codeword for normal/special sub-frame	PDCP SDU size for normal/special sub-frame [Octets]	Reference value TB success rate [%]
1	Category 1	10296/0	R31-1 TDD	1/0	1275/0	95
2	Category 2	25456/0	R31-2 TDD	3/0	1054/0	95
3	Category 3 (Note 1)	51024/0	R31-3 TDD	5/0	1270/0	95
3B	Category 3 (Note 2)	51024	R31-3B TDD	4/0	1588	85
4	Category 4	75376/0	R31-4 TDD	7/0	1341/0	85
5	Category 5	FFS	FFS	FFS	FFS	FFS

Note 1: If the operating band under test does not support 20 MHz channel bandwidth, then test is executed according to Test 3B.

Note 2: Applicable to operating bands supporting up to 15 MHz channel bandwidths.

Note 3: For 2 layer transmissions, 2 transport blocks are received within a TTI

Note 4: 71112 bits for sub-frame 5

Note 5: The TB success rate is defined as TB success rate = $100\%*N_{DL_correct_rx}/(N_{DL_newtx} + N_{DL_retx})$, where N_{DL_newtx} is the number of newly transmitted DL transport blocks, N_{DL_retx} is the number of retransmitted DL transport blocks, and $N_{DL_correct_rx}$ is the number of correctly received DL transport blocks.

Table 8.7.2.1.5-2: test parameters for sustained downlink data rate (TDD)

Parameter		Unit	Test 1	Test 2	Test 3,4	Test 3B
Bandwidth		MHz				15
Transmission m	Transmission mode		1 3 3 3			3
Antenna configu	ration		1 x 2	2 x 2	2 x 2	2 x 2
Propagation con	dition		Static propagation condition (Note 1)			1)
CodeBookSubsetRe bitmap	estriction		n/a 10 10 10			10
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	-3	-3	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	0	-3	-3	-3
$\hat{E}_{\scriptscriptstyle s}$ at antenna	port	dBm/15kHz	-85+TT	-85+TT	-85+TT	-85+TT
Symbols for unused PRBs			[OCNG]	[OCNG]	[OCNG]	[OCNG]
Note 1: No extern	al noise so	urces are applie	d		•	

9 Reporting of Channel State Information

9.1 General

For the cases in this clause it is expected that the UE will not always detect the PDCCH, resulting in a statDTX for the uplink ACK/NACK transmission. The downlink configuration for evaluating CQI performance does not use retransmission. Therefore any BLER calculations must exclude any packets where the UE may have attempted to combine data from more than one transmission due to missed new data indicators from lost PDCCH transmissions

This section includes requirements for the reporting of channel state information (CSI).

The fading of the signals and the AWGN signals applied to each receiver antenna connector shall be uncorrelated. The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective test cases.

The UE performance in this section is considered to be operating band independent. Therefore, the required performance in the respective test cases can be verified in one of the operating bands supported by the UE under test. All the test points supported by the bands of the multiband UE (based on channel bandwidth, DL and UL configuration) need to be tested.

9.2 CQI Reporting under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in TS 36.213[10] clause 7.2.To account for sensitivity of the input SNR the reporting definition is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.2.1 CQI Reporting under AWGN conditions - PUCCH 1-0

9.2.1.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-0

9.2.1.1.1 Test purpose

To verify the variance of the wideband CQI reports is within the limits defined and a PDSCH BLER of 10% falls between the transport format based median CQI-1 and median CQI or the transport format based median CQI and median CQI +1.

9.2.1.1.2 Test applicability

This test applies to E-UTRA FDD UE release 8 and forward of UE category 2-5.

9.2.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.2.1.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI +1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI -1) shall be less than or equal to 0.1

Parameter		Unit	Test 1 Test 2		st 2	
Bandwidth		MHz	10			
PDSCH transmission	n mode		1			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0			
allocation	$ ho_{\scriptscriptstyle B}$	dB			0	
	Propagation condition and antenna configuration		AWGN (1 x 2)			
SNR (Note 2	.)	dB	0	1	6	7
$\hat{I}_{or}^{(j)}$			-98	-97	-92	-91
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98	
	Max number of HARQ transmissions		1			
Physical channel for CQI reporting			PUCCH Format 2			
PUCCH Report Type			4			
Reporting period	dicity	ms	•	N	o = 5	•

Table 9.2.1.1.3-1: PUCCH 1-0 static test

Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

9.2.1.1.4 Test description

cqi-pmi-ConfigurationIndex

9.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.2.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.2.1.1.4.3.

9.2.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration and the SNR according to Table 9.2.1.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband CQI value sent by the UE. The SS sends downlink MAC padding bits on the DL RMC. Continue transmission of the PDSCH until 2000 wideband

CQI reports have been gathered. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are also counted as wideband CQI reports.

- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the wideband CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. If Median CQI is not equal to 1 or 15 and 1800 or more of the wideband CQI values are in the range (Median CQI 1) \leq Median CQI \leq (Median CQI + 1) then continue with step 5, otherwise go to step 8.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI value and shall not react to the UE's wideband CQI reports. The SS sends downlink MAC padding bits on the DL RMC. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses. The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that HARQ process regardless whether it is an ACK or NACK. Continue to gather data until the number of filtered ACK+NACK responses reaches 1000.

For the filtered ACK and NACK responses if the ratio (NACK / ACK + NACK) \leq 0.1 then go to step 6, otherwise go to step 7.

6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI+1 value and shall not react to the UE's wideband CQI reports. The SS sends downlink MAC padding bits on the DL RMC. For any PDSCH, transmitted by the SS, record and filter the ACK, NACK and statDTX responses as in step 5 until 1000 filtered ACK+NACK responses are gathered.

If the ratio (NACK /ACK + NACK) > 0.1

then pass the UE for this test and go to step 9, otherwise go to step 8.

7. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI-1 value and shall not react to the UE's wideband CQI reports. The SS sends downlink MAC padding bits on the DL RMC. For any PDSCH, transmitted by the SS, record and filter the ACK, NACK and statDTX responses as in step 5 until 1000 filtered ACK+NACK responses are gathered.

If the ratio (NACK /ACK + NACK) \leq 0.1

then pass the UE for this test and go to step 9, otherwise go to step 8.

- 8. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 7) for the other SNR point as appropriate. Otherwise fail the UE.
- 9. If both tests have not been done, then repeat the same procedure (steps 1 to 8) with test conditions according to the table 9.2.1.1.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.2.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig-		
	DEFAULT		
}			

Table 9.2.1.1.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	6	(see Table 7.2.2- 1A in TS 36.213)	
cqi-FormatIndicatorPeriodic CHOICE {		,	
widebandCQI	NULL		
}			
ri-ConfigIndex	NULL	(see Table 7.2.2- 1B in TS 36.213)	
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

9.2.1.1.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 9.2.1.1.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.

9.2.1.2 TDD CQI Reporting under AWGN conditions – PUCCH 1-0

9.2.1.2.1 Test purpose

To verify the variance of the wideband CQI reports is within the limits defined and a PDSCH BLER of 10% falls between the transport format based on wideband median CQI-1 and wideband median CQI or the transport format based on wideband median CQI and wideband median CQI +1.

9.2.1.2.2 Test applicability

This test applies to E-UTRA TDD UE release 8 and forward of UE category 2-5.

9.2.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.2.1.2.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-2 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI +1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI -1) shall be less than or equal to 0.1.

Table 9.2.1.2.3-1: PUCCH 1-0 static test (TDD)

Parameter		Unit	Tes	Test 1 Test 2		st 2
Bandwidth		MHz	10			
PDSCH transmission	on mode		1			
Uplink downlink configuration					2	
Special subframe configuration			4			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB			0	
allocation	$ ho_{\scriptscriptstyle B}$	dB			0	
	Propagation condition and antenna configuration		AWGN (1 x 2)			
SNR (Note 2	2)	dB	0	1	6	7
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-97	-92	-91
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98	
Maximum number of transmission			1			
Physical channel for CQI reporting			PUSCH (Note 3)			
PUCCH Report Type			4			
Reporting periodicity		ms	N _P = 5			
cqi-pmi-Configurati					3	
ACK/NACK feedbac	ck mode		Multiplexing			

- Note 1: Reference measurement channel according to clause A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

9.2.1.2.4 Test description

9.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.2.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.2.1.2.4.3.

9.2.1.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration and the SNR according to Table 9.2.1.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband CQI value sent by the UE. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH.Continue transmission of the PDSCH until 2000 wideband CQI reports have been gathered. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. If Median CQI is not equal to 1 or 15 and 1800 or more of the wideband CQI values are in the range (Median CQI 1) \leq Median CQI \leq (Median CQI + 1) then continue with step 5, otherwise go to step 8.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI value and shall not react to the UE's wideband CQI reports. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses. In case statDTX can not be differentiated from NACK due to multiplexing effect, evaluate the feedback as a NACK The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that HARQ process regardless whether it is an ACK or NACK. Continue to gather data until the number of filtered ACK+NACK responses reaches 1000.

For the filtered ACK and NACK responses if the ratio (NACK / ACK + NACK) \leq 0.1 then go to step 6, otherwise go to step 7.

6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI+1 value and shall not react to the UE's wideband CQI reports. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH. For any PDSCH, transmitted by the SS, record and filter the ACK, NACK and statDTX responses as in step 5 until 1000 filtered ACK+NACK responses are gathered. In case statDTX can not be differentiated from NACK due to multiplexing effect, evaluate the feedback as a NACK

If the ratio (NACK / ACK + NACK) > 0.1

then pass the UE for this test and go to step 9, otherwise go to step 8.

7. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI-1 value and shall not react to the UE's wideband CQI reports. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH. For any PDSCH, transmitted by the SS, record and filter the ACK, NACK and statDTX responses as in step 5 until 1000 filtered ACK+NACK responses are gathered. In case statDTX can not be differentiated from NACK due to multiplexing effect, evaluate the feedback as a NACK

If the ratio (NACK /ACK + NACK) \leq 0.1

then pass the UE for this test and go to step 9, otherwise go to step 8.

8. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 7) for the other SNR point as appropriate. Otherwise fail the UE.

9. If both tests have not been done, then repeat the same procedure (steps 1 to 8) with test conditions according to the table 9.2.1.2.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.2.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.2.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.2.1.2.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	3		
cqi-FormatIndicatorPeriodic CHOICE {			
widebandCQI	NULL		
}			
ri-ConfigIndex	NULL		
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.2.1.2.4.3-3: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	sa2		
specialSubframePatterns	ssp4		
}			

9.2.1.2.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 9.2.1.2.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.

9.2.2 CQI Reporting under AWGN conditions - PUCCH 1-1

9.2.2.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-1

9.2.2.1.1 Test purpose

To verify the variance of the wideband spatial differential CQI between codeword #0 and codeword #1 are within the limits defined and for both codeword #0 and codeword #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 - 1$ and median $CQI_1 - 1$ shall be less than or equal to 0.1 and the PDSCH BLER using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

9.2.2.1.2 Test applicability

This test applies to E-UTRA FDD UE release 8 and forward of UE category 2-5.

9.2.2.1.3 Minimum conformance requirements

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

For the parameters specified in table 9.2.2.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2.2 in TS 36.213[10]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 +1} for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 -1 and median CQI_1 -1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 +1 and median CQI_1 +1 shall be greater than or equal to 0.1.

Table 9.2.2.1.3-1: PUCCH 1-1 static test (FDD)

Parameter		Unit	Test 1 Test 2		st 2	
Bandwidth		MHz	10			
PDSCH transmission mode					4	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB			-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB			-3	
Propagation condit antenna configur				Clause I	B.1 (2 x 2)	
CodeBookSubsetRestriction bitmap			010000			
SNR (Note 2	2)	dB	10	11	16	17
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-82	-81
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98	
Max number of H transmission					1	
Physical channel for reporting	CQI/PMI			PUCCH	Format 2	
PUCCH Report Type for CQI/PMI			2			
PUCCH Report Type for RI					3	
Reporting periodicity		ms	N _P = 5			
cqi-pmi-Configurati	onIndex		6			
ri-ConfigInde	X		1 (Note 3)			

Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 3: It is intended to have UL collisions between RI reports and HARQ-ACK, since the RI reports shall not be used by the eNB in this test.

9.2.2.1.4 Test description

9.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.2.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.2.2.1.4.3.

9.2.2.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration and the SNR according to Table 9.2.2.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC including two codewords with spatial multiplexing both using the transport format according to CQI value 8 of Annex A.4 Table A.4-3a and keep them regardless of the wideband CQI value sent by the UE. The SS sends downlink MAC padding bits on the DL RMC. The SS shall use a fixed precoding matrix specified by the bitmap parameter codebookSubsetRestriction. Continue transmission of the PDSCH until 2000 wideband and wideband spatial differential CQI reports have been gathered. In this process the SS collects wideband and wideband spatial differential CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are also counted as wideband and wideband spatial differential CQI reports respectively.
- 3. From each wideband CQI report, wideband CQI₀ is defined as Wideband CQI of codeword #0 and wideband CQI₁ is calculated according to clause 9.2.2.1.3. Codeword 1 offset level is selected from {0,1,2,3,-4,-3,-2,-1}. Set up a relative frequency distribution for the wideband CQI-values, reported. Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side) for each codewords. Wideband Median CQI₀ is based on the wideband CQI₀ and wideband median CQI₁ is based on the wideband CQI₁.
- 4. If Median CQI is not equal to 1 or 15 and 1800 or more of the wideband CQI₁ values are in the range (Median CQI₁ 1) \leq Median CQI \leq (Median CQI₁ + 1) then continue with step 5, otherwise go to step 7.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC including two codewords with spatial multiplexing where the transport format of codeword #0 is according to the wideband median- CQI₀—1 and the transport format of codeword #1 is according to the wideband median CQI₁—1. The SS sends downlink MAC padding bits on the DL RMC. The SS shall not react to the any wideband CQI reports from UE and shall use a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses for each codewords respectively. The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that HARQ process regardless whether it is an ACK or NACK. Continue to gather data until the number of filtered ACK+NACK responses for each codewords reaches 1000.

If the ratio (NACK /ACK + NACK $\,\,) \leq 0.1$ for both codeword #0 and codeword #1

then and go to step 6, otherwise go to step 7.

6. The SS shall transmit PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC including two codewords with spatial multiplexing where the transport format of codeword #0 is according to the wideband median-CQI₀ + 1 and the transport format of codeword #1 is according to the wideband median-CQI₁ + 1. The SS sends downlink MAC padding bits on the DL RMC. The SS shall not react to the any wideband CQI reports from UE and shall use a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses for each codewords respectively. The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that HARQ process regardless whether it is an ACK or NACK. Continue to gather data until the number of filtered ACK+NACK responses for each codewords reaches 1000.

If the ratio (NACK /ACK + NACK $\) \ge 0.1$ for both codeword #0 and codeword #1

then pass the UE for this test and go to step 8, otherwise go to step 7.

- 7. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 6) for the other SNR point as appropriate. Otherwise fail the UE.
- 8. If both tests have not been done, then repeat the same procedure (steps 1 to 7) with test conditions according to the table 9.2.2.1.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.2.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.2.2.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	010000		
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 9.2.2.1.4.3-2: PDSCH-ConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {			
p-a	dB-3		
}			

Table 9.2.2.1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	6	(see Table 7.2.2- 1A in TS 36.213)	
cgi-FormatIndicatorPeriodic CHOICE {		,	
widebandCQI	NULL		
}			
ri-ConfigIndex	1	(see Table 7.2.2- 1B in TS 36.213)	
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

9.2.2.1.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 9.2.2.1.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.

9.2.2.2 TDD CQI Reporting under AWGN conditions – PUCCH 1-1

9.2.2.2.1 Test purpose

To verify the variance of the wideband spatial differential CQI between codeword #0 and codeword #1 are within the limits defined and for both codeword #0 and codeword #1, the PDSCH BLER using the transport format indicated by the respective wideband median $CQI_0 - 1$ and wideband median $CQI_1 - 1$ shall be less than or equal to 0.1 and the PDSCH BLER using the transport format indicated by the respective wideband median $CQI_0 + 1$ and wideband median $CQI_1 + 1$ shall be greater than or equal to 0.1.

9.2.2.2.2 Test applicability

This test applies to E-UTRA TDD UE release 8 and forward of UE category 2-5.

9.2.2.2.3 Minimum conformance requirements

For the parameters specified in table 9.2.2.2.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2.2 in TS 36.213[10]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 – Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 +1} for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 -1 and median CQI_1 -1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 +1 and median CQI_1 +1 shall be greater than or equal to 0.1.

Table 9.2.2.2.3-1: PUCCH 1-1 static test (TDD)

Unit	Tes	Test 1 Test 2		st 2
MHz	10			
			4	
			2	
			4	
dB			-3	
dB			-3	
		Clause	B.1 (2 x 2)	
	010000			
dB	10	11	16	17
dB[mW/15kHz]	-88 -87 -82		-81	
dB[mW/15kHz]	-6	98	-9	98
			1	
	PUSCH (Note 3)			
	2			
ms	N _P = 5			
	3			
	•	805 (Note 4)	
		Multi	plexing	
	dB dB dB dB dB[mW/15kHz] dB[mW/15kHz]	dB dB 10 dB[mW/15kHz] -88 dB[mW/15kHz] -9	MHz dB dB Clause 01 dB 10 11 dB[mW/15kHz] -88 -87 dB[mW/15kHz] -98 PUSCH ms Ni 805 (Multi	MHz 10 4 2 4 dB -3 dB -3 Clause B.1 (2 x 2) 010000 dB 10 11 16 dB[mW/15kHz] -88 -87 -82 dB[mW/15kHz] -98 -98 1 PUSCH (Note 3) 2 ms N _P = 5

- Note 1: Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.
- Note 4: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.2.2.2.4 Test description

9.2.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.2.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H1 and H.3.2.

- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.2.2.2.4.3.

9.2.2.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration and the SNR according to Table 9.2.2.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC including two codewords with spatial multiplexing both using the transport format according to CQI value 8 of Annex A.4 Table A.4-3a and keep them regardless of the wideband CQI value sent by the UE. The SS sends downlink MAC padding bits on the DL RMC. The SS shall use a fixed precoding matrix specified by the bitmap parameter codebookSubsetRestriction. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH. Continue transmission of the PDSCH until 2000 wideband and wideband spatial differential CQI reports have been gathered. In this process the SS collects wideband and wideband spatial differential CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband and wideband spatial differential CQI reports respectively.
- 3. From each wideband CQI report, wideband CQI_0 is defined as Wideband CQI of codeword #0 and wideband CQI_1 is calculated according to clause 9.2.2.2.3. Codeword 1 offset level is selected from $\{0,1,2,3,-4,-3,-2,-1\}$. Set up a relative frequency distribution for the wideband CQI-values, reported. Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side) for each codewords. Wideband Median CQI_0 is based on the wideband CQI_0 and wideband median CQI_1 is based on the wideband CQI_1 .
- 4. If Median CQI is not equal to 1 or 15 and 1800 or more of the wideband CQI₁ values are in the range (Median CQI₁ 1) \leq Median CQI₂ \leq (Median CQI₁ + 1) then continue with step 5, otherwise go to step 7.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC including two codewords with spatial multiplexing where the transport format of codeword #0 is according to the wideband median- CQI₀—1 and the transport format of codeword #1 is according to the wideband median CQI₁—1. The SS sends downlink MAC padding bits on the DL RMC. The SS shall not react to the any wideband CQI reports from UE and shall use a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses for each codewords respectively. *In case statDTX can not be differentiated from NACK due to multiplexing effect, evaluate the feedback as a NACK* The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that HARQ process regardless whether it is an ACK or NACK. Continue to gather data until the number of filtered ACK+NACK responses for each codewords reaches 1000.

If the ratio (NACK /ACK + NACK) \leq 0.1

then, and go to step 6, otherwise go to step 7.

6. The SS shall transmit PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC including two codewords with spatial multiplexing where the transport format of codeword #0 is according to the wideband median-CQI₀ + 1 and the transport format of codeword #1 is according to the wideband median-CQI₁ + 1. The SS sends downlink MAC padding bits on the DL RMC. The SS shall not react to the any wideband CQI reports from UE and shall use a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses for each codewords respectively. *In case statDTX can not be differentiated from NACK due to multiplexing effect, evaluate the feedback as a NACK* The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that

HARQ process regardless whether it is an ACK or NACK. Continue to gather data until the number of filtered ACK+NACK responses for each codewords reaches 1000.

If the ratio $(NACK / ACK + NACK) \ge 0.1$

then pass the UE for this test and go to step 8, otherwise go to step 7.

- 7. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 6) for the other SNR point as appropriate. Otherwise fail the UE.
- 8. If both tests have not been done, then repeat the same procedure (steps 1 to 7) with test conditions according to the table 9.2.2.2.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.2.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.2.2.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	010000		
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 9.2.2.2.4.3-2: PDSCH-ConfigDedicated-DEFAULT

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-6 PDSCH-ConfigDedicated-DEFAULT					
Information Element	Value/remark	Comment	Condition		
PDSCH-ConfigDedicated-DEFAULT ::=					
SEQUENCE {					
p-a	dB-3				
}					

Table 9.2.2.2.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	3		
cqi-FormatIndicatorPeriodic CHOICE {			
widebandCQI	NULL		
}			
ri-ConfigIndex	805		
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.2.2.2.4.3-4: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa2		
specialSubframePatterns	Ssp4		
}			

9.2.2.2.5 Test requirement

The pass fail decision is as specified in the test procedure in clause 9.2.1.2.4.2.

There are no parameters in the test setup or measurement process whose variation impacts the results so there are no applicable test tolerances for this test.

9.3 CQI Reporting under fading conditions

9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on any one of the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set of TS 36.213[10]. To account for sensitivity of the input SNR the sub-band CQI reporting under frequency selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.1.1 CQI Reporting under fading conditions – PUSCH 3-0

9.3.1.1.1 FDD CQI Reporting under fading conditions – PUSCH 3-0

9.3.1.1.1.1 Test purpose

To verify that preferred sub-bands can be used for frequently-selective scheduling.

9.3.1.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.3.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.3.1.1.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.1.1.1.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band:
- b) the ratio of the throughput obtained when transmitting a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI. The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213[10] that corresponds to the sub-band size.

Table 9.3.1.1.3-1: Sub-band test for single antenna transmission (FDD)

Parameter	Unit	Tes	st 1	Tes	st 2
Bandwidth	MHz		10 N	ИНz	
Transmission mode			1 (po	ort 0)	
SNR (Note 3)	dB	9	10	14	15
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-89	-88	-84	-83
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98 -98		98	
		Clause	B.2.4 wit	th $\tau_d = 0$).45 <i>μ</i> s,
Propagation channel		$a = 1, f_D = 5 \text{ Hz}$			
Correlation		Full			
Reporting interval	ms	5			
CQI delay	ms	8			
Reporting mode		PUSCH 3-0			
Max number of HARQ transmissions			•	1	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Table 9.3.1.1.1.3-2: Minimum requirement (FDD)

Parameter	Test 1	Test 2
α[%]	2	2
β [%]	55	55
γ	1.1	1.1
UE Category	1-5	1-5

9.3.1.1.4 Test description

9.3.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.3.1.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.1.1.1.4.3.

9.3.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration and the SNR according to Table 9.3.1.1.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI reports for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI and full-size subband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. Check if "2000* α %/100 \leq number of CQI reports with index 0 for each full-size subband \leq 2000* β %/100". (2000= No of full-size subband reports, 100 because of %) If yes, continue with step5, otherwise goto step 7.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI value in an each TTI randomly selected full-size subband regardless of UE wideband and full-size subband CQI report. Note that each full-size subband is selected in equal probability. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median}.
- 6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the highest UE reported full-size subband CQI value in one full-size subband selected among the subbands in which UE reports the highest full-size subband CQI. Subband differential CQI offset level is selected from {0, 1, 2, -1}. Note that the SS shall send PDSCH in the same full-size subband until next UE report is available. In case when same full-size subbands are reported subsequently as subbands with highest full-size subband CQI, the SS shall select for transmission a different subband with respect to the last selection. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS

schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput and (NACK /(ACK + NACK)) according to Annex G.5.3. Declare the throughput as $t_{subband}$. If the ratio ($t_{subband}$ / t_{median}) $\geq \gamma$ and (NACK /(ACK + NACK)) \geq 0.05 , pass the UE for this test and go to step 8. Otherwise, go to step 7.

- 7. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 6) for the other SNR point as appropriate. Otherwise fail the UE.
- 8. If both tests have not been done, then repeat the same procedure (steps 1 to 7) with test conditions according to the table 9.3.1.1.1.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.3.1.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.1.1.1.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3					
Information Element	Value/remark	Comment	Condition		
CQI-ReportConfig-DEFAULT ::= SEQUENCE {					
cqi-ReportModeAperiodic	rm30				
nomPDSCH-RS-EPRE-Offset	0				
cqi-ReportPeriodic	Not present				
}					
}					

9.3.1.1.5 Test requirement

Table 9.3.1.1.1.5-1: Test requirement (FDD)

Parameter	Test 1	Test 2
α[%]	2	2
β [%]	55	55
γ	1.09	1.09
BLER	0.05	0.05

To pass the test, α and β and γ and BLER must be fulfilled.

To pass the test, Test 1 and Test 2 must be passed.

To pass the test, one **or** the other SNR point within one test must be fulfilled.

9.3.1.1.2 TDD CQI Reporting under fading conditions – PUSCH 3-0

9.3.1.1.2.1 Test purpose

To verify that preferred sub-bands can be used for frequently-selective scheduling.

9.3.1.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.3.1.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.3.1.1.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.1.1.2.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each available downlink transmission instance]. The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213[10] that corresponds to the sub-band size.

Table 9.3.1.1.2.3-1: Sub-band test for single antenna transmission (TDD)

Pa	rameter	Unit	Tes	st 1	Tes	st 2
Ва	ndwidth	MHz		10 N	ИHz	
Transm	ission mode			1 (po	ort 0)	
	k downlink				2	
	figuration				=	
	al subframe			4	4	
	figuration					
	SNR	dB	9	10	14	15
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-6	98	-9	8
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-89	-88	-84	-83
Dropoge	ation channel		Clause	B.2.4 wi	th $\tau_d = 0$.45 μs
Propaga	ation channel			a = 1, f	$_D = 5 \mathrm{Hz}$	
Co	rrelation				ull	
Repor	ting interval	ms	5			
Minimu	m CQI delay	ms		10 c		
	rting mode			PUSC	H 3-0	
	nber of HARQ		1			
	smissions		'			
	.CK feedback		Multiplexing			
	mode			'		
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)						
Note 2:						
Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.						

Table 9.3.1.1.2.3-2: Minimum requirement (TDD)

Parameter	Test 1	Test 2
α [%]	2	2
β [%]	55	55
γ	1.1	1.1
UE Category	1-5	1-5

9.3.1.1.2.4 Test description

9.3.1.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.3.1.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.1.1.2.4.3.

9.3.1.1.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration and the SNR according to Table 9.3.1.1.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and full-size subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI report for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #2 and subframe #7 to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI and full-size subband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. For each subband, if subband CQI of index 0 is reported, at least α % but less than β % of 2000 full-size subband CQI report, then continue to step 5, otherwise, go to step 7.
- 5. The SS shall send PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI value in an each available downlink transmission instance randomly selected full-size subband regardless of UE wideband and subband CQI report. Note that each full-size subband is selected in equal probability. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission in subframe #2 and subframe #7 to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB

allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3 Declare the throughput as t_{modium} .

- 6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the highest UE reported full-size subband CQI value in one full-size subband selected among the sub-bands in which UE report the highest full-size subband CQI. Subband differential CQI offset level is selected from $\{0, 1, 2, -1\}$. Note that the SS shall send PDSCH in the same full-size subband until next UE report is available. In case when same full-size subbands are reported subsequently as subbands with highest full-size subband CQI, the SS shall select for transmission a different subband with respect to the last selection. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission in subframe #2 and subframe #7 to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput and (NACK /(ACK + NACK)) according to Annex G.5.3. Declare the throughput as $t_{subband}$. If the ratio ($t_{subband}$ / t_{median}) $\geq \gamma$ and (NACK /(ACK + NACK)) \geq 0.05, pass the UE and go to step 8. Otherwise, go to step 7.
- 7. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 6) for the other SNR point as appropriate. Otherwise fail the UE.
- 8. If both tests have not been done, then repeat the same procedure (steps 1 to 7) with test conditions according to the table 9.3.1.1.2.3-1 for the other test as appropriate.

9.3.1.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.3.1.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.1.1.2.4.3-2: CQI-ReportConfig-DEFAULT

Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm30		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			
}			

Table 9.3.1.1.2.4.3-3: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa2		
specialSubframePatterns	Ssp4		
}			

9.3.1.1.2.5 Test requirement

Table 9.3.1.1.2.5-1: Test requirement (TDD)

Parameter	Test 1	Test 2
α[%]	2	2
β [%]	55	55
γ	1.09	1.09
BLER	0.05	0.05

To pass the test, α and β and γ and BLER must be fulfilled.

To pass the test, Test 1 and Test 2 must be passed.

To pass the test, one **or** the other SNR point within one test must be fulfilled.

9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by a double-sided percentile of the reported CQI, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI. To account for sensitivity of the input SNR the CQI reporting under frequency non-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.2.1 CQI Reporting under fading conditions – PUCCH 1-0

9.3.2.1.1 FDD CQI Reporting under fading conditions – PUCCH 1-0

9.3.2.1.1.1 Test purpose

To verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling

9.3.2.1.1.2 Test applicability

This test applies to E-UTRA FDD UE release 8 of UE category 2-5.

9.3.2.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.3.2.1.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.2.1.1.3-2 and by the following

- a) CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband
 CQI index and that obtained when transmitting a fixed transport format configured according to the wideband
 CQI median shall be ≥ γ;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of 36.213 [10] that corresponds to the maximum transmission configuration (Table 5.6-1).

Table 9.3.2.1.1.3-1 Fading test for single antenna (FDD)

Parameter	Unit	Test 1 Test 2		st 2	
Bandwidth	MHz	10 MHz			
Transmission mode			1 (po	ort 0)	
SNR (Note 3)	dB	6	7	12	13
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-92	-91	-86	-85
$N_{oc}^{(j)}$	dB[mW/15kHz]	-9	98	-9	8
Propagation channel		EPA5			
Correlation		High			
Reporting mode		PUCCH 1-0			
Reporting periodicity	ms	$N_{P}=2$			
CQI delay	ms	8			
Physical channel for CQI reporting		PUSCH (Note 4)			
PUCCH Report Type		4			
cqi-pmi- ConfigurationIndex		1			
Max number of HARQ transmissions		1			

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A 5 1 1

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.

Table 9.3.2.1.1.3-2 Minimum requirement (FDD)

Parameter	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	2-5	2-5

9.3.2.1.1.4 Test description

9.3.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.3.2.1.1.3-1.

- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.2.1.1.4.3.

9.3.2.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.2.1.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband CQI value sent by the UE. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #1,#3,#5 and subframe #7 according to Annex A.4-10. The UE will send ACK/NACK and periodic CQI report using PUSCH Continue transmission of the PDSCH until 2000 wideband CQI reports have been gathered. In this process the SS collects wideband CQI reports every 2 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, reported. Calculate the median value (wideband Median CQI is the wideband CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. If less than (100-α)/100*2000 of the wideband CQI values are in the range (Median CQI 1) ≤ Median CQI ≤ (Median CQI + 1) then continue with step 5, otherwise go to step 7.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI value regardless of UE wideband CQI report. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #1,#3,#5 and subframe #7 according to Annex A.4-10. The UE will send ACK/NACK and periodic CQI report using PUSCH. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median} .
- 6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband CQI value reported from UE. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #1,#3,#5 and subframe #7 according to Annex A.4-10. The UE will send ACK/NACK and periodic CQI report using PUSCH. Measure the average throughput according to Annex G.5.3. Declare the throughput as $t_{wideband}$. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses. The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that HARQ process regardless whether it is an ACK or NACK.
 - If the ratio ($t_{wideband} / t_{median}$) $\geq \gamma$ and ratio (NACK /(ACK + NACK)) is greater or equal to 0.02, then pass the UE for this test and go to step 8. Otherwise go to step 7.
- 7. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 6) for the other SNR point as appropriate. Otherwise fail the UE.
- 8. If both tests have not been done, then repeat the same procedure (steps 1 to 7) with test conditions according to the table 9.3.2.1.1.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.3.2.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.2.1.1.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	1	(see Table 7.2.2- 1A in TS 36.213)	
cqi-FormatIndicatorPeriodic CHOICE {			
widebandCQI	NULL		
}			
ri-ConfigIndex	NULL		
		(see Table 7.2.2- 1B in TS 36.213)	
simultaneousAckNackAndCQI	FALSE		
}			
}			

9.3.2.1.1.5 Test requirement

Table 9.3.2.1.1.5-1 Test requirement (FDD)

Parameter	Test 1	Test 2
α[%]	20	20
γ	1.04	1.04
BLER	0.02	0.02

To pass the test, α and γ and BLER must be fulfilled.

To pass the test, Test 1 and Test 2 must be passed.

To pass the test, one **or** the other SNR point within one test must be fulfilled.

9.3.2.1.2 TDD CQI Reporting under fading conditions – PUCCH 1-0

9.3.2.1.2.1 Test purpose

To verify that the UE is tracking the channel variations and selecting the transport format according to the prevailing channel state for frequently non-selective scheduling

9.3.2.1.2.2 Test applicability

This test applies to E-UTRA TDD UE release 8 .of UE category 2-5.

9.3.2.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.3.2.1.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.2.1.2.3-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband
 CQI index and that obtained when transmitting a fixed transport format configured according to the wideband
 CQI median shall be ≥ γ;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of 36.213[10] that corresponds to the maximum transmission configuration (Table 5.6-1).

Table 9.3.2.1.2.3-1: Fading test for single antenna (TDD)

Pa	rameter	Unit	Tes	st 1	Tes	st 2
Ва	ndwidth	MHz	10 MHz			
Transm	nission mode		1 (port 0)			
	k downlink		2			
	figuration					
	al subframe			4	4	
	figuration					ı
	SNR	dB	6	7	12	13
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-9	8	-9	8
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-92	-91	-86	-85
Propaga	ation channel			EP	A5	
Co	rrelation				gh	
	rting mode			PUCC	CH 1-0	
	ng periodicity	ms		N_{P}	= 5	
	QI delay	ms		10 c	or 11	
	al channel for			DUSCH	(Note 4)	
	reporting			1 03011	(11016 4)	
	Report Type			4	4	
	qi-pmi- urationIndex			;	3	
	nber of HARQ					
trans	smissions			•	1	
ACK/NA	CK feedback			N /114:	lassina.	
	mode			ινιαιτιρ	lexing	
Note 1:	Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)					
Note 2:						
Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.						
Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.						

Table 9.3.2.1.2.3-2: Minimum requirement (TDD)

Parameter	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	2-5	2-5

9.3.2.1.2.4 Test description

9.3.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.3.2.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.2.1.2.4.3.

9.3.2.1.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.2.1.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband CQI value sent by the UE. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH Continue transmission of the PDSCH until 2000 wideband CQI reports have been gathered. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, reported. Calculate the median value (wideband Median CQI is the wideband CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. If less than (100-α)/100*2000 of the wideband CQI values are in the range (Median CQI 1) ≤ Median CQI ≤ (Median CQI + 1) then continue with step 5, otherwise go to step 7.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband median-CQI value regardless of UE wideband CQI report. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH.Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Declare the throughput as t_{median} .

- 6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the wideband CQI value reported from UE. The SS sends downlink MAC padding bits on the DL RMC. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #2 and subframe #7 according to Annex A.4-11. The UE will send ACK/NACK and periodic CQI report using PUSCH Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Declare the throughput as $t_{wideband}$. For any PDSCH transmitted by the SS, record the associated ACK, NACK and statDTX responses. The responses are then filtered as follows: for the sequence of responses for each HARQ process, discard all the statDTX responses. If the number of consecutive discarded statDTX for any one process is an odd number including one, also discard the next response for that HARQ process regardless whether it is an ACK or NACK.

 If the ratio $(t_{wideband} / t_{median}) \ge \gamma$ and ratio (NACK /(ACK + NACK)) is greater or equal to 0.02, then pass the
- 7. If both SNR points of the test have not been tested, then repeat the same procedure (steps 1 to 6) for the other SNR point as appropriate. Otherwise fail the UE.
- 8. If both tests have not been done, repeat the same procedure (steps 1 to 7) with test conditions according to the table 9.3.2.1.2.3-1 for the other test as appropriate.

9.3.2.1.2.4.3 Message contents

UE and go to step 8. Otherwise go to step 7.

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.3.2.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.2.1.2.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
	Valorate and	0	0
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	3		
		(see Table 7.2.2- 1C in TS 36.213)	
cqi-FormatIndicatorPeriodic CHOICE {			
widebandCQI	NULL		
}			
ri-ConfigIndex	NULL		
-		(see Table 7.2.2- 1B in TS 36.213)	
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.3.2.1.2.4.3-3: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa2		
specialSubframePatterns	Ssp4		
}			

9.3.2.1.2.5 Test requirement

Table 9.3.2.1.1.5-1 Test requirement (TDD)

Parameter	Test 1	Test 2
<i>α</i> [%]	20	20
γ	1.04	1.04
BLER	0.02	0.02

To pass the test, α and γ and BLER must be fulfilled.

To pass the test, Test 1 and Test 2 must be passed.

To pass the test, one **or** the other SNR point within one test must be fulfilled.

9.3.3 Frequency-selective interference

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective interference conditions is determined by a double-sided percentile of the reported differential CQI offset level +2 for a preferred sub-band, and the relative increase of the throughput obtained when transmitting on any one of the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set of TS 36.213[10]. The purpose is to verify that preferred sub-bands are used for frequently-selective scheduling under frequency-selective interference conditions.

9.3.3.1 CQI Reporting under fading conditions and frequency-selective interference – PUSCH 3-0

9.3.3.1.1 FDD CQI Reporting under fading conditions and frequency-selective interference – PUSCH 3-0

9.3.3.1.1.1 Test purpose

To verify that preferred sub-bands can be used for frequently-selective scheduling with frequency-selective interference situation.

9.3.3.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.3.3.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.3.3.1.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.3.1.1.3-2 and by the following:

- a) a sub-band differential CQI offset level of +2 shall be reported at least α % for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [10] that corresponds to the sub-band size.

Table 9.3.3.1.1.3-1 Sub-band test for single antenna transmission (FDD)

Parameter	Unit	Test 1	Test 2
Bandwidth	MHz	10 MHz	10 MHz
Transmission mode		1 (port 0)	1 (port 0)
$I_{ot}^{(j)}$ for RB 05	dB[mW/15kHz]	-102	-93
Note 3			
$I_{ot}^{(j)}$ for RB 641	dD[m\\//15kU=1	-93	-93
Note 3	dB[mW/15kHz]	-93	-93
$I_{ot}^{(j)}$ for RB 4249	dB[mW/15kHz]	-93	-102
Note 3	ab[mw/15km2]	-93	-102
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-94	-94
		Clause B.2.4 wit	th $\tau_d = 0.45 \mu\text{s}$,
Propagation channel		$a = 1, f_D = 5 \text{ Hz}$	
Correlation		Full	
Reporting interval	ms	5	
Minimum CQI delay	ms	8	
Reporting mode		PUSCH 3-0	
Sub-band size	RB	6 (full size)	
Note 1: If the UE reports in an available uplink reporting instance at			

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-4.with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2

Note 3: Iot shall be modelled as connecting Gaussian distributed uncorrelated interference source for each UE receive antenna port. The received power spectral density of the interfering signal as measured at the UE antenna connector is to be scaled accordingly for different RB groups.

Table 9.3.3.1.1.3-2: Minimum requirement (FDD)

Parameter	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	1-5	1-5

9.3.3.1.1.4 Test description

9.3.3.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, interfering source and faders to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.21.
- 2. The parameter settings for the cell are set up according to Table 9.3.3.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.3.1.1.4.3.

9.3.3.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.3.1.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI reports for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI and full-size subband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. If for at least one of the full-size subbands at the channel edges, a subband differential CQI offset level of +2 is reported in α % or more of 2000 reports, then continue with step 5, otherwise fail the UE.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC on an each TTI randomly selected full-size subband using the transport format according to the wideband median-CQI value regardless of UE wideband or subband CQI report. Note that each full-size subband shall be selected in the equal probability The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median} .
- 6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the highest UE reported full-size subband CQI value in one full-size subband selected among the sub-bands in which UE reports the highest full-size subband CQI. Subband differential CQI offset level is selected from {0, 1, 2, -1}. Note that the SS shall send PDSCH in the same full-size subband until next UE report is available. In case when same full-size subbands are reported subsequently as subbands with highest full-size subband CQI, the SS shall select for transmission a different subband with respect to the last selection. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as $t_{subband}$. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.
 - If $t_{subband} / t_{median} \ge \gamma$, then pass the UE for this test and go to step 7. Otherwise fail the UE.
- 7. If both tests have not been done, then repeat the same procedure (steps 1 to 6) with test conditions according to the table 9.3.3.1.1.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.3.1.1.4.3 Message contents

Table 9.3.3.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.3.1.1.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm30		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {	Not present		
}			
}			

9.3.3.1.1.5 Test requirement

Table 9.3.3.1.1.5-1: Test requirement (FDD)

Parameter	Test 1	Test 2
α[%]	40	40
γ	1.50	1.50

9.3.3.1.2 TDD CQI Reporting under fading conditions and frequency-selective interference – PUSCH 3-0

9.3.3.1.2.1 Test purpose

To verify that preferred sub-bands can be used for frequently-selective scheduling with frequency-selective interference situation.

9.3.3.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.3.3.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.3.3.1.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.3.1.2.3-2 and by the following:

- a) a sub-band differential CQI offset level of +2 shall be reported at least α % for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on any one of the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$,

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [10] that corresponds to the sub-band size.

Table 9.3.3.1.2.3-1: Sub-band test for single antenna transmission (TDD)

Parameter	Unit	Test 1	Test 2
Bandwidth	MHz	10 MHz	10 MHz
Transmission mode		1 (port 0)	1 (port 0)
Uplink downlink			2
configuration		•	<u>-</u>
Special subframe configuration		4	4
$I_{ot}^{(j)}$ for RB 0[5]	dB[mW/15kHz]	-102	-93
Note 3			
$I_{ot}^{(j)}$ for RB 6[41]	dD[::e\M/4.5].	00	02
Note 3	dB[mW/15kHz]	-93	-93
$I_{ot}^{(j)}$ for RB [42]49	dB[mW/15kHz]	-93	-102
Note 3			
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-94	-94
0.	ab[iiiw/iokiiz]	34	J-1
-	x number of HARQ		
transmissions		0. 5.4.4	
Propagation channel		Clause B.2.4 wit	th $ au_d=0.45\mu\mathrm{s}$,
Fropagation charine		a = 1, f	$I_D = 5 \text{ Hz}$
Correlation		F	ull
Reporting interval	ms	į.	5
CQI delay	ms		or 11
Reporting mode			CH 3-0
Sub-band size	RB	6 (full	l size)
ACK/NACK feedback		Multin	lexing
mode		-	
	orts in an available u		
	n based on CQI es		
	SF#(n-4), this report		
	olied at the eNB dov		
Note 2: Reference measurement channel according to table A.4-5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in			
Annex A.5.2.1/2.			
	odelled as connecti	ng Gaussian distri	buted
	interference source		
The received power spectral density of the interfering signal as			
	the UE antenna con		
for different RB groups.			

Table 9.3.3.1.2.3-2: Minimum requirement (TDD)

Parameter	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	1-5	1-5

9.3.3.1.2.4 Test description

9.3.3.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and interfering source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.21.
- 2. The parameter settings for the cell are set up according to Table 9.3.3.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.3.1.2.4.3.

9.3.3.1.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.3.1.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI reports for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #2 and subframe #7 to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI and full-size subband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. If for at least one of the full-size subbands at the channel edges, a subband differential CQI offset level of +2 is reported in α % or more of 2000 reports, then continue with step 5, otherwise fail the UE.
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC in an each available downlink transmission instance randomly selected full-size subband using the transport format according to the wideband median-CQI value regardless of UE wideband or subband CQI report. Note that each full-size subband shall be selected in the equal probability. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #2 and subframe #7 to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median} .
- 6. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to the highest UE reported full-size subband CQI value in one full-size subband selected among the sub-bands in which UE reports the highest full-size subband CQI. Subband differential CQI offset level is selected from {0, 1, 2, -1}. Note that the SS shall send PDSCH in the same full-size subband until next UE report is available. In case when same full-size subbands are reported subsequently as subbands with highest full-size subband CQI, the SS shall select for transmission a different subband with respect to the last selection. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission in subframe #2 and subframe #7 to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as $t_{subband}$. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.
 - If $t_{subband} / t_{median} \ge \gamma$, then pass the UE for this test and go to step 7. Otherwise fail the UE.
- 7. If both tests have not been done, then repeat the same procedure (steps 1 to 6) with test conditions according to the table 9.3.3.1.2.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.3.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.3.3.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}	<i>B</i> 2.7.02.		

Table 9.3.3.1.2.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm30		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {	Not present		
}			
}			

Table 9.3.3.1.2.4.3-3: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa2		
specialSubframePatterns	Ssp4		
}			

9.3.3.1.2.5 Test requirement

Table 9.3.3.1.2.5-1: Test requirement (TDD)

Parameter	Test 1	Test 2
α[%]	40	40
γ	1.50	1.50

9.3.4 UE-selected subband CQI

The accuracy of UE-selected subband channel quality indicator (CQI) reporting under frequency-selective fading conditions is determined by the relative increase of the throughput obtained when transmitting on the UE-selected subbands with the corresponding transport format compared to the case for which a fixed format is transmitted on any subband in set *S* of TS 36.213 [10]. The purpose is to verify that correct subbands are accurately reported for frequency-selective scheduling. To account for sensitivity of the input SNR the subband CQI reporting under frequency-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.4.1 CQI Reporting under fading conditions – PUSCH 2-0

9.3.4.1.1 FDD CQI Reporting under fading conditions – PUSCH 2-0

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerances are undefined

9.3.4.1.1.1 Test purpose

To verify that UE-selected sub-bands can be used for frequently-selective scheduling.

9.3.4.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

9.3.4.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.3.4.1.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.4.1.1.3-2 and by the following:

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [10] that corresponds to the subband size.

Table 9.3.4.1.1.3-1: Subband test for single antenna transmission (FDD)

Pa	rameter	Unit	Te	st 1	Tes	st 2
Ва	ndwidth	MHz	10 MHz			
Transm	nission mode			1 (po	ort 0)	
SNF	R (Note 3)	dB	9	10	14	15
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-89	-88	-84	-83
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-(98	-6	98
Dropoge	ation channel		Clause	B.2.4 wit	$\tau_d = 0$	0.45μ s,
Propaga	ation channel			a = 1, f	$_D = 5 \mathrm{Hz}$	
Repor	ting interval	ms		Į.	5	
CC	QI delay	ms	8		3	
Repo	rting mode			PUSC	H 2-0	
	nber of HARQ				1	
	smissions				•	
Subba	and size (<i>k</i>)	RBs		3 (full	size)	
	r of preferred cands (<i>M</i>)			į	5	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)					CQI	
Note 2:	e 2: Reference measurement channel according to Table A.4-11 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.					
Note 3:	Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.					

Table 9.3.4.1.1.3-2: Minimum requirement (FDD)

	Test 1	Test 2
γ	[1.2]	[1.2]
UE Category	1-5	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.3.4.1.1.

9.3.4.1.1.4 Test description

9.3.4.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS and faders to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.21.
- 2. The parameter settings for the cell are set up according to Table 9.3.4.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.4.1.1.4.3.

9.3.4.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.4.1.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI reports for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI and full-size subband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC on a randomly selected full-size subband using the transport format according to the wideband median-CQI value regardless of UE wideband or subband CQI report. Note that each full-size subband shall be selected in the equal probability The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median} .
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC in one full-size subband selected among the M subbands reported by the UE and with the corresponding TBS. Note that the SS shall send PDSCH in the same full-size subband until next UE report is available. In case when same full-size subbands are reported subsequently, the SS shall select for transmission a different subband with respect to the last selection. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as $t_{subband}$. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.

If $t_{subband} / t_{median} \ge \gamma$, then pass the UE for this test and go to step 6. Otherwise fail the UE.

6. If both tests have not been done, then repeat the same procedure (steps 1 to 5) with test conditions according to the table 9.3.4.1.1.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.4.1.1.4.3 Message contents

Table 9.3.4.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.4.1.1.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm20		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {	Not present		
}			
}			

9.3.4.1.1.5 Test requirement

Table 9.3.4.1.1.5-1: Test requirement (FDD)

	Test 1	Test 2
γ	[1.2+TT]	[1.2+TT]
UE Category	1-5	1-5

9.3.4.1.2 TDD CQI Reporting under fading conditions – PUSCH 2-0

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerances are undefined

9.3.4.1.2.1 Test purpose

To verify that UE-selected sub-bands can be used for frequently-selective scheduling.

9.3.4.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

9.3.4.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.3.4.1.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.4.1.2.3-2 and by the following:

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS

(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [10] that corresponds to the subband size.

Table 9.3.4.1.2.3-1: Sub-band test for single antenna transmission (TDD)

	rameter	Unit	Test 1 Test 2			st 2
Ва	ındwidth	MHz	10 MHz			
Transm	nission mode		1 (port 0)			
	k downlink			,	2	
	figuration				<u> </u>	
	al subframe				4	
	figuration					
SNF	R (Note 3)	dB	9	10	14	15
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-89	-88	-84	-83
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-6	98	-9	8
Propage	ation channel		Clause	B.2.4 wit	th $\tau_d = 0$	$0.45 \mu s$,
Гюрау	ation channel			a = 1, f	$_{D} = 5 \mathrm{Hz}$	
Repor	ting interval	ms		Ę	5	
	QI delay	ms			or 11	
	rting mode			PUSC	CH 2-0	
	nber of HARQ				1	
	smissions					
	and size (k)	RBs		3 (full	l size)	
	r of preferred				5	
	pands (M)					
	CK feedback			Multip	lexing	
Note 1:	mode	uta in an available v	سمائيمار سميم		1	
Note 1:		orts in an available u ‡n based on CQI es				rama
	not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)					JQI
Note 2:		eference measurement channel according to Table A.4-12 with				with
		I dynamic OCNG Pa				
	Annex A.5.2.1/2.					
Note 3:	For each test,	the minimum requi	rements	shall be f	ulfilled fo	r at
	least one of the	ne two SNR(s) and t	he respe	ctive war	nted signa	al input
	level.					

Table 9.3.4.1.2.3-2: Minimum requirement (TDD)

	Test 1	Test 2
γ	[1.2]	[1.2]
UE Category	1-5	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.3.4.1.2.

9.3.4.1.2.4 Test description

9.3.4.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.3.4.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.4.1.2.4.3.

9.3.4.1.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.4.1.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI reports for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports every 5 ms and also cases where UE transmits nothing in its CQI timing are counted as wideband CQI and full-size subband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC on a randomly selected full-size subband using the transport format according to the wideband median-CQI value regardless of UE wideband or subband CQI report. Note that each full-size subband shall be selected in the equal probability. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median} .
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC in one full-size subband selected among the M subbands reported by the UE and with the corresponding TBS. Note that the SS shall send PDSCH in the same full-size until next UE report is available. In case when same full-size subbands are reported subsequently, the SS shall select for transmission a different subband with respect to the last selection. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission every 5 ms to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as $t_{subband}$. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.
 - If $t_{subband} / t_{median} \ge \gamma$, then pass the UE for this test and go to step 6. Otherwise fail the UE.
- 6. If both tests have not been done, then repeat the same procedure (steps 1 to 5) with test conditions according to the table 9.3.4.1.2.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.4.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.3.4.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.4.1.2.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm20		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {	Not present		
}			
}			

Table 9.3.4.1.2.4.3-3: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa2		
specialSubframePatterns	Ssp4		
}			

9.3.4.1.2.5 Test requirement

Table 9.3.4.1.2.5-1: Test requirement (TDD)

	Test 1	Test 2
γ	[1.2+TT]	[1.2+TT]
UE Category	1-5	1-5

9.3.4.2 CQI Reporting under fading conditions – PUCCH 2-0

9.3.4.2.1 FDD CQI Reporting under fading conditions – PUCCH 2-0

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerances are undefined

9.3.4.2.1.1 Test purpose

To verify that UE-selected sub-bands can be used for frequently-selective scheduling.

9.3.4.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

9.3.4.2.1.3 Minimum conformance requirements

For the parameters specified in Table 9.3.4.2.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.4.2.1.3-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [10] that corresponds to the subband size.

Table 9.3.4.2.1.3-1: Subband test for single antenna transmission (FDD)

Par	ameter	Unit	Test 1 Test 2		st 2	
	ndwidth	MHz	10 MHz			
	ission mode		1 (port 0)			
SNR	R (Note 3)	dB	[8] [9] [13]		[14]	
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	[-90]	[-89]	[-85]	[-84]
	$N_{oc}^{(j)}$	dB[mW/15kHz]	[-9	98]	[-9	98]
Propaga	ation channel			a = 1, f		
Reportin	ng periodicity	ms		$a = 1, f_1$ N_P	= 2	
	l delay	ms			3	
Physica	I channel for reporting			PUSCH	(Note 4)	
for wid	Report Type eband CQI			4	1	
for sub	Report Type oband CQI				1	
	ber of HARQ missions				1	
Subba	nd size (k)	RBs	6 (full s		size)	
	of bandwidth arts (<i>J</i>)			(3	
	K			,	1	
cqi-pmi-	-ConfigIndex			•	1	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.					CQI vith	
Note 3:		the minimum requine two SNR(s) and t				
Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3. Note 5: CQI reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and data scheduling according to the most recent subband CQI report for bandwidth part				CCH ind #9 JSCH		
with j=1. Note 6: In the case where wideband CQI is reported, data is to be scheduled according to the most recently used subband CQI report.				l report.		

Table 9.3.4.2.1.3-2: Minimum requirement (FDD)

	Test 1	Test 2
γ	[1.15]	[1.15]
UE Category	1-5	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.3.4.2.1.

9.3.4.2.1.4 Test description

9.3.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS and faders to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.21.
- 2. The parameter settings for the cell are set up according to Table 9.3.4.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.4.2.1.4.3.

9.3.4.2.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.4.2.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI reports for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #1, #3, #5 and #7 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports and also cases where UE transmits nothing in its wideband CQI timing are counted as wideband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC on a randomly selected full-size subband using the transport format according to the wideband median-CQI value regardless of UE wideband or subband CQI report. Note that each full-size subband shall be selected in the equal probability The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median} .
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC in the full-size subband reported by the UE and with the corresponding TBS. When the UE reports a non-full-size SB, the SS schedules the recent reported SB for bandwidth part with j=1 and with the corresponding TBS. Note that the SS shall send PDSCH in the same full-size subband until next subband UE report is available. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-6. Measure the average throughput according to Annex G.5.3. Declare the throughput as $t_{subband}$. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.

If $t_{subband} / t_{median} \ge \gamma$, then pass the UE for this test and go to step 6. Otherwise fail the UE.

6. If both tests have not been done, then repeat the same procedure (steps 1 to 5) with test conditions according to the table 9.3.4.2.1.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.4.1.1.4.3 Message contents

Table 9.3.4.2.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.4.2.1.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	1	(see Table 7.2.2-	
		1A in TS 36.213	
cqi-FormatIndicatorPeriodic CHOICE {			
subbandCQI	1		
}			
ri-ConfigIndex	483	(see Table 7.2.2-	
		1B in TS 36.213	
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

9.3.4.2.1.5 Test requirement

Table 9.3.4.2.1.5-1: Test requirement (FDD)

	Test 1	Test 2
γ	[1.15]+TT	[1.15]+TT
UE Category	1-5	1-5

9.3.4.2.2 TDD CQI Reporting under fading conditions – PUCCH 2-0

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerances are undefined

9.3.4.2.2.1 Test purpose

To verify that UE-selected sub-bands can be used for frequently-selective scheduling.

9.3.4.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

9.3.4.2.2.3 Minimum conformance requirements

For the parameters specified in Table 9.3.4.2.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.4.2.2.3-2 and by the following:

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set S shall be $\geq \gamma$;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS 36.213 [10] that corresponds to the subband size.

Table 9.3.4.2.2.3-1: Sub-band test for single antenna transmission (TDD)

Par	ameter	Unit	Tes	st 1	Tes	st 2
Baı	ndwidth	MHz	10 MHz			
Transm	ission mode		1 (port 0)			
Uplink	k downlink		2			
	iguration		2			
	l subframe				4	
	iguration				+	
SNR	R (Note 3)	dB	[8]	[9]	[13]	[14]
	$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	[-90]	[-89]	[-85]	[-84]
	$N_{oc}^{(j)}$	dB[mW/15kHz]	[-9	98]	[-9	98]
Propaga	ition channel			B.2.4 wit $a = 1, f$	th $\tau_d = 0$ $\tau_D = 5 \text{Hz}$).45 μs,
Reportin	g periodicity	ms		No	= 5	
	ll delay	ms		10 c		
	l channel for	1110				
	reporting			PUSCH	(Note 4)	
	Report Type eband CQI			4	1	
PUCCH	Report Type				1	
	band CQI					
	ber of HARQ			,	1	
	missions	55		0 // 11		
	nd size (k)	RBs		6 (full	size)	
	of bandwidth arts (<i>J</i>)			3	3	
Pc	K				1	
cqi-pmi-	ConfigIndex			3	3	
	CK feedback			Multip	loving	
	node			-		
Note 1:	If the UE repo	rts in an available u	plink rep	orting ins	tance at	
Note 2:	not later than cannot be app Reference me	th based on CQI es SF#(n-4), this report blied at the eNB dove easurement channel dynamic OCNG Pa	ted subb vnlink bef accordin	and or wi ore SF#(ng to Tabl	deband (n+4) e A.4-5 w	CQI vith
	Annex A.5.2.1					
Note 3:		the minimum requi ne two SNR(s) and t				
level. Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH					CCH	
DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2. Note 5: CQI reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and data scheduling according to the most recent subband CQI report for bandwidth part with j=1.						
Note 6:	In the case wh	nere wideband CQI cording to the most				I report.

Table 9.3.4.2.2.3-2: Minimum requirement (TDD)

	Test 1	Test 2
γ	[1.15]	[1.15]
UE Category	1-5	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.3.4.2.1.

9.3.4.2.2.4 Test description

9.3.4.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.3.4.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.3.4.2.2.4.3.

9.3.4.2.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.3.4.2.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to CQI value 8 of Annex A.4 Table A.4-3 and keep it regardless of the wideband and subband CQI value sent by the UE. Continue transmission of the PDSCH until 2000 wideband CQI reports and full-size subband CQI reports for each full-size subband have been gathered. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #1, #3, #5 and #7 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. In this process the SS collects wideband CQI reports and also cases where UE transmits nothing in its wideband CQI timing are counted as wideband CQI reports.
- 3. Set up a relative frequency distribution for the reported wideband CQI-values, Calculate the median value (wideband Median CQI is the CQI that is at or crosses 50% distribution from the lower wideband CQI side). This CQI-value is declared as wideband Median CQI value.
- 4. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC on a randomly selected full-size subband using the transport format according to the wideband median-CQI value regardless of UE wideband or subband CQI report. Note that each full-size subband shall be selected in the equal probability. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #1, #3, #5 and #7 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as t_{median} .
- 5. The SS shall transmit PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC in the full-size subband reported by the UE and with the corresponding TBS. When the UE reports a non-full-size SB, the SS schedules the recent reported SB for bandwidth part with j=1 and with the corresponding TBS. Note that the SS shall send PDSCH in the same full-size subband until next subband UE report is available. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #1, #3, #5 and #7 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput according to Annex G.5.3. Declare the throughput as $t_{subband}$. Count the number of NACKs, ACKs and statDTXs on the UL during the test

interval.

If $t_{subband} / t_{median} \ge \gamma$, then pass the UE for this test and go to step 6. Otherwise fail the UE.

6. If both tests have not been done, then repeat the same procedure (steps 1 to 5) with test conditions according to the table 9.3.4.2.2.3-1 for the other Test as appropriate. Otherwise pass the UE.

9.3.4.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.3.4.2.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
}			

Table 9.3.4.2.2.4.3-2: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	1	(see Table 7.2.2- 1A in TS 36.213)	
cqi-FormatIndicatorPeriodic CHOICE {		17(11110 001210)	
subbandCQI	1		
}			
ri-ConfigIndex	484	(see Table 7.2.2- 1B in TS 36.213)	
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.3.4.2.2.4.3-3: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa2		
specialSubframePatterns	Ssp4		
}			

9.3.4.2.2.5 Test requirement

Table 9.3.4.2.2.5-1: Test requirement (TDD)

	Test 1	Test 2
γ	[1.15]+TT	[1.15]+TT
UE Category	1-5	1-5

9.4 Reporting of Precoding Matrix Indicator (PMI)

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding. Transmission mode 6 is used with a fixed transport format (FRC)

configured. The requirements are specified in terms of the ratio $\gamma = \frac{t_{ue}}{t_{rnd}}$

In the definition of γ , for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements, t_{rnd} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding, and t_{ue} the throughput measured at SNR_{rnd} with precoders configured according to the UE reports.

For the PUCCH 2-1 single PMI requirement, t_{rnd} is [60]% of the maximum throughput obtained at SNR_{rnd} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ue} the throughput measured at SNR_{rnd} with both the precoder and the preferred full-size subband applied according to the UE reports;

For PUSCH 2-2 multiple PMI requirements, t_{rmd} is [60]% of the maximum throughput obtained at SNR_{rnd} using random precoding on a randomly selected full-size subband in set S subbands, and t_{ue} the throughput measured at SNR_{rnd} with both the subband precoder and a randomly selected full-size subband (within the preferred subbands) applied according to the UE reports.

9.4.1 Single PMI

9.4.1.1 PMI Reporting – PUSCH 3-1 (Single PMI)

9.4.1.1.1 FDD PMI Reporting – PUSCH 3-1 (Single PMI)

9.4.1.1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.1.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.4.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.1.1.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.1.1.1.3-2.

Table 9.4.1.1.3-1: PMI test for single-layer (FDD)

Parar	neter	Unit	Test 1
Band	width	MHz	10
Transmiss	sion mode		6
Propagation	on channel		EVA5
Precoding	granularity	PRB	50
	tion and onfiguration		Low 2 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
N_{\cdot}	(j) oc	dB[mW/15kHz]	-98
Reportir	ng mode		PUSCH 3-1
Reporting	g interval	ms	1
PMI dela	y (Note 2)	ms	8
Measureme	ent channel		R.10 FDD
OCNG	Pattern		OP.1 FDD
Max number	er of HARQ		4
transm	issions		4
Redundan coding s	cy version equence		{0,1,2,3}
I Niata 4. F			

Note 1: For random precoder selection, the precoder

shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting

instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Table 9.4.1.1.1.3-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.1
UE Category	1-5

9.4.1.1.4 Test description

9.4.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.1.1.1.4.3.

9.4.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.4.1.1.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC.SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2
- 3. Set SNR to SNR_{rnd} . The SS shall transmit PDCCH with DCI format 0 in which CQI request bit is set to true [every subframe]. Then the SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{ne} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$ If the ratio (throughput / t_{rnd}) $\geq \gamma$ which is specified in table 9.4.1.1.5-1, then the test is pass. Otherwise, the test is fail.

9.4.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.1.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennaInfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.1.1.1.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE{			
n2TxAntenna-tm6	1111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			

Table 9.4.1.1.1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm31		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.1.1.5 Test requirement

Table 9.4.1.1.1.5-1: Test requirement (FDD)

Parameter	Test 1
γ	1.09

The ratio of throughput using precoding matrix of PMI reports from the UE to using random precoding matrix shall equal or exceed the value specified in table 9.4.1.1.1.5.

9.4.1.1.2 TDD PMI Reporting – PUSCH 3-1 (Single PMI)

9.4.1.1.2.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.1.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.4.1.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.4.1.1.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.4.1.1.2.3-2.

Table 9.4.1.1.2.3-1: PMI test for single-layer (TDD)

Para	ameter	Unit	Test 1
Ban	dwidth	MHz	10
Transmi	ssion mode		6
Uplink	downlink		1
confi	guration		ı
	subframe		4
	guration		•
	tion channel		EVA5
	g granularity	PRB	50
	ation and configuration		Low 2 x 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
$N_{oc}^{(j)}$ dB[mW/18		dB[mW/15kHz]	-98
Reporting mode			PUSCH 3-1
Reporting interval		ms	1
Minimum PMIdelay (Node-2)		ms	10 or 11
Measurement channel			R.10 TDD
OCNG Pattern			OP.1 TDD
Max number of HARQ			
transmissions			4
Redundancy version			(0.4.2.2)
coding sequence			{0,1,2,3}
ACK/NACK feedback			Multiplexing
	node		. •
Note 1:	Note 1: For random precoder selection, the precoder shall be updated in each available downlink		
	transmission instance		
Note 2:			
	instance at su	ubframe SF#n based	on PMI
	estimation at	a downlink SF not la	iter than SF#(n-
	this reported PMI cannot be applied at the		
	eNB downlink before SF#(n+4)		

Table 9.4.1.1.2.3-2: Minimum requirement (TDD)

Parameter	Test 1
γ	1.1
UE Category	1-5

9.4.1.1.2.4 Test description

9.4.1.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.1.1.2.3-1.

- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2.Message contents are defined in clause 9.4.1.1.2.4.3.

9.4.1.1.2.4.2 Test procedure

- 1. Set the bandwidth, propagation condition, antenna configuration and measurement channel parameters according to Table 9.4.1.1.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC. .SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2.
- 3. Set SNR to SNR_{rnd} . The SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{ne} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$

9.4.1.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.1.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.1.1.2.4.3-2: AntennalnfoDedicated

Value/remark	Comment	Condition
tm6		
1111		
NULL		
	tm6	tm6

Table 9.4.1.1.2.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm31		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.1.1.2.5 Test requirement

Table 9.4.1.1.2.5-1: Test requirement (TDD)

Parameter	Test 1
γ	1.09

9.4.1.2 PMI Reporting – PUCCH 2-1 (Single PMI)

9.4.1.2.1 FDD PMI Reporting – PUCCH 2-1 (Single PMI)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Throughput ratio and test tolerance are undefined

9.4.1.2.1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.1.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

9.4.1.2.1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.1.2.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.1.2.1.3-2.

Table 9.4.1.2.1.3-1: PMI test for single-layer (FDD)

Para	meter	Unit	Test 1
Band	dwidth	MHz	10
Transmis	sion mode		6
Propagati	on channel		[EVA5]
	tion and		Low 4 x 2
	onfiguration		LOW 4 X Z
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6
N	oc (j)	dB[mW/15kHz]	-98
PMI	delay	ms	[8 or 9]
Reportii	ng mode		PUCCH 2-1 (Note 6)
Reporting	periodicity	ms	$N_P = 2$
Physical o	channel for eporting		PUSCH (Note 3)
PUCCH R	eport Type nd CQI/PMI		2
	eport Type and CQI		1
Measurem	ent channel		[R.14-1 FDD]
OCNG	Pattern		[OP.1/2 FDD]
Precoding	granularity	PRB	6 (full size)
Number of bandwidth			3
	:s (<i>J</i>)		3
K			1
	onfigIndex		1
	er of HARQ nissions		4
	ncy version		
	sequence		{0,1,2,3}
		recoder selection, the	ne precoder shall be updated
		(2 ms granularity)	
Note 2:	f the UE repo	orts in an available u	plink reporting instance at
			timation at a downlink SF not later
t	han SF#(n-4)	, this reported PMI	cannot be applied at the eNB
	downlink befo		
			Q-ACK and wideband CQI/PMI or
		•	eport both on PUSCH instead of nall be transmitted in downlink
	SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.		
			stead data is to be transmitted on
t	the most recently used subband for bandwidth part with j=1.		
			is reported, data is to be
		the most recently	
			in DCI format 1B shall be mapped
			indicate the codebook index used
	in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI		
	report on PUCCH.		

Table 9.4.1.2.1.3-2: Minimum requirement (FDD)

	Test 1
γ	[1.2]
UE Category	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.4.1.2.1.

9.4.1.2.1.4 Test description

9.4.1.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.1.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.1.2.1.4.3.

9.4.1.2.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.4.1.2.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #1, #3, #5 and #7 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish *t*_{rnd} and *SNR*_{rnd} according to annex G.5.2
- 3. Set SNR to *SNR*_{rnd}. The SS shall transmit PDCCH with DCI format 0 in which CQI request bit is set to true [every subframe]. Then the SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #1, #3, #5 and #7 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{rue} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$ If the ratio (throughput / t_{rnd}) $\geq \gamma$ which is specified in table 9.4.1.2.2.5-1, then the test is pass. Otherwise, the test is fail.

9.4.1.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.1.2.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.1.2.1.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE{			
n4TxAntenna-tm6	1111111111111111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			
}			

Table 9.4.1.2.1.4.3-3: CQI-ReportConfig-DEFAULT

Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	1	(see Table 7.2.2- 1A in TS 36.213)	
cqi-FormatIndicatorPeriodic CHOICE {			
subbandCQI	1		
}			
ri-ConfigIndex	483	(see Table 7.2.2- 1B in TS 36.213)	
simultaneousAckNackAndCQI	FALSE		
}			
}			

9.4.1.2.1.5 Test requirement

Table 9.4.1.2.1.5-1: Test requirement (FDD)

	Test 1
γ	[1.2]+TT
UE Category	1-5

The ratio of throughput using precoding matrix of PMI reports from the UE to using random precoding matrix shall equal or exceed the value specified in table 9.4.1.2.1.5.

9.4.1.2.2 TDD PMI Reporting – PUCCH 2-1 (Single PMI)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Throughput ratio and test tolerance are undefined

9.4.1.2.2.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.1.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

9.4.1.2.2.3 Minimum conformance requirements

For the parameters specified in Table 9.4.1.2.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.4.1.2.2.3-2.

Table 9.4.1.2.2.3-1: PMI test for single-layer (TDD)

Parameter	Unit	Test 1
Bandwidth	MHz	10
Transmission mode		6
Uplink downlink configuration		1
Special subframe configuration		4

Propaga	tion channel		[EVA5]	
	ation and		Low 4 x 2	
antenna	configuration		LOW 4 X Z	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6	
power allocation	_	dB	-6	
	$V_{oc}^{(j)}$	dB[mW/15kHz]	-98	
	I delay	ms	[10]	
	ting mode		PUCCH 2-1 (Note 6)	
	g periodicity	ms	$N_{\rm P}=5$	
	channel for	_	·	
	reporting		PUSCH (Note 3)	
	Report Type and CQI/PMI		2	
PUCCH	Report Type		1	
	ment channel		[R.14-1 TDD]	
	3 Pattern		[OP.1/2 TDD]	
	g granularity	PRB	6 (full size)	
	of bandwidth	TIND	,	
	rts (J)		3	
12.5	K		1	
cqi-pmi-ConfigIndex			4	
Max number of HARQ			4	
trans	missions		4	
Redunda	ancy version		{0,1,2,3}	
	sequence		(0,1,2,3)	
	CK feedback		Multiplexing	
	node		• •	
Note 1:	•		he precoder shall be updated in	
Note 2:		e downlink transmis	sion instance iplink reporting instance at	
Note 2.			timation at a downlink SF not later	
			cannot be applied at the eNB	
	downlink befo		odimot be applied at the citib	
Note 3:		` ,	Q-ACK and wideband CQI/PMI or	
			port both on PUSCH instead of	
			hall be transmitted in downlink	
			I to multiplex with the HARQ-ACK	
		uplink subframe SF		
Note 4:		the short subband (having 2RBs in the last bandwidth		
			stead data is to be transmitted on	
			or bandwidth part with j=1.	
Note 5:			is reported, data is to be	
Note 6:		n the most recently or DMI confirmation	used subband. in DCI format 1B shall be mapped	
Note 6.			indicate the codebook index used	
	in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI report on PUCCH.			

Table 9.4.1.2.2.3-2: Minimum requirement (TDD)

Parameter	Test 1
γ	[1.2]
UE Category	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.4.1.2.2.

9.4.1.2.2.4 Test description

9.4.1.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.1.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2.Message contents are defined in clause 9.4.1.2.2.4.3.

9.4.1.2.2.4.2 Test procedure

- 1. Set the bandwidth, propagation condition, antenna configuration and measurement channel parameters according to Table 9.4.1.2.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #3 and #8 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2
- 3. Set SNR to SNR_{rnd} . The SS shall transmit PDCCH with DCI format 0 in which CQI request bit is set to true [every subframe]. Then the SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission in subframe #3 and #8 to carry the both ACK and CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{vv} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$ If the ratio (throughput / t_{rnd}) $\geq \gamma$ which is specified in table 9.4.1.2.2.5-1, then the test is pass. Otherwise, the test is fail.

9.4.1.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.1.2.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.1.2.2.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2				
Information Element	Value/remark	Comment	Condition	
AntennaInfoDedicated ::= SEQUENCE {				
transmissionMode	tm6			
codebookSubsetRestriction CHOICE{				
n4TxAntenna-tm6	1111111111111111			
}				
ue-TransmitAntennaSelection CHOICE{				
release	NULL			
}				
}				

Table 9.4.1.2.2.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3				
Information Element	Value/remark	Comment	Condition	
CQI-ReportConfig-DEFAULT ::= SEQUENCE {				
cqi-ReportModeAperiodic	Not present			
nomPDSCH-RS-EPRE-Offset	0			
cqi-ReportPeriodic CHOICE {				
setup SEQUENCE {				
cqi-PUCCH-ResourceIndex	0			
cqi-pmi-ConfigIndex	1	(see Table 7.2.2- 1A in TS 36.213)		
cqi-FormatIndicatorPeriodic CHOICE {		,		
subbandCQI	1			
}				
ri-ConfigIndex	484	(see Table 7.2.2-		
		1B in TS 36.213)		
simultaneousAckNackAndCQI	FALSE			
}				
}				
}				

9.4.1.2.2.5 Test requirement

Table 9.4.1.2.2.5-1: Test requirement (TDD)

Parameter	Test 1
γ	[1.2] +TT
UE Category	1-5

9.4.2 Multiple PMI

9.4.2.1 PMI Reporting – PUSCH 1-2 (Multiple PMI)

9.4.2.1.1 FDD PMI Reporting – PUSCH 1-2 (Multiple PMI)

9.4.2.1.1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.1.1.2 Test applicability

This test applies to E-UTRA FDD UE release 8 of UE category 2-5.

9.4.2.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.1.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.2.1.1.3-2.

Table 9.4.2.1.1.3-1 PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	20
Transmiss	sion mode		6
Propagation	on channel		EPA5
Precoding granularity (only for reporting and following PMI)		PRB	8
	tion and onfiguration		Low 2 x 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
Reporting mode			PUSCH 1-2
Reporting interval		ms	1
PMI	delay	ms	8
Measurem	ent channel		R.30 FDD
	Pattern		OP.1 FDD
Max number of HARQ transmissions			4
Redundancy version coding sequence			{0,1,2,3}
Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity) Note 2: If the UE reports in an available uplink reporting			

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4)

Table 9.4.2.1.1.3-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	2-5

The normative reference for this requirement is TS 36.101 [2] clause 9.4.2.1.1.

9.4.2.1.1.4 Test description

9.4.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

397

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 20MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.2.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.2.1.1.4.3.

9.4.2.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.4.2.1.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2
- 3. Set SNR to SNR_{rnd} . The SS shall transmit PDCCH with DCI format 0 in which CQI request bit is set to true [every subframe]. Then the SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput.

 Measure t_{ne} according to Annex G.5.3

ue

4. Calculate
$$\gamma = \frac{t_{ue}}{t_{rnd}}$$

9.4.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.2.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.2.1.1.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE{			
n2TxAntenna-tm6	1111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			
}			

Table 9.4.2.1.1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.2.1.1.5 Test requirement

Table 9.4.2.1.1.5-1: Test requirement (FDD)

Parameter	Test 1
γ	1.19
UE Category	2-5

9.4.2.1.1_1 FDD PMI Reporting – PUSCH 1-2 (Multiple PMI)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance are undefined

9.4.2.1.1_1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.1.1_1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

9.4.2.1.1_1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.1.1_1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.2.1.1_1.3-2.

Table 9.4.2.1.1_1.3-1: PMI test for single-layer (FDD)

Para	meter	Unit	Test 1
Bandwidth		MHz	10
Transmis	sion mode		6
Propagati	on channel		EPA5
Precoding granularity (only for reporting and following PMI)		PRB	6
	ition and onfiguration		Low 2 x 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
Λ	$oc^{(j)}$	dB[mW/15kHz]	-98
Reporti	ng mode		PUSCH 1-2
Reporting interval		ms	1
PMI delay		ms	8
Measurement channel			R.11-3 FDD for UE Category 1, R.11 FDD for UE Category 2-5
OCNG Pattern			OP.1 FDD
Max number of HARQ transmissions			4
coding	ncy version sequence		{0,1,2,3}
Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity) Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4) Note 3: One/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2 shall be used.			

Table 9.4.2.1.1_1.3-2: Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.4.2.1.1.

9.4.2.1.1_1.4 Test description

9.4.2.1.1_1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.2.1.1_1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.2.1.1_1.4.3.

9.4.2.1.1 1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.4.2.1.1 1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2
- 3. Set SNR to *SNR*_{rnd}. The SS shall transmit PDCCH with DCI format 0 in which CQI request bit is set to true [every subframe]. Then the SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. . Measure the average throughput.

 Measure t_{in} according to Annex G.5.3

4. Calculate
$$\gamma = \frac{t_{ue}}{t_{rnd}}$$

9.4.2.1.1_1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.2.1.1_1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig-		
	DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.2.1.1_1.4.3-2: AntennalnfoDedicated

Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	Tm6		
codebookSubsetRestriction CHOICE{			
n2TxAntenna-tm6	1111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			
}			

Table 9.4.2.1.1_1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.2.1.1_1.5 Test requirement

Table 9.4.2.1.1_1.5-1: Test requirement (FDD)

Parameter	Test 1
γ	1.19+[TT]
UE Category	1-5

9.4.2.1.2 TDD PMI Reporting – PUSCH 1-2 (Multiple PMI)

9.4.2.1.2.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.1.2.2 Test applicability

This test applies to E-UTRA TDD UE release 8 of UE category 2-5.

9.4.2.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.1.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.2.1.2.3-2.

Table 9.4.2.1.2.3-1: PMI test for single-layer (TDD)

Parameter		Unit	Test 1	
Bandwidth		MHz	20	
Transmiss	sion mode		6	
Uplink o	lownlink		1	
configu	uration		į	
	subframe		4	
	uration		-	
	on channel		EPA5	
	granularity		_	
	porting and	PRB	8	
followin				
Correlat			Low 2 x 2	
	nfiguration			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	
Reporting mode			PUSCH 1-2	
Reporting interval		ms	1	
Minimum PMI delay		ms	10 or 11	
	ent channel		R.30 TDD	
OCNG	Pattern		OP.1 TDD	
Max number	er of HARQ		4	
transm			7	
	cy version		{0,1,2,3}	
coding s			(0,1,2,0)	
	K feedback		Multiplexing	
mode				
	shall be updated in each available downlink			
	transmission instance : If the UE reports in an available uplink reporting			
instance at subframe SF#n based on PMI				
estimation at a downlink SF not later than SF#(n-				
	4), this reported PMI cannot be applied at the			
		before SF#(n+4)		

Table 9.4.2.1.2.3-2: Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	2-5

The normative reference for this requirement is TS 36.101 [2] clause 9.4.2.1.2.

9.4.2.1.2.4 Test description

9.4.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 20MHz, as defined in TS 36.508 [7] clause 4.3.1.2

1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.

- 2. The parameter settings for the cell are set up according to Table 9.4.2.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.2.1.2.4.3.

9.4.2.1.2.4.2 Test procedure

- 1. Set the bandwidth, propagation condition, antenna configuration and measurement channel parameters according to Table 9.4.2.1.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2
- 3. Set SNR to SNR_{rnd} . The SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{vv} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$

9.4.2.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.2.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennaInfo CHOICE {	<i>BEI 71021</i>		
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.2.1.2.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE{			
n2TxAntenna-tm6	1111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			

Table 9.4.2.1.2.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.2.1.2.5 Test requirement

Table 9.4.2.1.2.5-1: Test requirement (TDD)

Parameter	Test 1
γ	1.19
UE Category	2-5

9.4.2.1.2_1 TDD PMI Reporting – PUSCH 1-2 (Multiple PMI)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Test tolerance is undefined

9.4.2.1.2_1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

9.4.2.1.2_1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.1.2_1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.2.1.2_1.3-2.

Table 9.4.2.1.2_1.3-1: PMI test for single-layer (TDD)

Parai	neter	Unit	Test 1
Bandwidth		MHz	10
Transmission mode			6
Uplink downlink			1
	uration		•
	subframe uration		4
	on channel		EPA5
	granularity		LIAS
	porting and	PRB	6
	ng PMI)	1113	· ·
	tion and		1 0 0
antenna co	nfiguration		Low 2 x 2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3
N	(j) oc	dB[mW/15kHz]	-98
Reporting mode			PUSCH 1-2
Reporting interval		ms	1
PMI delay		ms	10 or 11
			R.11-3 TDD
			for UE
Measureme	ent channel		Category 1 R.11 TDD for
			UE Category
			2-5
OCNG	Pattern		OP.1 TDD
	er of HARQ		
transm			4
Redundan	cy version		(0.4.0.0)
coding s	equence		{0,1,2,3}
ACK/NACI	K feedback		Multiplexing
	ode		
		recoder selection, th	
		ted in each available	e downlink
transmission instance			
		orts in an available uplink reporting ubframe SF#n based on PMI	
estimation at a downlink SF not later than SF#(4), this reported PMI cannot be applied at the			
		before SF#(n+4)	opiica at trie
Note 3:	One/two side	d dynamic OCNG Pa	attern OP.1/2
		ibed in Annex A.5.2	
	ised.		
-			

Table 9.4.2.1.2_1.3-2: Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	1-5

The normative reference for this requirement is TS 36.101 [2] clause 9.4.2.1.2.

9.4.2.1.2_1.4 Test description

9.4.2.1.2_1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.2.1.2_1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.2.1.2_1.4.3.

9.4.2.1.2_1.4.2 Test procedure

- 1. Set the bandwidth, propagation condition, antenna configuration and measurement channel parameters according to Table 9.4.2.1.2_1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish *t*_{rnd} and *SNR*_{rnd} according to annex G.5.2
- 3. Set SNR to SNR_{rnd} . The SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{ue} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$

9.4.2.1.2_1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.2.1.2_1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.2.1.2_1.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE{			
n2TxAntenna-tm6	1111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			
}			

Table 9.4.2.1.2_1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.2.1.2_1.5 Test requirement

Table 9.4.2.1.2_1.5-1: Test requirement (TDD)

Parameter	Test 1
γ	1.19+TT
UE Category	1-5

9.4.2.2 PMI Reporting – PUSCH 2-2 (Multiple PMI)

9.4.2.2.1 FDD PMI Reporting – PUSCH 2-2 (Multiple PMI)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

•Throughput ratio and test tolerance are undefined

9.4.2.2.1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 9 and forward.

9.4.2.2.1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.2.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.2.2.1.3-2.

Table 9.4.2.2.1.3-1: PMI test for single-layer (FDD)

Parameter		Unit	Test 1
Bandwidth		MHz	10
Transmissio	n mode		6
Propagation	channel		[EVA5]
Correlation antenna confi			Low 4 x 2
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98
PMI delay		ms	8
Reporting mode			PUSCH 2-2
Reporting interval		ms	1
Measurement channel			[R.14-2 FDD]
OCNG Pattern			[OP.1/2 FDD]
Subband s	ize (<i>k</i>)	RBs	3 (full size)
Number of preferred subbands (M)			5
Max number of HARQ transmissions			4
Redundancy version coding sequence			{0,1,2,3}

Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 9.4.2.2.1.3-2: Minimum requirement (FDD)

	Test 1
γ	[1.2]
UE Category	[1-5]

The normative reference for this requirement is TS 36.101 [2] clause 9.4.2.2.1.

9.4.2.2.1.4 Test description

9.4.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.2.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0

5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.2.2.1.4.3.

9.4.2.2.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.4.2.2.1.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2
- 3. Set SNR to SNR_{rnd} . The SS shall PDCCH with DCI format 0 in which CQI request bit is set to true [every subframe]. Then the SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the average throughput.

 Measure t_{tra} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$

9.4.2.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.2.2.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.2.2.1.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE{			
n4TxAntenna-tm6	1111111111111111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			
}			

Table 9.4.2.2.1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm22		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}	·		

9.4.2.2.1.5 Test requirement

Table 9.4.2.2.1.5-1: Test requirement (FDD)

	Test 1
γ	[1.2]+TT
UE Category	[1-5]

9.4.2.2.2 TDD PMI Reporting – PUSCH 2-2 (Multiple PMI)

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

• Throughput ratio and test tolerance are undefined

9.4.2.2.2.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 9 and forward.

9.4.2.2.2.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.2.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.4.2.2.2.3-2.

Table 9.4.2.2.3-1: PMI test for single-layer (TDD)

Parameter	Unit	Test 1
Bandwidth	MHz	10
Transmission mode		6
Uplink downlink configuration		1
Special subframe configuration		4

Propagation channel			[EVA5]		
Correlation and antenna configuration			Low 4 x 2		
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-6		
power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6		
/ V	(j) oc	dB[mW/15kHz]	-98		
PMI (delay	ms	[10]		
Reportir	ng mode		PUSCH 2-2		
Reporting	g interval	ms	1		
Measurement channel			[R.14-2 TDD]		
OCNG Pattern			[OP.1/2 FDD]		
Subband	d size (<i>k</i>)	RBs	3 (full size)		
	f preferred nds (<i>M</i>)		5		
	er of HARQ issions		4		
Redundancy version coding sequence			{0,1,2,3}		
ACK/NACK feedback mode			Multiplexing		
Note 1: F	Note 1: For random precoder selection, the precoders shall be updated in				

Note 1: For random precoder selection, the precoders shall be updated in each available downlink transmission instance

Note 2: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)

Table 9.4.2.2.2.3-2: Minimum requirement (TDD)

	Test 1
γ	[1.15]
UE Category	[1-5]

The normative reference for this requirement is TS 36.101 [2] clause 9.4.2.2.2.

9.4.2.2.2.4 Test description

9.4.2.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

 $Configurations \ of \ PDSCH \ and \ PDCCH \ before \ measurement \ are \ specified \ in \ Annex \ C.2.$

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.2.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.4.2.2.2.4.3.

9.4.2.2.4.2 Test procedure

- 1. Set the bandwidth, propagation condition, antenna configuration and measurement channel parameters according to Table 9.4.2.2.3-1 as appropriate.
- 2. The SS shall transmit PDSCH via PDCCH DCI format 1B for C_RNTI to transmit the DL RMC with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.211 [8]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Establish t_{rnd} and SNR_{rnd} according to annex G.5.2
- 3. Set SNR to SNR_{rnd} . The SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{uv} according to Annex G.5.3
- 4. Calculate $\gamma = \frac{t_{ue}}{t_{rnd}}$

9.4.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.2.2.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.2.2.2.4.3-2: AntennalnfoDedicated

Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction CHOICE{			
n4TxAntenna-tm6	1111111111111111		
}			
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			
}			

Table 9.4.2.2.2.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm22		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.2.2.2.5 Test requirement

Table 9.4.2.2.2.5-1: Test requirement (TDD)

	Test 1
γ	[1.15]+TT
UE Category	[1-5]

9.5 Reporting of Rank Indicator (RI)

The purpose of this test is to verify that the reported rank indicator accurately represents the channel rank. The accuracy of RI (CQI) reporting is determined by the relative increase of the throughput obtained when transmitting based on the reported rank compared to the case for which a fixed rank is used for transmission. Transmission mode 4 is used with the specified CodebookSubSetRestriction.

For fixed rank 1 transmission, the RI and PMI reporting is restricted to two single-layer precoders, For fixed rank 2 transmission, the RI and PMI reporting is restricted to one two-layer precoder, For follow RI transmission, the RI and PMI reporting is restricted to select the union of these precoders. Channels with low and high correlation are used to ensure that RI reporting reflects the channel condition.

9.5.1 RI Reporting

9.5.1.1 FDD RI Reporting— PUCCH 1-1

9.5.1.1.1 Test purpose

To verify that the reported rank indicator accurately represents the channel rank.

9.5.1.1.2 Test applicability

This test applies to E-UTRA FDD UE release 8 and forward of UE category 2-5.

9.5.1.1.3 Minimum conformance requirements

The minimum performance requirement in Table 9.5.1.1.3-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI isselected according to Table A.4-3a.

For the parameters specified in Table 9.5.1.1.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.5.1.1.3-2.

Table 9.5.1.1.3-1: RI Test (FDD)

Parameter		Unit	Test 1 Test 2 Test 3		
Bandwidth		MHz	10		
PDSCH transmission	on mode			4	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	
CodeBookSubsetRe bitmap	estriction		000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI		2
Propagation condit antenna configur				2 x 2 EPA5	
Antenna correla	ation		Low	Low	High
RI configuration	on		Fixed RI=2 and follow RI	Fixed RI=1 and follow RI	Fixed RI=2 and follow RI
SNR		dB	0	20	20
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-78 -78 -78		-78
Maximum number of transmission				1	
Reporting mo	de		PUC	CH 1-1 (Note 4)	
Physical channel for reporting	CQI/PMI		PU	ICCH Format 2	
PUCCH Report Type for CQI/PMI			2		
Physical channel for RI reporting			PUSCH (Note 3)		
PUCCH Report Typ	PUCCH Report Type for RI		3		
Reporting period		ms	N _P = 5		
PMI and CQI d		ms		8	
cqi-pmi-Configurati	onIndex			6	
ri-Configuration	nInd	21.1.1		1	

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between RI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3
- Note 4: The bit field for precoding information in DCI format 2 shall be mapped as:
 - For reported RI = 1 and PMI = 0 >> precoding information bit field index = 1
 - For reported RI = 1 and PMI = 1 >> precoding information bit field index = 2
 - For reported RI = 2 and PMI = 0 >> precoding information bit field index = 0

Table 9.5.1.1.3-2: Minimum requirement (FDD)

Parameter	Test 1	Test 2	Test 3
2/1	N/A	1.05	N/A
72	1	N/A	1.1
UE Category	2-5	2-5	2-5

9.5.1.1.4 Test description

9.5.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.5.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.5.1.1.4.3.

9.5.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, antenna correlation, CodeBookSubsetRestriction for fixed Rank and the SNR according to Table 9.5.1.1.3-1 as appropriate.
- 2. The SS shall send PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to the UE reported CQI, PMI and RI. In case of CQI reports for two codewords (codeword #0 and #1), the CQI offset level for codeword #1 is selected from {0,1,2,3,-4,-3,-2,-1}. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-3a. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #3 and #8 according to Annex A.4-10. Measure the *t* _{fix} according to annex G.5.3.
- 3. Propagation conditions are set according to Annex B.1.
- 4. The SS sends uplink scheduling information via PDCCH DCI format 0 to schedule UL RMC in every subframe according to Annex A.4-10.
- 5. The SS shall transmit an RRC Connection Reconfiguration message to set codebookSubsetRestriction as for UE reported RI according to Table 9.5.1.1.3-1.
- 6. The UE shall transmit RRC Connection Reconfiguration Complete message.
- 7. Propagation conditions are set according to Table 9.5.1.1.3-1.
- 8. The SS shall send PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to the UE reported CQI, PMI and RI. In case of CQI reports for two codewords (codeword #0 and #1), the CQI offset level for codeword #1 is selected from {0,1,2,3,-4,-3,-2,-1}. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-3a. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit set to 0 to schedule UL RMC in subframe #3 and #8 according to Annex A.4-10. Measure t_{reported} according to Annex G.5.3
 - If the ratio ($t_{reported} / t_{fix}$) satisfies the requirement in Table 9.5.1. 1.5-1, then pass the UE for this test and go to step 9. Otherwise, fail the UE.
- 9. If all tests have not been done, then repeat the same procedure (steps 1 to 8) with test conditions according to the Table 9.5.1.1.3-2 for the other Tests as appropriate. Otherwise pass the UE.

9.5.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.5.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Value/remark	Comment	Condition
PhysicalConfigDedicated		
- DEFAULT using		
condition RBC		
	<u> </u>	- DEFAULT using

Table 9.5.1.1.4.3-2: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		RBC
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
codebookSubsetRestriction CHOICE {			
N2TxAntenna-tm4	According to each test		
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 9.5.1.1.4.3-3: PDSCH-ConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {			
p-a	dB-3		
}			

Table 9.5.1.1.4.3-4: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	6	(see Table 7.2.2- 1A in TS 36.213)	
cqi-FormatIndicatorPeriodic CHOICE {		,	
widebandCQI	NULL		
}			
ri-ConfigIndex	1	(see Table 7.2.2- 1B in TS 36.213)	
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

9.5.1.1.5 Test requirement

Table 9.5.1.1.5-1: Test requirement (FDD)

Parameter	Test 1	Test 2	Test 3
24	N/A	1.04	N/A
72	0.99	N/A	1.09
UE Category	2-5	2-5	2-5

9.5.1.2 TDD RI Reporting – PUSCH 3-1

9.5.1.2.1 Test purpose

To verify that the reported rank indicator accurately represents the channel rank.

9.5.1.2.2 Test applicability

This test applies to E-UTRA TDD UE release 8 and forward, which support UE Category 2-5.

9.5.1.2.3 Minimum conformance requirements

The minimum performance requirement in Table 9.5.1.2.3-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS is that resulting from the code rate which is closest to that indicated by M = wideband CQI and the N_{PRB} entry in Table 7.1.7.2.1-1 of TS36.213 [10] that corresponds to the transmission bandwidth configuration in Table 5.6-1 of TS36.101 [2].

For the parameters specified in Table 9.5.1.2.3-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.5.1.2.3-2.

Table 9.5.1.2.3-1: RI Test (TDD)

Parameter		Unit	Test 1 Test 2 Test 3		
Bandwidth		MHz	10		
PDSCH transmission mode				4	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3	
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3	
Uplink downlink con	figuration			2	
Special subfra configuration	n			4	
Propagation condit antenna configur				2 x 2 EPA5	
CodeBookSubsetRestriction bitmap			000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI		2
Antenna correla	ation		Low Low High		High
RI configuration	on				Fixed RI=2 and follow RI
SNR		dB	0	20	20
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98	-98
$\hat{I}_{or}^{(j)}$	$\hat{I}_{or}^{(j)}$		<u>-78</u>		-78
Maximum number of transmission			1		
Reporting mode			PUSCH 3-1 (Note 3)		
	Reporting interval		5		
PMI and CQI d		ms	10 or 11		
ACK/NACK feedback	ck mode			Bundling	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: Reported wideband CQI and PMI are used and sub-band CQI is discarded.

Table 9.5.1.2.3-2: Minimum requirement (TDD)

Parameter	Test 1	Test 2	Test 3
24	N/A	1.05	N/A
72	1	N/A	1.1
UE Category	2-5	2-5	2-5

9.5.1.2.4 Test description

9.5.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.5.1.2.3-1.

- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 9.5.1.2.4.3.

9.5.1.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, reference Channel, the propagation condition, antenna configuration, antenna correlation, CodeBookSubsetRestriction for fixed Rank and the SNR according to Table 9.5.1.2.3-1 as appropriate.
- 2. The SS shall send PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to the UE reported CQI (wideband CQI), PMI and RI. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-3a. The SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure the *t* fix according to annex G.5.3
- 3. Propagation conditions are set according to Annex B.1.
- 4. The SS sends uplink scheduling information via PDCCH DCI format 0 with CQI request bit to 0 to schedule UL RMC in subframe#2 and #7 according to Annex A.4-11.
- 5. The SS shall transmit an RRC Connection Reconfiguration message to set codebookSubsetRestriction as for UE reported RI according to Table 9.5.1.2.3-1.
- 6. The UE shall transmit RRC Connection Reconfiguration Complete message.
- 7. Propagation conditions are set according to Table 9.5.1.2.3-1.
- 8. The SS shall send PDSCH via PDCCH DCI format 2 for C_RNTI to transmit the DL RMC according to the UE reported CQI (wideband CQI), PMI and RI. The SS sends downlink MAC padding bits on the DL RMC. The transport format to be used is defined in Annex A.4 Table A.4-3a. The SS schedules the UL transmission to carry the PUSCH CQI feedback via PDCCH DCI format 0 with CQI request bit set to 1 and I_MCS=29 and N_PRB allocated to be less or equal to 4. Measure t_{reported} according to Annex G.5.3
 - If the ratio ($t_{reported} / t_{fix}$) satisfies the requirement in Table 9.5.1.2.5-1, then pass the UE for this test and go to step 9. Otherwise, fail the UE.
- 9. If all tests have not been done, then repeat the same procedure (steps 1 to 8) with test conditions according to the Table 9.5.1.2.3-2 for the other Tests as appropriate. Otherwise pass the UE.

9.5.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.5.1.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.508 clause 5.5.1.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
cqi-ReportConfig	CQI-ReportConfig- DEFAULT		
antennalnfo CHOICE {			
antennalnfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
codebookSubsetRestriction CHOICE {			
N2TxAntenna-tm4	According to each test		
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 9.5.1.2.4.3-2: PDSCH-ConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {			
p-a	dB-3		
}			

Table 9.5.1.2.4.3-3: CQI-ReportConfig-DEFAULT

Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm31		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {	Not Present		
}			
}			

Table 9.5.1.2.4.3-4: PUCCH-ConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PUCCH-ConfigDedicated-DEFAULT ::= SEQUENCE			
{			
ackNackRepetition CHOICE {			
release	NULL		
}			
tddAckNackFeedbackMode	Bundling	Multiplexing is selected as default to align with RAN4's assumptions in RF tests.	TDD
}			

9.5.1.2.5 Test requirement

Table 9.5.1.2.5-1: Test requirement (TDD)

Parameter	Test 1	Test 2	Test 3
24	N/A	1.04	N/A
72	0.99	N/A	1.09
UE Category	2-5	2-5	2-5

10 MBMS Performance

10.1 FDD MBMS performance (Fixed Reference Channel)

Editor's note: This section is incomplete. The following aspects are either missing or not yet determined:

- Some of the Test tolerances applicable to this test are undefined due to incomplete core specification.
- The Minimum Test Time applicable to this test is undefined.

10.1.1 Test purpose

This test verifies the performance of FDD MBMS with a given SNR for which the average BLER remains below a given reference value.

10.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE supporting MBMS release 9 and forward.

10.1.3 Minimum conformance requirements

The parameters specified in Table 10.1.3-1 are valid for all FDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Table 10.1.3-1: Common Test Parameters (FDD)

Parameter	Unit	Value
Number of HARQ processes	Processes	None
Subcarrier spacing	kHz	15 kHz
Allocated subframes per Radio Frame (Note 1)		6 subframes
Number of OFDM symbols for PDCCH (Note 2)		2 symbols in the case of 3 PHICH symbols or 4 RS Ports; 1 or 2 symbols for other scenarios.
Cyclic Prefix		Extended

Note1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note2: 2 OFDM symbols are reserved for PDCCH in this subclause.

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.1.3-1 and Table 10.1.3-2 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.1.3-3.

Table 10.1.3-2: Test Parameters for Testing

Parameter		Unit	Test 1-4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
N_{oc} at antenna	port	dBm/15kHz	-98
Note 1: $P_{B} = 0$			

Table 10.1.3-3: Minimum performance

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and	BLER	SNR(dB)	UE
					antenna	(%)		Category
1	10 MHz	R.37 FDD	OP.4	MBSFN	1x2 low	1	4.1	1-5
			FDD	channel				
2	10 MHz	R.38 FDD	OP.4	model (Table			11.0	1-5
			FDD	B.2.6-1)				
3	10 MHz	R.39 FDD	OP.4				TBD	2-5
			FDD					
	5.0MHz	R.39-1 FDD	OP.4				TBD	1
			FDD					
4	1.4 MHz	R.40 FDD	OP.4				6.6	1-5
			FDD					

The normative reference for this requirement is TS 36.101 [2] clause 10.1.

10.1.4 Test description

10.1.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.

Channel Bandwidths to be tested: As specified per test number in Table 10.1.3-3 as defined in TS 36.508 [7] clause 4.3.1.

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 10.1.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. SS configures 10 MBMS packets are included in one TB.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 10.1.4.3.

10.1.4.2 Test procedure

- 1. Initiate the variables Mtot to 0. Propagation conditions are set according to Annex B clause B.2.6
- 2. SS shall start the test by sending MBMS Packets on the MTCH radio bearer for [164] seconds ([10] seconds in the second or later iteration). SS stores the count of transmitted MBMS Packets on the MTCH in the variable M_{tot} .

- 3. SS shall send a "UE TEST LOOP MODE C MBMS PACKET COUNTER REQUEST" message and wait for the UE to respond with a "UE TEST LOOP MODE C MBMS PACKET COUNTER RESPONSE" reporting the received RLC SDU counter value. Store this counter in the variable M_{ok}.
- 4. SS shall compute the BLER as the following:

The BLER =
$$(M_{tot} - M_{ok}) / M_{tot}$$

SS controls the number of MBMS packets used per transport block. The formula for BLER would be:

$$BLER = (N_{tot} - N_{ok}) / N_{tot} = ((M_{tot} / M_{mp}) - (M_{ok} / M_{mp})) / (M_{tot} / M_{mp}) = (M_{tot} - M_{ok}) / M_{tot}, where,$$

M_{mp} = Number of MBMS packets used by the SS per MCH transport block (on the observed MTCH)

 M_{tot} = Total number of MBMS packets transmitted by the SS on the observed MTCH

 M_{ok} = The UE counted successfully received MBMS packets on the observed MTCH

- 5. If BLER is not greater than the value for the BLER as specified in Table 10.1.5-1 then the number of successful tests is increased by one. Otherwise, the number of failure tests is increased by one.
- 6. Repeat steps 2 to 5 until the statistical significance according to Annex to G.4 is achieved.
- 7. Repeat steps from 1 to 6 for each subtest in Table 10.1.5-1 as appropriate.

10.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

10.1.5 Test requirement

For the parameters specified in Table 10.1-1 and Table 10.1.1-1 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.1.5-1.

Test Bandwidth Reference **OCNG** Propagation Correlation Reference value **MBMS** number Channel **Pattern** condition Matrix and **BLER** SNR(dB) UE antenna Category (%) OP.4 MBSFN 1 10 MHz R.37 FDD 1x2 low 5 1-5 FDD channel 2 R.38 FDD model (Table 10 MHz OP.4 11.9 1-5 FDD B.2.6-1)3 10 MHz R.39 FDD TBD 2-5 OP.4 FDD 5.0MHz R.39-1 FDD OP.4 TBD 1 FDD 4 1.4 MHz R.40 FDD OP.4 7.5 1-5 **FDD**

Table 10.1.5-1: Test requirement

10.2 TDD MBMS performance (Fixed Reference Channel)

Editor's note: This section is incomplete. The following aspects are either missing or not yet determined:

- Some of the Test tolerances applicable to this test are undefined due to incomplete core specification.
- The Minimum Test Time applicable to this test is undefined.

10.2.1 Test purpose

This test verifies the performance of TDD MBMS with a given SNR for which the average BLER remains below a given reference value.

10.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE supporting MBMS release 9 and forward.

10.2.3 Minimum conformance requirements

The parameters specified in Table 10.2.3-1 are valid for all TDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

Table 10.2.3-1: Common Test Parameters (TDD)

Parameter	Unit	Value
Number of HARQ processes	Processes	None
Subcarrier spacing	kHz	15 kHz
Allocated subframes per Radio Frame (Note 1)		5 subframes
Number of OFDM symbols for PDCCH (Note 2)		2 symbols in the case of 3 PHICH symbols or 4 RS Ports; 1 or 2 symbols for other scenarios.
Cyclic Prefix		Extended

Note1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note2: 2 OFDM symbols are reserved for PDCCH in this subclause.

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.2.3-1 and Table 10.2.3-2 and Annex A.3.8.2, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.2.3-3.

Table 10.2.3-2: Test Parameters for Testing

Parameter		Unit	Test 1-4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Note 1: $P_B = 0$			

Table 10.2.3-3: Minimum performance

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and	BLER	SNR(dB)	UE
					antenna	(%)		Category
1	10 MHz	R.37 TDD	OP.4	MBSFN	1x2 low	1	3.4	1-5
			TDD	channel				
2	10 MHz	R.38 TDD	OP.4	model (Table			11.1	1-5
			TDD	B.2.6-1)				
3	10 MHz	R.39 TDD	OP.4				TBD	2-5
			TDD					
	5MHz	R.39-1 TDD	OP.4				TBD	1
			TDD					
4	1.4 MHz	R.40 TDD	OP.4				5.8	1-5
			TDD					

The normative reference for this requirement is TS 36.101 [2] clause 10.2.

10.2.4 Test description

10.2.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.

Channel Bandwidths to be tested: As specified per test number in Table 10.2.3-3 as defined in TS 36.508 [7] clause 4.3.1.

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 10.2.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. SS configures 10 MBMS packets are included in one TB.
- 6. Ensure the UE is in State 3A-RF according to TS 36.508 [7] clause 5.2A.2. Message contents are defined in clause 10.2.4.3.

10.2.4.2 Test procedure

- 1. Initiate the variables M_{tot} to 0. Propagation conditions are set according to Annex B clause B.2.6
- 2. SS shall start the test by sending MBMS Packets on the MTCH radio bearer for [164] seconds ([10] seconds in the second or later iteration). SS stores the count of transmitted MBMS Packets on the MTCH in the variable M_{tot} .
- 3. SS shall send a "UE TEST LOOP MODE C MBMS PACKET COUNTER REQUEST" message and wait for the UE to respond with a "UE TEST LOOP MODE C MBMS PACKET COUNTER RESPONSE" reporting the received MBMS Packet counter value. Store this counter in the variable M_{ok} .
- 4. SS shall compute the BLER as the following:

The BLER =
$$(M_{tot} - M_{ok}) / M_{tot}$$

SS controls the number of MBMS packets used per transport block. The formula for BLER would be:

$$BLER = \left(N_{tot} - N_{ok} \right) / \ N_{tot} = \left(\left(M_{tot} / \ M_{mp} \right) - \left(M_{ok} / \ M_{mp} \right) \right) / \left(M_{tot} / \ M_{mp} \right) = \left(M_{tot} - M_{ok} \right) / \ M_{tot} \ , \ where,$$

 M_{mp} = Number of MBMS packets used by the SS per MCH transport block (on the observed MTCH)

M_{tot} = Total number of MBMS packets transmitted by the SS on the observed MTCH

 M_{ok} = The UE counted successfully received MBMS packets on the observed MTCH

- 5. If BLER is not greater than the value for the BLER as specified in Table 10.2.5-1 then the number of successful tests is increased by one. Otherwise, the number of failure tests is increased by one.
- 6. Repeat steps 2 to 5 until the statistical significance according to Annex to G.4 is achieved.
- 7. Repeat steps from 1 to 6 for each subtest in Table 10.2.5-1 as appropriate.

10.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

10.2.5 Test requirement

For the parameters specified in Table 10.2-1 and Table 10.2.1-1 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.2.5-1.

Table 10.2.5-1: Test

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Referen	ce value	MBMS
number		Channel	Pattern	condition	Matrix and	BLER	SNR(dB)	UE
					antenna	(%)		Category
1	10 MHz	R.37 TDD	OP.4	MBSFN	1x2 low	1	4.3	1-5
			TDD	channel				
2	10 MHz	R.38 TDD	OP.4	model (Table			12	1-5
			TDD	B.2.6-1)				
3	10 MHz	R.39 TDD	OP.4	1			TBD	2-5
			TDD					
	5MHz	TBD	[OP.4	1			TBD	1
			TDD]					
4	1.4 MHz	R.40 TDD	OP.4	1			6.7	1-5
			TDD					

Annex A (normative): Measurement Channels

A.1 General

A schematic overview of the encoding process for the reference measurement channels is provided in Figure A-1.

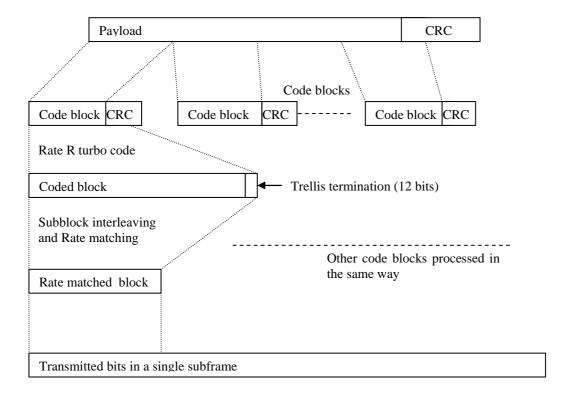


Figure A-1: Schematic overview of the encoding process

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per data stream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all data streams (codewords).

A.2 UL reference measurement channels

A.2.1 General

A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [8] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [9] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{PR}

- 1. Calculate the number of channel bits $N_{\rm ch}$ that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24)/N_{ch}|,$$

subject to

- a) A is a valid TB size according to clause 7.1.7 of TS 36.213 [10] assuming an allocation of N_{RB} resource blocks.
- b) Segmentation is not included in this formula, but should be considered in the TBS calculation.
- c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.
- 3. If there is more than one A that minimises the equation above, then the larger value is chosen per default.

A.2.2 Reference measurement channels for FDD

A.2.2.1 Full RB allocation

A.2.2.1.1 QPSK

Table A.2.2.1.1-1: Reference Channels for QPSK with full RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	100	
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12	
Frame								
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6	
Payload size	Bits	600	1544	2216	5160	4392	4584	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of code blocks per Sub-		1	1	1	1	1	1	
Frame (Note 1)								
Total number of bits per Sub-Frame	Bits	1728	4320	7200	14400	21600	28800	
(Note 1)								
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400	
UE Category		1-5	1-5	1-5	1-5	1-5	1-5	
Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is								

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1: Reference Channels for 16-QAM with full RB allocation

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3
Payload size	Bits	2600	4264	4968	21384	21384	19848
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	4	4	4
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	3456	8640	14400	28800	43200	57600
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400
UE Category		1-5	1-5	1-5	2-5	2-5	2-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.2.2.1 QPSK

Table A.2.2.2.1-1: Reference Channels for 1.4MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value			
Channel bandwidth	MHz	1.4	1.4	1.4	1.4	1.4			
Allocated resource blocks		1	2	3	4	5			
DFT-OFDM Symbols per Sub-		12	12	12	12	12			
Frame									
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK			
Target Coding rate		1/3	1/3	1/3	1/3	1/3			
Payload size	Bits	72	176	256	392	424			
Transport block CRC	Bits	24	24	24	24	24			
Number of code blocks per Sub-		1	1	1	1	1			
Frame (Note 1)									
Total number of bits per Sub-Frame	Bits	288	576	864	1152	1440			
Total symbols per Sub-Frame		144	288	432	576	720			
UE Category		1-5	1-5	1-5	1-5	1-5			
Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached									

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-2: Reference Channels for 3MHz QPSK with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	3	3	3	3	3	3	3
Allocated resource blocks		1	2	3	4	5	6	10
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12	12
Frame								
Modulation		QPSK						
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	256	392	424	600	872
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1	1
Frame (Note 1)								
Total number of bits per Sub-Frame	Bits	288	576	864	1152	1440	1728	2880
Total symbols per Sub-Frame		144	288	432	576	720	864	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-3: Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value			
Channel bandwidth	MHz	5	5	5	5	5			
Allocated resource blocks		1	2	5	6	8			
DFT-OFDM Symbols per Sub-		12	12	12	12	12			
Frame									
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK			
Target Coding rate		1/3	1/3	1/3	1/3	1/3			
Payload size	Bits	72	176	424	600	808			
Transport block CRC	Bits	24	24	24	24	24			
Number of code blocks per Sub-		1	1	1	1	1			
Frame (Note 1)									
Total number of bits per Sub-Frame	Bits	288	576	1440	1728	2304			
Total symbols per Sub-Frame		144	288	720	864	1152			
UE Category		1-5	1-5	1-5	1-5	1-5			
Note 1: If more than one Code Block is present, an additional CPC sequence of L = 24 Rite is attached									

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-3a: Reference Channels for 5MHz QPSK with partial RB allocation

Unit	Value	Value	Value	Value	Value
MHz	5	5	5	5	5
	10	15	18	20	24
	12	12	12	12	12
	QPSK	QPSK	QPSK	QPSK	QPSK
	1/3	1/3	1/3	1/3	1/3
Bits	872	1320	1864	1736	2472
Bits	24	24	24	24	24
	1	1	1	1	1
Bits	2880	4320	5184	5760	6912
	1440	2160	2592	2880	3456
	1-5	1-5	1-5	1-5	1-5
	MHz Bits Bits	MHz 5 10 12 QPSK 1/3 Bits 872 Bits 24 1 Bits 2880 1440	MHz 5 5 10 15 12 12 QPSK QPSK 1/3 1/3 Bits 872 1320 Bits 24 24 1 1 1 Bits 2880 4320 1440 2160 1	MHz 5 5 5 10 15 18 12 12 12 QPSK QPSK QPSK 1/3 1/3 1/3 Bits 872 1320 1864 Bits 24 24 24 1 1 1 1 Bits 2880 4320 5184 1440 2160 2592	MHz 5 5 5 10 15 18 20 12 12 12 12 QPSK QPSK QPSK QPSK 1/3 1/3 1/3 1/3 Bits 872 1320 1864 1736 Bits 24 24 24 24 1 1 1 1 1 Bits 2880 4320 5184 5760 1440 2160 2592 2880

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-4: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		1	2	5	6	8	10
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame		144	288	720	864	1152	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-4a: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		12	15	16	18	20	24
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	1224	1320	1384	1864	1736	2472
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	3456	4320	4608	5184	5760	6912
Total symbols per Sub-Frame		1728	2160	2304	2592	2880	3456
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-4b: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		25	27	30	36	40	48
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	2216	2792	2664	3752	4136	4264
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	7200	7776	8640	10368	11520	13824
Total symbols per Sub-Frame		3600	3888	4320	5184	5760	6912
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Table A.2.2.2.1-5: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		1	2	5	6	8	10
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame		144	288	720	864	1152	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-5a: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	15	15	15	15	15	15	15
Allocated resource blocks		16	18	20	24	25	27	36
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12	12
Modulation		QPSK						
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	1384	1864	1736	2472	2216	2792	3752
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per Sub-Frame (Note 1)		1	1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	4608	5184	5760	6912	7200	7776	10368
Total symbols per Sub- Frame		2304	2592	2880	3456	3600	3888	5184
UE Category		1-5	1-5	1-5	1-5	1-5	1-5	1-5

Table A.2.2.2.1-5b: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	15	15	15
Allocated resource blocks		40	48	50
DFT-OFDM Symbols per Sub-		12	12	12
Frame				
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size	Bits	4136	4264	5160
Transport block CRC	Bits	24	24	24
Number of code blocks per Sub-		1	1	1
Frame (Note 1)				
Total number of bits per Sub-Frame	Bits	11520	13824	14400
Total symbols per Sub-Frame		5760	6912	7200
UE Category		1-5	1-5	1-5
Total number of bits per Sub-Frame Total symbols per Sub-Frame		5760 1-5	6912 1-5	720

Table A.2.2.2.1-6: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20	20
Allocated resource blocks		1	2	5	6	8	10
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame		144	288	720	864	1152	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-6a: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	20	20	20	20	20	20	20
Allocated resource blocks		18	20	24	25	48	50	75
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12	12
Modulation		QPSK						
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/5
Payload size	Bits	1864	1736	2472	2216	4264	5160	4392
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per Sub-Frame (Note 1)		1	1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	5184	5760	6912	7200	13824	14400	21600
Total symbols per Sub- Frame		2592	2880	3456	3600	6912	7200	10800
UE Category		1-5	1-5	1-5	1-5	1-5	1-5	1-5

A.2.2.2.2 16-QAM

Table A.2.2.2-1: Reference Channels for 1.4MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
DFT-OFDM Symbols per Sub-		12	12
Frame			
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	2152
Transport block CRC	Bits	24	24
Number of code blocks per Sub-		1	1
Frame (Note 1)			
Total number of bits per Sub-Frame	Bits	576	2880
Total symbols per Sub-Frame		144	720
UE Category		1-5	1-5
Nata 4. If many athon and Code Dies		و مناطانه می می	-1.000

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2-2: Reference Channels for 3MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
DFT-OFDM Symbols per Sub-		12	12
Frame			
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	1736
Transport block CRC	Bits	24	24
Number of code blocks per Sub-		1	1
Frame (Note 1)			
Total number of bits per Sub-Frame	Bits	576	2304
Total symbols per Sub-Frame		144	576
UE Category		1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2-3: Reference Channels for 5MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	5	5
Allocated resource blocks		1	8
DFT-OFDM Symbols per Sub-		12	12
Frame			
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	3496
Transport block CRC	Bits	24	24
Number of code blocks per Sub-		1	1
Frame (Note 1)			
Total number of bits per Sub-Frame	Bits	576	4608
Total symbols per Sub-Frame		144	1152
UE Category		1-5	1-5

Table A.2.2.2-4: Reference Channels for 10MHz 16-QAM with partial RB allocation

Unit	Value	Value	Value	Value	Value
MHz	10	10	10	10	10
	1	12	16	30	36
	12	12	12	12	12
	16QAM	16QAM	16QAM	16QAM	16QAM
	3/4	3/4	1/2	3/4	3/4
Bits	408	5160	4584	12960	15264
Bits	24	24	24	24	24
	1	1	1	3	3
Bits	576	6912	9216	17280	20736
	144	1728	2304	4320	5184
	1-5	1-5	1-5	2-5	2-5
	MHz Bits Bits	MHz 10 1 12 16QAM 3/4 Bits 408 Bits 24 1 Bits 576 144 1-5	MHz 10 10 1 12 12 12 16QAM 16QAM 3/4 3/4 Bits 408 5160 Bits 24 24 1 1 1 Bits 576 6912 144 1728 1-5 1-5	MHz 10 10 10 1 12 16 12 12 12 16QAM 16QAM 16QAM 3/4 3/4 1/2 Bits 408 5160 4584 Bits 24 24 24 1 1 1 1 Bits 576 6912 9216 144 1728 2304 1-5 1-5 1-5	MHz 10 10 10 1 12 16 30 12 12 12 12 16QAM 16QAM 16QAM 16QAM 3/4 3/4 1/2 3/4 Bits 408 5160 4584 12960 Bits 24 24 24 24 1 1 1 3 Bits 576 6912 9216 17280 144 1728 2304 4320 1-5 1-5 2-5

Table A.2.2.2-5: Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	15	15
Allocated resource blocks		1	16
DFT-OFDM Symbols per Sub-		12	12
Frame			
Modulation		16QAM	16QAM
Target Coding rate		3/4	1/2
Payload size	Bits	408	4584
Transport block CRC	Bits	24	24
Number of code blocks per Sub-		1	1
Frame (Note 1)			
Total number of bits per Sub-Frame	Bits	576	9216
Total symbols per Sub-Frame		144	2304
UE Category		1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.6: Reference Channels for 20MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	20	20	20
Allocated resource blocks		1	18	75
DFT-OFDM Symbols per Sub-		12	12	12
Frame				
Modulation		16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/2
Payload size	Bits	408	5160	21384
Transport block CRC	Bits	24	24	24
Number of code blocks per Sub-		1	1	4
Frame (Note 1)				
Total number of bits per Sub-Frame	Bits	576	10368	43200
Total symbols per Sub-Frame		144	2592	10800
UE Category		1-5	1-5	2-5

A.2.2.3 Reference measurement channels for sustained downlink data rate provided by lower layers

Table A.2.2.3-1: Uplink Reference Channels for sustained data-rate test (FDD)

Parameter	Unit			Va	lue		
Reference Channel		R.1-1	R.1-2	R.1-3	R.1-3A	R.1-4	FFS
		FDD	FDD	FDD	FDD	FDD	
Channel Bandwidth	MHz	10	10	20	10	20	
Allocated Resource Blocks		40	40	90	40	90	
		(Note 2)	(Note 2)	(Note 3)	(Note 2)	(Note 3)	
Allocated Sub-Frames per Radio-Frame		10	10	10	10	10	
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	
Coding Rate		0.31	0.31	0.31	0.31	0.31	
Information Bit Payload per Sub-Frame	Bits	3496	3496	7992	3496	7992	
Number of Code Blocks per Sub-Frame		1	1	2	1	2	
(Note 1)							
Modulation Symbols per Sub-Frame		5760	5760	12960	5760	12960	
Binary Channel Bits per Sub-Frame		11520	11520	25920	11520	25920	
Max Throughput over 1 Radio-Frame	Mbps	3.496	3.496	7.992	3.496	7.992	
UE Category		1	2	3	3	4	

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each

Code Block (otherwise L = 0 Bit)

Note 2: RB-s 5-44 allocated with PUSCH. Note 3: RB-s 5-94 allocated with PUSCH.

A.2.3 Reference measurement channels for TDD

For TDD the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

A.2.3.1 Full RB allocation

A.2.3.1.1 QPSK

Table A.2.3.1.1-1: Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note		1	1	1	1	1	1
2)							
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size							
For Sub-Frame 2,3,7,8	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	14400	21600	28800
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is

attached to each Code Block (otherwise L = 0 Bit)

A.2.3.1.2 16-QAM

Table A.2.3.1.2-1: Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	2600	4264	4968	21384	21384	19848
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks - C		1	1	1	4	4	4
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	3456	8640	14400	28800	43200	57600
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		1-5	1-5	1-5	2-5	2-5	2-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [8]

A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.3.2.1 QPSK

Table A.2.3.2.1-1: Reference Channels for 1.4MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	1.4	1.4	1.4	1.4	1.4
Allocated resource blocks		1	2	3	4	5
Uplink-Downlink Configuration (Note		1	1	1	1	1
2)						
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	72	176	256	392	424
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1
Frame (Note 1)						
Total number of bits per Sub-Frame						
For Sub-Frame 2,3,7,8	Bits	288	576	864	1152	1440
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		144	288	432	576	720
UE Category		1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached

to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-2: Reference Channels for 3MHz QPSK with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	3	3	3	3	3	3	3
Allocated resource blocks		1	2	3	4	5	6	10
Uplink-Downlink Configuration (Note		1	1	1	1	1	1	1
2)								
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12	12
Frame								
Modulation		QPSK						
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size								
For Sub-Frame 2,3,7,8	Bits	72	176	256	392	424	600	872
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1	1
Frame (Note 1)								
Total number of bits per Sub-Frame								
For Sub-Frame 2,3,7,8	Bits	288	576	864	1152	1440	1728	2880
Total symbols per Sub-Frame								
For Sub-Frame 2,3,7,8		144	288	432	576	720	864	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5	1-5

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.1-3: Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	5	5	5	5	5
Allocated resource blocks		1	2	5	6	8
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1
Total number of bits per Sub-Frame	Bits					
For Sub-Frame 2,3,7,8		288	576	1440	1728	2304
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		144	288	720	864	1152
UE Category		1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-3a: Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	5	5	5	5	5
Allocated resource blocks		10	15	18	20	24
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	872	1320	1864	1736	2472
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1
Total number of bits per Sub-Frame	Bits					
For Sub-Frame 2,3,7,8		2880	4320	5184	5760	6912
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		1440	2160	2592	2880	3456
UE Category		1-5	1-5	1-5	1-5	1-5

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.1-4: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		1	2	5	6	8	10
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	288	720	864	1152	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-4a: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		12	16	18	20	24	25
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	1224	1384	1864	1736	2472	2216
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	3456	4608	5184	5760	6912	7200
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		1728	2304	2592	2880	3456	3600
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.1-4b: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10
Allocated resource blocks		27	30	36	40	48
Uplink-Downlink Configuration		1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	2792	2664	3752	4136	4264
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1
Frame (Note 1)						
Total number of bits per Sub-Frame						
For Sub-Frame 2,3,7,8	Bits	7776	8640	10368	11520	13824
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		3888	4320	5184	5760	6912
UE Category		1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-5: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		1	2	5	6	8	10
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	288	720	864	1152	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.1-5a: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15	15
Allocated resource blocks		16	18	20	24	25	27	36
Uplink-Downlink		1	1	1	1	1	1	1
Configuration								
DFT-OFDM Symbols per		12	12	12	12	12	12	12
Sub-Frame								
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size								
For Sub-Frame 2,3,7,8	Bits	1384	1864	1736	2472	2216	2792	3752
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per		1	1	1	1	1	1	1
Sub-Frame (Note 1)								
Total number of bits per								
Sub-Frame								
For Sub-Frame 2,3,7,8	Bits	4608	5184	5760	6912	7200	7776	10368
Total symbols per Sub-								
Frame								
For Sub-Frame 2,3,7,8		2304	2592	2880	3456	3600	3888	5184
UE Category		1-5	1-5	1-5	1-5	1-5	1-5	1-5
Nata 4. If we are the are are C	\I- DII-:		1 1545	000		1 D:4- :44	1 14	-1- 0 - 1-

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-5b: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	15	15	15
Allocated resource blocks		40	48	50
Uplink-Downlink Configuration		1	1	1
DFT-OFDM Symbols per Sub-		12	12	12
Frame				
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size				
For Sub-Frame 2,3,7,8	Bits	4136	4264	5160
Transport block CRC	Bits	24	24	24
Number of code blocks per Sub-		1	1	1
Frame (Note 1)				
Total number of bits per Sub-Frame				
For Sub-Frame 2,3,7,8	Bits	11520	13824	14400
Total symbols per Sub-Frame				
For Sub-Frame 2,3,7,8		5760	6912	7200
UE Category		1-5	1-5	1-5

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.1-6: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20	20
Allocated resource blocks		1	2	5	6	8	10
Uplink-Downlink Configuration (Note		1	1	1	1	1	1
2)							
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	288	720	864	1152	1440
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-6a: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	20	20	20	20	20	20	20
Allocated resource blocks		18	20	24	25	48	50	75
Uplink-Downlink		1	1	1	1	1	1	1
Configuration (Note 2)								
DFT-OFDM Symbols per		12	12	12	12	12	12	12
Sub-Frame								
Modulation		QPSK						
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/5
Payload size								
For Sub-Frame 2,3,7,8	Bits	1864	1736	2472	2216	4264	5160	4392
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks		1	1	1	1	1	1	1
per Sub-Frame (Note 1)								
Total number of bits per								
Sub-Frame								
For Sub-Frame 2,3,7,8	Bits	5184	5760	6912	7200	13824	14400	21600
Total symbols per Sub-								
Frame								
For Sub-Frame 2,3,7,8		2592	2880	3456	3600	6912	7200	10800
UE Category	•	1-5	1-5	1-5	1-5	1-5	1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each

Code Block (otherwise L = 0 Bit) Note 2: As per Table 4.2-2 in TS 36.211

A.2.3.2.2 16-QAM

Table A.2.3.2.2-1: Reference Channels for 1.4MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value						
Channel bandwidth	MHz	1.4	1.4						
Allocated resource blocks		1	5						
Uplink-Downlink Configuration (Note		1	1						
2)									
DFT-OFDM Symbols per Sub-		12	12						
Frame									
Modulation		16QAM	16QAM						
Target Coding rate		3/4	3/4						
Payload size									
For Sub-Frame 2,3,7,8	Bits	408	2152						
Transport block CRC	Bits	24	24						
Number of code blocks per Sub-		1	1						
Frame (Note 1)									
Total number of bits per Sub-Frame									
For Sub-Frame 2,3,7,8	Bits	576	2880						
Total symbols per Sub-Frame									
For Sub-Frame 2,3,7,8		144	720						
UE Category		1-5	1-5						
Note 1: If more than one Code Place	k io procent	Note 1: If more than one Code Plack is present, as additional CBC							

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block

(otherwise L = 0 Bit)

Table A.2.3.2.2-2: Reference Channels for 3MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
Uplink-Downlink Configuration (Note		1	1
2)			
DFT-OFDM Symbols per Sub-		12	12
Frame			
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	1736
Transport block CRC	Bits	24	24
Number of code blocks per Sub-		1	1
Frame (Note 1)			
Total number of bits per Sub-Frame			
For Sub-Frame 2,3,7,8	Bits	576	2304
Total symbols per Sub-Frame			
For Sub-Frame 2,3,7,8		144	576
UE Category		1-5	1-5
Note 4. If we are their are Code Disc	1. :	م مناطات می	CDC

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.2-3: Reference Channels for 5MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	5	5
Allocated resource blocks		1	8
Uplink-Downlink Configuration (Note		1	1
2)			
DFT-OFDM Symbols per Sub-		12	12
Frame			
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	3496
Transport block CRC	Bits	24	24
Number of code blocks per Sub-		1	1
Frame (Note 1)			
Total number of bits per Sub-Frame			
For Sub-Frame 2,3,7,8	Bits	576	4608
Total symbols per Sub-Frame			
For Sub-Frame 2,3,7,8		144	1152
UE Category		1-5	1-5

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.2-4: Reference Channels for 10MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10
Allocated resource blocks		1	12	16	30	36
Uplink-Downlink Configuration (Note		1	1	1	1	1
2)						
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	3/4	1/2	3/4	3/4
Payload size						
For Sub-Frame 2,3,7,8	Bits	408	5160	4584	12960	15264
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	3	3
Frame (Note 1)						
Total number of bits per Sub-Frame						
For Sub-Frame 2,3,7,8	Bits	576	6912	9216	17280	20736
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		144	1728	2304	4320	5184
UE Category		1-5	1-5	1-5	2-5	2-5

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.2-5: Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value				
Channel bandwidth	MHz	15	15				
Allocated resource blocks		1	16				
Uplink-Downlink Configuration(Note		1	1				
2)							
DFT-OFDM Symbols per Sub-		12	12				
Frame							
Modulation		16QAM	16QAM				
Target Coding rate		3/4	1/2				
Payload size							
For Sub-Frame 2,3,7,8	Bits	408	4584				
Transport block CRC	Bits	24	24				
Number of code blocks per Sub-		1	1				
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	576	9216				
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	2304				
UE Category		1-5	1-5				
Note 1: If more than one Code Block is present, an additional CBC							

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.2-6: Reference Channels for 20MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	20	20	20
Allocated resource blocks		1	18	75
Uplink-Downlink Configuration (Note 2)		1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12
Modulation		16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/2
Payload size				
For Sub-Frame 2,3,7,8	Bits	408	5160	21384
Transport block CRC	Bits	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	4
Total number of bits per Sub-Frame				
For Sub-Frame 2,3,7,8	Bits	576	10368	43200
Total symbols per Sub-Frame				
For Sub-Frame 2,3,7,8		144	2592	10800
UE Category		1-5	1-5	2-5

Note 2: As per Table 4.2-2 in TS 36.211 [8]

A.2.3.3 Reference measurement channels for sustained downlink data rate provided by lower layers

Table A.2.3.3-1: Uplink Reference Channels for sustained data-rate test (TDD)

Parameter	Unit	Value						
Reference Channel		R.1-1	R.1-2	R.1-3	R.1-3B	R.1-4	FFS	
		TDD	TDD	TDD	TDD	TDD		
Channel Bandwidth	MHz	10	10	20	15	20		
Uplink-Downlink Configuration (Note 2)		5	5	5	5	5		
Allocated Resource Blocks		40	40	90	60	90		
		(Note 3)	(Note 3)	(Note 5)	(Note 4)	(Note 5)		
Allocated Sub-Frames per Radio-Frame		1	1	1	1	1		
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12		
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK		
Coding Rate								
For Sub-Frame 2		0.43	0.61	0.49	0.42	0.49		
Information Bit Payload per Sub-Frame	Bits							
For Sub-Frame 2		4968	6968	12576	7224	12576		
Number of Code Blocks per Sub-Frame								
(Note 1)								
For Sub-Frame 2		1	2	3	2	3		
Modulation Symbols per Sub-Frame								
For Sub-Frame 2		5760	5760	12960	8640	10240		
Binary Channel Bits per Sub-Frame								
For Sub-Frame 2		11520	11520	25920	17280	25920		
Max Throughput over 1 Radio-Frame	Mbps	0.4968	0.6968	1.2576	0.7224	1.2576		
UE Category		1	2	3	3	4		

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [8]
Note 3: RB-s 5-44 allocated with PUSCH.
Note 4: RB-s 7-66 allocated with PUSCH.

Note 5: RB-s 5-94 allocated with PUSCH.

A.3 DL reference measurement channels

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24)/N_{ch}|,$$

subject to

- a) A is a valid TB size (according to TS 36.213 [10] clause 7.1.7) assuming an allocation of N_{RB} resource blocks
- b) Segmentation is not included in this formula, but should be considered in the TBS calculation
- 3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default.
- 4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of sub-clause 7.4 (Maximum input level).

Tables A.3.2-3, A.3.2-3a, A.3.2-3b, A3.2-4, A3.2-4a and A.3.2-4b are applicable for sub-clause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Table A.3.2-1: Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1320	2216	4392	6712	8760
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	152	872	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame (Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	1	1	1	2	2
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	1	1	1	1	2	2
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3780	6300	13800	20700	27600
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	528	2940	5460	12960	19860	26760
Max. Throughput averaged over 1 frame	kbps	341.6	1143.	1952.	3952.	6040.	7884
	'		2	8	8	8	
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

² symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to Note 1: PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 2:

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 3: each Code Block (otherwise L = 0 Bit)

Table A.3.2-2: Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit			Va	lue		
Channel Bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 6)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		4	4+2	4+2	4+2	4+2	4+2
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmission		1	1	1	1	1	1
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload per Sub-Frame	Bits						
For Sub-Frame 4, 9		408	1320	2216	4392	6712	8760
For Sub-Frame 1, 6		n/a	968	1544	3240	4968	6712
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		208	1064	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frame 4, 9		1	1	1	1	2	2
For Sub-Frame 1, 6		n/a	1	1	1	1	2
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		1	1	1	1	2	2
Binary Channel Bits Per Sub-Frame	Bits						
For Sub-Frame 4, 9		1368	3780	6300	13800	20700	27600
For Sub-Frame 1, 6		n/a	3276	5556	11256	16956	22656
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		672	3084	5604	13104	20004	26904
Max. Throughput averaged over 1 frame	kbps	102.4	564	932	1965.	3007.	3970.
					6	2	4
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz Note 1: channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs. For 1.4MHz, no data shall be scheduled on special subframes (1&6) to avoid problems with

Note 2: insufficient PDCCH performance

Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8] Note 3:

If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 4: each Code Block (otherwise L = 0 Bit).

Note 5: As per Table 4.2-2 in TS 36.211 [8]

Table A.3.2-3: Fixed Reference Channel for Maximum input level for UE Categories 3-5 (FDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Subcarriers per resource block		12	12	12	12	12	12		
Allocated subframes per Radio Frame		10	10	10	10	10	10		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	8	8	8	8	8	8		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	6456	12576	28336	45352	61664		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	11		
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0		n/a	2	3	5	8	11		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	8820	16380	38880	59580	80280		
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	55498		
Note 1: 2 symbols allocated to PDCCH fo	r 20 MHz, 15 N	MHz and 10) MHz char	nnel BW. 3	symbols a	llocated to	PDCCH		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.2-3a: Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	18	17	17	17		
Subcarriers per resource block		12	12	12	12	12	12		
Allocated subframes per Radio Frame		10	10	10	10	10	10		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	8	8	8	8	8	8		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	10296	10296	10296	10296		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	6456	8248	10296	10296	10296		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame (Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	2	2	2	2		
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0		n/a	2	2	2	2	2		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	13608	14076	14076	14076		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	8820	11088	14076	14076	14076		
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	9079.6	9266.4	9266.4	9266.4		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Table A.3.2-3b: Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	83
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	51024
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	12576	28336	45352	51024
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	9
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	3	5	8	9
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	68724
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	16380	38880	59580	66204
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	45922

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.2-4: Fixed Reference Channel for Maximum input level for UE Categories 3-5 (TDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	100		
Subcarriers per resource block		12	12	12	12	12	12		
Uplink-Downlink Configuration (Note 6)		1	1	1	1	1	1		
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	61664		
For Sub-Frames 1,6	Bits	n/a	6968	11448	23688	35160	46888		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	6968	12576	30576	45352	61664		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9		1	2	3	5	8	11		
For Sub-Frames 1,6		n/a	2	3	5	7	9		
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0		n/a	2	3	5	8	11		
Binary Channel Bits per Sub-Frame									
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	82800		
For Sub-Frames 1,6		n/a	9828	16668	33768	50868	67968		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	9252	16812	39312	60012	80712		
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	27877		

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [8]

Table A.3.2-4a: Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

453

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	18	17	17	17		
Subcarriers per resource block		12	12	12	12	12	12		
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1		
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 4,9	Bits	2984	8504	10296	10296	10296	10296		
For Sub-Frames 1,6	Bits	n/a	6968	8248	7480	7480	7480		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	6968	8248	10296	10296	10296		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9		1	2	2	2	2	2		
For Sub-Frames 1,6		n/a	2	2	2	2	2		
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0		n/a	2	2	2	2	2		
Binary Channel Bits per Sub-Frame									
For Sub-Frames 4,9	Bits	4104	11340	13608	14076	14076	14076		
For Sub-Frames 1,6		n/a	9828	11880	11628	11628	11628		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	9252	11520	14076	14076	14076		
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	4533.6	4584.8	4584.8	4584.8		

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
- Note 5: As per Table 4.2-2 in TS 36.211 [8]

Table A.3.2-4b: Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6	15	25	50	75	83		
Subcarriers per resource block		12	12	12	12	12	12		
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1		
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmissions		1	1	1	1	1	1		
Information Bit Payload per Sub-Frame									
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	51024		
For Sub-Frames 1,6	Bits	n/a	6968	11448	23688	35160	39232		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	6968	12576	30576	45352	51024		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9		1	2	3	5	8	9		
For Sub-Frames 1,6		n/a	2	3	5	7	7		
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0		n/a	2	3	5	8	9		
Binary Channel Bits per Sub-Frame									
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	68724		
For Sub-Frames 1,6		n/a	9828	16668	33768	50868	56340		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	n/a	9252	16380	39312	60012	66636		
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	23154		

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
- Note 5: As per Table 4.2-2 in TS 36.211 [8]

A.3.2A Downlink Reference measurement channel for TX characteristics

Tables A.3.2A-1 and A.3.2A-2 describes the reference measurement channels to be used on the downlink during Transmitter Characteristics (clause 6) for FDD and TDD respectively. The number of allocated resource blocks have been defined (partial allocation) to allow the transmission of PBCH, PSS/SSS and system information mapped on PDSCH.

Table A.3.2A-1: Fixed DL PDSCH Dedicated Reference Channel for TX Requirements (FDD)

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		3	4	8	16	25	30	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		10	10	10	10	10	10	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding Rate		(Note	1/3	1/3	1/3	1/3	1/3	
		4)						
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload								
For Sub-Frames 0, 1, 2, 3, 4, 5, 6, 7, 8, 9	Bits	88	328	680	1384	2216	2664	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame		1	1	1	1	1	1	
Code block CRC size	Bits	0	0	0	0	0	0	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1, 2, 3, 4, 6, 7, 8, 9	Bits	684	1008	2016	4416	6900	8280	
For Sub-Frames 5		540	1008	2016	4416	6900	8280	
For Sub-Frames 0		264	1008	2016	4416	6900	8280	
Max. Throughput averaged over 1 frame	kbps	88	328	680	1384	2216	2664	
UE-Category		1-5	1-5	1-5	1-5	1-5	1-5	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: The PDSCH shall be assigned to the UE under test with a set of allocated localized virtual resource blocks starting from one end of the channel.

Note 4: To ensure constant transport block size in 1.4MHz, the code rate for subframes varies approx. within {1/8-1/3}

Table A.3.2A-2: Fixed DL PDSCH Dedicated Reference Channel for TX Requirements (TDD)

Parameter	Unit	Value							
Channel Bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		3	4	8	16	25	30		
Uplink-Downlink Configuration (Note 6)		1	1	1	1	1	1		
Allocated subframes per Radio Frame (D+S)		4	4	4	4	4	4		
Number of HARQ Processes	Processes	7	7	7	7	7	7		
Maximum number of HARQ transmission		1	1	1	1	1	1		
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK		
Target coding rate		(Note 5)	1/3	1/3	1/3	1/3	1/3		
Information Bit Payload per Sub-Frame	Bits								
For Sub-Frame 1, 6		n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0, 4, 5, 9		88	328	680	1384	2216	2664		
Transport block CRC	Bits	24	24	24	24	24	24		
Number of Code Blocks		1	1	1	1	1	1		
Code block CRC size		0	0	0	0	0	0		
Binary Channel Bits Per Sub-Frame	Bits								
For Sub-Frame 1, 6		n/a	n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 4, 9		684	1008	2016	4416	6900	8280		
For Sub-Frame 0		336	1008	2016	4416	6900	8280		
For Sub-Frame 5		612	1008	2016	4416	6900	8280		
Max. Throughput averaged over one frame	kbps	35.2	131.2	272	553.6	886.4	1065. 6		
UE-Category		1-5	1-5	1-5	1-5	1-5	1-5		

- Note 1: For normal subframes (0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For simplicity, no data shall be scheduled on special subframes (1&6).
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]
- Note 4: The PDSCH shall be assigned to the UE under test with a set of allocated localized virtual resource blocks starting from one end of the channel.
- Note 5: To ensure constant transport block size in 1.4MHz, the code rate for subframes varies approx. within {1/8-1/3}.
- Note 6: As per Table 4.2-2 in TS 36.211 [8]

A.3.3 Reference measurement channel for PDSCH performance requirements (FDD)

A.3.3.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Value							
Reference channel		R.4 FDD			R.2 FDD				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks		6			50				
Allocated subframes per Radio Frame		10			10				
Modulation		QPSK			QPSK				
Target Coding Rate		1/3			1/3				
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408			4392				
For Sub-Frame 5	Bits	n/a			n/a				
For Sub-Frame 0	Bits	152			4392				
Number of Code Blocks per Sub-Frame (see Note 3)		1			1				
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368			13800				
For Sub-Frame 5	Bits	n/a			n/a				
For Sub-Frame 0	Bits	528			12960				
Max. Throughput averaged over 1 frame	Mbps	0.342	_		3.953	-			
UE Category		1-5			1-5				

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to

each Code Block (otherwise L = 0 Bit)

Table A.3.3.1-2: Fixed Reference Channel 16QAM R=1/2

458

Parameter	Unit			٧	alue		
Reference channel				R.3- 1 FDD	R.3 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks				25	50		
Allocated subframes per Radio Frame				10	10		
Modulation				16Q AM	16QAM		
Target Coding Rate				1/2	1/2		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			645 6	14112		
For Sub-Frame 5	Bits			n/a	n/a		
For Sub-Frame 0	Bits			573 6	12960		
Number of Code Blocks per Sub-Frame (see Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9				2	3		
For Sub-Frame 5				n/a	n/a		
For Sub-Frame 0				1	3		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits			126 00	27600		
For Sub-Frame 5	Bits			n/a	n/a		
For Sub-Frame 0	Bits			109 20	25920		
Max. Throughput averaged over 1 frame	Mbps			5.73 8	12.586		
UE Category				1-5	2-5		

2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2:

Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8] If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit) Note 3:

Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit			Va	lue		
Reference channel			R.5	R.6	R.7	R.8	R.9 FDD
			FDD	FDD	FDD	FDD	
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks			15	25	50	75	100
Allocated subframes per Radio Frame			10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		8504	14112	30576	46888	61664
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits		6456	12576	28336	45352	61664
Number of Code Blocks per Sub-Frame			2	3	5	8	11
(see Note 3)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		11340	18900	41400	62100	82800
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits		8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	Mbps		7.449	12.547	27.294	42.046	55.498
UE Category			1-5	2-5	2-5	2-5	3-5

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]
- Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.3.1-3a: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit		Va	lue		
Reference channel		R.6-1	R.7-1	R.8-1	R.9-1	R.9-2
		FDD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz	5	10	15	20	20
Allocated resource blocks (Note 3)		18	17	17	17	83
Allocated subframes per Radio Frame		10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4
Information Bit Payload						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	10296	10296	10296	51024
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	8248	10296	10296	10296	51024
Number of Code Blocks per Sub-Frame						
(Note 4)						
For Sub-Frames 1,2,3,4,6,7,8,9		2	2	2	2	9
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		2	2	2	2	8
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13608	14076	14076	14076	68724
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	11088	14076	14076	14076	66204
Max. Throughput averaged over 1 frame	Mbps		9.266	9.266	9.266	45.922
	·					
UE Category		1-5	1-5	1-5	1-5	2-5

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: Localized allocation started from RB #0 is applied.

Table A.3.3.1-4: Fixed Reference Channel Single PRB (Channel Edge)

Parameter	Unit	Value							
Reference channel			R.0		R.1				
			FDD		FDD				
Channel bandwidth	MHz	1.4	3	5	10/20	15	20		
Allocated resource blocks			1		1				
Allocated subframes per Radio Frame			10		10				
Modulation			16QAM		16QAM				
Target Coding Rate			1/2		1/2				
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		224		256				
For Sub-Frame 5	Bits		n/a		n/a				
For Sub-Frame 0	Bits		224		256				
Number of Code Blocks per Sub-Frame			1		1				
(see Note 3)									
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		504		552				
For Sub-Frame 5	Bits		n/a		n/a				
For Sub-Frame 0	Bits		504		552				
Max. Throughput averaged over 1 frame	Mbps		0.202		0.230				
UE Category			1-5		1-5				

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

Parameter	Unit	Value
Reference channel		R.29 FDD
		(MBSFN)
Channel bandwidth	MHz	10
Allocated resource blocks		1
MBSFN Configuration		TBD
Allocated subframes per Radio Frame		4
Modulation		16QAM
Target Coding Rate		1/2
Information Bit Payload		
For Sub-Frames 4,9	Bits	256
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	256
For Sub-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)
Number of Code Blocks per Sub-Frame		1
(see Note 3)		
For Sub-Frames 4,9		1
For Sub-Frame 5		n/a
For Sub-Frame 0		1
For Sub-Frame 1,2,3,6,7,8		0 (MBSFN)
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9	Bits	552
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	552
For Sub-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)
Max. Throughput averaged over 1 frame	kbps	76.8
UE Category		1-5

Note 1: 2 symbols allocated to PDCCH

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

Two antenna ports A.3.3.2.1

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit	Value									
Reference channel			R.10	R.11	R.11-2	R.11-3	R.30	R.35			
			FDD	FDD	FDD	FDD	FDD	FDD			
Channel bandwidth	MHz		10	10	5	10	20	10			
Allocated resource blocks			50	50	25	40	100	50			
Allocated subframes per Radio Frame			10	10	10	10	10	10			
Modulation			QPSK	16QAM	16QAM	16QAM	16QAM	64QAM			
Target Coding Rate			1/3	1/2	1/2	1/2	1/2	1/2			
Information Bit Payload											
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		4392	12960	5736	10296	25456	19848			
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits		4392	12960	4968	10296	25456	18336			
Number of Code Blocks per Sub-Frame											
(Note 3)											
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		1	3	1	2	5	4			
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits		1	3	1	2	5	3			
Binary Channel Bits Per Sub-Frame											
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		13200	26400	12000	21120	52800	39600			
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits		12384	24768	10368	19488	51168	37152			
Max. Throughput averaged over 1 frame	Mbps		3.953	11.664	5.086	9.266	22.910	17.712			
UE Category			1-5	2-5	1-5	1-5	2-5	2-5			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz Reference signal, synchronization signals and PBCH allocated as per TS 36.211 8

Note 2:

A.3.3.2.2 Four antenna ports

Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit	Value								
Reference channel		R.12	R.13	R.14	R.14-1	R.14-2	R.36			
		FDD	FDD	FDD	FDD	FDD	FDD			
Channel bandwidth	MHz	1.4	10	10	10	10	10			
Allocated resource blocks		6	50	50	6	3	50			
Allocated subframes per Radio Frame		10	10	10	10	10	10			
Modulation		QPSK	QPSK	16QAM	16QAM	16QA M	64QAM			
Target Coding Rate		1/3	1/3	1/2	1/2	1/2	1/2			
Information Bit Payload										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	4392	12960	[1544]	[744]	18336			
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits	152	3624	11448	n/a	n/a	18336			
Number of Code Blocks per Sub-Frame (see Note 3)										
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	3	1	1	4			
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0		1	1	2	n/a	n/a	3			
Binary Channel Bits Per Sub-Frame										
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1248	12800	25600	[3072]	[1536]	38400			
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits	480	12032	24064	n/a	n/a	36096			
Max. Throughput averaged over 1 frame	Mbps	0.342	3.876	11.513	[1.235]	[0.595]	16.502			
UE Category		1-5	1-5	2-5	1-5	1-5	2-5			

2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to Note 1: PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2:

Reference signal, synchronization signals and PBCH allocated as per TS 36.211 8
If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Note 3: Code Block (otherwise L = 0 Bit)

A.3.4 Reference measurement channel for PDSCH performance requirements (TDD)

A.3.4.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Value					
Reference channel		R.4			R.2		
		TDD			TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Uplink-Downlink Configuration (Note 4)		1			1		
Allocated subframes per Radio Frame (D+S)		4+2			4+2		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload							
For Sub-Frames 4,9	Bits	408			4392		
For Sub-Frames 1,6	Bits	n/a			3240		
For Sub-Frame 5	Bits	n/a			n/a		
For Sub-Frame 0	Bits	208			4392		
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9		1			1		
For Sub-Frames 1,6		n/a			1		
For Sub-Frame 5		n/a			n/a		
For Sub-Frame 0		1			1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	1368			13800		
For Sub-Frames 1,6	Bits	n/a			11256		
For Sub-Frame 5	Bits	n/a			n/a		
For Sub-Frame 0	Bits	672			13104		
Max. Throughput averaged over 1 frame	Mbps	0.102			1.966		
UE Category		1-5			1-5		

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.
- Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 8
- Note 4: As per Table 4.2-2 in TS 36.211 [8]
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value								
Reference channel				R.3-1	R.3					
				TDD	TDD					
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks				25	50					
Uplink-Downlink Configuration (Note 3)				1	1					
Allocated subframes per Radio Frame (D+S)				4+2	4+2					
Modulation				16QAM	16QAM					
Target Coding Rate				1/2	1/2					
Information Bit Payload										
For Sub-Frames 4,9	Bits			6456	14112					
For Sub-Frames 1,6	Bits			5160	11448					
For Sub-Frame 5	Bits			n/a	n/a					
For Sub-Frame 0	Bits			5736	12960					
Number of Code Blocks per Sub-Frame										
(see Note 4)										
For Sub-Frames 4,9				2	3					
For Sub-Frames 1,6				1	2					
For Sub-Frame 5				n/a	n/a					
For Sub-Frame 0				1	3					
Binary Channel Bits Per Sub-Frame										
For Sub-Frames 4,9	Bits			12600	27600					
For Sub-Frames 1,6	Bits			11112	22512					
For Sub-Frame 5	Bits			n/a	n/a					
For Sub-Frame 0	Bits			11208	26208					
Max. Throughput averaged over 1 frame	Mbps			2.897	6.408					
UE Category				1-5	2-5					

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: As per Table 4.2-2 in TS 36.211 [8]

Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit	Value								
Reference channel			R.5	R.6 TDD	R.7	R.8	R.9			
			TDD		TDD	TDD	TDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks			15	25	50	75	100			
Uplink-Downlink Configuration (Note 3)			1	1	1	1	1			
Allocated subframes per Radio Frame (D+S)			4+2	4+2	4+2	4+2	4+2			
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM			
Target Coding Rate			3/4	3/4	3/4	3/4	3/4			
Information Bit Payload										
For Sub-Frames 4,9	Bits		8504	14112	30576	46888	61664			
For Sub-Frames 1,6	Bits		6968	11448	23688	35160	46888			
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits		6968	12576	30576	45352	61664			
Number of Code Blocks per Sub-Frame										
(see Note 4)										
For Sub-Frames 4,9			2	3	5	8	11			
For Sub-Frames 1,6			2	2	4	6	8			
For Sub-Frame 5			n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0			2	3	5	8	11			
Binary Channel Bits Per Sub-Frame										
For Sub-Frames 4,9	Bits		11340	18900	41400	62100	82800			
For Sub-Frames 1,6	Bits		9828	16668	33768	50868	67968			
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits		9252	16812	39312	60012	80712			
Max. Throughput averaged over 1 frame	Mbps		3.791	6.370	13.910	20.945	27.877			
UE Category			1-5	2-5	2-5	2-5	3-5			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: As per Table 4.2-2 TS 36.211 [8]

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.4.1-3a: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit	Value								
Reference channel		R.6-1	R.7-1	R.8-1	R.9-1	R.9-2				
		TDD	TDD	TDD	TDD	TDD				
Channel bandwidth	MHz	5	10	15	20	20				
Allocated resource blocks (Note 3)		18	17	17	17	83				
Uplink-Downlink Configuration (Note 4)		1	1	1	1	1				
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2	4+2	4+2				
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM				
Target Coding Rate		3/4	3/4	3/4	3/4	3/4				
Information Bit Payload										
For Sub-Frames 4,9	Bits	10296	10296	10296	10296	51024				
For Sub-Frames 1,6	Bits	8248	7480	7480	7480	39232				
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a				
For Sub-Frame 0	Bits	8248	10296	10296	10296	51024				
Number of Code Blocks per Sub-Frame										
(Note 5)										
For Sub-Frames 4,9		2	2	2	2	9				
For Sub-Frames 1,6		2	2	2	2	7				
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a				
For Sub-Frame 0		2	2	2	2	8				
Binary Channel Bits Per Sub-Frame										
For Sub-Frames 4,9	Bits	13608	14076	14076	14076	68724				
For Sub-Frames 1,6	Bits	11880	11628	11628	11628	56340				
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a				
For Sub-Frame 0	Bits	11520	14076	14076	14076	66636				
Max. Throughput averaged over 1 frame	Mbps	4.534	4.585	4.585	4.585	23.154				
UE Category		1-5	1-5	1-5	1-5	2-5				

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: Localized allocation started from RB #0 is applied.

Note 4: As per Table 4.2-2 TS 36.211 [4]

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.4.1-4: Fixed Reference Channel Single PRB

Parameter	Unit						
Reference channel			R.0		R.1 TDD		
			TDD				
Channel bandwidth	MHz	1.4	3	5	10/20	15	20
Allocated resource blocks			1		1		
Uplink-Downlink Configuration (Note 3)			1		1		
Allocated subframes per Radio Frame (D+S)			4+2		4+2		
Modulation			16QAM		16QAM		
Target Coding Rate			1/2		1/2		
Information Bit Payload							
For Sub-Frames 4,9	Bits		224		256		
For Sub-Frames 1,6	Bits		208		208		
For Sub-Frame 5	Bits		n/a		n/a		
For Sub-Frame 0	Bits		224		256		
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 4,9			1		1		
For Sub-Frames 1,6			1		1		
For Sub-Frame 5			n/a		n/a		
For Sub-Frame 0			1		1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits		504		552		
For Sub-Frames 1,6	Bits		456		456		
For Sub-Frame 5	Bits		n/a		n/a		
For Sub-Frame 0	Bits		504		552		
Max. Throughput averaged over 1 frame	Mbps		0.109		0.118		
UE Category	-		1-5		1-5		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: As per Table 4.2-2 in TS 36.211 [8]

Table A.3.4.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

Parameter	Unit	Value
Reference channel		R.29 TDD
		(MBSFN)
Channel bandwidth	MHz	10
Allocated resource blocks		1
MBSFN Configuration		[TBD]
Uplink-Downlink Configuration (Note 3)		1
Allocated subframes per Radio Frame (D+S)		2+2
Modulation		16QAM
Target Coding Rate		1/2
Information Bit Payload		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	208
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	256
Number of Code Blocks per Sub-Frame		
(Note 4)		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	1
For Sub-Frame 5	Bits	n/a
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	456
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	552
Max. Throughput averaged over 1 frame	kbps	67.2
UE Category		1-5

Note 1: 2 symbols allocated to PDCCH

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: as per Table 4.2-2 in TS 36.211 [8]

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise

L = 0 Bit)

A.3.4.2 Multi-antenna transmission (Common Reference Symbols)

A.3.4.2.1 Two antenna ports

Table A.3.4.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit		Value					
Reference channel		R.10	R.11	R.11-1	R.11-2	R.11-3	R.30	R.35
		TDD	TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	10	5	10	20	10
Allocated resource blocks		50	50	50	25	40	100	50
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2	4+2	4+2	4+2	4+2
Modulation		QPSK	16QAM	16QAM	16QAM	16QAM	16QAM	64QAM
Target Coding Rate		1/3	1/2	1/2	1/2	1/2	1/2	1/2
Information Bit Payload								
For Sub-Frames 4,9	Bits	4392	12960	12960	5736	10296	25456	19848
For Sub-Frames 1,6		3240	9528	9528	5160	9144	22920	15840
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a		n/a	n/a
For Sub-Frame 0	Bits	4392	12960	n/a	4968	10296	25456	n/a
Number of Code Blocks per Sub-Frame (Note 4)								
For Sub-Frames 4,9		1	3	3	1	2	5	4
For Sub-Frames 1,6		1	2	2	1	2	4	3
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		1	3	n/a	1	2	5	n/a
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits	13200	26400	26400	12000	21120	52800	39600
For Sub-Frames 1,6		10656	21312	21312	10512	16992	42912	31968
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	12528	25056	n/a	10656	19776	51456	n/a
Max. Throughput averaged over 1 frame	Mbps	1.966	5.794	4.498	2.676	4.918	12.221	7.138
UE Category		1-5	2-5	2-5	1-5	1-5	2-5	2-5

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: As per Table 4.2-2 in TS 36.211 [8]

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3.4.2.2 Four antenna ports

Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit			Valu	е		
Reference channel		R.12	R.13	R.14	R.14-1	R.14-2	R.36
		TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	1.4	10	10	10	10	10
Allocated resource blocks		6	50	50	6	3	50
Uplink-Downlink Configuration (Note 4)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2	4+2	4+2	4+2
Modulation		QPSK	QPSK	16QAM	16QAM	16QA M	64QAM
Target Coding Rate		1/3	1/3	1/2	1/2	1/2	1/2
Information Bit Payload							
For Sub-Frames 4,9	Bits	408	4392	12960	[1544]	[744]	18336
For Sub-Frames 1,6	Bits	n/a	3240	9528	n/a	n/a	15840
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	208	4392	n/a	n/a	n/a	n/a
Number of Code Blocks per Sub-Frame (Note 5)							
For Sub-Frames 4,9		1	1	3	1	1	4
For Sub-Frames 1,6		n/a	1	2	n/a	n/a	3
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		1	1	n/a	n/a	n/a	n/a
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	1248	12800	25600	[3072]	[1536]	38400
For Sub-Frames 1,6		n/a	10256	20512	n/a	n/a	30768
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	624	12176	n/a	n/a	n/a	n/a
Max. Throughput averaged over 1 frame	Mbps	0.102	1.966	4.498	[0.309]	[0.149]	6.835
UE Category		1-5	1-5	2-5	1-5	1-5	2-5

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.
- Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]
- Note 4: As per Table 4.2-2 in TS 36.211 [8]
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3.4.3 Reference Measurement Channels for UE-Specific Reference Symbols

A.3.4.3.1 Single antenna port (Cell Specific)

The reference measurement channels in Table A.3.4.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with one cell-specific antenna port.

Table A.3.4.3.1-1: Fixed Reference Channel for DRS

Parameter	Unit	Value						
Reference channel		R.25	R.26	R.26-1	R.27	R.27-1	R.28	
		TDD	TDD	TDD	TDD	TDD	TDD	
Channel bandwidth	MHz	10	10	5	10	10	10	
Allocated resource blocks		50 ⁴	50 ⁴	25 ⁴	50 ⁴	18 ⁶	1	
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2	4+2	4+2	4+2	
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	16QAM	
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2	
Information Bit Payload								
For Sub-Frames 4,9	Bits	4392	12960	5736	28336	10296	224	
For Sub-Frames 1,6	Bits	3240	9528	4584	22920	8248	176	
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0	Bits	2984	9528	3880	22152	10296	224	
Number of Code Blocks per Sub- Frame (see Note 5)								
For Sub-Frames 4,9		1	3	1	5	2	1	
For Sub-Frames 1,6		1	2	1	4	2	1	
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0		1	2	1	4	2	1	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits	12600	25200	11400	37800	13608	504	
For Sub-Frames 1,6	Bits	10356	20712	10212	31068	11340	420	
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0	Bits	10332	20664	7752	30996	13608	504	
Max. Throughput averaged over 1 frame	Mbps	1.825	5.450	2.452	12.466	4.738	0.102	
UE Category		1-5	2-5	1	2-5	1	1-5	

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8].
- Note 3: as per Table 4.2-2 in TS 36.211 [8].
- Note 4: For R.25, R.26 and R.27, 50 resource blocks are allocated in sub-frames 1–9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0. For R.26-1, 25 resource blocks are allocated in sub-frames 1–9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0.
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 6: Localized allocation started from RB #0 is applied.

A.3.4.3.2 Two antenna ports (Cell Specific)

The reference measurement channels in Table A.3.4.3.2-1 apply for verifying demodulation performance for CDM-multiplexed UE specific reference symbols with two cell-specific antenna ports.

Table A.3.4.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS

Parameter	Unit				Value		
Reference channel		R.31	R.32	R.32-1	R.33	R.33-1	R.34
		TDD	TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	5	10	10	10
Allocated resource blocks		50 ⁴	50⁴	[25 ⁴]	50⁴	[18] ⁶	50 ^⁴
Uplink-Downlink Configuration (Note 3)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2	4+2	4+2	4+2
Modulation		QPSK	16QAM	16QAM	64QAM	64QAM	64QAM
Target Coding Rate		1/3	1/2	1/2	3/4	3/4	1/2
Information Bit Payload							
For Sub-Frames 4,9	Bits	3624	11448	[5736]	27376	[9528]	18336
For Sub-Frames 1,6		2664	7736	[3112]	16992	[7480]	11832
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	2984	9528	[3496]	22152	[9528]	14688
Number of Code Blocks per Sub-Frame (Note 4)							
For Sub-Frames 4,9		1	2	1	5	2	3
For Sub-Frames 1,6		1	2	1	3	2	2
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		1	2	1	4	2	3
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	12000	24000	[10800]	36000	[12960]	36000
For Sub-Frames 1,6		7872	15744	[6528]	23616	[10368]	23616
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	9840	19680	[7344]	29520	[12960]	29520
Max. Throughput averaged over 1 frame	Mbps	1.556	4.79	[2.119]	11.089	[4.354]	7.502
UE Category		1-5	2-5	1	2-5	1	2-5

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8].

Note 3: as per Table 4.2-2 in TS 36.211 [8].

Note 4: For R.31, R.32, R.33 and R.34, 50 resource blocks are allocated in sub-frames 4,9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1,6. For R.32-1, 25 resource blocks are allocated in sub-frames 4, 9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0 and the DwPTS portion of sub-frames 1, 6.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 6: Localized allocation started from RB#0 is applied.

A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

A.3.5.1 FDD

Table A.3.5.1-1: Reference Channel FDD

Parameter	Unit	Value			
Reference channel		R.15 FDD	R.16 FDD	R.17 FDD	
Number of transmitter antennas		1	2	4	
Channel bandwidth	MHz	10	1.4	10	
Number of OFDM symbols for PDCCH	symbols	2	2	2	
Aggregation level	CCE	8	2	4	
DCI Format		Format 1	Format 2	Format 2	
Cell ID		0	0	0	
Payload (without CRC)	Bits	31	31	46	

Table A.3.5.1-1A: Reference Channel FDD

Parameter	Unit	Valu	ie
Reference channel		R.16-1 FDD	R.17-1 FDD
Number of transmitter antennas		2	4
Channel bandwidth	MHz	10	5
Number of OFDM symbols for PDCCH	symbols	2	2
Aggregation level	CCE	4	2
DCI Format		Format 2	Format 2
Cell ID		0	0
Payload (without CRC)	Bits	43	42

Table A.3.5.1-2: Additional PDSCH Reference Channel FDD

Parameter	Unit		Value				
Number of transmitter antennas		1	2	4			
Channel bandwidth	MHz	10	1.4	10			
Allocated Resource Blocks		50	6	50			
Modulation		QPSK	QPSK	QPSK			
Target Coding Rate		1/3	1/3	1/3			
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	504	4392			
For Sub-Frame 5		n/a	n/a	n/a			
For Sub-Frame0	Bits	4392	256	3624			
Number of Code Blocks per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	1			
For Sub-Frame 5		n/a	n/a	n/a			
For Sub-Frame 0		1	1	1			
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13800	1584	12800			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0		12960	768	12032			
Max. Throughput averaged over 1	Mbps	3.953	0.429	3.876			
frame							
UE Category		1-5	1-5	1-5			
Note 1: 2 symbols allocated to PDCCH	I for all BW.	•		-			

A.3.5.2 TDD

Table A.3.5.2-1: Reference Channel TDD

Parameter	Unit		Value	
Reference channel		R.15 TDD	R.16 TDD	R.17 TDD
Number if transmitter antennas		1	2	4
Channel bandwidth	MHz	10	1.4	10
Number of OFDM symbols for PDCCH	symbols	2	2	2
Aggregation level	CCE	8	2	4
DCI Format		Format 1	Format 2	Format 2
Cell ID		0	0	0
Payload (without CRC)	Bits	34	34	49

Table A.3.5.2-1A: Reference Channel TDD

Parameter	Unit	Value		
Reference channel		R.16-1 TDD	R.17-1 TDD	
Number if transmitter antennas		2	4	
Channel bandwidth	MHz	10	5	
Number of OFDM symbols for PDCCH	symbols	2	2	
Aggregation level	CCE	4	2	
DCI Format		Format 2	Format 2	
Cell ID		0	0	
Payload (without CRC)	Bits	46	45	

Table A.3.5.2-2: Additional PDSCH Reference Channel TDD

Parameter	Unit	Value			
Number of transmitter antennas		1	2	4	
Channel bandwidth	MHz	10	1.4	10	
Uplink-Downlink Configuration (Note 2)		0	0	0	
Allocated Resource Blocks		50	6	50	
Modulation		QPSK	QPSK	QPSK	
Target Coding Rate		1/3	1/3	1/3	
Information Bit Payload					
For Sub-Frame 1,6	Bits	3240	328	3240	
For Sub-Frame 5	Bits	n/a	n/a	n/a	
For Sub-Frame 0	Bits	4392	256	4392	
Number of Code Blocks per Sub-Frame					
For Sub-Frame 1,6		1	1	1	
For Sub-Frame 5	Bits	n/a	n/a	n/a	
For Sub-Frame 0		1	1	1	
Binary Channel Bits Per Sub-Frame					
For Sub-Frame 1,6	Bits	11256	1152	10256	
For Sub-Frame 5	Bits	n/a	n/a	n/a	
For Sub-Frame 0	Bits	13104	936	12176	
Max. Throughput averaged over 1	Mbps	1.087	0.091	1.164	
frame					
UE Category		1-5	1-5	1-5	

Note 1: 2 symbols allocated to PDCCH for all BW.

Note 2: As per Table 4.2-2 in TS 36.211 [8]

A.3.6 Reference measurement channels for PHICH performance requirements

Table A.3.6-1: Reference Channel FDD/TDD

Parameter	Unit	Value					
Reference channel		R.18	R.19	R.20	R.24		
Number of transmitter antennas		1	2	4	1		
Channel bandwidth	MHz	10	1.4	10	10		
User roles (Note 1)		[W I1 I2]	[W I1 I2]	[W I1 I2]	[W I1]		
Resource allocation (Note 2)		[(0,0) (0,1) (0,4)]	[(0,0) (0,1) (0,4)]	[(0,0) (0,1) (0,4)]	[(0,0) (0,1)]		
Power offsets (Note 3)	dB	[-4 0 -3]	[-4 0 -3]	[-4 0 -3]	[+3 0]		
Payload (Note 4)		[A R R]	[A R R]	[A R R]	[A R]		

Note 1: W=wanted user, I1=interfering user 1, I2=interfering user 2.

Note 2: The resource allocation per user is given as (N_group_PHICH, N_seq_PHICH).

Note 3: The power offsets (per user) represent the difference of the power of BPSK modulated symbol per PHICH relative to the first interfering user.

Note 4: A=fixed ACK, R=random ACK/NACK.

Table A.3.6-1A: Reference Channel FDD/TDD

Parameter	Unit	Valu	e
Reference channel		R.19-1	R.20-1
Number of transmitter antennas		2	4
Channel bandwidth	MHz	10	5
User roles (Note 1)		[W I1 I2]	[W I1 I2]
Resource allocation (Note 2)		[(0,0) (0,1) (0,4)]	[(0,0) (0,1) (0,4)]
Power offsets (Note 3)	dB	[-4 0 -3]	[-4 0 -3]
Payload (Note 4)		[A R R]	[A R R]

Note 1: W=wanted user, I1=interfering user 1, I2=interfering user 2.

Note 2: The resource allocation per user is given as (N_group_PHICH, N_seq_PHICH).

Note 3: The power offsets (per user) represent the difference of the power of BPSK modulated symbol per

PHICH relative to the first interfering user.

Note 4: A=fixed ACK, R=random ACK/NACK.

A.3.7 [FFS]

A.3.8 Reference measurement channels for MBMS performance requirements

A.3.8.1 FDD

Table A.3.8.1-1: Fixed Reference Channel QPSK R=1/3

Parameter		PMCH								
	Unit			Val	ue					
Reference channel		R.40 FDD			R.37 FDD					
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks		6			50					
Allocated subframes per Radio Frame		6			6					
(Note 1)										
Modulation		QPSK			QPSK					
Target Coding Rate		1/3			1/3					
Information Bit Payload (Note 2)										
For Sub-Frames 1,2,3,6,7,8	Bits	408			3624					
For Sub-Frames 0,4,5,9	Bits	n/a			n/a					
Number of Code Blocks per Subframe		1			1					
(Note 3)										
Binary Channel Bits Per Subframe										
For Sub-Frames 1,2,3,6,7,8	Bits	1224			10200					
For Sub-Frames 0,4,5,9	Bits	n/a			n/a					
MBMS UE Category		1-5			1-5					

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Table A.3.8.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter				PM	СН		
	Unit				Value		
Reference channel					R.38 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Allocated subframes per Radio Frame (Note 1)					6		
Modulation		16QAM					
Target Coding Rate			1/2				
Information Bit Payload (Note 2)							
For Sub-Frames 1,2,3,6,7,8	Bits				9912		
For Sub-Frames 0,4,5,9	Bits				n/a		
Number of Code Blocks per Subframe (Note 3)					2		
Binary Channel Bits Per Subframe							
For Sub-Frames 1,2,3,6,7,8	Bits				20400		
For Sub-Frames 0,4,5,9	Bits				n/a		
MBMS UE Category					1-5		

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

Table A.3.8.1-3: Fixed Reference Channel 64QAM R=2/3

Parameter		PMCH								
	Unit	Value								
Reference channel				39-1 FDD	R.39 FDD					
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks				25	50					
Allocated subframes per Radio Frame(Note1)				6	6					
Modulation				64QAM	64QAM					
Target Coding Rate				2/3	2/3					
Information Bit Payload (Note 2)										
For Sub-Frames 1,2,3,6,7,8	Bits			9912	19848					
For Sub-Frames 0,4,5,9	Bits			n/a	n/a					
Number of Code Blocks per Sub-Frame (Note 3)				2	4					
Binary Channel Bits Per Subframe					•					
For Sub-Frames 1,2,3,6,7,8	Bits			15300	30600					
For Sub-Frames 0,4,5,9	Bits			n/a	n/a					
MBMS UE Category				1	2-5					

Note 1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331.

A.3.8.2 TDD

Table A.3.8.2-1: Fixed Reference Channel QPSK R=1/3

Parameter	PMCH
-----------	------

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 2: 2 OFDM symbols are reserved for PDCCH; and reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

	Unit	Value					
Reference channel		R.40 TDD			R.37 TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Uplink-Downlink Configuration(Note 1)		5			5		
Allocated subframes per Radio Frame		5			5		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload (Note 2)							
For Sub-Frames 3,4,7,8,9	Bits	408			3624		
For Sub-Frames 0,1,2,5,6	Bits	n/a			n/a		
Number of Code Blocks per Subframe (Note 3)		1			1		
Binary Channel Bits Per Subframe							
For Sub-Frames 3,4,7,8,9	Bits	1224			10200		
For Sub-Frames 0,1,2,5,6	Bits	n/a			n/a		
MBMS UE Category		1-5			1-5		

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Table A.3.8.2-2: Fixed Reference Channel 16QAM R=1/2

Parameter	PMCH									
	Unit				Value					
Reference channel					R.38 TDD					
Channel bandwidth	MHz	1.4	3	5	10	15	20			
Allocated resource blocks					50					
Uplink-Downlink Configuration(Note 1)					5					
Allocated subframes per Radio Frame					5					
Modulation	16QAM		16QAM							
Target Coding Rate					1/2					
Information Bit Payload (Note 2)										
For Sub-Frames 3,4,7,8,9	Bits				9912					
For Sub-Frames 0,1,2,5,6	Bits				n/a					
Number of Code Blocks per Subframe (Note 3)					2					
Binary Channel Bits Per Subframe										
For Sub-Frames 3,4,7,8,9	Bits				20400					
For Sub-Frames 0,1,2,5,6	Bits				n/a					
MBMS UE Category					1-5					

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Table A.3.8.2-3: Fixed Reference Channel 64QAM R=2/3

Parameter	PMCH
-----------	------

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211. Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

	Unit		Value						
Reference channel				R.39-1 TDD	R.39 TDD				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks				25	50				
Uplink-Downlink Configuration(Note 1)				5	5				
Allocated subframes per Radio Frame				5	5				
Modulation				64QAM	64QAM				
Target Coding Rate				2/3	2/3				
Information Bit Payload (Note 2)									
For Sub-Frames 3,4,7,8,9	Bits			9912	19848				
For Sub-Frames 0,1,2,5,6	Bits			n/a	n/a				
Number of Code Blocks per Sub-Frame (Note 3)				2	4				
Binary Channel Bits Per Subframe									
For Sub-Frames 3,4,7,8,9	Bits			15300	30600				
For Sub-Frames 0,1,2,5,6	Bits			n/a	n/a				
MBMS UE Category				1	2-5				

Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS.

Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to each Code Block (otherwise L=0 Bit).

A.3.9 Reference measurement channels for sustained downlink data rate provided by lower layers

A.3.9.1 FDD

Table A.3.9.1-1: Fixed Reference Channel for sustained data-rate test (FDD)

Parameter	Unit			Value		
Reference channel		R.31-1	R.31-2	R.31-3	R.31-3A	R.31-4
		FDD	FDD	FDD	FDD	FDD
Channel bandwidth	MHz	10	10	20	10	20
Allocated resource blocks		Note 5	Note 6	Note 7	Note 6	Note 7
Allocated subframes per Radio Frame		10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM
Coding Rate						
For Sub-Frame 1,2,3,4,6,7,8,9,		0.40	0.59	0.59	0.85	0.88
For Sub-Frame 5		0.40	0.64	0.62	0.89	0.87
For Sub-Frame 0		0.40	0.63	0.61	0.90	0.90
Information Bit Payload						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	10296	25456	51024	36696	75376
For Sub-Frame 5	Bits	10296	25456	51024	35160	71112
For Sub-Frame 0	Bits	10296	25456	51024	36696	75376
Number of Code Blocks per Sub-Frame						
(Note 3)						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2	5	9	6	13
For Sub-Frame 5		2	5	9	6	12
For Sub-Frame 0	Bits	2	5	9	6	13
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	26100	43200	86400	43200	86400
For Sub-Frame 5		26100	39744	82080	39744	82080
For Sub-Frame 0	Bits	26100	40752	83952	40752	83952
Number of layers		1	2	2	2	2
Max. Throughput averaged over 1 frame	Mbps	10.296	25.456	51.024	36.542	74.950
UE Category		1	2	3	3	4

Note 1: 1 symbol allocated to PDCCH for all tests

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 4: Resource blocks n_{PRB} = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths

Note 5: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all sub-frames

Note 6: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in sub-frames 0,1,2,3,4,6,7,8,9

Note 7: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,1,2,3,4,6,7,8,9

A.3.9.2 TDD

Table A.3.9.2-1: Fixed Reference Channel for sustained data-rate test (TDD)

Parameter	Unit			Value		
Reference channel		R.31-1	R.31-2	R.31-3	R.31-3B	R.31-4
		TDD	TDD	TDD	TDD	TDD
Channel bandwidth	MHz	10	10	20	15	20
Allocated resource blocks		Note 6	Note 7	Note 8	Note 9	Note 8
Uplink-Downlink Configuration (Note 3)		5	5	5	5	5
Allocated subframes per Radio Frame		8+1	8+1	8+1	8+1	8+1
(D+S)						
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM
Coding Rate						
For Sub-Frames 3,4,7,8,9		0.40	0.59	0.59	0.87	0.88
For Sub-Frame 1		n/a	n/a	n/a	n/a	n/a
For Sub-Frame 5		0.40	0.64	0.62	0.88	0.87
For Sub-Frame 6		0.40	0.60	0.60	0.88	0.88
For Sub-Frame 0		0.40	0.62	0.61	0.90	0.90
Information Bit Payload						
For Sub-Frames 3,4,6,7,8,9	Bits	10296	25456	51024	[51024]	75376
For Sub-Frame 1	Bits	0	0	0	0	0
For Sub-Frame 5	Bits	10296	25456	51024	[51024]	71112
For Sub-Frame 0	Bits	10296	25456	51024	[51024]	75376
Number of Code Blocks per Sub-Frame						
(Note 4)						
For Sub-Frames 3,4,6,7,8,9		2	5	9	9	13
For Sub-Frame 1		n/a	n/a	n/a	n/a	n/a
For Sub-Frame 5		2	5	9	9	12
For Sub-Frame 0		2	5	9	9	13
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 3,4,7,8,9	Bits	26100	43200	86400	[58752]	86400
For Sub-Frame 1	Bits	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 5	Bits	26100	40176	82512	[58320]	82512
For Sub-Frame 6	Bits	26100	42768	85968	[58320]	85968
For Sub-Frame 0	Bits	26100	41184	84384	[56736]	84384
Number of layers		1	2	2	2	2
Max. Throughput averaged over 1 frame	Mbps	8.237	20.365	40.819	40.819	59.874
UE Category	ĺ	1	2	3	3	4

- Note 1: 1 symbol allocated to PDCCH for all tests
- Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 3: As per Table 4.2-2 in TS 36.211 [4]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
- Note 5: Resource blocks $n_{PRB} = 0..2$ are allocated for SIB transmissions in sub-frame 5 for all bandwidths
- Note 6: Resource blocks n_{PRB} = 6..14,30..49 are allocated for the user data in all subframes
- Note 7: Resource blocks $n_{PRB} = 3..49$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..49$ in sub-frames 0.3,4,6,7,8,9
- Note 8: Resource blocks $n_{PRB} = 4..99$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 0..99$ in sub-frames 0,3,4,6,7,8,9
- Note 9: Resource blocks n_{PRB} = 4..71 are allocated for the user data in all sub-frames

A.4 CQI reference measurement channels

This section defines the DL signal applicable to the reporting of channel quality information (Clause 9.2 and 9.3).

The reference channels in Table A.4-1, A.4-2, A.4-4 and A.4-5 comply with the CQI definition specified in Sec. 7.2.3 of TS 36.213 [10]. Table A.4-3 and A.4-6 specify the transport format corresponding to each CQI for single antenna transmission. Table A.4-3a specifies the transport format corresponding to each CQI for dual antenna transmission.

Table A.4-1: Reference channel for CQI requirements (FDD) full PRB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10		15	20
Allocated resource blocks		6	15	25	50		75	100
Subcarriers per resource block		12	12	12	12		12	12
Allocated subframes per Radio Frame		8	8	8	8		8	8
Modulation						Table A.4- 3a		
Target coding rate						Table A.4- 3a		
Number of HARQ Processes	Processes	8	8	8	8		8	8
Maximum number of HARQ transmissions		1	1	1	1		1	1

Note 1: 3 symbols allocated to PDCCH

Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead

Table A.4-2: Reference channel for CQI requirements (TDD) full PRB allocation

Parameter	Unit	Value							
Channel bandwidth	MHz	1.4	3	5	1	0	15	20	
Allocated resource blocks		6	15	25	5	0	75	100	
Subcarriers per resource block		12	12	12	12		12	12	
Allocated subframes per Radio Frame		4	4	4	4		4	4	
Modulation					Table A.4-3	Table A.4- 3a			
Target coding rate					Table A.4-3	Table A.4- 3a			
Number of HARQ Processes	Processes	10	10	10	10		10	10	
Maximum number of HARQ transmissions		1	1	1		1	1	1	

Note 1: 3 symbols allocated to PDCCH

Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and

synchronization signal overhead

Table A.4-3: Transport format corresponding to each CQI index for 50 PRB allocation single antenna transmission

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	-	-
1	QPSK	0.0762	0	1384	12600	0.1117
2	QPSK	0.1172	0	1384	12600	0.1117
3	QPSK	0.1885	2	2216	12600	0.1778
4	QPSK	0.3008	4	3624	12600	0.2895
5	QPSK	0.4385	6	5160	12600	0.4114
6	QPSK	0.5879	8	6968	12600	0.5549
7	16QAM	0.3691	11	8760	25200	0.3486
8	16QAM	0.4785	13	11448	25200	0.4552
9	16QAM	0.6016	16	15264	25200	0.6067
10	64QAM	0.4551	18	16416	37800	0.4349
11	64QAM	0.5537	21	21384	37800	0.5663
12	64QAM	0.6504	23	25456	37800	0.6741
13	64QAM	0.7539	25	28336	37800	0.7503
14	64QAM	0.8525	27	31704	37800	0.8394
15	64QAM	0.9258	28	31704	37800	0.8394
Note1: Sub-f	rame#0 and #5 a	are not used for the co	rresponding	requirement.	_	·

Table A.4-3a: Transport format corresponding to each CQI index for 50 PRB allocation dual antenna transmission

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	-	-
1	QPSK	0.0762	0	1384	12000	0.1173
2	QPSK	0.1172	0	1384	12000	0.1173
3	QPSK	0.1885	2	2216	12000	0.1867
4	QPSK	0.3008	4	3624	12000	0.3040
5	QPSK	0.4385	6	5160	12000	0.4320
6	QPSK	0.5879	8	6968	12000	0.5827
7	16QAM	0.3691	11	8760	24000	0.3660
8	16QAM	0.4785	13	11448	24000	0.4780
9	16QAM	0.6016	15	14112	24000	0.5890
10	64QAM	0.4551	18	16416	36000	0.4567
11	64QAM	0.5537	20	19848	36000	0.5520
12	64QAM	0.6504	22	22920	36000	0.6373
13	64QAM	0.7539	24	27376	36000	0.7611
14	64QAM	0.8525	26	30576	36000	0.8500
15	64QAM	0.9258	27	31704	36000	0.8813

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. subframe#1 or #6) shall be used for the retransmission.

Table A.4-4: Reference channel for CQI requirements (FDD) 6 PRB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	6	6	6	6	6	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	8	8	8	8	8	
Modulation					Table			
					A.4-6			
Target coding rate					Table			
					A.4-6			
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Maximum number of HARQ transmissions		1	1	1	1	1		

Note 1: 3 symbols allocated to PDCCH

Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead

Table A.4-5: Reference channel for CQI requirements (TDD) 6 PRB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	6	6	6	6	6	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		4	4	4	4	4	4	
Modulation					Table			
					A.4-6			
Target coding rate					Table			
					A.4-6			
Number of HARQ Processes	Processes	10	10	10	10	10	10	
Maximum number of HARQ transmissions		1	1	1	1	1	1	

Note 1: 3 symbols allocated to PDCCH

Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and

synchronization signal overhead

Table A.4-6: Transport format corresponding to each CQI index for 6 PRB allocation

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	-	-
1	QPSK	0.0762	0	152	1512	0.1005
2	QPSK	0.1172	0	152	1512	0.1005
3	QPSK	0.1885	2	256	1512	0.1693
4	QPSK	0.3008	4	408	1512	0.2698
5	QPSK	0.4385	6	600	1512	0.3968
6	QPSK	0.5879	8	808	1512	0.5344
7	16QAM	0.3691	11	1032	3024	0.3413
8	16QAM	0.4785	13	1352	3024	0.4471
9	16QAM	0.6016	16	1800	3024	0.5952
10	64QAM	0.4551	19	2152	4536	0.4744
11	64QAM	0.5537	21	2600	4536	0.5732
12	64QAM	0.6504	23	2984	4536	0.6578
13	64QAM	0.7539	25	3496	4536	0.7707
14	64QAM	0.8525	27	3752	4536	0.8272
15	64QAM	0.9258	27	3752	4536	0.8272
Note1: Sub-fi	rame#0 and #5 a	are not used for the co	rresponding r	equirement.		·

Table A.4-7: Reference channel for CQI requirements (FDD) partial PRB allocation

Parameter	Unit			Value		
Channel bandwidth	MHz	3	5	10	15	20
Allocated resource blocks				15		
				(Note 3)		
Subcarriers per resource block				12		
Allocated subframes per Radio				8		
Frame						
Modulation				Table A.4-9		
Target coding rate				Table A.4-9		
Number of HARQ processes				8		
Maximum number of HARQ				1		
transmissions						

Note 1: 3 symbols allocated to PDCCH

Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization

signal overhead

Note 3: Centered within the Transmission Bandwidth Configuration (Figure 5.6-1)

Table A.4-8: Reference channel for CQI requirements (TDD) partial PRB allocation

Parameter	Unit	Value							
Channel bandwidth	MHz	3	5	10	15	20			
Allocated resource blocks				15					
				(Note 3)					
Subcarriers per resource block				12					
Allocated subframes per Radio				4					
Frame									
Modulation				Table A.4-9					
Target coding rate			•	Table A.4-9					
Number of HARQ processes				10					
Maximum number of HARQ				1					
transmissions									

Note 1: 3 symbols allocated to PDCCH

Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid

PBCH and synchronization signal overhead

Note 3: Centered within the Transmission Bandwidth Configuration (Figure 5.6-1)

Table A.4-9: Transport format corresponding to each CQI index for 15 PRB allocation

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	-	-
1	QPSK	0.0762	0	392	3780	0.1037
2	QPSK	0.1172	0	392	3780	0.1037
3	QPSK	0.1885	2	648	3780	0.1714
4	QPSK	0.3008	4	1064	3780	0.2815
5	QPSK	0.4385	6	1544	3780	0.4085
6	QPSK	0.5879	8	2088	3780	0.5524
7	16QAM	0.3691	11	2664	7560	0.3524
8	16QAM	0.4785	13	3368	7560	0.4455
9	16QAM	0.6016	16	4584	7560	0.6063
10	64QAM	0.4551	19	4968	11340	0.4381
11	64QAM	0.5537	21	6456	11340	0.5693
12	64QAM	0.6504	23	7480	11340	0.6596
13	64QAM	0.7539	25	8504	11340	0.7499
14	64QAM	0.8525	27	9528	11340	0.8402
15	64QAM	0.9258	27	9528	11340	0.8402
Note1: Sub-fi	rame#0 and #5 a	are not used for the co	rresponding i	equirement.		

Table A.4-10: Uplink reference channels for transmitting CSI reports on PUSCH, when being in a PUCCH reporting mode (FDD)

Parameter	Unit			Va	lue	
Channel bandwidth	MHz	10	10	10		
Allocated resource blocks		6	6	6		
DFT-OFDM Symbols per Sub-Frame		12	12	12		
Modulation		QPSK	QPSK	QPSK		
Target Coding rate		1/3	1/3	1/3		
Allocated Sub-Frames (Note 1)		1, 3,	3, 8	0, 1,		
		5, 7		2, 3,		
				4, 5,		
				6, 7,		
				8,9		
Payload size	Bits	600	600	600		
Transport block CRC	Bits	24	24	24		
Number of code blocks per Sub-Frame		1	1	1		
(Note 2)						
Total number of bits per Sub-Frame	Bits	1728	1728	1728		
Total symbols per Sub-Frame		864	864	864		
UE Category		1-5	1-5	1-5		

Note 1: The remaining subframes are not allocated with data. All the allocation details specified in the reference channel are valid only for the allocated subframes.

Note 2: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.4-11: Uplink reference channels for transmitting CSI reports on PUSCH, when being in a PUCCH reporting mode (TDD)

Parameter	Unit		Value
Channel bandwidth	MHz	10	
Allocated resource blocks		6	
Uplink-Downlink Configuration (Note 1)		2	
DFT-OFDM Symbols per Sub-Frame		12	
Modulation		QPSK	
Target Coding rate		1/3	
Allocated Sub-Frames (Note 2)		2, 7	
Payload size	Bits	600	
Transport block CRC	Bits	24	
Number of code blocks per Sub-Frame		1	
(Note 3)			
Total number of bits per Sub-Frame	Bits	1728	
Total symbols per Sub-Frame		864	
UE Category		1-5	

Note 1: As per Table 4.2-2 in TS 36.211 [4]

Note 2: The remaining subframes are not allocated with data. All the allocation details specified in the reference channel are valid only for the allocated subframes.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.4-12: Reference channel for CQI requirements (FDD) 3 PRB allocation

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		3	3	3	3	3	3
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		8	8	8	8	8	8
Modulation					Table A.4-12		
Target coding rate					Table A.4-12		
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1

Note 1: 3 symbols allocated to PDCCH

Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead

Table A.4-13: Reference channel for CQI requirements (TDD) 3 PRB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		3	3	3	3	3	3
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		4	4	4	4	4	4
Modulation					Table		
					A.4-12		
Target coding rate					Table		
					A.4-12		
Number of HARQ Processes	Processes	10	10	10	10	10	10
Maximum number of HARQ transmissions		1	1	1	1	1	1

Note 1: 3 symbols allocated to PDCCH.

Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate	
0	out of range	out of range	DTX	-	-	-	
1	QPSK	0.0762	0	56	756	0.0741	
2	QPSK	0.1172	1	88	756	0.1164	
3	QPSK	0.1885	2	144	756	0.1905	
4	QPSK	0.3008	5	224	756	0.2963	
5	QPSK	0.4385	7	328	756	0.4339	
6	QPSK	0.5879	9	456	756	0.6032	
7	16QAM	0.3691	12	584	1512	0.3862	
8	16QAM	0.4785	13	744	1512	0.4921	
9	16QAM	0.6016	16	904	1512	0.5979	
10	64QAM	0.4551	19	1064	2268	0.4691	
11	64QAM	0.5537	21	1288	2268	0.5679	
12	64QAM	0.6504	23	1480	2268	0.6526	
13	64QAM	0.7539	25	1736	2268	0.7654	
14	64QAM	0.8525	27	1864	2268	0.8219	
15	64QAM	0.9258	27	1864	2268	0.8219	
Note1: Sub-fi	Note1: Sub-frame#0 and #5 are not used for the corresponding requirement.						

Table A.4-14: Transport format corresponding to each CQI index for 3 PRB allocation

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i RA/OCNG RA = PDSCH_i RB/OCNG RB,$$

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

Table A.5.1.1-1: OP.1 FDD: One sided dynamic OCNG FDD Pattern

	Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]				
Subframe					
	0 5 1-4,6-9		PDSCH		
		Allocation		Data	
First u	nallocated PRB	First unallocated PRB	First unallocated PRB		
Lasti	Last unallocated PRB Last unallocated PRB Last unallocated PRB		Last unallocated PRB		
Last u	0 0 Cast unanocated FND		0	Note 1	
Note 1:	PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.				
transmitted to the virtual users by all the transmit antennas with CRS according to					
transmission mode 2. The parameter $\gamma_{\it PRB}$ applies to each antenna port separately, so the					
		qual between all the transmit a on modes are specified in secti	ntennas with CRS used in the t ion 7.1 in 3GPP TS 36.213.	est. The	

A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{\it RB}$ -1.

Table A.5.1.2-1: OP.2 FDD: Two sided dynamic OCNG FDD Pattern

Relative power level γ_{PRB} [dB]					
		Subframe			
	0 5		1 – 4, 6 – 9	PDSCH	
Allocation				Data	
,	t allocated PRB-1) and located PRB+1) –	0 – (First allocated PRB-1) and (Last allocated PRB+1) –	0 – (First allocated PRB-1) and (Last allocated PRB+1) –		
	$(N_{RB}-1)$ $(N_{RB}-1)$ $(N_{RB}-1)$				
	0 0 0		0	Note 1	
Note 1:	Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated				
	pseudo random data, which is QPSK modulated. The parameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale the				
Note 2:	power of PDSCH. Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to				
transmission mode 2. The parameter $\gamma_{\it PRB}$ applies to each antenna port separately, so the					
		equal between all the transmit a ion modes are specified in secti		est. The	

A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Allocation **PDSCH PMCH** Relative power level γ_{PRB} [dB] Data Data n_{PRB} Subframe 0 1 - 3, 6 - 85 4, 9 0 (Allocation: 1 - 490 0 N/A Note 1 N/A all empty

Table A.5.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

PRB-s)

N/A

N/A

Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.

N/A

0

N/A

Note 2

- Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter γ_{PRB} is used to scale the power of PMCH.
- Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

0 - 49

A.5.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i RA/OCNG RA = PDSCH_i RB/OCNG RB$$

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

Table A.5.2.1-1: OP.1 TDD: One sided dynamic OCNG TDD Pattern

Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]						
Subframe (only if available for DL)						
	0 5		3, 4, 7, 8, 9 0 5 and 6 (as normal subframe) Note 2		PDSCH Data	
	Allocation					
First una	llocated PRB	First unallocated PRB	First unallocated PRB	First unallocated PRB		
Last una	llocated PRB	Last unallocated PRB	Last unallocated PRB	Last unallocated PRB		
	0	0	0	0	Note 1	
Note 1:	Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random					
Note 2:	data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH. Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.					
Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The						
parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all						
	the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.					

A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{\it RB}$ –1.

Table A.5.2.2-1: OP.2 TDD: Two sided dynamic OCNG TDD Pattern

Relative power level γ_{PRB} [dB]					
Subframe (only if available for DL)					
3, 4, 6, 7, 8, 9 0 5 (6 as normal (6 as special subframe) Note 2 subframe) Subframe					
Allocation					
$\begin{array}{c} 0-\\ (\textit{First allocated PRB-}\\ 1)\\ and\\ (\textit{Last allocated}\\ \textit{PRB+1})-(N_{\textit{RB}}-1) \end{array}$	$\begin{array}{c} 0-\\ (\textit{First allocated PRB-}\\ 1)\\ \textit{and}\\ (\textit{Last allocated}\\ \textit{PRB+1})-(N_{\textit{RB}}-1) \end{array}$	$\begin{array}{c} 0-\\ (\textit{First allocated PRB-}\\ 1)\\ \textit{and}\\ (\textit{Last allocated}\\ \textit{PRB+1})-(N_{\textit{RB}}-1) \end{array}$	$\begin{array}{c} 0-\\ (\textit{First allocated PRB-}\\ 1)\\ and\\ (\textit{Last allocated}\\ \textit{PRB+1})-(N_{\textit{RB}}-1) \end{array}$		
[0]	[0]	[0]	[0]	Note 1	

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.
- Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter γ_{PRB} applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.2. 3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5ms downlink-to-uplink switch-point periodicity

Alleration	Relative power level γ_{PRB} [dB]					
Allocation n_{PRB}	Subframe			PDSCH Data	PMCH Data	
	0	5	4, 9 ^{Note 2}	1, 6		
1 – 49	0	0 (Allocation: all empty PRB-s)	N/A	0	Note 1	N/A
0 – 49	N/A	N/A	0	N/A	N/A	Note 3

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.
- Note 3: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals
- Note 4: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

Annex B (normative): Propagation Conditions

The propagation conditions and channel models for various environments are specified. For each environment a propagation model is used to evaluate the propagation pathless due to the distance. Channel models are formed by combining delay profiles with a Doppler spectrum, with the addition of correlation properties in the case of a multi-antenna scenario.

B.0 No interference

The downlink connection between the System Simulator and the UE is without Additive White Gaussian Noise, and has no fading or multipath effects.

B.1 Static propagation condition

The downlink connection between the System Simulator and the UE is an Additive White Gaussian Noise (AWGN) environment with no fading or multipath effects.

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}$$

B.1.1 Definition of Additive White Gaussian Noise (AWGN) Interferer

Note that the AWGN interferer can be used in static propagation conditions, or in conjunction with multi-path fading.

The acceptable uncertainties of the AWGN interferer are defined in Annex F.

B.2 Multi-path fading Propagation Conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency
- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multiantenna systems.

B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

Table B.2.1-1: Delay profiles for E-UTRA channel models

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)
Extended Pedestrian A (EPA)	7	45 ns	410 ns
Extended Vehicular A model (EVA)	9	357 ns	2510 ns
Extended Typical Urban model (ETU)	9	991 ns	5000 ns

Table B.2.1-2: Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2.1-3: Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2.1-4: Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

B.2.2 Combinations of channel model parameters

Table B.2.2-1 shows propagation conditions that are used for the performance measurements in multi-path fading environment for low, medium and high Doppler frequencies

Table B.2.2-1: Channel model parameters

Model	Maximum Doppler frequency
EPA 5Hz	5 Hz
EVA 5Hz	5 Hz
EVA 70Hz	70 Hz
ETU 70Hz	70 Hz
ETU 300Hz	300 Hz

B.2.3 MIMO Channel Correlation Matrices

B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

Table B.2.3.1-1: eNodeB correlation matrix

	One antenna	Two antennas	Four antennas
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9} & \alpha^{1/9} & 1 \end{pmatrix}$

Table B.2.3.1-2 defines the correlation matrix for the UE:

Table B.2.3.1-2: UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{UE} = 1$	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{1/9} & \beta^{4/9} & \beta \\ \beta^{1/9} & 1 & \beta^{1/9} & \beta^{4/9} \\ \beta^{4/9} & \beta^{1/9} & 1 & \beta^{1/9} \\ \beta^* & \beta^{4/9} & \beta^{1/9} & 1 \end{pmatrix}$

Table B.2.3.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

Table B.2.3.1-3: R_{spat} correlation matrices

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{eNB} and R_{UE} according to $R_{spat} = R_{eNB} \otimes R_{UE}$.

B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.2-1.

Table B.2.3.2-1

Low cor	rrelation	Medium C	orrelation	High Correlation		
α	β	α	β	α	β	
0	0	0.3	0.9	0.9	0.9	

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.2-2, B.2.3.2-3 and B.2.3.2-4 as below.

The values in the Table B.2.3.2-2 table have been adjusted for the 4x2 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 4x2 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a = 0.00012.

Table B.2.3.2-2: MIMO correlation matrices for high correlation

1x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$							
2x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$							
4x2 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 & 0.8999 & 0.8099 \\ 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 & 0.8099 & 0.8999 \\ 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 \\ 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 \\ 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 \\ 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 \\ 0.8999 & 0.8099 & 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 \\ 0.8099 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 \end{bmatrix}$							
4x4 case	$R_{high} = \begin{bmatrix} 1.0000\ 0.9882\ 0.9541\ 0.8999\ 0.9882\ 0.9767\ 0.9430\ 0.8894\ 0.9541\ 0.9430\ 0.9105\ 0.8887\ 0.8999\ 0.8894\ 0.8587\ 0.8099\\ 0.9882\ 1.0000\ 0.9882\ 0.9541\ 0.9767\ 0.9882\ 0.9767\ 0.9430\ 0.9541\ 0.9430\ 0.9105\ 0.8894\ 0.8587\ 0.8894\ 0.8599\ 0.8894\\ 0.8999\ 0.9541\ 0.9882\ 1.0000\ 0.8894\ 0.9430\ 0.9767\ 0.9882\ 0.8587\ 0.9105\ 0.9430\ 0.9541\ 0.8099\ 0.8587\ 0.8894\ 0.8999\\ 0.9882\ 0.9767\ 0.9430\ 0.8894\ 1.0000\ 0.9882\ 0.9541\ 0.8999\ 0.9882\ 0.9767\ 0.9430\ 0.8894\ 0.9541\ 0.9430\ 0.9105\ 0.8587\\ 0.9767\ 0.9882\ 0.9767\ 0.9430\ 0.9882\ 1.0000\ 0.9882\ 0.9541\ 0.9767\ 0.9882\ 0.9767\ 0.9430\ 0.9541\ 0.9430\ 0.9767\ 0.9882\$							

Table B.2.3.2-3: MIMO correlation matrices for medium correlation

1x2	N/A																
case																	
		(1 0.9 0.3 0.27)															
2x2		0.9 1 0.27 0.3															
case		$R_{medium} = \begin{bmatrix} 0.9 & 1 & 0.27 & 0.3 \\ 0.3 & 0.27 & 1 & 0.9 \end{bmatrix}$															
Jugo											0.9						
								(0.	27 0.3	0.9	1)						
				(1.	0000	0.900	0 0.	8748	0.787	3 0.	5856	0.527	1 0.3	000	0.2700)	
				0	.9000	1.000	0 0.	7873	0.874	8 0.	5271	0.5856	5 0.2	700	0.3000)	
				0	.8748	0.787	73 1.	0000	0.900	0 0.	8748	0.7873	3 0.5	856	0.5271		
4x2		D		0	.7873	0.874	18 0.	9000	1.000	0 0.	7873	0.8748	8 0.5	271	0.5856	;	
case		K_{m}	edium =	0	.5856	0.527	71 0.	8748	0.787	3 1.	0000	0.9000	0.8	748	0.7873	;	
				0	.5271	0.585	66 O.	7873	0.874	8 0.	9000	1.0000	0.7	873	0.8748	;	
				0	.3000	0.270	00 0.	.5856	0.527	1 0.	.8748	0.787	3 1.0	000	0.9000)	
				0	.2700	0.300	00 0.	.5271	0.585			0.874	8 0.9	000	1.0000)	
		<i>(</i>														/	
4x4 case											5 0.5787						
Case											7 0.5855						
											3 0.5787						
											0.5588						
											7 0.8645						
											0.8747						
											7 0.8645 2 0.8347						
	$R_{medium} =$										0.8347						
											2 1.0000						
											1 0.9882						
											9 0.9541						
											7 0.8645						
											5 0.8747						
											7 0.8645						
											2 0.8347						
		0.2700	0.2002	0.2703	0.5000	0.5210	0.5500	0.5707	0.5055	0.7072	2 0.05+7	0.0043	0.0747	0.0777	0.7571	0.7002	1.0000

Table B.2.3.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
4x2 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.2.3.2-4, \mathbf{I}_d is the $d \times d$ identity matrix.

B.2.4 Propagation conditions for CQI tests

[For Channel Quality Indication (CQI) tests, the following additional multi-path profile is used:

$$h(t,\tau) = \delta(\tau) + a \exp(-i2\pi f_D t)\delta(\tau - \tau_d)$$

in continuous time (t,τ) representation, with τ_d the delay, a a constant and f_D the Doppler frequency.]

B.2.5 FFS

B.2.6 MBSFN Propagation Channel Profile

Table B.2.6-1 shows propagation conditions that are used for the MBSFN performance requirements in multi-path fading environment in an extended delay spread environment.

Table B.2.6-1: Propagation Conditions for Multi-Path Fading Environments for MBSFN Performance Requirements in an extended delay spread environment

Extended Delay Spread						
Maximum Doppler frequency [5Hz]						
Relative Delay [ns] Relative Mean Power [dB]						
0	0					
30	-1.5					
150	-1.4					
310	-3.6					
370	-0.6					
1090	-7.0					
12490	-10					
12520	-11.5					
12640	-11.4					
12800	-13.6					
12860	-10.6					
13580	-17.0					
27490	-20					
27520	-21.5					
27640	-21.4					
27800	-23.6					
27860	-20.6					
28580	-27.0					

B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos \theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{B.3.4}$$

where $D_s/2$ is the initial distance of the train form eNodeB, and D_{\min} is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift is shown in Figure B.3-1 are applied for all frequency bands.

Parameter	Value
D_s	300 m
D_{\min}	2 m
ν	300 km/h
f_d	750 Hz

Table B.3-1: High speed train scenario

NOTE 1: Parameters for HST conditions in table B.3-1 including f_d and Doppler shift trajectories presented on figure B.3-1 were derived for Band7.

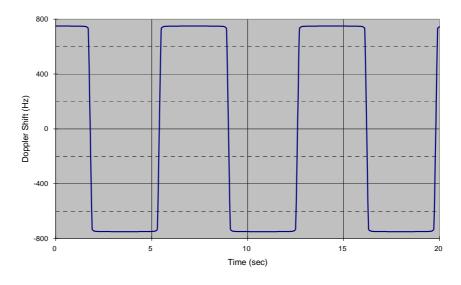


Figure B.3-1: Doppler shift trajectory

B.4 Beamforming Model

B.4.1 Single-layer beamforming (Antenna port 5, 7 or 8)

Single-layer transmission on antenna port 5 or on antenna port 7 or 8 without a simultaneous transmission on the other antenna port, is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in TS 36.211 [8] as beamforming weights. This precoder takes as an input the

signal $y^{(p)}(i)$, $i = 0,1,...,M_{\text{symb}}^{\text{ap}} - 1$, for antenna port $p \in \{5,7,8\}$, with $M_{\text{symb}}^{\text{ap}}$ the number of modulation symbols including the user-specific reference symbols (DRS), and generates a block of signals $y_{bf}(i) = [y_{bf}(i) \ \tilde{y}_{bf}(i)]^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(p)}(i)$$

Single-layer transmission on antenna port 7 or 8 with a simultaneous transmission on the other antenna port, is defined by using a pair of precoder vectors $W_1(i)$ and $W_2(i)$ each of size 2×1 , which are not identical and randomly selected with the number of layers v=1 from Table 6.3.4.2.3-1 in TS 36.211 [8], as beamforming weights, and normalizing the transmit power as follows:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = \frac{1}{\sqrt{2}} (W_1(i)y^{(7)}(i) + W_2(i)y^{(8)}(i))$$

The precoder update granularity is according to Table 8.3.2-1.

B.4.2 Dual-layer beamforming (antenna ports 7 and 8)

Dual-layer transmission on antenna ports 7 and 8 is defined by using a precoder matrix W(i) of size 2×2 randomly selected with the number of layers v = 2 from Table 6.3.4.2.3-1 in TS 36.211 [8] as beamforming weights. This precoder takes as an input a block of signals for antenna ports 7 and 8, $y(i) = \begin{bmatrix} y^{(7)}(i) & y^{(8)}(i) \end{bmatrix}^T$,

 $i=0,1,...,M_{\rm symb}^{\rm ap}-1$, with $M_{\rm symb}^{\rm ap}$ being the number of modulation symbols per antenna port including the user-specific reference symbols, and generates a block of signals $y_{bf}(i)=\begin{bmatrix}y_{bf}(i) & \widetilde{y}_{bf}(i)\end{bmatrix}^T$ the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \end{bmatrix},$$

The precoder update granularity is according to Table 8.3.2-1.

Annex C (normative): Downlink Physical Channels

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.0 Downlink signal levels

The downlink power settings in Table C.0-1 are used unless otherwise specified in a test case.

If the UE has two Rx antennas, the downlink signal is applied to each one. Both UE Rx antennas shall be connected.

If the UE has one Rx antenna, the downlink signal is applied to it.

Table C.0-1: Default Downlink power levels

	Unit	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Number of RBs		6	15	25	50	75	100	
Channel BW Power	dBm	-66	-62	-60	-57	-55	-54	
RS EPRE	dBm/15kHz	-85	-85	-85	-85	-85	-85	

Note 1: The channel bandwidth powers and RB allocations are informative, based on -85dBm/15kHz RS_EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed in this calculation, but allocation may vary during setup.

Note 2: The power level is specified at each UE Rx antenna.

The default signal level uncertainty is +/-3dB at each test port, for any level specified. If the uncertainty value is critical for the test purpose, a tighter uncertainty is specified for the related test case in Annex F.

C.1 General

Table C.1-1 describes the mapping of downlink physical channels and signals to physical resources for FDD.

Table C.1-2 describes the mapping of downlink physical channels and signals to physical resources for TDD.

Table C.1-1: Mapping of downlink physical channels and signals to physical resources for FDD

Physical channel	Time Domain Location	Frequency Domain Location	Note
RS	Symbols 0, 4 of each subframe for antenna port 0 & 1 Symbol 1 of each subframe for antenna port 2 & 3	Downlink system bandwidth dependent.	Mapping rule is specified in TS36.211 6.10.1.2 - CELL_ID = 0
PBCH	Symbols 0 to 3 of slot 1 of subframe 0 of each radio frame	Occupies 72 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211 Section 6.6.4 (Note 2)
PSS	Symbol 6 of slot 0 and 10 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier. Additional 10 subcarriers (5 on each side) adjacent to the centered 62 subcarriers are reserved.	Mapping rule is specified in TS36.211 Section 6.11.1.2
SSS	Symbol 5 of slots 0 and 10 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier. Additional 10 subcarriers (5 on each side) adjacent to the centered 62 subcarriers are reserved.	Mapping rule is specified in TS36.211 Section 6.11.2.2
PCFICH	Symbol 0 of each subframe	Downlink system bandwidth dependent. Maps into 4 REGs uniformly spread in the frequency domain over the whole system bandwidth.	Mapping rule is specified in TS36.211 Section 6.7.4 (Note 1) - CELL_ID = 0
PHICH	Symbol 0 of each subframe	Downlink system bandwidth dependent. Each PHICH group maps into 3 REGs in the frequency domain on the REGs not assigned to PCFICH over the whole system bandwidth,	Mapping rule is specified in TS36.211 Section 6.9.3 (Note 1) - CELL_ID = 0 - Ng = 1 - Normal PHICH duration -Number of PHICH groups = 1(BW=1.4MHz)/2(BW=3MHz)/4(BW=5MHz)/7(BW=10MHz)/10(BW=15MHz)/13(BW=20MHz)
PDCCH	Symbols 0, 1, 2, 3 of each subframe for 1.4 MHz Symbols 0, 1, 2, of each subframe for 3 and 5 MHz Symbols 0, 1 of each subframe for 10, 15 and 20 MHz	The remaining REGs not allocated to both PCFICH and PHICH are used for PDCCH	Mapping rule is specified in TS36.211 Section 6.8.5 (Note 1)
PDSCH	All remaining OFDM symbols of each subframe not allocated to PDCCH	For Subframe 0, REs not allocated to RS, PSS, SSS and PBCH, is allocated to PDSCH For Subframe 5, REs not allocated to RS, PSS and SSS, is allocated to PDSCH For other subframes,	Note that there are reserved REs that are not used for transmission of any physical channels (Note 3) & (Note 4) which need to be taken into account when allocating REs to PDSCH
		REs not allocated to RS, is allocated to PDSCH	

Note 1: In case a single cell-specific RS is configured, cell-specific RS shall be assume to be present on antenna ports 0 and 1 for the purpose of mapping a symbol-quadruplet to a REG (resource-element group). (See TS 36.211 Section 6.2.4).

Note 3: In slot 0 and slot 10 of each radio frame, there are reserved REs for PSS and SSS that are not used for transmission of any physical channels. (See TS 36.211 Section 6.11.1.2 & 6.11.2.2).

Note 4: REs used for RS transmission on any of the antenna ports in a slot shall not be used for any transmission on any other antenna port in the same slot and set to zero. (See TS 36.211 Section 6.10.1.2).

Note 2: PBCH is mapped into RE assuming RS from 4 antennas are used at the eNB transmitter, irrespective of the actual number of Tx antenna. Resource elements assumed to be reserved for RS but not used for transmission of RS shall not be used for transmission of any physical channel. (See TS 36.211 Section 6.6.4).

Table C.1-2: Mapping of downlink physical channels and signals to physical resources for TDD

Physical channel	Time Domain Location	Frequency Domain Location	Note
RS	Symbols 0, 4 of each subframe for antenna port 0 & 1 Symbol 1 of each subframe for antenna port 2 & 3	Downlink system bandwidth dependent.	Mapping rule is specified in TS36.211[8] 6.10.1.2 - CELL_ID = 0
PBCH	Symbols 0 to 3 of slot 1 of subframe 0 of each radio frame	Occupies 72 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211[8] Section 6.6.4 (Note 3)
PSS	Symbol 2 of slot 2 and 12 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier. Additional 10 subcarriers (5 on each side) adjacent to the centered 62 subcarriers are reserved.	Mapping rule is specified in TS36.211[8] Section 6.11.1.2
SSS	Symbol 6 of slots 1 and 11 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier. Additional 10 subcarriers (5 on each side) adjacent to the centered 62 subcarriers are reserved.	Mapping rule is specified in TS36.211[8] Section 6.11.2.2
PCFICH	Symbol 0 of each subframe and special subframe	Downlink system bandwidth dependent. Maps into 4 REGs uniformly spread in the frequency domain over the whole system bandwidth.	Mapping rule is specified in TS36.211[8] Section 6.7.4 (Note 2) - CELL_ID = 0
PHICH	Symbol 0 of each subframe and special subframe	Downlink system bandwidth dependent. Each PHICH group maps into 3 REGs in the frequency domain on the REGs not assigned to PCFICH over the whole system bandwidth,	Mapping rule is specified in TS36.211[8] Section 6.9.3 (Note 2) - CELL_ID = 0 - Ng = 1 - Normal PHICH duration -Number of PHICH groups = 1(BW=1.4MHz)/2(BW=3MHz)/4(BW=5MHz)/7(BW=10MHz)/10(BW=15MHz)/13(BW=20MHz)
PDCCH	For normal subframes(0,4,5,9) Symbols 0, 1, 2, 3 of each subframe for 1.4 MHz Symbols 0, 1, 2, of each subframe for 3 and 5 MHz Symbols 0, 1 of each subframe for 10, 15 and 20 MHz For special subframe (1&6) Symbols 0, 1 of each subframe for all BWs	The remaining REGs not allocated to both PCFICH and PHICH are used for PDCCH	Mapping rule is specified in TS36.211[8] Section 6.8.5 (Note 2)
PDSCH	,All remaining OFDM symbols of each subframe not allocated to PDCCH with the following exception: For 1.4MHz,no data shall be scheduled on special subframes (1&6) to avoid problems with insufficient PDCCH performance	For Subframe 0, REs not allocated to RS, SSS and PBCH, is allocated to PDSCH For Subframe 5, REs not allocated to RS and SSS, is allocated to PDSCH For Subframe 1 and 6, REs not allocated to RS, PSS, GP and UpPTS is allocated to PDSCH For other downlink subframes, REs not allocated to RS is allocated to PDSCH	Note that there are reserved REs that are not used for transmission of any physical channels (Note 4) & (Note 5) which need to be taken into account when allocating REs to PDSCH

Note 1: The mapping is based on the default TDD configuration for subframe assignment and special subframe

patterns (see 36.508 [7]subclause 4.6.3)

Note 2: In case a single cell-specific RS is configured, cell-specific RS shall be assume to be present on antenna ports 0 and 1 for the purpose of mapping a symbol-quadruplet to a REG (resource-element group). (See TS

36.211[8] Section 6.2.4).

- Note 3: PBCH is mapped into RE assuming RS from 4 antennas are used at the eNB transmitter, irrespective of the actual number of Tx antenna. Resource elements assumed to be reserved for RS but not used for transmission of RS shall not be used for transmission of any physical channel. (See TS 36.211[8] Section 6.6.4).
- Note 4: In slot 1,2,11 and 12 of each radio frame, there are reserved REs for PSS and SSS that are not used for transmission of any physical channels. (See TS 36.211[8] Section 6.11.1.2 & 6.11.2.2).
- Note 5: REs used for RS transmission on any of the antenna ports in a slot shall not be used for any transmission on any other antenna port in the same slot and set to zero. (See TS 36.211[8] Section 6.10.1.2).

C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel	EPRE Ratio	Note
PBCH	$PBCH_RA = 0 dB$	
	$PBCH_RB = 0 dB$	
PSS	PSS_RA = 0 dB	
SSS	$SSS_RA = 0 dB$	
PCFICH	PCFICH_RB = 0 dB	
PDCCH	PDCCH_RA = 0 dB	
	PDCCH_RB = 0 dB	
PDSCH	PDSCH_RA = 0 dB	
	PDSCH_RB = 0 dB	
PHICH	PHICH_RA = 0 dB	Note 2
	PHICH_RB = 0 dB	

Note 1: No boosting is applied.

Note 2: PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

Table C.2-2 describes the configuration of PDSCH and PDCCH before measurement for FDD and Table C.2-3 for TDD.

Table C.2-2: PDSCH and PDCCH configuration for FDD

Parameter	Unit	Value	Comments
Allocated resource blocks		6	
MCS Index		-	TB Size with transmitting message in 1TTI
Number of HARQ processes	Processes	8	
Maximum number of HARQ transmission		5	
Aggregation level	CCE	2	Note 4
DCI Format for PDSCH		Format 1A	
DCI Format for PUSCH		Format 0	

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]. Note 3: The PDSCH shall be occupied 6 resource blocks centered on the DC subcarrier.

Note 4: For PDCCH using SI-RNTI, Aggregation level:

a)Tables C.3.0-3, C.3.1-3, and C.3.2-3 for RF tests

b)Table A.2.1-1 of 36.521-3 for RRM tests.

Table C.2-3: PDSCH and PDCCH configuration for TDD

Parameter	Unit	Value	Comments	
Allocated resource blocks		6		
MCS Index		0	TB Size with transmitting message in 1TTI	
Number of HARQ processes (Note 1)	Processes	7		
Maximum number of HARQ transmission		4		
Aggregation level	CCE	2	Note 5	
DCI Format for PDSCH		Format 1A		
DCI Format for PUSCH		Format 0		
Note 1: Number of HARQ processes shall be determined by UL/DL configuration, for configuration other than 1,the process number shall be set per TS 36.213 [10] Table 8-1. Note 2: For normal downlink subframes, 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.				

- BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8].
- Note 4: The PDSCH shall be occupied 6 resource blocks centered on the DC subcarrier.
- Note 5: For PDCCH using SI-RNTI, Aggregation level: a)Tables C.3.0-3, C.3.1-3, and C.3.2-3 for RF tests b)Table A.2.2-1 of 36.521-3 for RRM tests

C.3 Connection

The following clauses describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.0 Measurement of Transmitter Characteristics

Table C.3.0-1 is applicable for measurements on the Transmitter Characteristics (clause 6).

Table C.3.0-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio	Note	
PBCH	PBCH_RA = 0 dB		
	PBCH_RB = 0 dB		
PSS	PSS_RA = 0 dB		
SSS	SSS_RA = 0 dB		
PCFICH	PCFICH_RB = 0 dB		
PDCCH	PDCCH_RA = 0 dB		
	PDCCH_RB = 0 dB		
PDSCH	PDSCH_RA = 0 dB		
	PDSCH_RB = 0 dB		
PHICH	PHICH_RB = 0 dB	Note 1	
Note 1: PHICH group power, i.e. the total power of all active PHICH			

Note 1: PHICH group power, i.e. the total power of all active PHICH sequences within a PHICH group.

NOTE 1: No boosting is applied.

Table C.3.0-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Transmitted power spectral density I_{or}	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout
			all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{\it RS}$ / $I_{\it or}$			

Table C.3.0-3: PDCCH Aggregation Level (in CCE-s)

Bandwidth	DCI for DL (SI-RNTI)	DCI for DL (C-RNTI)	DCI for UL (C-RNTI)	Notes
1.4 MHz	4	1	1	Note 1
3 MHz	4	4	4	Note 1
5 MHz	4	4	4	Note 1
10 MHz	8	8	8	Note 1
15 MHz	8	8	8	Note 1
20 MHz	8	8	8	Note 1
Note 1: No DL data allocated on TDD special subframes				

C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio	Note	
PBCH	PBCH_RA = 0 dB		
	PBCH_RB = 0 dB		
PSS	PSS_RA = 0 dB		
SSS	$SSS_RA = 0 dB$		
PCFICH	PCFICH_RB = 0 dB		
PDCCH	PDCCH_RA = 0 dB		
	PDCCH_RB = 0 dB		
PDSCH	PDSCH_RA = 0 dB		
	PDSCH_RB = 0 dB		
PHICH	PHICH_RB = 0 dB	Note 1	
OCNG	$OCNG_RA = 0 dB$		
	OCNG_RB = 0 dB		
Note 1: PHICH group power, i.e. the total power of all active PHICH			
sequences within a P	HICH group.		

NOTE 1: No boosting is applied.

Table C.3.1-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Transmitted power spectral density I_{or}	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{\it RS}$ / $I_{\it or}$			

Table C.3.1-3: PDCCH Aggregation Level (in CCE-s)

Bandwidth	DCI for DL (SI-RNTI)	DCI for DL (C-RNTI)	DCI for UL (C-RNTI)	Notes
1.4 MHz	4	4	2	Note 1, 2
3 MHz	4	4	2	Note 2
5 MHz	8	8	4	Note 2
10 MHz	8	8	8	Note 2
15 MHz	8	8	8	Note 2
20 MHz	8	8	8	Note 2

Note 1: No DL data allocated on TDD special subframes

Note 2: No DL data allocated on subframe 5

C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio	Note	
PBCH	$PBCH_RA = \rho_A$		
	$PBCH_RB = \rho_B$		
PSS	$PSS_RA = \rho_A$		
SSS	$SSS_RA = \rho_A$		
PCFICH	PCFICH_RB = ρ_B		
PDCCH	PDCCH_RA = ρ_A		
	PDCCH_RB = ρ_B		
PDSCH	PDSCH_RA = ρ_A		
	PDSCH_RB = ρ_B		
PHICH	PHICH_RB = ρ_B	Note 1	
OCNG	OCNG_RA = ρ_A		
	OCNG_RB = ρ_B		
Note 1: PHICH group power, i.e. the total power of all active PHICH			
sequences within a PHICH group.			

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: ρ_A denotes the ratio of PDSCH EPRE to cell-specific RS EPRE among PDSCH REs in all the OFDM symbols not containing cell-specific RS. ρ_B denotes the ratio of PDSCH EPRE to cell-specific RS EPRE among PDSCH REs in all the OFDM symbols containing cell-specific RS.

Table C.3.2-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Total transmitted power spectral density $I_{\it or}$	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference signal power ratio $E_{\it RS}$ / $I_{\it or}$		Test specific	1. Applies for antenna port <i>p</i>

Table C.3.2-3: PDCCH Aggregation Level (in CCE-s) for PDSCH demodulation and PMI performance tests

Bandwidth	DCI for DL (SI-RNTI)	DCI for DL (C-RNTI)	DCI for UL (C-RNTI)	Notes
1.4 MHz	4	4	2	Note 1, 2
3 MHz	4	4	2	Note 2
5 MHz	8	8	4	Note 2
10 MHz	8	8	8	Note 2
15 MHz	8	8	8	Note 2
20 MHz	8	8	8	Note 2
Note 1: No DL da	ata allocated on TDD spe	cial subframes		
Note 2: No DL da	ata allocated on subframe	5		

Table C.3.2-4: PDCCH Aggregation Level for CQI and RI performance tests (in CCE-s)

Band	lwidth	DCI for DL (SI-RNTI)	DCI for DL (C-RNTI)	DCI for UL (C-RNTI)	Notes		
1.4 MHz							
3 MHz							
5 MHz							
10 MHz		8	8	8	Note 1,2		
15 MHz							
20 MHz							
Note 1:	3 symbols allocated to PDCCH						
Note 2:	No DL data allocated on subframes 0 and 5 for FDD and 0, 1, 5 and 6 for TDD						

Annex D (normative): Characteristics of the Interfering Signal

D.1 General

Some RF performance requirements for the E-UTRA UE receiver are defined with interfering signals present in addition to the wanted signal. When the wanted channel band width is wider than or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal, and in some cases an additional CW signal, are used. For wanted channel band widths below 5MHz, the band width of the modulated interferer should be equal to the channel band width of the wanted signal.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

Table D.2-1: Description of modulated E-UTRA interferer

	Channel bandwidth						
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
RB	6	15	25	25	25	25	
BW _{Interferer}	1.4 MHz	3 MHz	5 MHz	5 MHz	5 MHz	5 MHz	

Annex E (normative): Global In-Channel TX-Test

Editor's note: This annex is incomplete. The following aspects are either missing or not yet determined:

• An average EVM, comprising 20 individual values, is defined and compared against the test limit. The other sub-results of the Global In channel TX-Test deliver one value per slot, hence 20 values. It is tbd, how to compare this individual values against the test limit.

Clauses E.2.2 to E.5.9.3 are descriptions, which exclude any transients due to power on/off or power change.

When the test runs with exclusions periods, Clause E.7 is applicable

E.1 General

The global in-channel TX test enables the measurement of all relevant parameters that describe the in-channel quality of the output signal of the TX under test in a single measurement process.

The parameters describing the in-channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters.

E.2 Signals and results

E.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. All signals are represented as equivalent (generally complex) baseband signals.

The description below uses numbers as examples. These numbers are taken from frame structure 1 with normal CP length and 20 MHz bandwidth. The application of the text below, however, is not restricted to this frame structure and bandwidth.

E.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment and stored for further processing. It is sampled at a sampling rate of 30.72 Msps. In the time domain it comprises at least 10 uplink subframes. The measurement period is derived by concatenating the correct number of individual uplink slots until the correct measurement period is reached. The output signal is named z(v). Each slot is modelled as a signal with the following parameters: demodulated data content, carrier frequency, amplitude and phase for each subcarrier, timing, carrier leakage.

NOTE 1: TDD

For frame structure type 2, subframes with special fields (UpPTS) do not undergo any evaluation. Since the uplink subframes are not continuous, the 20 slots should be extracted from more than 1 continuous radio frame:

Figure E.2.2-1 is an example for uplink-downlink configuration 1 (DSUUDDSUUD) as specified in TS 36.211 [8] Table 4.2-2, assuming all uplink subframes are active.

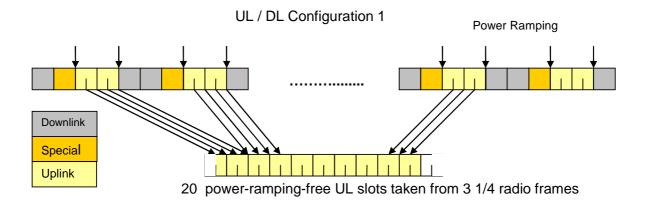


Figure E.2.2-1: Example of uplink - downlink configuration 1

E.2.3 Reference signal

Two types of reference signal are defined:

The reference signal $i_1(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: demodulated data content, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain.

The reference signal $i_2(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted data content: nominal reference symbols, (all modulation symbols for user data symbols are set to 0V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain.

NOTE: The PUCCH is off during the time under test.

E.2.4 Measurement results

The measurement results, achieved by the global in channel TX test are the following:

- Carrier Frequency error
- EVM (Error Vector Magnitude)
- Carrier leakage
- Unwanted emissions, falling into non allocated resource blocks.
- EVM equalizer sSpectrum flatness

E.2.5 Measurement points

The unwanted emission falling into non-allocated RB(s) is calculated directly after the FFT as described below. In contrast to this, the EVM for the allocated RB(s) is calculated after the IDFT. The samples after the TX-RX chain equalizer are used to calculate EVM equalizer spectrum flatness. Carrier frequency error and carrier leakage is calculated in the block "RF correction".

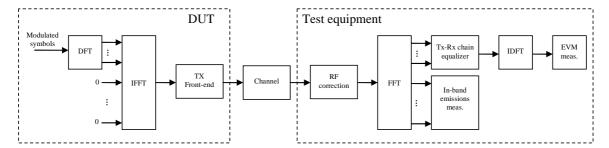


Figure E.2.5-1: EVM measurement points

E.3 Signal processing

E.3.1 Pre FFT minimization process

Before applying the pre-FFT minimization process, z(v) and i(v) are portioned into 20 pieces, comprising one slot each. Each slot is processed separately. Sample timing, Carrier frequency and baseband-I/Q offset (corresponding carrier leakage in RF) in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

The carrier frequency variation and the IQ variation are the measurement results: Carrier Frequency Error and Carrier leakage.

From the acquired samples 20 carrier frequencies and 20 carrier leakages can be derived.

NOTE 1: The minimisation process, to derive carrier leakage and RF error can be supported by Post FFT operations. However the minimisation process defined in the pre FFT domain comprises all acquired samples (i.e. it does not exclude the samples in between the FFT widths and it does not exclude the bandwidth outside the transmission bandwidth configuration

NOTE 2: The algorithm would allow to derive Carrier Frequency error and Sample Frequency error of the TX under test separately. However there are no requirements for Sample Frequency error. Hence the algorithm models the RF and the sample frequency commonly (not independently). It returns one error and does not distinuish between both.

After this process the samples z(v) are called $z^{0}(v)$.

E.3.2 Timing of the FFT window

The FFT window length is 2048 samples per OFDM symbol. 7 FFTs (14336 samples) cover less than the acquired number of samples (15360 samples) The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP. There are three different instants for FFT:

Centre of the reduced window, called $\Delta \widetilde{c}$, $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2.

The timing of the measured signal is determined in the pre FFT domain as follows, using $z^0(v)$ and $i_2(v)$:

- 1. The measured signal is delay spread by the TX filter. Hence the distinct boarders between the OFDM symbols and between Data and CP are also spread and the timing is not obvious.
- 2. In the Reference Signal $i_2(v)$ the timing is known.
- 3. Correlation between (1.) and (2.) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The meaning of "impulse response" assumes that the autocorrelation of

the reference signal $i_2(v)$ is a Dirac peak and that the correlation between the reference signal $i_2(v)$ and the data in the measured signal is 0. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal.

From the acquired samples 20 timings can be derived.

For all calculations, except EVM, the number of samples in $z^0(v)$ is reduced to 7 blocks of samples, comprising 2048 samples (FFT width) and starting with $\Delta \tilde{c}$ in each OFDM symbol including the demodulation reference signal.

For the EVM calculation the output signal under test is reduced to 14 blocks of samples, comprising 2048 samples (FFT width) and starting with $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2 in each OFDM symbol including the demodulation reference signal.

The number of samples, used for FFT is reduced compared to $z^{0}(v)$. This subset of samples is called z'(v).

The timing of the centre $\Delta \tilde{c}$ with respect to the different CP length in a slot is as follows: (Frame structure 1, normal CP length)

 $\Delta \tilde{c}$ is on T_f=72 within the CP of length 144 (in OFDM symbol 1 to 6)

 $\Delta \tilde{c}$ is on T_f=88 (=160-72) within the CP of length 160 (in OFDM symbol 0)

E.3.3 Post FFT equalisation

Perform 7 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \tilde{c}$, including the demodulation reference symbol. The result is an array of samples, 7 in the time axis t times 2048 in the frequency axis f. The samples represent the DFT coded data symbols (in OFDM-symbol 0,1,2,4,5and 6 in each slot) and demodulation reference symbols (OFDM symbol 3 in each slot) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal demodulation reference symbols and nominal DFT coded data symbols are used to equalize the measured data symbols. (Location for equalization see Figure E.2.5-1)

NOTE: The nomenclature inside this note is local and not valid outside.

The nominal DFT coded data symbols are created by a demodulation process. The location to gain the demodulated data symbols is "EVM" in Figure E.2.5-1. A demodulation process as follows is recommended:

- 1. Equalize the measured DFT coded data symbols using the reference symbols for equalisation. Result: Equalized DFT coded data symbols
- 2. iDFT transform the equalized DFT coded data symbols: Result: Equalized data symbols
- 3. Decide for the nearest constellation point: Result: Nominal data symbols
- 4. DFT transform the nominal data symbols: Result: Nominal DFT coded data symbols

At this stage we have an array of Measured DFT coded data-Symbols and reference-Symbols (MS(f,t))

versus an array of Nominal DFT coded data-Symbols and reference Symbols (NS(f,t))

(complex, the arrays comprise 6 DFT coded data symbols and 1 demodulation reference symbol in the time axis and the number of allocated subcarriers in the frequency axis.)

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f)

$$EC(f) = \frac{\sum_{t=0}^{6} NS(f,t)^{*} NS(f,t)}{\sum_{t=0}^{6} NS(f,t)^{*} MS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the DFT-coded data symbols. The measured DFT-coded data and the references symbols are equalized by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With 'denoting multiplication.

Z'(f,t), restricted to the data symbol (excluding t=3) is used to calculate EVM, as described in E.4.1.

EC(f) is used in E.4.4 to calculate EVM equalizer spectral flatness.

NOTE: although an exclusion period for EVM may be applicable in E.7, the post FFT minimisation process is done over 7 symbols (6 DFT-coded data symbols and 1 reference symbol).

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.4 Derivation of the results

E.4.1 EVM

For EVM create two sets of Z'(f,t)., according to the timing " $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2" using the equalizer coefficients from E.3.3.

Perform the iDFTs on Z'(f,t). The IDFT-decoding preserves the meaning of t but transforms the variable f (representing the allocated sub carriers) into an another variable g, covering the same count and representing the demodulated symbols. The samples in the post IDFT domain are called iZ'(g,t). The equivalent ideal samples are called iI(g,t). Those samples of Z'(f,t), carrying the reference symbols (=symbol 3) are not iDFT processed.

The EVM is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\displaystyle\sum_{t \in T} \;\; \sum_{g \in G} \left| iZ^{\;\; '}\left(g^{\;\;},t^{\;}\right) - iI\left(g^{\;\;},t^{\;}\right)^2}{\left|G\right| \cdot \left|T\right| \cdot P_0}} \;,$$

where

t covers the count of demodulated symbols with the considered modulation scheme being active within the measurement period, (i.e. symbol 0,1,2,4,5 and 6 in each slot, $\rightarrow |T|=6$)

g covers the count of demodulated symbols with the considered modulation scheme being active within the allocated bandwidth. ($|G|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

iZ'(g,t) are the samples of the signal evaluated for the EVM.

iI(g,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 40 EVM value can be derived, 20 values for the timing $\Delta \tilde{c}$ -W/2 and 20 values for the timing $\Delta \tilde{c}$ +W/2

E.4.2 Averaged EVM

EVM is averaged over all basic EVM measurements.

The averaging comprises 20 UL slots (for frame structure 2: excluding special fields(UpPTS))

$$\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}$$

The averaging is done separately for timing $\Delta \tilde{c}$ -W/2 and $\Delta \tilde{c}$ +W/2 leading to \overline{EVM}_1 and \overline{EVM}_h

 $EVM_{final} = max(\overline{EVM}_1, \overline{EVM}_h)$ is compared against the test requirements.

E.4.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

Explanatory Note:

The inband emission measurement is only meaningful with allocated RBs next to non allocated RB. The allocated RBs are necessary but not under test. The non allocated RBs are under test. The RB allocation for this test is as follows: The allocated RBs are at one end of the channel BW, leaving the other end unallocated. The number of allocated RBs is smaller than half of the number of RBs, available in the channel BW. This means that the vicinity of the carrier in the centre is unallocated.

There are 3 types of inband emissions:

- 1. General
- 2. IQ image
- 3. Carrier leakage

Carrier leakage are inband emissions next to the carrier.

IQ image are inband emissions symmetrically (with respect to the carrier) on the other side of the allocated RBs.

General are applied to all unallocated RBs.

For each evaluated RB, the minimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply.

In specific the following combinations:

- Power (General)
- Power (General + Carrier leakage)
- Power (General + IQ Image)

1 and 2 is expressed in terms of power in one non allocated RB under test, normalized to the average power of an allocated RB (unit dB).

3 is expressed in terms of power in one non allocated RB, normalized to the power of all allocated RBs. (unit dBc).

This is the reason for two formulas Emissions relative

Create one set of Y(t,f) per slot according to the timing " $\Delta \tilde{c}$ "

For the non-allocated RBs below the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{\text{max}(f_{\min}, (c_{t}+12 \cdot \Delta_{RB} * \Delta f)) \\ \text{min}(f_{\max}, (c_{h}+12 \cdot \Delta_{RB} * \Delta f))}} |Y(t, f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{c_{h}+(12 \cdot \Delta_{RB} * \Delta f)) \\ c_{h}+(12 \cdot \Delta_{RB} - 11) * \Delta f}} |Y(t, f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

the upper formula represents the in band emissions below the allocated frequency block and the lower one the in band emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ for the first upper or $\Delta_{RB}=-1$ for the first lower adjacent RB),

 $f_{
m min}$ and $f_{
m max}$ are the lower and upper edge of the UL transmission BW configuration,

 c_l and c_h are the lower and upper edge of the allocated BW,

 Δf is 15kHz,and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.3.3

The allocated RB power per RB and the total allocated RB power are given by:

$$P_{RB} = \frac{1}{|T_s| \cdot L_{CRBs}} \sum_{t \in T_s} \sum_{t \in T_s}^{c_1 + (12 \cdot L_{CRBs} - 1) * \Delta f} |MS(t, f)|^2 [dBm/180 kHz]$$

$$P_{All-RBs} = \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{t \in T_s}^{c_1 + (12 \cdot L_{CRBs} - 1) * \Delta f} |MS(t, f)|^2 [dBm]$$

The relative in-band emissions, applicable for General and IQ image, are given by:

$$Emissions_{relative}(\Delta_{RB}) = 10 \cdot \log_{10}\left(\frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot L_{CRBs}} \sum_{t \in T_{s}} \sum_{c_{1}}^{c_{1} + (12 \cdot L_{CRBs} - 1) * \Delta f} \left|MS(t, f)\right|^{2}}\right) [dB]$$

$$= Emissions_{absolute}(\Delta_{RB}) [dBm/180 \text{ kHz}] - P_{RB} [dBm/180 \text{ kHz}]$$

where

 L_{CRBs} is the number of allocated resource blocks,

and

MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.3.3.

The relative in-band emissions, applicable for carrier leakage, is given by:

$$Emissions_{relative} = 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(RBnextDC)}{\frac{1}{\left|T_{s}\right|} \sum_{t \in T_{s}}^{c_{1}+(12 \cdot L_{CRBs}^{-1})*\Delta f} \left| MS(t, f) \right|^{2}} \right) [dBc]$$

$$= Emissions_{absolute}(RBnextDC) [dBm/180kHz] - P_{All-RBs}[dBm]$$

where RBnextDC means: Resource Block next to the carrier.

This is one RB, namely the central one in case of an odd number of RBs in the channel BW.

This is one pair of RBs, namely the immediately adjacent RBs to the carrier in case of an even number of RBs in the channel BW.

Although an exclusion period may be applicable in the time domain, when evaluating EVM (clause E.7), the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples 20 functions for general in band emissions and IQ image inband emissions can be derived. 20 values or 20 pairs of carrier leakage inband emissions can be derived. They are compared against different limits.

E.4.4 EVM equalizer spectrum flatness

For EVM equalizer spectrum flatness use EC(f) as defined in E.3.3. Note, EC(f) represents equalizer coefficient $f \in F$, f is the allocated subcarriers within the transmission bandwidth ((|F|=12* L_{CRBs})

From the acquired samples 20 functions EC(f) can be derived.

EC(f) is broken down to 2 functions:

$$EC_1(f), f \in Range 1$$

$$EC_2(f), f \in Range 2$$

Where Range 1 and Range 2 are as defined in Table 6.5.2.4.5-1 for normal condition and Table 6.5.2.4.5-2 for extreme condition

The following peak to peak ripple is calculated:

 $RP_1 = 20 * log (max (|EC_1(f)|) / min(|EC_1(f)|))$, which denote the maximum ripple in Range 1

 $RP_2 = 20 * log (max (| EC_2(f) |) / min(| EC_2(f) |))$, which denote the maximum ripple in Range 2

 $RP_{12} = 20*log\left(max\left(|EC_1(f)|\right)/min(|EC_2(f)|\right)\right), which denote the maximum ripple between the upper side of Range 1 and lower side of Range 2$

 $RP_{21} = 20*log(max(|EC_2(f)|)/min(|EC_1(f)|))$, which denote the maximum ripple between the upper side of Range 2 and lower side of Range 1

E.4.5 Frequency error and Carrier leakage

See E.3.1.

E.4.6 EVM of Demodulation reference symbols (EVM_{DMRS})

For the purpose of EVM $_{DMRS}$, the steps E.2.2 to E.4.2 are repeated 6 times, constituting 6 EVM $_{DMRS}$ sub-periods. The only purpose of the repetition is to cover the longer gross measurement period of EVM $_{DMRS}$ (120 time slots) and to derive the FFT window timing per sub-period.

The bigger of the EVM results in one 20 TS period corresponding to the timing $\Delta \tilde{c} - W/2$ or $\Delta \tilde{c} + W/2$ is compared against the limit. (Clause E.4.2) This timing is re-used for EVM _{DMRS} in the equivalent EVM _{DMRS} sub-period.

For EVM the demodulation reference symbols are excluded, while the data symbols are used. For EVM $_{DMRS}$ the data symbols are excluded, while the demodulation references symbols are used. This is illustrated in figure E.4.6-1

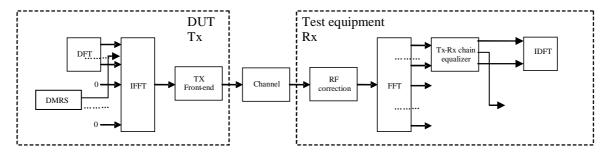


Figure E.4.6-1: EVM_{DMRS} measurement points

Re-use the following formula from E.3.3:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

To calculate EVM_{DMRS} , the data symbol (t=0,1,2,4,5,6) in Z'(f,t) are excluded and only the reference symbol (t=3) is used.

The EVM $_{DMRS}$ is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{DMRS} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{\cdot} \left(f, t \right) - I \left(f, t \right) \right|^{2}}{\left| T \left| \cdot P_{0} \cdot \left| F \right| \right|}},$$

where

t covers the count of demodulation reference symbols (i.e. only symbol 3 in each slot, so count =1)

f covers the count of demodulation reference symbols within the allocated bandwidth. ($|F|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

Z'(f,t) are the samples of the signal evaluated for the EVM $_{
m DMRS}$

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

20 such results are generated per measurement sub-period.

E.4.6.1 1^{st} average for EVM _{DMRS}

EVM $_{DMRS}$ is averaged over all basic EVM $_{DMRS}$ measurements in one sub-period

The averaging comprises 20 UL slots (for frame structure 2: excluding special fields(UpPTS))

$$1stEVM_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS}_{i}^{2}}$$

519

The timing is taken from the EVM for the data. 6 of those results are achieved from the samples. In general the timing is not the same for each result.

E.4.6.2 Final average for EVM DMRS

finalEVM _{DMRS} =
$$\sqrt{\frac{1}{6} \sum_{i=1}^{6} 1 stEVM \,_{DMRS}_{i}^{2}}$$

E.5 EVM and inband emissions for PUCCH

For the purpose of worst case testing, the PUCCH shall be located on the edges of the Transmission Bandwidth Configuration (6,15,25,50,75,100 RBs).

The EVM for PUCCH (EVM_{PUCCH}) is averaged over 20 slots. At least 20 TSs shall be transmitted by the UE without power change. SRS multiplexing shall be avoided during this period. The following transition periods are applicable: One OFDM symbol on each side of the slot border (instant of band edge alternation).

The description below is generic in the sense that all 6 PUCCH formats are covered. Although the number of OFDM symbols in one slot is 6 or 7 (depending on the cyclic prefix length), the text below uses 7 without excluding 6.

E.5.1 Basic principle

The basis principle is the same as described in E.2.1

E.5.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

E.5.3 Reference signal

The reference signal is defined same as in E.2.3. Same as in E.2.3, $i_1(v)$ is the ideal reference for EVM_{PUCCH} and $i_2(v)$ is used to estimate the FFT window timing.

Note PUSCH is off during the PUCCH measurement period.

E.5.4 Measurement results

The measurement results are:

- EVM_{PUCCH}
- Inband emissions with the sub-results: General in-band emission, IQ image (according to: 36.101. Annex F.4, Clause starting with: "At this stage the")

E.5.5 Measurement points

The measurement points are illustrated in the figure below:

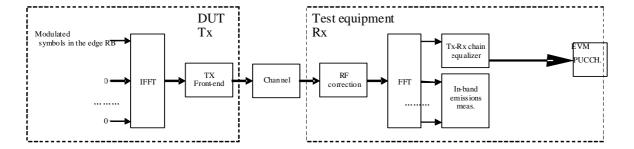


Figure E.5.5-1

E.5.6 Pre FFT minimization process

The pre FFT minimisation process is the same as describes in clause E.3.1.

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the pre FFT minimisation process is done over the complete slot.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.5.7 Timing of the FFT window

Timing of the FFT window is estimated with the same method as described in E.3.2.

E.5.8 Post FFT equalisation

The post FFT equalisation is described separately without reference to E.3.3:

Perform 7 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \tilde{c}$, including the demodulation reference symbol. The result is an array of samples, 7 in the time axis t times 2048 in the frequency axis f. The samples represent the OFDM symbols (data and reference symbols) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal reference symbols and **nominal** OFDM data symbols are used to equalize the measured data symbols.

Note: (The nomenclature inside this note is local and not valid outside)

The nominal OFDM data symbols are created by a demodulation process. A demodulation process as follows is recommended:

- 1. Equalize the measured OFDM data symbols using the reference symbols for equalisation. Result: Equalized OFDM data symbols
- 2. Decide for the nearest constellation point, however not independent for each subcarrier in the RB. 12 constellation points are decided dependent, using the applicable CAZAC sequence. Result: Nominal OFDM data symbols

At this stage we have an array of Measured data-Symbols and reference-Symbols (MS(f,t))

versus an array of Nominal data-Symbols and reference Symbols (NS(f,t))

The arrays comprise in sum 7 data and reference symols, depending on the PUCCH format, in the time axis and the number of allocated sub-carriers in the frequency axis.

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f)

$$EC(f) = \frac{\sum_{t=0}^{6} NS(f,t)^{*} NS(f,t)}{\sum_{t=0}^{6} MS(f,t)^{*} NS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the OFDM data together with the demodulation reference symbols by:

$$Z'(f,t) = MS(f,t) \cdot EC(f)$$

With 'denoting multiplication.

Z'(f,t) is used to calculate EVM_{PUCCH}, as described in E.5.9 1

NOTE: although an exclusion period for EVM_{PUCCH} is applicable in E.5.9.1, the post FFT minimisation process is done over 7 OFDM symbols.

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.5.9 Derivation of the results

E.5.9.1 EVM_{PUCCH}

For EVM_{PUCCH} create two sets of Z'(f,t)., according to the timing " $\Delta \tilde{c}$ –W/2 and $\Delta \tilde{c}$ +W/2" using the equalizer coefficients from E.5.8

The EVM_{PUCCH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{PUCCH} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{'}(f, t) - I(f, t) \right|^{2}}{\left| T \left| \cdot P_{0} \cdot | F \right|}},$$

where

the OFDM symbols next to slot boarders (instant of band edge alternation) are excluded:

t covers less than the count of demodulated symbols in the slot (|T|=5)

f covers the count of subcarriers within the allocated bandwidth. (|F|=12)

Z '(f,t) are the samples of the signal evaluated for the ${
m EVM_{PUCCH}}$

I(f,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 40 EVM_{PUCCH} value can be derived, 20 values for the timing $\Delta \tilde{c}$ -W/2 and 20 values for the timing $\Delta \tilde{c}$ +W/2

E.5.9.2 Averaged EVM_{PUCCH}

EVM_{PUCCH} is averaged over all basic EVM_{PUCCH} measurements

The averaging comprises 20 UL slots (for frame structure 2: excluding special fields(UpPTS))

$$\overline{EVM}_{PUCCH} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{PUCCH_i}^2}$$

The averaging is done separately for timing: $\Delta \widetilde{c}$ -W/2 and $\Delta \widetilde{c}$ +W/2 leading to $\overline{EVM}_{PUCCH,low}$ and $\overline{EVM}_{PUCCH,high}$

 $EVM_{PUCCH, final} = \max(\overline{EVM}_{PUCCH, low}, \overline{EVM}_{PUCCH, high})$ is compared against the test requirements.

E.5.9.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

Create one set of Y(t,f) per slot according to the timing " $\Delta \tilde{c}$ "

For the non-allocated RBs the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\max(f_{\min},(c_{t}+12 \cdot \Delta_{RB} * \Delta f))}^{c_{t}+(12 \cdot \Delta_{RB} * \Delta f))} |Y(t,f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\substack{\min(f_{\max},(c_{h}+12 \cdot \Delta_{RB} * \Delta f)) \\ c_{h}+(12 \cdot \Delta_{RB} - 11) * \Delta f}} |Y(t,f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

the upper formula represents the inband emissions below the allocated frequency block and the lower one the inband emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ OFDM symbols in the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ for the first upper or $\Delta_{RB}=-1$ for the first lower adjacent RB),

 f_{\min} and f_{\max} are the lower and upper edge of the UL system BW,

 c_l and c_h are the lower and upper edge of the allocated BW,

 Δf is 15kHz,and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.5.8

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = 10*\log_{10} \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{|T_s| \cdot L_{CRBs}} \sum_{t \in T} \sum_{c_1 + (12 \cdot L_{CRBs} - 1)*\Delta f} |MS(t, f)|^2} [dB]$$

where

 $L_{\it CRBs}$ is the number of allocated RBs, which is always 1 in case of PUCCH

and MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.5.8

Although an exclusion period for EVM is applicable in E.5.9.1, the inband emissions measurement interval is defined over one complete slot in the time domain.

From the acquired samples 20 functions for inband emissions can be derived.

Since the PUCCH allocation is always on the upper or lower band-edge, the opposite to the allocated one represents the IQ image, and the remaining inner RBs represent the general inband emissions. They are compared against different limits.

E.6 EVM for PRACH

The description below is generic in the sense that all 5 PRACH formats are covered. The numbers, used in the text below are taken from PRACH format#0 without excluding the other formats. The sampling rate for the PUSCH, 30.72 Msps in the time domain, is re-used for the PRACH. The carrier spacing of the PUSCH is 12 (format 0 to 3) and 2 (format 4) times of the PRACH. This results in an oversampling factor of 12 (format 0 to 3) and 2 (format 4), when acquiring the time samples for the PRACH. The pre-FFT algorithms (clauses E.6.6 and E.6.7) use all time samples, although oversampled. For the FFT the time samples are decimated by the factor of 12 (format 0 to 3) and 2 (format 4), resulting in the same FFT size as for the other transmit modulation tests (2048). Decimation requires a decision, which samples are used and which ones are rejected. The algorithm in E.6.6, Timing of the FFT window, can also be used the decide about the used samples.

E.6.1 Basic principle

The basis principle is the same as described in E.2.1

E.6.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

The measurement period is different:

- 2 PRACH preambles are recorded for format 0and 1,
- 1 PRACH preamble is recorded for format 2 and 3, each containing 1 CP and 2 preamble sequences
- 10 RPRACH preambles are recorded for format 4.

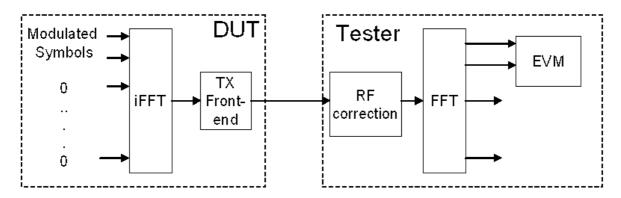
E.6.3 Reference signal

The test description in 6.5.2.1.4.1A is based on non contention based access:

- PRACH configuration index (responsible for Preamble format, System frame number and subframe number)
- Preamble ID
- Preamble power

signalled to the UE, defines the reference signal unambiguously, such that no demodulation process is necessary to gain the reference signal.

The reference signal i(v) is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: the applicable Zadoff Chu sequence, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no carrier leakage. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain.


E.6.4 Measurement results

The measurement result is:

EVM_{PRACH}

E.6.5 Measurement points

The measurement points are illustrated in the figure below:

Figure E.6.5-1

E.6.6 Pre FFT minimization process

The pre-FFT minimization process is applied to each PRACH preamble separately. The time period for the pre-FFT minimisation process includes the complete CP and Zadoff-Chu sequence (in other words, the power transition period is per definition outside of this time period) Sample timing, Carrier frequency and I/Q offset in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

After this process the samples z(v) are called $z^{0}(v)$.

RF error, and carrier leakage are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.6.7 Timing of the FFT window

The FFT window length is 24576 samples for preamble format 0, however in the measurement period is at least 27744 samples are taken. The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP.

The reference instant for the FFT start is the centre of the reduced window, called $\Delta \tilde{c}$,

EVM is measured at the following two instants: $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$.

The timing of the measured signal $z^0(v)$ with respect to the ideal signal i(v) is determined in the pre FFT domain as follows:

Correlation between $z^0(v)$ and i(v) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal with respect to the ideal signal.

W is different for different preamble formats and shown in TableE.6.7-1.

Preamble format	$\begin{array}{c} \text{Cyclic} \\ \text{prefix} \\ \text{length}^1 \ N_{cp} \end{array}$	Nominal FFT size ²	EVM window length W in FFT samples	Ratio of W to CP ³
0	3168	24576	3072	96.7%
1	21024	24576	20928	99.5%
2	6240	49152	6144	98.5%
3	21024	49152	20928	99.5%
4	448	4096	432	96.4%

Table E.6.7-1EVM window length for PRACH

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed

Note 2: Decimation of time samples by 12(format 0 to 3) and factor 2 (format 4) is assumed, leading to a uniform FFT size of 2048 for all formats.

Note 3: These percentages are informative

The number of samples, used for FFT is reduced compared to $z^0(v)$. This subset of samples is called z''(v).

The sample frequency 30.72 MHz is oversampled with respect to the PRACH-subcarrier spacing of 1.25kHz (format 0 to 3) and 7.5kHz (format 4). EVM is based on 2048 samples per PRACH preamble and requires decimation of the time samples by the factor of 12 (format 0 to 3) and factor 2 (format 4). The final number of samples per PRACH preamble, used for FFT is reduced compared to z''(v) by the factor of 12 (format 0 to 3) and factor 2 (format 4). This subset of samples is called z'(v).

E.6.8 Post FFT equalisation

Equalisation is not applicable for the PRACH.

E.6.9 Derivation of the results

E.6.9.1 EVMPRACH

Perform FFT on z'(v) and i(v) using the FFT timing $\Delta \tilde{c}$ –W/2 and $\Delta \tilde{c}$ +W/2.

For format 2 and 3 the first and the repeated preamble sequence are FFT-converted separately. using the standard FFT length 0f 2048

The EVM_{PRACH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s).

$$EVM_{PRACH} = \sqrt{\frac{\sum_{f \in F} \left| Z^{-1} \left(f^{-1} \right) - I \left(f^{-1} \right)^{2}}{N_{ZC} \cdot P_{0}}},$$

where

f covers the count of demodulated symbols within the allocated bandwidth.

Z'(f) are the samples of the signal evaluated for the EVM_{PRACH}

I(f) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

 N_{ZC} is random access preamble sequence length.

From the acquired samples 4 EVM_{PRACH} value can be derived, 2 values for the timing $\Delta \tilde{c}$ –W/2 and 2 values for the timing $\Delta \tilde{c}$ +W/2 (4 and 2 applies for format 0,1,2,3. 20 and 10 applies for format 4).

E.6.9.2 Averaged EVM_{PRACH}

EVM_{PRACH} is averaged over all basic EVM_{PRACH} measurements

$$\overline{EVM}_{PRACH} = \sqrt{\frac{1}{2} \sum_{i=1}^{2} EVM_{PRACH}^{2}}$$

(i= 2 applies for format 0,1,2,3. i= 10 applies for format 4)

The averaging is done separately for timing $\Delta \widetilde{c}$ –W/2 and $\Delta \widetilde{c}$ +W/2 leading to \overline{EVM} PRACH ,low and \overline{EVM} PRACH ,high

 $EVM_{PRACH, final} = \max(\overline{EVM}_{PRACH, low}, \overline{EVM}_{PRACH, high})$ is compared against the test requirements.

E.7 EVM with exclusion period

E.7.1 General

EVM with exclusion periods is defined in clause 6.5.2.1.1, third paragraph. For PUCCH entire symbols are excluded, if applicable. For PUSCH fractions of symbols are excluded, if applicable. The exclusion period for PUSCH is defined at the air interface, leading to exclusion periods in the EVM domain. The necessary mapping is described in this clause.

E.7.2 The model

The exclusion period in the time domain has corresponding periods in the quasi time domains (Table E.7.2). The mapping of corresponding periods needs only scaling and cyclic shifting.

The algorithm below uses a sampling frequency 30.72 MHz and FFT-width 2048 for all bandwidths. Bandwidth-adapted sampling frequencies and FFT-widths are not excluded. Only normal cyclic prefix is mentioned in the model without excluding the extended CP.

Table. E.7.2: Model for mapping exclusion period in the time domain

			TX		Channel			EVM meter		
Operation		D F T		i F F			F F T		iD F T	
Meaning	Modulation symbols		Precoded symbols		BB samples	BB samples		Precoded symbols		demodula ted symbols
No of samples	allocated Sub Carriers		allocated subcarriers + unallocated subcarriers = 2048		allocated subcarriers + unallocated subcarriers + CP samples	2048, position depending on EVM window		allocated subcarriers		allocated subcarriers
Domain	Quasi time domain		Frequency domain		Time domain	Time domain		Frequency domain		Quasi time domain
text below		1	2	3	4	7	7	8	9	11

- 1. A sequence of complex valued modulation symbols are Transform-Precoded (DFT) according to 36.211 clause 5.3.3. The size of this transformation is the number of allocated subcarriers.
- 2. The outcome of (1) is supplemented by 0 for the non allocated subcarriers. In sum 2048 subcarriers.
- 3. The baseband time signal (without CP) is then calculated by a iFFT according to 36.211 clause 5.6
- 4. (3) is then supplemented by a cyclic prefix (144 or 160 samples) leading to 2192 or 2208 samples. (144 CP samples = 144 tail samples from the data field)
- 5. (4) is transmitted over the channel and sampled by the EVM meter.
- 6. In case of an exclusion period those samples of (5) are marked, where the exclusion applies. The exclusion period is an unbroken leading or lagging exclusion period next to a subframe or timeslot boarder.
- 7.Depending on early or late EVM-window a subset of 2048 samples (out of 2192 or 2208 samples) are the input for the subsequent FFT. These samples may or may not comprise marked samples. The result are 2048 frequency domain samples.
- 8. The non allocated subcarriers are removed from the 2048 samples.
- 9. (8) is then iDFT transformed. The result are demodulated complex valued symbols in the same domain as (1)
- 10. Step 7, 8 and 9 are modified by an equalizer algorithm.
 For the purpose of this clause, the equalizer partly re-does step 4 (CP insertion):
 The equalizer algorithm cuts that subset of CP samples, covered by the FFT, from the head and copies it to the tail of the data field.
- 11. The result of (10) is: complex valued symbols in the same sequence as in (1) They are compared with (1) symbol by symbol for EVM. Due to exclusion in the time domain (6) we have marked corresponding symbols, which are disregarded for EVM.
- 12. From step 1 to 4 the number of samples is expanded. A subset of expanded samples is marked as excluded. Form step 6 to step 9 the number of samples is compressed, leading to a non integer number of samples, marked as excluded. The number of marked samples in this domain is rounded up at the expense of the EVM samples

E.7.3 Illustration

The figures below illustrate the cyclic shift due to the equalizer and scaling.

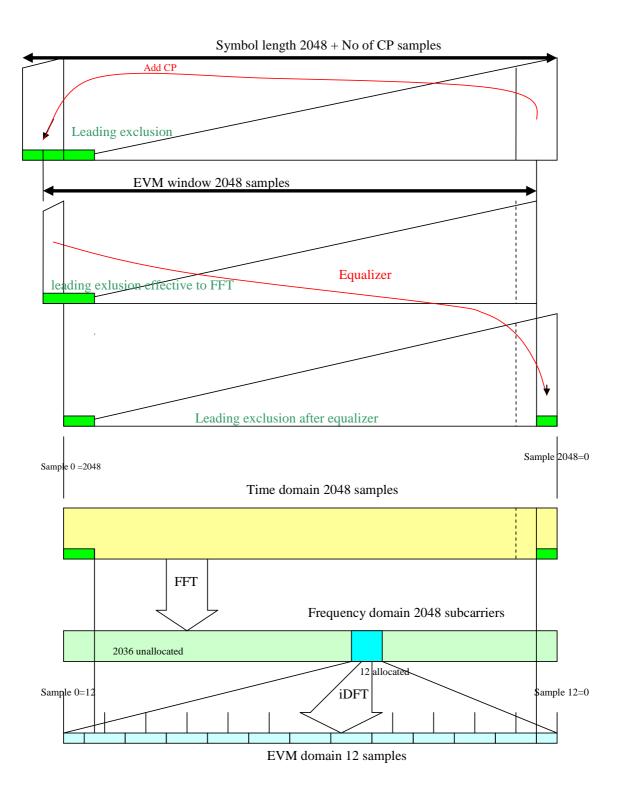


Figure E.7.3-1: leading exclusion period (when number of RBs=1)

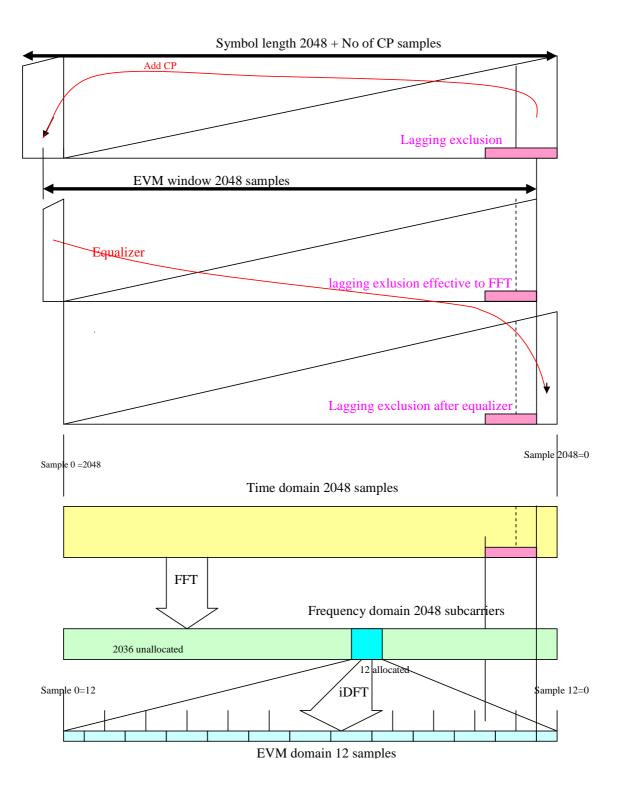


Figure E.7.3-2: lagging exclusion period (when number of RBs=1)

Legend to figure E.7.3-1

The figure contains 6 related subfigures.

The upper 3 triangles illustrate the cyclic shift due to EVM windowing and equalizer.

The lower 3 boxes illustrate the mapping from the time domain, where the exclusion period is defined, into the EVM domain, where EVM samples are actually excluded.

Cyclic shift

The leading exclusion period covers the entire CP and a part of the data field. The EVM window masks a part of the exclusion period. For the purpose of this annex, the equalizer re-arranges the time domain samples into the original order, splitting the exclusion period into two parts.

Mapping

The split exclusion period (after cyclic shift) is copied from above. The frequency domain is derived by Fast Fourier Transformation from the time domain and represent the frequency domain with 2048 subcarriers, 12 of them are allocated, the rest is unallocated. The 12 allocated subcarriers are iDFT transformed into the EVM domain comprising 12 samples. Note that all 3 domains are displayed cyclically: the leftmost sample is identical to the rightmost sample.

The two transformations map the time domain into the EVM domain, carrying out a compression of samples 12/2048. In spite of the compression, there is a correspondence of ranges in the time domain and in the EVM domain. One sample in the EVM domain comprises a range, which is influenced from (and only from) the equivalent samples in the time domain vertically above. Note that this correspondence holds irrespective of the position of the 12 allocated samples in the frequency domain.

Example leading exclusion (figure E.7.3-1)

Sample No in the EVM domain	Influence(exclusion) from the time domain	EVM exclusion
12=0	full	excluded
1	partly	excluded
2 to 11	none	counted

Example lagging exclusion example (figure E.7.3-2)

Sample No in the EVM domain	Influence(exclusion) from the time domain	EVM exclusion
12=0	none	counted
1 to 9	none	counted
10	partly	excluded
11	full	excluded

E.7.4 Formula

The exclusion period is defined in μs at the air interface.

Convert the μ s's into No of samples in the time domain.

No of exclusion samples (before EVM windowing and equalizer) is calculated from:

No of exclusion sample = $ceil (30.72 * Exclusion \mu s)$

then, EVM windowing and equalizer is applied by 2048 samples based cyclic shift process.

(the upper 3 triangles illustrate in fig. E.7.3-1 and -2.)

Determine the indices ${\bf k}$, to be excluded in the time domain, according to fig. E.7.3-1 and -2

(after application of EVM windowing and equaliser, original sample order,

 \mathbf{k} = subset from the set (0 to 2047))

The indices I in the EVM domain, to be excluded, are:

 $\mathbf{l} = [\text{ round } (\mathbf{k}*12*L_{CRBs} / 2048)] \text{mod} (12*L_{CRBs})$

with L_{CRBs} number of allocated resource blocks

Annex F (normative): Measurement uncertainties and Test Tolerances

F.1 Acceptable uncertainty of Test System (normative)

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

The downlink signal uncertainties apply at each receiver antenna connector.

F.1.1 Measurement of test environments

The measurement accuracy of the UE test environments defined in TS 36.508 subclause 4.1, Test environments shall be

- Pressure ±5 kPa.
- Temperature ±2 degrees.
- Relative Humidity ±5 %.
- DC Voltage ±1,0 %.
- AC Voltage ±1,5 %.
- Vibration 10 %.
- Vibration frequency 0,1 Hz.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

F.1.2 Measurement of transmitter

Table F.1.2-1: Maximum Test System Uncertainty for transmitter tests

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2.2. UE Maximum Output Power	±0.7 dB	
6.2.3 Maximum Power Reduction	±0.7 dB	
6.2.4 UE Maximum Output Power with additional requirements	±0.7 dB	
6.2.5 Configured UE transmitted Output Power	±0.7 dB	
6.3.2 Minimum Output Power	±1.0 dB	
6.3.3 Transmission ON/OFF Power	Transmission OFF Power: ±1.5 dB	
6.3.4.1 General ON/OFF time mask	Transmission ON/OFF Power: ±1.5 dB	
6.3.4.2 PRACH and SRS time mask	Transmission ON/OFF Power: ±1.5 dB	
6.3.5.1 Power Control Absolute power tolerance	±1.0 dB	
6.3.5.2 Power Control Relative power tolerance	±0.7 dB	
6.3.5.3 Aggregate power control tolerance	±0.7 dB	
6.5.1 Frequency Error	±15 Hz DL Signal level: ±0.7 dB	
6.5.2.1 Error Vector Magnitude	PUSCH: ±2.5% PUCCH: ±2.5% PRACH: ±2.5%	
6.5.2.1A PUSCH-EVM with exclusion period	PUSCH: ±2.5%	

6.5.2.2 Carrier leakage	±0.8dB	
6.5.2.3 In-band emissions for		
non allocated RB		
6.5.2.4 EVM equalizer	±1.4dB	
Spectrum flatness		
6.6.1 Occupied bandwidth		
	1.4MHz, 3MHz: 30kHz	
	5MHz, 10MHz: 100kHz	
	15MHz, 20MHz: 300kHz	
6.6.2.1 Spectrum Emission	±1.5 dB	
Mask		
6.6.2.2 Additional Spectrum	±1.5 dB	
Emission Mask		
6.6.2.3 Adjacent Channel	±0.8 dB	
Leakage power Ratio 6.6.2.4 Additional ACLR	.0040	
requirements	±0.8 dB	
6.6.3.1 Transmitter Spurious	9kHz < f ≤ 4 GHz: ± 2.0 dB	
emissions	4 GHz < f ≤ 12.75 GHz: ± 4.0 dB	
6.6.3.2 Spurious emission	± 2.0 dB for results > -60 dBm	
band UE co-existence	± 3.0 dB for results ≤ -60 dBm	
6.6.3.3 Additional spurious	9kHz < f ≤ 4 GHz: ± 2.0 dB	
emissions	NC 07	
	NS-07 769 ≤ f ≤ 775 MHz: ± 1.5 dB	
6.7 Transmit intermodulation	± 2.6 dB	Overall system uncertainty
0.7 Transmit intermodulation	± 2.0 db	comprises four quantities:
		Wanted signal setting error OW late of a part learning.
		2. CW Interferer level error
		Wanted signal meas. error Intermodulation product
		measurement error
		measurement end
		The relative level of the wanted
		signal and the CW interferer has
		2 x effect on the intermodulation
		product.
		Items 1, 2, 3 and 4 are
		assumed to be uncorrelated so
		can be root sum squared to
		provide the combined effect.
		Test System uncertainty =
		SQRT [(2 x SQRT (Wanted setting_error ² +
		CW_level_error ²) ² +
		Wanted_level_meas error ² +
		Intermodulation product
		measurement error ²]
		_
		Wanted signal setting ± 0.7dB
		CW Interferer level ± 1.0dB
		Wanted signal meas ± 0.7dB Intermodulation product
		measurement error ± 0.7dB
		measurement end ± 0.70D

F.1.3 Measurement of receiver

Table F.1.3-1: Maximum Test System Uncertainty for receiver tests

Subclause	Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty
7.3.1 Reference sensitivity power level; Minimum requirements (QPSK)	Downlink power ±0.7 dB	
7.4 Maximum input level	Downlink power ±0.7 dB Uplink power measurement ±0.7 dB	
7.5 Adjacent Channel Selectivity (ACS)	ACS value ±1.1 dB Uplink power measurement ±0.7 dB	Overall ACS uncertainty comprises three quantities:
		Wanted signal level error Interferer signal level error Additional impact of interferer ACLR
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The interferer ACLR effect is systematic, and is added aritmetically.
		Test System uncertainty = [SQRT (wanted_level_error ² + interferer_level_error ²)] + ACLR effect.
		Wanted signal level ± 0.7dB Interferer signal level ± 0.7dB Impact of interferer ACLR 0.1dB
7.6.1 In-band blocking	Blocking ±1.4 dB Uplink power measurement ±0.7 dB	Overall blockinguncertainty can have these contributions:
		Wanted signal level error Interferer signal level error Interferer ACLR Interferer broadband noise
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added aritmetically.
		Test System uncertainty = [SQRT (wanted_level_error² + interferer_level_error²)] + ACLR effect + Broadband noise effect.
		In-band blocking, using modulated interferer: Wanted signal level ± 0.7dB Interferer signal level: ± 0.7dB Interferer ACLR 0.4dB Broadband noise not applicable

7.6.2 Out of-band blocking	Blocking, 1MHz < f _{interferer} ≤ 3 GHz: ±1.3 dB Blocking, 3 GHz < f _{interferer} ≤ 12.75 GHz: ±3.2 dB Uplink power measurement ±0.7 dB	Out of band blocking, using CW interferer: Wanted signal level ± 0.7dB Interferer signal level: ± 1.0dB up to 3GHz ± 3.0dB up to 12.75GHz Interferer ACLR not applicable Impact of interferer Broadband noise 0.1dB Figures are combined to give Test System uncertainty, using formula given for 7.6.1
7.6.3 Narrow band blocking	Blocking ±1.3 dB Uplink power measurement ±0.7 dB	Narrow band blocking, using CW interferer: Wanted signal level ± 0.7dB Interferer signal level: ± 1.0dB Interferer ACLR not applicable Impact of interferer Broadband noise 0.1dB Figures are combined to give Test System uncertainty, using formula given for 7.6.1
7.7 Spurious response	Spurious response, 1MHz < f _{interferer} ≤ 3 GHz: ±1.3 dB Spurious response, 3 GHz < f _{interferer} ≤ 12.75 GHz: ±3.2 dB Uplink power measurement ±0.7 dB	Spurious response, using CW interferer: Wanted signal level ± 0.7dB Interferer signal level: ± 1.0dB up to 3GHz ± 3.0dB up to 12.75GHz Interferer ACLR not applicable Impact of interferer Broadband noise 0.1dB Figures are combined to give Test System uncertainty, using formula given for 7.6.1

7.8.1 Wide band	Intermodulation ±1.4 dB	Overall
intermodulation	Uplink power measurement ±0.7 dB	intermodulationuncertainty comprises three quantities:
		Wanted signal level error CW Interferer level error Modulated Interferer level error
		Effect of interferer ACLR has not been included as modulated interferer has larger frequency offset
		The effect of the closer CW signal has twice the effect.
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared to provide the combined effect of the three signals.
		Test System uncertainty = SQRT [(2 x CW_level_error) ² +(mod interferer_level_error) ²] +(wanted signal_level_error) ²]
		Wanted signal level ± 0.7dB CW Interferer level ± 0.5dB Mod Interferer level ± 0.7dB
7.9 Spurious emissions	30MHz ≤ f ≤ 4.0GHz: ± 2.0 dB 4 GHz < f ≤ 12.75 GHz: ± 4.0 dB	

Note 1: Unless otherwise noted, only the Test System stimulus error is considered here. The effect of errors in the throughput measurements due to finite test duration is not considered.

F.1.4 Measurement of performance requirements

Table F.1.4-1: Maximum Test System Uncertainty for Performance Requirements

Subclause	Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty
8.2.1.1.1 Multiple PRBs - Propagation Condition EVA5	± 0.8 dB	Overall system uncertainty for fading conditions comprises three quantities:
- Propagation Condition ETU70 - Propagation Condition ETU300		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
0.0.4.4.4 Multiple DDDs	. 0 C dD	Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB for single Tx AWGN flatness and signal flatness ±2.0 dB
8.2.1.1.1 Multiple PRBs - Propagation Condition HST	± 0.6 dB	Overall system uncertainty for HST condition comprises two quantities:
		Signal-to-noise ratio uncertainty Effect of AWGN flatness and signal flatness
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB AWGN flatness and signal flatness ±2.0 dB

8.2.1.1.1 Single PRB - Propagation Condition ETU70	± 0.8 dB	Overall system uncertainty for fading condition comprises three quantities:
		Average Signal-to-noise ratio uncertainty Signal-to noise ratio variation for single PRB Fading profile power uncertainty
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = SQRT (Average signal-to-noise ratio uncertainty ² + Signal-to-noise ratio variation ² + Fading profile power uncertainty ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Signal-to-noise ratio variation ±0.5 dB Fading profile power uncertainty ±0.5 dB for single Tx
8.2.1.1.2 Single PRB	± 0.8 dB	Same as 8.2.1.1.1 Single PRB
8.2.1.2.1 - Propagation Condition EVA5	± 0.9 dB	Overall system uncertainty for fading conditions comprises three quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx Diversity AWGN flatness and signal flatness ±2.0 dB
8.2.1.2.1 - Propagation Condition HST	± 0.6 dB	Overall system uncertainty for HST condition comprises two quantities:
		Signal-to-noise ratio uncertainty Effect of AWGN flatness and signal flatness
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB AWGN flatness and signal flatness ±2.0 dB
8.2.1.2.2	± 0.9 dB	Same as 8.2.1.2.1 Propagation Condition EVA5

8.2.1.3.1	± 0.9 dB	Overall system uncertainty for fading conditions comprises three quantities: 1. Signal-to-noise ratio uncertainty 2. Fading profile power uncertainty 3. Effect of AWGN flatness and signal flatness Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared: AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution. Test System uncertainty = SQRT (Signal-to-noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²) Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for MIMO AWGN flatness and signal flatness ±2.0 dB
8.2.1.3.2	± 0.9 dB	Same as 8.2.1.3.1
8.2.1.4.1	± 0.9 dB	Same as 8.2.1.3.1
8.2.1.4.2	± 0.9 dB	Same as 8.2.1.3.1
8.2.2.1.1 Multiple PRBs - Propagation Condition EVA5 - Propagation Condition ETU70 - Propagation Condition ETU300	± 0.8 dB	Overall system uncertainty for fading conditions comprises three quantities: 1. Signal-to-noise ratio uncertainty 2. Fading profile power uncertainty 3. Effect of AWGN flatness and signal flatness Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared: AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution. Test System uncertainty = SQRT (Signal-to-noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²) Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB for single Tx AWGN flatness and signal flatness ±2.0 dB

8.2.2.1.1 Multiple PRBs	± 0.6 dB	Overall system uncertainty for HST condition
- Propagation Condition HST		comprises two quantities:
		Signal-to-noise ratio uncertainty Effect of AWGN flatness and signal flatness
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has \times 0.25 effect on the required SNR, so use sensitivity factor of \times 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB AWGN flatness and signal flatness ±2.0 dB
8.2.2.1.1 Single PRB - Propagation Condition ETU70	± 0.8 dB	Overall system uncertainty for fading condition comprises three quantities:
		Average Signal-to-noise ratio uncertainty Signal-to noise ratio variation for single PRB Fading profile power uncertainty
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = SQRT (Average signal-to-noise ratio uncertainty ² + Signal-to-noise ratio variation ² + Fading profile power uncertainty ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Signal-to-noise ratio variation ±0.5 dB Fading profile power uncertainty ±0.5 dB for single Tx
8.2.2.1.2 Single PRB	± 0.8 dB	Same as 8.2.2.1.1 Single PRB
8.2.2.2.1 - Propagation Condition EVA5	± 0.9 dB	Overall system uncertainty for fading conditions comprises three quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx Diversity AWGN flatness and signal flatness ±2.0 dB

8.2.2.2.1	± 0.6 dB	Overall system uncertainty for HST condition
- Propagation Condition HST	2 0.0 45	comprises two quantities:
		Signal-to-noise ratio uncertainty Effect of AWGN flatness and signal flatness
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB AWGN flatness and signal flatness ±2.0 dB
8.2.2.2.2	± 0.9 dB	Same as 8.2.2.2.1 Propagation Condition EVA5
8.2.2.3.1	± 0.9 dB	Overall system uncertainty for fading conditions comprises three quantities:
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for MIMO AWGN flatness and signal flatness ±2.0 dB
8.2.2.3.2	± 0.9 dB	Same as 8.2.2.3.1
8.2.2.4.1	± 0.9 dB	Same as 8.2.2.3.1
8.2.2.4.2	± 0.9 dB	Same as 8.2.2.3.1

8.3.2.1.1	± 0.9 dB	Overall system uncertainty for fading conditions comprises three quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx Diversity AWGN flatness and signal flatness ±2.0 dB
8.3.2.1.1_1	± 0.9 dB	Same as 8.3.2.1.1
8.3.2.1.2	± 0.9 dB	Same as 8.2.2.3.1
8.3.2.1.3	± 0.9 dB	Same as 8.2.2.3.1
8.3.2.2.1	± 0.9 dB	Same as 8.2.2.3.1
8.4.1.1	± 0.8 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB for single Tx AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.2 dB

8.4.1.2.1	± 1.0 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx Diversity AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.4 dB
8.4.1.2.2	± 1.0 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for MIMO AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.4 dB

8.4.2.1	± 0.8 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB for single Tx AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.2 dB
8.4.2.2.1	± 1.0 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx Diversity AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.4 dB

8.4.2.2.2	± 1.0 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for MIMO AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.4 dB
8.5.1.1	± 0.9 dB	Overall system uncertainty for fading
		conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness
		 Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time Items 1, 2, 3 and 4 are assumed to be
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared: AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity

± 1.1 dB	Overall system uncertainty for fading conditions comprises four quantities:
	Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
	Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
	AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
	Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
	Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx Diversity AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.6 dB
± 1.0 dB	Overall system uncertainty for fading conditions comprises four quantities:
	 Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
	Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
	AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
	Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
	Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for MIMO AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.4 dB

8.5.2.1	± 0.9 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB for single Tx AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.4 dB
8.5.2.2.1	± 1.1 dB	Overall system uncertainty for fading conditions comprises four quantities:
		Signal-to-noise ratio uncertainty Fading profile power uncertainty Effect of AWGN flatness and signal flatness Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be uncorrelated so can be root sum squared:
		AWGN flatness and signal flatness has x 0.25 effect on the required SNR, so use sensitivity factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite test time ²)
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.7 dB for Tx Diversity AWGN flatness and signal flatness ±2.0 dB Result variation due to finite test time ±0.6 dB

		-
8.5.2.2.2	± 1.0 dB	Overall system uncertainty for fading conditions comprises four quantities:
		, , ,
		1. Signal-to-noise ratio uncertainty
		2. Fading profile power uncertainty
		3. Effect of AWGN flatness and signal flatness 4. Result variation due to finite test time
		4. Result variation due to finite test time
		Items 1, 2, 3 and 4 are assumed to be
		uncorrelated so can be root sum squared:
		and the second s
		AWGN flatness and signal flatness has x 0.25
		effect on the required SNR, so use sensitivity
		factor of x 0.25 for the uncertainty contribution.
		Toot System upgertainty CODT (Signal to
		Test System uncertainty = SQRT (Signal-to-
		noise ratio uncertainty ² + Fading profile
		power uncertainty ² + (0.25 x AWGN flatness and signal flatness) ² + variation due to finite
		test time ²)
		iest unic)
		Signal-to-noise ratio uncertainty ±0.3 dB
		Fading profile power uncertainty ±0.7 dB for
		MIMO
		AWGN flatness and signal flatness ±2.0 dB
		Result variation due to finite test time ±0.4 dB
10.1	± 0.9 dB	Overall system uncertainty for fading
10.1	± 0.9 db	conditions comprises three quantities:
		Signal-to-noise ratio uncertainty
		2. Fading profile power uncertainty
		3. Effect of AWGN flatness and signal flatness
		2. 2.1000 0.7.17 Old Hallood and digital halless
		Items 1, 2 and 3 are assumed to be
		uncorrelated so can be root sum squared:
		·
		AWGN flatness and signal flatness has x 0.25
		effect on the required SNR, so use sensitivity
		factor of x 0.25 for the uncertainty contribution.
		Test System uncertainty = SQRT (Signal-to-
		noise ratio uncertainty 2 + Fading profile
		power uncertainty + (0.25 x AWGN flatness
		and signal flatness) ²)
		, ,
		Signal-to-noise ratio uncertainty ±0.3 dB
		Fading profile power uncertainty ±0.7 dB for
		Tx Diversity
		AWGN flatness and signal flatness ±2.0 dB
10.2	± 0.9 dB	Same as 10.1
[Other tests FFS]		
In addition, the following Test System uncertainties and related constraints apply:		
AWGN Bandwidth		≥ 1.08MHz, 2.7MHz, 4.5MHz, 9MHz,
		13.5MHz, 18MHz;
		N _{RB} x 180kHz according to BW _{Config}
AWGN absolute power uncertainty, averaged over BW _{Config}		±3 dB
AWGN flatness and signal flatness, max deviation for any Resource		±2 dB
Block, relative to average over BW _{Config}		NAO -ID @0.0040/
AWGN peak to average ratio		≥10 dB @0.001%
Signal-to noise ratio uncertainty, averaged of	over downlink	±0.3 dB
transmission Bandwidth Signal-to noise ratio variation for any resource block, relative to		+0.5.dP
		±0.5 dB
average over downlink transmission Bandwidth Fading profile power uncertainty		Test-specific
Fading profile delay uncertainty, relative to f	rame timing	±5 ns (excludes absolute errors related to
Tracing profile delay uncertainty, relative to I	rame uning	baseband timing)
		Dacobaria tirinig)

Note 1: Only the overall stimulus error is considered here. The effect of errors in the throughput measurements due to finite test duration is not considered.

F.1.5 Measurement of Channel State Information reporting

Table F.1.5-1: Maximum Test System Uncertainty for Channel State Information reporting

Subclause	Maximum Test	Derivation of Test System Uncertainty
0.044500.0010	System Uncertainty ¹	2: 1: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:
9.2.1.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-0	± 0.3 dB	Signal-to-noise ratio uncertainty ±0.3 dB
		AWGN flatness and signal flatness ±2.0 dB
		not expected to have any significant effect
		AWGN absolute power uncertainty ±3.0 dB
0.2.4.2.TDD COLDanartina undan AWCN	. 0.2 dD	not expected to have any significant effect
9.2.1.2 TDD CQI Reporting under AWGN conditions – PUCCH 1-0	± 0.3 dB	Same as 9.2.1.1
9.2.2.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-1	± 0.3 dB	Signal-to-noise ratio uncertainty ±0.3 dB
		AWGN flatness and signal flatness ±2.0 dB not expected to have any significant effect
		AWGN absolute power uncertainty ±3.0 dB not expected to have any significant effect
9.2.2.2 TDD CQI Reporting under AWGN	± 0.3 dB	Same as 9.2.1.1
conditions – PUCCH 1-1	± 0.3 UD	Same as 3.2.1.1
9.3.1.1.1 FDD CQI Reporting under fading conditions – PUSCH 3-0	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty 2 + Fading profile power uncertainty 2)
		AWGN flatness and signal flatness ±2.0 dB not expected to have any significant effect
		AWGN absolute power uncertainty ±3.0 dB not expected to have any significant effect
9.3.1.1.2 TDD CQI Reporting under fading conditions – PUSCH 3-0	± 0.6 dB	Same as 9.3.1.1.1
9.3.2.1.1 FDD CQI Reporting under fading conditions – PUCCH 1-0	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)
		AWGN flatness and signal flatness ±2.0 dB not expected to have any significant effect
		AWGN absolute power uncertainty ±3.0 dB not expected to have any significant effect
9.3.2.1.2 TDD CQI Reporting under fading conditions – PUCCH 1-0	± 0.6 dB	Same as 9.3.2.1.1

0.0.0.4.4 EDD COLD	. 4.0 dD	Overall eveters we sentate to take the ut
9.3.3.1.1 FDD CQI Reporting under fading conditions and frequency-selective	± 1.2 dB	Overall system uncertainty for fading conditions comprises two quantities:
interference – PUSCH 3-0		I. lor/lot ratio uncertainty ±1.0 dB Exact the second se
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = SQRT (lor/lot ratio uncertainty ² + Fading profile power uncertainty ²)
		lor absolute power uncertainty ±3.0 dB not expected to have any significant effect
9.3.3.1.2 TDD CQI Reporting under fading conditions and frequency-selective interference – PUSCH 3-0	± 1.2 dB	Same as 9.3.3.1.1
9.4.1.1.1 FDD PMI Reporting – PUSCH 3-1 (Single PMI)	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)
		AWGN flatness and signal flatness ±2.0 dB not expected to have any significant effect
		AWGN absolute power uncertainty ±3.0 dB not expected to have any significant effect
9.4.1.1.2 TDD PMI Reporting – PUSCH 3-1 (Single PMI)	± 0.6 dB	Same as 9.4.1.1.1
9.4.2.1.1 FDD PMI Reporting – PUSCH 1-2 (Multiple PMI)	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)
		AWGN flatness and signal flatness ±2.0 dB not expected to have any significant effect
		AWGN absolute power uncertainty ±3.0 dB not expected to have any significant effect
9.4.2.1.2 TDD PMI Reporting – PUSCH 1-2 (Multiple PMI)	± 0.6 dB	Same as 9.4.2.1.1
	·	

9.5.1.1 FDD RI Reporting- PUCCH 1-1	± 0.6 dB	Overall system uncertainty for fading conditions comprises two quantities:	
		Signal-to-noise ratio uncertainty ±0.3 dB Fading profile power uncertainty ±0.5 dB	
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared:	
		Test System uncertainty = SQRT (Signal-to- noise ratio uncertainty ² + Fading profile power uncertainty ²)	
		AWGN flatness and signal flatness ±2.0 dB not expected to have any significant effect	
		AWGN absolute power uncertainty ±3.0 dB not expected to have any significant effect	
9.5.1.2 TDD RI Reporting- PUSCH 3-1	± 0.6 dB	Same as 9.5.1.1	
In addition, the following Test System uncert	tainties and related const	raints apply:	
AWGN Bandwidth		≥ 1.08MHz, 2.7MHz, 4.5MHz, 9MHz,	
		13.5MHz, 18MHz;	
		N _{RB} x 180kHz according to BW _{Config}	
AWGN absolute power uncertainty, averaged over BW _{Config}		±3 dB	
AWGN flatness and signal flatness, max dev Block, relative to average over BW _{Config}	viation for any Resource	±2 dB	
AWGN peak to average ratio		≥10 dB @0.001%	
Signal-to noise ratio uncertainty, averaged o transmission Bandwidth	over downlink	±0.3 dB	
Signal-to noise ratio variation for any resource average over downlink transmission Bandwi		±0.5 dB	
Fading profile power uncertainty		Test-specific	
Fading profile delay uncertainty, relative to frame timing		±5 ns (excludes absolute errors related to baseband timing)	
Note 1: Only the overall stimulus error is considered here. The effect of errors in the throughput measurements due to finite test duration is not considered.			
Note 2: The AWGN parameters apply to all test cases except 9.3. apply to test cases using fading		3.1.1 and 9.3.3.1.2. The fading parameters	

F.2 Interpretation of measurement results (normative)

The measurement results returned by the Test System are compared – without any modification – against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ETR 273-1-2 clause 6.5.

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows:

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement, making the test harder to pass. For some tests, for example receiver tests, this may require modification of stimulus signals. This procedure will ensure that a Test System not compliant with clause F.1does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.3 Test Tolerance and Derivation of Test Requirements (informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in this clause. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for the relaxation is given in this clause.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

The downlink Test Tolerances apply at each receiver antenna connector.

F.3.1 Measurement of test environments

The UE test environments are set to the values defined in TS 36.508 subclause 4.1, without any relaxation. The applied Test Tolerance is therfore zero.

F.3.2 Measurement of transmitter

Table F.3.2-1: Derivation of Test Requirements (Transmitter tests)

Test	Minimum Requirement in TS 36.101	Test Tolerance (TT)	Test Requirement in TS 36.521-1
6.2.2 UE Maximum Output Power			Formula: Upper limit + TT, Lower limit - TT
	Power class 1: [FFS] Power class 2: [FFS] Power class 3: 23dBm ±2 dB Power class 4: [FFS]	0.7 dB 0.7 dB 0.7 dB 0.7 dB	Power class 1: [FFS] Power class 2: [FFS] Power class 3: 23dBm ±2.7 dB Power class 4: [FFS]
6.2.3 Maximum Power Reduction	Power class 3:	0.7 dB	Formula: Upper limit + TT, Lower limit - MPR - TT Power class 3: QPSK: 23dBm +2.7 / - 3.7dB
	QPSK: MPR ≤ 1dB 16QAM: Depending on the number RB allocated: 16QAM: MPR ≤ 1dB 16QAM: MPR ≤ 2dB		16QAM: 23dBm +2.7 / - 3.7dB 23dBm +2.7 / - 4.7dB

6.2.4 UE Maximum Output Power with additional requirements

For the UE maximum output power modified by MPR and A-MPR, the power limits specified in TS 36.101 [2] clause 6.2.5 apply.

For transmission configurations (Figure 5.4.2-1) confined within FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high, the power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB.

Power class 3:

QPSK: MPR ≤ 1dB

16QAM: Depending on the number RB allocated: 16QAM: MPR ≤ 1dB 16QAM: MPR ≤ 2dB

For network signalled value NS_03, NS_04 (5MHz only), NS_05, to NS_06: A-MPR ≤ 1dB

For network signalled value NS-04; Depending on the RB_start and RB allocation (10MHz, 15MHz and 20MHz):

For 10MHz Region A with RB_start=0 – 12: A-MPR ≤ 3dB.

Region B with RB_start=13 - 36: A-MPR $\leq 2dB$.

Region C with RB_start=37 - 49: A-MPR ≤ 3 dB.

For 15MHz

Region A with RB_start=0 - 18: A-MPR \leq 3dB.

Region B with RB_start= $19 - 55 : A-MPR \le 2dB$.

Region C with RB_start=56 - 74: A-MPR ≤ 3 dB.

For 20MHz Region A with RB_start=0 – 24: A-MPR ≤ 3dB.

Region B with RB_start=25 - 74: A-MPR $\leq 2dB$.

Region C with RB_start=75 - 99: A-MPR $\leq 3dB$.

0.7 dB Formula:

Upper limit + TT,
A: Lower limit – TT,
B: (UE Maximum Output Power from

6.2.2) - T(P_{CMAX}) – MPR – TT, C: (UE Maximum Output Power from 6.2.2) - T(P_{CMAX}) – A-MPR – TT, D: (UE Maximum Output Power from 6.2.2) - T(P_{CMAX}) – A-MPR – MPR – TT

Power class 3:

Test Requirement Configuration ID versus Formula Above

Network signalled value NS_03:

[A]:2, 5, 10, 15, 20, 25 [B]:1, 3, 7 [C]:9, 14, 19, 24 [D]:4, 6, 8, 11, 12, 13, 16, 17, 18, 21, 22, 23, 26, 27

Network signalled value NS_04 (5, 10, 15, 20MHz):

[A] 3 [B] 10, 11, 19, 20, 28, 29 [C] 2, 6, 7, 14, 15, 16, 23, 24, 25, 32 [D] 1, 4, 5, 8, 9, 12, 13, 17, 18, 21, 22, 26, 27, 30, 31

Network signalled value NS_05:

[A]:1, 3, 4, 7, 8, 11, 12 [B]:2, 5, 9, 13 [C]:None [D]:6, 10, 14

Network signalled value NS_06:

[A]:2, 5, 8, 11, 14, 17 [B]:1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18 [C]:None [D]:None

Network signalled value NS_07:

[A]:3, 8, 12 [B]:7, 9 [C]:1, 2, 5, 13, 15 [D]:4, 6, 10, 11, 14, 16

Network signalled value NS_08:

[A]:1, 2, 4, 5, 11, 12 [B]:3, 6, 13 [C]:None [D]:7, 8, 9, 10, 14, 15, 16, 17

COE Configure - LUE	TO 00 404 [0] alc: 0.0 5	0.7.40	Готивона
6.2.5 Configured UE transmitted Output Power	TS 36.101 [2] clause 6.2.5	0.7 dB	Formula: Upper limit + TT, Lower limit – TT
	PCMAX normal conditions: 23 ± 2.0		PCMAX normal conditions: 23 ± 2.7
	22 ± 2.5		22 ± 3.2
	21 ± 3.0		21 ± 3.7
	20 ± 3.5 19 ± 4.0		20 ± 4.2 19 ± 4.7
	18 ± 4.5		18 ± 5.2
	13 ≤PCMAX < 18 ± 5.0 □ 8 ≤		13 ≤PCMAX < 18 ± 5.7 □ 8 ≤ PCMAX
	PCMAX < 13 ± 6.0 □ -40 ≤ PCMAX < 8 ± 7.0		< 13 ± 6.7 □ -40 ≤ PCMAX < 8 ± 7.7
6.3.2 Minimum Output	-40 dBm	1 dB	Formula:
Power			Minimum Requirement + TT
			UE minimum ouput power =-39 dBm
6.3.3 Transmission ON/OFF Power	Transmission OFF Power ≤ -50 dBm	1.5 dB	Transmission OFF power formula:
			Transmission OFF power Minimum Requirement + TT
			Transmission OFF Power = -48.5 dBm
6.3.4.1 General ON/OFF time mask	Transmission OFF Power ≤ -50 dBm	1.5 dB	Transmission OFF power formula:
une mask	Transmission ON Power value		Transmission OFF power Minimum Requirement + TT
	depends on the test parameters. In the particular test case parameters the ON power		Transmission OFF Power ≤ –48.5 dBm
	measurement has minimum		
	requirements of ±6.0 dB.		Transmission ON power formula: Transmission ON Power = specific test value ± 7.5 dBm
6.3.4.2 Prach and SRS time	Transmission OFF Power ≤ -50	1.5 dB	Transmission OFF power formula:
mask	dBm		Transmission OFF power Minimum
	Transmission ON Power value depends on the test parameters.		Requirement + TT
	In the particular test case		Transmission OFF Power ≤ –48.5
	parameters the ON power measurement has minimum		dBm
	requirements of ±6.0 dB.		Transmission ON power formula:
			Transmission ON Power = specific test value ± 7.5 dBm
6.3.5.1 Power Control	Normal conditions ± 9.0 dB	1.0 dB	Formula:
Absolute power tolerance	Extreme conditions ± 12.0 dB		Upper limit + TT, Lower limit - TT Normal conditions ± 10.0 dB
			Extreme conditions ± 13.0 dB
6.3.5.1 Power Control	TS 36.101 [2] clause 6.3.5.1	0.7 dB	Formula:
Relative power tolerance	All combinations of PUSCH and PUCCH transitions:		Upper limit + TT, Lower limit – TT All combinations of PUSCH and PUCCH transitions:
	ΔP < 2; ±2.5 dB		ΔP < 2; ±3.2 dB
	2 ≤ ΔP < 3; ±3.0 dB		$2 \le \Delta P < 3$; $\pm 3.7 \text{ dB}$
	$3 \le \Delta P < 4$; ±3.5 dB $4 \le \Delta P \le 10$; ±4.0 dB		3 ≤ ΔP < 4; ±4.2 dB 4 ≤ ΔP < 10; ±4.7 dB
	10 ≤ ΔP < 15; ±5.0 dB		10 ≤ ΔP < 15; ±5.7 dB
	15 ≤ ΔP; ±6.0 dB		15 ≤ ΔP; ±6.7 dB

6.3.5.1 Aggregate power	Aggregate power control	0.7 dB	Formula:
control tolerance	tolerance within 21 ms: PUCCH = ±2.5 dB		Upper limit + TT, Lower limit - TT PUCCH = ±3.2 dB PUSCH = ±4.2 dB
	PUSCH = ±3.5 dB		1 00011 = 14.2 UD
6.5.1 Frequency Error	The UE modulated carrier frequency shall be accurate to	15 Hz	Formula: modulated carrier frequency error + TT
	within ±0.1 ppm compared to the carrier frequency received from		modulated carrier frequency error =
	the E-UTRA Node B.		±(0.1 ppm + 15 Hz).
6.5.2.1 Error Vector Magnitude	EVM limit: BPSK :17.5 %	0%	Formula: Minimum Requirement + TT
	QPSK: 17.5 % 16QAM: 12.5 %		
6.5.2.1A PUSCH-EVM with exclusion period	EVM limit: QPSK: 17.5 %	0%	Formula: Minimum Requirement + TT
With exclusion period	16QAM: 12.5 %		William Requirement 1 11
6.5.2.2 Carrier leakage	For Output power >0 dBm -25dBc	0.8dB	Formula: Minimum Requirement + TT
	For -30 dBm ≤ Output power ≤0 dBm -20dBc		
	For -40 dBm ≤ Output power < - 30 dBm -10dBc		
6.5.2.3 In-band emissions for non allocated	For general emissions: $\max \left\{ -25 - 10 \cdot \log_{10}(N_{RB} / L_{CRB}) \right\}$	0.8dB	Formula: Minimum Requirement + TT
RB	$20 \cdot \log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1)$		
	$-57 dBm / 180 kHz - P_{RB}$		
	For IQ image: -25dB		
	For Carrier leakage:		
	Output power >0 dBm -25dBc		
	-30 dBm ≤ Output power ≤0 dBm -20dBc		
	-40 dBm ≤ Output power < -30 dBm -10dBc For each evaluated RB, the test		
	requirement is calculated as the higher of P_{RB} – 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage)		

6.5.2.4 EVM equalizer	Normal conditions.	1.4dB	Formula:
Spectrum flatness	Normal conditions.	1.400	Formula. Minimum Requirement + TT
	If (F-FUL_low ≥ [3MHz])&(FUL_high-F≥ [3MHz]) 4 dB else 8 dB		
	maximum coefficient in Range 1 - the minimum coefficient in Range 2 5 dB the maximum coefficient in Range 2 - the minimum coefficient in Range 7 dB Extreme conditions:		
	If (F-FUL_low ≥ [5MHz])&(FUL_high-F≥ [5MHz]) 4 dB else 12 dB		
	maximum coefficient in Range 1 - the minimum coefficient in Range 2 6 dB the maximum coefficient in Range 2 - the minimum coefficient in Range 10 dB		
6.6.1 Occupied bandwidth	For 1.4 MHz channel bandwidth: Occupied channel bandwidth = 1.4 MHz	0kHz	Formula: Minimum Requirement + TT
	For 3.0 MHz channel bandwidth: Occupied channel bandwidth = 3.0 MHz		
	For 5 MHz channel bandwidth: Occupied channel bandwidth = 5 MHz		
	For 10 MHz channel bandwidth: Occupied channel bandwidth = 10 MHz		
	For 15 MHz channel bandwidth: Occupied channel bandwidth = 15 MHz		
	For 20 MHz channel bandwidth: Occupied channel bandwidth = 20 MHz		

6.6.2.1 Spectrum Emission Mask	For 1.4 MHz BW: -10 dBm / 30kHz -25dBm to -10dBm / 1MHz	1.5dB $(\Delta f_{OOB} < 2 \text{ x}$ Channel Bandwidth)	Formula: Minimum Requirement + TT
		(Δf _{OOB} ≥ 2 x Channel Bandwidth)	
	For 3 MHz BW: -10 dBm / 30kHz -25dBm to -10dBm / 1MHz For 5 MHz BW: -15dBm / 30kHz -25dBm to -10dBm / 1MHz	1.5dB	
	For 10 MHz BW: -18dBm / 30kHz -25dBm to -10dBm / 1MHz For 15 MHz BW:	1.5dB	
	-20dBm / 30kHz -25dBm to -10dBm / 1MHz For 20 MHz BW:	1.5dB	
	-21dBm / 30kHz -25dBm to -10dBm / 1MHz	1.5dB	
		1.5dB	

			T
6.6.2.2 Additional Spectrum Emission Mask	For 1.4 MHz BW: NS_03, NS_04 -10 dBm / 30 kHz -25 dBm to -13 dBm / 1MHz	1.5dB (Δf _{OOB} < 2 x Channel Bandwidth)	Formula: Minimum Requirement + TT
	NS_06 or NS_07 -13 dBm / 30 kHz -13 dBm / 100 kHz -25 dBm to -13 dBm / 1MHz	0dB ($\Delta f_{OOB} \ge 2 x$ Channel Bandwidth)	
	For 3 MHz BW: NS_03, NS_04 -13 dBm / 30 kHz -25 dBm to -13 dBm / 1 MHz	1.5dB	
	NS_06 or NS_07 -13 dBm / 30 kHz -13 dBm / 100kHz -25 dBm to -13 dBm / 1 MHz		
	For 5 MHz BW: NS_03, NS_04 -15 dBm / 30 kHz -25 dBm to -13 dBm / 1 MHz	1.5dB	
	NS_06 or NS_07 -15 dBm / 30 kHz -13 dBm / 100 kHz -25 dBm to -13 dBm / 1 MHz For 10 MHz BW:		
	NS_03, NS_04, -18 dBm / 30 kHz -25 dBm to - 13dBm / 1 MHz	1.5dB	
	NS_06 or NS_07 -18 dBm / 30 kHz -13 dBm / 100 kHz -25 dBm to - 13dBm / 1 MHz For 15 MHz BW:		
	NS_03, NS_04 -20 dBm / 30kHz -25 dBm to -13 dBm / 1 MHz For 20 MHz BW:	1.5dB	
	NS_03, NS_04 -21 dBm / 30 kHz -25 dBm to -13 dBm / 1 MHz	1.5dB	
6.6.2.3 Adjacent Channel Leakage power Ratio	If the adjacent channel power is greater than –50 dBm then the ACLR shall be higher than the values specified below.	0 dB	Formula: ACLR Minimum Requirement + TT Formula:
	E-UTRA ACLR: 30 dB	0.8 dB	ACLR Minimum Requirement - TT E-UTRA ACLR: 29.2 dB
	UTRA ACLR: 33 dB for UTRA ACLR 1 36 dB for UTRA ACLR 2	0.8 dB 0.8 dB	UTRA ACLR: 32.2 dB for UTRA ACLR 1 35.2 dB for UTRA ACLR 2

6.6.2.4 Additional ACLR requirements	If the adjacent channel power is greater than –50 dBm then the ACLR shall be higher than the values specified below.	0 dB	Formula: ACLR Minimum Requirement + TT Formula:
			ACLR Minimum Requirement – TT
	E-UTRA ACLR: 43 dB for UTRA ACLR 2	0.8 dB	E-UTRA ACLR: 42.2 dB for UTRA ACLR 2
6.6.3.1 Transmitter Spurious emissions	9 kHz ≤ f < 150 kHz: -36dBm / 1kHz 150 kHz ≤ f < 30 MHz: -36dBm / 10kHz 30 MHz ≤ f < 1 GHz: -36dBm / 100kHz 1 GHz ≤ f < 12.75 GHz: -30dBm / 1MHz	0 dB	Formula: Minimum Requirement + TT
6.6.3.2 Spurious emission band UE co-existence	-35 dBm / 6.25kHz -36 dBm / 100kHz -41 dBm / 300kHz -37 dBm / 1MHz -40 dBm / 1MHz -50 dBm / 1MHz Frequencies as detailed in core requirement	0 dB	Formula: Minimum Requirement + TT
6.6.3.3 Additional spurious emissions	NS_05 $1884.5MHz \le f \le 1919.6MHz$: -41dBm / 300kHz $1884.5MHz \le f \le 1915.7MHz$: -41dBm / 300kHz NS_07 $769MHz \le f \le 775MHz$ -57dBm / 6.25kHz NS_08 $860MHz \le f \le 895MHz$ -40dBm / 1MHz NS_09 $1475.9MHz \le f \le 1510.9MHz$ -35dBm / 1MHz	0 dB 0 dB TT 0 dB 0 dB	Formula: Minimum Requirement + TT -41dBm / 300kHz -41dBm / 300kHz -57+TTdBm / 6.25kHz -40dBm / 1MHz -35dBm / 1MHz
6.7 Transmit intermodulation	Intermodulation Product 5MHz -29 dBc 10MHz -35 dBc CW Interferer level = -40 dBc	0 dB	Formula: CW interferer Minimum Requirement– TT Intermod Products limits remain unchanged. CW interferer level = -40 dBc

NOTE: Section 6.6.3.3 in the table shall be reviewed after June 2012 because of PHS band operation change

F.3.3 Measurement of receiver

Table F.3.3-1: Derivation of Test Requirements (Receiver tests)

Test	Minimum Requirement in TS 36.101	Test Tolerance (TT)	Test Requirement in TS 36.521-1
7.3.1 Reference sensitivity power level; Minimum	Reference sensitivity power level:	0.7dB	Formula: Reference sensitivity power level + TT
requirements (QPSK)	For 1.4MHz -102.2dBm -103.2dBm -105.2dBm -106.2dBm		T-put limit unchanged
	For 3MHz -99.2dBm -100.2dBm -102.2dBm		
	For 5MHz -97dBm -98dBm -99dBm -100dBm -96.5dBm Band 9 with Multi band		
	For 10MHz -94dBm -95dBm -96dBm -97dBm -93.5dBm Band 9 with Multi band		
	For 15MHz -92.2dBm -93.2dBm -94.2dBm -95.2dBm -91.7dBm Band 9 with Multi band		
	For 20MHz -91dBm -92dBm -93dBm -94dBm -94dBm -90.5dBm Band 9 with Multi band		
	T-put limit = 95% of maximum for the Ref Meas channel		
7.4 Maximum input level	Signal level -25dBm	0.7 dB	Formula: Maximum input level - TT
	T-put limit = 95% of maximum for the Ref Meas channel		Signal level -25.7 dBm
	Uplink power	0dB, -3.4dB	T-put limit unchanged Uplink power measurement window comprises four quantities: 1. UE power step size 1dB 2. UE Power step tolerance ±1dB 3. Test system power measurement at top of window ±0.7 dB

	1	1	
			3. Test system power measurement at bottom of window ±0.7 dB
			Items 1 to 4 are added arithmetically: Overall UL power window size = (1dB+1dB+0.7dB+0.7dB) =3.4dB
			Top of window is aligned to UL power requirement, hence +0dB, -3.4dB
7.5 Adjacent Channel Selectivity (ACS)	Case 1: Wanted signal power, all BWs: (REFSENS + 14 dB)	0 dB	Formula: Wanted signal power + TT
	Interferer signal power For 1.4 MHz, 3 MHz, 5 MHz, 10		Interferer signal power unchanged
	MHz BW: (REFSENS + 45.5 dB)		T-put limit unchanged
	For 15 MHz BW: (REFSENS + 42.5 dB) For 20 MHz BW: (REFSENS + 39.5 dB)		Uplink power measurement window same as 7.4
	Case 2: Wanted signal power For 1.4 MHz, 3 MHz, 5 MHz, 10 MHz BW: -56.5 dBm For 15 MHz BW: -53.5 dBm For 20 MHz BW: -50.5 dBm		
	Interferer signal power, all BWs: -25 dBm		
	T-put limit = 95% of maximum for the Ref Meas channel		
	Uplink power	0dB, -3.4dB	
7.6.1 In-band blocking	Wanted signal power: (REFSENS + BW dependent	0 dB	Formula:
	value)		Wanted signal power + TT
	Interferer signal power: -56dBm or -44dBm		Interferer signal power unchanged
			T-put limit unchanged
	T-put limit = 95% of maximum for the Ref Meas channel		Uplink power measurement window same as 7.4
	T-put limit = 95% of maximum for the Ref Meas channel	0dB, -3.4dB	Uplink power measurement window
7.6.2 Out of-band blocking	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent	0dB, -3.4dB 0 dB	Uplink power measurement window
7.6.2 Out of-band blocking	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value)		Uplink power measurement window same as 7.4 Formula:
7.6.2 Out of-band blocking	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent		Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT
7.6.2 Out of-band blocking	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value) Interferer signal power:		Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged Uplink power measurement window
7.6.2 Out of-band blocking	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm, -30dBm or -15dBm T-put limit = 95% of maximum for the Ref Meas channel		Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged
· ·	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm, -30dBm or -15dBm T-put limit = 95% of maximum for the Ref Meas channel Uplink power	0 dB 0dB, -3.4dB	Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged Uplink power measurement window same as 7.4
7.6.2 Out of-band blocking 7.6.3 Narrow band blocking	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm, -30dBm or -15dBm T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power,: (REFSENS + BW dependent	0 dB	Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged Uplink power measurement window
7.6.3 Narrow band	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm, -30dBm or -15dBm T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power,:	0 dB 0dB, -3.4dB	Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged Uplink power measurement window same as 7.4 Formula:
7.6.3 Narrow band	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm, -30dBm or -15dBm T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power; (REFSENS + BW dependent value) Interferer signal power: -55dBm T-put limit = 95% of maximum for	0 dB 0dB, -3.4dB	Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT
7.6.3 Narrow band	T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm, -30dBm or -15dBm T-put limit = 95% of maximum for the Ref Meas channel Uplink power Wanted signal power; (REFSENS + BW dependent value) Interferer signal power: -55dBm	0 dB 0dB, -3.4dB	Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged Uplink power measurement window same as 7.4 Formula: Wanted signal power + TT Interferer signal power unchanged

7.7 Spurious response	Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm T-put limit = 95% of maximum for the Ref Meas channel Uplink power	0 dB 0dB, -3.4dB	Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged Uplink power measurement window same as 7.4
7.8.1 Wide band intermodulation	Wanted signal power: For 1.4 MHz BW: (REFSENS + 12 dB) For 3 MHz BW: (REFSENS + 8 dB) For 5 MHz and 10MHz BW: (REFSENS + 6 dB) For 15 MHz BW: (REFSENS + 7 dB) For 20 MHz BW: (REFSENS + 9 dB) CW Interferer power, aall BWs: -46 dBm Modulated Interferer power:, aall BWs: -46 dBm T-put limit = 95% of maximum for the Ref Meas channel Uplink power	0 dB 0dB, -3.4dB	Formula: Wanted signal power +TT CW Interferer signal power unchanged Modulated Interferer signal power unchanged T-put limit unchanged Uplink power measurement window same as 7.4
7.9 Spurious emissions	30MHz ≤ f < 1GHz: -57dBm / 100kHz 1GHz ≤ f ≤ 12.75 GHz: -47dBm / 1MHz	0 dB	Formula: Minimum Requirement + TT

F.3.4 Measurement of performance requirements

Table F.3.4-1: Derivation of Test Requirements (performance tests)

Test	Minimum Requirement in TS 36.133	Test Tolerance (TT)	Test Requirement in TS 36.521-1
8.2.1.1.1 Multiple PRBs - Prop'n Condition EVA5 - Prop'n Condition ETU70 - Prop'n Condition ETU300	SNRs as specified	0.8dB	Formula: SNR + TT T-put limit unchanged
8.2.1.1.1 Multiple PRBs - Prop'n Condition HST	SNR as specified	0.6dB	Formula: SNR + TT T-put limit unchanged
8.2.1.1.1 Single PRB - Prop'n Condition ETU70	SNRs as specified	0.8dB	Formula: SNR + TT T-put limit unchanged
8.2.1.1.2 Single PRB	SNR as specified	0.8dB	Formula: SNR + TT T-put limit unchanged
8.2.1.2.1 - Prop'n Condition EVA5	SNR as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged
8.2.1.2.1 - Prop'n Condition HST	SNR as specified	0.6 dB	Formula: SNR + TT T-put limit unchanged
8.2.1.2.2	SNR as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged
8.2.1.3.1	SNR as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged
8.2.1.3.2	SNR as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged
8.2.1.4.1	SNRs as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged
8.2.1.4.2	SNRs as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged
8.2.2.1.1 Multiple PRBs - Prop'n Condition EVA5 - Prop'n Condition ETU70 - Prop'n Condition ETU300	SNRs as specified	0.8dB	Formula: SNR + TT T-put limit unchanged
8.2.2.1.1 Multiple PRBs - Prop'n Condition HST	SNR as specified	0.6dB	Formula: SNR + TT T-put limit unchanged
8.2.2.1.1 Single PRB - Prop'n Condition ETU70	SNRs as specified	0.8dB	Formula: SNR + TT T-put limit unchanged
8.2.2.1.2 Single PRB	SNR as specified	0.8dB	Formula: SNR + TT T-put limit unchanged
8.2.2.2.1 - Prop'n Condition EVA5	SNR as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged
8.2.2.2.1 - Prop'n Condition HST	SNR as specified	0.6 dB	Formula: SNR + TT T-put limit unchanged
8.2.2.2.2	SNR as specified	0.9 dB	Formula: SNR + TT T-put limit unchanged

0 2 2 2 4	CND as appointed	0 0 4D	Formula: SNR + TT
8.2.2.3.1	SNR as specified	0.9 dB	
			T-put limit unchanged
8.2.2.3.2	SNR as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.2.2.4.1	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.2.2.4.2	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.3.2.1.1	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.3.2.1.1_1	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.3.2.1.2	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.3.2.1.3	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.3.2.2.1	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.4.1.1	SNR as specified	0.8 dB	Formula: SNR + TT
			T-put limit unchanged
8.4.1.2.1	SNR as specified	1.0 dB	Formula: SNR + TT
	·		T-put limit unchanged
8.4.1.2.2	SNR as specified	1.0 dB	Formula: SNR + TT
	·		T-put limit unchanged
8.4.2.1	SNR as specified	0.8 dB	Formula: SNR + TT
	·		T-put limit unchanged
8.4.2.2.1	SNR as specified	1.0 dB	Formula: SNR + TT
			T-put limit unchanged
8.4.2.2.2	SNR as specified	1.0 dB	Formula: SNR + TT
· · · · - · - · · · · · · · · · · · · ·	or in the opening	1.0 0.2	T-put limit unchanged
8.5.1.1	SNRs as specified	0.9 dB	Formula: SNR + TT
0.0.1.1	Orano do opcomed	0.5 db	T-put limit unchanged
8.5.1.2.1	SNR as specified	1.1 dB	Formula: SNR + TT
0.5.1.2.1	SNN as specified	1.1 ub	T-put limit unchanged
8.5.1.2.2	CND as appointed	1.0 dB	Formula: SNR + TT
0.0.1.2.2	SNR as specified	1.0 06	
0.5.0.4	OND ''	0.0.10	T-put limit unchanged
8.5.2.1	SNRs as specified	0.9 dB	Formula: SNR + TT
			T-put limit unchanged
8.5.2.2.1	SNR as specified	1.1 dB	Formula: SNR + TT
			T-put limit unchanged
8.5.2.2.2	SNR as specified	1.0 dB	Formula: SNR + TT
			T-put limit unchanged

10.1	SNR as specified	0.9dB	Formula: SNR + TT
			T-put limit unchanged
10.2	SNR as specified	0.9dB	Formula: SNR + TT
			T-put limit unchanged
[Other tests FFS]			

F.3.5 Measurement of Channel State Information reporting

Table F.3.5-1: Derivation of Test Requirements (Channel State Information reporting tests)

Test	Minimum Requirement in TS 36.101	Test Tolerance (TT)	Test Requirement in TS 36.521-1
9.2.1.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-0	SNRs as specified Limits as in the Test Procedure	No test tolerances applied	SNR and limits unchanged
9.2.1.2 TDD CQI Reporting under AWGN conditions – PUCCH 1-0	SNRs as specified Limits as in the Test Procedure	No test tolerances applied	SNR and limits unchanged
9.2.2.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-1	SNRs as specified Limits as in the Test Procedure	No test tolerances applied	SNR and limits unchanged
9.2.2.2 TDD CQI Reporting under AWGN conditions – PUCCH 1-1	SNRs as specified Limits as in the Test Procedure	No test tolerances applied	SNR and limits unchanged
9.3.1.1.1 FDD CQI Reporting under fading conditions – PUSCH 3-0	SNRs as specified α 2% β 55% γ 1.10 BLER 0.05	SNR 0dB α 0% β 0% γ 0.01 BLER 0	SNR unchanged α limit unchanged β limit unchanged γ 1.09 as per Table G.5.4-1 BLER limit unchanged
9.3.1.1.2 TDD CQI Reporting under fading conditions – PUSCH 3-0	Same as 9.3.1.1.1	Same as 9.3.1.1.1	Same as 9.3.1.1.1
9.3.2.1.1 FDD CQI Reporting under fading conditions – PUCCH 1-0	SNRs as specified α 20% γ 1.05 BLER 0.02	SNR 0dB α 0% γ 0.01 BLER 0	SNR and α , BLER limits unchanged α limit unchanged γ 1.04 as per Table G.5.4-1 BLER limit unchanged
9.3.2.1.2 TDD CQI Reporting under fading conditions – PUCCH 1-0	Same as 9.3.2.1.1	Same as 9.3.2.1.1	Same as 9.3.2.1.1
9.3.3.1.1 FDD CQI Reporting under fading conditions and frequency-	lor and lot as specified α 60% γ 1.60	lor, lot 0dB α 20% γ 0.10	lor and lot unchanged α 40%, Formula: Min Req't – Test Tol γ 1.50, Formula: Min Req't – Test Tol
selective interference – PUSCH 3-0			The effect of AWGN flatness and signal flatness on the α requirement was derived by simulation.
			AWGN flatness / signal flatness and the statistical effect of a finite test time both affect the T-put result. The Test Tolerance comprises two quantities:
			Effect of AWGN flatness and signal flatness, derived by simulation
			2. Statistical effect as per Table G.5.4-1
			Items 1 and 2 are assumed to be uncorrelated so can be root sum squared
			T-put requirement Test Tol = SQRT (AWGN flatness and signal flatness effect ² + Statistical effect ²)
			AWGN flatness and signal flatness effect 0.1, Statistical effect 0.01, giving overall effect 0.10

9.3.3.1.2 TDD CQI Reporting under fading conditions and frequency- selective interference – PUSCH 3-0	Same as 9.3.3.1.1	Same as 9.3.3.1.1	Same as 9.3.3.1.1
9.4.1.1.1 FDD PMI Reporting – PUSCH 3-1 (Single PMI)	γ 1.10	γ 0.01	γ 1.09 as per Table G.5.4-1
9.4.1.1.2 TDD PMI Reporting – PUSCH 3-1 (Single PMI)	Same as 9.4.1.1.1	Same as 9.4.1.1.1	Same as 9.4.1.1.1
9.4.2.1.1 FDD PMI Reporting – PUSCH 1-2 (Multiple PMI)	γ 1.20	γ 0.01	γ 1.19 as per Table G.5.4-1
9.4.2.1.2 TDD PMI Reporting – PUSCH 1-2 (Multiple PMI)	Same as 9.4.2.1.1	Same as 9.4.2.1.1	Same as 9.4.2.1.1
9.5.1.1 FDD RI Reporting— PUCCH 1-1	SNRs as specified Test 1: ½ 1.00 Test 2: ½ 1.05 Test 3: ½ 1.10	SNR 0dB ½ 0.01 ¾ 0.01 ½ 0.01	SNR unchanged ½ 0.99 as per Table G.5.4-1 ¾ 1.04 as per Table G.5.4-1 ½ 1.09 as per Table G.5.4-1
9.5.1.2 TDD RI Reporting– PUSCH 3-1	Same as 9.5.1.1	Same as 9.5.1.1	Same as 9.5.1.1

Annex G (normative): Statistical Testing

G.1 General

FFS.

G.2 Statistical testing of receiver characteristics

G.2.1 General

The test of receiver characteristics is two fold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver tests is >95% of the maximum throughput.

All receiver tests are performed in static propagation conditions. No fading conditions are applied.

G.2.2 Mapping throughput to error ratio

- a) The measured information bit throughput R is defined as the sum (in kilobits) of the information bit payloads successfully received during the test interval, divided by the duration of the test interval (in seconds).
- b) In measurement practice the UE indicates successfully received information bit payload by signalling an ACK to the SS.
 - If payload is received, but damaged and cannot be decoded, the UE signals a NACK.
- c) Only the ACK and NACK signals, not the data bits received, are accessible to the SS. The number of bits is known in the SS from knowledge of what payload was sent.
- d) For the reference measurement channel, applied for testing, the number of bits is different in different subframes, however in a radio frame it is fixed during one test.
- e) The time in the measurement interval is composed of successfully received subframes (ACK), unsuccessfully received subframes (NACK) and no reception at all (DTX-subframes).
- f) DTX-subframes may occur regularly according the applicable reference measurment channel (regDTX). In real live networks this is the time when other UEs are served. In TDD these are the UL and special subframes. regDTX vary from test to test but are fixed within the test.
- g) Additional DTX-subframes occur statistically when the UE is not responding ACK or NACK where it should. (statDTX)
 - This may happen when the UE was not expecting data or decided that the data were not intended for it.

The pass / fail decision is done by observing the:

- number of NACKs
- number of ACKs and
- number of statDTXs (regDTX is implicitly known to the SS)

The ratio (NACK + statDTX) / (NACK+ statDTX + ACK) is the Error Ratio (ER). Taking into account the time consumed by the ACK, NACK, and DTX-TTIs (regular and statistical), ER can be mapped unambiguously to throughput for any single reference measurement channel test.

G.2.3 Design of the test

The test is defined by the following design principles (see clause G.x, Theory....):

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Cusomer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1. Limit ER = 0.05 (Throughput limit = 95%)
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

G.2.4 Numerical definition of the pass fail limits

Table G.2.4-1: pass fail limits

ne	ns _p	ns _f	ne	ns _p	ns _f	ne	ns _p	ns _f	ne	ns _p	ns _f
0	67	NA	39	763	500	78	1366	1148	117	1951	1828
1	95	NA	40	778	516	79	1381	1166	118	1965	1845
2	119	2	41	794	532	80	1396	1183	119	1980	1863
3	141	7	42	810	548	81	1412	1200	120	1995	1881
4	162	14	43	826	564	82	1427	1217	121	2010	1899
5	183	22	44	842	580	83	1442	1234	122	2025	1916
6	202	32	45	858	596	84	1457	1252	123	2039	1934
7	222	42	46	873	612	85	1472	1269	124	2054	1952
8	241	53	47	889	629	86	1487	1286	125	2069	1969
9	259	64	48	905	645	87	1502	1303	126	2084	1987
10	278	76	49	920	661	88	1517	1321	127	2099	2005
11	296	88	50	936	678	89	1532	1338	128	2113	2023
12	314	100	51	952	694	90	1547	1355	129	2128	2040
13	332	113	52	967	711	91	1562	1373	130	2143	2058
14	349	126	53	983	727	92	1577	1390	131	2158	2076
15	367	140	54	998	744	93	1592	1407	132	2172	2094
16	384	153	55	1014	760	94	1607	1425	133	2187	2111
17	401	167	56	1029	777	95	1623	1442	134	2202	2129
18	418	181	57	1045	793	96	1637	1459	135	2217	2147
19	435	195	58	1060	810	97	1652	1477	136	2231	2165
20	452	209	59	1076	827	98	1667	1494	137	2246	2183
21	469	224	60	1091	844	99	1682	1512	138	2261	2201
22	486	238	61	1106	860	100	1697	1529	139	2275	2218
23	503	253	62	1122	877	101	1712	1547	140	2290	2236
24	519	268	63	1137	894	102	1727	1564	141	2305	2254

25	536	283	64	1153	911	103	1742	1582	142	2320	2272
26	552	298	65	1168	928	104	1757	1599	143	2334	2290
27	569	313	66	1183	944	105	1772	1617	144	2349	2308
28	585	328	67	1199	961	106	1787	1634	145	2364	2326
29	602	343	68	1214	978	107	1802	1652	146	2378	2344
30	618	359	69	1229	995	108	1817	1669	147	2393	2361
31	634	374	70	1244	1012	109	1832	1687	148	2408	2379
32	650	389	71	1260	1029	110	1847	1704	149	2422	2397
33	667	405	72	1275	1046	111	1861	1722	150	2437	2415
34	683	421	73	1290	1063	112	1876	1740	151	2452	2433
35	699	436	74	1305	1080	113	1891	1757	152	2466	2451
36	715	452	75	1321	1097	114	1906	1775	153*)	NA	2469
37	731	468	76	1336	1114	115	1921	1793			
38	747	484	77	1351	1131	116	1936	1810	*) no	te 2 in C	3.2.5

NOTE 1: The first column is the number of errors (ne = number of NACK + statDTX)

NOTE 2: The second column is the number of samples for the pass limit (ns_p , ns=Number of Samples= number of NACK + statDTX + ACK)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

G.2.5 Pass fail decision rules

The pass fail decision rules apply for a single test, comprising one component in the test vector. The over all Pass /Fail conditions are defined in clause G.2.1.5.

Having observed 0 errors, pass the test at 67+ samples,

otherwise continue

Having observed 1 error, pass the test at 95+ otherwise continue

119+ samples, fail the test at 2- samples, otherwise continue

Etc. etc.

Having observed 151 errors, pass the test at 2452+ samples, fail the test at 2433- samples, otherwise continue

Having observed 152 errors, pass the test at 2466+ samples, fail the test at 2451- samples.

Where x+ means: x or more, x- means x or less

Having observed 2 errors, pass the test at

NOTE 1: an ideal DUT passes after 67 samples. The maximum test time is 2466 samples.

NOTE 2: It is allowed to deviate from the early decision concept by postponing the decision (pass/fail or continue). Postponing the decision to or beyond the end of table Table G.2.4-1 requires a pass fail decision against the test limit: pass the DUT for ER<0.0618, otherwise fail.

G.2.6 Test conditions for receiver tests

Table G.2.6-1: Test conditions for receiver tests

Test	Statistical independence	Number of components in the test vector, as specified in the test requirements and initial conditions of the applicable test	Over all Pass/Fail condition
7.3 Reference	Yes: the inherent receiver noise	tbd	To pass 7.3 each component in the
sensitivity level 7.4 Maximum input level	is assumed to be AWGN Unclear: in case, clipping causes errors, errors are data dependent. Statistical independence is assumed.	tbd	test vector must pass To pass 7.4 each component in the test vector must pass
7.5 Adjacent Channel Selectivity (ACS)	Unclear: errors are data dependent on the interferers data. Statistical independence is assumed.	tbd	To pass 7.5 each component in the test vector must pass
7.6.1 In-band blocking	Unclear: errors are data dependent on the interferers data. Statistical independence is assumed.	tbd	To pass 7.6.1 each component in the test vector must pass
7.6.2 Out of-band blocking	yes: it is assumed that the CW interferer causes errors, which are independent and time invariant.	tbd	To pass 7.6.2, all except [tbd] components in the test vector must pass
7.6.3 Narrow band blocking	yes: it is assumed that the CW interferer causes errors, which are independent and time invariant.	tbd	To pass 7.6.3 each component in the test vector must pass
7.7 Spurious response	yes: it is assumed that the CW interferer causes errors, which are independent and time invariant.	tbd	To pass 7.7 each component in the test vector must pass
7.8.1 Wide band Intermodulation	Unclear: errors are dependent on the data content of the interferer. Statistical independence is assumed.	tbd	To pass 7.8.1 each component in the test vector must pass

G.3 Statistical testing of Performance Requirements with throughput

G.3.1 General

The test of receiver performance characteristics is two fold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver performance tests is either 70% or 30% of the maximum throughput.

All receiver performance tests are performed in fading conditions. In addition to the statistical considerations, this requires the definition of a minimum test time.

G.3.2 Mapping throughput to error ratio

G.2.2 applies

G.3.3 Design of the test

The test is defined by the following design principles (see clause G.x, Theory...):

- 1. The standard concept is applied. (not the early decision concept)
- 2. A second limit is introduced: The second limit is different, whether 30% or 70% throughput is tested.
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail:

Cusomer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1a) Limit Error Ratio = 0.3 (in case 70% Throughput is tested) or
- 1b) Limit Throughput = 0.3 (in case 30% Throughput is tested)
- 2a) Bad DUT factor M=1.378 (selectivity)
- 2b) Bad DUT factor m=0.692 (selectivity)

justification see: TS 34.121 Clause F.6.3.3

3) Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

G.3.4 Pass Fail limit

Testing Throughput = 30%, then the test limit is

Number of successes (ACK) / number of samples $\geq 59 / 233$

Testing Throughput = 70% then the test limit is

Number of fails (NACK and statDTX) / number of samples \leq 66 / 184

We have to distinguish 3 cases:

a) The duration for the number of samples (233 or 184) is greater than the minimum test time:

Then the number of samples (233 or 184) is predefined and the decision is done according to the number of events (59 successes or 66 fails)

- b) Since subframe 0 and 5 contain less bits than the remaining subframes, it is allowed to predefine a number of samples contained in an integer number of frames In this case test-limit-ratio applies.
- c) The minimum test time is greater than the duration for the number of samples:

The minimum testtime is predefined and the decision is done comparing the measured ratio at that instant against the test-limit-ratio.

NOTE: The test time for most of the tests is governed by the Minimum Test Time

G.3.5 Minimum Test time

If a pass fail decision in G.3.4 can be achieved earlier than the minimum test time, then the test shall not be decided, but continued until the minimum test time is elapsed.

The tables below contain the minimum number of subframes for FDD and TDD.

By simulations the minimum number of active subframes (carrying DL payload) was derived (MNAS),

then adding incative subframes to the active ones (e.g. subframe 5 contains no DL payload. For TDD additional subframes contain no DL payload)

then rounding up to full thousand and

then adding a bias of 1000 (BMNSF).

Simulation method to derive minimum test time:

With a level, corresponding a throughput at the test limit (here 30% or 70% of the max. throughput) the preliminary throughput versus time converges towards the final throughput. The allowance of \pm 0.2 dB around the above mentioned level is predefined by RAN5 to find the minimum test time. The allowance of \pm 0.2 dB maps through the function "final throughput versus level" into a throughput corridor. The minimum test time is achieved when the preliminary throughput escapes the corridor the last time. The two functions "final throughput versus level" and "preliminary throughput versus time" are simulation results, which are done individual for each demodulation scenario. HST-scenarios and scenarios with MNAS \geq 50000 are derived differently.

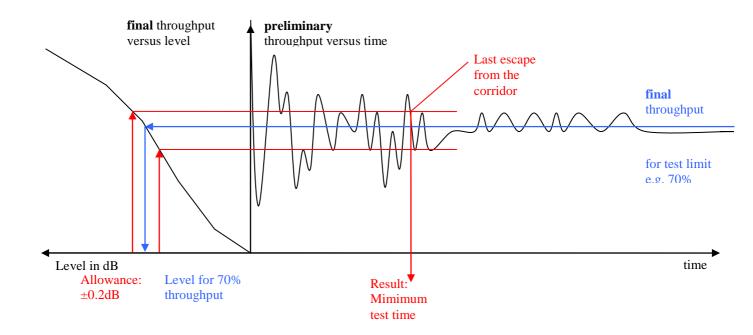


Fig. G.3.5-1: Simulation method to derive minimum test time

Table G.3.5-1: Minimum Test time for PDSCH Single Antenna Port Performance

Test No	Demod. scenario	Demodulation scenario plain text: RMC (Bandwidth, allocated RBs, modulation, coding) Antenna (configuration, correlation)	Minimum Number of Active Subframes (MNAS) to reach the corridor	Minimum Number of Subframes (MNS) to reach the corridor (MNS = active and inactive subframes)		Biased Minimum Number of SubFrames (BMNSF) BMNSF= $1000*\left\lceil\frac{MNS}{1000}\right\rceil$ +1000		
		Propagation condition,	(Simulation,	(Calculation	, info only)	(mandatory)		
		Doppler [additional parameters, if applicable]	info only)	FDD	TDD	FDD	TDD	
	54.43	(info only) R.2	00.704	40.070	77.500	45.000	70.000	
1	[1.1]	R.2 (10 MHz, full, QPSK, 1/3) (1x2 Low) EVA,5 R.2	38 764	43 072	77 528	45 000	79 000	
2	[1.2]	(10 MHz, full, QPSK, 1/3) (1x2 Low)	2 764	3 072	5 528	5 000	7 000	
3	[1.3]	ETU,70 R.2 (10 MHz, full, QPSK, 1/3) (1x2 Low) ETU,300	1 424	1 583	2 848	3 000	4 000	
4	[1.4]	R.2 (10 MHz , full, QPSK, 1/3) (1x2 Low) HST	28 800	NA	NA	28 800	57 600	
5	[2.1]	R.4 (1.4 MHz, full, QPSK, 1/3) (1x2 Low)	44 354	49 283	147 847	51 000	149 000	
6	[1.5]	EVA,5 R.3 (10 MHz, full, 16QAM, ½) (1x2 Low) EVA,5	39 020	43 356	78 040	45 000	80 000	
7	[1.6]	EVA,5 R.3 (10 MHz, full, 16QAM, ½) (1x2 Low) ETU,70	1 366	1 518	2 732	3 000	4 000	
8	[1.7]	R.3 (10 MHz, full, 16QAM, ½) (1x2 High) ETU,300	3 189	3 544	6 378	5 000	8 000	
9	[2.2]	R.5 (3 MHz, full, 64QAM, ¾) (1x2 Low) EVA,5	50 000	55 556	100 000	57 000	101 000	
10	[2.3]	R.6 (5 MHz, full, 64QAM, 3/4) (1x2 Low)	48 847	54 275	97 694	56 000	99 000	
11	[1.8]	EVA,5 R.7 (10 MHz, full, 64QAM, ¾) (1x2 Low) EVA,5	46 524	51 694	93 048	53 000	95 000	
12	[1.9]	EVA,5 R.7 (10 MHz, full, 64QAM, ¾) (1x2 Low) ETU,70	4 722	5 247	9 444	7 000	11 000	
13	[1.10]	R.7 (10 MHz, full, 64 QAM, 3/4) (1x2High) EVA,5	100 000	111 112	200 000	113 000	201 000	

14	[2.4]	R.8	48 434	53 816	96 868	55 000	98 000
		(15 MHz, full, 64QAM, ¾)					
		(1x2 Low)					
		EVA,5					
15	[2.5]	R.9	100 000	111 112	200 000	113 000	201 000
		(20 MHz, full, 64QAM,3/4)					
		(1x2 Low)					
		EVA,5					
16	[3.1]	R.0	5 710	6 345	11 420	8 000	13 000
		(3 MHz, 1PRB,16QAM,½)					
		(1x2 Low)					
		`ETU,70´					
17	[3.2]	R.1	9 234	10 260	18 468	12 000	20 000
		(10MHz,1PRB,16QAM,½)					
		(1x2 Low)					
		`ETU,70´					
18	[3.3]	R.1	13 373	14 859	26 746	16 000	28 000
		(20MHz,1PRB,16QAM,½)					
		(1x2 Low)					
		`ETU,70					

Table G.3.5-2: Minimum Test time for PDSCH Single Antenna Port Performance with 1 PRB

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	MNS (Calculation)			in No Sub nandatory)
				FDD	TDD	FDD	TDD
1	[3.4]	R.29 (10MHz,1PRB,16QAM,½) (1x2 Low) ETU,70 [MBFSN]	5 246	17 487	17 487	19 000	19 000

Table G.3.5-3: Minimum Test time for PDSCH Transmit diversity 2x2

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	MNS (Calculation)			
				FDD	TDD	FDD	TDD
1	[7.1]	R11 (10MHz, full, 16QAM ½) (2x2 Med) EVA,5 [SFBC, Space Frequency Block Code]	50 000	55 556	100 000	57 000	101 000
2	[7.2]	R.10 (10MHz, Full, QPSK, 1/3) (2x2 low) HST [SFBC]	28 800	NA	NA	28 800	57 600

Table G.3.5-4: Minimum Test time for PDSCH Transmit diversity 4x2

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS MNS MNSF (Min No Simulation) (Calculation) Frames, manda				
				FDD	TDD	FDD	TDD
1	[7.3]	R.12 (1.4MHz, full, QPSK 1/3) (4x2 med) EPA,5 [SFBC-FSTD, SFBC- Frequency Shifted Transmit Diversity]	150 000	166 667	300 000	168 000	301 000

Table G.3.5-5: Minimum Test time for PDSCH Open Loop Spacial Multiplexing 2x2

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	MNS (Calculation)		•	in No Sub nandatory)
				FDD	TDD	FDD	TDD
1	[6.1]	R.11 (10MHz, Full, 16QAM, ½) (2x2 Low) EVA,70 [LD-CDD, Large Delay- Cyclic Delay Diversity]	7 600	8 445	19 000	10 000	20 000

Table G.3.5-6: Minimum Test time for PDSCH Open Loop Spacial Multiplexing 4x2

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	MNS (Calculation)				
				FDD	TDD	FDD	TDD	
1	[6.2]	R.14 (10MHz, full, 16 QAM, ½) (4x2 low) EVA,70 [LD-CDD]	4 860	5 400	12 150	7 000	14 000	

Table G.3.5-7: Minimum Test time for PDSCH Closed LoopSingle/Multilayer Spacial Multiplexing 2x2

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS MNS MNSF (Min No State (Simulation) (Calculation) Frames, mandato		_		
				FDD	TDD	FDD	TDD
1	[4.1]	R.10 (10MHz,6PRB,QPSK,1/3) (2x2 Low) EVA,5 [SCW, Single CodeWord]	49 140	54 600	98 280	56 000	100 000
2	[4.2]	R.10 (10MHz, Full, QPSK, 1/3) (2x2 High) EPA,5 [SCW]	50 000	55 556	100 000	57 000	101 000
3	[5.1]	R.11 (10MHz,full, 16QAM ½) (2x2Low) EVA,5 [MCW, Multiple Code Word]	34 266	38 074	85 665	40 000	87 000
4	[5.2]	R.11 (10MHz, full, 16QAM ½) (2x2Low) ETU,70 [MCW]	2 736	3 040	6 840	5 000	8 000

Table G.3.5-8: Minimum Test time for PDSCH Closed LoopSingle/Multilayer Spacial Multiplexing 4x2

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	MNS (Calculation)				
				FDD	TDD	FDD	TDD	
1	[4.3]	R.13 (10 MHz,6PRB,QPSK1/3) (4x2 Low) EVA,5 [SCW]	[26 528]	29 476	53 056	31 000	55 000	
2	[5.3]	R.14 (10MHz,6PRB,16QAM ½) (4x2low) EVA5 [MCW]	26 066	28 963	65 165	30 000	67 000	

Table G.3.5-9: Minimum Test time for PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 8 and forward)

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS MNS MNSF (Min No (Calculation) Frames, manda		_		
				FDD	TDD	FDD	TDD
1	[11.1]	R.25 (10 MHz, full, QPSK 1/3) (1x2 Low) EPA,5	38 879	43 199	77 758	45 000	79 000
2	[11.2]	R.26 (10MHz, full, 16QAM ½) (1x2 Low) EPA5	47 781	53 090	95 562	55 000	97 000
3	[11.3]	R.27 (10MHz, full, 64QAM 3/4) (1x2 Low) EPA,5	48 685	54 095	97 370	56 000	99 000
4	[11.4]	R.28 (10MHz, 1PRB, 16QAM ½) (1x2 Low) EPA,5	100 000	111 112	200 000	113 000	201 000

Table G.3.5-10: Minimum Test time for PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 9 and forward)

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	MNSF (Min No Sub Frames, mandatory)		
				FDD	TDD	
1 NA						
2	[.]	R.26 (5MHz, full, 16QAM ½) (2x2 Low) EPA5	Note: MNAS is not simulated. Because of same demodulation scenario except for antenna configuration, MNSF is reused from Table G.3.5-9, Test 2	55 000	97 000	
3	[.]	R.27 (10MHz, part, 64QAM 3/4) (2x2 Low) EPA,5	Note: MNAS is not simulated. Because of same demodulation scenario except for antenna configuration, MNSF is reused from Table G.3.5-9, Test 3	56 000	99 000	
4 NA						

Table G.3.5-11: Minimum Test time for PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 without simultaneous transmission

Test	Demod.	Demodulation scenario	MNAS	MNSF (Mi	in No Sub
No	scenario	(info only)	(Simulation)	Frames, m	nandatory)
				FDD	TDD
1	[.]	R.31 (10 MHz, full, QPSK 1/3) (2x2 Low) EVA,5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, antenna configuration, MNSF is reused from Table G.3.5-9, Test 1	45 000	79 000
2	[.]	R.32 (10MHz, full, 16QAM ½) (2x2 Medium) EPA5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, antenna configuration, MNSF is reused from Table G.3.5-9, Test 2	55 000	97 000
		R.32-1 (5MHz, full, 16QAM ½) (2x2 Medium) EPA5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, channel BW, antenna configuration, MNSF is reused from Table G.3.5-9, Test 2		
3	[.]	R.33 (10MHz, full, 64QAM 3/4) (2x2 Low) EPA,5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, antenna configuration, MNSF is reused from Table G.3.5-9, Test 3	56 000	99 000
		R.33-1 (10MHz, part, 64QAM 3/4) (2x2 Low) EPA5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, allocation, antenna configuration, MNSF is reused from Table G.3.5-9, Test 3		

Table G.3.5-12: Minimum Test time for PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 with a simultaneous transmission

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	MNSF (Min No Sub Frames, mandatory)			
				FDD	TDD		
4	[.]	R.32 (10MHz, full, 16QAM ½) (2x2 Medium) EPA,5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, antenna configuration, MNSF is reused from Table G.3.5-9, Test 2	55 000	97 000		
5		R.33 (10MHz, full, 64QAM 1/2) (2x2 Low) EPA,5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, antenna configuration, MNSF is reused from Table G.3.5-9, Test 3	56 000	99 000		

Table G.3.5-13: Minimum Test time for PDSCH Dual-layer Spatial Multiplexing

Test No	Demod. scenario	Demodulation scenario (info only)	MNAS (Simulation)	•	lo Sub Frames, datory)
				FDD	TDD
1	[.]	R.31 (10 MHz, full, QPSK 1/3) (2x2 Low) EVA,5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, antenna configuration, MNSF is reused from Table G.3.5-9, Test 1	[45 000]	[79 000]
2	[.]	R.32 (10MHz, full, 16QAM ½) (2x2 Medium) EPA5	Note: MNAS is not simulated. Because of same demodulation scenario except for RMC, antenna configuration, MNSF is reused from Table G.3.5-9, Test 2	[55 000]	[97 000]

G.3.6 Test conditions for receiver performance tests

Table G.3.6: Test conditions for receiver performance tests

Table G.3.6-1: Single Antenna Port Performance (Cell-specific Reference Symbols) for test case 8.2.1.1 and 8.2.2.1 demodulation of PDSCH

Test	Statistical independence	test ve test re condition	er of comector, as sequireme	in the initial ble test	Over all Pass/Fail condition	
8.2.1.1 FDD PDSCH Single Antenna Port Performance (Cell- Specific Reference Symbols)	subframes are independent	CAT	1	2	3-5	To pass 8.2.1.1 and 8.2.2.1each component in the test vector must
		QPSK	5	5	5	pass For UEs, supporting multiple E UTRA-bands
		16QAM	0	3	3	(number of bands =B), the number of repetitions must be multiplied by B.
8.2.1.2 TDD PDSCH Single Antenna Port Performance	subframes are independent	64 QAM	1	6	7	If a test is defined over a BW>(BW of the E_UTRA band), the test is not applicable and reduces the
(Cell- Specific Reference Symbols)		1PRB	4	4	4	number of repetitions. If a test is defined over a BW, which is not supported in the E_UTRAN
		Σ	10	18	19	band, the test is not applicable and reduces the number of repetitions.

Table G.3.6-2: Transmit Diversity Performance (Cell-specific Reference Symbols) for test case 8.2.1.2 and 8.2.2.2 demodulation of PDSCH

Test	Statistical independence	test ve test re condition	er of comector, as sequireme	in the initial	Over all Pass/Fail condition	
8.2.1.2 FDD PDSCH Transmit	subframes are independent	CAT	1	2	3-5	To pass 8.2.1.2 and 8.2.2.2 each component in the test vector must
Transmit Diversity Performance (Cell- Specific Reference Symbols) 8.2.2.2	subframes are independent	QPSK	0	1	1	For UEs, supporting multiple E_UTRA-bands (number of bands =B), the number of repetitions must be multiplied by B.
TDD PDSCH Transmit	maoponaoni					If a test is defined over a BW, which is
Diversity Performance (Cell- Specific Reference Symbols)		Σ	2	3	3	not supported in the E_UTRAN band, the test is not applicable and reduces the number of repetitions.

Table G.3.6-3: Open Loop Spatial Multiplexing Performance (Cell-specific Reference Symbols) for test case 8.2.1.3 and 8.2.2.3 demodulation of PDSCH

Test	Statistical independence	test ve	er of comector, as sequireme	in the nitial	Over all Pass/Fail condition	
8.2.1.3 FDD PDSCH Open Loop	subframes are independent	CAT	1	2	3-5	To pass 8.2.1.3 and 8.2.2.3 each component in the test vector must
Spatial Multiplexing Performance (Cell- Specific Reference Symbols)		16QAM	0	2	2	pass
8.2.2.3 TDD PDSCH Open Loop Spatial Multiplexing Performance (Cell- Specific Reference Symbols)	subframes are independent	Σ	0	2	2	

Table G.3.6-4: Closed Loop Spatial Multiplexing Performance (Cell-specific Reference Symbols) for test case 8.2.1.4 and 8.2.2.4 demodulation of PDSCH

Test	Statistical independence	vector req	of compor , as specif uirements ons of the	ied in th and init	e test ial	Over all Pass/Fail condition
8.2.1.4 FDD PDSCH	subframes are independent	CAT	1	2	3-5	To pass 8.2.1.4 and 8.2.2.4 each component in the test vector must
Closed Loop Spatial Multiplexing Performance (Cell- Specific Reference Symbols)		Single layer QPSK	3	3	3	pass
8.2.2.4 TDD PDSCH Closed Loop Spatial Multiplexing	subframes are independent	Multi layer 16QAM	0	3	3	
Performance (Cell- Specific Reference Symbols)		Σ	3	6	6	

Table G.3.6-5: TDD PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 8 and forward)

Test	Statistical independence	Number o vector, requ condition	as spe iremen	Over all Pass/Fail condition		
8.3.2.1.1	subframes are	CAT	1	2	3-5	To pass 8.3.2.1
TDD PDSCH Single-layer	independent	QPSK	1	1	1	each component in the test vector must
Spatial Multiplexing		16QAM	1	2	2	pass
on antenna port 5		64 QAM	0	1	1	
(Release 8 and forward)		Σ	2	4	4	

Table G.3.6-6: TDD PDSCH Single-layer Spatial Multiplexing on antenna port 5 (Release 9 and forward)

Test	Statistical independence	Number o vector, a requ condition	as spe iremen	Over all Pass/Fail condition		
8.3.2.1.1_1	subframes are independent	CAT	1	2	3-5	To pass 8.3.2.1.1 1 each
TDD PDSCH Single-layer	паерепает	16QAM	1	0	0	component in the
Spatial Multiplexing		64 QAM	1	0	0	pass
on antenna port 5		Σ	2	0	0	
(Release 9 and forward)						

Table G.3.6-7: TDD PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 without a simultaneous transmission

Test	Statistical independence	Number o vector, a requ condition	as spe iremen	Over all Pass/Fail condition		
8.3.2.1.2 TDD PDSCH	subframes are independent	CAT	1	2-5		To pass 8.3.2.1.2 each component in
Single-layer Spatial	muspendent	QPSK	1	1		the test vector must
Multiplexing on antenna		16QAM	1	1		pass
port 7 or 8		64 QAM	1	1		
simultaneous transmission		Σ	3	3		

Table G.3.6-8: TDD PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 with a simultaneous transmission

Test	Statistical independence	Number test vecto requ condition	r, as sp iremen	Over all Pass/Fail condition		
8.3.2.1.3	subframes are	CAT	1	2-5		To pass 8.3.2.1.3 each component in
TDD PDSCH Single-layer	independent	16QAM	0	1		the test vector must
Spatial Multiplexing		64 QAM	0	1		pass
on antenna port 7 or 8		Σ	0	2		
with a simultaneous transmission						

Test **Statistical** Number of components in the Over all Pass/Fail condition independence test vector, as specified in the test requirements and initial conditions of the applicable test 8.3.2.2.1 subframes are To pass 8.3.2.2.1 3-5 CAT 2 independent each component in **QPSK** 1 TDD PDSCH the test vector must **Dual-layer** pass 16QAM 1 2 2 Spatial Multiplexing 64 QAM 0 1 1 4 Σ 2 4

Table G.3.6-9: TDD PDSCH Dual-layer Spatial Multiplexing

G.4 Statistical testing of Performance Requirements with probability of misdetection

G.4.1 General

The test of receiver performance characteristics is two fold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by analyzing the reaction of the UE to this signal.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for those receiver performance tests are 1% or 0.1% misdetection probability

All receiver performance tests are performed in fading conditions. In addition to the statistical considerations, this requires the definition of a minimum test time.

NOTE: all demodulation performance tests (state from version 9.5.0) require a minimum test time, which exceeds the maximum test time in tables G.4.4. Under this circumstances only the test limit at the end of tables G.4.4.-1 resp. G.4.4.-2 is applicable.

G.4.2 Mapping the UE reaction to error ratio

The UE can not indicate the detection or misdetection of the physical channel under test directly. Indirect methods are described in the procedure of the applicable test.

G.4.3 Design of the test

G.2.3 applies, exception:

Limit ER = 0.01 and ER = 0.001

G.4.4 Numerical definition of the pass fail limits

Table G.4.4-1 pass fail limits for ER = 0.01

ne	ns _p	ns _f	ne	ns _p	ns _f	ne	nsp	ns _f	ne	ns _p	ns _f
0	344	NA	40	3929	2553	80	7033	5874	120	10036	9354
1	485	NA	41	4009	2632	81	7109	5960	121	10110	9442
2	607	10	42	4089	2712	82	7185	6046	122	10184	9530
3	719	33	43	4168	2792	83	7261	6131	123	10259	9619
4	826	66	44	4247	2873	84	7336	6217	124	10333	9707
5	929	107	45	4327	2953	85	7412	6303	125	10407	9796
6	1029	152	46	4406	3034	86	7488	6389	126	10481	9884
7	1127	202	47	4484	3115	87	7564	6475	127	10555	9972
8	1223	255	48	4563	3196	88	7639	6561	128	10629	10061
9	1317	311	49	4642	3278	89	7715	6648	129	10703	10150
10	1409	370	50	4720	3359	90	7790	6734	130	10777	10238
11	1501	430	51	4799	3441	91	7866	6820	131	10851	10327
12	1592	492	52	4877	3523	92	7941	6907	132	10925	10416
13	1681	555	53	4955	3605	93	8017	6993	133	10999	10504
14	1770	620	54	5033	3688	94	8092	7080	134	11073	10593
15	1858	686	55	5111	3770	95	8167	7167	135	11147	10682
16	1946	754	56	5189	3853	96	8242	7253	136	11221	10771
17	2032	822	57	5267	3935	97	8317	7340	137	11295	10860
18	2119	891	58	5344	4018	98	8393	7427	138	11369	10949
19	2204	961	59	5422	4101	99	8468	7514	139	11442	11038
20	2290	1032	60	5499	4185	100	8543	7601	140	11516	11127
21	2374	1103	61	5577	4268	101	8618	7688	141	11590	11216
22	2459	1175	62	5654	4352	102	8693	7775	142	11664	11305
23	2543	1248	63	5731	4435	103	8768	7863	143	11737	11394
24	2627	1321	64	5809	4519	104	8843	7950	144	11811	11483
25	2710	1395	65	5886	4603	105	8917	8037	145	11885	11573
26	2793	1470	66	5963	4687	106	8992	8125	146	11958	11662
27	2876	1544	67	6039	4771	107	9067	8212	147	12032	11751
28	2958	1620	68	6116	4855	108	9142	8300	148	12105	11840
29	3040	1696	69	6193	4940	109	9216	8387	149	12179	11930
30	3122	1772	70	6270	5024	110	9291	8475	150	12252	12019
31	3204	1848	71	6346	5109	111	9366	8562	151	12326	12109
32	3285	1925	72	6423	5193	112	9440	8650	152	12399	12198
33	3366	2003	73	6499	5278	113	9515	8738	153	12473	12288
34	3447	2080	74	6576	5363	114	9589	8826	154	12546	12377
35	3528	2158	75	6652	5448	115	9664	8914	155	12620	12467
36	3609	2237	76	6728	5533	116	9738	9002	156	12693	12556
37	3689	2315	77	6805	5618	117	9813	9090	157	12767	12646
38	3769	2394	78	6881	5704	118	9887	9178	158	12840	12736
39	3850	2473	79	6957	5789	119	9962	9266	159	12913	12826
									160	NA	12915
									Test li	mit = 1.23	52E-2

Table G.4.4-2 pass fail limits for ER = 0.001

ne	nsp	ns _f	ne	nsp	ns _f	ne	nsp	ns _f	ne	nsp	ns _f
0	3463	NA	41	40174	26265	82	71961	60368	123	102723	96075
1	4874	4	42	40971	27063	83	72720	61225	124	103465	96958
2	6096	99	43	41766	27863	84	73479	62083	125	104208	97842
3	7226	329	44	42559	28666	85	74237	62941	126	104949	98726
4	8298	658	45	43352	29471	86	74995	63801	127	105691	99610
5	9330	1059	46	44142	30279	87	75752	64661	128	106432	100495
6	10332	1513	47	44932	31088	88	76509	65522	129	107173	101380
7	11310	2009	48	45720	31899	89	77265	66383	130	107914	102266
8	12269	2539	49	46507	32713	90	78020	67246	131	108655	103152
9	13212	3096	50	47293	33528	91	78776	68109	132	109395	104039
10	14141	3677	51	48078	34345	92	79530	68973	133	110135	104926
11	15058	4278	52	48861	35164	93	80285	69838	134	110875	105813
12	15965	4896	53	49644	35984	94	81038	70704	135	111614	106701
13	16863	5530	54	50425	36807	95	81792	71570	136	112353	107589
14	17753	6177	55	51205	37631	96	82544	72437	137	113092	108478
15	18635	6836	56	51985	38456	97	83297	73305	138	113830	109367
16	19511	7507	57	52763	39283	98	84049	74173	139	114569	110257
17	20380	8188	58	53541	40112	99	84800	75042	140	115307	111146
18	21244	8878	59	54317	40942	100	85551	75911	141	116045	112037
19	22103	9576	60	55092	41773	101	86302	76782	142	116782	112927
20	22957	10282	61	55867	42606	102	87052	77653	143	117520	113818
21	23806	10995	62	56641	43440	103	87802	78524	144	118257	114710
22	24652	11715	63	57414	44276	104	88552	79396	145	118994	115602
23	25493	12441	64	58186	45113	105	89301	80269	146	119730	116494
24	26331	13173	65	58957	45951	106	90050	81143	147	120466	117386
25	27166	13911	66	59728	46790	107	90798	82017	148	121203	118279
26	27997	14654	67	60497	47631	108	91546	82891	149	121939	119173
27	28826	15401	68	61266	48472	109	92293	83766	150	122674	120066
28	29651	16154	69	62035	49315	110	93041	84642	151	123410	120960
29	30474	16910	70	62802	50159	111	93787	85518	152	124145	121855
30	31294	17671	71	63569	51004	112	94534	86395	153	124880	122749
31	32111	18436	72	64335	51851	113	95280	87273	154	125615	123644
32	32927	19204	73	65100	52698	114	96026	88151	155	126349	124540
33	33740	19976	74	65865	53546	115	96771	89029	156	127083	125435
34	34551	20752	75	66629	54396	116	97516	89908	157	127818	126332
35	35360	21531	76	67393	55246	117	98261	90788	158	128551	127228
36	36166	22312	77	68156	56097	118	99005	91668	159	129285	128125
37	36971	23097	78	68918	56950	119	99750	92548	160	130019	129022
38	37775	23885	79	69679	57803	120	100493	93429	161	130752	129919
39	38576	24676	80	70440	58657	121	101237	94311	162	NA	130817
40	39376	25469	81	71201	59512	122	101980	95193	Test I	limit = 1.23	45E-3

NOTE 1: The first column is the number of errors (ne = number of misdetections)

NOTE 2: The second column is the number of samples for the pass limit (ns_p , ns=Number of Samples= number misdetections + number of detections)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

NOTE 4: The test limit at the end of the table is applicable, when the minimum test time in clause 3.5 governs the test. Pass the test for $ER \le Test$ limit, otherwise fail.

G.4.5 Pass fail decision rules

G.2.5 applies

NOTE: For ER=0.01 an ideal DUT passes after 344 samples. The maximum test time is 12913 samples. .For ER=0.001 an ideal DUT passes after 3463 samples. The maximum test time is 130752 samples.

G.4.6 Minimum Test time

Table G.4.6-1: Minimum Test time for Demodulation of PCFICH/PDCCH

Test No	Demod. Scenario	Demodulation scenario (info only)	cenario (Simulation) (Calculation) Franction mand			Min No Sub ames, ndatory)		
				FDD	TDD	FDD	TDD	
1	[8.1]	R.15 (10 MHz, 8CCE, full, QPSK 1/3) (1x2 Low) ETU70	200 000	222 222	400 000	224 000	401 000	
1	[8.2]	R.16 (1.4MHz, 2CCE, full, QPSK 1/3) (2x2 Low) EPA5	200 000 222 222 400 000 224 00		224 000	401 000		
1 Rel 9	[]	R.16-1 (10MHz, 4CCE, full, QPSK 1/3) (2x2 Low) EVA70	200 000	222 222	400 000	224 000	401 000	
1	[8.3]	R.17 (10MHz, 4CCE, full, QPSK 1/3) (4x2 Medium) EVA5	200 000	222 222	400 000	224 000	401 000	
1 Rel 9	[]	R.17-1 (5MHz, 2CCE, full, QPSK 1/3) (4x2 Medium) EPA5 thod to derive MNAS is ba	200 000	222 222	400 000	224 000	401 000	

specified in clause F.1.4.

Table G.4.6-2: Minimum Test time for Demodulation of PHICH

Test No	Demod. scenario	Demodulation scenario	MNAS (Simulation)	MNS (Calculation)			Min No Sub mandatory)
''		(info only)	(Simulation,	FDD	TDD	FDD	TDD
1	[9.1]	R.18 (10 MHz, full, QPSK 1/3) (1x2 Low) ETU70	200 000	200 000	500 000	200 000	500 000
2			200 000	200 000	500 000	200 000	500 000
1	[9.2]	R.19 (1.4MHz, full, 64QAM 3/4) (2x2 Low) EPA5	200 000	200 000	500 000	200 000	500 000
1 Rel. 9	[]	R.19-1 (10MHz, full, 64QAM 3/4) (2x2 Low) EVA70	200 000	200 000	500 000	200 000	500 000
1 [9.3] R.20 (10MHz, 1PRB, 16QAM ½) (4x2 Medium) EVA5		200 000	200 000	500 000	200 000	500 000	
1 Rel. 9	[]	R.20-1 (5MHz, 1PRB, 16QAM ½) (4x2 Medium) EPA5	200 000 R.20 has 5MHz BW Scenario 9.3. has EVA5	200 000	500 000	200 000	500 000
Note:		on method to derive MNAS	is based on finite	test time and	its effect on t	est system u	ıncertainty

specified in clause F.1.4.

G.4.7 Test conditions for receiver performance tests

Table G.4.7: Test conditions for receiver performance tests

Test	Statistical independence	Number of components in the test vector, as specified in the test requirements and initial conditions of the applicable test	Over all Pass/Fail condition Restrictions and extensions see Table G.3.6-1
8.4.1.1 FDD PCFICH/PDCCH Single-antenna Port Performance	A misdetection is an independent event	1	NA
8.4.1.2FDD PCFICH/PDCCH Transmit Diversity Performance	A misdetection is an independent event	2	To pass 8.4.1.2 each component in the test vector must pass
8.4.2.1 TDD PCFICH/PDCCH Single-antenna Port Performance	A misdetection is an independent event	1	NA
8.4.2.2 TDD PCFICH/PDCCH Transmit Diversity Performance	A misdetection is an independent event	2	To pass 8.4.2.2 each component in the test vector must pass
8.5.1.1 FDD PHICH Single-antenna Port Performance	A misdetection is an independent event	2	To pass 8.5.1.1 each component in the test vector must pass
8.5.1.2FDD PHICH Transmit Diversity Performance	A misdetection is an independent event	2	To pass 8.5.1.2 each component in the test vector must pass
8.5.2.1TDD PHICH Single- antenna Port Performance	A misdetection is an independent event	2	To pass 8.5.2.1 each component in the test vector must pass
8.5.2.2TDD PHICH Transmit Diversity Performance	A misdetection is an independent event	2	To pass 8.5.2.2 each component in the test vector must pass

G.5 Measuring throughput ratio

G.5.1 General

Annex G.5 is applicable for clauses 9.3, 9.4 and 9.5. Common to those clauses is, that a throughput ratio γ is measured. These clauses are tested exclusively with "slow" multipath fading profiles. Hence the test time is governed by test time due to fading, and number of samples due to statistical significance is not applicable.

The test requirements in clause 9.4 are a ratio of 2 throughput tests according to $\gamma = \frac{t_{ue}}{t_{rnd}}$. The denominator must be

established by an approach, resulting in the denominator throughput t_{rnd} and the reference SNR_{rnd} , the latter is reused to measure the nominator throughput.

The test requirements in clauses 9.3 and 9.5 are a ratio of 2 throughput tests according to $\gamma = \frac{t_{subband}}{t_{median}}$, $\gamma = \frac{t_{reported}}{t_{fix}}$ etc.

Nominator and denominator are ordinary throughput tests

 t_{ue} , t_{rmd} , $t_{reported}$, t_{fix} , $t_{subband}$, t_{median} , $t_{wideband}$ are throughputs, derived under different conditions and are defined in clause s 9.3, 9.4 and 9.5.

SNR_{rnd} is the signal noise ratio, derived together with t_{rnd} and is defined in clause 9.4.

G.5.2 Establishing t_{rnd}

Adjust SNR such that the measured throughput is $58\% \le t_{rnd} \le 62\%$.

The resulting SNR is declared SNR_{rnd}

To achieve statistical significance the final throughput measurement must be done with MNS samples, given table G.5.4-1

The approach, leading to t_{rnd} and SNR_{rnd} is not specified.

G.5.3 Measuring T-put

To achieve statistical significance the final throughput measurement must be done with MNS samples, given in table.G.5.4 -1. Number of samples due to statistical significance is not applicable.

For measuring $t_{subband}$, $t_{wideband}$, $t_{reported}$ and t_{fix} , the SS collects ACK, NACK and statDTX from the UE and records the time, elapsed from the beginning of the test. The payload size, received by the UE and acknowledged towards the SS, may vary within a test versus time (e.g. due to subband changes upon a UE report) Throughput is calculated in the SS by summing up the payload, associated to each ACK, from the start of the test and dividing the accumulated payload in kilobits by the time in seconds, elapsed from the beginning of the test. This is similar but not same as in G.2.2. (Main difference in bullet d, where the payload size is constant).

For measuring t_{median} , t_{ue} , and t_{rnd} , the SS collects ACK, NACK and statDTX from the UE and records the time, elapsed from the beginning of the test. The payload size, received by the UE and acknowledged towards the SS, is constant. Throughput can be calculated in the SS by multiplying the payload size with the number of ACKs and dividing the accumulated payload in kilobits by the time in seconds, elapsed from the beginning of the test, being associated to the following ratio: ACK/ (ACK+NACK + DTX).

G.5.4 Number of samples for throughput ratios

TT for y and MNS are based on theoretical estimations.

Table G.5.4-1: Test time for testing throughput ratios

Test	Demodulatio Γ n scenario:			Number of es (MNS)	Γ inclu- ding TT	BLER
	RMC (Bandwidth, allocated RBs,		Subfr more details i and table	(MNS = active and inactive Subframes, more details in Annex G.3.5 and table G.3.5-1)		
	modulation, coding) [Antenna configuration , correlation] Propagation condition, Doppler		FDD	TDD		
9.3.1.1.1 9.3.1.1.2	(10 MHz, 6, variable modulation and coding) [1x2, full] Special propagation according to clause B.4.2, 5Hz	1.1	100000 For denominator- and nominator- measuremen t each	170000 For denominator- and nominator- measuremen t each	γ =1.09	BLER=0.05, no TT No of samples: subset of ACKs and NACKs in the MNS for throughput.
9.3.2.1.1 9.3.2.1.2	(10 MHz, full, variable modulation and coding) [1x2, high] EPA5	1.05	100000 For denominator- and nominator- measuremen t each	170000 For denominator- and nominator- measuremen t each	γ =1.04	BLER=0.02, no TT No of samples for FDD: subset of ACKs and NACKs in the MNS for throughput. No of samples for TDD: subset of filtered ACKs and NACKs in the MNS for throughput.
9.3.3.1.1 9.3.3.1.2	10 MHz, full(however unequal SNR), variable modulation and coding) [1x2, full] Special: propagation according to clause B.4.2, 5Hz	1.6	100000 For denominator- and nominator- measuremen t each	170000 For denominator- and nominator- measuremen t each	1.59	V 1 2
9.4.1.1.1 9.4.1.1.2	R.2 (10 MHz, full, QPSK, 1/3) (1x2 Low) EVA,5	1.1	100000	170000	γ =1.09	
9.4.2.1.1 9.4.2.1.2	R.30 (20 MHz, full, 16QAM, 1/2) (2x2 Low) EPA5	1.2	100000	170000	γ =1.19	
9.5.1.1	(10MHz, full,	Test	100000	170000	Test2	

9.5.1.2	variable	2 ½=1		1.04	
	modulation	.05		Test1 ½=	
	and coding)	Test		0.99	
	(2x2, low or	1 ½=1		Test31/2=	
	high	Test		1.09	
	according to	3 ½=1			
	test)	.1			
	(2x2, EPA5)				

G.X Theory to derive the numbers in Table G.2.1.3-1 (Informative)

Editor's note: this section of the Annex G is for information only and it described the background theory and information to derive the entries in the table G.2.1.3-1.

G.X.1 Error Ratio (ER)

The Error Ratio (ER) is defined as the ratio of number of errors (ne) to all results, number of samples (ns). (1-ER is the success ratio).

G.X.2 Test Design

A statistical test is characterised by:

Test-time, Selectivity and Confidence level.

G.X.3 Confidence level

The outcome of a statistical test is a decision. This decision may be correct or in-correct. The Confidence Level CL describes the probability that the decision is a correct one. The complepement is the wrong decision probability (risk) D = 1-CL

G.X.4 Introduction: Supplier Risk versus Customer Risk

There are two targets of decision:

1. (a) A measurement on the pass-limit shows, that the DUT has the specified quality or is better with probability CL (CL e.g.95%) This shall lead to a "pass decision"

The pass-limit is on the good side of the specified DUT-quality. A more stringent CL (CL e.g.99%) shifts the pass-limit farer into the the good direction. Given the quality of the DUTs is distributed, a greater CL passes less and better DUTs.

A measurement on the bad side of the pass-limit is simply "not pass" (undecided or artificial fail).

(aa) Complementary:

A measurement on the fail-limit shows, that the DUT is worse than the specified quality with probability CL.

The fail-limit is on the bad side of the specified DUT-quality. A more stringent CL shifts the fail-limit farer into the the bad direction. Given the quality of the DUTs is distributed, a greater CL fails less and worse DUTs.

A measurement on the good side of the fail-limit is simply "not fail".

2. (b) A DUT, known to have the specified quality, shall be measured and decided pass with probability CL. This leads to the test limit.

For CL e.g. 95%, the test limit is on the bad side of the specified DUT-quality. CL e.g. 99% shifts the passlimit farer into the the bad direction. Given the DUT-quality is distributed, a greater CL passes more and worse DUTs.

(bb) A DUT, known to be an $(\varepsilon \rightarrow 0)$ beyond the specified quality, shall be measured and decided fail with probability CL.

For CL e.g.95%, the test limit is on the good side of the specified DUT-quality.

NOTE 1: the different sense for CL in (a), (aa) versus (b), (bb)

NOTE 2: for constant CL in all 4 bullets (a) is equivalent to (bb) and (aa) is equivalent to (b)

G.X.5 Supplier Risk versus Customer Risk

The table below summarizes the different targets of decision.

Table G.X.5-1 Equivalent statements

	Equivalent statements, using different cause-to-effect- directions, and assuming CL = constant >1/2				
cause-to-effect- directions	Known measurement result → estimation of the DUT's quality	Known DUT's quality → estimation of the measurement's outcome			
Supplier Risk	A measurement on the pass-limit shows, that the DUT has the specified quality or is better (a)	A DUT, known to have an (ε→0) beyond the specified DUT-quality, shall be measured and decided fail (bb)			
Customer Risk	A measurement on the fail-limit shall shows, that the DUT is worse than the specified quality (aa)	A DUT, known to have the specified quality, shall be measured and decided pass (b)			

The shaded area shown the direct interpretation of Supplier Risk and Customer Risk.

The same statements can be based on other DUT-quality-definitions.

G.X.6 Introduction: Standard test versus early decision concept

In standard statistical tests, a certain number of results (ns) is predefined in advance to the test. After ns results the number of bad results (ne) is counted and the error ratio (ER) is calculated by ne/ns.

Applying statistical theory, a decision limit can be designed, against which the calculated ER is compared to derive the decision. Such a limit is one decision point and is characterised by:

- D: the wrong decision probability (a predefined parameter)
- ns: the number of results (a fixed predefined parameter)
- ne: the number of bad results (the limit based on just ns)

In the formula for the limit, D and ns can be understood as variable parameter and variable. However the standard test execution requires fixed ns and D. The property of such a test is: It discriminate between two states only, depending on the test design:

- pass (with CL) / undecided (undecided in the sense: finally undecided)

fail (with CL) / undecided (undecided in the sense: finally undecided)

- pass(with CL) / fail (with CL) (however against two limits).

In contrast to the standard statistical tests, the early decision concept predefines a set of (ne,ns) co-ordinates, representing the limit-curve for decision. After each result a preliminary ER is calculated and compared against the limit-curve. After each result one may make the decision or not (undecided for later decision) The parameters and variables in the limit-curve for the early decision concept have a similar but not equal meaning:

- D: the wrong decision probability (a predefined parameter)
- ns: the number of results (a variable parameter)
- ne: the number of bad results (the limit. It varies together with ns)

To avoid a "final undecided" in the standard test, a second limit must be introduced and the single decision co-ordinate (ne,ns) needs a high ne, leading to a fixed (high) test time. In the early decision concept, having the same selectivity and the same confidence level an "undecided" need not to be avoided, as it can be decided later. A perfect DUT will hit the decision coordinate (ne,ns) with ne=0. This test time is short.

G.X.7 Standard test versus early decision concept

For Supplier Risk:

The wrong decision probability D in the standard test is the probability, to decide a DUT in-correct in the single decision point. In the early decision concept there is a probability of in-correct decisions d at each point of the limit-curve. The sum of all those wrong decision probabilities accumulate to D. Hence d<D

For Customer Risk:

The correct decision probability CL in the standard test is the probability, to decide a DUT correct in the single decision point. In the early decision concept there is a probability of correct decisions cl at each point of the limit-curve. The sum of all those correct decision probabilities accumulate to CL. Hence cl<CL or d>D

G.X.8 Selectivity

There is no statistical test which can discriminate between a limit DUT and a DUT which is an $(\epsilon \rightarrow 0)$ apart from the limit in finite time and high confidence level CL. Either the test discriminates against one limit with the results pass (with CL)/undecided or fail (with CL)/undecided, or the test ends in a result pass (with CL)/fail (with CL) but this requires a second limit.

For CL>1/2, a (measurement-result = specified-DUT-quality), generates undecided in test "supplier risk against pass limit" (a, from above) and also in the test "customer risk against the fail limit " (aa)

For CL>1/2, a DUT, known to be on the limit, will be decided pass for the test "customer risk against pass limit" (b) and also "supplier risk against fail limit" (bb).

This overlap or undecided area is not a fault or a contradiction, however it can be avoided by introducing a Bad or a Good DUT quality according to:

- Bad DUT quality: specified DUT-quality * M (M>1)
- Good DUT quality: specified DUT-qualityt * m (m<1)

Using e.g M>1 and CL=95% the test for different DUT qualities yield different pass probabilities:

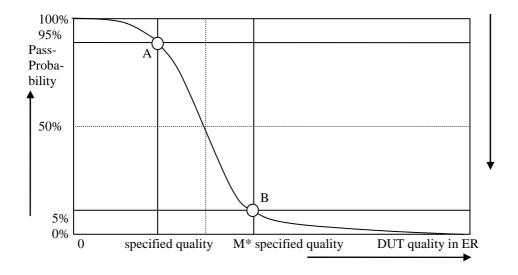


Figure G.X.8-1: Pass probability versus DUT quality

G.X.9 Design of the test

The receiver characteristic test are defined by the following design principles:

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Cusomer Risk is applied based on the specified DUT quality

The receiver characteristic test are defined by the following parameters:

- 1. Limit ER = 0.05
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

This has the following consequences:

1. A measurement on the fail limit is connected with 2 equivalent statements:

A measurement on the fail-limit shows, that the	A DUT, known have the specified quality,
DUT is worse than the specified DUT-quality	shall be measured and decided pass

2. A measurement on the pass limit is connected with the complementary statements:

A measurement on the pass limit shows, that the	A DUT, known to have the Bad DUT quality,
DUT is better than the Bad DUT-quality.	shall be measured and decided fail

The left comumn is used to decide the measurement.

The right column is used to verify the design of the test by simulation.

The simulation is based on the two fulcrums A and B only in Figure G.x.8-1

3. Test time

The minimum and maximum test time is fixed.

The average test time is a function of the DUT's quality.

The individual test time is not predictable.

4. The number of decision co-ordinates (ne,ns) in the early decision concept is responsible for the selectivity of the test and the maximum test time. Having fixed the number of decision co-ordinates there is still freedom to select the individual decision co-ordinates in many combinations, all leading to the same confidence level.

G.X.10 Simulation to derive the pass fail limits in Table G.2.1.3-1

There is freedom to design the decision co-ordinates (ne,ns).

The binomial distribution and its inverse is used to design the pass and fail limits. Note that this method is not unique and that other methods exist.

$$fail(ne, d_f) := \frac{ne}{(ne + qnbinom(d_f, ne, ER))}$$

$$pas \not s ne, \ cl_p, \ M \big) \coloneqq \frac{ne}{\big(ne + \ qnbinom \big(cl_p, \ ne, \ ER \cdot M \big)\big)}$$

Where

- fail(..) is the error ratio for the fail limit
- pass(..) is the error ratio for the pass limit
- ER is the specified error ratio 0.05
- ne is the number of bad results. This is the variable in both equations
- M is the Bad DUT factor M=1.5
- d_f is the wrong decision probability of a single (ne,ns) co-ordinate for the fail limit. It is found by simulation to be $d_f = 0.004$
- cl_p is the confidence level of a single (ne,ns) co-ordinate for the pass limit. It is found by simulation to be $cl_p=0.9975$
- qnbinom(..): The inverse cumulative function of the negative binomial distribution

The simulation works as follows:

- A large population of limit DUTs with true ER = 0.05 is decided against the pass and fail limits.
- cl_p and d_f are tuned such that CL (95%) of the population passes and D (5%) of the population fails.
- A population of Bad DUTs with true ER = M*0.05 is decided against the same pass and fail limits.
- cl_p and d_f are tuned such that CL (95%) of the population fails and D (5%) of the population passes.
- This procedure and the relationship to the measurement is justified in clause G.x.9. The number of DUTs decrease during the simulation, as the decided DUTs leave the population. That number decreases with an approximately exponential characteristics. After 169 bad results all DUTs of the population are decided.

NOTE: The exponential decrease of the population is an optimal design goal for the decision co-ordinates (ne,ns), which can be achieved with other formulas or methods as well.

Annex H (normative): Uplink Physical Channels

H.0 Uplink Signal Levels

Editor's note: The configuration of SRS is FFS

Unless otherwise specified in the test case, the uplink power settings result from the default configuration of the UE described in 3GPP TS 36.508 [7].

H.1 General

This annex specifies the uplink physical channels that are needed for setting a connection and channels that are needed during a connection. Table H.1-1 describes the mapping of uplink physical channels and signals to physical resources for FDD. Table H.1-2 describes the mapping of uplink physical channels and signals to physical resources for TDD.

Table H.1-1: Mapping of uplink physical channels and signals to physical resources for FDD

Physical channel	Time Domain Location	Frequency Domain Location	Note
		5411	
PRACH	Allowed for the parameter <i>prach-</i>	[Allowed for the parameter prach-	Mapping rule is specified in
	Configuration Index provided by	FrequencyOffset provided by higher	TS36.211 Section 5.7.1
	higher layers	layers]	
DMRS	For PUCCH:	Uplink system bandwidth	Mapping rule of DMRS for
	Symbols 2 to 4 of each slot	dependent.	PUCCH is specified in
	(PUCCH format: 1, 1a, 1b)	·	TS36.211 5.5.2.2.2
	Symbol 1 and 5 of each slot		Mapping rule of DMRS for
	(PUCCH format: 2, 2a, 2b)		PUSCH is specified in TS36.211 5.5.2.1.2
	For PUSCH:		1000:211 0:0:2:1:2
	Symbol 3 of each slot		
PUCCH	Slot 0 and 1 of each subframe	[Each 12 subcarriers of both ends of	Mapping rule is specified in
		the bandwidth]	TS36.211 Section 5.4.3
PUSCH	All remaining SC-FDMA symbols	RBs allocated according to	Mapping rule is specified in
	of each subframe not allocated to	Reference Measurement channel in	TS36.211 Section 5.4.2
	DMRS	Annex A.2	

Table H.1-2: Mapping of uplink physical channels and signals to physical resources for TDD

Physical channel	Time Domain Location	Frequency Domain Location	Note
PRACH	Allowed for the parameters $(t_{RA}^0, t_{RA}^1, t_{RA}^2)$ in prach-Configuration Index provided by higher layers	For format 0-3, the frequency location allowed is by $prach$ - $FrequencyOffset$ and (f_{RA}) in $prach-Configration\ Index\ provided$ by higher layers. Preamble format 4 is mapped only on UpPTS, where the frequency location allowed is only by (f_{RA}) in $prach$ - $Configration\ Index\ provided\ by$ higher layers.	Mapping rule is specified in TS36.211 Section 5.7.1
DMRS	For PUCCH: Symbols 2 to 4 of each slot (PUCCH format: 1, 1a, 1b) Symbol 1 and 5 of each slot (PUCCH format: 2, 2a, 2b) For PUSCH: Symbol 3 of each slot	Uplink system bandwidth dependent.	Mapping rule of DMRS for PUCCH is specified in TS36.211 5.5.2.2.2 Mapping rule of DMRS for PUSCH is specified in TS36.211 5.5.2.1.2
PUCCH	Slot 0 and 1 of each subframe	[Each 12 subcarriers of both ends of the bandwidth]	Mapping rule is specified in TS36.211 Section 5.4.3
PUSCH	All remaining SC-FDMA symbols of each subframe not allocated to DMRS	RBs allocated according to Reference Measurement channel in Annex A.2	Mapping rule is specified in TS36.211 Section 5.4.2

NOTE: PUSCH, PUCCH, DMRS are not present in UpPTS for TDD.

H.2 Set-up

Table H.2-1 describes the uplink physical channels that are required for connection set up.

Table H.2-1: Uplink Physical Channels required for connection set-up

Physical Channel
PRACH
DMRS
PUCCH
PUSCH

H.3 Connection

The following clauses describes the uplink physical channels that are transmitted during a connection i.e., when measurements are done.

Table H.3-1: Uplink Physical Channels required during a connection

[Table contents FFS]

H.3.0 Measurement of Transmitter Characteristics

[FFS]

H.3.1 Measurement of Receiver Characteristics

[FFS]

H.3.2 Measurement of Performance Requirements

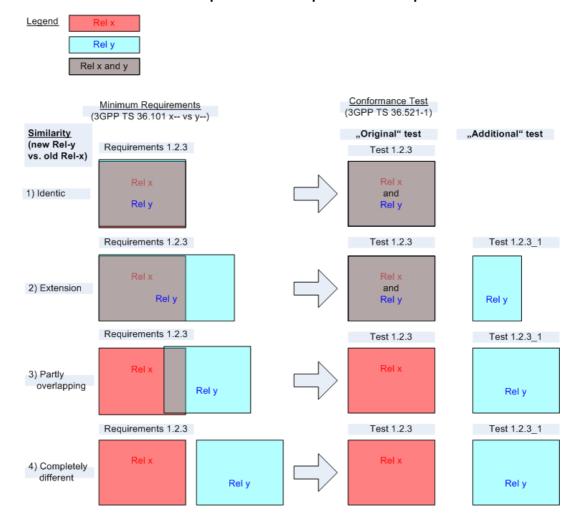
[FFS]

Annex I (informative): Handling of different releases

This annex gives guidance on how different minimum requirements between releases in 3GPP TS 36.101 [2] are handled in specification 3GPP TS 36.521-1.

I.1 Mapping of minimum requirements to conformance tests

Basic principles of deriving and specifying conformance tests in 3GPP TS 36.521-1 from minimum requirements in 3GPP TS 36.101 [2]:


- a. reuse as far as possible the already specified tests even for later releases (if applicable)
- b. avoid repeating and redundant test standardization
- c. minimize the maintenance work

The application of these principles results in the following conformance test drafting strategy:

- d. if minimum requirements are specified only in one release of 3GPP TS 36.101 [2], then also the equivalent test in 3GPP TS 36.521-1 is specified only for that release.
- e. if minimum requirements are specified in multiple releases of 3GPP TS 36.101 [2], then the specification structure for the derived tests in 3GPP TS 36.521-1, depends on the similarity (intersection) of the minimum requirements set between different releases of 3GPP TS 36.101 [2].

This is described graphically in the following figure:

Figure I.1-1: Mapping of minimum requirements to conformance tests, when minimum requirements are specified in multiple releases

I.2 Structure and numbering of subclauses

- a. The general effort is to keep the numbering and structure of conformance tests in 3GPP TS 36.521-1 as similar as possible with the corresponding minimum requirements in 3GPP TS 36.101 [2].
- b. In case of multiple conformance tests due to difference of minimum requirements between releases (as per Figure X.1-1), the "additional" inserted tests are numbered using the number of the "original" test extended by an Arabic numeral preceded by an underscore ("_"). Using an underscore instead of a full-stop keeps the subclause level of the "additional" test the same as of the "original" test.

Example:

Minimum requirements in 3GPP TS 36.101[2]: 1.2.3, 1.2.3A, 1.2.4

Conformance tests in 3GPP TS 36.521-1: 1.2.3, 1.2.3_1, 1.2.3_2, ... 1.2.3A, 1.2.3A_1, 1.2.3A_2, ... 1.2.4, 1.2.4_1, 1.2.4_2, ...

I.3 Specification of the additional tests

In case when the additional conformance tests are procedurally very similar to the original tests, in order to reduce the standardization and maintenance work (as per Annex I.1), the content of subclauses of the additional tests may be reduced to a minimum by referencing to the analogue subclauses of the original tests (provided they are similar), and specifying the exceptions (requirement-tables, test parameter tables etc). This method is to apply very carefully, in order to make sure that possible differences in the core functionality of different E-UTRAN releases remain considered.

Annex J (informative): Change history

Change history								
Date	TSG#	TSG Doc.		R ev	Subject/Comment	Old	New	
2007-08	RAN5 #36	R5-072185			Skeleton proposed for RAN5#36Athens		0.0.1	
2007-08	RAN5 #36	R5-072419			Update the skeleton base on R4-071234_TR36.803.0.4.0.doc	0.0.1	0.0.2	
2007-08	RAN5 #36	R5-072424			Update with editorial changes	0.0.2	0.0.3	
2007-11	RAN5 #37	R5-073043			Update document with some info as following:	0.0.3	0.0.4	
					Section 5: Frequency band information			
					Section 6.2: Maximum output power Section 6.5: Output RF spectrum emissions			
					Section 6.5.1: Occupied bandwidth			
					Section 6.5.2: Out of band emission			
					Section 6.5.3: Spurious emissions			
2007-11	RAN5 #37	R5-073360			Editorial change to split MOP and UE Power classes	0.0.4	0.0.5	
2008-03	RAN5 #38	R5-080069			Editorial changes to sync up with 36.101 v1.0.0 as much as	0.0.5	0.0.6	
					feasible for the moment:			
					Update definitions, symbols and abbreviations			
					Update frequency bands, channel bandwidth, channel			
					numbers information.			
					Restructure document to move "frequency error" sub-section			
					inside Transmit signal quality. Add "additional spectrum Emission Mask" sub-test (mask			
					A,B,C) section to address the regulatory requirements that are			
					not met with the general mask (OOB and spurious emission).			
					Add "Additional ACLR requirements" to address additional			
					requirements that the network might indicate to the UE via			
					signalling for a specific deployment scenario (in terms of			
					additional requirements for UTRA/ACLR2			
					Restructure "Spurious Emission" to indicate we need to have 3			
					test cases to address: "E-UTRA Spurious Emission"			
					requirements, "Spurious Emission band UE co-existence"			
					requirements, and "Additional spurious emissions"			
					requirements			
					Separate wide band and narrow band intermodulation in the			
2008-03	RAN5 #38	R5-080408			intermodulation characteristics LTE Reference Sensitivity test Text proposal		0.0.7	
2008-03	RAN5 #38	R5-080409			LTE Maximum Rx input level test Text proposal		0.0.7	
2008-03	RAN5 #38	R5-080410			LTE Adjacent Channel Selectivity test Text proposal		0.0.7	
2008-03	RAN5 #38	R5-080064			LTE RF Receiver tests, General section Text proposal		0.0.7	
2008-03	RAN5 #38	R5-080412			LTE RF: transmission modulation initial EVM test proposal		0.0.7	
2008-03	RAN5	R5w0800027			Modify styles and formats of tables and others according to		0.0.9	
2000 00	Workshop-	11000000027			drafting rules.		0.0.0	
	UE LTE Test				Add some definitions and abbreviations			
	(9-11 April)				Modified section 6.2 structure to be aligned with 36.101 v8.1.0			
	, ,				Modify tables of requirements to remove 1.6 MHz and 3.2MHz			
					channel bandwidth according to new requirements 36.101			
					v8.1.0			
2008-03	RAN5	R5w0800028			Following TPs have been included:	0.0.9	0.1.0	
	Workshop-				R5w080013r1 R5w080014r1			
	UE LTE Test							
	(9-11 April)				R5w080008r2 R5w080009r2			
					R5w080040r1			
					R5w080015r1			
					R5w080016r1			
					R5w080017r1			
					R5w080018r2			
2008-05	RAN5#39	R5-081046			36-521-1 alignment of measurement state for test cases	0.1.0	0.1.1	
2008-05	RAN5#39	R5-081042			Following approved TPs have been included:	0.1.1	0.2.0	
					R5-081040 36.521-1 after April LTE-RF workshop			
					R5-081415 36-521-1 alignment of measurement state for test			
					cases – also the measurement state for each test cases has			
					been updated according to R5-081404			
					R5-081416 Cover for LTE E-UTRAN RRC_IDLE State			
					Mobility text proposal			
					R5-081417 Cover for LTE E-UTRAN RRC_CONNECTED			
					State Mobility text proposal			
l	1				R5-081404 LTE Rx Intermodulation test case text proposal		1	

				R5-081409 Annex structure for Measurement uncertainty & Test Tools R5-081405 Text Proposal for TS36.521-1 TC7.6 Blocking Characteristics R5-081406 Text Proposal for TS36.521-1 TC7.7 Spurious Response R5-081403 Text Proposal for TS36.521-1 TC7.9 Spurious Emissions R5-081410 Uncertainties and Test Tools for subset of UE tests R5-081331 Clarification of diversity characteristics section for multiple UE antennas R5-081335 36-521-1 update of nominal and additional channel bandwidths		
2008-06	RAN5	R5-082029		Following approved TPs have been included:	0.2.0	0.3.0
	#39bis			R5-082129: Restructure of TS 36.521-1 and RRM proposal (Split of RRM from 36.521-1 v0.2.0 in its own specification 36.521-3.) R5-082166: Text Proposal for Annex C Downlink Physical Channels R5-082130: Text Proposal for Chan bandwidths in TS 36.521-1 R5-082155: Text Proposal for LTE Tx Minimum Output Power R5-082027: Text Proposal for Occupied bandwidth in TS 36.521-1 R5-082171: Text Proposal for LTE Adjacent Channel Leakage power Ratio R5-082134: Text Proposal for LTE Tx Spurious Emissions R5-082135: Text Proposal for LTE UE Maximum Output Power R5-082136: Text Proposal for LTE Spectrum Emission Mask R5-082138: UE Spurious Emissions Measurement uncertainty & Test Tolerances R5-082138: UE Spurious Emission Mask test uncertainties and TTs R5-082152: Text proposal for LTE Transmit OFF Power R5-082152: LTE UE Max Power and ACLR tests uncertainties and TTs R5-082153: LTE UE Max Rx Input and ACS test cases update R5-082082: LTE Rx Intermodulation test case uncertainties and TTs R5-082093: Text Proposal for TS36.521-1 TC7.6 Blocking Characteristics R5-082093: Text Proposal for TS36.521-1 TC7.7 Spurious Response R5-082167: OBW Measurement uncertainty & Test Tolerances R5-082158: Cover for LTE Performance Requirement text proposal R5-082159: Text Proposal for LTE Demodulation of PCFICH/PDCCH and PHICH R5-082157: Text proposal for LTE Tx Minimum Output Power Uncertainty R5-082157: Text proposal for LTE Tx Minimum Output Power Uncertainty R5-082157: Text proposal for LTE Tx Minimum Output Power Uncertainty R5-082157: Text proposal for LTE Tx Minimum Output Power Uncertainty Cover for LTE Proposal for LTE Tx Minimum Output Power Uncertainty Cover for LTE Proposal for LTE Tx Minimum Output Power Uncertainty Cover for LTE Proposal for LTE Tx Minimum Output Power Uncertainty Cover for LTE Proposal for LTE Tx Minimum Output Power Uncertainty Cover for LTE Proposal for LTE Tx Minimum Output Power Uncertainty Cover for LTE Proposal for LTE Tx Minimum Output Power Tolerance R5-082164: Statistical testing of receiver characteristi		
2008-08	RAN5 #40	R5-083163		Following approved TPs have been included: R5-083804: LTE Demodulation Performance text proposal R5-083159: LTE-RF Occupied bandwidth test case / measurement uncertainty and TT text proposal R5-083160: Transmission OFF power: TP, measurement uncertainty and test tolerances proposal R5-083805: Frequency Error test case / measurement uncertainty and TT test proposal R5-083162: Propagation conditions correction text proposal R5-083220:Text Proposal for LTE Tx Minimum Output Power R5-083806: TP of section 8 for E-UTRAN TDD in 36.521-1 R5-083344: Test Tolerance and System uncertainty for OBW test R5-083848:Test Tolerance and System uncertainty for Reference sensitivity test R5-083840: Test Tolerances for Spectrum Emission Mask R5-083808: Reference Measurement Channel for LTE UE	0.3.0	1.0.0

					Receiver tests		
					R5-083350: Test Tolerance and System uncertainty for		
					Blocking and Spurious response R5-083366: Text Proposal for LTE Reporting of CQI/PMI		
					R5-083810: LTE PBCH Demodulation Performance		
					Requirements		
					R5-083482: LTE-RF TP for Test Case 7.6 Blocking		
					Characteristics		
					R5-083809: LTE-RF TP for Test Case 7.7 Spurious Response		
					R5-083484: LTE-RF TP for Test Case 7.9 Spurious Emissions		
					R5-083811: Annex E Global In-Channel TX-Test		
2000 40	DANE	DE 004070			R5-083163: TS 36.521-1 after RAN5#40	4.0.0	4.4.0
2008-10	RAN5 #40Bis	R5-084072			Following approved TPs have been included: R5-084072 TS 36.521-1 after RAN5#40Bis	1.0.0	1.1.0
	#40015				R5-084300 LTE-RF TP for Definitions Symbols and		
					Abbreviations		
					R5-084304 LTE-RF-TP for general section		
					R5-084036 Test Tolerances for additional SEM		
					R5-084303 LTE-RF TP for Channel bandwidths and frequency		
					range		
					R5-084305 LTE-RF TP for new Absolute Power Tolerance test		
					case R5-084067 LTE-RF TP for Transmission OFF test case		
					R5-084318 LTE-RF TP for Transmission Modulation test		
					cases		
					R5-084069 LTE-RF Investigation of E-UTRA-TDD Frequency		
					Error test case applicability		
					R5-084319 LTE-RF TP for Frequency Error test case		
					R5-084309 Text Proposal for LTE Tx Spurious Emissions		
					R5-084111 Text Proposal for LTE Adjacent Channel Leakage power Ratio		
					R5-084320 Text Proposal for LTE Additional Spectrum		
					Emission Mask		
					R5-084310 Test Tolerances for additional spurious emission		
					R5-084311 Text Proposal for Occupied bandwidth		
					R5-084321 Text Proposal for LTE Spectrum Emission Mask		
					R5-084060 Modification to section 7.2 Diversity characteristics		
					R5-084312 References in 36.521-1 tests initial conditions		
					R5-084148 Update of Reference Measurement Channel for LTE UE Rx tests		
					R5-084167 LTE-RF TP for TC7.9 Spurious Emissions		
					R5-084075 LTE DL Reference Measurement Channel for		
					PDSCH (FDD) text proposal		
					R5-084077 LTE Measurement of Performance Requirements		
					text proposal		
					R5-084313 LTE Demodulation of PDSCH Test Requirements		
					text proposal		
					R5-084147 Specification of DL propagation conditions for LTE		
					UE tests R5-084315 Text Proposal for LTE Demodulation of		
					PCFICH/PDCCH		
					R5-084323 Text Proposal for Annex E Global In-Channel		
2008-12	RAN#42	RP-080863				2.0.0	8.0.0
2008-01					Editorial corrections.	8.0.0	8.0.1
2009-03	RAN#43	R5-086011	0001	<u> -</u>	TP for In-band emissions	8.0.1	8.1.0
2009-03	RAN#43	R5-086012	0002	-	TP for Spectrum flatness	8.0.1	8.1.0
2009-03	RAN#43	R5-086013	0003	-	TP for IQ-component	8.0.1	8.1.0
2009-03	RAN#43	R5-086064	0004	 -	LTE-RF: UE max output power Clarification of measurement period in minimum output power	8.0.1	8.1.0 8.1.0
2009-03	RAN#43	R5-086093	0005	[test procedure	8.0.1	0.1.0
2009-03	RAN#43	R5-086094	0006	 	Clarification of measurement period in transmit OFF power	8.0.1	8.1.0
				L	test procedure	Ĺ	
2009-03	RAN#43	R5-086120	0007	<u>-</u>	Update of Max.input level test	8.0.1	8.1.0
2009-03	RAN#43	R5-086125	8000	<u> -</u>	Addition of UL Reference Measurement Channels in Annex A2	8.0.1	8.1.0
2009-03	RAN#43	R5-086160	0009		correction for Maximum Power Reduction (MPR)	8.0.1	8.1.0
2009-03	RAN#43	R5-086167	0010	-		8.0.1	8.1.0
2009-03	RAN#43	R5-086168	0011	 	and Spurious Response LTE-RF: TDD applicability and CR for Spurious Emissions	8.0.1	8.1.0
2009-03	RAN#43	R5-086239	0011	 	Update of Symbols	8.0.1	8.1.0
2009-03	RAN#43	R5-086401	0012	 	LTE-RF: TX-RX channel freq separation	8.0.1	8.1.0
2009-03	RAN#43	R5-086405	0013	 	Update of 6.7 Transmit intermodulation test	8.0.1	8.1.0
2009-03	RAN#43	R5-086406	0015	ļ-	Update of initial conditions for Tx and Rx test cases	8.0.1	8.1.0
2009-03	RAN#43	R5-086408	0016	-	Update of Adjacent Channel Leakage power Ratio	8.0.1	8.1.0
2009-03	RAN#43	R5-086409	0017	_	Removal of [] from Clause 7 Receiver Characteristics	8.0.1	8.1.0
2009-03	RAN#43	R5-086413	0018	-	Updates to Demodulation of PCFICH/PDCCH test case	8.0.1	8.1.0

2009-03 RANIH43 R5-08616 0021 Update to DL Reference Measurement Channels in Annex A3 8.0.1 8.1.0 2009-03 RANIH43 R5-086425 0022 Update to Annex a Composition of	2009-03	RAN#43	R5-086414	0019	-	Text proposal for Reporting of Channel State Information	8.0.1	8.1.0
2009-03 RANH43 R5-086425 0023 Update of General text in clause 6 8.0.1 8.1.0 2009-03 RANH43 R5-086426 0024 Clarification of measurement bandwidth in spectrum emission 8.0.1 8.1.0 2009-03 RANH43 R5-086426 0025 Demodulation of TDD PCFICH/PDCCH test requirements text 2009-03 2009-03 RANH43 R5-086428 0026 Demodulation of TDD PCFICH/PDCCH test requirements text 2009-03 2009-03 RANH43 R5-096038 0026 Demodulation of TDD PCFICH/PDCCH test requirements text 2009-03 2009-03 RANH43 R5-096038 0026 Demodulation of TDD PCFICH/PDCCH test requirements text 2009-03 RANH43 R5-096038 0026 Demodulation of TDD PCFICH/PDCCH test requirements text 2009-03 RANH43 R5-096038 0026 Demodulation of TDD PCFICH/PDCCH test requirements text 2009-03 RANH43 R5-096038 0026 Demodulation of TDD PCFICH/PDCCH test requirements text 2009-03 RANH43 R5-096038 0026 Demodulation 2009-03 RANH43 R5-096043 0026 Demodulation 2009-03 RANH43 R5-096049 0026 Demodulation 2009-03 RANH43 R5-	2009-03	RAN#43	R5-086415	0020	-		8.0.1	8.1.0
2009-03 RAN#43 R5-086125 0023 Update of General text in clause 6 0.1 8.1.0 2009-03 RAN#43 R5-086128 0025 Demodulation of TDD PHICH test requirements text proposal 0.1 8.1.0 2009-03 RAN#43 R5-086128 0025 Demodulation of TDD PHICH test requirements text proposal 0.1 8.1.0 2009-03 RAN#43 R5-086129 0026 Demodulation of TDD PCFCH/PDCCH test requirements text 0.1 8.1.0 2009-03 RAN#43 R5-086080 0027 New Annotation of TDD PCFCH/PDCCH test requirements text 0.1 8.1.0 2009-03 RAN#43 R5-080080 0027 New Annotation of TDD PCFCH/PDCCH test requirements text 0.1 8.1.0 2009-03 RAN#43 R5-080080 0027 New Annotation of TDD PCFCH/PDCCH test requirements text 0.1 8.1.0 2009-03 RAN#43 R5-080080 0028 RAN#44 R5-080080 0028 RAN#44 R5-080080 0029 RAN#44 R5-080080 0029 RAN#45 R5-090080 RAN#45 R5-090080 0029 RAN#45 R5-090080 0029 RAN#45 R5-090080 0029 RAN#45 R5-090080 0029 RAN#46 R5-090080 RAN#46 R5-090080 RAN#46 R5-090080 RAN#46 R5-090080 RAN#46 R5-090080 RAN#46 R5-090109 0029 RAN#4	2009-03	RAN#43	R5-086416	0021	-	Update of DL Reference Measurement Channels in Annex A3	8.0.1	8.1.0
2009-03 RANN443 R5-086426 0024 Clarification of measurement bandwidth in spectrum emission 8.0.1 8.1.0	2009-03	RAN#43	R5-086417	0022	-	Update to Annex E	8.0.1	8.1.0
2009-03 RANN#43 R5-086426 0025 Demodulation of TDD PHICH test requirements text proposal 8.0.1 8.1.0	2009-03	RAN#43	R5-086425	0023	-	Update of General text in clause 6	8.0.1	8.1.0
Demodulation of TDD PCFICH/PDCCH test requirements text 8.0.1 8.1.0	2009-03		R5-086426		-	Clarification of measurement bandwidth in spectrum emission	8.0.1	
Demodulation of TDD PCFICH/PDCCH test requirements text 8.0.1 8.1.0	2009-03	RAN#43	R5-086428	0025	-	Demodulation of TDD PHICH test requirements text proposal	8.0.1	8.1.0
2009-03 RANH43 RS-090308 0027 - New Annex H for Uplink Physical Channels State Information 8.0.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1 8.1.0 8.1.1	2009-03	RAN#43		0026	-	Demodulation of TDD PCFICH/PDCCH test requirements text		8.1.0
2009-03 RANH43 RS-090308 0028 - Text proposal for Reporting of Channel State Information 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.1 8.0.1	2009-03	RAN#43	R5-090306	0027	-	!' '	8.0.1	8.1.0
2009-03 RANH43 RS-090403 0029 - CR to 36.521+1: Update of SQu1ous Emissions test cases 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.1 8.0.1 8.1.0 8.0.1 8.1.1 8.0.1 8.1.1 8.0.1 8.1.1 8.0.1 8.1.1 8.0.1 8.1.1 8.0.1 8.1.1 8.0.1	2009-03		R5-090308	0028	-		8.0.1	8.1.0
2099-03 RANH#43 R5-090483 0031 - LTE-RF: Correction to 36.521-1 Frequency error test case 8.0.1 8.1.0 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1 8.1.0 8.0.1	2009-03	RAN#43	R5-090403	0029	1-		8.0.1	8.1.0
2009-03 RANH43 R5-090488 0032 - LTE Demodulation of PDSCH Test Requirements text 8.0.1 8.1.0 8.1.0 8.1.0 8.1.0 8.1.0 8.0.1 8.1.1 8.1.0 8.0.1 8.1.1 8.1.0 8.0.1 8.1.1 8.0.1 8.1.1 8.0.1 8.1.1 8.0.1 8.0.1 8.0.1 8.1.1 8.0.1 8.0.1 8.0.1 8.0.1 8.0.1 8.0.1	2009-03	RAN#43	R5-090404	0030	1-	CR to 36.521-1: Update of ACLR test case	8.0.1	8.1.0
2009-03 RANH43 R5-091004 0034 LTE-RF: CR for UE max power test case 8.0.1 8.1.0 2009-03 RANH43 R5-091004 0034 LTE-RF: CR for UE max power test case 8.0.1 8.1.0 2009-03 RANH43 R5-091007 0035 LTE-RF: CR for UE max power test case 8.0.1 8.1.0 2009-03 RANH43 R5-091008 0036 LTE-RF: CR for UE max power test case 8.0.1 8.1.0 8.1.0 2009-03 RANH43 R5-091008 0036 LTE-RF: DR popilizability LTE-RF: DR popilizability CTE-RF: TOTA popilicability 2009-03 RANH43 R5-091019 0037 LTE-RF: TOTA papilicability CTE-RF: TOTA papilicability R5-091012 0039 LTE-RF: TOTA papilicability and CR for Maximum input Level 8.0.1 8.1.0 2009-03 RANH43 R5-091012 0039 LTE-RF: TOTA papilicability and CR for Maximum input Level 8.0.1 8.1.0 2009-03 RANH43 R5-091017 0040 Removal of Rx Narrowband Intermod 7.8.2 8.0.1 8.1.0 2009-03 RANH43 R5-091017 0041 Relocation of 36.521-1 Annex C DL mapping 8.0.1 8.1.0 8.1.0 2009-03 RANH43 R5-091020 0041 Relocation of 36.521-1 Annex C DL mapping 8.0.1 8.1.0 8.1.0 2009-03 RANH43 R5-091023 0041 Relocation of 36.521-1 Annex C DL mapping 8.0.1 8.1.0 2009-03 RANH43 R5-091023 0041 CR for Maximum input Level 8.0.1 8.1.0 2009-03 RANH43 R5-091023 0041 CR for Maximum input Level 8.0.1 8.1.0 2009-03 RANH43 R5-091023 0041 CR for Maximum input Level 8.0.1 8.1.0 2009-03 RANH43 R5-091025 0045 CR for 36.521-11 Update of Rank Papility Rank Papility R5-091022 0044 CR for 36.521-11 Update of SEM and Additional SEM test 8.0.1 8.1.0 2009-03 RANH43 R5-091025 0045 CR for 36.521-11 Update of Rank Papility R5-091032 R5	2009-03	RAN#43	R5-090443	0031	-	LTE-RF: Correction to 36.521-1 Frequency error test case	8.0.1	8.1.0
Dispose Continue Disp	2009-03	RAN#43	R5-090488	0032	-	LTE TDD applicability for Transmit intermodulation test case		8.1.0
2009-03 RAN#43 R5-091007 0035 LTE-RF: TDD Applicability and CR for Spectrum Emission Mask R5-091008 0036 LTE-RF: ITDD Applicability and CR for Spectrum Emission Mask R5-091009 0037 LTE-RF: Investigation of E-UTRA-TDD for Occupied bandwidth R5.0.1 R1.0 R5.009-03 RAN#43 R5-091011 0038 LTE-RF: ITDD applicability and CR for Maximum Input Level R5.0.1 R5.009-03 RAN#43 R5-091012 0039 LTE-RF: TDD applicability and CR for Maximum Input Level R5.0.1 R5.009-03 RAN#43 R5-091017 0040 Removal of Rx Narrowband Intermod 7.8.2 R5.01 R5.009-03 R5.009-	2009-03	RAN#43	R5-091002	0033	-	· '		8.1.0
Mask and Additional Spectrum Emission Mask Sc.091008 O36 LTE-RF. Investigation of E-UTRA-TDD for Occupied bandwidth 8.0.1 8.1.0	2009-03	RAN#43	R5-091004	0034	-		8.0.1	8.1.0
Lets case applicability Lets (asse applicabi	2009-03	RAN#43	R5-091007	0035	-	Mask and Additional Spectrum Emission Mask		8.1.0
Leakage power Ratio test case applicability Section Section	2009-03	RAN#43	R5-091008	0036	-		8.0.1	
2009-03 RAN#43 R5-091012 0039 - LTE-RF: TDD applicability and CR for Adjacent Channel 8.0.1 8.1.0 Selectivity (ACS) Selectivit	2009-03	RAN#43	R5-091009	0037		Leakage power Ratio test case applicability		8.1.0
Selectivity (ACS)					-			
2009-03 RAN#43 R5-091019 0041 - Relocation of 36.521-1 Annex C DL mapping 8.0.1 8.1.0 8.1.0 2009-03 RAN#43 R5-091023 0043 - Test requirements of TDD PDSCH demodulation performance with user-specific reference symbols 8.0.1 8.1.0 2009-03 RAN#43 R5-091024 0044 - CR to 36.521-1: Update of Annex F.3.2 Measurement of transmitter transmiter 8.0.1 8.1.0 2009-03 RAN#43 R5-091025 0045 - CR to 36.521-1: Update of SEM and Additional SEM test cases 8.0.1 8.1.0 2009-03 RAN#43 R5-091077 0046 - CR to 36.521-1: Addition of test combinations for test cases 8.0.1 8.1.0 2009-03 RAN#43 R5-091082 0047 - Spurious emission requirements on PHS band including the future plan in Japan 8.0.1 8.1.0 2009-03 RAN#43 R5-091106 0049 - Update of Reference sensitivity test in 7.3 8.0.1 8.1.0 2009-03 RAN#43 R5-091106 0049 - Update of Reference sensitivity test	2009-03	RAN#43	R5-091012	0039	-		8.0.1	8.1.0
2009-03 RAN#43 R5-091020 0042 - Removal of "Out-of-synchronization handling of output power" 8.0.1 8.1.0 8.10209-03 RAN#43 R5-091023 0043 Test requirements of TDD PDSCH demodulation performance with user-specific reference symbols 8.1.0 8.1.0 2009-03 RAN#43 R5-091024 0044 - CR to 36.521-1: Update of Annex F .3.2 Measurement of transmitter 2009-03 RAN#43 R5-091025 0045 - CR to 36.521-1: Update of SEM and Additional SEM test cases 8.0.1 8.1.0 2009-03 RAN#43 R5-091077 0046 - CR to 36.521-1: Update of SEM and Additional SEM test cases 8.0.1 8.1.0 2009-03 RAN#43 R5-091082 0047 - Spurious emission requirements on PHS band including the future plan in Japan 1.0.0					-			8.1.0
heading					-			
With user-specific reference symbols S.1.0	2009-03	RAN#43	R5-091020	0042	-	heading	8.0.1	8.1.0
	2009-03	RAN#43	R5-091023	0043	-	with user-specific reference symbols		
Cases CR to 36.521-1: Addition of test combinations for test cases 8.0.1 8.1.0	2009-03	RAN#43	R5-091024	0044	-		8.0.1	
with MPR application Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements on PHS band including the future plan in Japan Spurious emission requirements of the future plan in Japan Spurious emission of Reposition of PDCCH/PCFICH test cases Spurious emission Spurious Spurious Spurious Spurious Spurious Spurious Spurious Spurious Spurious	2009-03	RAN#43	R5-091025	0045	-			
Future plan in Japan Future plan in Japan					-	with MPR application		
2009-03 RAN#43 R5-091106 0049 - Update of Reference sensitivity test in 7.3 8.0.1 8.1.0 2009-03 RAN#43 R5-091111 0050 1 Update of initial conditions for Rx tests 8.0.1 8.1.0 2009-05 RAN#44 R5-092144 0051 - LTE-RF: Resubmission of R5-086424 UE output power dynamics 36.521-1 v8.1.0 (re-submit no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092147 0053 - LTE-RF: CR for UE configured UE transmitted output power test case (re-submit no changes) LTE-RF: CR for UE minimum output power test case (re-submit no changes) LTE-RF: CR for UE minimum output power test case (re-submit no change) 2009-05 RAN#44 R5-092149 0054 - LTE-RF: CR for Power Control Absolute power tolerance test case (re-submit no change) LTE-RF: CR for Power Control Relative power tolerance test case (re-submit no changes) LTE-RF: CR for Power Control Relative power tolerance test case (re-submit no changes) LTE-RF: New test case for Aggregate power control tolerance (re-submit no changes) LTE-RF: New test case for Aggregate power control tolerance (re-submit no changes) RAN#44 R5-092263 0057 Text proposal for Reporting of Channel State Information 8.1.0 8.2.0 2009-05 RAN#44 R5-092265 0059 Correction to Demodulation of PDCCH/PCFICH test cases 8.1.0 8.2.0 2009-05 RAN#44 R5-092273 0060 Mapping of downlink physical channels for TDD 8.1.0 8.2.0 2009-05 RAN#44 R5-092273 0061 Annex A RMC updates RAN#44 R5-092372 0063 Maintenance on Initial configurations for Perf TCs 8.1.0 8.2.0 2009-05 RAN#44 R5-092369 0062 Update of A.3.4.3 for RMC with UE-specific RS 8.1.0 8.2.0 2009-05 RAN#44 R5-092476 0066 CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092476 0066 CR to 36.521-1: Update of Foundations (re-submit with no changes) Update of TDD PDSCH test cases 8.1.0 8.2.0 2009-05 RAN#44 R5-092476 0068 CR to 36.521-1: Update of TDD PDSCH test cases 8.			R5-091082		-	future plan in Japan	8.0.1	
2009-03 RAN#44 R5-092144 R5-092144 R5-092145 R5-092144 R5-092145 R5-092145 R5-092145 R5-092146 R5-092146 R5-092146 R5-092147 R5-092150 R5-092150					-			
2009-05 RAN#44 R5-092146 0051 - LTE-RF: Resubmission of R5-086424 UE output power dynamics 36.521-1 v8.1.0 (re-submit no changes) 8.1.0 8.2.0					-	,		
dynamics 36.521-1 v8.1.0 (re-submit no changes)					1			
Lest case (re-submit no changes) LTE-RF: CR for UE minimum output power test case (re-submit no change)					-	dynamics 36.521-1 v8.1.0 (re-submit no changes)		
Submit no change Submit no changes Submit no chan					-	test case (re-submit no changes)		
Case (re-submit no changes) Case (re-submit no changes) Case (re-submit no changes)					-	submit no change)		
Case (re-submit no changes) Case (re-submit no changes) Case (re-submit no changes)					-	case (re-submit no changes)		
(re-submit no changes) (re-submit no chang					-	case (re-submit no changes)		
2009-05 RAN#44 R5-092264 0058 - Propagation conditions for CQI tests 8.1.0 8.2.0 2009-05 RAN#44 R5-092265 0059 - Correction to Demodulation of PDCCH/PCFICH test cases 8.1.0 8.2.0 2009-05 RAN#44 R5-092273 0060 - Mapping of downlink physical channels for TDD 8.1.0 8.2.0 2009-05 RAN#44 R5-092277 0061 - Annex A RMC updates 8.1.0 8.2.0 2009-05 RAN#44 R5-092369 0062 - Update of A.3.4.3 for RMC with UE-specific RS 8.1.0 8.2.0 2009-05 RAN#44 R5-092372 0063 - Maintenance on Initial configurations for Perf TCs 8.1.0 8.2.0 2009-05 RAN#44 R5-092436 0064 - CR to 36.521-1: Update of ACLR test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 006					-	(re-submit no changes)		
2009-05 RAN#44 R5-092265 0059 - Correction to Demodulation of PDCCH/PCFICH test cases 8.1.0 8.2.0 2009-05 RAN#44 R5-092273 0060 - Mapping of downlink physical channels for TDD 8.1.0 8.2.0 2009-05 RAN#44 R5-092277 0061 - Annex A RMC updates 8.1.0 8.2.0 2009-05 RAN#44 R5-092369 0062 - Update of A.3.4.3 for RMC with UE-specific RS 8.1.0 8.2.0 2009-05 RAN#44 R5-092372 0063 - Maintenance on Initial configurations for Perf TCs 8.1.0 8.2.0 2009-05 RAN#44 R5-092436 0064 - CR to 36.521-1: Update of ACLR test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092442 0065 - CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE_RF: Transmit OFF Power update 8.1.0 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 <td></td> <td></td> <td></td> <td></td> <td> -</td> <td></td> <td></td> <td></td>					-			
2009-05 RAN#44 R5-092273 0060 - Mapping of downlink physical channels for TDD 8.1.0 8.2.0 2009-05 RAN#44 R5-092277 0061 - Annex A RMC updates 8.1.0 8.2.0 2009-05 RAN#44 R5-092369 0062 - Update of A.3.4.3 for RMC with UE-specific RS 8.1.0 8.2.0 2009-05 RAN#44 R5-092372 0063 - Maintenance on Initial configurations for Perf TCs 8.1.0 8.2.0 2009-05 RAN#44 R5-092436 0064 - CR to 36.521-1: Update of ACLR test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092442 0065 - CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474					-			
2009-05 RAN#44 R5-092277 0061 - Annex A RMC updates 8.1.0 8.2.0 2009-05 RAN#44 R5-092369 0062 - Update of A.3.4.3 for RMC with UE-specific RS 8.1.0 8.2.0 2009-05 RAN#44 R5-092372 0063 - Maintenance on Initial configurations for Perf TCs 8.1.0 8.2.0 2009-05 RAN#44 R5-092436 0064 - CR to 36.521-1: Update of ACLR test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092442 0065 - CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 0068 - LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.1.					-			
2009-05 RAN#44 R5-092369 0062 - Update of A.3.4.3 for RMC with UE-specific RS 8.1.0 8.2.0 2009-05 RAN#44 R5-092372 0063 - Maintenance on Initial configurations for Perf TCs 8.1.0 8.2.0 2009-05 RAN#44 R5-092436 0064 - CR to 36.521-1: Update of ACLR test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092442 0065 - CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 0068 - LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.1.0 8.2.0					-			
2009-05 RAN#44 R5-092372 0063 - Maintenance on Initial configurations for Perf TCs 8.1.0 8.2.0 2009-05 RAN#44 R5-092436 0064 - CR to 36.521-1: Update of ACLR test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092442 0065 - CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 0068 - LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.1.0 8.2.0					1-			_
2009-05 RAN#44 R5-092436 0064 - CR to 36.521-1: Update of ACLR test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092442 0065 - CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 0068 - LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.2.0					-			
2009-05 RAN#44 R5-092442 0065 - CR to 36.521-1: Update of Spurious Emissions test case 8.1.0 8.2.0 2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 0068 - LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.2.0					-			
2009-05 RAN#44 R5-092467 0066 - LTE-RF: Transmit OFF Power update 8.1.0 8.2.0 2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 0068 - LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.2.0					 -			
2009-05 RAN#44 R5-092473 0067 - LTE_RF - Update on TC 7.7 Spurious Response (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092474 0068 - LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.2.0					Ε-			
With no changes 2009-05 RAN#44 R5-092474 0068 LTE_RF - Update on TC 7.9 Spurious Emissions (re-submit with no changes) 8.1.0 8.2.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.2.0 8.2.0 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.2.0 2009-05					 -			
with no changes) 2009-05 RAN#44 R5-092527 0069 - Update of TDD PDSCH test cases 8.1.0 8.2.0					1	with no changes)		
2000 05 DANI#44 R5-032021 UU03 - Update of TDD PD5CH test cases 8.1.0 8.2.0					<u> </u>	with no changes)		
	2009-05	RAN#44 RAN#44	R5-092527 R5-092602	0069	-	LTE-RF: CR for Maximum Power Reduction test case (re-	8.1.0	8.2.0

Supplied Supplied		1	,					
2009-05 RANH444 R5-092605 ORA 2.0 2009-05 RAN444 R5-092607 0074 - CR to 36.521-1; Update of Lannes to 1 8.1.0 8.2.0 2009-05 RAN444 R5-092607 0075 - Update of SEM test case 8.1.0 8.2.0 2009-05 RAN444 R5-092614 0075 - Update of SEM test case 8.1.0 8.2.0 2009-05 RAN444 R5-092642 0076 - Update of SEM test case 8.1.0 8.2.0 2009-05 RAN444 R5-092643 0077 - Test proposed for TDD part of COI Reporting under AWGN 8.1.0 8.2.0 2009-05 RAN444 R5-092645 079 - Test proposed for TDD part of COI Reporting under AWGN 8.1.0 8.2.0 2009-05 RAN444 R5-092639 080 1- TE-RF: Update of Additional Spectrum Emission mask Test 8.1.0 8.2.0 2009-05 RAN444 R5-092639 080 1- TE-RF: Update of Additional Maximum Power Reduction test 8.1.0 8.2.0 2009-05 RAN444 R5-092636 080						submit no changes)		
2009-05 RANIAHA R\$-092606 0073 . Update of Annex C 0.0 a.10 8.2.0 2009-05 RANIAHA R\$-092614 0075 . Update of Seth sets case 8.1.0 8.2.0 2009-05 RANIAHA R\$-092614 0075 . Update of Seth sets case 8.1.0 8.2.0 2009-05 RANIAHA R\$-092614 0076 . Update of Seth sets case 8.1.0 8.2.0 2009-05 RANIHA R\$-092643 0077 . Update of Seth sets case 8.1.0 8.2.0 2009-05 RANIHA R\$-092644 0078 . Update of Seth sets case 8.1.0 8.2.0 2009-05 RANIHA R\$-092644 0078 . UTE-RF: DO Dat RIGH (Set Design and February) 8.1.0 8.2.0 2009-05 RANIHA R\$-092649 0079 . LTE-RF: CR for TDD DL RIGH (by the used in TX test cases 8.1.0 8.2.0 2009-05 RANIHA R\$-092663 0081 . LTE-RF: CR for TDD DL RIGH (by the used in TX test cases 8.1.0 8.2.0 2009-05 RANIHA R\$-092663 0081 . LTE-RF: CR for TDD DL RIGH (by the used in TX test case) 8.1.0 8.2.0					-			
2009-05 RANN444 R5-092607 O76 Update of SEM rest case 8.1.0 8.2.0					-			0
OF POSCH (FDD) tests					-			
2009-06 RANH44 R6-092614 0075 - Update of SEM test cases 8.1.0 8.2.0 2009-05 RANH44 R6-092643 0077 - Text proposal for TDD part of CQI Reporting under Fading 8.1.0 8.2.0 2009-05 RANH44 R6-092644 0076 - Text proposal for TDD part of CQI Reporting under AWGN 8.1.0 8.2.0 2009-05 RANH44 R6-092645 0079 - LTE-RF: Update of Additional Spectrum Emission mask Test 8.1.0 8.2.0 2009-05 RANH44 R6-092649 0080 LTE-RF: CRI for TDD DL RMC to be used of TX test cases 8.1.0 8.2.0 2009-05 RANH44 R6-092665 0081 LTE-RF: CRI for TDD DL RMC to be used of TX test cases 8.1.0 8.2.0 2009-05 RANH44 R6-092665 0082 - RMC additional Maximum Power Reduction test 8.1.0 8.2.0 2009-05 RANH44 R6-092660 0082 - RMC additional Maximum Power Reduction test 8.1.0 8.2.0 2009-05 RANH44 R6-092660 0084 - Update of TX.3.1 8.2.0 8.2.1 <td< td=""><td>2009-05</td><td>RAN#44</td><td>R5-092607</td><td>0074</td><td>-</td><td></td><td>8.1.0</td><td>8.2.0</td></td<>	2009-05	RAN#44	R5-092607	0074	-		8.1.0	8.2.0
2009-05 RANIH44 RS-092644 0076 Update of transmit quality test cases 8.1.0 8.2.0 2009-05 RANIH44 RS-092644 0077 Test proposal for TDD part of CQI Reporting under AWGN 8.1.0 8.2.0 2009-05 RANIH44 RS-092644 0078 Test proposal for TDD part of CQI Reporting under AWGN 8.1.0 8.2.0 2009-05 RANIH44 RS-092645 0079 Test proposal for TDD part of CQI Reporting under AWGN 8.1.0 8.2.0 2009-05 RANIH44 RS-092649 0099 0.11 ET-RF: CR for Additional Spectrum Emission mask Test 8.1.0 8.2.0 2009-05 RANIH44 RS-092649 00990 Test Proposal For TDD DL RINC to be used in TX test cases 8.1.0 8.2.0 2009-05 RANIH44 RS-092659 0081 LTE-RF: CR for Additional Maximum Power Reduction test 8.1.0 8.2.0 2009-05 RANIH44 RS-092641 1161 Test frequencies for Additional Spurious Emission test case 8.6.0 8.7.0 2009-05 RANIH44 RS-092644 1161 Test frequencies for Additional Spurious Emission test case 8.6.0 8.7.0 2009-05 RANIH44 RS-092472 0066 LTE-RF: CR for UE max output power test cases 8.1.0 8.2.0 2009-05 RANIH44 RS-092472 0066 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 RS-092652 0088 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 RS-092652 0088 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 RS-092652 0088 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 RS-092652 0088 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH45 RS-094034 0090 Correction CR to 36.521-1 Lydate of Requirements for DPCH (PDD) Lists 2009-09 RANIH45 RS-094034 0090 Correction CR to 36.521-1 Lydate of General Requirements for DPCH DPCH DPSCH (PDD) usts 2009-09 RANIH45 RS-09418 0091 Update of In-band emissions 8.2.1 8.3.0 2009-09 RANIH45 RS-094363 0091 Correction CR to 36.521-1 Lydate to DE-max output power te	2000 05	D 1 N I # 1 1	DE 002614	0075			010	0 2 0
2009-05 RANIH44 R5-092644 007 - Text proposal for TDD part of CQI Reporting under Fading 8.1.0 8.2.0 2009-05 RANIH44 R5-092645 0079 - LTE-RF: Update of Additional Spectrum Emission mask Test 8.1.0 8.2.0 2009-05 RANIH44 R5-092645 0079 - LTE-RF: CR for TDD DL RNC to be used in TX test cases 8.1.0 8.2.0 2009-05 RANIH44 R5-092650 0081 - LTE-RF: CR for TDD DL RNC to be used in TX test cases 8.1.0 8.2.0 2009-05 RANIH44 R5-092651 0082 - RNC Additional Spectrum Power Reduction test 8.1.0 8.2.0 2009-05 RANIH44 R5-092651 0082 - RNC Additional Spectrum Power Reduction test 8.1.0 8.2.0 2009-05 RANIH44 R5-092661 0082 - RNC Additional Spectrum Power Reduction test 8.1.0 8.2.0 2009-05 RANIH44 R5-092661 0082 - RNC Additional Spectrum Semission test case 6.0 8.7.0 2009-05 RANIH44 R5-092660 0084 - Liptate of 7.3.1 Liptate of 7					-			
Conditions Con					-			
Text proposal for TDD part of CQI Reporting under AWGN	2009-03	KAN#44	K3-092043	0077	-		0.1.0	0.2.0
2009-05 RANIH44 R5-092649 0009	2009-05	RAN#44	R5-092644	0078	-	Text proposal for TDD part of CQI Reporting under AWGN	8.1.0	8.2.0
case with TDD Uplink Test configuration case with TDD Uplink Test configuration RANIPA4 R5-092649 0080 LTE-RF: CR for Additional Maximum Power Reduction test 8.1.0 8.2.0 2009-05 RANIPA4 R5-092663 0081 LTE-RF: CR for Additional Maximum Power Reduction test 8.1.0 8.2.0 2009-05 RANIPA4 R5-092640 1082 RIMC update for PDCCH/PCFICH performance requirement 8.1.0 8.2.0 2009-05 RANIPA4 R5-092366 0084 Update of 7.3.1 Est frequencies for Additional Spurious Emission test case 8.1.0 8.2.0 2009-05 RANIPA4 R5-092366 0084 Update of 7.3.1 Est frequencies for Additional Spurious Emission test case 8.1.0 8.2.0 2009-05 RANIPA4 R5-092636 0087 CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIPA4 R5-092636 0087 CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIPA4 R5-092652 0088 Update of 7.3.1 Est for UE max output power test case 8.1.0 8.2.0 2009-05 RANIPA4 R5-092652 0088 Update of 7.5.1 Est for UE max output power test case 8.1.0 8.2.0 2009-05 RANIPA4 R5-092652 0088 Update of Tot UE max output power test case 8.1.0 8.2.0 2009-06 RANIPA4 R5-094652 0088 Update of Tot UE max output power test case 8.1.0 8.2.0 2009-09 RANIPA4 R5-094652 0088 Update of Tot UE max output power test case 8.2.1 8.3.0 2009-09 RANIPA4 R5-094214 0091 Update of Tot UE max output power test case 8.2.1 8.3.0 2009-09 RANIPA4 R5-094214 0091 Update of Tot UE and								
2009-05 RANIH44 R5-092649 0000 LTE-RF: CR for TDD DL RMC to be used in TX test cases 8.1.0 8.2.0 2009-05 RANIH44 R5-092661 0002 LTE-RF: CR for Additional Naximum Power Reduction test 8.1.0 8.2.0 2009-05 RANIH44 R7-090444 1161 Test frequencies for Additional Spurious Emission test case 8.6.0 8.7.0 2009-05 RANIH44 R7-090444 1161 Test frequencies for Additional Spurious Emission test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092460 0005 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092430 0005 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 00087 CR to 36.521-1 Addition of frequencies for band 18 and band 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 00087 CR to 36.521-1 Addition of frequencies for band 18 and band 8.1.0 8.2.0 2009-06 RANIH44 R5-092636 00087 CR to 36.521-1 Addition of frequencies for band 18 and band 8.1.0 8.2.0 2009-07 RANIH45 R5-092652 00088 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-09 RANIH45 R5-092656 00089 Correction CR to 36.521-1 Update of Requirements for 8.2.1 8.3.0 2009-09 RANIH45 R5-094034 00090 Correction CR to 36.521-1; Update of Requirements for 8.2.1 8.3.0 2009-09 RANIH45 R5-094214 00091 Update of In-band emissions 8.2.1 8.3.0 2009-09 RANIH45 R5-094216 00093 Correction to Annex B 8.2.1 8.3.0 2009-09 RANIH45 R5-094280 00095 CR to 36.521-1; Update to ACLR test case 8.2.1 8.3.0 2009-09 RANIH45 R5-094280 00095 CR to 36.521-1; Update to LQLR test case 8.2.1 8.3.0 2009-09 RANIH45 R5-094280 00095 CR to 36.521-1; Update to LQLR test case 8.2.1 8.3.0 2009-09 RANIH45 R5-094280 00095 CR to 36.521-1; Update to LQLR test case 8.2.1 8.3.0 2009-09 RANIH45 R5-094280 00095 CR to 36.521-1; Update to LQLR test case 8.2.1 8.3.0 2009-09 RANIH45 R5-094303 0100 LTE	2009-05	RAN#44	R5-092645	0079	-		8.1.0	8.2.0
2009-09 RANIH44 R5-092663 0081 LTE-RF: CR for Additional Maximum Power Reduction test 8.1.0 8.2.0 2009-09 RANIH44 R5-092661 0082 RMC update for PDCCHVPCFICH performance requirement 8.1.0 8.2.0 2009-09 RANIH44 R5-092366 0084 Update of 7.3.1 Test frequencies for Additional Spurious Emission test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092366 0084 Update of 7.3.1 R5-09267 RANIH44 R5-092470 0096 LTE-RF: CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 0087 LTE-RF: GR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 0087 LTE-RF: GR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 0087 LTE-RF: Update on TC 7.6 Blocking Characteristics (result of the property of the prop								
Case					-			
2009-05 RANIH44 R5-092661 0.082 . RMC update for PDCCH/PCFICH performance requirement 8.1.0 8.2.0 2009-05 RANIH44 R5-092366 0.084 . Update of 7.3.1 . 1	2009-05	RAN#44	R5-092653	0081	-		8.1.0	8.2.0
2009-05 RANN#44 RF-090444 1161 Test trequencies for Additional Spurious Emission test case 8.6.0 8.7.0 2009-05 RANN#44 R5-092440 0.085 Update of 7.3.1 Update of 7.6.1 R5-092440 R5-092440 R5-092440 R5-092440 R5-092440 0.085 UFE.RF. Update of 7.6.1 R5-092460 R5-09	2000 05	D A N#44	DE 000664	0000			0.1.0	0.0.0
2009-05 RANIH44 R5-092405 0084 Update of 7.3.1 8.10 8.2.0 2009-05 RANIH44 R5-092472 0086 UTE-RF. CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 0087 UTE-RF. CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 0087 UTE-RF. CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 0087 UTE-RF. CR for UE max output power test case 8.1.0 8.2.0 2009-05 RANIH44 R5-092636 0087 UTE-RF. CR for UE max output power test case 8.1.0 8.2.0 2009-09 RANIH45 R5-094032 0089 UTE-RF. CR for UE max output power test case 8.2.0 8.2.1 8.3.0 2009-09 RANIH45 R5-094214 0091 Update of In-band emissions 8.2.1 8.3.0 2009-09 RANIH45 R5-094216 0093 UTE-RF. CR for UE missions 8.2.1 8.3.0 2009-09 RANIH45 R5-094216 0093 UTE-RF. CR for Index of the Maximus power test case 8.2.1 8.3.0 2009-09 RANIH45 R5-094216 0093 UTE-RF. CR for UE missions 8.2.1 8.3.0 2009-09 RANIH45 R5-094280 0095 UTE-RF. CR for Index of UE max output power test case 8.2.1 8.3.0 2009-09 RANIH45 R5-094280 0095 UTE-RF. CR for Index of TDD UTE-RF. CR for Index of TDD RANIH45 R5-094281 0096 UTE-RF. CR for Index of TDD RANIH45 R5-094281 0096 UTE-RF. CR for Index of TDD RANIH45 R5-094281 0096 UTE-RF. CR for Index of TDD RANIH45 R5-094281 0096 UTE-RF. CR for Index of TDD RANIH45 R5-094281 0096 UTE-RF. CR for Index of TDD RANIH45 R5-094281 0096 UTE-RF. CR for Index of TDD RANIH45 R5-094281 0096 UTE-RF. CR for UE minimum output power test case 8.2.1 8.3.0 R3-094290 RANIH45 R5-094381 0101 UTE-RF. CR for UE minimum output power test case for TDD RANIH45 R5-094381 0101 UTE-RF. CR for UE minimum output power test case for TDD RANIH45 R5-094381 0101 UTE-RF. CR for UE minimum output power test case for TDD RANIH45 R5-094386 UTE-RF. CR for UE minimum output					-			
2009-05 RANIH44 R5-092440 0085 . LTE_RF: CR for UE max output power test case 8.1.0 8.2.0					-			
2009-05 RAN#44 R5-092472 0086 . LTE_RF - Update on TC 7.6 Blocking Characteristics (result with changes) 2009-05 RAN#44 R5-092636 0087 . CR to 36.521-1 Addition of frequencies for band 18 and band 8.1.0 8.2.0 2009-05 RAN#44 R5-092652 0088 2 Improved stability of TC 7.8.5 Power Control in the DL fro F- DPCH to HSUPA TC 5.2D and 5.13.2B 					1			
Submit with changes Submit with changes					_			
2009-05 RAN#44 R5-092636 0087 - CR to 36.521-1 Addition of frequencies for band 18 and band 8.1.0 8.2.0 19 19 19 19 19 19 19 1	2003 03	10-11177-1-1	113 032472	0000			0.1.0	0.2.0
19	2009-05	RAN#44	R5-092636	0087	-		8.1.0	8.2.0
DPCH to HSUPÁ TC 5.2D and 5.13.2B S.2.0 8.2.1								
Editorial corrections	2009-05	RAN#44	R5-092652	0088	2	Improved stability of TC 7.8.5 Power Control in the DL fro F-	8.1.0	8.2.0
Demodulation of PDSCH (FDD) tests Section Section								
Demodulation of PDSCH (FDD) tests S	-	-	-	-	-		8.2.0	8.2.1
2009-09 RAN#45 R5-094034 0090 Correction CR to 36.521-1; Update of General Requirements 8.2.1 8.3.0 2009-09 RAN#45 R5-094215 0092 TDD Initial downlink channel setting 8.2.1 8.3.0 2009-09 RAN#45 R5-094216 0093 Correction to Annex B 8.2.1 8.3.0 2009-09 RAN#45 R5-094216 0093 Correction to Annex B 8.2.1 8.3.0 2009-09 RAN#45 R5-094280 0094 CR to 36.521-1; Update to ACLR test case 8.2.1 8.3.0 2009-09 RAN#45 R5-094280 0095 CR to 36.521-1; Update to ACLR test case 8.2.1 8.3.0 2009-09 RAN#45 R5-094281 0096 Mapping of uplink physical channels for TDD 8.2.1 8.3.0 2009-09 RAN#45 R5-094282 0097 LTE-RF: CR for notes in TDD DL RMC to be used in TX test cases Case	2009-09	RAN#45	R5-094032	0089	-		8.2.1	8.3.0
2009-09 RAN#45 R5-094214 0091 Update of In-band emissions 8.2.1 8.3.0 2009-09 RAN#45 R5-094215 0092 - TDD Initial downlink channel setting 8.2.1 8.3.0 2009-09 RAN#45 R5-094248 0094 - CR to 36.521-1: Update to ACLR test case 8.2.1 8.3.0 2009-09 RAN#45 R5-094281 0096 - CR to 36.521-1: Update to LE max output power test case 8.2.1 8.3.0 2009-09 RAN#45 R5-094281 0096 - Mapping of uplink physical channels for TDD 8.2.1 8.3.0 2009-09 RAN#45 R5-094282 0097 - LTE-RF: CR for notes in TDD DL RMC to be used in TX test cases 8.2.1 8.3.0 2009-09 RAN#45 R5-094283 0099 LTE-RF: CR for notes in TDD DL RMC to be used in TX test cases 8.2.1 8.3.0 2009-09 RAN#45 R5-094313 0099 LTE-RF: CR for test case for Aggregate power control 8.2.1 8.3.0 2009-09 RAN#45 R5-094317 0100 LTE-R	2009-09	RAN#45	R5-094034	0090	-		8.2.1	8.3.0
2009-09 RAN#45 R5-094215 0092 TDD Initial downlink channel setting 8.2.1 8.3.0 2009-09 RAN#45 R5-094216 0093 - Correction to Annex B 8.2.1 8.3.0 2009-09 RAN#45 R5-0942260 0095 - CR to 36.521-1: Update to ACLR test case 8.2.1 8.3.0 2009-09 RAN#45 R5-094281 0.096 - CR to 36.521-1: Update to UE max output power test case 8.2.1 8.3.0 2009-09 RAN#45 R5-094282 0.097 - LTE-RF: CR for Incres in TDD DL RMC to be used in TX test 8.2.1 8.3.0 2009-09 RAN#45 R5-094283 0.099 - LTE-RF: CR for Incres in TDD DL RMC to be used in TX test 8.2.1 8.3.0 2009-09 RAN#45 R5-094313 0.099 - LTE-RF: CR for Incres in TDD DL RMC to be used in TX test 8.2.1 8.3.0 2009-09 RAN#45 R5-094317 0.100 - LTE-RF: CR for Incres in TDD DL RMC to be used in TX test 8.2.1 8.3.0 2009-09 RAN#45 R5-094317 0.100 - LTE-RF: CR for Use minimum output power constant for some langer to the MA	2000 00	DAN#45	DE 004044	0004			0.04	0.0.0
2009-09 RAN#45 R5-094248 0094 - CR to 36.521-1: Update to ACLR test case 8.2.1 8.3.0					-	, ·		
2009-09 RAN#45 R5-094280 0095 - CR to 36.521-1: Update to ACLR test case 8.2.1 8.3.0					-	Ç		
2009-09 RAN#45 R5-094281 0096 - CR to 36.521-1: Update to UE max output power test case 8.2.1 8.3.0 2009-09 RAN#45 R5-094281 0096 -					Ε.			
2009-09 RAN#45 R5-094281 0096 Mapping of uplink physical channels for TDD 8.2.1 8.3.0 2009-09 RAN#45 R5-094282 0097 LTE-RF: CR for notes in TDD DL RMC to be used in TX test 8.2.1 8.3.0 2009-09 RAN#45 R5-094283 0098 LTE-RF: message update to keep Tx power constant for some 8.2.1 8.3.0 2009-09 RAN#45 R5-094313 0099 LTE-RF: CR to test case for Aggregate power control 8.2.1 8.3.0 2009-09 RAN#45 R5-094317 0100 LTE-RF: CR for UE minimum output power test case for TDD 8.2.1 8.3.0 2009-09 RAN#45 R5-094318 0101 LTE-RF: CR for Power Control Relative power tolerance test 8.2.1 8.3.0 2009-09 RAN#45 R5-094319 0102 LTE-RF: CR for Power Control Relative power tolerance test 8.2.1 8.3.0 2009-09 RAN#45 R5-094362 0103 LTE RF: correction for subclause 6.6.2.2.5 (A-SEM) supported 8.2.1 8.3.0 2009-09 RAN#45 R5-094362 0104 Correction of RMCs (36.521 Annex A) 8.2.1 8.3.0 2009-09 RAN#45 R5-094363 0105 Usage of the Global In-Channels TX-Test across different 8.2.1 8.3.0 2009-09 RAN#45 R5-094367 0107 Correction to 6.6.2.2 Additional Spectrum Emission Mask 8.2.1 8.3.0 2009-09 RAN#45 R5-094367 0107 Correction to 6.6.2.2 Additional Spectrum Emission Mask 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 Correction of Global in-Channel TX-Test with PRACH (36.521 8.3.0 2009-09 RAN#45 R5-094379 0113 Completion of Global in-Channel TX-Test with PRACH (36.521 8.3.0 2009-09 RAN#45 R5-094379 0113 Completion of Global in-Channel TX-Test with PRACH (36.521 8.3.0 2009-09 RAN#45 R5-094385 0115 Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 Correction of Global in-Channel TX-Test with PRACH (36.521 8.3.0 2009-09 RAN#45 R5-094385 0115 Correction of Global in-Channel TX-Test with PRACH (36.521 8.3.0					<u> </u>	·		
2009-09 RAN#45 R5-094282 0097 LTE-RF: CR for notes in TDD DL RMC to be used in TX test 8.2.1 8.3.0					_			
Cases Case					_			
Rx test cases Rx test case Rx test c	2000 00	10 11 10	110 00 1202	0001			0.2.1	0.0.0
2009-09 RAN#45 R5-094313 0099 LTE-RF: CR to test case for Aggregate power control tolerance 2009-09 RAN#45 R5-094317 0100 LTE-RF: CR for UE minimum output power test case for TDD 8.2.1 8.3.0 2009-09 RAN#45 R5-094318 0101 LTE-RF: CR for Power Control Relative power tolerance test 8.2.1 8.3.0 2009-09 RAN#45 R5-094319 0102 In band emission for non-allocated RB 8.2.1 8.3.0 2009-09 RAN#45 R5-094320 0103 LTE RF: correction for subclause 6.6.2.2.5 (A-SEM) supported 8.2.1 8.3.0 2009-09 RAN#45 R5-094363 0105 Usage of the Global In-Channels TX-Test across different 8.2.1 8.3.0 2009-09 RAN#45 R5-094365 0106 LTE TX: 1to2 RX antenna 8.2.1 8.3.0 2009-09 RAN#45 R5-094367 0107 Correction to 6.6.2.2 Additional Spectrum Emission Mask 8.2.1 8.3.0 2009-09 RAN#45 R5-094370 0108 Correction to 6.6.2.3 ACLR 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 Correction to 7.6 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 Correction to 6.7 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094376 0111 Correction to 6.10 Completion of Global in-Channel TX-Test with PRACH (36.521 8.3.0 2009-09 RAN#45 R5-094378 0112 Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094386 0115 Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094386 0115 Correction to Test Configurations in General 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 LTE RF - Correction for Test Configurations in General 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 LTE RF - Verification for UE output Power in Out	2009-09	RAN#45	R5-094283	0098	-	LTE-RF: message update to keep Tx power constant for some	8.2.1	8.3.0
tolerance								
2009-09	2009-09	RAN#45	R5-094313	0099	-		8.2.1	8.3.0
2009-09 RAN#45 R5-094318 0101 LTE-RF: CR for Power Control Relative power tolerance test case 2009-09 RAN#45 R5-094319 0102 In band emission for non-allocated RB 8.2.1 8.3.0 2009-09 RAN#45 R5-094320 0103 LTE RF: correction for subclause 6.6.2.2.5 (A-SEM) supported 8.2.1 8.3.0 2009-09 RAN#45 R5-094362 0104 Correction of RMCs (36.521 Annex A) 8.2.1 8.3.0 2009-09 RAN#45 R5-094363 0105 Usage of the Global In-Channels TX-Test across different 8.2.1 8.3.0 2009-09 RAN#45 R5-094365 0106 LTE TX: 1to2 RX antenna 8.2.1 8.3.0 2009-09 RAN#45 R5-094367 0107 Correction to 6.6.2.3 ACLR 8.2.1 8.3.0 2009-09 RAN#45 R5-094370 0108 Correction to 6.6.2.3 ACLR 8.2.1 8.3.0 2009-09 RAN#45 R5-094371 0109 Correction to 6.7 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 Completion of Global in-Channel TX-Test with PRACH (36.521 8.3.0 2009-09 RAN#45 R5-094378 0112 Completion of Statistical testing (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0115 Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 LTE RF - Core update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 LTE								
Case				+	-			
2009-09 RAN#45 R5-094319 0102 - In band emission for non-allocated RB R2.1 R3.0 R5-094320 0103 LTE RF: correction for subclause 6.6.2.2.5 (A-SEM) supported 8.2.1 R3.0 R3.0	2009-09	RAN#45	R5-094318	0101	-	· ·	8.2.1	8.3.0
2009-09 RAN#45 R5-094362 0103 - LTE RF: correction for subclause 6.6.2.2.5 (A-SEM) supported band list 8.2.1 8.3.0 2009-09 RAN#45 R5-094362 0104 - Correction of RMCs (36.521 Annex A) 8.2.1 8.3.0 2009-09 RAN#45 R5-094363 0105 - Usage of the Global In-Channels TX-Test across different Signal Quality tests. 2009-09 RAN#45 R5-094365 0106 - LTE TX: 1to2 RX antenna 8.2.1 8.3.0 2009-09 RAN#45 R5-094370 0107 - Correction to 6.6.2.2 Additional Spectrum Emission Mask 8.2.1 8.3.0 2009-09 RAN#45 R5-094370 0108 - Correction to 6.6.2.3 ACLR 8.2.1 8.3.0 2009-09 RAN#45 R5-094371 0109 - Correction to 6.7 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 - Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 - UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 - Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 - Correction to Annex E) Correction to Annex E) R5-094661 0117 LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0119 LTE RF - Core update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0119 LTE RF - Correction for Test Configurations in General Section Section Emission tests LTE RF - Power in Out of Band 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 LTE RF - Verification of UE Output Power in Out of Band 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 LTE RF - Verification of UE Output Power in O	2000 00	D 1 N I # 1 E	DE 004340	0102			0 2 1	0 2 0
band list 2009-09 RAN#45 R5-094362 0104 - Correction of RMCs (36.521 Annex A) 8.2.1 8.3.0 8.3.0 8.209-09 RAN#45 R5-094363 0105 Signal Quality tests. 8.3.0 8.2.1 8.3.0 8.3					-			
2009-09 RAN#45 R5-094362 0104 - Correction of RMCs (36.521 Annex A) 8.2.1 8.3.0	2009-09	KAN#45	K3-094320	0103	-		0.2.1	0.3.0
2009-09 RAN#45 R5-094363 0105 Usage of the Global In-Channels TX-Test across different Signal Quality tests. 8.2.1 8.3.0 2009-09 RAN#45 R5-094365 0106 LTE TX: 1to2 RX antenna 8.2.1 8.3.0 2009-09 RAN#45 R5-094367 0107 Correction to 6.6.2.2 Additional Spectrum Emission Mask 8.2.1 8.3.0 2009-09 RAN#45 R5-094370 0108 Correction to 6.6.2.3 ACLR 8.2.0 8.2.0 8.2.0 8.2.0 8.2.1 8.3.0 2009-09 RAN#45 R5-094371 0109 Correction to 6.7 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 Completion of Global in-Channel TX-Test with PRACH (36.521 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 LTE RF - Clarification for Test Configurations in General 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 Emission tests	2009-09	RAN#45	R5-094362	0104	-		8.2.1	8.3.0
Signal Quality tests. Signal Quality tests. Signal Quality tests.					-			
2009-09 RAN#45 R5-094367 0107 - Correction to 6.6.2.2 Additional Spectrum Emission Mask 8.2.1 8.3.0 2009-09 RAN#45 R5-094370 0108 - Correction to 6.6.2.3 ACLR 8.2.1 8.3.0 2009-09 RAN#45 R5-094371 0109 - Correction to 6.7 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 - Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 - UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 - Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0115								
2009-09 RAN#45 R5-094367 0107 - Correction to 6.6.2.2 Additional Spectrum Emission Mask 8.2.1 8.3.0 2009-09 RAN#45 R5-094370 0108 - Correction to 6.6.2.3 ACLR 8.2.1 8.3.0 2009-09 RAN#45 R5-094371 0109 - Correction to 6.7 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 - Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 - UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 - Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0115	2009-09	RAN#45	R5-094365	0106	-		8.2.1	8.3.0
2009-09 RAN#45 R5-094370 0108 - Correction to 6.6.2.3 ACLR 8.2.1 8.3.0 2009-09 RAN#45 R5-094371 0109 - Correction to 6.7 TX Intermodulation 8.2.1 8.3.0 2009-09 RAN#45 R5-094374 0110 - Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 - UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 - Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 - Completion of Global in-Channel TX-Test with PRACH (36.521 B.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 - Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0116 - Update for ACS 8.2.1 8.3.0 2009-09 RAN#45		RAN#45	R5-094367	0107	Ŀ	Correction to 6.6.2.2 Additional Spectrum Emission Mask	8.2.1	8.3.0
2009-09 RAN#45 R5-094374 0110 - Correction to 7.6.1 In-Band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094375 0111 - UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 - Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 - Completion of Global in-Channel TX-Test with PRACH (36.521 Ranex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 - Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45<					-			
2009-09 RAN#45 R5-094375 0111 - UE category (36.521 clause 8) 8.2.1 8.3.0 2009-09 RAN#45 R5-094378 0112 - Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 - Completion of Global in-Channel TX-Test with PRACH (36.521 Ranex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 - Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094439 0116 - Update for ACS 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0			R5-094371	0109	-		8.2.1	
2009-09 RAN#45 R5-094378 0112 Completion of Global in-Channel TX-Test (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094379 0113 Completion of Global in-Channel TX-Test with PRACH (36.521 Annex E) 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094439 0116 Update for ACS 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 LTE RF - Clarification for Test Configurations in General 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.					-			
2009-09 RAN#45 R5-094379 0113 - Completion of Global in-Channel TX-Test with PRACH (36.521 8.2.1 8.3.0 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 - Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094439 0116 - Update for ACS 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General Section 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests								
Annex E Annex E 2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 - Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094439 0116 - Update for ACS 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General 8.2.1 8.3.0 Section 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band 8.2.1 8.3.0 Emission tests					<u> -</u>			
2009-09 RAN#45 R5-094380 0114 - Completion of Statistical testing (36.521 Annex G) 8.2.1 8.3.0 2009-09 RAN#45 R5-094385 0115 - Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094439 0116 - Update for ACS 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General Section 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests 8.2.1 8.3.0	2009-09	RAN#45	R5-094379	0113	-		8.2.1	8.3.0
2009-09 RAN#45 R5-094385 0115 - Correction to Annex D.2 Interference signals 8.2.1 8.3.0 2009-09 RAN#45 R5-094439 0116 - Update for ACS 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General Section 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests 8.2.1 8.3.0	2000.00	D 4 N # 4 F	DE 004220	0111	├		0 2 4	0 2 0
2009-09 RAN#45 R5-094439 0116 - Update for ACS 8.2.1 8.3.0 2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General Section 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests 8.2.1 8.3.0					[–			
2009-09 RAN#45 R5-094661 0117 - LTE RF - Core update on TC7.6.2 Out-of-band Blocking 8.2.1 8.3.0 2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General Section 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests 8.2.1 8.3.0					Ε			
2009-09 RAN#45 R5-094663 0118 - LTE RF - Symbols Update on UL transmission configurations 8.2.1 8.3.0 2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General Section 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests 8.2.1 8.3.0					E			
2009-09 RAN#45 R5-094665 0119 - LTE RF - Clarification for Test Configurations in General Section 8.2.1 8.3.0 2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests 8.2.1 8.3.0					[_			
Section Section					 			
2009-09 RAN#45 R5-094668 0120 - LTE RF - Applicability of 6.2.3 MPR 8.2.1 8.3.0 2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band Emission tests 8.2.1 8.3.0	_000			3113			0.2.1	3.0.0
2009-09 RAN#45 R5-094671 0121 - LTE RF - Verification of UE Output Power in Out of Band 8.2.1 8.3.0 Emission tests	2009-09	RAN#45	R5-094668	0120	<u> </u> -		8.2.1	8.3.0
Emission tests					 -			
2009-09 RAN#45 R5-094684 0122 - CR to 36.521-1: Update to UE max output power test case 8.2.1 8.3.0		<u> </u>	1		L	Emission tests	<u>L</u>	
	2009-09	RAN#45	R5-094684	0122	Ŀ	CR to 36.521-1: Update to UE max output power test case	8.2.1	8.3.0

2009-09	RAN#45	R5-094686	0123	1	LTE-RF CR to 36.521-1: Update the E-UTRA channel	8.2.1	8.3.0
				_	numbers		
2009-09	RAN#45	R5-094687	0124	-	LTE-RF: CR for UE maximum power reduction(MPR) test case		8.3.0
2009-09	RAN#45	R5-094699	0125	-	Update to SEM and spurious emissions TC	8.2.1	8.3.0
2009-09	RAN#45	R5-094706	0126	-	Resubmission-Update to the Requirements for frequency- selective fading test	8.2.1	8.3.0
2009-09	RAN#45	R5-094717	0127	-	Update of SEM	8.2.1	8.3.0
2009-09	RAN#45	R5-094718	0128	-	Update of initial conditions with Annex references	8.2.1	8.3.0
2009-09	RAN#45	R5-094721	0129	1_	Update of 6.7 Tx Inter Mod	8.2.1	8.3.0
2009-09	RAN#45	R5-094725	0130	 	Correction to E-UTRA channel numbers for Band 2	8.2.1	8.3.0
2009-09	RAN#45	R5-094726	0131	-	Correction to Tx spurious emissions	8.2.1	8.3.0
2009-09	RAN#45		0131	-	Update of TDD PHICH test cases		8.3.0
		R5-094757		-		8.2.1	
2009-09	RAN#45	R5-094874	0133	-	Correction to Demodulation of PDCCH/PCFICH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094902	0134	-	Addition of 15 MHz and 20 MHz bandwidths and corresponding sensitivity requirements into band 38	8.2.1	8.3.0
2009-09	RAN#45	R5-094903	0135	-	Correction CR to 36.521-1: Update of Transmitter tests network signalled parameter value	8.2.1	8.3.0
2009-09	RAN#45	R5-094905	0136	1-	Update of TDD PDSCH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094908	0137	-	LTE-RF: CR for Power Control Absolute power tolerance test	8.2.1	8.3.0
0000 00	DAN//45	DE 00 4000	0400		case	0.0.4	0.0.0
2009-09	RAN#45	R5-094909	0138	-	Update to Output Power dynamics test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094913	0139	-	Clarification for downlink signal setting in RX tests	8.2.1	8.3.0
2009-09	RAN#45	R5-094914	0140	-	UL RB allocation for receiver tests	8.2.1	8.3.0
2009-09	RAN#45	R5-094915	0141	<u> </u>	Update of TDD PCFICH/PDCCH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094921	0142	-	Correction to CQI performance test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094922	0143	1-	Test description for CQI test cases under AWGN conditions	8.2.1	8.3.0
2009-09	RAN#45	R5-094923	0144	-	Resubmission - Requirements for PMI reporting (Single and Multiple PMI)	8.2.1	8.3.0
2009-09	RAN#45	R5-094966	0145		CR to 36.521-1: Addition of A-MPR for band 19	8.2.1	8.3.0
2009-09	RAN#45	R5-094966	0146	-		8.2.1	8.3.0
				-	Without loop back: 6.2.2 UE maximum output power		
2009-09	RAN#45	R5-094977	0147	-	Without loop back: 6.3.2 Minimum output power	8.2.1	8.3.0
2009-09	RAN#45	R5-094979	0148	-	LTE-RF: CR for UE configured UE transmitted output power test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094980	0149	-	CR to 36.521-1: Definition of Maximum Power state in TX/RX test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094982	0150	1	Correction of Tx general description	8.2.1	8.3.0
2009-09	RAN#45	R5-094986	0151	-	Update of 6.6.1OBW	8.2.1	8.3.0
2009-09	RAN#45	R5-094989	0152	-	Correction to 1PRB tests in Demodulation of PDSCH	8.2.1	8.3.0
2009-09	RAN#45	R5-094995	0153	-	Correction CR to 36.521-1: Update of Requirements for Additional Maximum Power Reduction (A-MPR) test	8.2.1	8.3.0
2009-09	RAN#45	R5-094996	0154	<u> </u>	Correction to Demodulation of PHICH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094997	0155		EVM TC update	8.2.1	8.3.0
2009-09			0156	-	LTE-RF: test description update		8.3.0
2009-09	RAN#45 RAN#45	R5-095300 R5-095301	0157	-	Correction CR to 36.521-1: Addition of measurement	8.2.1 8.2.1	8.3.0
2000 00	D 4 N H 4 E	DE 005204	0150	-	uncertainty and test tolerances for A-MPR	0.0.1	0 2 0
2009-09	RAN#45	R5-095304	0158	-	Sorting out Demodulation of PDSCH for FDD	8.2.1	8.3.0
2009-09	- D 4 5 1 // 4 0	- DE 005545	- 0450	-	TOC update and Annexes' titles formattings	8.3.0	8.3.1
2009-12	RAN#46	R5-095515	0159	-	Correction CR to 36.521-1: Additional Spectrum Emission Mask test need to be updated to include the network signalled	8.3.1	8.4.0
					value "NS_07ö message contents exceptions		1
2009-12	RAN#46	R5-095589	0160	-	Update for test period description in the general section	8.3.1	8.4.0
2009-12	RAN#46	R5-095657	0161	-	LTE-RF: CR for Power Control Absolute power tolerance test case	8.3.1	8.4.0
2009-12	RAN#46	R5-095661	0162	1-	LTE-RF: CR for UE minimum output power test case	8.3.1	8.4.0
2009-12	RAN#46	R5-095735	0163	<u> </u>	Corrections to Annex A.4	8.3.1	8.4.0
2009-12	RAN#46	R5-095766	0164	 	LTE-RF: CR for In band emission for non-allocated RB	8.3.1	8.4.0
2009-12	RAN#46	R5-095700	0165	ŧ-	Completion of Statistical testing (36.521 Annex G)	8.3.1	8.4.0
				Η-			
2009-12	RAN#46	R5-095791	0166	1-	Corrections to Annex E	8.3.1	8.4.0
2009-12	RAN#46	R5-096058	0167	-	Removal of [] from 7.6.1, 7.8.1, and 7.5 of Annex F3.3	8.3.1	8.4.0
		R5-096096	0168	ļ	Update on 8.2.1	8.3.1	8.4.0
2009-12	RAN#46		_			1024	8.4.0
2009-12 2009-12	RAN#46 RAN#46	R5-096105	0169	-	LTE RF: Symbols Update on Configured UE Transmitted Power	8.3.1	
2009-12 2009-12	RAN#46	R5-096105		-	Power		8.4.0
2009-12 2009-12			0169 0170 0171	- - -	Power LTE-RF: CR to Transmission signal quality LTE-RF: CR for Power Control Relative power tolerance test	8.3.1 8.3.1	8.4.0 8.4.0
2009-12 2009-12 2009-12 2009-12	RAN#46 RAN#46 RAN#46	R5-096105 R5-096204 R5-096208	0170 0171	-	Power LTE-RF: CR to Transmission signal quality LTE-RF: CR for Power Control Relative power tolerance test case	8.3.1 8.3.1	8.4.0
2009-12 2009-12 2009-12 2009-12 2009-12	RAN#46 RAN#46 RAN#46	R5-096105 R5-096204 R5-096208 R5-096210	0170 0171 0172	-	Power LTE-RF: CR to Transmission signal quality LTE-RF: CR for Power Control Relative power tolerance test case LTE-RF: CR to ON/OFF Time mask test cases	8.3.1 8.3.1 8.3.1	8.4.0 8.4.0
2009-12 2009-12 2009-12 2009-12 2009-12 2009-12	RAN#46 RAN#46 RAN#46 RAN#46	R5-096105 R5-096204 R5-096208	0170 0171 0172 0173	-	Power LTE-RF: CR to Transmission signal quality LTE-RF: CR for Power Control Relative power tolerance test case LTE-RF: CR to ON/OFF Time mask test cases Measurement period for TX-Tests	8.3.1 8.3.1	8.4.0 8.4.0 8.4.0
2009-12 2009-12 2009-12 2009-12 2009-12 2009-12	RAN#46 RAN#46 RAN#46	R5-096105 R5-096204 R5-096208 R5-096210 R5-096211 R5-096213	0170 0171 0172	- - - -	Power LTE-RF: CR to Transmission signal quality LTE-RF: CR for Power Control Relative power tolerance test case LTE-RF: CR to ON/OFF Time mask test cases Measurement period for TX-Tests CR to 36.521-1: Update to Spurious Emissions test cases	8.3.1 8.3.1 8.3.1	8.4.0 8.4.0 8.4.0
2009-12 2009-12 2009-12 2009-12 2009-12 2009-12 2009-12	RAN#46 RAN#46 RAN#46 RAN#46	R5-096105 R5-096204 R5-096208 R5-096210 R5-096211	0170 0171 0172 0173	- - - -	Power LTE-RF: CR to Transmission signal quality LTE-RF: CR for Power Control Relative power tolerance test case LTE-RF: CR to ON/OFF Time mask test cases Measurement period for TX-Tests CR to 36.521-1: Update to Spurious Emissions test cases CR to 36.521-1: Update to ACLR test case	8.3.1 8.3.1 8.3.1 8.3.1	8.4.0 8.4.0 8.4.0 8.4.0
2009-12 2009-12 2009-12	RAN#46 RAN#46 RAN#46 RAN#46 RAN#46 RAN#46	R5-096105 R5-096204 R5-096208 R5-096210 R5-096211 R5-096213	0170 0171 0172 0173 0174	- - - - -	Power LTE-RF: CR to Transmission signal quality LTE-RF: CR for Power Control Relative power tolerance test case LTE-RF: CR to ON/OFF Time mask test cases Measurement period for TX-Tests CR to 36.521-1: Update to Spurious Emissions test cases	8.3.1 8.3.1 8.3.1 8.3.1 8.3.1	8.4.0

2009-12	RAN#46	R5-096223	0178	-	LTE RF: Blocking Characteristics update	8.3.1	8.4.0
2009-12	RAN#46	R5-096224	0179	-	LTE RF: Spurious Response Update	8.3.1	8.4.0
2009-12	RAN#46	R5-096228	0180	-	LTE-RF: CR for MPR test case	8.3.1	8.4.0
2009-12	RAN#46	R5-096229	0204	2	CR to 36.521-1: Update to A-MPR test case	8.3.1	8.4.0
2009-12	RAN#46	R5-096230	0181	-	LTE RF: Applicability of 6.2.4 A-MPR	8.3.1	8.4.0
2009-12	RAN#46	R5-096231	0182	1-	Correction to Demodulation of PHICH test cases	8.3.1	8.4.0
2009-12	RAN#46	R5-096235	0183	-	Introduction of CQI reporting test with frequency-selective interference	8.3.1	8.4.0
2009-12	RAN#46	R5-096239	0184	-	Update to the test procedure and message contents of TDD PMI reporting test cases	8.3.1	8.4.0
2009-12	RAN#46	R5-096240	0205	-	CR to 36.521-1: Update to Derivation of Test Requirements for A-MPR	8.3.1	8.4.0
2009-12	RAN#46	R5-096241	0185	-	Measurement uncertainties and Test Tolerances for transmit quality test cases	8.3.1	8.4.0
2009-12	RAN#46	R5-096242	0186	1_	Update for 36.521-1 Annex A	8.3.1	8.4.0
2009-12	RAN#46	R5-096289	0187	-	CR on 36.521-1, 'Introduction of clause 8.2.1.1 test case	8.3.1	8.4.0
2009-12	RAN#46	R5-096306	0188		uncertainties and Test Tolerances' Update to the test procedure of SEM test cases of 36.521-1	8.3.1	8.4.0
2009-12	RAN#46	R5-096300	0189	-	Update of 6.6.1 OBW	8.3.1	8.4.0
2009-12	RAN#46	R5-096311	0190	-	Correction to SEM	8.3.1	8.4.0
2009-12	RAN#46	R5-096313	0190	-	Update of 6.7 Transmit intermodulation	8.3.1	8.4.0
2009-12	RAN#46	R5-096315	0192	+	CR to 36.521-1: Update to UE max output power test case	8.3.1	8.4.0
2009-12	RAN#46	R5-096316	0192	-	CR to 36.521-1: Opdate to OE max output power test case CR to 36.521-1: Update to Additional Spurious Emissions test	8.3.1	8.4.0
2009-12	KAN#40	K3-090310	0193	-	case	0.3.1	0.4.0
2009-12	RAN#46	R5-096317	0194	-	CR to TDD PHICH demodulation test cases	8.3.1	8.4.0
2009-12	RAN#46	R5-096318	0195	-	Correction to FDD PMI reporting test cases	8.3.1	8.4.0
2009-12	RAN#46	R5-096320	0196	-	Tx power range and core update for Receiver tests	8.3.1	8.4.0
2009-12	RAN#46	R5-096322	0197	-	Update on 7.4, 7.5, and 7.8.1	8.3.1	8.4.0
2009-12	RAN#46	R5-096323	0198	-	Introduction of RI reporting test	8.3.1	8.4.0
2009-12	RAN#46	R5-096333	0199	1-	Update to 6.5 Transmit signal quality test cases	8.3.1	8.4.0
2009-12	RAN#46	R5-096334	0200	-	LTE-RF: CR for Aggregate power control tolerance test case	8.3.1	8.4.0
2009-12	RAN#46	R5-096335	0201	-	Correction CR to 36.521-1: Update for Demodulation of PDSCH (FDD) tests to correct CR merges results from RAN5#44	8.3.1	8.4.0
2009-12	RAN#46	R5-096336	0206	1	Update TDD PDSCH test cases	8.3.1	8.4.0
2009-12	RAN#46	R5-096338	0202	1-	Number of used HARQ processes in DL Performance tests	8.3.1	8.4.0
2009-12	RAN#46	R5-096342	0207	2	Minimum test time for performance tests	8.3.1	8.4.0
2009-12	RAN#46	R5-096718	0203	-	LTE RF: A-SEM update and A-MPR verification	8.3.1	8.4.0
2010-03	RAN#47	R5-100353	0208	-	LTE-RF CR to 36.521-1:TIME MASK test case updated	8.4.0	8.5.0
2010-03	RAN#47	R5-100354	0209	-	LTE-RF: CR for A-MPR notation in NS_07	8.4.0	8.5.0
2010-03	RAN#47	R5-100403	0210	-	LTE-RF: CR for Tx Intermodulation test case	8.4.0	8.5.0
2010-03	RAN#47	R5-100404	0211	-	LTE-RF: CR for OBW measurement period alignment	8.4.0	8.5.0
2010-03	RAN#47	R5-100408	0212	-	Reporting mode, Reporting Interval and Editorial corrections for demodulation	8.4.0	8.5.0
2010-03	RAN#47	R5-100456	0213	-	Misc update on MAC padding in Rx and performance sections	8.4.0	8.5.0
2010-03	RAN#47	R5-100566	0214	-	Missing Test limits in 36.521-1 Annex G	8.4.0	8.5.0
2010-03	RAN#47	R5-100567	0215	-	Wrong references from 36.521-1 clauses 8.4 and 8.5 into Annex G	8.4.0	8.5.0
2010-03	RAN#47	R5-100569	0216	1-	Typos in 36.521-1, Annex E	8.4.0	8.5.0
2010-03	RAN#47	R5-100571	0217	1-	Minimum test time for performance tests	8.4.0	8.5.0
2010-03	RAN#47	R5-100572	0218	1-	Correction to 6.6.3.3 Additional spurious emissions	8.4.0	8.5.0
2010-03	RAN#47	R5-100790	0219	-	DL-RMC-s for transmitter tests: Corrections	8.4.0	8.5.0
2010-03	RAN#47	R5-100800	0220	-	Update of Test environment for RF test	8.4.0	8.5.0
2010-03	RAN#47	R5-100803	0221	1-	Spectrum emission mask: Correction to uplink configuration	8.4.0	8.5.0
2010-03	RAN#47	R5-100807	0222	1-	Performance tests: Scheduling of retransmissions	8.4.0	8.5.0
2010-03	RAN#47	R5-100810	0223	1-	UL-RMC-s: Corrections and completion	8.4.0	8.5.0
2010-03	RAN#47	R5-100814	0224	1-	Corrections to CI 5.4.2.1 of TS 36.521-1	8.4.0	8.5.0
2010-03	RAN#47	R5-100815	0225	-	LTE-RF: CR for UE configured UE transmitted output power test case	8.4.0	8.5.0
2010-03	RAN#47	R5-100816	0226	-	LTE-RF: CR for Power Control Relative power tolerance test case	8.4.0	8.5.0
2010-03	RAN#47	R5-100822	0227	-	CR to 36.521-1: Update to Maximum output power	8.4.0	8.5.0
	RAN#47	R5-100823	0228	1-	CR to 36.521-1: Update to ACLR test case	8.4.0	8.5.0
2010-03		R5-100825	0229	-	CR to 36.521-1: Update to Additional Tx spurious emissions	8.4.0	8.5.0
2010-03	RAN#47	100020					
2010-03			0230	<u> </u>	test case RMC-s and OCNG natterns: Undate, according 36 101 8.8.0	840	850
2010-03 2010-03	RAN#47	R5-100826	0230	-	RMC-s and OCNG patterns: Update according 36.101 8.8.0	8.4.0	8.5.0 8.5.0
2010-03 2010-03 2010-03	RAN#47 RAN#47	R5-100826 R5-100827	0231	-	RMC-s and OCNG patterns: Update according 36.101 8.8.0 Receiver and performance tests: Update use of OCNG according 36.101 8.8.0	8.4.0	8.5.0
2010-03 2010-03	RAN#47 RAN#47 RAN#47	R5-100826	0231 0232	-	RMC-s and OCNG patterns: Update according 36.101 8.8.0 Receiver and performance tests: Update use of OCNG according 36.101 8.8.0 Update of PDSCH Demodulation Tests		8.5.0 8.5.0
2010-03 2010-03 2010-03	RAN#47 RAN#47	R5-100826 R5-100827	0231	-	RMC-s and OCNG patterns: Update according 36.101 8.8.0 Receiver and performance tests: Update use of OCNG according 36.101 8.8.0	8.4.0	8.5.0

2040.02	ID A N#47	DE 400000	Loope	1	Mice undete on MAC modding in DDCCLL CCL test	0.40	0.50
2010-03	RAN#47	R5-100833	0235	-	Misc update on MAC padding in PDCCH, CSI test	8.4.0	8.5.0
2010-03	RAN#47	R5-100834	0236	-	Updates to the TDD portion of CQI reporting test cases under	8.4.0	8.5.0
2010-03	RAN#47	R5-100838	0237		AWGN Editorial Correction to 8.2.1.3	8.4.0	8.5.0
				-	Update on Annex C for 36.521-1		
2010-03	RAN#47	R5-100839	0238	-		8.4.0	8.5.0
2010-03	RAN#47	R5-100840	0239	-	Update on MAC padding in TDD PMI test case 9.4 of 36.521-	8.4.0	8.5.0
0040.00	D 4 N 1 / 4 7	DE 400044	00.40		1.	0.4.0	0.5.0
2010-03	RAN#47	R5-100841	0240	-	Correction to CQI test cases under AWGN conditions	8.4.0	8.5.0
2010-03	RAN#47	R5-100842	0241	-	Correction to CQI test cases under fading conditions	8.4.0	8.5.0
2010-03	RAN#47	R5-100843	0242	-	Correction to PMI reporting test cases	8.4.0	8.5.0
2010-03	RAN#47	R5-100845	0243	-	CSI: Corrections to tests titles and RI clause structure	8.4.0	8.5.0
2010-03	RAN#47	R5-100848	0244	-	CR to 36.521-1: Update LTE RF test cases with test	8.4.0	8.5.0
					requirements for extended LTE1500MHz		
2010-03	RAN#47	R5-100886	0245	-	Transmitter characteristics: UE Categories and other corrections	8.4.0	8.5.0
2010-03	RAN#47	R5-100887	0246	Ī-	CR to 36.521-1: Update to Tx spurious emissions and	8.4.0	8.5.0
					Spurious emission band UE co-existence		
2010-03	RAN#47	R5-100888	0247	-	Clarification on notes in Max Power	8.4.0	8.5.0
2010-03	RAN#47	R5-100889	0248	-	Maximum input level: Corrections w.r.t. UE categories	8.4.0	8.5.0
2010-03	RAN#47	R5-100891	0249	-	Correction to PDCCH demodulation test cases	8.4.0	8.5.0
2010-03	RAN#47	R5-100892	0250	-	Correction to PHICH demodulation test cases	8.4.0	8.5.0
2010-03	RAN#47	R5-100907	0251	-	Update of RI reporting test case	8.4.0	8.5.0
2010-03	RAN#47	R5-100909	0252	-	Correction to set UL power in Rx TCs	8.4.0	8.5.0
2010-03	RAN#47	-	-	-	Moved to v9.0.0 with no change	8.5.0	9.0.0
2010-06	RAN#48	R5-103102	0253	-	CR to 36.521-1: Update of EARFCN for band 21	9.0.0	9.1.0
2010-06	RAN#48	R5-103103	0254	-	CR to 36.521-1: Update of A-MPR test case with band 21	9.0.0	9.1.0
2010-06	RAN#48	R5-103104	0255	-	CR to 36.521-1: Update of Additional Spurious test case with	9.0.0	9.1.0
2010 00	10.00	110 100101	0200		band 21	0.0.0	0.1.0
2010-06	RAN#48	R5-103106	0256	-	CR to 36.521-1: Update to ACLR test case	9.0.0	9.1.0
2010-06	RAN#48	R5-103108	0257	-			9.1.0
2010-06	RAN#48	R5-103226	0258	<u> </u>	CR to 36.521-1: Update of UE RF requirements for LTE, Band	9.0.0	9.1.0
					20		
2010-06	RAN#48	R5-103263	0259	-	LTE-RF:Updates of PDCCH demodulation test cases (FDD and TDD)	9.0.0	9.1.0
2010-06	RAN#48	R5-103265	0260	-	LTE-RF:CR for TDD ACK/NACK feedback mode in CQI BLER	9.0.0	9.1.0
0040.00	D 4 5 1 1/4 4 0	DE 400000	2004		test cases	0.00	0.4.0
2010-06	RAN#48	R5-103288	0261	-	PDCCH Aggregation level for RF tests	9.0.0	9.1.0
2010-06	RAN#48	R5-103291	0262	-	Update and correction to UE maximum output power requirements	9.0.0	9.1.0
2010-06	RAN#48	R5-103293	0263	-	Editorial correction in In-band blocking test	9.0.0	9.1.0
2010-06	RAN#48	R5-103296	0264	<u> </u>	Correction to additional spectrum emission mask test	9.0.0	9.1.0
					configuration		
2010-06	RAN#48	R5-103300	0265	-	Corrections to Uplink RMC-s	9.0.0	9.1.0
2010-06	RAN#48	R5-103450	0266	-	LTE-RF: editorial CR for TC 7.6.2 and 7.7	9.0.0	9.1.0
2010-06	RAN#48	R5-103471	0267	-	Minimum test time for performance tests	9.0.0	9.1.0
2010-06	RAN#48	R5-103476	0268	-	EVM with exclusion period (annex)	9.0.0	9.1.0
2010-06	RAN#48	R5-103521	0269	-	CR on 36.521-1 for updating the "Reporting of Channel State Information"	9.0.0	9.1.0
2010-06	RAN#48	R5-103525	0270		CR on 36.521-1 for corrections in UE RF requirements	9.0.0	9.1.0
			_	Ι-			_
2010-06	RAN#48	R5-103598	0271	-	Correction to notes in Max Power	9.0.0	9.1.0
2010-06	RAN#48	R5-103602	0272	_	Clarification of measurement conditions for Rx spurious emission	9.0.0	9.1.0
2010-06	RAN#48	R5-103726	0273	-	CR to 36.521-1: Update of Spurious emission band UE co- existence test case	9.0.0	9.1.0
2010-06	RAN#48	R5-103727	0274	1-	LTE-RF: CR for Prach time mask test case	9.0.0	9.1.0
2010-06	RAN#48	R5-103728	0275	1-	LTE-RF: CR for General ON/OFF time mask test case	9.0.0	9.1.0
2010-06	RAN#48	R5-103729	0276	-	LTE-RF: Update to spectrum flatness test case and relevant	9.0.0	9.1.0
2010-06	RAN#48	R5-103730	0277	 -	annexes LTE-RF:CR for test case of In-band emissions	9.0.0	9.1.0
2010-06	RAN#48	R5-103730	0277	+-	EVM with exclusion period (test)	9.0.0	9.1.0
2010-06	RAN#48	R5-103731	0279	-	CR to 36.521-1 on Correction to Demodulation Requirements	9.0.0	9.1.0
1	RAN#48	R5-103733	0280	-	for PDSCH CR to 36.521-1: Update PDCCH DCI Formats for Open Loop	9.0.0	9.1.0
2010-06	1		0281	<u> </u>	and Closed Loop Spatial Multiplexing Test Cases Misc update in CSI tests	9.0.0	
	D 0 N I # 1 0	DC 102751	IUZOI				9.1.0 9.1.0
2010-06	RAN#48	R5-103751				10000	
2010-06 2010-06	RAN#48	R5-103752	0282	-	Correction of the statistical part in PMI and RI tests	9.0.0	
2010-06 2010-06 2010-06	RAN#48 RAN#48	R5-103752 R5-103753	0282 0283	-	LTE-RF:CR to downlink RMCs for TX characteristics	9.0.0	9.1.0
2010-06 2010-06 2010-06 2010-06	RAN#48 RAN#48 RAN#48	R5-103752 R5-103753 R5-103754	0282 0283 0284	- - -	LTE-RF:CR to downlink RMCs for TX characteristics LTE-RF: Update of annex C	9.0.0 9.0.0	9.1.0 9.1.0
2010-06 2010-06 2010-06 2010-06 2010-06	RAN#48 RAN#48 RAN#48 RAN#48	R5-103752 R5-103753 R5-103754 R5-103756	0282 0283 0284 0285	- - -	LTE-RF:CR to downlink RMCs for TX characteristics LTE-RF: Update of annex C Measuring throughput ratios (Annex G)	9.0.0 9.0.0 9.0.0	9.1.0 9.1.0 9.1.0
2010-06 2010-06 2010-06 2010-06 2010-06 2010-06	RAN#48 RAN#48 RAN#48 RAN#48 RAN#48	R5-103752 R5-103753 R5-103754 R5-103756 R5-103763	0282 0283 0284 0285 0286	- - - -	LTE-RF:CR to downlink RMCs for TX characteristics LTE-RF: Update of annex C Measuring throughput ratios (Annex G) LTE-RF: CR for Minimum output power test case	9.0.0 9.0.0 9.0.0 9.0.0	9.1.0 9.1.0 9.1.0 9.1.0
2010-06 2010-06 2010-06 2010-06 2010-06	RAN#48 RAN#48 RAN#48 RAN#48	R5-103752 R5-103753 R5-103754 R5-103756	0282 0283 0284 0285	- - - - -	LTE-RF:CR to downlink RMCs for TX characteristics LTE-RF: Update of annex C Measuring throughput ratios (Annex G)	9.0.0 9.0.0 9.0.0	9.1.0 9.1.0 9.1.0

	I		1		and Test Tolerances	I	1
2010-06	RAN#48	R5-103778	0291	+	Uplink power for receiver tests	9.0.0	9.1.0
2010-06	RAN#48	R5-103776	0291	1	Addition of the exceptional message for In-band emissions	9.0.0	9.1.0
2010-06	RAN#48	R5-103781	0289	+	Correction to 6.5.2.1 EVM	9.0.0	9.1.0
2010-06	RAN#48	R5-103782	0290	+	Correction to CQI reporting	9.0.0	9.1.0
2010-09	RAN#49	R5-104090	0294	+	Corrections to Spectrum emission mask test regarding UE	9.1.0	9.2.0
2010 00	10/11/11/15	100 104000	0204		category	0.1.0	0.2.0
2010-09	RAN#49	R5-104091	0295	1-	Missing note in Additional spurious emission test with NS_07	9.1.0	9.2.0
2010-09	RAN#49	R5-104095	0296	-	PDCCH Aggregation level for CSI tests	9.1.0	9.2.0
2010-09	RAN#49	R5-104096	0297	1-	Default initial and connection Uplink power for RF tests	9.1.0	9.2.0
2010-09	RAN#49	R5-104212	0298	1	Limits on Uplink power for Receiver tests	9.1.0	9.2.0
2010-09	RAN#49	R5-104244	0299	1-	Correction to Demodulation Requirements	9.1.0	9.2.0
2010-09	RAN#49	R5-104461	0300	1-	CR to 36.521-1: Editorial Corrections for Closed Loop Spatial	9.1.0	9.2.0
					Multiplexing Test Cases		
2010-09	RAN#49	R5-104478	0301	-	Correction to Test requirements in 6.5.2.2	9.1.0	9.2.0
2010-09	RAN#49	R5-104482	0302	-	Correction to 8.2.1.1	9.1.0	9.2.0
2010-09	RAN#49	R5-104520	0303	-	36521-1 General update of sections 00 to 08: missing	9.1.0	9.2.0
					Introduction references formatting		
2010-09	RAN#49	R5-104583	0304	-	No necessity to apply - consecutive time slots for EVM	9.1.0	9.2.0
2010-09	RAN#49	R5-104584	0305	-	Correction to E.4.4 EVM equalizer spectrum flatness	9.1.0	9.2.0
2010-09	RAN#49	R5-104630	0306	-	Correction of table reference in In-band emissions test	9.1.0	9.2.0
2010-09	RAN#49	R5-104808	0307	-	CR to 36.521-1: Update to Additional Spectrum Emission	9.1.0	9.2.0
					Mask test case		
2010-09	RAN#49	R5-104809	0308	-	CR to 36.521-1: Update to Spurious emission band UE co-	9.1.0	9.2.0
			<u> </u>	<u>L</u>	existence test case		<u></u>
2010-09	RAN#49	R5-104810	0309	-	LTE-RF: CR for Max Output Power	9.1.0	9.2.0
2010-09	RAN#49	R5-104811	0310	-	LTE-RF: CR for Freq Error	9.1.0	9.2.0
2010-09	RAN#49	R5-104812	0311	-	'	9.1.0	9.2.0
					6.5.3		
2010-09	RAN#49	R5-104813	0312	-	Correction to Demodulation UE-Specific Reference Symbols	9.1.0	9.2.0
2010-09	RAN#49	R5-104814	0313	-	Uncertainties and Test Tolerances for CSI Test cases 9.2.1.1	9.1.0	9.2.0
					and 9.2.1.2		
2010-09	RAN#49	R5-104815	0314	-	Uncertainties and Test Tolerances for CSI Test cases 9.2.2.1	9.1.0	9.2.0
					and 9.2.2.2		
2010-09	RAN#49	R5-104816	0315	-	UE applicability for CSI test cases	9.1.0	9.2.0
2010-09	RAN#49	R5-104817	0316	-	Update of CQI reporting TCs under fading conditions	9.1.0	9.2.0
2010-09	RAN#49	R5-104818	0317	-	Update of Reporting of Precoding Matrix Indicator TCs	9.1.0	9.2.0
2010-09	RAN#49	R5-104819	0318	-	, , , , ,	9.1.0	9.2.0
0040.00	D 4 N I // 4 O	DE 404000	0040	-	fading conditions)	0.4.0	0.0.0
2010-09	RAN#49	R5-104820	0319	-	Correction of the statistical part 9.3.3.1.1 (CQI Reporting under fading conditions)	9.1.0	9.2.0
2010-09	RAN#49	R5-104821	0320		Correction of the statistical part 9.3.2.1.1 (CQI Reporting under	0.1.0	9.2.0
2010-09	KAN#49	K3-104621	0320	-	fading conditions)	9.1.0	9.2.0
2010-09	RAN#49	R5-104822	0321	<u> </u>	Update and new RMC-s for CQI tests	9.1.0	9.2.0
2010-09	RAN#49	R5-104823	0321	E	Correction of EVM calculation in annex	9.1.0	9.2.0
2010-09	RAN#49	R5-104824	0323	E	Introduction of exclusion period for PUCCH-EVM test in Annex		9.2.0
2010-09	IXAIN#43	13-104024	0323	-	E	3.1.0	3.2.0
2010-09	RAN#49	R5-104844	0324	+	Pcmax changes to Configured UE Transmitted Output Power	9.1.0	9.2.0
2010-09	RAN#49	R5-104845	0325	+	Clarification on the frequency range with net work signal in	9.1.0	9.2.0
2010 00	10/11/11/10	100 104040	0020		6.6.3.2	0.1.0	0.2.0
2010-09	RAN#49	R5-104846	0326	1-	Update of editor's notes	9.1.0	9.2.0
2010-09	RAN#49	R5-104847	0327	1-	Removal of Extreme Conditions in 6.2.3	9.1.0	9.2.0
2010-09	RAN#49	R5-104850	0328	1-	Corrections to Test procedure loop in CSI tests	9.1.0	9.2.0
2010-09	RAN#49	R5-104851	0329	1-	Introduction of TDD CQI Reporting under fading conditions	9.1.0	9.2.0
					and frequency-selective interference test case		
2010-09	RAN#49	R5-104852	0330	1-	Introduction of TDD RI Reporting test case	9.1.0	9.2.0
2010-09		_	0331	1-	Update of CQI reporting TCs under AWGN conditions	9.1.0	9.2.0
	KAN#49	K5-104653				•	
2010-09	RAN#49 RAN#49	R5-104853 R5-104854	0332	 -		9.1.0	9.2.0
	RAN#49	R5-104854	0332	-	Update of FDD RI Reporting TC	9.1.0 9.1.0	9.2.0
2010-09	RAN#49 RAN#49	R5-104854 R5-104857	0332 0333	- - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20	9.1.0	9.2.0
2010-09 2010-09	RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861	0332 0333 0334	- - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test	9.1.0 9.1.0	9.2.0 9.2.0
2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863	0332 0333 0334 0335	- - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power	9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872	0332 0333 0334 0335 0336	- - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2	9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872 R5-104873	0332 0333 0334 0335 0336 0337	- - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases	9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872	0332 0333 0334 0335 0336	- - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases Correction to test numbering for exceptional messages in	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872 R5-104873	0332 0333 0334 0335 0336 0337	- - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases Correction to test numbering for exceptional messages in 8.2.x.x	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872 R5-104873 R5-104874	0332 0333 0334 0335 0336 0337	- - - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases Correction to test numbering for exceptional messages in	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872 R5-104873 R5-104874	0332 0333 0334 0335 0336 0337 0338	- - - - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases Correction to test numbering for exceptional messages in 8.2.x.x Correction to 9.2.2	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872 R5-104873 R5-104874 R5-104875 R5-104876	0332 0333 0334 0335 0336 0337 0338	- - - - - - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases Correction to test numbering for exceptional messages in 8.2.x.x Correction to 9.2.2 Correction to the test procedures of 9.3.x Correction to 9.4.x	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872 R5-104873 R5-104874 R5-104875 R5-104877	0332 0333 0334 0335 0336 0337 0338 0339 0340	- - - - - - - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases Correction to test numbering for exceptional messages in 8.2.x.x Correction to 9.2.2 Correction to the test procedures of 9.3.x Correction to 9.4.x The new reference of connection diagram for 9.3.3	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0
2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09 2010-09	RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49 RAN#49	R5-104854 R5-104857 R5-104861 R5-104863 R5-104872 R5-104873 R5-104874 R5-104875 R5-104877 R5-104877 R5-104878	0332 0333 0334 0335 0336 0337 0338 0339 0340 0341	- - - - - - - - - - -	Update of FDD RI Reporting TC CR to 36.521-1 LTE UE Tx_RX test cases band 20 Corrections to Test requirements for MPR test Clarification on notes in Max Power Correction to 6.3.5.2 Numbering and alignment of TDD PHICH demod test cases Correction to test numbering for exceptional messages in 8.2.x.x Correction to 9.2.2 Correction to the test procedures of 9.3.x Correction to 9.4.x	9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0 9.1.0	9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0 9.2.0

	1		ı		Level-bank data anti-markensana		1
2010-09	RAN#49	R5-105061	0347	<u> </u>	sustained data rate performance CR to 36.521-1: Modification to Additional Maximum Power	9.1.0	9.2.0
2010 03	TCAIN#45	103001	0547		Reduction Test Case	3.1.0	5.2.0
2010-09	RAN#49	R5-105062	0348	-	Modification to Additional Spectrum Emission Mask	9.1.0	9.2.0
2010-09	RAN#49	R5-105063	0349	-	Modification to Additional Spurious Emissions	9.1.0	9.2.0
2010-09	RAN#49	R5-105064	0350	-	Modification to Maximum Power Reduction	9.1.0	9.2.0
2010-09	RAN#49 RAN#49	R5-105065 RP-100987	0351 0352	-	Modification to Adjacent Channel Leakage Power Ratio Correction of status for RF performance test case	9.1.0 9.1.0	9.2.0 9.2.0
2010-09	RAN#50	R5-100967	0352	Ι-	Correction of status for RF performance test case Corrections to receiver spurious emissions test	9.1.0	9.2.0
2010-12	RAN#50	R5-106073	0354	-	Update of downlink power for receiver tests	9.2.0	9.3.0
2010-12	RAN#50	R5-106074	0355	-	CQI: Side condition when CQI median equals min or max CQI-	9.2.0	9.3.0
2010 12	10 00	1.0 100070	0000		values	0.2.0	0.0.0
2010-12	RAN#50	R5-106077	0356	-	Update of the throughput-definition for multi-data stream transmission	9.2.0	9.3.0
2010-12	RAN#50	R5-106078	0357	-	Update of RF OCNG patterns	9.2.0	9.3.0
2010-12	RAN#50	R5-106092	0358	-	Correction of DCI format used in PDSCH performance test	9.2.0	9.3.0
2010 12	RAN#50	R5-106249	0359	 	8.2.1.4.2 CR to 36.521-1: Correction to Spurious emission band UE co-	0.2.0	9.3.0
2010-12	KAN#50	R5-106249	0359	-	existence test case	9.2.0	9.3.0
2010-12	RAN#50	R5-106250	0360	-	CR to 36.521-1: Correction to Additional Tx spurious	9.2.0	9.3.0
					emissions test case		
2010-12	RAN#50	R5-106374	0361	-	Correction of FDD CQI reporting test under AWGN - PUCCH 1-1	9.2.0	9.3.0
2010-12	RAN#50	R5-106394	0362	-	Correction of clause 9.3.1 and 9.3.3	9.2.0	9.3.0
2010-12	RAN#50	R5-106399	0363	-	"Correction of G.2.5 Pass fail decision rules"	9.2.0	9.3.0
2010-12	RAN#50	R5-106420	0364	-	Introduction of test uncertainties and tolerances for TDD PDSCH DRS test cases	9.2.0	9.3.0
2010-12	RAN#50	R5-106440	0365		Correction to unsigned numbers in Annex F.1.2	9.2.0	9.3.0
2010-12	RAN#50	R5-106443	0366	Ε-	Correction to the exceptional messages in 9.4 Reporting of	9.2.0	9.3.0
2010 12	10 00	100110	0000		PMI TCs	0.2.0	0.0.0
2010-12	RAN#50	R5-106491	0367	-	CR to 36.521-1: Correction to Table Numbering Error in TDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing	9.2.0	9.3.0
					2x2		
2010-12	RAN#50	R5-106512	0368	-	Transport format table clarification in CSI test cases	9.2.0	9.3.0
2010-12	RAN#50	R5-106801	0369	-	HARQ scheduling in TDD performance tests using special subframes	9.2.0	9.3.0
2010-12	RAN#50	R5-106803	0370	-	Correction to Fading Profiles in TCs 8.4 and 8.5	9.2.0	9.3.0
2010-12	RAN#50	R5-106816	0372	-	CR to 36.521-1: Modification to Spectrum Emissions Mask	9.2.0	9.3.0
2010-12	RAN#50	R5-106817	0373	-	Introduction of test uncertainties and tolerances for TDD PCFICH/PDCCH and PHICH test cases	9.2.0	9.3.0
2010-12	RAN#50	R5-106818	0374	-	Update of TDD PDSCH CRS Demodulation test cases	9.2.0	9.3.0
2010-12	RAN#50	R5-106821	0375	-	PUSCH-EVM with exclusion period	9.2.0	9.3.0
2010-12	RAN#50	R5-106822	0376	-	Maintenance of Band 20 for receiver tests	9.2.0	9.3.0
2010-12	RAN#50	R5-106823	0377	-	Completion of clause 9.3.1 and 9.3.2	9.2.0	9.3.0
2010-12 2010-12	RAN#50 RAN#50	R5-106824 R5-106825	0378 0379	-	Update of FDD RI Reporting TC Correction to 9.2.2 CQI TCs	9.2.0	9.3.0 9.3.0
2010-12	RAN#50	R5-106826	0380	-	G.3.5 on PDCCH&PHICH Minimum Test Times	9.2.0	9.3.0
2010-12	RAN#50	R5-106827	0381	-	Completion of test time and # -TT for clauses 9.3 to 9.5	9.2.0	9.3.0
2010-12	RAN#50	R5-106828	0382	-	EVM window length for PRACH	9.2.0	9.3.0
2010-12	RAN#50	R5-106842	0383	-	Modification of TC 8.3.2.1 - TDD PDSCH Single-layer SM	9.2.0	9.3.0
					Performance (UE-Specific Reference Symbols)		
2010-12	RAN#50	R5-106843	0384	-	Power control relative power tolerance: Missing band edge	9.2.0	9.3.0
2010-12	RAN#50	R5-106844	0385		relaxation SRS time mask test procedure update	9.2.0	9.3.0
2010-12	RAN#50	R5-106845	0386	<u>-</u>	Correction of TC General ON/OFF time mask	9.2.0	9.3.0
2010-12	RAN#50	R5-106846	0387	-	Update of TDD CQI reporting test under frequency selective	9.2.0	9.3.0
2042.42	DAN!"50	DE 400047	0000	<u> </u>	interference conditions	0.0.0	0.0.0
2010-12	RAN#50	R5-106847	0388	1-	Update of TDD RI reporting test	9.2.0	9.3.0
2010-12 2010-12	RAN#50 RAN#50	R5-106848 R5-106850	0389	1	lot setting in CQI test clarification Correction of Test Uncertainties and Test Tolerances for	9.2.0 9.2.0	9.3.0 9.3.0
2010-12	IXAIN#30	K3-100030	0390		Reference Sensitivity-Band 4	9.2.0	9.3.0
2010-12	RAN#50	R5-106855	0391	-	Correction to DL and UL RMC configurations in 6.5.1 Frequency Error	9.2.0	9.3.0
2010-12	RAN#50	R5-106858	0392	1-	CR to 36.521-1: Update LTE RF test cases with test requirements for EUTRA TDD LTE band 41.	9.2.0	9.3.0
2011-03	RAN#51	R5-110138	0393	-	Spurious emission band co-existence test: Remaining old test requirement table	9.3.0	9.4.0
2011-03	RAN#51	R5-110139	0394	-	Transmit intermodulation test: Interferer offset for Band 20, Bandwidth 20 MHz	9.3.0	9.4.0
2011-03	RAN#51	R5-110141	0395	Ŀ	PMI Performance tests: Corrections to test settings	9.3.0	9.4.0
2011-03	RAN#51	R5-110143	0396	-	PDCCH Performance test: Correction to TDD DL RMC-s	9.3.0	9.4.0
2011-03	RAN#51	R5-110144	0397	<u> -</u>	OCNG for RF tests: Updates	9.3.0	9.4.0
2011-03	RAN#51	R5-110158	0398	[-	CQI Performance tests: Clarification on subbands used in the	9.3.0	9.4.0

		-			toot	1	1
2011-03	RAN#51	R5-110302	0399	<u> </u>	test LTE RF: PCFICH/PDCCH Transmit Diversity Performance	9.3.0	9.4.0
2011-03	RAN#51	R5-110349	0401	-	Correction of OFF power measurements in 6.3.4 ON/OFF	9.3.0	9.4.0
0011.00	D 4 N 1 1/15 4	DE 440054	0.400		time mask	0.0.0	0.40
2011-03 2011-03	RAN#51 RAN#51	R5-110354 R5-110506	0402 0403	-	Correction of Annex E (Global In-Channel TX-Test) Addition of 3500 MHz TDD bands into chapter 5 of 36.521-1	9.3.0 9.3.0	9.4.0 9.4.0
2011-03	RAN#51	R5-110306	0403	-	Updates to section 8.7 DL sustained data rate test case	9.3.0	9.4.0
2011-03	RAN#51	R5-110747	0404	Ε-	Sustained data rate: Definition of UL RMC-s	9.3.0	9.4.0
2011-03	RAN#51	R5-110860	0400	-	Update measurement period from test procedure of 6.2.2	9.3.0	9.4.0
2011-03	RAN#51	R5-110861	0428	-	A-MPR Test requirement update	9.3.0	9.4.0
2011-03	RAN#51	R5-110862	0437	-	Measuring throughput with different payload size.	9.3.0	9.4.0
2011-03	RAN#51	R5-110900	0406	-	Correction to SNR reference in FDD PCFICH/PDCCH Single Antenna Port Performance Test	9.3.0	9.4.0
2011-03	RAN#51	R5-110901	0407	-	CR to 36.521-1: Correction of Additional Maximum Power Reduction (A-MPR) test case	9.3.0	9.4.0
2011-03	RAN#51	R5-110915	0408	-	Uncertainties and Test Tolerances for CSI Test cases 9.3.1.1.x and 9.3.2.1.x	9.3.0	9.4.0
2011-03	RAN#51	R5-110916	0409	-	Uncertainties and Test Tolerances for CSI Test cases 9.3.3.1.x	9.3.0	9.4.0
2011-03	RAN#51	R5-110917	0410	-	Uncertainties and Test Tolerances for CSI Test cases 9.4.1.1.x and 9.4.2.1.x	9.3.0	9.4.0
2011-03	RAN#51	R5-110918	0411		Uncertainties and Test Tolerances for CSI Test cases 9.5.1.x	9.3.0	9.4.0
2011-03	RAN#51	R5-110919	0412	<u> - </u>	Editorial errors in CSI test cases 9.2.1.x Test procedure	9.3.0	9.4.0
2011-03	RAN#51	R5-110933	0413		Handling of different releases in RAN5 LTE RF specification	9.3.0	9.4.0
2011-03	RAN#51	R5-110938	0414	-	PRACH Time mask and EVM tests: TDD Special subframe configuration	9.3.0	9.4.0
2011-03	RAN#51	R5-110939	0415	 -	Update on PRACH time mask for TDD	9.3.0	9.4.0
2011-03	RAN#51	R5-110940	0416	-	Correction of the connection diagram reference in the initial conditions for Transmitter Characteristics	9.3.0	9.4.0
2011-03	RAN#51	R5-110941	0417	-	Update of the reference sensitivity requirement for the 1.4MHz and 3MHz bandwidths and note correction for Band 3 and Band 9	9.3.0	9.4.0
2011-03	RAN#51	R5-110942	0418	-	CR Removing brackets of band 41 reference sensitivity in 36.521-1	9.3.0	9.4.0
2011-03	RAN#51	R5-110949	0419	-	PDCCH and PHICH performance tests: Updates and corrections	9.3.0	9.4.0
2011-03	RAN#51	R5-110950	0420	-	Addition of CodeBookSubsetRestriction bitmap for Multi-Layer Spatial Multiplexing	9.3.0	9.4.0
2011-03	RAN#51	R5-110951	0421	-	Addition of exceptional message in 8.4.1.2.2	9.3.0	9.4.0
2011-03	RAN#51	R5-110952	0422	-	CQI test 9.2.2.2: Update acc TS 36.101	9.3.0	9.4.0
2011-03	RAN#51	R5-110953	0423	-	Maximum input level test: Correction to DL-RMC	9.3.0	9.4.0
2011-03	RAN#51	R5-110954	0424	-	Correction of E.7, EVM with exclusion period	9.3.0	9.4.0
2011-03	RAN#51	R5-110967	0425	-	Updates to Additional Spurious emissions and Spurious emission band UE co-existence test	9.3.0	9.4.0
2011-03	RAN#51	R5-110970	0426	-	LTE RF: references to state 3A in 36.521-1	9.3.0	9.4.0
2011-03	RAN#51	R5-110973	0429	-	RI Performance tests: Corrections	9.3.0	9.4.0
2011-03	RAN#51	R5-110975	0430	-	Completion of annex G.3.5 (Minimum test time, performance tests)	9.3.0	9.4.0
2011-03	RAN#51	R5-110978	0431	-	Correction to Band 12 frequency range	9.3.0	9.4.0
2011-03	RAN#51	R5-110979	0432	<u> -</u>	Additional in-band blocking requirement for Band 12	9.3.0	9.4.0
2011-03	RAN#51	R5-110989	0433	-	Completion of annex G.3.6 (test conditions, performance tests)	9.3.0	9.4.0
2011-03	RAN#51	R5-110990	0434	-	Addition of test cases of TDD PDSCH Single-layer and Dual- layer Spatial Multiplexing Performance	9.3.0	9.4.0
2011-03	RAN#51	R5-110991	0435	-	Correction to Times Mask and Power Control tests	9.3.0	9.4.0
2011-03	RAN#51	R5-110992	0436	-	Add requirement of QPSK with partial RB allocation into test requirement of 6.2.3	9.3.0	9.4.0
2011-04	-		-	-	Added approved R5-110967 which was missing.	9.4.0	9.4.1
2011-06	RAN#52	R5-112148	0438	-	ON/OFF time mask for PRACH: PRACH configuration index	9.4.1	9.5.0
2011-06	RAN#52	R5-112149	0439	-	CQI tests with frequency selective scheduling mode: Random selection of Sub-Bands	9.4.1	9.5.0
2011-06	RAN#52	R5-112150	0440	-	DL-RMC for receiver tests: Obsolete editors note	9.4.1	9.5.0
2011-06	RAN#52	R5-112211	0441	-	Adding Band 24 to TS 36.521-1	9.4.1	9.5.0
2011-06	RAN#52	R5-112311	0442	-	Correction to the sustained data rate tests	9.4.1	9.5.0
2011-06	RAN#52	R5-112312	0443	-	Correction to the multi-antenna transmission tests	9.4.1	9.5.0
2011-06	RAN#52	R5-112349	0444		Update Annex G.3.6 for spatial multiplexing test cases	9.4.1	9.5.0
2011-06	RAN#52	R5-112412	0445	<u> -</u>	Correction to DL RMC for Max input for UE category 2	9.4.1	9.5.0
2011-06	RAN#52	R5-112459	0446	-	EVM window length for PRACH	9.4.1	9.5.0
2011-06	RAN#52	R5-112460	0447	<u> - </u>	Removal of square brackets in Annex G.5.4	9.4.1	9.5.0
2011-06	RAN#52	R5-112462	0448	-	Test tolerances for EVM with exclusion period	9.4.1	9.5.0
2011-06	RAN#52	R5-112808	0449		LTE RF - UEs Demodulation and CSI Band applicability	9.4.1	9.5.0
2011-06	RAN#52	R5-112810	0450		Correction on test requirement of test case 6.5.2.3	9.4.1	9.5.0
2011-06 2011-06	RAN#52 RAN#52	R5-112811 R5-112812	0451 0452		LTE RF - TC6.3.5.2 Change in Minimum Requirements Removable of NS values for TDD	9.4.1	9.5.0 9.5.0
						9.4.1	

2011-06	RAN#52	R5-112813	0453	1_	Correction on initial condition for test cases of 9.3.3	9.4.1	9.5.0
2011-06	RAN#52	R5-112814	0454	-	Correction to 9.4 PMI test cases	9.4.1	9.5.0
2011-06	RAN#52	R5-112816	0455	Ε-	Test procedure change on Tx spurious emissions test cases	9.4.1	9.5.0
2011-06	RAN#52	R5-112850	0456	-	Update of Initial conditions according to table 7.3.3-2 for the 5MHz and 10MHz bandwidths	9.4.1	9.5.0
2011-06	RAN#52	R5-112851	0457	-	lot modelling in frequency-selective interference CQI tests	9.4.1	9.5.0
2011-06	RAN#52	R5-112852	0458	-	Correction to test procedure in 9.5.1	9.4.1	9.5.0
2011-06	RAN#52	R5-112859	0459	-	Introduction of additional PDCCH test cases for Rel-9	9.4.1	9.5.0
2011-06	RAN#52	R5-112860	0460	<u> </u>	Introduction of additional PHICH test cases for Rel-9	9.4.1	9.5.0
2011-06	RAN#52	R5-112861	0461	-	Introducing UE-selected subband CQI tests for Rel-9	9.4.1	9.5.0
2011-06	RAN#52	R5-112862	0462	<u> </u>	Introduction of new PMI test cases for UE-selected sub-band	9.4.1	9.5.0
					reporting for Rel-9		
2011-06	RAN#52	R5-112863	0463	-	Addition of a new TC for FDD MBMS performance	9.4.1	9.5.0
2011-06	RAN#52	R5-112864	0464	-	Addition of a new TC for TDD MBMS performance	9.4.1	9.5.0
2011-06	RAN#52	R5-112866	0465	-	Addition of UE category 1 coverage for single-layer spatial multiplexing transmission on antenna port 7 or 8	9.4.1	9.5.0
2011-06	RAN#52	R5-112870	0466	-	Removal of square brackets in annex G.3.5 (Minimum test time, performance tests)	9.4.1	9.5.0
2011-06	RAN#52	R5-112871	0467	-	Update minimum requirements and test requirements for spatial multiplexing test cases	9.4.1	9.5.0
2011-06	RAN#52	R5-112873	0468	-	Test procedure change on few Rx test cases	9.4.1	9.5.0
2011-09	RAN#53	R5-113178	0506	<u> </u>	RF TC 8.7.2: Correction of the ACK/NACK feedback mode	9.5.0	9.6.0
2011-09	RAN#53	R5-113179	0469	<u> </u> -	RF TC-s 9.3.4: Updates to minimum requirements and	9.5.0	9.6.0
2011 00	10/01/00	110 110170	0400		corrections to test procedures	0.0.0	0.0.0
2011-09	RAN#53	R5-113180	0470	-	RF: New UL RMC for 10 MHz 15RB-s	9.5.0	9.6.0
2011-09	RAN#53	R5-113181	0471	-	RF: Use of State 3A-RF	9.5.0	9.6.0
2011-09	RAN#53	R5-113233	0472	-	LTE RF: EVM Annex E correction	9.5.0	9.6.0
2011-09	RAN#53	R5-113238	0473	-	RF TC 6.3.4.2.2: Correction to SRS configuration	9.5.0	9.6.0
2011-09	RAN#53	R5-113368	0474	-	Correction in test cases of 8.2.2.1.2 and 8.5.1	9.5.0	9.6.0
2011-09	RAN#53	R5-113369	0475	-	Correction in test cases of 9.5	9.5.0	9.6.0
2011-09	RAN#53	R5-113380	0476	-	Update of minimum test time for PCFICH/PDCCH and PHICH tests	9.5.0	9.6.0
2011-09	RAN#53	R5-113383	0477	-	Correction of Table G.3.5-1 (minimum test time)	9.5.0	9.6.0
2011-09	RAN#53	R5-113419	0478	-	Correction for spurious emission band UE co-existence limits of Band 3	9.5.0	9.6.0
2011-09	RAN#53	R5-113454	0479	<u> </u>	Correction to test procedure in 6.5.1	9.5.0	9.6.0
2011-09	RAN#53	R5-113455	0479	-	Correction to Minimum requirement in 6.6.2.2	9.5.0	9.6.0
2011-09	RAN#53	R5-113456	0480	Ε-	Correction to RMC for PDCCH/PCFICH performance	9.5.0	9.6.0
2011-03	IVAIN#33	113-113430	0401	-	requirements	9.5.0	3.0.0
2011-09	RAN#53	R5-113458	0482	-	Correction to CSI TCs	9.5.0	9.6.0
2011-09	RAN#53	R5-113541	0483	-	Introduction of Expanded 1900MHz Band (Band 25) into	9.5.0	9.6.0
					section 5 of 36.521-1		
2011-09	RAN#53	R5-113596	0506	-	Abbreviation update and Editorial corrections in TS36.521-1	9.5.0	9.6.0
2011-09	RAN#53	R5-114000	0484	-	Correction in 6.3.5.2 Power Control Relative power tolerance	9.5.0	9.6.0
2011-09	RAN#53	R5-114001	0485	-	Correction in 6.3.4.2.2 SRS time mask	9.5.0	9.6.0
2011-09	RAN#53	R5-114002	0486	-	Addition of PDSCH TDD performance tests for Low UE categories	9.5.0	9.6.0
2011-09	RAN#53	R5-114003	0487	<u> </u>	Additional FDD scenarios	9.5.0	9.6.0
2011-09	RAN#53	R5-114004	0488	-	Addition of RMC-s for PDSCH performance tests for low UE	9.5.0	9.6.0
2011-09	RAN#53	R5-114032	0489	-	Introduction of Expanded 1900MHz Band (Band 25) into	9.5.0	9.6.0
2011-09	RAN#53	R5-114033	0490	-	section 6 of 36.521-1 Correction on TDD MBMS performance requirements for	9.5.0	9.6.0
2011-09	RAN#53	R5-114034	0491	-	64QAM mode Correction on FDD MDMS performance requirements for	9.5.0	9.6.0
2011-09	RAN#53	R5-114038	0492		64QAM mode RF TC 6.3.5.2: Consideration of band edge relaxation in test	9.5.0	9.6.0
				-	requirements		
2011-09	RAN#53	R5-114039	0493		Band 19 A-MPR refinement	9.5.0	9.6.0
2011-09	RAN#53	R5-114040	0494	-	Test system uncertainty and TT for 6.6.3.3 additional spurious emissions NS_07	9.5.0	9.6.0
2011-09	RAN#53	R5-114041	0495	Ŀ	Correction to Additional Maximum Power Reduction	9.5.0	9.6.0
2011-09	RAN#53	R5-114042	0496	<u> </u>	Correction to 6.3.4.2.1 PRACH time mask	9.5.0	9.6.0
2011-09	RAN#53	R5-114043	0497	-	Correction to Receiver Characteristics Minimum Requirements	9.5.0	9.6.0
2011-09	RAN#53	R5-114044	0498	-	Addition of PDSCH FDD performance tests for Low UE categories	9.5.0	9.6.0
2011-09	RAN#53	R5-114045	0499	 -	Additional Rel-9 TDD scenarios	9.5.0	9.6.0
2011-09	RAN#53	R5-114046	0500	<u> </u>	Update of CQI/PMI test cases	9.5.0	9.6.0
2011-09	RAN#53	R5-114047	0501	<u> </u>	Update of RI test cases	9.5.0	9.6.0
2011-09	RAN#53	R5-114048	0502	-	Release dependent RMCs in PCFICH/PDCCH and PHICH tests	9.5.0	9.6.0
i	1	1	i	1	1000	1	1

2011-09	RAN#53	R5-114049	0503	-	Addition of tests scenarios in Annex	9.5.0	9.6.0
2011-09	RAN#53	R5-114073	0504	-	Introduction of Expanded 1900MHz Band (Band 25) into	9.5.0	9.6.0
					section 7 of 36.521-1		
2011-09	RAN#53	R5-114091	0505	-	Correction to test cases 10.1 and 10.2	9.5.0	9.6.0

History

Document history		
V9.0.0	June 2010	Publication
V9.1.0	June 2010	Publication
V9.2.0	November 2010	Publication
V9.3.0	January 2011	Publication
V9.4.1	July 2011	Publication
V9.5.0	September 2011	Publication
V9.6.0	January 2012	Publication