ETSI TS 136 521-1 V8.3.1 (2009-11)

Technical Specification

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing (3GPP TS 36.521-1 version 8.3.1 Release 8)

Reference

RTS/TSGR-0536521-1v831

Keywords

LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at <u>http://portal.etsi.org/tb/status/status.asp</u>

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

> © European Telecommunications Standards Institute 2009. All rights reserved.

DECTTM, **PLUGTESTSTM**, **UMTSTM**, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.

3GPP[™] is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

LTE[™] is a Trade Mark of ETSI currently being registered

for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <u>http://webapp.etsi.org/key/queryform.asp</u>.

Contents

Intellectual Property Rights		2
Foreword		2
Forew	Foreword	
1	Scope	16
2	References	17
3	Definitions, symbols and abbreviations	18
3.1	Definitions	18
3.2	Symbols	18
3.3	Abbreviations	19
4	General	21
5	Frequency bands and channel arrangement	22
5.1	General	22
5.2	Operating bands	22
5.3	TX-RX frequency separation	22
5.4	Channel arrangement	23
5.4.1	Channel spacing	23
5.4.2	Channel bandwidth	23
5.4.2.1	Channel bandwidths per operating band	24
5.4.3	Channel raster	25
5.4.4	Carrier frequency and EARFCN	25
6	Transmitter Characteristics	27
6.1	General	27
6.2	Transmit power	27
6.2.1	Void	27
6.2.2	UE Maximum Output Power	27
6.2.2.1	Test purpose	27
6.2.2.2	Test applicability	27
6.2.2.3	Minimum conformance requirements	28
6.2.2.4	Test description	28
6.2.2.4	.1 Initial condition	28
6.2.2.4	.2 Test procedure	29
6.2.2.4	.3 Message contents	30
6.2.2.5	Test requirements	30
6.2.3	Maximum Power Reduction (MPR)	30
6.2.3.1	Test purpose	31
6.2.3.2	Test applicability	31
6.2.3.3	Minimum conformance requirements	31
6.2.3.4	Test description	31
6.2.3.4	.1 Initial condition	31
6.2.3.4	.2 Test procedure	32
6.2.3.4	.3 Message contents	32
6.2.3.5	Test requirements	33
6.2.4	Additional Maximum Power Reduction (A-MPR)	34
6.2.4.1	Test purpose	34
6.2.4.2	Test applicability	34
0.2.4.3	Ninimum conformance requirements	
0.2.4.4	1 est description	
0.2.4.4	.1 Initial condition	
0.2.4.4	2 I est procedure	
0.2.4.4	.5 Intessage contents	
0.2.4.5	1 est requirements	
0.2.5	Configured OE transmitted Output Power	41

6.2.5.1	Test purpose	41
6.2.5.2	Test applicability	41
6.2.5.3	Minimum conformance requirements	42
6.2.5.4	Test description	42
6.2.5.4.1	Initial conditions	42
6.2.5.4.2	Test procedure	43
6.2.5.4.3	Message contents	43
6.2.5.5	Test requirement	44
6.3	Output Power Dynamics	44
6.3.1	Void	44
6.3.2	Minimum Output Power	44
6.3.2.1	Test purpose	44
6.3.2.2	Test applicability	44
6.3.2.3	Minimum conformance requirements	44
6.3.2.4	Test description	45
6.3.2.4.1	Initial conditions	45
6.3.2.4.2	Test procedure	45
6.3.2.4.3	Message contents	46
6.3.2.5	Test requirement	46
6.3.3	Transmit OFF power	46
6.3.3.1	Test purpose	46
6.3.3.2	Minimum conformance requirement	46
6.3.3.3	Test applicability	47
6.3.3.4	Test description	
6.3.3.5	Test requirement	47
6.3.4	ON/OFF time mask	
6.3.4.1	General ON/OFF time mask	
6.3.4.1.1	Test purpose	
6.3.4.1.2	Minimum conformance requirement	
6.3.4.1.3	Test applicability	
6.3.4.1.4	Test description	
6.3.4.1.4.1	Initial conditions	
6.3.4.1.4.2	Test procedure	
6.3.4.1.4.3	Message contents	
6.3.4.1.5	Test requirement	50
6.3.4.2	PRACH and SRS time mask	
6.3.4.2.1	Test purpose	
6.3.4.2.2	Minimum conformance requirement	
6.3.4.2.3	Test applicability	
6.3.4.2.4	Test description	
6.3.4.2.4.1	Initial conditions	
634242	Test procedure	52
6.3.4.2.4.3	Message contents	
63425	Test requirement	52
635	Power Control	53
6351	Power Control Absolute power tolerance	53
6.3.5.1.1	Test purpose	
63512	Minimum conformance requirement	53
63513	Test applicability	54
63514	Test description	54
63515	Test requirement	55
6352	Power Control Relative power tolerance	55
6.3.5.2.1	Test purpose	
6.3.5.2.2	Minimum conformance requirement	56
6.3.5.2.3	Test applicability	
6.3.5.2.4	Test description	57
6.3.5.2.5	Test requirement	58
6.3.5.3	Aggregate power control tolerance	
6.3.5.3 1	Test purpose	
6.3.5.3.2	Minimum conformance requirement	
6.3.5.3.3	Test applicability	
6.3.5.3.4	Test description	
	I.	

6.3.5.3.5	Test requirement	64
6.4	Void	65
6.5	Transmit signal quality	65
6.5.1	Frequency Error	65
6.5.1.1	Test purpose	65
6.5.1.2	Test applicability	
6.5.1.3	Minimum conformance requirements	65
6.5.1.4	Test description	
6.5.1.4.1	Initial condition	
6.5.1.4.2	Test procedure	
6.5.1.4.3	Message contents	
6.5.1.5	Test requirement	67
6.5.2	I ransmit modulation	
6.5.2.1	Error Vector Magnitude (EVM)	
6.5.2.1.1	Test Purpose	
0.5.2.1.2	Test applicability	
0.5.2.1.5	Tast description	0/
0.3.2.1.4	Test requirement	08
6522	I est requirement	/1 71
65221	Test Dumose	/1 71
65222	Test rupose	/1 71
65223	Minimum conformance requirements	
6522.4	Test description	
65225	Test requirement	
6523	In-band emissions for non allocated RB	73
65231	Test Durnose	73
65232	Test applicability	73
65233	Minimum conformance requirements	73
65234	Test description	74
6.5.2.3.5	Test requirement	
6.5.2.4	Spectrum flatness	
6.5.2.4.1	Test Purpose	
6.5.2.4.2	Test applicability	
6.5.2.4.3	Minimum conformance requirements	76
6.5.2.4.4	Test description	77
6.5.2.4.5	Test requirement	78
6.6	Output RF spectrum emissions	79
6.6.1	Occupied bandwidth	80
6.6.1.1	Test purpose	80
6.6.1.2	Test applicability	80
6.6.1.2	Minimum conformance requirements	80
6.6.1.4	Test description	81
6.6.1.4.1	Initial conditions	81
6.6.1.4.2	Test procedure	81
6.6.1.4.3	Message contents	
6.6.1.5	Test requirement	82
6.6.2	Out of band emission	
6.6.2.1	Spectrum Emission Mask	
6.6.2.1.1	Test purpose	
6.6.2.1.2	Test applicability	
6.6.2.1.3	Minimum conformance requirements	
0.0.2.1.4	Test description	
0.0.2.1.5	1 est requirements	85
0.0.2.2	Auditional Spectrum Emission Mask	85
0.0.2.2.1	Test opplicability	
0.0.2.2.2	1 est applicability	
0.0.2.2.3	Tost description	
0.0.2.2.4	Test requirements	\ 6
6622	1 Col ICyullollio	
66231	Test purpose	
0.0.2.9.1	rest purpose	

6.6.2.3.2	Test applicability	91
6.6.2.3.3	Minimum conformance requirements	92
6.6.2.3.4	Test description	93
6.6.2.3.5	Test requirement	95
6.6.2.4	Additional ACLR requirements	96
6.6.3	Spurious emissions	96
6.6.3.1	Transmitter Spurious emissions	96
6.6.3.1.1	Test purpose	96
6.6.3.1.2	Test applicability	
66313	Minimum conformance requirements	97
66314	Test description	97
66315	Test requirement	98
6632	Spurious emission band LIE co-existence	99
66321	Test nurnose	99
66322	Test applicability	00
66323	Minimum conformance requirements	00
66324	Test description	101
66325	Test requirement	101
6622	Additional spurious amissions	102
0.0.3.3	Auditional spurious emissions	104
0.0.3.3.1	Test purpose	104
0.0.3.3.2	Test applicability	104
6.6.3.3.3	Minimum conformance requirements	104
6.6.3.3.4	Test description	105
6.6.3.3.5	Test requirement	107
6.7	Transmit intermodulation	.108
6.7.1	Test purpose	.108
6.7.2	Test applicability	.108
6.7.3	Minimum conformance requirements	.108
6.7.4	Test description	.108
6.7.4.1	Initial conditions	.108
6.7.4.3	Test procedure	.109
6.7.4.3	Message contents	.110
6.7.5	Test requirement	.110
7 Re	preiver Characteristics	111
7 1	Conorol	111
7.1	Diversity share starieties	111
7.2	Diversity characteristics	111
7.5		111
7.5.1	Test purpose	112
7.3.2	Test applicability	.112
7.3.3	The three local and the second s	112
7.3.4		.113
7.3.4.1	Initial conditions	.113
7.3.4.2	Test procedure	.114
7.3.4.3	Message contents	.115
7.3.5	Test requirement	.115
7.4	Maximum input level	.116
7.4.1	Test purpose	.117
7.4.2	Test applicability	.117
7.4.3	Minimum conformance requirements	.117
7.4.4	Test description	.117
7.4.4.1	Initial conditions	.117
7.4.4.2	Test procedure	.118
7.4.4.3	Message contents	.118
7.4.5	Test requirement	.119
7.5	Adjacent Channel Selectivity (ACS)	.119
7.5.1	Test purpose	.119
7.5.2	Test applicability	.120
7.5.3	Minimum conformance requirements	.120
7.5.4	Test description	.121
7.5.4.1	Initial conditions	.121
7.5.4.2	Test procedure	.121
	•	

7.5.4.3	Message contents	
7.5.5	Test requirement	
7.6	Blocking characteristics	
7.6.1	In-band blocking	
7.6.1.1	Test Purpose	
7.6.1.2	Test Applicability	
7.6.1.3	Minimum Conformance Requirements	
7.6.1.4	Test Description	
7.6.1.4.1	1 Initial Conditions	124
76142	2 Test Procedure	125
76143	3 Message Contents	126
7615	Test Requirement	126
7.6.2	Out-of-hand blocking	127
7.6.21	Test Purpose	127
7.6.2.1	Test Applicability	127
7.6.2.2	Minimum Conformance Requirements	127
7.0.2.3	Tast Description	120
7.0.2.4	I Initial Conditions	120
7.0.2.4.1	I IIIIIIIII COIGHUOIS	120
7.0.2.4.2	2 Test Procedure	129
7.0.2.4.3	5 Message Contents	129
7.6.2.5	I est Requirement	
7.6.3	Narrow band blocking	
7.6.3.1	Test Purpose	
7.6.3.2	Test Applicability	
7.6.3.3	Minimum Conformance Requirements	131
7.6.3.4	Test Description	131
7.6.3.4.1	I Initial Conditions	131
7.6.3.4.2	2 Test Procedure	
7.6.3.4.3	3 Message Contents	
7.6.3.5	Test Requirement	
7.7	Spurious response	133
7.7.1	Test Purpose	134
7.7.2	Test Applicability	134
7.7.3	Minimum Conformance Requirements	134
7.7.4	Test Description	134
7.7.4.1	Initial Conditions	134
7.7.4.2	Test Procedure	134
7.7.4.3	Message Contents	
7.7.5	Test Requirement	
7.8	Intermodulation characteristics	
7.8.1	Wide band Intermodulation	
7.8.1.1	Test purpose	
7.8.1.2	Test applicability	
7813	Minimum conformance requirements	136
7814	Test description	137
78141	I Initial condition	137
7814	Test procedure	138
78143	2 Test procedure	138
7815	Test requirements	138
7.0.1.3	Void	120
7.0.2	Volu	139
7.7 7.0 1		139
7.9.1	Test August 11	
1.9.2	Test Applicability	
1.9.3	Minimum Conformance Requirements	
1.9.4	1 est Description	
7.9.4.1	Initial Conditions	139
7.9.4.2	Test Procedure	140
7.9.4.3	Message Contents	140
7.9.5	Test Requirement	140
8 5	Performance Requirement	141
8 1	Ganaral	1/1
0.1	0010101	

8.1.1	Dual-antenna receiver capability	141
8.1.1.1	Simultaneous unicast and MBMS operations	141
8.1.1.2	Dual-antenna receiver capability in idle mode	141
8.2	Demodulation of PDSCH (Cell-Specific Reference Symbols)	141
8.2.1	FDD (Fixed Reference Channel)	141
8.2.1.1	FDD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)	142
8.2.1.1.1	FDD PDSCH Single Antenna Port Performance	
8.2.1.1.1.1	Test purpose	
8.2.1.1.1.2	Test applicability	
8.2.1.1.1.3	Minimum conformance requirements	142
8.2.1.1.1.4	Test description	
8.2.1.1.1.5	Test requirement.	
8.2.1.1.2	FDD PDSCH Single Antenna Port Performance with 1PRB	
8.2.1.1.2.1	Test purpose	
821122	Test applicability	146
8.2.1.1.2.3	Minimum conformance requirements.	
821124	Test description	146
8.2.1.1.2.5	Test requirement	
8212	FDD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)	148
82121	FDD PDSCH Transmit Diversity 2x2	148
821211	Test nurnose	148
821212	Test annlicability	148
821213	Minimum conformance requirements	1/18
82121.	Test description	1/10
82.1.2.1.4	Test requirement	149
82122	FDD PDSCH Transmit Diversity 4x2	149
0.2.1.2.2	Toot purpose	130
0.2.1.2.2.1	Test purpose	130
0.2.1.2.2.2	Minimum and former as a subsequents	150
8.2.1.2.2.3	The table is a second s	150
8.2.1.2.2.4	Test as guinement	151
8.2.1.2.2.3	EDD DDCCH Open Lean Special Multiplaning Defermines (Call Specific Defermine Ser	151
8.2.1.3	FDD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Syn	100IS) 152
8.2.1.3.1	FDD PDSCH Open Loop Spatial Multiplexing 2x2	
8.2.1.3.1.1	Test purpose	
8.2.1.3.1.2	l est applicability	
8.2.1.3.1.3	Minimum conformance requirements	
8.2.1.3.1.4	Test description	
8.2.1.3.1.5	Test requirement	
8.2.1.3.2	FDD PDSCH Open Loop Spatial Multiplexing 4x2	
8.2.1.3.2.1	Test purpose	154
8.2.1.3.2.2	Test applicability	155
8.2.1.3.2.3	Minimum conformance requirements	155
8.2.1.3.2.4	Test description	155
8.2.1.3.2.5	Test requirement	156
8.2.1.4	FDD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference Sy	mbols)157
8.2.1.4.1	FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 2 x 2	157
8.2.1.4.1.1	Test purpose	157
8.2.1.4.1.2	Test applicability	157
8.2.1.4.1.3	Minimum conformance requirements	157
8.2.1.4.1.4	Test description	158
8.2.1.4.1.5	Test requirement	160
8.2.1.4.2	FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 4 x 2	160
8.2.1.4.2.1	Test purpose	160
8.2.1.4.2.2	Test applicability	161
8.2.1.4.2.3	Minimum conformance requirements	161
8.2.1.4.2.4	Test description	162
8.2.1.4.2.5	Test requirement	163
8.2.2	TDD (Fixed Reference Channel)	164
8.2.2.1	TDD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)	165
8.2.2.1.1	Test purpose	
8.2.2.1.2	Test applicability	
8.2.2.1.3	Minimum conformance requirements	

8.2.2.1.4	Test description	.167
8.2.2.1.5	Test requirement	.168
8.2.2.2	TDD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)	.169
8.2.2.2.1	Test purpose	.170
8.2.2.2.2	Test applicability	.170
8.2.2.2.3	Minimum conformance requirements	.170
8.2.2.2.4	Test description	.170
8.2.2.2.5	Test requirement	.171
8.2.2.3	TDD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)	.172
8.2.2.3.1	Test purpose	.172
8.2.2.3.2	Test applicability	.172
8.2.2.3.3	Minimum conformance requirements	.172
8.2.2.3.4	Test description	.172
8.2.2.3.5	Test requirement	.174
8.2.2.4	TDD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference	174
0.0.0.4.1	Symbols)	.174
8.2.2.4.1	Test purpose	.1/4
8.2.2.4.2	Test applicability	175
8.2.2.4.3	Minimum conformance requirements	.1/5
8.2.2.4.4	Test description	.1/0
8.2.2.4.3	Demodulation of DDSCU (Uson Specific Deference Symbols)	170
8.3 9.2.1	Demodulation of PDSCH (User-Specific Reference Symbols)	170
0.3.1	רעע תחד	170
0.3.2 8 3 2 1	TDD DDSCH Derformence (IIE Specific Deference Symbole)	170
0.3.2.1	TDD FDSCh Fellollilaite (OE-specific Reference Symbols)	170
0.3.2.1.1	Test pulpose	170
83213	Minimum conformance requirements	170
83214	Test description	180
8 /	Demodulation of PCFICH/PDCCH	181
841	FDD	181
8411	FDD PCFICH/PDCCH Single-antenna Port Performance	181
84111	Test numose	182
84112	Test applicability	182
8.4.1.1.3	Minimum conformance requirements.	.182
8.4.1.1.4	Test description	.182
8.4.1.1.5	Test requirement	.183
8.4.1.2	FDD PCFICH/PDCCH Transmit Diversity Performance	.183
8.4.1.2.1	Test purpose	.183
8.4.1.2.2	Test applicability	.183
8.4.1.2.3	Minimum conformance requirements	.184
8.4.1.2.4	Test description	.184
8.4.1.2.5	Test requirement	.185
8.4.2	TDD	.185
8.4.2.1	TDD PCFICH/PDCCH Single-antenna Port Performance	.185
8.4.2.1.1	Test purpose	.185
8.4.2.1.2	Test applicability	.185
8.4.2.1.3	Minimum conformance requirements	.185
8.4.2.1.4	Test description	.186
8.4.2.1.5	Test requirement	.187
8.4.2.2	TDD PCFICH/PDCCH Transmit Diversity Performance	.187
8.4.2.2.1	Test purpose	.187
8.4.2.2.2	Test applicability	.187
8.4.2.2.3	Minimum conformance requirements	.187
8.4.2.2.4	Test description	.188
8.4.2.2.5	I est requirement	.189
ð.J 0 5 1		.189
0.3.1	FUD DUICU Single entenne Dert Derformeren	100
0.J.1.1	Tast purpose	100
0.J.1.1.1	Test applicability	100
0.J.1.1.2 8 5 1 1 2	Tost applications	100
0.5.1.1.5		.170

85114	Test description	190
85115	Test requirement	192
8512	FDD PHICH Transmit Diversity Performance	192
85121	Tast purpose	102
85122	Test applicability	
0.5.1.2.2	Minimum conformance requirements	
0.3.1.2.3	Test description	
0.3.1.2.4		
8.5.1.2.5	Test requirement	
8.5.2		
8.5.2.1	TDD PHICH Single-antenna Port Performance	
8.5.2.1.1	Test purpose	
8.5.2.1.2	Test applicability	
8.5.2.1.3	Minimum conformance requirements	
8.5.2.1.4	Test description	
8.5.2.1.5	Test requirement	
8.5.2.2	TDD PHICH Transmit Diversity Performance	
8.5.2.2.1	Test purpose	
8.5.2.2.2	Test applicability	
8.5.2.2.3	Minimum conformance requirements	
8.5.2.2.4	Test description	
8.5.2.2.5	Test requirement	
8.6	Demodulation of PBCH	
0 D		200
9 Re	porting of Channel State Information	
9.1	General	
9.2	CQI Reporting under AWGN conditions	
9.2.1	CQI Reporting under AWGN conditions - PUCCH 1-0	
9.2.1.1	FDD CQI Reporting under AWGN conditions – PUCCH 1-0	
9.2.1.1.1	Test purpose	
9.2.1.1.2	Test applicability	
9.2.1.1.3	Minimum conformance requirements	
9.2.1.1.4	Test description	
9.2.1.1.5	Test requirement	
9.2.1.2	TDD CQI Reporting under AWGN conditions – PUCCH 1-0	
9.2.1.2.1	Test purpose	
9.2.1.2.2	Test applicability	
9.2.1.2.3	Minimum conformance requirements	
9.2.1.2.4	Test description	
9.2.1.2.5	Test requirement	
9.2.2	CQI Reporting under AWGN conditions - PUCCH 1-1	
9.2.2.1	FDD CQI Reporting under AWGN conditions – PUCCH 1-1	
9.2.2.1.1	Test purpose	
9.2.2.1.2	Test applicability	
9.2.2.1.3	Minimum conformance requirements	
9.2.2.1.4	Test description	
9.2.2.1.5	Test requirement	
9.2.2.2	TDD CQI Reporting under AWGN conditions – PUCCH 1-1	
9.2.2.2.1	Test purpose	
9.2.2.2.2	Test applicability	
9.2.2.2.3	Minimum conformance requirements	
9.2.2.2.4	Test description	
9.2.2.2.5	Test requirement	
9.3	CQI Reporting under fading conditions	
9.3.1	Frequency-selective scheduling mode	
9.3.1.1	Frequency-selective scheduling mode - PUSCH 3-0	
9.3.1.1.1	FDD Frequency-selective scheduling mode – PUSCH 3-0	210
9.3.1.1.2	TDD Frequency-selective scheduling mode – PUSCH 3-0	
9.3.2	Frequency non-selective scheduling mode	214
9.3.2.1	Frequency non-selective scheduling mode – PUCCH 1-0	214
9.3.2.1 1	FDD Frequency non-selective scheduling mode – PUCCH 1-0	214
9.3.2.1.2	TDD Frequency non-selective scheduling mode – PUCCH 1-0	216
9.4	Reporting of Precoding Matrix Indicator (PMI)	210
	· · · · · · · · · · · · · · · · · · ·	

9.4.1	Single PMI	218
9.4.1.	1 Single PMI – PUSCH 3-1	218
9.4.1.	1.1 FDD Single PMI – PUSCH 3-1	218
9.4.1.	1.2 TDD Single PMI – PUSCH 3-1	
9.4.2	Multiple PMI	
9.4.2.	1 Multiple PMI – PUSCH 1-2	
9.4.2.	1.1 FDD Multiple PMI – PUSCH 1-2	
9.4.2.	1.2 TDD Multiple PMI – PUSCH 1-2	
Anne	ex A (normative): Measurement Channels	227
A.1	General	
Δ 2	III reference measurement channels	227
A 2 1	General	
A 2.1	1 Applicability and common parameters	2.27
A.2.1	.2 Determination of pavload size	
A.2.2	Reference measurement channels for FDD	
A.2.2	.1 Full RB allocation	
A.2.2	.1.1 QPSK	
A.2.2	.1.2 16-QAM	
A.2.2	.1.3 64-QAM	229
A.2.2	.2 Partial RB allocation	229
A.2.2	.2.1 QPSK	230
A.2.2	.2.2 16-QAM	232
A.2.2	.2.3 64-QAM	233
A.2.3	Reference measurement channels for TDD	233
A.2.3	.1 Full RB allocation	234
A.2.3	.1.1 QPSK	234
A.2.3	.1.2 16-QAM	234
A.2.3	.1.3 64-QAM	
A.2.3	2 Partial KB allocation	
A.2.3	2.1 QPSK	235
A.2.3	2.2. 10-QAM 2.3. 6A-DAM	
11.2.5		
A.3	DL reference measurement channels	239
A.3.1	General	
A.3.2	Reference measurement channel for receiver characteristics	
A.3.2	A Downlink Reference measurement channel for TX characteristics	
A.3.3	Reference measurement channel for PDSCH performance requirements (FDD)	
A.3.3	.1 Single-antenna transmission (Common Reference Symbols)	
A.3.3	2.1 Two entenna ports	232
Δ33	2.2. Four antenna ports	252 253
Δ34	Reference measurement channel for PDSCH performance requirements (TDD)	255 254
A 3 4	1 Single-antenna transmission (Common Reference Symbols)	254 254
A.3.4	2 Multi-antenna transmission (Common Reference Symbols)	
A.3.4	.2.1 Two antenna ports	
A.3.4	.2.2 Four antenna ports	
A.3.4	.3 UE-Specific Reference Symbols	
A.3.5	Reference measurement channels for PDCCH/PCFICH performance requirements	
A.3.5	.1 FDD	
A.3.5	.2 TDD	
A.4	CQI reference measurement channels	
A.5	OFDMA Channel Noise Generator (OCNG)	
A.5.1	OCNG Patterns for FDD	
A.5.1	.1 OCNG FDD pattern 1: 14 RB OCNG allocation in 3 MHz	
A.5.1	.2 OCNG FDD pattern 2: 49 RB OCNG allocation in 10 MHz	
A.5.1	.3 OCNG FDD pattern 3: 99 RB OCNG allocation in 20 MHz	
A.5.1	.4 OCNG FDD pattern 4: 49 RB OCNG allocation with MBSFN in 10 MHz	

Anne	x B (normative):	Propagation Conditions	
B.0	No interference		
B .1	Static propagation condi	tion	
B.1.1	Definition of Additive	White Gaussian Noise (AWGN) Interferer	
B.2	Multi-path fading Propa	gation Conditions	
В.2.1 В.2.2	Combinations of chann	el model narameters	
B.2.3	MIMO Channel Correl	ation Matrices	
B.2.3.	1 Definition of MIMO	O Correlation Matrices	
B.2.3.	2 MIMO Correlation	Matrices at High, Medium and Low Level	
D.2.4	Propagation conditions		275
Б.3	righ speed train scenari	0	
Anne	x C (normative):	Downlink Physical Channels	
C.0	Downlink signal levels.		
C.1	General		
C.2	Set-up		279
C.3	Connection		
C.3.0	Measurement of Transp	nitter Characteristics	
C.3.1	Measurement of Receiv	ver Characteristics	
C.3.2	Measurement of Perior	mance requirements	201
Anne	x D (normative):	Characteristics of the Interfering Signal	
D.1	General		
D.2	Interference signals		
Anno			
Anne	x E (normative):	Global In-Channel TX-Test	
E.1	x E (normative): General	Global In-Channel TX-Test	283
E.1 E.2	x E (normative): General Signals and results	Global In-Channel TX-Test	283 283
E.1 E.2 E.2.1	x E (normative): General Signals and results Basic principle	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2	x E (normative): General Signals and results Basic principle Output signal of the TX	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.2 E.2.3 E.2.4	x E (normative): General Signals and results Basic principle Output signal of the TX Reference signal	Global In-Channel TX-Test	283 283 283 283 283 283 284 284
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.3 E.2.4 E.2.5	x E (normative): General Signals and results Basic principle Output signal of the TX Reference signal Measurement results Measurement points	Global In-Channel TX-Test	283 283283283283283284284284284
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3	x E (normative): General Signals and results Basic principle Output signal of the TY Reference signal Measurement results Measurement points Signal processing	Global In-Channel TX-Test	283 283283283283283284284284284284284
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1	x E (normative): General Signals and results Basic principle Output signal of the TX Reference signal Measurement results Measurement points Signal processing Pre FFT minimization	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2	x E (normative): General Signals and results Basic principle Output signal of the TX Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi	Global In-Channel TX-Test	283 283283283283284284284285285285
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3	x E (normative): General Basic principle Output signal of the TX Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation.	Global In-Channel TX-Test	283 283283283283284284284285285285285286
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4	x E (normative): General Signals and results Basic principle Output signal of the TX Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation. Derivation of the results	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1	x E (normative): General Basic principle Output signal of the TY Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation. Derivation of the results EVM	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3	x E (normative): General Basic principle Output signal of the TX Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation. Derivation of the results EVM Averaged EVM	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4	x E (normative): General Basic principle Output signal of the TY Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation. Derivation of the results EVM Averaged EVM In-band emissions mea Spectral flatness	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.4 E.4.5	x E (normative): General Basic principle Output signal of the TY Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation. Derivation of the results EVM Averaged EVM In-band emissions mea Spectral flatness Frequency error and IQ	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6	x E (normative): General Basic principle Basic principle Output signal of the TX Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation. Derivation of the results EVM Averaged EVM In-band emissions mea Spectral flatness Frequency error and IQ EVM of Demodulation	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6 E.4.6 E.4.6	x E (normative): General Basic principle Output signal of the TY Reference signal Measurement results Measurement points Signal processing Pre FFT minimization T Timing of the FFT wi Post FFT equalisation. Derivation of the results EVM Averaged EVM In-band emissions mea Spectral flatness Frequency error and IQ EVM of Demodulation 1 1 st average for EV	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6 E.4.6.1 E.4.6.2 E.5	x E (normative): General Basic principle Output signal of the TX Reference signal Measurement results Measurement points Signal processing Pre FFT minimization Timing of the FFT wi Post FFT equalisation. Derivation of the results EVM Averaged EVM In-band emissions mea Spectral flatness Frequency error and IQ EVM of Demodulation 1 1 st average for EV 2 Final average for I	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6 E.4.6.2 E.5 E.5 1	 x E (normative): General	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6 E.4.6.2 E.5 E.5.1 E.5.2	 x E (normative): General	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6 E.4.6.2 E.5 E.5.1 E.5.2 E.5.3	 x E (normative): General	Global In-Channel TX-Test	
E.1 E.2 E.2.1 E.2.2 E.2.3 E.2.4 E.2.5 E.3 E.3.1 E.3.2 E.3.3 E.4 E.4.1 E.4.2 E.4.3 E.4.4 E.4.5 E.4.6 E.4.6.2 E.5.1 E.5.2 E.5.3 E.5.4 E.5.5	 x E (normative): General	Global In-Channel TX-Test	

E.5.6	Pre FFT minimization process	292
E.5.7	Timing of the FFT window	293
E.5.8	Post FFT equalisation	293
E.5.9	Derivation of the results	
E.5.9.	1 EVM _{PUCCH}	
E.5.9.	2 Averaged EVM _{PUCCH}	
E.5.9.	3 In-band emissions measurement	
FC		205
E.0	EVM for PKACH	
E.6.1	Basic principle	
E.6.2	Output signal of the 1X under test	
E.6.3	Reference signal	
E.6.4	Measurement results	
E.6.5	Measurement points	
E.6.6	Pre FFT minimization process	
E.6./	liming of the FFT window	
E.6.8	Post FF1 equalisation	
E.6.9	Derivation of the results	
E.6.9.	I EVM _{PRACH}	
E.6.9.	2 Averaged EVM _{PRACH}	
1 mm o	x Et (normativa) Maggurament uncertainties and Test Televoness	200
Anne	X F: (normative) Measurement uncertainties and Test Tolerances	
F.1	Acceptable uncertainty of Test System (normative)	
F.1.1	Measurement of test environments	
F.1.2	Measurement of transmitter	300
F.1.3	Measurement of receiver	
F.1.4	Measurement of performance requirements	
F.2	Interpretation of measurement results (normative)	
E3	Test Tolerance and Derivation of Test Requirements (informative)	304
F.3 E 2 1	Massurement of test environmente	
Г.Э.1 Е 2 Э	Measurement of transmitter	
Г.Э. <u></u> Г.Э.2	Measurement of receiver	
Г.З.З Е 2-4	Measurement of performance requirements	
г.э.4	Measurement of performance requirements	
Anne	x G (normative). Statistical Testing	315
7 XIIIIC		
G.1	General	
\mathbf{C}^{2}	Statistical testing of receiver characteristics	215
G.2		
G.2.1	General	
G.2.2	Mapping throughput to error ratio	
G.2.3	Design of the test	
G.2.4	Numerical definition of the pass fail limits	
G.2.5	Pass fail decision fules	
G.2.6	l est conditions for receiver tests	
G.3	Statistical testing of Performance Requirements with throughput	
G.3.1	General	
G.3.2	Mapping throughput to error ratio	
G.3.3	Design of the test	
G.3.4	Pass Fail limit	
G.3.5	Minimum Test time	320
G 3 6	Test conditions for receiver performance tests	320
0.2.0		
G.4	Statistical testing of Performance Requirements with probability of misdetection	
G.4.1	General	
G.4.2	Mapping the UE reaction to error ratio	
G.4.3	Design of the test	
G.4.4	Numerical definition of the pass fail limits	
G.4.5	Pass fail decision rules	
G.4.6	Minimum Test time	
G.4.7	Test conditions for receiver performance tests	

G.X Theory to derive the numbers in Table G.2.1.3-1 (Informative)	
G.X.1 Error Ratio (ER)	
G.X.2 Test Design	
G.X.3 Confidence level	
G.X.4 Introduction: Supplier Risk versus Customer Risk	
G.X.5 Supplier Risk versus Customer Risk	
G.X.6 Introduction: Standard test versus early decision concept	
G.X.7 Standard test versus early decision concept	
G.X.8 Selectivity	
G.X.9 Design of the test	
G.X.10 Simulation to derive the pass fail limits in Table G.2.1.3-1	
Annex H (normative): Uplink Physical Channels	
H.0 Uplink Signal Levels	
H.1 General	
H.2 Set-up	
H.3 Connection	
H.3.0 Measurement of Transmitter Characteristics	
H.3.1 Measurement of Receiver Characteristics	
H.3.2 Measurement of Performance Requirements	
Annex I (informative): Change history	
History	

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain transmitting characteristics, receiving characteristics and performance requirements as part of the 3G Long Term Evolution (3G LTE). Conformance test for the support of RRM (Radio Resource Management) are specified in TS 36.521-3.

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "*definition and applicability*" part of the test.

For example only Release 8 and later UE declared to support LTE shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- $[<\!seq\!>] \qquad <\!doctype\!><\!\#\!>[([up to and including]{yyyy[-mm]|V<\!a[.b[.c]]\!>}[onwards])]: "<\!Title\!>".$
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 36.101: "E-UTRA UE radio transmission and reception".
- [3] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain"
- [4] 3GPP TS 36.133: "E-UTRA requirements for support of radio resource management".
- [5] 3GPP TS 36.331: "E-UTRA Radio Resource Control (RRC): protocol specification".
- [6] 3GPP TS 36.304: "E-UTRA UE procedures in idle mode".
- [7] 3GPP TS 36.508: "Common test environments for User Equipment (UE)".
- [8] 3GPP TS 36.211: "3GPP TS 36.211: "Physical Channels and Modulation".
- [9] 3GPP TS 36.212: "3GPP TS 36.212: "E-UTRA Multiplexing and channel coding".
- [10] 3GPP TS 36.213: "3GPP TS 36.213: "E-UTRA Physical layer procedures".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Maximum Output Power: The mean power level per carrier of UE measured at the antenna connector in a specified reference condition.

Mean power: When applied to E-UTRA transmission this is the power measured in the operating system bandwidth of the carrier. The period of measurement shall be at least one subframe (1ms) unless otherwise stated.

Occupied bandwidth: The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission.

Output power: The mean power of one carrier of the UE, delivered to a load with resistance equal to the nominal load impedance of the transmitter.

PMI delay: The rate in basic time unit at which PMI is updated.

Reference bandwidth: The bandwidth in which an emission level is specified.

Transmission bandwidth: Bandwidth of an instantaneous transmission from a UE or BS, measured in Resource Block units.

Transmission bandwidth configuration: The highest transmission bandwidth allowed for uplink or downlink in a given channel bandwidth, measured in Resource Block units.

Transmit Diversity: Transmit diversity is based on space-frequency block coding techniques complemented with frequency-shift time diversity when four transmit antennas is used.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

$\mathrm{BW}_{\mathrm{Channel}}$	Channel bandwidth
E_{RS}	Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.
	excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{E}_s	The received energy per RE during the useful part of the symbol, i.e. excluding the cyclic prefix,
	averaged across the allocated RB(s) (average power within the allocated RB(s), divided by the number of RE within this allocation, and normalized to the subcarrier spacing) at the UE antenna connector
F	Frequency
F _{Interferer} (offset)	Frequency offset of the interferer
FInterferer	Frequency of the interferer
F _C	Frequency of the carrier centre frequency
F_{DL_low}	The lowest frequency of the downlink operating band

F _{DL_high}	The highest frequency of the downlink operating band
F _{UL_low}	The lowest frequency of the uplink operating band
F_{UL_high}	The highest frequency of the uplink operating band

Editor's note: one of the two following definitions for Io will be used (TBD in RAN4)

I_o	The power spectral density of the total input signal (power averaged over the useful part of the
	symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal
I _a	The power spectral density of the total input signal at the UE antenna connector (power averaged
0	over the useful part of the symbols within a given bandwidth and normalised to the said bandwidth), including the own-cell downlink signal
I _{or}	The total transmitted power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{I}_{or}	The total received power spectral density of the own-cell downlink signal (power averaged over
	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector
I _{ot}	The received power spectral density of the total noise and interference for a certain RE (average
	power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector
L _{CRBs}	The number of resource blocks allocated in the uplink transmission bandwidth.
N _{cp} N _{DL}	Cyclic prefix length Downlink EARFCN
N_{oc}	The power spectral density of a white noise source (average power per RE normalised to the
N _{Offs-DL}	subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as measured at the UE antenna connector Offset used for calculating downlink EARFCN
N _{Offs-UL}	Offset used for calculating uplink EARFCN
IV _{otx}	subcarrier spacing) simulating eNode B transmitter impairments as at the eNode B transmit antenna connector
N _{RB} N _{UL} P P	Transmission bandwidth configuration, expressed in units of resource blocks Uplink EARFCN Number of cell-specific antenna ports Antenna port number
Rav $P_{Interferer}$ ΔF_{OOB} RB #	Minimum average throughput per RB Modulated mean power of the interferer Δ Frequency of Out Of Band emission Position of the RB in the channel bandwidth.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR	Adjacent Channel Leakage Ratio
ACS	Adjacent Channel Selectivity
A-MPR	Additional Maximum Power Reduction

3GPP TS 36.521-1 version 8.3.1 Release 8

AWGN	Additive White Gaussian Noise
BS	Base Station
СР	Cyclic Prefix
CW	Continuous Wave
DCI	Downlink Control Information
DL	Downlink
EARFCN	E-UTRA Absolute Radio Frequency Channel Number
EPRE	Energy Per Resource Element
E-UTRA	Evolved UMTS Terrestrial Radio Access
EUTRAN	Evolved UMTS Terrestrial Radio Access Network
EVM	Error Vector Magnitude
FDD	Frequency Division Duplex
FRC	Fixed Reference Channel
FSTD	Frequency-Shift Time Diversity
HARQ	Hybrid ARQ
HD-FDD	Half- Duplex FDD
MCS	Modulation and Coding Scheme
MOP	Maximum Output Power
MPR	Maximum Power Reduction
MSR	Maximum Sensitivity Reduction
OCNG	OFDMA Channel Noise Generator
OFDMA	Orthogonal Frequency Division Multiple Access
OOB	Out-of-band
PA	Power Amplifier
PCFICH	Physical Control Format Indicator Channel
PDCCH	Physical Downlink Control Channel
PDSCH	Physical Downlink Shared Channel
PRB	Physical Resource Block
PMI	Precoding Matrix Indicator
PSS	Primary Synchronization Signal
PSS_RA	PSS-to-EPRE ratio for the channel PSS
PUCCH	Physical Uplink Control Channel
RE	Resource Element
REFSENS	Reference Sensitivity power level
r.m.s	Root Mean Square
RS	Reference Signal
SFBC	Space-Frequency Block Coding
SNR	Signal-to-Noise Ratio
SSS	Secondary Synchronization Signal
SSS_RA	SSS-to-RS EPRE ratio for the channel SSS
TDD	Time Division Duplex
TPC	Transmit Power Control
TPMI	Transmitted Precoding Matrix Indicator
UE	User Equipment
UL	Uplink
UMIS	Universal Mobile Telecommunications System
UIKA	UNITS TETESTIAI KAOLO ACCESS
UIKAN	UM15 Terrestrial Kadio Access Network
XUH_KA	xCII-to-KS EPKE ratio for the channel xCII in all transmitted OFDM symbols not containing KS
хсп_кв	XUT-10-KS EPKE ratio for the channel XUH in all transmitted OFDM symbols containing KS

4 General

Unless otherwise stated, the following reference conditions used by all test cases in this document are specified in TS 36.508 [7]:

- Connection Diagrams,
- Test Frequencies,
- Cell Settings,
- Reference Environments,
- Environmental Conditions,
- Generic Connection Setup Procedures,
- System Information (SI),
- Message Contents.

Where a test requires one of the above reference conditions that are different, this will be specified within the test itself.

The Minimum Requirements defined in each test make no allowance for Measurement Uncertainty. Therefore, Test Tolerances are used to relax the Minimum Requirements. If the Test Requirement differs from the Minimum Requirement then the Test Tolerance applied for that test is non-zero. For each test the Test Tolerances are individually calculated to create the Test Requirements. The Test Tolerance for each test and the explanation of how the Minimum Requirement has been relaxed by the Test Tolerance is given in Annex F.3.

Downlink and Uplink transmissions are organized into radio frames with $T_f = 307200 \times T_s = 10 \text{ ms}$ duration. Two radio frame structures are supported in this document:

- Type 1, applicable to FDD,
- Type 2, applicable to TDD.

In clauses 6 and 7 TX and RX test cases for FDD/TDD test cases are defined. FDD and TDD test scenarios/ requirements are included within the same test case. For test cases with any difference between the FDD and TDD branches the test description part of the test case has been separated in two sections to cover the two technologies. The applicability for the FDD and TDD branches are specified in TS 36-521-2.

In clause 8 the performance requirement test cases are defined. FDD and TDD performance requirement test cases are defined in different clauses accordingly to the requirements specified in TS 36.101.

Unless otherwise stated, each test case is tested for every operating band supported by the UE and repeated with the applicable test configurations (i.e. test environment, test frequencies, test channel bandwidths, channel bandwidth parameters) indicated in each test case.For test cases in clauses 6, 7, 8 the initial conditions of the downlink physical channels signal levels and downlink physical channels required are specified in Annex C.0, Annex C.1 and Annex C.2.

For test cases in clauses 6 and 7.3, the maximum output power state in the test procedures is the state in which the UE transmits with output power within the range specified in the test requirement of Maximum Output Power (Table 6.2.2.5-1), or Maximum Power Reduction test cases (Table 6.2.3.5-1) in case MPR is allowed, according to each test configuration in the initial condition. This range of maximum output power shall not be modified for any further additional relaxation.

5 Frequency bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the frequency bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

5.2 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.2-1.

E-UTRA	Upli	ink ((UL)	Dowr	Duplex			
Operating	eNode	Br	eceive	eNode	eNode B transmit			
Band	UE t	ran	smit	UE	rece	eive		
	F _{UL_low}	-	F _{UL_high}	F _{DL_low}	-	F _{DL_high}		
1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD	
2	1850 MHz	_	1910 MHz	1930 MHz	-	1990 MHz	FDD	
3	1710 MHz	-	1785 MHz	1805 MHz	-	1880 MHz	FDD	
4	1710 MHz	-	1755 MHz	2110 MHz	_	2155 MHz	FDD	
5	824 MHz	-	849 MHz	869 MHz	-	894MHz	FDD	
6	830 MHz	-	840 MHz	875 MHz	-	885 MHz	FDD	
7	2500 MHz	—	2570 MHz	2620 MHz	-	2690 MHz	FDD	
8	880 MHz	—	915 MHz	925 MHz	-	960 MHz	FDD	
9	1749.9 MHz	-	1784.9 MHz	1844.9 MHz	_	1879.9 MHz	FDD	
10	1710 MHz	-	1770 MHz	2110 MHz	_	2170 MHz	FDD	
11	1427.9 MHz	-	1452.9 MHz	1475.9 MHz	_	1500.9 MHz	FDD	
12	698 MHz	-	716 MHz	728 MHz	_	746 MHz	FDD	
13	777 MHz	-	787 MHz	746 MHz	_	756 MHz	FDD	
14	788 MHz	_	798 MHz	758 MHz	_	768 MHz	FDD	
15	Reserved			Reserved			FDD	
16	Reserved			Reserved			FDD	
17	704 MHz	_	716 MHz	734 MHz	_	746 MHz	FDD	
18	815 MHz	_	830 MHz	860 MHz	-	875 MHz	FDD	
19	830 MHz	_	845 MHz	875 MHz	_	890 MHz	FDD	
33	1900 MHz	_	1920 MHz	1900 MHz	_	1920 MHz	TDD	
34	2010 MHz	_	2025 MHz	2010 MHz	_	2025 MHz	TDD	
35	1850 MHz	_	1910 MHz	1850 MHz	_	1910 MHz	TDD	
36	1930 MHz	_	1990 MHz	1930 MHz	_	1990 MHz	TDD	
37	1910 MHz	_	1930 MHz	1910 MHz	_	1930 MHz	TDD	
38	2570 MHz	_	2620 MHz	2570 MHz	_	2620 MHz	TDD	
39	1880 MHz	_	1920 MHz	1880 MHz	_	1920 MHz	TDD	
40	2300 MHz	_	2400 MHz	2300 MHz	_	2400 MHz	TDD	
Note: Band	6 is not applicat	ole.						

Table 5.2-1 E-UTRA operating bands

5.3 TX–RX frequency separation

a) The default EUTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.3-1 for the TX and RX channel bandwidths defined in Table 5.4.2.1-1

Frequency Band	TX-RX
	carrier centre frequency
	separation
1	190 MHz
2	80 MHz.
3	95 MHz.
4	400 MHz
5	45 MHz
6	45 MHz
7	120 MHz
8	45 MHz
9	95 MHz
10	400 MHz
11	48 MHz
12	30 MHz
13	-31 MHz
14	-30 MHz
17	30 MHz
18	45 MHz
19	45 MHz

Table 5.3-1: Default UE TX-RX frequency separation

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

5.4 Channel arrangement

5.4.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

5.4.2 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.4.2-1

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration <i>N</i> _{RB}	6	15	25	50	75	100

Table 5.4.2-1 Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

Figure 5.4.2-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- $BW_{Channel}$ /2.

Figure 5.4.2-1 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one E-UTRA carrier.

5.4.2.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.4.2.1-1. The transmission bandwidth configuration in Table 5.4.2-1 shall be supported for each of the specified supported channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

E-UTRA band / channel bandwidth									
E-UTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
Band									
1			Yes Yes Yes		Yes				
2	Yes	Yes	Yes Yes Yes ^[1]		Yes ^[1]	Yes ^[1]			
3	Yes	Yes	Yes	Yes	Yes ^[1]	Yes ^[1]			
4	Yes	Yes	Yes	Yes	Yes	Yes			
5	Yes	Yes	Yes	Yes ^[1]					
6			Yes	Yes ^[1]					
7			Yes	Yes	Yes	Yes ^[1]			
8	Yes	Yes	Yes	Yes ^[1]					
9			Yes	Yes	Yes ^[1]	Yes ^[1]			
10			Yes	Yes	Yes	Yes			
11			Yes	Yes ^[1]	Yes ^[1]	Yes ^[1]			
12	Yes	Yes	Yes ^[1]	Yes ^[1]					
13	Yes	Yes	Yes ^[1]	Yes ^[1]	Yes ^[1]				
14	Yes	Yes	Yes ^[1]	Yes ^[1]					
17	Yes	Yes	Yes ^[1]	Yes ^[1]					
18			Yes	Yes ^[1]	Yes ^[1]				
19			Yes	Yes ^[1]	Yes ^[1]				
33			Yes	Yes	Yes	Yes			
34			Yes	Yes	Yes				
35	Yes	Yes	Yes	Yes	Yes	Yes			
36	Yes	Yes	Yes	Yes	Yes	Yes			
37			Yes	Yes	Yes	Yes			
38			Yes	Yes	Yes	Yes			
39			Yes	Yes	Yes	Yes			
40			Yes	Yes	Yes	Yes			
NOTE 1: ba	andwidth for	which a rela	xation of the	specified UE	receiver ser	sitivity			
requirement (Clause 7.3) is allowed.									

Table 5.4.2.1-1: E-UTRA channel bandwidth

b) The use of different (asymmetrical)) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

5.4.3 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.4.4 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where $F_{DL_{low}}$ and $N_{Offs-DL}$ are given in table 5.4.4-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL_low} + 0.1(N_{DL} - N_{Offs-DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where F_{UL_low} and $N_{Offs-UL}$ are given in table 5.4.4-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs-UL})$$

		Downlink		Uplink			
Band	F _{DL low} (MHz)	N _{Offs-DL}	Range of N _{DL}	FUL low (MHz)	N _{Offs-UL}	Range of NUL	
1	2110	0	0 - 599	1920	18000	18000 – 18599	
2	1930	600	600 - 1199	1850	18600	18600 - 19199	
3	1805	1200	1200 - 1949	1710	19200	19200 - 19949	
4	2110	1950	1950 - 2399	1710	19950	19950 - 20399	
5	869	2400	2400 - 2649	824	20400	20400 - 20649	
6	875	2650	2650 - 2749	830	20650	20650 - 20749	
7	2620	2750	2750 - 3449	2500	20750	20750 - 20449	
8	925	3450	3450 - 3799	880	21450	21450 - 21799	
9	1844.9	3800	3800 - 4149	1749.9	21800	21800 - 22149	
10	2110	4150	4150 – 4749	1710	22150	22150 - 22749	
11	1475.9	4750	4750 - 4999	1427.9	22750	22750 - 22999	
12	728	5000	5000 - 5179	698	23000	23000 - 23179	
13	746	5180	5180 - 5279	777	23180	23180 - 23279	
14	758	5280	5280 - 5379	788	23280	23280 - 23379	
17	734	5730	5730 - 5849	704	23730	23730 - 23849	
18	860	5850	5850 - 5999	815	23850	23850 - 23999	
19	875	6000	6000 - 6149	830	24000	24000 -	
						24149	
33	1900	36000	36000 – 36199	1900	36000	36000 - 36199	
34	2010	36200	36200 - 36349	2010	36200	36200 - 36349	
35	1850	36350	36350 - 36949	1850	36350	36350 - 36949	
36	1930	36950	36950 - 37549	1930	36950	36950 - 37549	
37	1910	37550	37550 - 37749	1910	37550	37550 - 37749	
38	2570	37750	37750 - 38249	2570	37750	37750 - 38249	
39	1880	38250	38250 - 38649	1880	38250	38250 - 38649	
40	2300	38650	38650 - 39649	2300	38650	38650 - 39649	
NOTE:	The channel num	bers that desig	gnate carrier frequen	cies so close to the	e operating band	edges that the	
	carrier extends be	eyond the oper	ating band edge sha	all not be used. This	s implies that the	e first 7, 15, 25,	
	50, 75 and 100 ch	annel number	s at the lower opera	ting band edge and	I the last 6, 14, 2	24, 49, 74 and 99	
	channel numbers	at the upper o	perating band edge	shall not be used for	or channel band	widths of 1.4, 3,	
	5, 10, 15 and 20 N	MHz respective	ely.				

Table 5.4.4-1 E-UTRA channel numbers

6 Transmitter Characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single transmit antenna. For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

Transient periods are excluded. If the transient periods are to be included in a particular test case it will be explicitly indicated inside the particular test procedure of the test case. The transient periods due to power steps, OFF/ON and ON/OFF transitions could occur at slot or symbol boundary with transients, on one or both sides of the boundary. The measurement period and whether to exclude the transient periods are specified respective sections below.

Unless otherwise stated, the Test Equipment shall be synchronised to the Uplink signal for measurement of TDD transmitter characteristics.

The measurement period is derived by concatenating the correct number of individual uplink slots until the correct measurement period required by the test case is reached.

6.2 Transmit power

6.2.1 Void

Editor's note: this "void" section was introduced because TS 36.101 v8.1.0 also contains a "void" sub-clause with in the transmit power clause 6.2, and there is a strong desire in RAN5 to keep the test cases clauses numbering matching their specific core requirements as much as possible.

6.2.2 UE Maximum Output Power

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- For partial RB allocation, it is not decided yet whether low range and high range frequencies should be tested.
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- The maximum output power test case description has been verified to apply for both FDD and TDD exactly as it is.

6.2.2.1 Test purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

6.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.2.2.3 Minimum conformance requirements

The following UE Power Classes defines the maximum output power. The power is the broadband transmit power of the UE, i.e. the power in the channel bandwidth (clause 5.4.2) of the radio access mode. The period of measurement shall be at least one sub frame (1ms).

EUTRA	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance
band	(dBm)	(dB)	(dBm)	(aB)	(dBm)	(dB)	(dBm)	(dB)
1					23	<u>±2</u>		
2					23	<u>+2</u> ²		
3					23	$\pm 2^2$		
4					23	±2		
5					23	±2		
6					23	±2		
7					23	$\pm 2^2$		
8					23	$\pm 2^2$		
9					23	±2		
10					23	±2		
11					23	$\pm 2^2$		
12					23	$\pm 2^2$		
13					23	±2		
14					23	±2		
17					23	±2		
18					23	±2		
19					23	±2		
33					23	±2		
34					23	±2		
35					23	±2		
36					23	±2		
37					23	±2		
38					23	±2		
39					23	+2		
40					23	+2		
Note 1: Th	e above tole	rances are ap	plicable for	UE(s) that sur	port up to 4	E-UTRA opera	ting bands. F	or UE(s) that
	support 5 or	more E-UTR	A bands the	maximum out	put power is	s expected to de	crease with	each
Note 2 [.] Ec	auditional ba	anu anu is FF3	o ons (Figure 5	5 4 2-1) confin	ed within Fl	II low and FUI	low + 4 M⊢	lz or

Т	able	6.2	2.3-1	: 1	JE	Power	Class
	anc	v.z.	2.0-1				01033

Note 2: For transmission configurations (Figure 5.4.2-1) confined within FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

The normative reference for this requirement is TS 36.101 clause 6.2.2.

6.2.2.4 Test description

6.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Also TDD RMC is added as in draft.

Table 6.2.2.4.1-1: Test Configuration Table

3. Downlink signals are initially set up according to Annex C.0, C.1, and C Annex H.1 and H.3.0.

2. The parameter settings for the cell are set up according to TS 36.508 [7]

- 4. The UL Reference Measurement channels isset according to Table 6.2.2.4
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A according to TS 36.508 [7] clause 4.5.3A. Message contents are defined in clause 6.2.2.4.3.

6.2.2.4.2 Test procedure

1. SS sends uplink scheduling information every TTI via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.2.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC

2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.2.2.4.1-1.

3. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be one sub-frame (1ms).

6.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.2.2.5 Test requirements

The maximum output power, derived in step 2 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.2.5-1.

EUTRA band	Class 1 (dBm)	Tolerance (dB)	Class 2 (dBm)	Tolerance (dB)	Class 3 (dBm)	Tolerance (dB)	Class 4 (dBm)	Tolerance (dB)
1					23	±2.7		
2					23	$\pm 2.7^{2}$		
3					23	$\pm 2.7^{2}$		
4					23	±2.7		
5					23	±2.7		
6					23	±2.7		
7					23	$\pm 2.7^{2}$		
8					23	$\pm 2.7^{2}$		
9					23	±2.7		
10					23	±2.7		
11					23	$\pm 2.7^{2}$		
12					23	$\pm 2.7^{2}$		
13					23	±2.7		
14					23	±2.7		
17					23	±2.7		
18					23	±2.7		
19					23	±2.7		
33					23	±2.7		
34					23	±2.7		
35					23	±2.7		
36					23	±2.7		
37					23	±2.7		
38					23	±2.7		
39					23	±2.7		
40					23	±2.7		
Note 1: Note 2:	The above tolerances are applicable for UE(s) that support up to 4 E-UTRA operating bands. For UE(s) that support 5 or more E-UTRA bands the maximum output power is expected to decrease with each additional band and is FFS For transmission configurations (Figure 5.4.2-1, Table 5.4.4-1) confined within FUL_low and FUL_low + 4 MHz or FUL_high – 4 MHz and FUL_high, the maximum output power requirement is relaxed by							
	reducing the	e lower tolerar	nce limit by 1	.5 dB (Iolerai	nce = +2.7 /	-4.2)		

Table 6.2.2.5-1: UE Power Class test requirements

6.2.3 Maximum Power Reduction (MPR)

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

• *Test case is not complete for FDD*

TDD aspects missing or not yet determined:

• Test case is not complete for TDD

• The MPR test case description has been verified to apply for both FDD and TDD exactly as it is as part of the UE max output power verification.

6.2.3.1 Test purpose

The number of RB identified in Table 6.2.2.3-1 is based on meeting the requirements for adjacent channel leakage ratio and the maximum power reduction (MPR) due to Cubic Metric (CM).

Simple scaling can be used to derive the requirement for other bandwidth based on the previously agreed value for 5MHz channel bandwidth.

6.2.3.2 Test applicability

The requirements of this test apply in test cases 6.6.2.1 Spectrum Emission Mask and 6.6.2.3 Adjacent Channel Leakage power Ratio to all types of E-UTRA UE release 8 and forward.

6.2.3.3 Minimum conformance requirements

For UE Power Class 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2.3-1 due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3.3-1.

Modulation	Channel	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

Table 6.2.3.3-1: Maximum Power Reduction (MPR) for Power Class 3

6.2.3.4 Test description

6.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2.3.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions									
Test Environ	ment as specifi	ed in	Normal, TH/VL, TH/VH						
TS 36.508[7]	subclause 4.1								
Test Frequer	icies as specifi	ed in	Low range, N	Low range, Mid range, High range					
TS36.508 [7]	subclause 4.3.	.1							
Test Channe	I Bandwidths a	s specified in	Lowest, 5MH	Lowest, 5MHz, Highest					
TS 36.508 [7] subclause 4.3.1									
		Test Paramete	rs for Channel Bandwidths						
	Dowr	nlink Configur	ation	Upli	ink Configura	tion			
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation			
		FDD	TDD		FDD	TDD			
1.4MHz	QPSK	6	6	QPSK	FULL	FULL			
1.4MHz	QPSK	6	6	16QAM	5	5			
1.4MHz	QPSK	6	6	16QAM	FULL	FULL			
3.0MHz	QPSK	4	4	QPSK	FULL	FULL			
3.0MHz	QPSK	4	4	16QAM	4	4			
3.0MHz	QPSK	4	4	16QAM	FULL	FULL			
5MHz	QPSK	8	8	QPSK	FULL	FULL			
5MHz	QPSK	8	8	16QAM	8	8			
5MHz	QPSK	8	8	16QAM	FULL	FULL			
10MHz	QPSK	16	16	QPSK	FULL	FULL			
10MHz	QPSK	16	16	12					
10MHz	QPSK	16	16	16QAM	FULL	FULL			
15MHz	QPSK	25	25	QPSK	FULL	FULL			
15MHz	QPSK	25	25	16QAM	16	16			
15MHz	QPSK	25	25	16QAM	FULL	FULL			
20MHz	QPSK	30	30	QPSK	FULL	FULL			
20MHz	QPSK	30	30	16QAM	18	18			
20MHz	QPSK	30	30	16QAM	FULL	FULL			
Note 1: Test	Channel Bandy	widths are cheo	cked separately	/ for each E-UT	RA band, the	applicable			
ch	annel bandwid	ths are specifie	ed in Table 5.4.	2.1-1.					
Note 2. For the uplink RB allocation the starting resource block shall be RB#0.									

Table 6.2.3.4.1-1: Test Configuration Table

- 1. Connect the SS and interfering sources to the UE antenna connectors as shown in TS 36.508[7] Annex A Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.2.3.4.1-1.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.2.2.4.3.

6.2.3.4.2 Test procedure

1. Send continuous uplink power control "up" commands to the UE to ensure that the UE transmits at its maximum power potentially adjusted by MPR.

2. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least one sub-frame (1ms).

6.2.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.2.3.5 Test requirements

The maximum output power, derived in step 2 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.2.5-1.

E- UTRA Band	Class 1 (dBm)	Tol. (Db)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	QPSK full RB allocation Tol. (dB))	16QAM partial RB allocation Tol. (dB)	16QAM full RB allocation Tol. (dB)
1					23	+2.7 /	+2.7 /	+2.7 /
-					20	-3.7	-3.7	-4.7
2					23	+2.77	+2.77	+2.77
						+2.7 /	+2.7 /	+2.7 /
3					23	-3.7	-3.7	-4.7
4					23	+2.7 /	+2.7 /	+2.7 /
						-3.7	-3.7	-4./
5					23	-3.7	-3.7	+2.77
6					22	+2.7 /	+2.7 /	+2.7 /
0					23	-3.7	-3.7	-4.7
7					23	+2.7 /	+2.7 /	+2.7 /
						-3.7	-3.7	-4./
8					23	-3.7	-3.7	-4.7
0					22	+2.7 /	+2.7 /	+2.7 /
9					23	-3.7	-3.7	-4.7
10					23	+2.7 /	+2.7/	+2.7 /
						-3.7	-3.7	-4.7
11					23	-3.7	-3.7	-4.7
10					22	+2.7 /	+2.7 /	+2.7 /
12					23	-3.7	-3.7	-4.7
13					23	+2.7 /	+2.7/	+2.7 /
						-3./	-3.7	-4./
14					23	-3.7	-3.7	-4.7
17					23	+2.7 /	+2.7 /	+2.7 /
					20	-3.7	-3.7	-4.7
						+27/	+27/	+27/
33					23	-3.7	-3.7	-4.7
34					23	+2.7 /	+2.7 /	+2.7 /
					20	-3.7	-3.7	-4.7
35					23	+2.7 /	+2.7/	+2.7 /
						-3.7	-3.7	+27/
36					23	-3.7	-3.7	-4.7
37					23	+2.7 /	+2.7 /	+2.7 /
- 51					25	-3.7	-3.7	-4.7
38					23	+2.7 /	+2.7/	+2.7 /
39					23	+2.7 /	+2.7 /	+2.7 /
						-3.7	-3.7	-4.7
40					23	+2.7 /	+2.7 /	+2.7 /
						-3.7	-3.7	-4.7

6.2.4 Additional Maximum Power Reduction (A-MPR)

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- FDD aspects missing or not yet determined:
 - It is yet to be determined if this is a standalone test or part of ACLR andAdditional SEM Spectrum Emissions Mask and Additional Spurious Emissions test cases to verify the UE transmission power is correct.
 - The addition of the zero A-MPR test case for NS_03 to NS_06 would also be reconsidered based on the decision above. The uplink RB allocation for the zero A-MPR test case for NS_03 to NS_06 is left in brackets.
 - Need to clarify the proper handling of the 1.5dB relaxation in the lower tolerance limit at band corner when MPR and A-MPR are applicable.
 - Test case is not complete for FDD

TDD aspects missing or not yet determined:

- *Test case is not complete for TDD*
- The A-MPR test case description has been verified to apply for both FDD and TDD exactly as it is as part of the UE max output power verification.

6.2.4.1 Test purpose

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall meet also additional requirements in a specific deployment scenario. To meet these additional requirements the concept of Additional Maximum Power Reduction A-MPR is introduced for the output power in Table 6.2.2.3-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

6.2.4.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward. [FSS if this is a standalone test or part of Additional Spectrum Emissions Mask and Additional Spurious Emissions test cases to verify the UE transmission power is correct. The addition of the zero A-MPR test case for NS_03 to NS_06 would also be reconsidered based on the decision.]

6.2.4.3 Minimum conformance requirements

For UE Power Class 3 the specific requirements and identified sub-clauses are specified in Table 6.2.4.3-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4.3-1 and 6.2.4.3-2 are in addition to the allowed MPR requirements specified in clause 6.2.3.

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks	A-MPR (dB)
NS_01	NA	NA	NA	NA	NA
	6.6.2.2.3.1	2, 4,10, 35, 36	3	>5	≤1
	6.6.2.2.3.1	2, 4,10, 35,36	5	>6	≤ 1
NS_03	6.6.2.2.3.1	2, 4,10, 35,36	10	>6	≤ 1
	6.6.2.2.3.1	2, 4,10,35,36	15	>8	≤ 1
	6.6.2.2.3.1	2, 4,10,35, 36	20	>10	≤ 1
NS_04	6.6.2.2.3.2	TBD	TBD	TBD	TBD
NS_05	6.6.3.3.3.1	1	10,15,20	≥ 50 for QPSK	≤ 1
NS_06	6.6.2.2.3.3	12, 13, 14, 17	1.4, 3, 5, 10	n/a	n/a
NS_07	6.6.2.2.3.3 6.6.3.3.3.2	13	10	Table 6.2.4.3-2	Table 6.2.4.3-2
				> 29	≤ 1
NS_08	6.6.3.3.3.3	19	10, 15	> 39	≤ 2
				> 44	≤ 3
NS_32	-	-	-	-	-

Table 6.2.4.3-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Table 6.2.4.3-2: A-MPR for "NS_07"

	Re	egion A		Regio	Region C				
RB_start ¹	0 – 12		13 –18		19 – 42		43 – 49		
L_CRB ² [RBs]	6 – 8	1 to 5 and 9-50	<8	≥8	<18	≥18	≤2	>2	
A-MPR [dB]	8	12	0	12	0	6	3	0	
Note 1, DD, start indicates the lowest DD index of transmitted resource blocks									

Note 1: RB_start indicates the lowest RB index of transmitted resource blocks

Note 2: L_CRB is the length of a contiguous resource block allocation

Note 3: For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.

Note 4: For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.

6.2.4.4 Test description

6.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2.4.4.1-1 or table 6.2.4.4.1-2. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively as applicable. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.
Initial Conditions						
Test Environment				Normal		
(as specified	in TS 36.508 [7	7] subclause 4.	1)	Normai		
Test Frequen	icies			Low range M	lid range. High	range
(as specified	in TS36.508 [7] subclause 4.3	3.1)	Low range, iv	lia range, riigh	range
Test Channe	l Bandwidths			See Table 6 2	2 4 3-1	
(as specified	in TS 36.508 [7	7] subclause 4.	3.1)			
Test Parame	ters for Chan	nel Bandwidth	IS			-
	Dowr	nlink Configur	ation	Upl	ink Configurat	tion
Ch BW	Mod'n	RB allo	pcation	Mod'n	RB allo	ocation
		FDD	TDD		FDD	TDD
3MHz	QPSK	4	4	QPSK	[4]	[4]
3MHz	QPSK	4	4	QPSK	15	15
5MHz	QPSK	8	8	QPSK	[5]	[5]
5MHz	QPSK	8	8	QPSK	25	25
10MHz	QPSK	16	16	QPSK	[5]	[5]
10MHz	QPSK	16	16	QPSK	50	50
15MHz	QPSK	25	25	QPSK	[5]	[5]
15MHz	QPSK	25	25	QPSK	75	75
20MHz	QPSK	30	30	QPSK	[5]	[5]
20MHz	QPSK	30	30	QPSK	100	100
Note 1: Test	Channel Bandy	widths are cheo	cked separately	y for each E-U1	RA band, the	applicable
ch	annel bandwid	ths are specifie	ed in Table 5.4	.2.1-1.		
Note 2: The	allowed A-MP	R values speci	fied in Table 6	.2.4.3-1 are in a	addition to the a	allowed MPR
requirements specified in clause 6.2.3.						
Note 3: For low range frequency, the starting resource block of partial RB allocation shall be RB#						
(m	ax - RB alloca	ation) of the cha	annel bandwid	th.		
Note 4: For m	Note 4: For middle range frequency, the starting resource block of partial RB allocation shall be					

Table 6.2.4.4.1-1: Test Configuration Table (network signalled value "NS_03" to "NS_06")

RB# 0 and RB# (max - RB allocation) of the channel bandwidth. Note 5: For high range frequency, the starting resource block of partial RB allocation shall be RB# 0 of the channel bandwidth.

Initial Conditions						
Test Environment				Normal		
(as specified in TS 36.508 [7] subclause 4.1)				Normai		
Test Freque	encies			Mid range		
(as specifie	d in TS36.508	[7] subclause	9 4.3.1)	wiid range		
Test Chann	el Bandwidths	6		See Table 6	2 4 3-1	
(as specifie	d in TS 36.508	3 [7] subclaus	e 4.3.1)		.2.4.0 1	
Test Param	neters for NS	_07 A-MPR				
		Downlin	<pre>c Configuration</pre>	U	plink Configura	tion
Test	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation	RB_start
Number			FDD		FDD	FDD
1	10MHz	QPSK	16	QPSK	1	0
2	10MHz	QPSK	16	QPSK	8	0
3	10MHz	QPSK	16	QPSK	6	13
4	10MHz	QPSK	16	QPSK	20	15
5	10MHz	QPSK	16	QPSK	16	19
6	10MHz	QPSK	16	QPSK	30	19
7	10MHz	QPSK	16	QPSK	6	43
8	10MHz	QPSK	16	QPSK	2	48
9	9 10MHz QPSK 16 QPSK 50 0					0
Note 1: The	allowed A-MI	PR values spe	cified in Table 6.2.4	.3-2 are in ad	dition to the allow	ed MPR
requirements specified in clause 6.2.3.						

Initial Conditions						
Test Environn	nent	Normal				
(as specified	in TS 36.508	[7] subclause	e 4.1)	Normai		
Test Frequen	cies			Mid range		
(as specified	<u>in TS36.508 [</u>	7] subclause	4.3.1)	wiid range		
Test Channel	Bandwidths			Soo Table (20121	
(as specified	in TS 36.508	[7] subclause	e 4.3.1)		5.2.4.5-1	
Test Parame	ters for NS_	08 A-MPR				
		Downlink	Configuration	Uplink C	onfiguration	
Test	Ch BW	Mod'n	RB allocation	Mod'n	RB allocation	
number			FDD		FDD	
1	10 MHz	QPSK	16	QPSK	29	
2	10 MHz	QPSK	16	QPSK	39	
3	10 MHz	QPSK	16	QPSK	44	
4	10 MHz	QPSK	16	QPSK	50	
5	15 MHz	QPSK	25	QPSK	29	
6	15 MHz	QPSK	25	QPSK	39	
7	15 MHz	QPSK	25	QPSK	44	
8 15 MHz QPSK 25 QPSK 75						
Note 1: The a	llowed A-MP	R values spe	cified in Table 6.2	2.4.3-1 are in	addition to the	
allowed MPR requirements specified in clause 6.2.3						

Table 6.2.4.4.1-3: Test Configuration Table (network signalled value "NS_08")

- 1. Connect the SS to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.2.4.4.1-1 or Table 6.2.4.4.1-2.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.2.4.4.3.

6.2.4.4.2 Test procedure

- 1. Send continuously uplink power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.2.4.4.1-1 or Table 6.2.4.4.1-2.
- 2. Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least one sub-frame (1ms).

6.2.4.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions for each network signalled value.

6.2.4.4.3.1 Message contents exceptions (network signalled value "NS_03")

1. Information element additionalSpectrumEmission is set to NS_03. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.1-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS_03"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element	Value/remark	Comment	Condition				
additionalSpectrumEmission	3 (NS_03)						

6.2.4.4.3.2 Message contents exceptions (network signalled value "NS_04")

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.2-1: SystemInformationBlockType2 : Additional spurious emissions test requirement for "NS_04"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element	Value/remark	Comment	Condition				
additionalSpectrumEmission	4 (NS_04)						

6.2.4.4.3.3 Message contents exceptions (network signalled value "NS_05")

1. Information element additionalSpectrumEmission is set to NS_05. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.3-1: SystemInformationBlockType2 : Additional spurious emissions test requirement for "NS_05"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element	Value/remark	Comment	Condition				
additionalSpectrumEmission	5 (NS_05)						

6.2.4.4.3.4 Message contents exceptions (network signalled value "NS_06")

1. Information element additionalSpectrumEmission is set to NS_06. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.4-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS_06"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element	Value/remark	Comment	Condition				
additionalSpectrumEmission	6 (NS_06)						

6.2.4.4.3.5 Message contents exceptions (network signalled value "NS_07")

1. Information element additionalSpectrumEmission is set to NS_07. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.5-1: SystemInformationBlockType2 :Additional spurious emissions test requirement for "NS_07"

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1							
Information Element Value/remark Comment Condition							
additionalSpectrumEmission	7 (NS_07)						

6.2.4.4.3.6 Message contents exceptions (network signalled value "NS_08")

1. Information element additionalSpectrumEmission is set to NS_08. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.2.4.4.3.6-1: SystemInformationBlockType2 : Additional spurious emissions test	requirement
for "NS_08"	

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1						
Information Element Value/remark Comment Conditi						
additionalSpectrumEmission	8 (NS_08)					

6.2.4.5 Test requirements

The maximum output power, derived in step 2 shall be within the range prescribed by the nominal maximum output power and tolerance in Table 6.2.4.5-1, Table 6.2.4.5-2, or Table 6.2.4.5-3.

EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	QPSK partial RB allocation Tol. (dB)	QPSK full RB allocation Tol. (dB)
1					23	+2.7 /	+2.7 / -4 7
2					23	+2.7 /	+2.7 /
3					23	+2.7 /	+2.7 /
4					23	+2.7 /	+2.7 /
5					23	+2.7 /	+2.7 /
6					23	+2.7 /	+2.7 /
7					23	+2.7 /	+2.7 / -4 7 ¹
8					23	+2.7 /	+2.7/
9					23	+2.7 /	+2.7 /
10					23	+2.7 /	+2.7 /
11					23	+2.7 /	+2.7/
12					23	+2.7 / -2 7 ¹	+2.7/ -37 ¹
					23	+2.7 /	+2.7 /
13					& See table 6.2.4.5-2	& See table 6.2.4.5-2	& See table 6.2.4.5-2
14					23	+2.7 /	+2.7 /
						07/	07/
17					23	+2.7 / -2.7	+2.7 / -3.7
18					23	+2.7 / -2.7	+2.7 / -4.7
19					See table 6.2.4.5-3	See table 6.2.4.5-3	See table 6.2.4.5-3
					00	.0.7 /	.07/
33					23	-2.7	-4.7
34					23	+2.7 / -2.7	+2.7 / -4.7
35					23	+2.7 / -2.7	+2.7 / -4.7
36					23	+2.7 / -2.7	+2.7 / -4.7
37					23	+2.7 / -2.7	+2.7 / -4.7
38					23	+2.7 / -2.7	+2.7 / -4.7
39					23	+2.7 / -2.7	+2.7 / -4.7
40					23	+2.7 /	+2.7 /
[Note 1: F	or transmiss MHz or FU the lower to	sion config L_high – olerance l	gurations (F 4 MHz and I imit by 1.5 d	igure 5.4.2- FUL_high, 1 B]	 1) confined with the power required 	nin FUL_low and rement is relaxe	d FUL_low + 4 ed by reducing

Table 6.2.4.5-1: UE Power Class test rec	nuirements (network signalled value "I	IS 03" to	» "NS 06")
	an ements (network signanca value)	0_00 10	, 110_00 /

Test Number	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	QPSK RB allocation Tol. (dB)
1	13					23	+2.7 / -14.7
2	13					23	+2.7 / -10.7
3	13					23	+2.7 / -2.7
4	13					23	+2.7 / -15.7
5	13					23	+2.7 / -3.7
6	13					23	+2.7 / -9.7
7	13					23	+2.7 / -2.7
8	13					23	+2.7 / -5.7
9	13					23	+2.7 / -15.7

Table 6.2.4.5-2: UE Power Class test requirements (network signalled value "NS_07")

Table 6.2.4.5-3: UE Power Class test requirements (network signalled value "NS_08")

Test Number	EUTRA band	Class 1 (dBm)	Tol. (dB)	Class 2 (dBm)	Tol. (dB)	Class 3 (dBm)	QPSK Tol. (dB)
1	19					23	+2.7 / -3.7
2	19					23	+2.7 / -4.7
3	19					23	+2.7 / 5.7
4	19					23	+2.7 / 6.7
5	19					23	+2.7 / -3.7
6	19					23	+2.7 / -4.7
7	19					23	+2.7 / -5.7
8	19					23	+2.7 / -6.7

6.2.5 Configured UE transmitted Output Power

Editor's note: This test case is incomplete.

6.2.5.1 Test purpose

To verify the UE's does not exceed the minimum between the P_{EMAX} maximum allowed UL TX Power signaled by the E-UTRAN and the P_{UMAX} maximum UE power for the UE power class.

6.2.5.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.2.5.3 Minimum conformance requirements

P_{CMAX} is the configured UE transmitted power defined as follows;

$$P_{CMAX} = MIN \{P_{EMAX}, P_{UMAX}\}$$

Where

- P_{EMAX} is the maximum allowed power configured by higher layers and defined in [TS36.331]
- P_{UMAX} is the maximum UE power for the UE power class specified in section 6.2.2 modified by section 6.2.3 and section 6.2.4. When a transmission configuration is confined within FUL_low and FUL_low + Δ_{TC} or FUL_high Δ_{TC} and FUL_high, the configured transmitted power as specified in Table 6.2.5-1 is relaxed by reducing the lower limit by [1.5] dB.

The UE shall not exceed P_{CMAX} beyond with the tolerances defined in table 6.2.5.3-1

Dama (dDm)	Tolerance (dB)			
ГСМАХ (ОВШ)	(Normal)	(Extreme)		
23	± 2.0	[± 2.0]		
22	± 2.5	[± TBD]		
21	± 3.0	[± TBD]		
20	± 3.5	[± TBD]		
19	± 4.0	[TBD]		
18	± 4.5	[TBD]		
13 ≤P _{CMAX} < 18	± 5.0	[TBD]		
8 ≤ P _{CMAX} < 13	± 6.0	[TBD]		
-40 ≤ P _{CMAX} < 8	± 7.0	[TBD]		

Table 6.2.5.3-1: PCMAX tolerance

The normative reference for this requirement is TS 36.101 [2] clause 6.2.5.

6.2.5.4 Test description

6.2.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.2.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions							
Test Environment as specified in			Normal, [TL/\	Normal, [TL/VL, TL/VH, TH/VL, TH/VH]			
TS 36.508[7]	subclause 4.1						
Test Frequer	ncies as specifi	ed in	Mid range				
TS36.508 [7]	subclause 4.3.	.1					
Test Channe	I Bandwidths a	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7] subclause 4.3	3.1					
Test Parameters for Channel Bandwidths							
Downlink Configura			ation	Upli	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allocation		
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	6	6	QPSK	5	5	
3MHz	QPSK	4	4	QPSK	4	4	
5MHz	QPSK	8	8	QPSK	8	8	
10MHz	QPSK	16	16	QPSK	12	12	
15MHz	QPSK	25	25	QPSK	16	16	
20MHz	QPSK	30	30 QPSK 18 18				
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable							
ch	channel bandwidths are specified in Table 5.4.2.1-1.						
Note 2: For the uplink RB allocation the starting resource block shall be RB #0.							

Table 6.2.5.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.2.5.4.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.2.5.4.3.

6.2.5.4.2 Test procedure

- 1. Send continuous UP TPC commands to force the UE at its maximum output power according to the test configuration from Table 6.2.5.4.1-1.
- 2. According to the test configuration from Table 6.2.5.4.1-1Measure the mean power of the UE in the associated measurement bandwidth specified in Table 6.2.5.5-1 for the specific channel bandwidth under test for one sub-frame (1ms).

6.2.5.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions: [Editor's note: need to signal to the UE the value [X dBm] to be used as max signalled allowed TX power]

Table 6.2.5.4.3-1: SystemInformationBlockType1: Test point 1

Derivation Path: TS 36.508 [7] clause 4.4.3.2, Table 4.	4.4.3.2, Table 4.4.3.2-3 SystemInformationBlockType1			
Information Element	Value/remark	Comment	Condition	
p-Max	-10			

Table 6.2.5.4.3-2: SystemInformationBlockType1: Test point 2

Derivation Path: TS 36.508 [7] clause 4.4.3.2, Table 4.	4.4.3.2, Table 4.4.3.2-3 SystemInformationBlockType1			
Information Element	Value/remark	Comment	Condition	
p-Max	10			

Derivation Path: TS 36.508 [7] clause 4.4.3.2, Table 4.4.3.2-3 SystemInformationBlockType1				
Information Element	Value/remark	Comment	Condition	
p-Max	15			

Table 6.2.5.4.3-3: SystemInformationBlockType1: Test point 3

6.2.5.5 Test requirement

The maximum output power measured shall not exceed the values specified in Table 6.2.5.5-1.

 Table 6.2.5.5-1:
 P_{CMAX} configured UE output power

	Channel bandwidth / maximum output power						
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Measured UE output power test point 1		-10 dBm ± 7.7					
Measured UE output power test point 2	10 dBm ± 6.7						
Measured UE output power test point 3			15 dBm	1 ± 5.7			

6.3 Output Power Dynamics

6.3.1 Void

6.3.2 Minimum Output Power

• Editor's note: This test case is complete.

6.3.2.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3.2.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.2.3 Minimum conformance requirements

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.3-1.

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power	-40 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

Table 6.3.2.3-1:	Minimum	output	power
------------------	---------	--------	-------

The normative reference for this requirement is TS 36.101 [2] clause 6.3.2.1.

Minimum output power test verifies the UE's ability to transmit with a broadband output power below the specified limit when the power is set to a minimum value. The broadband output power is defined as the power in the channel bandwidth, for all transmit bandwidth configurations (resource blocks).

An excess minimum output power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3.2.4 Test description

6.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions					
Test Environ	ment as specified in	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
TS 36.508[7]	subclause 4.1				
Test Frequen	cies as specified in	Low range, N	1id range, High	range	
TS36.508 [7]	subclause 4.3.1				
Test Channe	I Bandwidths as specified in	Lowest, 5MH	z, Highest		
TS 36.508 [7] subclause 4.3.1					
Test Parameters for Channel Bandwidths					
	Downlink Configuration Uplink Configuration			tion	
Ch BW	N/A for min output power te	st	Mod'n	RB allocation	
				FDD	TDD
1.4MHz			QPSK	FULL	FULL
3MHz			QPSK	FULL	FULL
5MHz			QPSK	FULL	FULL
10MHz			QPSK	FULL	FULL
15MHz			QPSK	FULL	FULL
20MHz			QPSK	FULL	FULL
Note 1: Test	Channel Bandwidths are cheo	cked separately	/ for each E-UT	RA band, the	applicable
channel bandwidths are specified in Table 5.4.2.1-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels is set according to Table 6.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in State 3A according to TS 36.508 [7] clause 4.5.4[4.5.3.A] and receiving payload data from the SS. Message contents are defined in clause 6.3.2.4.3.

6.3.2.4.2 Test procedure

1. SS sends uplink scheduling information every TTI via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.3.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC

- 2. Send continuous uplink power control "down" commands in the uplink scheduling information to the UE to ensure that the UE transmits at its minimum output power according to the test configuration from Table 6.3.2.4.1-1.
- 3. Measure the mean power of the UE in the associated measurement bandwidth specified in Table 6.3.2.5-1 for the specific channel bandwidth under test. The period of measurement shall be one sub-frame (1ms).

6.3.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.3.2.5 Test requirement

The minimum output power measured shall not exceed the values specified in Table 6.3.2.5-1.

Table 6.3.2.5-1: Minimum output power

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Minimum output power	-39 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.3 Transmit OFF power

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- The Message contents are undefined
- Reference Measurement Channel is undefined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- The test case description has been verified to apply for both FDD and TDD

6.3.3.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

6.3.3.2 Minimum conformance requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.3.2-1.

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-50 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

Table 6.3.3.2-1: Transmit OFF power

The normative reference for this requirement is TS 36.101 [2] clause 6.3.3.

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

An excess transmit OFF power power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs

6.3.3.3 Test applicability

The requirements of this test apply in test cases 6.3.4.1 General ON/OFF time mask and 6.3.4.2 PRACH and SRS time mask to all types of E-UTRA UE release 8 and forward.

6.3.3.4 Test description

This test is covered by clause 6.3.4.1 General ON/OFF time mask and 6.3.4.2 PRACH and SRS time mask.

6.3.3.5 Test requirement

The requirement for the transmit OFF power shall not exceed the values specified in Table 6.3.3.5-1.

Table	6.3.3	.5-1:	Transmit	OFF	power
-------	-------	-------	----------	-----	-------

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-48.5 dBm					
Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz

6.3.4 ON/OFF time mask

6.3.4.1 General ON/OFF time mask

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Test tolerance and measurement uncertainty are not confirmed
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- TDD DL Reference Measurement Channel is undefined
- Test description section needs to be verified or modified (if necessary) for TDD applicability

6.3.4.1.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3.4.1.5.

The time mask for transmit ON/OFF defines the ramping time allowed for the UE between transmit OFF power and transmit ON power.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.4.1.2 Minimum conformance requirement

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power measurement period is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

Figure 6.3.4.1.2-1: General ON/OFF time mask

The normative reference for this requirement is TS 36.101 [2] clause 6.3.4.1.

6.3.4.1.3 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.4.1.4 Test description

6.3.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.4.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Initial Conditions							
Test Environment as specified in			Normal, TL/VL, TL/VH, TH/VL, TH/VH				
TS 36.508[7]	subclause 4.1						
Test Frequer	icies as specifi	ed in	Low range, N	lid range, High	range		
TS36.508 [7]	subclause 4.3.	.1					
Test Channe	I Bandwidths a	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]	subclause 4.3	5.1					
Test Parame	eters for Chan	nel Bandwidth	าร				
	Dowr	nlink Configur	ation	Upl	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allocation		
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	6	[FFS]	QPSK	FULL	FULL	
3MHz	QPSK	4	[FSS]	QPSK	FULL	FULL	
5MHz	QPSK	8	[FFS]	QPSK	FULL	FULL	
10MHz	QPSK	16	[FFS]	QPSK	FULL	FULL	
15MHz	QPSK	25	[FFS]	QPSK	FULL	FULL	
20MHz	QPSK 30 [FFS] QPSK FULL FULL						
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1.							

Table 6.3.4.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A according to TS 36.508 [7] clause 4.5.4 and not receiving payload data from the SS. Message contents are defined in clause 6.3.4.1.4.3.

6.3.4.1.4.2 Test procedure

- 1. Mandate the UE to send data in the UL by means of an UL assignment in PDCCH. This UL assignment is such that the UE transmits every other sub-frame.
- 2. Measure the UE transmission OFF power during the sub-frame before a transient period of 20 μs prior to the PUSCH subframe.
- 3. Measure the output power of the UE PUSCH transmission during one sub-frame, excluding a transient period of $20 \,\mu s$.
- 4. Measure the UE transmission OFF power during one sub-frame following the PUSCH subframe, excluding a transient period of 20 μ s.

6.3.4.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.3.4.1.4.3-1: UplinkPowerControlCommon: Test point 1

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-25 UplinkPowerControlCommon-DEFAULT						
Information Element	Value/remark	Comment	Condition			
UplinkPowerControlCommon-DEFAULT ::= SEQUENCE { p0-NominalPUSCH	-105	Test point 1 to verify a UE relative low initial power transmission				

6.3.4.1.5 Test requirement

The requirement for the power measured in steps (2), (3) and (4) of the test procedure shall not exceed the values specified in Table 6.3.4.1.5-1.

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-48.5 dBm					
Transmission OFF Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
Expected Transmission ON Measured power	-20.2 ± [7.0]	-14.2 ± [7.0]	-11.2 ± [7.0]	-9.4 ± [7.0]	-8.2 ± [7.0]	-7.6 ± [7.0]

Table 6.3.4.1.5-1: General ON/OFF time mask

6.3.4.2 PRACH and SRS time mask

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Test tolerance and measurement uncertainty are not confirmed
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- *Test case is not complete for TDD*
- TDD DL Reference Measurement Channel is undefined
- Test description section needs to be verified or modified (if necessary) for TDD applicability

6.3.4.2.1 Test purpose

To verify that the PRACH and SRS time mask meets the requirements given in 6.3.4.2.5.

The time mask for PRACH and SRS time mask defines the ramping time allowed for the UE between transmit OFF power and transmit ON power when transmitting the PRACH or the SRS.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3.4.2.2 Minimum conformance requirement

In the case a single SRS transmission, the ON measurement period is defined as the mean power over the entire symbol duration excluding any transient period.

For the PRACH Power / Time mask defines the observation period for PRACH transmissions. The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2.2-1.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

PRACH preamble format	Measurement period (ms)
0	0.9031
1	1.4844
2	1.8031
3	2.2844
4	0.1479

Table 6.3.4.2.2-1: PRACH ON power measurement period

Figure 6.3.4.2.2-1: PRACH and SRS ON/OFF time mask

The normative reference for this requirement is TS 36.101 [2] clause 6.3.4.2.

6.3.4.2.3 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.4.2.4 Test description

6.3.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.4.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3.

Initial Conditions							
Test Environ	ment as specifi	ed in	Normal, TL/V	′L, TL/VH, TH/\	/L, TH/VH		
TS 36.508[7]	subclause 4.1						
Test Frequer	icies as specifi	ed in	Mid range				
TS36.508 [7]	subclause 4.3.	1					
Test Channe	I Bandwidths a	s specified in	Lowest, 5MH	lz, Highest			
TS 36.508 [7]	subclause 4.3	.1					
Test Parameters for Channel Bandwidths							
	Downlink Configura			Upl	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	6	[FFS]	QPSK	FULL	FULL	
3MHz	QPSK	4	[FSS]	QPSK	FULL	FULL	
5MHz	QPSK	8	[FFS]	QPSK	FULL	FULL	
10MHz	QPSK	16	[FFS]	QPSK	FULL	FULL	
15MHz	QPSK	25	[FFS]	QPSK	FULL	FULL	
20MHz	QPSK	30 [FFS] QPSK FULL FU				FULL	
Note 1. Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1							

Table 6.3.4.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to table 6.3.4.2.4.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 2 according to TS 36.508 [7] clause 4.5.4. Message contents are defined in clause 6.3.4.2.4.3.

6.3.4.2.4.2 Test procedure

- 1. Measure the output power of a transmitted PRACH preamble according to Figure 6.3.4.2.2-1.
- 2. Measure the UE transmission OFF power during one sub-frame prior to the following PRACH preamble.

3. Measure the output power of the second transmitted PRACH preamble excluding a transient period of $20 \,\mu s$, according to Figure 6.3.4.2.2-1.

4. Measure the UE transmission OFF power during one sub-frame after the PRACH preamble, excluding a transient period of $20 \,\mu s$.

6.3.4.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.3.4.2.5 Test requirement

The requirement for the power measured in steps (2), (3) and (4) of the test procedure shall not exceed the values specified in Table 6.3.4.2.5-1.

	Channel bandwidth / minimum output power / measurement bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Transmit OFF power	-48.5 dBm					
Transmission OFF Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
Expected PRACH Transmission ON Measured power	-FFS± [TT]	-FFS ± [TT]				

Table	6.3.4.2.5-1	: PRA	CH time	mask
-------	-------------	-------	---------	------

6.3.5 Power Control

Power control is used to limit the interference level and compensate the channel fading. The UE power is defined as the mean power in a subframe or ON power duration, whichever is available.

The UE transmission can be in two contiguity modes, i.e. contiguous transmission and non-contiguous transmission. The former has a transmission gap of 0 and the later has a transmission gap larger than 0. The transmission gap is the time interval between the end of the last UE transmission subframe and the beginning of the next UE transmission subframe or the UpPTS (for TDD).

6.3.5.1 Power Control Absolute power tolerance

Editor's note: This test case is in The following aspects are either missing or not yet determined:

• *Relaxation of 1.5 dB for the absolute power tolerance as specified in Table 6.3.5.1.2-1 is not yet confirmed.*

6.3.5.1.1 Test purpose

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20 ms.

6.3.5.1.2 Minimum conformance requirement

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms.

The minimum requirement on absolute power tolerance is given in Table 6.3.5.1.2-1 over the power range bounded by the Maximum output power as defined in sub-clause 6.2.2 and the Minimum output power as defined in sub clause 6.3.2.

When the transmission bandwidth is confined within FUL_low and FUL_low + ΔTC or it is confined within FUL_high - ΔTC and FUL_high, the absolute power tolerance as specified in Table 6.3.5.1.2-1 is relaxed by reducing the lower limit by [1.5] dB

Conditions	Tolerance
Normal conditions	± 9.0 dB
Extreme conditions	± 12.0 dB

Table 6.3.5.1.2-1: Absolute power tolerance

The normative reference for this requirement is TS 36.101 [2] clause 6.3.5.1.1.

6.3.5.1.3 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.5.1.4 Test description

6.3.5.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.5.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Condit	tions						
Test Environment as specified in			Normal, TL/VL, TL/VH, TH/VL, TH/VH				
TS 36.508[7]	subclause 4.1						
Test Frequen	cies as specifie	ed in	Mid range				
TS36.508 [7]	subclause 4.3.	1	_				
Test Channel	Bandwidths as	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]	subclause 4.3	.1					
Test Parameters for Channel Bandwidths							
	Dowr	nlink Configur	ation	Uplink Configuration			
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allocation		
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	6	6	QPSK	FULL	FULL	
3MHz	QPSK	4	4	QPSK	FULL	FULL	
5MHz	QPSK	8	8	QPSK	FULL	FULL	
10MHz	QPSK	16	16 16		FULL	FULL	
15MHz	QPSK	25	25 25		FULL	FULL	
20MHz QPSK 30 30 QPSK FULL FULL						FULL	
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable							
channel bandwidths are specified in Table 5.4.2.1-1.							

Table 6.3.5.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3.5.1.4.1-1.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and not receiving payload data from the SS. Message contents are defined in clause 6.3.5.1.4.3.

6.3.5.1.4.2 Test procedure

- 1. Start sending payload data from the SS to the UE.
- 2. SS schedules UE transmission via PDCCH DCI format 0.
- 3. Measure the initial output power of the first subframe of UE PUSCH first transmission. The transient periods of 20us are excluded.
- 4. Repeat for the two test points as indicated in section 6.3.5.1.4.3. The timing of the execution between the two test points shall be larger than 20ms.

6.3.5.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

-		
Table 6.3.5.1.4.3-1: U	plinkPowerControlCommon:	Test point 1

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-25 UplinkPowerControlCommon-DEFAULT						
Information Element	Value/remark	Comment	Condition			
UplinkPowerControlCommon-DEFAULT ::= SEQUENCE { p0-NominalPUSCH	-105	Test point 1 to verify a UE relative low initial power transmission				

Table 6.3.5.1.4.3-2: UplinkPowerControlCommon: Test point 2

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-25 UplinkPowerControlCommon-DEFAULT							
Information Element		Value/remark Comment	Condition				
UplinkPowerControlCommon-DEFAULT ::= SEQUENCE { p0-NominalPUSCH	-93	Test point 2 to verify a UE relative high initial power transmission					

6.3.5.1.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table 6.3.5.1.5-1 and 6.3.5.1.5-2.

	Channel bandwidth / expected output power (dBm)						
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Expected Measured power Normal conditions	-14.8 ± 10.0	-10.8 ± 10.0	-8.6 ± 10.0	-5.6 ± 10.0	-3.9 ± 10.0	-2.6 ± 10.0	
Expected Measured power Extreme conditions	-14.8 ± 13.0	-10.8 ± 13.0	-8.6 ± 13.0	-5.6 ± 13.0	-3.9 ± 13.0	-2.6 ± 13.0	
Note 1: The lowe power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3							

Table 6.3.5.1.5-2: Absolute	power tolerance: test	point 2
-----------------------------	-----------------------	---------

	Channel bandwidth / expected output power (dBm)							
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Expected Measured power Normal conditions	-2.8 ± 10.0	1.2 ± 10.0	3.4 ± 10.0	6.4 ± 10.0	8.2 ± 10.0	9.4 ± 10.0		
Expected Measured power Extreme conditions	-2.8 ± 13.0	1.2 ± 13.0	3.4 ± 13.0	6.4 ± 13.0	8.2 ± 13.0	9.4 ± 13.0		
Note 1: The upper power limit shall not exceed the maximum output power requirements defined by the power class in sub-clause 6.2.2.3								

6.3.5.2 Power Control Relative power tolerance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Meas uncertainty and Test tolerance are undefined
- *Test case is not complete for FDD*
- It is still undefined how to handle the allowable RF power amplifier mode change exceptions.
- *Extreme conditions are not yet confirmed.*

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- The power control relative power tolerance has been verified to apply for both FDD and TDD exactly as *it is*

6.3.5.2.1 Test purpose

To verify the ability of the UE transmitter to set its output power relatively to the power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms.

6.3.5.2.2 Minimum conformance requirement

The UE shall meet the requirements specified in Table 6.3.5.2.2-1.

To account for RF Power amplifier mode changes TBD exceptions are allowed. For these exceptions the power tolerance limit is a maximum of $[\pm 6.0 \text{ dB}]$ in Table 6.3.5.2.2-1.

Power step ∆P (Up or down) [dB]	All combinations of PUSCH and PUCCH transitions [dB]	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames [dB]	PUSCH to SRS transition within a sub-frame [dB]	PRACH [dB]	
ΔP < 2	±2.5	±[2.5 + 0.5]	±[2.5 + 0.5]	±2.5	
$2 \le \Delta P < 3$ ±3.0		±[3.0 + 1.0]	±[3.0 + 0.5]	±3.0	
$3 \le \Delta P < 4$ ±3.5		$\pm [3.5 + 1.5]$ $\pm [3.5 + 0.5]$		±3.5	
4 ≤ ΔP ≤ 10 ±4.0		$\pm [4.0 + 2.0]$ $\pm [4.0 + 1.0]$		±4.0	
10 ≤ ΔP < 15 ±5.0		$\pm [5.0 + 3.0] \pm [5.0 + 1.0]$		±5.0	
15 ≤ ΔP ±6.0		±[6.0 + 3.0]	±[6.0 + 1.0]	±6.0	
Note 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed Note 2: For operating bands under Note 2 in Table 6.2.2-1, the relative power tolerance is relaxed by reducing the lower limit by 1.5 dB if the transmission bandwidth of either the reference or target sub-frames is confined within F _{UL_low} and F _{UL_low} + 4 MHz or F _{UL_high} – 4 MHz and F _{UL_high} . For PUSCH to SRS transition within a subframe, this relaxation applies if either the PUSCH or the SRS transmission is confined within these frequency ranges for the said operating bands.					

Table 6.3.5.2.2-1 Relative Power Tolerance for Transmission (normal conditions)

The power step (ΔP) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to Clause 5.1 of TS 36.213. The error is the difference between ΔP and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2-1.

The normative reference for this requirement is TS 36.101 clause 6.3.5.2.

6.3.5.2.3 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.5.2.4 Test description

6.3.5.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.5.4.2.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions								
Test Environment as specified in			Normal, [TL/VL, TL/VH, TH/VL, TH/VH]					
TS 36.508[7]	subclause 4.1		-					
Test Frequer	ncies as specifi	ed in	Mid range					
TS36.508 [7]	subclause 4.3	.1						
Test Channe	I Bandwidths a	s specified in	Lowest, 5MH	lz, Highest				
TS 36.508 [7] subclause 4.3	3.1						
		Test Paramete	ers for Chann	el Bandwidths	5			
	Dowi	nlink Configur	ation	Up	link Configura	tion		
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation		
		FDD	TDD		FDD	TDD		
1.4MHz	QPSK	6	6	QPSK	See table	See table		
					6.3.5.2.5-1	6.3.5.2.5-1		
3MHz	QPSK	4	4	QPSK	See table	See table		
					6.3.5.2.5-2	6.3.5.2.5-2		
5MHz	QPSK	8	8	8 QPSK See t		See table		
					6.3.5.2.5-3	6.3.5.2.5-3		
10MHz	QPSK	16	16	QPSK	See table	See table		
					6.3.5.2.5-4	6.3.5.2.5-4		
15MHz	QPSK	25	25	QPSK	See table	See table		
					6.3.5.2.5-5	6.3.5.2.5-5		
20MHz	QPSK	30	30	QPSK	See table	See table		
	6.3.5.2.5-6 6.3.5.2.5-6							
Note 1. Test	Channel Band	widths are cheo	cked separatel	y for each E-U	TRA band, the	applicable		
channel bandwidths are specified in Table 5.4.2.1-1								

Table 6.3.5.2.4.1-1:	Test	Configuration	Table
----------------------	------	---------------	-------

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to table 6.3.5.4.2.1-1
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.3.5.2.4.3.

6.3.5.2.4.2 Test procedure

The procedure is separated in various subtests to verify different aspects of relative power control. The power patterns of the subtests are described in figure 6.3.5.2.4.2-1.

Figure 6.3.5.2.4.2-1 Test Power patterns

1. Sub test A

1.1 Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at 0dBm +/- [2.5 + TT dB]

1.2. Schedule the UE's PUSCH data transmission for 10 sub-frames and transmit an alternating +1dB/-1dB TPC command for PUSCH every TTI via the PDCCH as described in Figure 6.3.5.2.4.2-1.

1.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements 6.3.5.2.5.

2. Sub tests B, C, D, E, F

2.1 Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at 0dBm +/- [2.5 + TT dB]

2.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.5.2.4.2-1 for 10 sub-frames with an uplink RB allocation alternating pattern as defined in tables 6.3.5.2.5-1 6.3.5.2.5-2, 6.3.5.2.5-3, 6.3.5.2.5-4, 6.3.5.2.5-5, 6.3.5.2.5-6 depending on channel bandwidth while transmitting 0dB TPC command for PUSCH via the PDCCH.

2.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements specified in clause 6.3.5.2.5.

6.3.5.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.3.5.2.5 Test requirement

Each UE power step measured in the test procedure 6.3.5.2.4.2 should satisfy the test requirements specified in Table 6.3.5.2.5-1.

Sub-test	Uplink RB allocation	TPC command	Expected power step size (Up or down)	Power step size range (Up or down)	PUSCH/	SRS
			ΔP [dB]	ΔP [dB]	[dB]	[dB]
A	Fixed = 4	Alternating TPC = +/- 1dB	1	ΔP < 2	1 ± (2.5 + TT)	±[2.5 + 0.5 + TT]
В	Alternating 3 and 5 every TTI	TPC=0dB	2.22	2 ≤ ∆P < 3	2.22 ± (3.0 + TT)	±[3.0 + 1.0 + TT]
С	Alternating 2 and 6 every TTI	TPC=0dB	3.77	3 ≤ ΔP < 4	3.77 ± (3.5 + TT)	±[3.5 + 1.5 + TT]
D	Alternating 1 and 6 every TTI	TPC=0dB	7.78	4 ≤ ∆P ≤ 10	7.78 ± (4.0 + TT)	±[4.0 + 2.0 + TT]

Table 6.3.5.2.5-1	Test Requirements	Relative Po	wer To	lerance f	or T	Transmissio	on (normal	conditions)
		channel ba	ndwidt	h 1.4MHz	Z			

Table 6.3.5.2.5-2 Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 3MHz

Sub-test	Uplink RB allocation	TPC command	Expected power step size (Up or down)	Power step size range (Up or down)	Allowed power step size PUSCH/	SRS
			ΔΡ [dB]	ΔP [dB]	[dB]	[dB]
A	Fixed = 10	Alternating TPC = +/- 1dB	1	ΔP < 2	1 ± (2.5 + TT)	±[2.5 + 0.5 + TT]
В	Alternating 3 and 5 every TTI	TPC=0dB	2.22	2 ≤ ∆P < 3	2.22 ± (3.0 + TT)	±[3.0 + 1.0 + TT]
С	Alternating 2 and 6 every TTI	TPC=0dB	3.77	3 ≤ ∆P < 4	3.77 ± (3.5 + TT)	±[3.5 + 1.5 + TT]
D	Alternating 1 and 6 every TTI	TPC=0dB	7.78	4 ≤ ∆P ≤ 10	7.78 ± (4.0 + TT)	±[4.0 + 2.0 + TT]
E	Alternating 1 and 15 every TTI	TPC=0dB	11.76	10 ≤ ΔP ≤ 15	11.76 ± (5.0 + TT)	±[5.0 + 3.0 + TT]

Sub-test	Uplink RB allocation	TPC command	Expected power step size (Up or down)	Power step size range (Up or down)	PUSCH/	SRS
			ΔP [dB]	ΔP [dB]	[dB]	[dB]
A	Fixed = 15	Alternating TPC = +/- 1dB	1	ΔP < 2	1 ± (2.5 + TT)	±[2.5 + 0.5 + TT]
В	Alternating 10 and 18 every TTI	TPC=0dB	2.55	2 ≤ ∆P < 3	2.55 ± (3.0 + TT)	±[3.0 + 1.0 + TT]
С	Alternating 10 and 24 every TTI	TPC=0dB	3.80	3 ≤ ∆P < 4	3.80 ± (3.5 + TT)	±[3.5 + 1.5 + TT]
D	Alternating 2 and 8 every TTI	TPC=0dB	6.02	4 ≤ ∆P ≤ 10	6.02 ± (4.0 + TT)	±[4.0 + 2.0 + TT]
E	Alternating 1 and 25 every TTI	TPC=0dB	13.98	10 ≤ ΔP ≤ 15	13.98 ± (5.0 + TT)	±[5.0 + 3.0 + TT]

Table 6.3.5.2.5-3 Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 5MHz

Table 6.3.5.2.5-4 Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 10MHz

Sub-test	Uplink RB allocation	TPC command	Expected power step size (Up or down)	Power step size range (Up or down)	PUSCH/	SRS
			ΔΡ [dB]	ΔΡ [dB]	[dB]	[dB]
A	Fixed = 25	Alternating TPC = +/- 1dB	1	ΔP < 2	1 ± (2.5 + TT)	±[2.5 + 0.5 + TT]
В	Alternating 10 and 18 every TTI	TPC=0dB	2.55	2 ≤ ∆P < 3	2.55 ± (3.0 + TT)	±[3.0 + 1.0 + TT]
С	Alternating 10 and 24 every TTI	TPC=0dB	3.80	3 ≤ ∆P < 4	3.80 ± (3.5 + TT)	±[3.5 + 1.5 + TT]
D	Alternating 2 and 8 every TTI	TPC=0dB	6.02	4 ≤ ΔP ≤ 10	6.02 ± (4.0 + TT)	±[4.0 + 2.0 + TT]
E	Alternating 1 and 25 every TTI	TPC=0dB	13.98	10 ≤ ΔP ≤ 15	13.98 ± (5.0 + TT)	±[5.0 + 3.0 + TT]
F	Alternating 1 and 50 every TTI	TPC=0dB	16.99	15 ≤ΔP	16.99 ± (6.0 + TT)	±[6.0 + 3.0 + TT]

Sub-test	Uplink RB allocation	TPC command	Expected power step size (Up or down)	Power step size range (Up or down)	PUSCH/	SRS
			ΔP [dB]	ΔΡ [dB]	[dB]	[dB]
A	Fixed = 40	Alternating TPC = +/- 1dB	1	ΔP < 2	1 ± (2.5 + TT)	±[2.5 + 0.5 + TT]
В	Alternating 10 and 18 every TTI	TPC=0dB	2.55	2 ≤ ∆P < 3	2.55 ± (3.0 + TT)	±[3.0 + 1.0 + TT]
С	Alternating 10 and 24 every TTI	TPC=0dB	3.80	3 ≤ ∆P < 4	3.80 ± (3.5 + TT)	±[3.5 + 1.5 + TT]
D	Alternating 2 and 8 every TTI	TPC=0dB	6.02	4 ≤ ∆P ≤ 10	6.02 ± (4.0 + TT)	±[4.0 + 2.0 + TT]
E	Alternating 1 and 25 every TTI	TPC=0dB	13.98	10 ≤ ΔP ≤ 15	13.98 ± (5.0 + TT)	±[5.0 + 3.0 + TT]
F	Alternating 1 and 75 every TTI	TPC=0dB	18.75	15 ≤∆P	18.75 ± (6.0 + TT)	±[6.0 + 3.0 + TT]

Table 6.3.5.2.5-5 Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 15MHz

Sub-test	Uplink RB allocation	TPC command	Expected power step size	Power step size range (Up	PUSCH/	SRS
			(Up or down)	or down)		
			ΔΡ [dB]	ΔΡ [dB]	[dB]	[dB]
A	Fixed = 50	Alternating TPC = +/- 1dB	1	ΔP < 2	1 ± (2.5 + TT)	±[2.5 + 0.5 + TT]
В	Alternating 10 and 18 every TTI	TPC=0dB	2.55	2 ≤ ∆P < 3	2.55 ± (3.0 + TT)	±[3.0 + 1.0 + TT]
С	Alternating 10 and 24 every TTI	TPC=0dB	3.80	3 ≤ ∆P < 4	3.80 ± (3.5 + TT)	±[3.5 + 1.5 + TT]
D	Alternating 2 and 8 every TTI	TPC=0dB	6.02	4 ≤ ∆P ≤ 10	6.02 ± (4.0 + TT)	±[4.0 + 2.0 + TT]
Ш	Alternating 1 and 25 every TTI	TPC=0dB	13.98	10 ≤ ΔP ≤ 15	13.98 ± (5.0 + TT)	±[5.0 + 3.0 + TT]
F	Alternating 1 and 100 every TTI	TPC=0dB	20.00	15 ≤∆P	20.00 ± (6.0 + TT)	±[6.0 + 3.0 + TT]

Table 6.3.5.2.5-6 Test Requirements Relative Power Tolerance for Transmission (normal conditions) channel bandwidth 20MHz

6.3.5.3 Aggregate power control tolerance

• *Editor's note: This test case is complete.*

6.3.5.3.1 Test purpose

To verify the ability of the UE to maintain its power level in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

6.3.5.3.2 Minimum conformance requirement

The UE shall meet the requirements specified in Table 6.3.5.3.2-1 for relative power control over the power range bounded by the minimum output power as defined in sub clause 6.3.2 and the maximum output power in sub-clause 6.2.2.

TPC command	UL channel	Aggregate power tolerance within 21 ms				
0 dB	PUCCH	±2.5 dB				
0 dB	PUSCH	±3.5 dB				
Note: 1: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.						

The normative reference for this requirement is TS 36.101 [2] clause 6.3.5.3.1.

6.3.5.3.3 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.3.5.3.4 Test description

6.3.5.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.3.5.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions						
Test Environr	ment as specifi	ed in	Normal			
TS 36.508[7]	subclause 4.1					
Test Frequen	cies as specifie	ed in	Mid range			
TS36.508 [7]	subclause 4.3.	1				
Test Channel	Bandwidths as	s specified in	Lowest, 5MH	z, Highest		
TS 36.508 [7]	subclause 4.3	.1				
Test Parameters for Channel Bandwidths						
	Dowr	nlink Configur	ation	Upli	ink Configura	tion
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allocation	
		FDD	TDD		FDD	TDD
1.4MHz	QPSK	6	6	QPSK	1	1
3MHz	QPSK	4	4	QPSK	4	4
5MHz	QPSK	8	8	QPSK	8	8
10MHz	QPSK	16	16	QPSK	12	12
15MHz	QPSK	25	25	QPSK	16	16
20MHz QPSK 30			30	QPSK	18	18
Note 1: Test	Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable					
channel bandwidths are specified in Table 5.4.2.1-1.						

Table 6.3.5.3.4.1-1:	Test	Configuration	Table
----------------------	------	---------------	-------

1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.

2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.

3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.

4. The UL and DL Reference Measurement channels are set according to Table 6.3.5.3.4.1-1

5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.3.5.3.4.3.

6.3.5.3.4.2 Test procedure

The procedure is separated in two subtests to verify PUCCH and PUSCH aggregate power control tolerance respectively. The uplink transmission patterns are described in figure 6.3.5.3.4.2-1.

Figure 6.3.5.3.4.2-1 Test uplink transmission

- 1. Starting PUCCH sub test. Send the appropriate TPC commands for PUCCH to the UE to ensure that the UE transmits PUCCH at 0dBm +/- 3.2 dB.
- 1.2. Every 5 subframes transmit to the UE downlink PDSCH data as well as 0 dB TPC command for PUCCH via the PDCCH to make the UE transmit ACK/NACK on the PUCCH with transmission gap of 4 subframes. The uplink transmission patterns are described in figure 6.3.5.3.4.2-1.
- 1.3. Measure the power of 5 consecutive PUCCH transmissions to verify the UE transmitted PUCCH power is maintained within 21 ms.
- 2.1. Starting PUSCH sub test. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at 0dBm +/- 3.2.dB
- 2.2. Every 5 subframes schedule the UE's PUSCH data transmission and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH with 4 subframes gag. The uplink transmission patterns are described in figure 6.3.5.3.4.2-1.
- 2.3. Measure the power of 5 consecutive PUSCH transmissions to verify the UE transmitted PUSCH power is maintained within 21 ms.

6.3.5.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.3.5.3.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3.5.3.5-1. The power measurement period shall be 1 sub-frame excluding transient periods.

TPC command	UL channel	Test requirement measured power				
0 dB	PUCCH	0 dBm ± 3.2 dB				
0 dB	PUSCH	0 dBm ± 4.2 dB				
Note: 1. The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.						

Table 6.3.5.3.5-1: Power control tolerance

6.4 Void

6.5 Transmit signal quality

Editor's note: The test cases for Frequency error, EVM, IQ-component and In-band emission are incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Reference Measurement Channels for 64QAM are undefined
- The fixed power allocation for the RB(s) is undefined
- The UE call setup details are undefined
- The details on how to move from the different measurement points are undefined
- The Test system uncertainties and test tolerance applicable to this test are not confirmed
- Global In-Channel Tx-Test is not complete
- Measurement points (test vectors) are missing
- Downlink Cell power levels for the frequency error test procedure are not defined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- *Test case is not complete for TDD*
 - The transmission signal test cases descriptions have been verified to apply for both FDD and TDD exactly as they are

In this clause a multitude of results are derived, all using one common algorithm returning these results: Global In-Channels TX-Test (Annex E). Each sub clause of this clause contain a procedure and test requirements described for a specific measurement. If all relevant test parameters in different sub clauses are the same, then the results, returned by the Global In-Channel TX-Test, may be used across the applicable sub clauses.

6.5.1 Frequency Error

6.5.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.5.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.1.3 Minimum conformance requirements

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5ms) compared to the carrier frequency received from the E-UTRA Node B.

The normative reference for this requirement is TS 36.101 clause 6.5.1

6.5.1.4 Test description

6.5.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.1.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions						
Test Environment		NC, TL/VL, TL/VH, TH/VL, TH/VH				
(as specified	in TS 36.508 [/] subclause 4.	.1)		_,,,, .	_,,
Test Frequer	icies			Low range, Mid range, High range		
(as specified	in TS36.508 [7] subclause 4.3	3.1)			
Test Channe	l Bandwidths			Low	Lowest, 5MHz, Highest	
(as specified	in TS 36.508 [7	7] subclause 4.	.3.1)	LOW		
Test Parameters for Channel Bandwidths						
Downlink Configuration			Uplink Configuration			
Ch BW	Mod'n	RB allocation		Mod'n	RB allo	ocation
		FDD	TDD		FDD	TDD
1.4MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full
3MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full
5MHz [FFS] [FFS] [FFS]		QPSK	Full	Full		
10MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full
15MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full
20MHz [FFS] [FFS] [FFS] QPSK Full Full					Full	
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable						
channel bandwidths are specified in Table 5.4.2.1-1.						

Table 6.5.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508[7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.5.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.5.1.4.3.

6.5.1.4.2 Test procedure

- 1. Cell downlink power levels are set according to Table 7.3.5-1 according to the appropriate operating band and channel bandwidth with no boosting being applied as specified in Table C.3.1-1
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.5.1.4.1-1.
- 3. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E)

6.5.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.5.1.5 Test requirement

The 20 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \leq (0.1 \text{ PPM} + 15 \text{ Hz})$

6.5.2 Transmit modulation

Transmit modulation defines the modulation quality for expected in-channel RF transmissions from the UE. This transmit modulation limit is specified in terms of; an Error Vector Magnitude (EVM) for the allocated resources blocks (RB), an I/Q component and an in-band emissions for the non-allocated RB and a spectrum flatness across the subcarriers of allocated resource blocks (RB).

6.5.2.1 Error Vector Magnitude (EVM)

6.5.2.1.1 Test Purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset is removed from the measured waveform.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of Error Vector Magnitude (EVM).

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 μ s and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission with power change, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the boundary where the power change is expected to occur.

6.5.2.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.1.3 Minimum conformance requirements

EVM measurements are evaluated for 10 uplink sub-frames excluding any transient period for the average EVM case, and 60 subframes excluding any transient period for the reference signal EVM case, the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.3-1 for the parameters defined in Table 6.5.2.1.3-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and]all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
QPSK or BPSK	%	17.5	[17.5]
16QAM	%	12.5	[12.5]

Table 6.5.2.1.3-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ [-40]
Operating conditions		Normal conditions
Basic measurement period		slot

Table 6.5.2.1.3-2: Parameters for Error Vector Magnitude

The normative reference for this requirement is TS 36.101 [2] clause 6.5.2.1.1.

6.5.2.1.4 Test description

6.5.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions				
Test Environment				
(as specified in TS 36.508 [7] subclause 4.1)				
Test Frequen	cies	See Table 6	5 1 4 1-1	
(as specified	in TS36.508 [7] subclause 4.3.1)		0.1.4.1 1	
Test Channel	Bandwidths	See Table 6	5 1 4 1-1	
(as specified	in TS 36.508 [7] subclause 4.3.1)			
Test Parame	ters for Channel Bandwidths			
	Downlink Configuration	Uplink Configuration		
Ch BW	N/A for PUSCH EVM testing	Mod'n	RB allocation	
			FDD	TDD
1.4MHz		QPSK	Full	Full
1.4MHz		QPSK	1	1
1.4MHz		16QAM	Full	Full
1.4MHz		16QAM	1	1
3MHz		QPSK	Full	Full
3MHz		QPSK	4	4
3MHz		16QAM	Full	Full
3MHz		16QAM	4	4
5MHz		QPSK	Full	Full
5MHz		QPSK	8	8
5MHz		16QAM	Full	Full
5MHz		16QAM	8	8
10MHz		QPSK	Full	Full
10MHz		QPSK	12	12
10MHz		16QAM	Full	Full
10MHz		16QAM	12	12
15MHz		QPSK	Full	Full
15MHz		QPSK	16	16
15MHz		16QAM	Full	Full
15MHz		16QAM	16	16
20MHz		QPSK	Full	Full
20MHz		QPSK	18	18
20MHz		16QAM	Full	Full
20MHz		16QAM	18	18
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable				
channel bandwidths are specified in Table 5.4.2.1-1.				
Note 2: For partial RB allocation, the starting resource block shall be RB #0 and RB# (max - RB				
allocation) of the channel bandwidth.				

Table 6.5.2.1.4.1-1: Test Configuration Table for PUSCH

Initial Conditions	
Test Environment (as specified in TS 36.508 [7] subclause 4.1)	NC
Test Frequencies (as specified in TS36.508 [7] subclause 4.3.1)	See Table 6.5.1.4.1-1
Test Channel Bandwidths (as specified in TS 36.508 [7] subclause 4.3.1)	See Table 6.5.1.4.1-1
PUCCH format	Format 1a, Format 1b

Table 6.5.2.1.4.1-2: Test Configuration Table for PUCCH

Table 6.5.2.1.4.1-3: Test Configuration for PRACH

Initial Conditions			
Test Environment	NC		
(as specified in TS 36.508 [7] subclause 4.1)	INC		
Test Frequencies			
(as specified in TS36.508 [7] subclause 4.3.1)	See Table 6.5.1.4.1-1		
Test Channel Bandwidths			
(as specified in TS 36.508 [7] subclause 4.3.1)	See Table 6.5.1.4.1-1		
PRACH preamble format			
	FDD	TDD	
PRACH Configuration Index	4	53	
RS EPRE setting for test point 1 (dBm/15kHz)	-7163		
RS EPRE setting for test point 2 (dBm/15kHz)	(Hz) -86 -78		

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508[7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL Reference Measurement channels are set according to in Table 6.5.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 3A according to TS 36.508 [7] clause 3A. Message contents are defined in clause 6.5.2.1.4.3.

6.5.2.1.4.2 Test procedure

Test procedure for PUSCH:

- 1.1. The UL and DL Reference Measurement channels are set according to in Table 6.5.2.1.4.1-1, SS sends uplink scheduling information every TTI via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 1.2 Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at its maximum output power state.
- 1.3 Measure the EVM and EVM DMRS using Global In-Channel Tx-Test (Annex E).
- 1.4 Send power control "down" commands to the UE until UE output power is -36.8 dBm, with ± 3.2 dB tolerance.
- 1.5 Measure the EVM and EVM DMRS using Global In-Channel Tx-Test (Annex E).

Test procedure for PUCCH:

- 2.1.PUCCH are set according to Table 6.5.2.1.4.1-2.
- 2.2.SS send downlink PDSCH to UE to let the UE send uplink ACK/NACK using PUCCH.and there is no PUSCH transmission.

- 2.3.SS send appropriate TPC commands for PUCCH to the UE until the UE transmit PUCCH at its maximum output power.2.4.Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).
- 2.5.SS send appropriate TPC commands for PUCCH to the UE until the UE transmits PUCCH at -36.8dbm, with ±3.2dB tolerance.2.6. Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).

Test procedure for PRACH:

- 3.1. The SS shall set RS EPRE according to Table 6.5.2.1.4.1-3,
- 3.2.PRACH are set according to Table 6.5.2.1.4.1-3.
- 3.3. The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure
- 3.4. The UE shall send the signalled preamble to the SS.
- 3.5.In response to the preamble, the SS shall transmit a random access response not corresponding to the transmitted random access preamble, or send no response.
- 3.6. The UE shall consider the random access response reception not successful then re-transmit the preamble with the calculated PRACH transmission power .
- 3.7.Repeat step 5 and 6 until the SS collect enough PRACH preambles(2 preambles for format 0,1,2,3 and 10 preambles for format 4).Measure the EVM in PRACH channel using Global In-Channel Tx-Test (Annex E).

6.5.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exceptions:

Table 6.5.2.1.4.3-1: PRACH-ConfCommonDEFAULT: PRACH EVM measurement for FDD

Derivation Path: TS 36.508 [7] clause	4.6.3, Table 4.6.3-7 PR	ACH-ConfCommonDE	FAULT
Information Element	Value/remark	Comment	Condition
PRACH-ConfigInfo SEQUENCE {			
prach-ConfigIndex	4		

Table 6.5.2.1.4.3-2: PRACH-ConfCommonDEFAULT: PRACH EVM measurement for TDD

Derivation Path: TS 36.508 [7] clause	4.6.3, Table 4.6.3-7 PR	ACH-ConfCommonDE	FAULT
Information Element	Value/remark	Comment	Condition
PRACH-ConfigInfo SEQUENCE {			
prach-ConfigIndex	53		

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-12 RACH-ConfigCommon-DEFAULT				
Information Element	Value/remark	Comment	Condition	
RACH-ConfigCommon-DEFAULT ::= SEQUENCE {				
preambleInfo SEQUENCE {				
numberOfRA-Preambles	n52			
preamblesGroupAConfig SEQUENCE {}	Not present			
}				
powerRampingParameters SEQUENCE {				
powerRampingStep	db0			
preambleInitialReceivedTargetPower	dBm-120 Test point 1			
	dBm-90 Test point 2			
}				
ra-SupervisionInfo SEQUENCE {				
preambleTransMax	n10			
ra-ResponseWindowSize	sf2			
mac-ContentionResolutionTimer	sf48			
}				
ra-SupervisionInfo SEQUENCE {				

Table 6.5.2.1.4.3-4: RACH-ConfigCommon-DEFAULT: PRACH EVM measurement

6.5.2.1.5 Test requirement

The PUSCH EVM derived in E.4.2 shall not exceed 17,5 % +TT for QPSK and BPSK, 12,5% +TT for 16 QAM.

The PUSCH EVM_{DMRS} derived in E.4.8.2 shall not exceed [17,5 %] +TT when embedded with data symbols of QPSK and BPSK, [12,5%] +TT for 16 QAM.

The PUCCH EVM and derived in E.5.9.2 shall not exceed 17,5 % +TT.

The PRACH EVM derived in FFS shall not exceed 17.5%+TT.

6.5.2.2 IQ-component.

6.5.2.2.1 Test Purpose

I/Q origin offset is an interference caused by crosstalk or DC offset and expresses itself as unmodulated sine wave with the carrier frequency. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal. I/Q origin offset interferes with the centre sub carriers of the UE under test (if allocated), especially, when their amplitude is small. The measurement interval is defined over one slot in the time domain.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of IQ origin offset.

6.5.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.2.3 Minimum conformance requirements

The relative carrier leakage power (IQ origin offset power) shall not exceed the values specified in Table 6.5.2.2.3-1.

Table 6.5.2.2.3-1: Minimum requirements for Relative Carrier Leakage Power

LO Leakage	Parameters	Relative Limit (dBc)
	Output power >0 dBm	-25
	-30 dBm ≤ Output power ≤0 dBm	-20
	-40 dBm ≤ Output power < -30 dBm	-10

The normative reference for this requirement is TS 36.101 clause 6.5.2.2.1
6.5.2.2.4 Test description

6.5.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.2.2.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions							
Test Environment			See Table 6 5 1 / 1-1				
(as specified in TS 36.508 [7] subclause 4.1)				000	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Test Frequencies				See	Table 6 5 1 4	1-1	
(as specified in TS36.508 [7] subclause 4.3.1)							
Test Channe	Bandwidths			Sec	Table 6 5 1 /	1_1	
(as specified	in TS 36.508 [7	7] subclause 4.	3.1)	000	, Table 0.5.1. 4	• 1 - 1	
Test Parame	ters for Chan	nel Bandwidth	IS				
Downlink Configuration			Upl	ink Configura	tion		
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB all	allocation	
		FDD	TDD		FDD	TDD	
1.4MHz	[FFS]	[FFS]	[FFS]	QPSK	1	1	
3MHz	[FFS]	[FFS]	[FFS]	QPSK	4	4	
5MHz	[FFS]	[FFS]	[FFS]	QPSK	8	8	
10MHz	[FFS]	[FFS]	[FFS]	QPSK	12	12	
15MHz	[FFS]	[FFS]	[FFS]	QPSK	16	16	
20MHz	[FFS]	[FFS]	[FFS]	QPSK 18 18			
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable							
channel bandwidths are specified in Table 5.4.2.1-1.							
Note 2: For partial RB allocation, the starting resource block shall be RB #0 and RB# (max - RB							
allocation) of the channel bandwidth.							

Table 6.5.2.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508[7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to in Table 6.5.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.5.2.2.4.3.

6.5.2.2.4.2 Test procedure

- 1. Set the power level of UE to [2]dBm, with $[\pm 2dB]$ tolerance..
- 2. Measure IQ offset using Global In-Channel Tx-Test (Annex E).
- 3. Set the power level of UE to [-28] dBm,or send power control "down" commands to the UE until UE output power is [-28] dBm,with [±2dB] tolerance.
- 4. Measure IQ offset using Global In-Channel Tx-Test (Annex E).
- 5. Set the power level of UE to [-38]dBm,or send power control "down" commands to the UE until UE output power is [-38] dBm,with [±2dB] tolerance.

6. Measure IQ offset using Global In-Channel Tx-Test (Annex E).

6.5.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.5.2.2.5 Test requirement

Each of the 20 IQ offset results, derived in Annex E.3.1, shall not exceed the values in table 6.5.2.2.5-1

Table 6.5.2.2.5-1: Test requirements for Relative Carrier Leakage Power

LO Leakage	Parameters	Relative Limit (dBc)
	[2] dBm ±[2dB]	-25+[tbd]
	[-28] dBm ±[2dB]	-20+[tbd]
	[-38] dBm ±[2dB]	-10+[tbd]

6.5.2.3 In-band emissions for non allocated RB

6.5.2.3.1 Test Purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB. The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

6.5.2.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.3.3 Minimum conformance requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.3-1.

Parameter Unit Description		Limit (Note 1)	Applicable Frequencies	
General	eneral $dB \qquad dB \qquad dB \qquad \begin{array}{l} \max \left\{ -30, \ -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRBs}), \\ 20 \cdot \log_{10} EVM \ -3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRBs}, \\ -57 \ dBm \ / 180 \ kHz \ -P_{RB} \right\} \end{array}$		Any non-allocated (Note 2)		
IQ Image	dB	-2	25	Image frequencies (Notes 2, 3)	
		-25	Output power > 0 dBm		
DC	dBc	-20	-30 dBm ≤ Output power ≤ 0 dBm	LO frequency (Notes 4, 5)	
		-10	-40 dBm ≤ Output power < -30 dBm		
 Note 1: The minimum requirement is calculated from any of the listed requirements, whichever is the highest power. Note 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. Note 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs. Note 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs. Note 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the DC frequency if N_{RB} is even, but excluding any allocated RB. 					
Note 7: N_{RB} is the Training Note 7: N_{RB}	nsmission Bandwidth C	onfiguration (see Figure	5.4.2-1).		
Note 8: EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs. Note 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.					
$\Delta_{\scriptscriptstyle RB}=1$ or	$\Delta_{\scriptscriptstyle RB}=-1~$ for the first	adjacent RB outside of t	he allocated bandwidth.		
Note 10: P_{RB} is the tra	ansmitted power per 180) kHz in allocated RBs, r	measured in dBm.		

The normative reference for this requirement is TS 36.101 [2] clause 6.5.2.3.1.

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB. The basic in-band emissions measurement interval is defined over one slot in the time domain.

6.5.2.3.4 Test description

6.5.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.5.2.3.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Condi	tions					
Test Environment			See Table 6 5 1 / 1-1			
(as specified in TS 36.508 [7] subclause 4.1)			000	See Table 0.5.1.4.1-1		
Test Frequencies			See	Table 6 5 1 4	1-1	
(as specified in TS36.508 [7] subclause 4.3.1)			000	See Table 0.5.1.4.1-1		
Test Channe	I Bandwidths			Soc	Table 6 5 1 4	1 1
(as specified	in TS 36.508 [7	7] subclause 4.	3.1)	000	F TADIE 0.5.1.4	. 1-1
Test Parame	eters for Chan	nel Bandwidth	IS			
Downlink Configuration				Upl	ink Configura	tion
Ch BW	Mod'n	RB allo	RB allocation Mod'n		RB allocation	
		FDD	TDD		FDD	TDD
1.4MHz	[FFS]	[FFS]	[FFS]	QPSK	1	1
3MHz	[FFS]	[FFS]	[FFS]	QPSK	4	4
5MHz	[FFS]	[FFS]	[FFS]	QPSK	8	8
10MHz	[FFS]	[FFS]	[FFS]	QPSK	12	12
15MHz	[FFS]	[FFS]	[FFS]	QPSK	16	16
20MHz	20MHz [FFS] [FFS] [FFS] QPSK 18 18					18
Note 1. Test	Note 1. Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable					
channel bandwidths are specified in Table 5.4.2.1-1.						
Note 2. For p	Note 2. For partial RB allocation, the starting resource block shall be RB #0 and RB# (max - RB					
allocation) of the channel bandwidth.						

Table 6.2.2.4.1-1: Test Configuration Table

1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Figure A.1.

2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.

3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.

4. The UL and DL Reference Measurement channels are set according to in Table 6.5.2.3.4.1-1.

5. Propagation conditions are set according to Annex B.0

6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.5.2.3.4.3.

6.5.2.3.4.2 Test procedure

- 1. Set the power level of UE to [2]dBm, with $[\pm 2dB]$ tolerance.
- 2. Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 3. Set the power level of UE to [-28]dBm,or send power control "down" commands to the UE until UE output power is [-28]dBm,with [±2dB] tolerance.
- 4. Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 5. Set the power level of UE to [-38]dBm, or send power control "down" commands to the UE until UE output power is [-38]dBm, with [±2dB] tolerance.
- 6. Measure In-band emission using Global In-Channel Tx-Test (Annex E)

6.5.2.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.5.2.3.5 Test requirement

Each of the 20 In-band emissions results, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.5.2.3.5-1

Parameter Description	Parameter Unit Limit (Note 1)		Applicable Frequencies		
General	dB	$\max \left\{ -30, -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRBs}), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot (\left \Delta_{RB} \right - 1) / L_{CRBs}, + TT \\ -57 \ dBm \ / \ 180 \ kHz - P_{RB} \right\}$	Any non-allocated (Note 2)		
IQ Image	dB	-25+TT	Image frequencies (Notes 2, 3)		
DC	dBc	-23+[tbd] Output power =[2] dBm [±2dB] -20+[tbd] Output power =[-28] dBm [±2dB] -10+[tbd] Output power =[-38] dBm [±2dB]	LO frequency (Notes 4, 5)		
 Note 1: The minimum requirement is calculated from any of the listed requirements, whichever is the highest power. Note 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. Note 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated RBs. 					
Note 4: The measur allocated RE Note 5: The applicat	ement bandwig 3 to the measu ble frequencies	dth is 1 RB and the limit is expressed as a ratio of measured red total power in all allocated RBs. s for this limit are those that are enclosed in the RBs containing	power in one non- ng the DC frequency if		
$N_{\scriptscriptstyle RB}$ is odd allocated RE	l, or in the two 3.	RBs immediately adjacent to the DC frequency if $N_{\rm RB}$ is evolved by the Network of the Net	ven, but excluding any		
Note 6: L_{CRBs} is the Tr	ransmission Ba	andwidth (see Figure 5.4.2-1).			
Note 7: $N_{\scriptscriptstyle RB}$ is the Tr	ansmission Ba	andwidth Configuration (see Figure 5.4.2-1).			
Note 8: EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs. Note 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.					
$\Delta_{\scriptscriptstyle RB}=1$ or	r $\Delta_{\scriptscriptstyle RB}=-1$ f	or the first adjacent RB outside of the allocated bandwidth.			
Note 10: P_{RB} is the t	ransmitted pov	ver per 180 kHz in allocated RBs, measured in dBm.			

Table 6.5.2.3.5-1: Test requirements for in-band emissions

6.5.2.4 Spectrum flatness

6.5.2.4.1 Test Purpose

The spectrum flatness is a measure of the relative power variation across the subcarriers of the RB of the allocated UL blocks. The basic spectrum flatness measurement interval is defined over one slot in the time domain.

6.5.2.4.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.5.2.4.3 Minimum conformance requirements

The spectrum flatness shall not exceed the values specified in Table 6.5.2.4.3-1 for normal conditions and Table 6.5.2.4.3-2 for extreme conditions.

Spectrum Flatness	Relative Limit (dB)				
If F _{UL_measurement} - F _{UL_low} ≥ 3MHz and If F _{UL_high} - F _{UL_measurement} ≥3 MHz	+2/-2				
If F _{UL_measurement} - F _{UL_low} < 3 MHz Or If F _{UL_high} - F _{UL_measurement} < 3 MHz	+3/-5				
Note 1: F _{UL_low} and F _{UL_high} refers to each E-UTRA 1 in Table 5.2-1	requency band specified				
Note 2: F _{UL measuremen} refers to frequency of the subcarrier being evaluated					

Table 6.5.2.4.3-1: Minimum requirements for spectrum flatness (normal conditions)

Table 6.5.2.4.3-2: Minimum requirements for spectrum flatness (extreme conditions)

Spectrum Flatness	Relative Limit (dB)
If F _{UL_measurement} - F _{UL_low} ≥5 MHz and If F _{UL_high} - F _{UL_measurement} ≥5 MHz	+2/-2
If F _{UL_measurement} - F _{UL_low} < 5 MHz or If F _{UL_high} - F _{UL_measurement} < 5 MHz	+4/-8
Note 1: F _{UL_low} and F _{UL_high} refers to each E-UTRA f in Table 5.2-1 Note 2: F _{UL_measurement} refers to frequency of the su evaluated	requency band specified

The normative reference for this requirement is TS 36.101 clause 6.5.2.4.1.

6.5.2.4.4 Test description

6.5.2.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.4.2.4.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Condi	tions						
Test Environ	ment			See Table 6 5 1 / 1-1			
(as specified in TS 36.508 [7] subclause 4.1)				566	e Table 0.5.1.4	. 1-1	
Test Frequencies				Sec			
(as specified	in TS36.508 [7] subclause 4.3	3.1)	000		.1-1	
Test Channe	l Bandwidths			Sec	Table 6 5 1 /	1_1	
(as specified	in TS 36.508 [7	7] subclause 4.	.3.1)	See Table 0.5.1.4.1-1			
Test Parameters for Channel Bandwidths							
	Downlink Configuration			Upl	ink Configura	tion	
Ch BW	Mod'n	RB allocation		Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
1.4MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full	
3MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full	
5MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full	
10MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full	
15MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full	
20MHz [FFS] [FFS] [FFS] QPSK Full Full						Full	
Note 1. Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable channel bandwidths are specified in Table 5.4.2.1-1.							

Table 6.5.2.4.4.1-1: Test Configuration Table

1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Figure A.1.

2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.

3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.

4. The UL and DL Reference Measurement channels are set according to in Table 6.5.2.4.4.1-1.

5. Propagation conditions are set according to Annex B.0

6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.5.2.4.4.3.

6.5.2.4.4.2 Test procedure

1. Send continuously uplink power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.5.2.4.4.1-1.

2. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E)

6.5.2.4.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.5.2.4.5 Test requirement

Each of the 20 spectrum flatness functions, derived in Annex E.4.4, shall not exceed the values in Table 6.5.2.4.5-1 for normal conditions and Table 6.5.2.4.5-2 for extreme conditions.

Spectrum Flatness	Relative Limit (dB)
If F _{UL_measurement} - F _{UL_low} ≥ 3MHz and If F _{UL_high} - F _{UL_measurement} ≥3 MHz	+2+[tbd]/-2+[tbd]
If F _{UL_measurement} - F _{UL_low} < 3 MHz Or If F _{UL_high} - F _{UL_measurement} < 3 MHz	+3+[tbd]/-5+[tbd]
Note 1: F _{UL_low} and F _{UL_high} refers to each E-UTRA 1 in Table 5.2-1	requency band specified
Note 2: FUL_measurement refers to frequency of the su	bcarrier being evaluated

Table 6.5.2.4.5-1: Test requirements for spectrum flatness (normal conditions)

Table 6.5.2.4.5-2: Test requirements for spectrum flatness (extreme conditions)

Spectrum Flatness	Relative Limit (dB)			
If F _{UL_measurement} - F _{UL_low} ≥ 5MHz				
and	+2+[tbd]/-2+[tbd]			
If F _{UL_high} - F _{UL_measurement} ≥5 MHz				
If $F_{UL_measurement}$ - $F_{UL_low} < 5 \text{ MHz}$				
or	+4+[tbd]/-8+[tbd]			
If F _{UL_high} - F _{UL_measurement} <5 MHz				
Note 1: FUL_low and FUL_high refers to each E-UTRA frequency band specified				
in Table 5.2-1				
Note 2: FUL measurement refers to frequency of the subcarrier being evaluated				

6.6 Output RF spectrum emissions

Unwanted emissions are divided into "Out-of-band emission" and "Spurious emissions" in 3GPP RF specifications. This notation is in line with ITU-R recommendations such as SM.329 [2] and the Radio Regulations [3].

ITU defines:

Out-of-band emission = Emission on a frequency or frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions.

Spurious emission = Emission on a frequency, or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products but exclude out-of-band emissions.

Unwanted emissions = Consist of spurious emissions and out-of-band emissions.

The UE transmitter spectrum emission consists of the three components; the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

Figure 6.6-1: Transmitter RF spectrum

6.6.1 Occupied bandwidth

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- The fixed power allocation for the RB(s) is undefined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- Test Case in this clause has been verified to apply for both FDD and TDD.

6.6.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits

6.6.1.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.6.1.2 Minimum conformance requirements

Occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied channel bandwidth for all transmission bandwidth configurations (Resources Blocks) should be less than the channel bandwidth specified in Table 6.6.1.2-1

	Occupied channel bandwidth / channel bandwidth					
	1.4 3.0 5 10 15 20 MHz MHz MHz MHz MHz MHz					
Channel bandwidth [MHz]	1.4	3	5	10	15	20

Table 6.6.1.2-1: Occupied channel bandwidth

The normative reference for this requirement is TS 36.101 [2] clause 6.6.1.

6.6.1.4 Test description

6.6.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6. 1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions								
Test Environment as specified in			Normal					
15 36.508[7]	subclause 4.1							
Test Frequer	icies as specifi	ed in	Mid range					
TS36.508 [7]	subclause 4.3.	.1						
Test Channe	I Bandwidths a	s specified in	All					
TS 36.508 [7]	subclause 4.3	5.1						
Test Parameters for Channel Bandwidths								
	Dowr	nlink Configur	ation	Upl	ink Configura	tion		
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB all	ocation		
		FDD	TDD		FDD	TDD		
1.4MHz	QPSK	6	6	QPSK	6	6		
3MHz	QPSK	4	4	QPSK	15	15		
5MHz	QPSK	8	8	QPSK	25	25		
10MHz	QPSK	16	16	QPSK	50	50		
15MHz	QPSK	25	25	QPSK	75	75		
20MHz	QPSK	30	30	QPSK	100	100		
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, the applicable channel bandwidths are specified in Table 5.4.2.1-1.								

Table 6.6.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.

3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.

- 4. The UL and DL Reference Measurement channels are set according to Table 6.6.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0

6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.6.1.4.3

6.6.1.4.2 Test procedure

- 1. Send continuously power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.6.1.4.1-1..
- 2. Measure the power spectrum distribution within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristic of the filter shall be approximately Gaussian (typical spectrum analyzer filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is one active uplink slot.
- 3. Calculate the total power within the range of all frequencies measured in '2)' and save this value as "Total Power".
- 4. Sum up the power upward from the lower boundary of the measured frequency range in '2)' and seek the limit frequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Lower Frequency".

- 5. Sum up the power downward from the upper boundary of the measured frequency range in '2)' and seek the limit frequency point by which this sum becomes 0,5 % of "Total Power" and save this point as "Upper Frequency".
- 6. Calculate the difference ("Upper Frequency" "Lower Frequency" = "Occupied Bandwidth") between two limit frequencies obtained in '4)' and '5)'.

6.6.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6

6.6.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed values in Table 6.6.1.5-1.

 Table 6.6.1.5-1: Occupied channel bandwidth

	Occupied channel bandwidth / channel bandwidth						
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Channel bandwidth [MHz]	1.4	3	5	10	15	20	

6.6.2 Out of band emission

Out of band emissions are unwanted emissions immediately outside the nominal channel resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a Spectrum Emission Mask and Adjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum Emission Mask

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- FDD aspects missing or not yet determined:
 - Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- The test cases in this clause have been verified to apply for both FDD and TDD

6.6.2.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified lever for the specified channel bandwidth.

6.6.2.1.2 Test applicability

This test case applies to all types of E-UTRA FDD UE release 8 and forward.

6.6.2.1.3 Minimum conformance requirements

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.3-1 the spurious requirements in clause 6.6.3 are applicable.

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.3-1 for the specified channel bandwidth.

	Spectrum emission limit (dBm)/ Channel bandwidth										
Δf _{оов} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth				
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz				
± 1-2.5	-10	-10	-10	-10	-10	-10	1 MHz				
± 2.5-2.8	-25	-10	-10	-10	-10	-10	1 MHz				
± 2.8-5		-10	-10	-10	-10	-10	1 MHz				
± 5-6		-25	-13	-13	-13	-13	1 MHz				
± 6-10			-25	-13	-13	-13	1 MHz				
± 10-15				-25	-13	-13	1 MHz				
± 15-20					-25	-13	1 MHz				
± 20-25						-25	1 MHz				

Table 6.6.2.1.3-1: General E-UTRA spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.1.

6.6.2.1.4 Test description

6.6.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6.2.1.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions									
Test Environment									
(as specified	in TS 36.508 [7	7] subclause 4.	NC						
Test Frequer	ncies			Low range Mid range High range					
(as specified	in TS36.508 [7] subclause 4.3	3.1)	Low range, iv	na range, riign	lange			
Test Channe	I Bandwidths	.		Lowest, 5MH	z. 10MHz. Hiał	nest			
(as specified	in TS 36.508 [7] subclause 4.	3.1)		_,,				
Test Parameters for Channel Bandwidths									
	Dowr	IIINK Configur	ation	Upi	Ink Configura	tion			
Ch BW	Modín	RB allo	ocation	Modín	RB allo	ocation			
	0.5.01/	FDD	IDD	0.501/	FDD				
1.4MHz	QPSK	2	[FFS]	QPSK	Full	Full			
1.4MHz	QPSK	2	[FFS]	QPSK	5	5			
1.4MHz	QPSK	2	[FFS]	16QAM	5	5			
1.4MHz	QPSK	2	[FFS]	16QAM	Full	Full			
3MHz	QPSK	4	[FFS]	QPSK	Full	Full			
3MHz	QPSK	4	[FFS]	QPSK	4	4			
3MHz	QPSK	4	[FFS]	16QAM	4	4			
3MHz	QPSK	4	[FFS]	16QAM	Full	Full			
5MHz	QPSK	8	[FFS]	QPSK	Full	Full			
5MHz	QPSK	8	[FFS]	QPSK	8	8			
5MHz	QPSK	8	[FFS]	16QAM	8	8			
5MHz	QPSK	8	[FFS]	16QAM	Full	Full			
10MHz	QPSK	16	[FFS]	QPSK	Full	Full			
10MHz	QPSK	16	[FFS]	QPSK	12	12			
10MHz	QPSK	16	[FFS]	16QAM	12	12			
10MHz	QPSK	16	[FFS]	16QAM	Full	Full			
15MHz	QPSK	25	[FFS]	QPSK	Full	Full			
15MHz	QPSK	25	[FFS]	QPSK	16	16			
15MHz	QPSK	25	[FFS]	16QAM	16	16			
15MHz	QPSK	25	[FFS]	16QAM	Full	Full			
20MHz	QPSK	30	[FFS]	QPSK	Full	Full			
20MHz	QPSK	30	[FFS]	QPSK	18	18			
20MHz	QPSK	30	[FFS]	16QAM	18	18			
20MHz	QPSK	30	[FFS]	16QAM	Full	Full			
Note 1: Test	Channel Bandy	vidths are chec	ked separatel	y for each E-U1	RA band, whic	ch applicable			
ch	annel bandwidt	ths are specifie	d in Table 5.4	.2.1-1.					
Note 2: The a	allowed MPR fo	or maximum ou	tput power UE	might apply is	described in cl	ause 6.2.3.3.			
		tion) of the starting	ig resource bl	UCK OF PARTIAL R	D anocation Sh	all DE KD#			
(m	iax – KB alloca	mon) of the cha	annei bandwid	u1.					

Table 6.6.2.1.4.1-1: Test Configuration Table

Note 4: For middle range frequency, the starting resource block of partial RB allocation shall be RB# 0 and RB# (max - RB allocation) of the channel bandwidth.

Note 5: For high range frequency, the starting resource block of partial RB allocation shall be RB# 0 of the channel bandwidth.

- 1. Connect the SS to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.6.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.6.2.1.4.3.

6.6.2.1.4.2 Test procedure

1. Send continuously power control "up" commands to the UE until the UE transmits at maximum output power state according to the test configuration from Table 6.6.2.1.4.1-1.

- 2. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 and 6.2.3.5-1. The period of the measurement shall be at least one sub-frame (1ms).
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.6.2.1.5-1. The center frequency of the filter shall be stepped in contiguous steps according to table 6.6.2.1.5-1. The measured power shall be recorded for each step.

6.6.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.2.1.5 Test requirements

The power of any UE emission shall fullfil requirements in Table.6.6.2.1.5-1.

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB}	1.4	3.0	5	10	15	20	Measurement			
(MHz)	MHz	MHz	MHz	MHz	MHz	MHz	bandwidth			
0-1	-8.5	-11.5	-13.5	-16.5	-18.5	-19.5	30 kHz			
1-2.5	-8.5	-8.5	-8.5	-8.5	-8.5	-8.5	1 MHz			
2.5-2.8	-23.5	-8.5	-8.5	-8.5	-8.5	-8.5	1 MHz			
2.8-5		-8.5	-8.5	-8.5	-8.5	-8.5	1 MHz			
5-6		-23.5	-11.5	-11.5	-11.5	-11.5	1 MHz			
6-10			-23.5	-11.5	-11.5	-11.5	1 MHz			
10-15				-23.5	-11.5	-11.5	1 MHz			
15-20					-23.5	-11.5	1 MHz			
20-25						-23.5	1 MHz			
NOTE 1: Th	e first and	last meas	urement po	osition with	a 30 kHz f	ilter is at Δ	f _{оов} equals to			
0	.015 MHz	and 0.985	MHz.							
NOTE 2: Th	e first and	last meas	urement po	osition with	a 1 MHz fi	Iter for 1-2.	5 MHz offset			
ra	ange is at	Δf _{OOB} equa	als to 1.5 M	IHz and 2.0) MHz. Sim	ilarly for ot	her ∆f _{OOB}			
ra	anges									
NOTE 3: Th	e measur	ements are	to be perf	ormed abo	ve the upp	er edge of	the channel and			
below the lower edge of the channel										
NOTE 4: For the 2.5-2.8 MHz offset range with 1.4 MHz channel bandwidth, the										
m	easurem	ent positior	n is at ∆f _{oor}	B equals to	3 MHz.					

Table 6.6.2.1.5-1: General E-UTRA spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2 Additional Spectrum Emission Mask

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Test procedure should be verified so that UE transmit with appropriate output power according to each test configuration
- Reference Measurement Channel is undefined
- The specific position of partial RBs should be verified
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- The test cases in this clause have been verified to apply for both FDD and TDD

6.6.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.6.2.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.2.2.3 Minimum conformance requirements

6.6.2.2.3.1 Minimum requirement (network signalled value "NS_03")

When "NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3.1-1.

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB}	1.4	3.0	5	10	15	20	Measurement			
(MHZ)	IVIHZ	IVIHZ	IVIHZ	IVIHZ	WHZ	WHZ	bandwidth			
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz			
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz			
± 2.5-5	-25	-13	-13	-13	-13	-13	1 MHz			
± 5-6		-25	-13	-13	-13	-13	1 MHz			
± 6-10			-25	-13	-13	-13	1 MHz			
± 10-15				-25	-13	-13	1 MHz			
± 15-20					-25	-13	1 MHz			
± 20-25						-25	1 MHz			

Table 6.6.2.2.3.1-1: Additional requirements (network signalled value "NS_03")

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.2.1.

6.6.2.2.3.2 Minimum requirement (network signalled value "NS_04")

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3.2-1.

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth			
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz			
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz			
± 2.5-5	-25	-13	-13	-13	-13	-13	1 MHz			
± 5-6		-25	-25	-25	-25	-25	1 MHz			
± 6-10			-25	-25	-25	-25	1 MHz			
± 10-15				-25	-25	-25	1 MHz			
± 15-20					-25	-25	1 MHz			
± 20-25						-25	1 MHz			

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.2.2.

6.6.2.2.3.3 Minimum requirement (network signalled value "NS_06" or NS_07)

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3.3-1.

Table 6.6.2.2.3.3-1: Additional requirements (network signalled value "NS_06" or "NS_07")

	Spectrum emission limit (dBm)/ Channel bandwidth							
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	Measurement bandwidth			
± 0-0.1	-13	-13	-15	-18	30 kHz			
± 0.1-1	-13	-13	-13	-13	100 kHz			
± 1-2.5	-13	-13	-13	-13	1 MHz			
± 2.5-5	-25	-13	-13	-13	1 MHz			
± 5-6		-25	-13	-13	1 MHz			
± 6-10			-25	-13	1 MHz			
± 10-15				-25	1 MHz			

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 36.101 [2] clause 6.6.2.2.3.

6.6.2.2.4 Test description

6.6.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6.2.2.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions									
Test Environment									
(as specified	in TS 36.508 [7	7] subclause 4.							
Test Frequer	ncies			Low range. M	lid range. High	range			
(as specified	in TS36.508 [7] subclause 4.3	3.1)	_o					
Test Channe	I Bandwidths	71	0.4)	Lowest, 5MH	z, 10MHz, Higl	nest			
(as specified	IN 15 36.508 [/j subciause 4.	3.1)	•					
Test Parame	eters for Chan	nel Bandwidth	is ation	Uni	ink Configura	tion			
	Down		ation	Upi					
CUBM	Iviod n			Mod n					
				ODSK	FDD				
				QPSK	Full	Full			
				QPSK 100AM	5	5			
					5	5			
3MHZ				QPSK	Full	Full			
3MHz				QPSK	4	4			
3MHZ				16QAM	4	4			
5MHz	MHz [FFS] [FFS] [FFS]				Full	Full			
5MHz				QPSK	8	8			
5MHz	[FFS]			16QAM	8	8			
10MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full			
10MHz	[FFS]	[FFS]	[FFS]	QPSK	12	12			
10MHz	[FFS]	[FFS]	[FFS]	16QAM	12	12			
15MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full			
15MHz	[FFS]	[FFS]	[FFS]	QPSK	16	16			
15MHz	[FFS]	[FFS]	[FFS]	16QAM	16	16			
20MHz	[FFS]	[FFS]	[FFS]	QPSK	Full	Full			
20MHz	[FFS]	[FFS]	[FFS]	QPSK	18	18			
20MHz	[FFS]	[FFS]	[FFS]	16QAM	18	18			
Note 1. Test ch	Channel Bandy annel bandwidt	widths are chec ths are specifie	ked separately d in Table 5.4.	/ for each E-U1 2.1-1.	RA band, the	applicable			
NOLE 2. FOI G	DP is the LIF	shall transmit	with MPP $= 0.0$	B For OPSK	with full PB allo	usieu by			
16	∩ N, I.e. the OL M with parti	al RR allocatio	n the LIF trans	mitted power r	night he adjust	red by			
all	allowed MPR \leq 1 dB.								
Note 3. For	Note 3. For low range frequency, the starting resource block of partial RB allocation shall be RB#								
Note 4 For	iax = RD allOCa middle renge f	mony of the cha	anner Danuwidt	II.	ial PR allocatio	n chall ha			
		mov DR alla	anting resource	bonnol bondur	iai rid aiiuualiu idth	II SIAII DE			
Noto 5 For	bigh range free	(IIIax - RD allo	rting recourse	block of partial	DR allocation	chall bo PB#			
	night range free	quency, the sta	rung resource	block of partial		Shall DE KD#			
00		Januwiuth.							

Table 6.6.2.2.4.1-1: Tes	t Configuration Table
--------------------------	-----------------------

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.6.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.6.2.2.4.3.

6.6.2.2.4.2 Test procedure

1. Send continuously power control "up" commands to the UE until the UE transmits at its maximum output power state according to each test configuration in Table 6.6.2.2.4.1-1.

2. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.6.2.2.5.1-1, 6.6.2.2.5.2-1, 6.6.2.2.5.3-1. The center frequency of the filter shall be stepped in contiguous steps according to table 6.6.2.2.5.1-1, 6.6.2.2.5.2-1, 6.6.2.2.5.3-1. The measured power shall be recorded for each step.

6.6.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions for each network signalled value.

6.6.2.2.4.3.1 Message contents exceptions (network signalled value "NS_03")

1. Information element additionalSpectrumEmission is set to NS_03. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.2.2.4.3.1-1: SystemInformationBlockType2 : Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1									
Information Element	Value/remark	Comment	Condition						
additionalSpectrumEmission	3 (NS_03)								

6.6.2.2.4.3.2 Message contents exceptions (network signalled value "NS_04")

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in the

SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.2.2.4.3.2-1: SystemInformationBlockType2 : Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4	.3.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	4 (NS_04)		

6.6.2.2.4.3.3 Message contents exceptions (network signalled value "NS_06")

1. Information element additionalSpectrumEmission is set to NS_06. This can be set in the

SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.2.2.4.3.3-1: SystemInformationBlockType2 :Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1						
Information Element	Value/remark	Comment	Condition			
additionalSpectrumEmission	6 (NS_06)					

6.6.2.2.5 Test requirements

6.6.2.2.5.1 Test requirements (network signalled value "NS_03")

When "NS_03" is indicated in the cell, the power of any UE emission shall fulfil requirements in Table 6.6.2.2.5.1-1.

		Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB}	1.4	3.0	5	10	15	20	Measurement				
(MHz)	MHz	MHz	MHz	MHz	MHz	MHz	bandwidth				
0-1	-8.5	-11.5	-13.5	-16.5	-18.5	-19.5	30 kHz				
1-2.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	1 MHz				
2.5-5	-23.5	-11.5	-11.5	-11.5	-11.5	-11.5	1 MHz				
5-6		-23.5	-11.5	-11.5	-11.5	-11.5	1 MHz				
6-10			-23.5	-11.5	-11.5	-11.5	1 MHz				
10-15				-23.5	-11.5	-11.5	1 MHz				
15-20					-23.5	-11.5	1 MHz				
20-25						-23.5	1 MHz				
NOTE 1: Th	e first and	l last meas	urement po	osition with	a 30 kHz f	ilter is at ∆	fOOB equals to				
0	.015 MHz	and 0.985	MHz.								
NOTE 2: Th	e first and	l last meas	urement po	osition with	a 1 MHz fi	Iter for 1-2.	.5 MHz offset				
ra	ange is at	∆fOOB eq	uals to 1.5	MHz and 2	2.0 MHz. Si	milarly for	other ∆fOOB				
ra	anges										
NOTE 3: Th	e measur	ements are	e to be perf	ormed abo	ve the upp	er edge of	the channel and				
below the lower edge of the channel											
NOTE 4: Above SEM requirement applies to bands 2, 4, 10, 35, 36 corresponding to											
n	etwork sig	nalling val	ue NS_03 :	as defined	in TS 36.1	01 [2] subc	lause 6.2.4				
T	able 6.2.4	-1.									

Table 6.6.2.2.5.1-1: Additional requirements (network signalled value "NS_03")

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.5.2 Test requirements (network signalled value "NS_04")

When "NS_04" is indicated in the cell, the power of any UE emission shall fulfil requirements in Table 6.6.2.2.5.2-1.

	Spectrum emission limit (dBm)/ Channel bandwidth									
Δf _{OOB}	1.4	3.0	5	10	15	20	Measurement			
(MHz)	MHz	MHz	MHz	MHz	MHz	MHz	bandwidth			
0-1	-8.5	-11.5	-13.5	-16.5	-18.5	-19.5	30 kHz			
1-2.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	1 MHz			
2.5-5	-23.5	-11.5	-11.5	-11.5	-11.5	-11.5	1 MHz			
5-6		-23.5	-23.5	-23.5	-23.5	-23.5	1 MHz			
6-10			-23.5	-23.5	-23.5	-23.5	1 MHz			
10-15				-23.5	-23.5	-23.5	1 MHz			
15-20					-23.5	-23.5	1 MHz			
20-25						-23.5	1 MHz			
NOTE 1: Th	e first and	l last meas	urement po	osition with	a 30 kHz f	ilter is at ∆	fOOB equals to			
0	.015 MHz	and 0.985	MHz.							
NOTE 2: Th	e first and	l last meas	urement po	osition with	a 1 MHz fi	Iter for 1-2	.5 MHz offset			
ra	ange is at	∆fOOB eq	uals to 1.5	MHz and 2	2.0 MHz. Si	milarly for	other ∆fOOB			
ra	anges									
NOTE 3: Th	NOTE 3: The measurements are to be performed above the upper edge of the channel and									
below the lower edge of the channel										
NOTE 4: Above SEM requirement applies to bands FFS corresponding to network										
si	ignalling v	alue NS_0	4 as define	ed in TS 36	.101 [2] su	bclause 6.2	2.4 Table 6.2.4-			
1										

Table 6.6.2.2.5.2-1: Additional rec	quirements ((network sid	analled value	"NS	04")
					/

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.5.3 Test requirements (network signalled value "NS_06" or "NS_07")

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall fulfil requirements in Table 6.6.2.2.5.3-1.

	Spectrum emission limit (dBm)/ Channel bandwidth								
Δf _{OOB}	1.4	3.0	5	10	Measurement				
(MHz)	MHz	MHz	MHz	MHz	bandwidth				
0-0.1	-11.5	-11.5	-13.5	-16.5	30 kHz				
0.1-1	-11.5	-11.5	-11.5	-11.5	100 kHz				
1-2.5	-11.5	-11.5	-11.5	-11.5	1 MHz				
2.5-5	-23.5	-11.5	-11.5	-11.5	1 MHz				
5-6		-23.5	-11.5	-11.5	1 MHz				
6-10			-23.5	-11.5	1 MHz				
10-15				-23.5	1 MHz				
NOTE 1: Indis is NOTE 2: The for an	NOTE 1: The first and last measurement position with a 30 kHz filter is at Δ fOOB equals to 0.015 MHz and 0.085 MHz. The first and last measurement position with a 100 kHz filter is at Δ fOOB equals to 0.15 MHz and 0.95 MHz. NOTE 2: The first and last measurement position with a 1 MHz filter for 1-2.5 MHz offset range is at Δ fOOB equals to 1.5 MHz and 2.0 MHz. Similarly for other Δ fOOB ranges								
NOTE 3: Ind ch NOTE 4: Ab co al va	e measure dge of the nannel ove SEM prrespond lso applies alue NS_(able 6.2.4	requireme ing to netw to band 1 7 as defin	nd below the nt applies to vork signall 3 corresponded in TS 36	ormed abo he lower ed o bands 12 ing value N onding to ne 5.101 [2] su	dge of the 2, 13, 14, 17 NS_06 and it etwork signalling ubclause 6.2.4				

Table 6.6.2.2.5.3-1: Additional requirements (network signalled value "NS_06" or "NS_07")

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage power Ratio

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD

Test Case in this clause has been verified to apply for both TDD and FDD.

6.6.2.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.6.2.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.2.3.3 Minimum conformance requirements

ACLR requirements are specified for two scenarios for an adjacent E -UTRA_{ACLR} and UTRA_{ACLR1/2} as shown in Figure 6.6.2.3.3-1.

Figure 6.6.2.3.3-1: Adjacent Channel Leakage Power Ratio requirements

6.6.2.3.3.1 Minimum conformance requirements for E-UTRA

E-UTRA ACLR (E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidth specified in Table 6.6.2.3.3.1-1.

If the measured adjacent channel power is greater than -50 dBm then the E-UTRA_{ACLR} shall be higher than the valued specified in Table 6.6.2.3.3.1-1.

	Channel	bandwidth	/ E-UTRA _{ACLR1} / measurement bandwidth			
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
E-UTRA _{ACLR1}	30 dB	30 dB	30 dB	30 dB	30 dB	30 dB
E-UTRA channel	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
Measurement bandwidth						

Table 6.6.2.3.3.1-1: General requirements for E-UTRA_{ACLR}

The normative reference for this requirement is TS 36.101 [2] subclause 6.6.2.3.1.

6.6.2.3.3.2 Minimum conformance requirements for UTRA

UTRA ACLR (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent UTRA channel frequency.

UTRA ACLR is specified for both the first UTRA adjacent channel (UTRA_{ACLR1}) and the 2nd UTRA adjacent channel (UTRA_{ACLR2}). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor $\alpha = 0.22$. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.3.2-1.

If the measured UTRA channel power is greater than -50dBm then the UTRA_{ACLR1} and UTRA_{ACLR2} shall be higher than the valued specified in Table 6.6.2.3.3.2-1.

Table 6.6.2.3.3.2-1: General requirements for UTRA_{ACLR1/2}

Channel bandwidth		/ UTRA _{ACL}	R1/2 / meas	2 / measurement bandwidth	
1.4	3.0	5	10	15	20

	MHz	MHz	MHz	MHz	MHz	MHz
	33 dB	33 dB	33 dB	33 dB	33 dB	33 dB
Adjacent	0.7+BW _U	1.5+BW∪	2.5+BW∪	5+BW _{UTR}	7.5+BW∪	10+BW _{UT}
channel centre	_{TRA} /2	_{tra} /2	_{TRA} /2	_A /2	_{TRA} /2	_{RA} /2
frequency offset						
(in MHz)						
	-	-	36 dB	36 dB	36 dB	36 dB
Adjacent	-	-	2.5+3*B	5+3*BW _U	7.5+3*B	10+3*BW
channel centre			W _{UTRA} /2	_{TRA} /2	W _{UTRA} /2	_{UTRA} /2
frequency offset						
(in MHz)						
E-UTRA channel						
Measurement	-	-	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
bandwidth						
UTRA 5MHz						
channel	_	_	3 84 MHz	3 84 MHz	3.84 MHz	3 8/ MHz
Measurement	_	_	5.0 4 1011 12	5.04 10112	5.0 4 Mi 12	5.04 10112
bandwidth						
UTRA 1.6MHz						
channel	_	_	1 28 MHz	1 28 MHz	1 28 MHz	1 28 MHz
measurement	_	_	1.20 101112	1.20 10112	1.20 10112	1.20 10112
bandwidth ²						
NOTE 1: Applicable	for E-UTRA	FDD co-exis	stence with L	ITRA FDD in	paired spec	trum.
NOTE 2: Applicable	for E-UTRA	TDD co-exis	stence with U	ITRA TDD in	unpaired sp	ectrum.

The normative reference for this requirement is TS 36.101 subclause 6.6.2.3.2.

6.6.2.3.4 Test description

6.6.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.6.2.3.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions								
Test Environment								
(as specified	in TS 36.508 [7	7] subclause 4.	1)					
Test Frequer	ncies			Low range. M	lid range. High	range		
(as specified	in TS36.508 [7] subclause 4.3	3.1)	_on .ago,		. c ge		
Test Channe	I Bandwidths		2.4)	Lowest, 5MH	z, 10MHz, Higł	nest		
(as specified	10 15 30.506 [Toot Parameter	3.1)	 Pondwidtho				
	Down	link Configur	ation		ink Configura	tion		
Ch BW/	Mod'n	RB allo		Mod'n	RR allo			
ON DW	NIOC II	FDD		Modifi	FDD			
1 4MHz	OPSK	2	IFESI	OPSK	Full	Full		
1 4MHz	OPSK	2	[FFS]	OPSK	5	5		
1.4MHz	QPSK	2	[FFS]	16QAM	5	5		
3MHz	QPSK	4	[FFS]	QPSK	Full	Full		
3MHz	QPSK	4	IFFS1	QPSK	4	4		
3MHz	QPSK	4	[FFS]	16QAM	4	4		
5MHz	QPSK	8	[FFS]	QPSK	Full	Full		
5MHz	QPSK	8	[FFS]	QPSK	8	8		
5MHz	QPSK	8	[FFS]	16QAM	8	8		
10MHz	QPSK	16	[FFS]	QPSK	Full	Full		
10MHz	QPSK	16	[FFS]	QPSK	12	12		
10MHz	QPSK	16	[FFS]	16QAM	12	12		
10MHz	QPSK	16	[FFS]	16QAM	Full	Full		
15MHz	QPSK	25	[FFS]	QPSK	Full	Full		
15MHz	QPSK	25	[FFS]	QPSK	16	16		
15MHz	QPSK	25	[FFS]	16QAM	16	16		
20MHz	QPSK	30	[FFS]	QPSK	Full	Full		
20MHz	QPSK	30	[FFS]	QPSK	18	18		
20MHz	QPSK	30	[FFS]	16QAM	18	18		
Note 1: Test	Channel Bandy	widths are cheo	ked separately	/ for each E-UT	RA band, whic	ch applicable		
ch	annel bandwid	ths are specifie	d in Table 5.4.	2.1-1.				
Note 2: The	e allowed MPR 1 2.3.3.	for maximum o	utput power U	E might apply is	s described in (clause		
Note 3: For lo	ow range freque	ency, the starti	ng resource blo	ock of partial R	B allocation sh	all be RB#		
(m	nax – RB alloca	ation) of the cha	annel bandwidt	h.				
Note 4: For n	niddle range fre	equency, the st	arting resource	block of partia	I RB allocation	shall be		
RE	B# 0 and RB#	(max - RB allo	cation) of the o	channel bandwi	dth.			
Note 5: For h	igh range frequ	iency, the start	ing resource b	lock of partial F	RB allocation sl	nall be RB#		
0 0	of the channel I	pandwidth.	-	•				

- 1. Connect the SS to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.6.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.6.2.3.4.3.

6.6.2.3.4.2 Test procedure

- 1. Send continuously uplink power control "up" commands to the UE until the UE transmits at maximum output power state according to the test configuration from Table 6.6.2.3.4.1-1.
- 2. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2.2.5-1 and 6.2.3.5-1. The period of the measurement shall be at least one sub-frame (1ms).

- 3. Measure the rectangular filtered mean power for E-UTRA.
- 4. Measure the rectangular filtered mean power of the first E-UTRA adjacent channel.
- 5. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel.
- 6. Calculate the ratio of the power between the values measured in step 2 over step 3 for E-UTRA_{ACLR}.
- 7. Calculated the ratio of the power between the values measured in step 2 over step 4 for UTRA_{ACLR1}, UTRA_{ACLR2}.

6.6.2.3.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.2.3.5 Test requirement

6.6.2.3.5.1 Test requirements E-UTRA

If the measured adjacent channel power is greater than -50 dBm then the measured E-UTRA_{ACLR}, derived in step 5), shall be higher than the limits in table 6.6.2.3.5.1-1.

	Cha	Channel bandwidth / E-UTRA _{ACLR1} / measurement bandwidth							
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
E-UTRA _{ACLR1}	29.2 dB	29.2 dB	29.2 dB	29.2 dB	29.2 dB	29.2 dB			
E-UTRA channel	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz			
Measurement									
bandwidth									
UE channel	+1.4 MHz	+3 MHz or	+5MHz or	+10MHz or	+15MHz or	+20MHz or			
	or -1.4 MHz	-3 MHz	-5MHz	-10MHz	-15MHz	-20MHz			

Table 6.6.2.3.5.1-1: E-UTRA UE ACLR

6.6.2.3.5.2 Test requirements UTRA

If the measured UTRA channel power is greater than -50dBm then the measured UTRA_{ACLR1}, UTRA_{ACLR2}, derived in step 6), shall be higher than the limits in table 6.6.2.3.5.2-1.

Table 6.6.2.3.5.2-1: UTRA UE ACLR

Cha	nnel bandwid	th / UTRA _{ACL}	R1/2 / measur	rement bandw	idth
1.4	3.0	5	10	15	20
MHz	MHz	MHz	MHz	MHz	MHz

UTRA _{ACLR1}	32.2 dB	32.2 dB	32.2 dB	32.2 dB	32.2 dB	32.2 dB
Adjacent	0.7+BW _{UTR}	1.5+BW _{UTR}	2.5+BW _{UTR}	5+BW _{UTRA} /	7.5+BW _{UTR}	10+BW _{UTRA}
channel centre	_A /2	_A /2	_A /2	2	_A /2	/2
frequency offset						
(in MHz)						
UTRA _{ACLR2}	-	-	35.2 dB	35.2 dB	35.2 dB	35.2 dB
Adjacent	-	-	2.5+3*BW _U	5+3*BW _{UTR}	7.5+3*BW∪	10+3*BW _{UT}
channel centre			_{TRA} /2	_A /2	_{TRA} /2	_{RA} /2
frequency offset						
(in MHz)						
E-UTRA channel						
Measurement	-	-	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
bandwidth						
UTRA 5MHz						
channel	_	_	3 84 MHz	3 84 MHz	3 84 MHz	3 84 MHz
Measurement	_	_	5.0 4 Wil 12	5.0 4 Wil 12	5.0 4 Wil 12	5.0 4 1011 12
bandwidth						
UTRA 1.6MHz						
channel	_	_	1 28 MHz	1 28 MHz	1 28 MHz	1 28 MHz
measurement	_	_	1.20 1011 12	1.20 1011 12	1.20 1011 12	1.20 10112
bandwidth ²						
NOTE 1: Applicable	for E-UTRA FI	DD co-existenc	e with UTRA F	DD in paired sp	pectrum.	
NOTE 2: Applicable	for E-UTRA TI	DD co-existenc	e with UTRA T	DD in unpaired	spectrum.	
NOTE 3: BW _{UTRA} for	· UTRA FDD is	5MHz and for	UTRA TDD is 1	I.6MHz.		

6.6.2.4 Additional ACLR requirements

Void

6.6.3 Spurious emissions

Editor's note: The test cases for spurious emissions are incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- The Core requirements for Δf_{OOB} for channel bandwidth 1.4 MHz and 3.0MHz.
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- *Test description section needs to be verified or modified (if necessary) for TDD applicability*
- Test requirement the text regarding the measured average power [in one slot] needs to be verified

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions. The spurious emission limits are specified in terms of general requirements inline with SM.329 [3] and E-UTRA operating band requirement to address UE co-existence.

6.6.3.1 Transmitter Spurious emissions

6.6.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.6.3.1.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.3.1.3 Minimum conformance requirements

The spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) from the edge of the channel bandwidth.

Table 6.6.3.1.3-1: Δf_{OOB} boundary between E-UTRA channel and spurious emission domain

Channel bandwidth	1.4	3.0	5	10	15	20
	MHz	MHz	MHz	MHz	MHz	MHz
Δf _{OOB} (MHz)	2.8	6	10	15	20	25

The spurious emission limits in Table 6.6.3.1.3-2 apply for all transmitter band configurations (RB) and channel bandwidths

Frequency Range	Maximum Level	Measurement Bandwidth
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz

Table 6.6.3.1.3-2:	Spurious	emissions	limits
--------------------	----------	-----------	--------

The normative reference for this requirement is TS 36.101 [2] subclause 6.6.3.1.

6.6.3.1.4 Test description

6.6.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 6.6.3.1.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions						
Test Environment			NC			
(as specified	in TS 36.508 [7	7] subclause 4.	.1)	NC		
Test Frequer	ncies			Low range M	lid range High	range
(as specified	in TS36.508 [7] subclause 4.3	3.1)	Low range, iv	liu lange, riigh	Tange
Test Channe	l Bandwidths			Lowest 5MH	z Highest	
(as specified	in TS 36.508 [7	7] subclause 4.	.3.1)	Lowest, Siviri	z, riignesi	
		Test Paramete	ers for Channe	el Bandwidths	i	
	Dowr	nlink Configur	ation	Upl	ink Configura	tion
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation
		FDD	TDD		FDD	TDD
1.4MHz	QPSK	6	[FFS]	QPSK	Full	[FFS]
1.4MHz	QPSK	6	[FFS]	QPSK	1	[FFS]
3MHz	QPSK	4	[FFS]	QPSK	Full	[FFS]
3MHz	QPSK	4	[FFS]	QPSK	1	[FFS]
5MHz	QPSK	8	[FFS]	QPSK	Full	[FFS]
5MHz	QPSK	8	[FFS]	QPSK	1	[FFS]
10MHz	QPSK	16	[FFS]	QPSK	Full	[FFS]
10MHz	QPSK	16	[FFS]	QPSK	1	[FFS]
15MHz	QPSK	25	[FFS]	QPSK	Full	[FFS]
15MHz	QPSK	25	[FFS]	QPSK	1	[FFS]
20MHz	QPSK	30	[FFS]	QPSK	Full	[FFS]
20MHz	QPSK	30	[FFS]	QPSK	1	[FFS]
Note 1: Test	Channel Band	widths are cheo	cked separately	y for each E-U1	RA band, which	ch applicable
ch	annel bandwid	ths are specifie	ed in Table 5.4	.2.1-1.		
Note 2. The	1 RB allocatio	n shall be teste	ed at both RB #	#0 and RB #ma	х.	

Table 6.6.3.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.6.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.6.3.1.4.3.

6.6.3.1.4.2 Test procedure

1. Send continuously uplink power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.6.3.1.4.1-1.

2. Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.

6.6.3.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.3.1.5 Test requirement

The measured average power of spurious emission, derived in step 2, shall not exceed the described value in tables 6.6.3.1.5-1.

The spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) from the edge of the channel bandwidth shown in Table 6.6.3.1.3-1.

Frequency Range	Maximum	Measurement
	Level	Bandwidth
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz

Table 6.6.3.1.5-1: General spurious emissions test requirements

6.6.3.2 Spurious emission band UE co-existence

6.6.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.6.3.2.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.3.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified E-UTRA band as indicated in Table 6.6.3.2.3-1.

	Spurious emission							
Band	Protected band	Frequ	enc (MH	y range z)	Level (dBm)	Bandwidth (MHz)	Comment	
1	E-UTRA Band 1, 3, 7, 8, 9, 11, 34, 38, 40	FDL_low	-	FDL_high	-50	1		
	Frequency range	860	-	895	-50	1		
		1884.5	-	1919.6			Note 6, 7	
	Frequency range	1884.5	-	1915.7	-41	0.3	Note 6, 8	
	E-UTRA band 33	1900	-	1920	-50	1	Note ³	
	E-UTRA band 39	1880	-	1920	-50	1	Note ³	
2	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1		
3	E-UTRA Band 1, 3, 7, 8, 9, 11, 33, 34, 38	FDL_low	-	FDL_high	-50	1		
4	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1		
5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1		
6	E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1		
	Frequency range	860	-	875	-37	1		
	Frequency range	875	-	895	-50	1	N . 7	
	_	1884.5	-	1919.6			Note	
7	Frequency range	1884.5	-	1915.7	-41	0.3	Note	
1	E-UTRA Band 1, 3, 7, 8, 33, 34	FDL_IOW	-	FDL_nign	-50	1	NI-1-3	
0	E-UTRA Band 38	2570	-	2620	-50	1	Note	
0	E-UTRA Band 1, 8, 7, 33, 34, 38, 39, 40	1905	-	FDL_nign	-50	1	Noto ⁴	
	E-UTRA band 3	1000	-	1030	-00	0.1	Note 2,4	
	E-UTRA band 3	1000	-	1000	-30	0.1	Note 4	
	E-UTRA band 7	2640	-	2600	-50	1	Note 4	
		2040	-	2090	-00	0.1	Note 2,4	
9	E-UTRA Band 1 9 11 34	EDI Jow	-	EDI high	-50	1	NOLE	
Ŭ	Frequency range	860	-	895	-50	1		
		1884 5	-	1919.6	-30	1	Note ⁷	
	Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁸	
10	F-UTRA Band 2 4 5 10 12 13 14 17	FDI low	-	FDI high	-50	1	11010	
11	E-UTRA Band 1, 9, 11, 34	FDL low	-	FDL high	-50	1		
	Frequency range	860	-	895	-50	1		
		1884.5	-	1919.6			Note ⁷	
	Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁸	
12	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1		
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1		
	Frequency range	763	-	775	-35	0.00625		
14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1		
	Frequency range	763	-	775	-35	0.00625		
17	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1		
18	E-UTRA Band 1, 9, 11, 34	FDL_low		FDL_high	-50	1		
	Frequency range	860		895	-40	1	-	
		1884.5		1919.6			Note [′]	
	Frequency range	1884.5		1915.7	-41	0.3	Note [°]	
19	E-UTRA Band 1, 9, 11, 34	FDL_low		FDL_high	-50	1	0	
	Frequency range	860		895	-40	1	Note	
	_	1884.5		1919.6			Note	
	Frequency range	1884.5		1915.7	-41	0.3	Note	
22	E LITEA Band 4 2 9 24 29 20 40	EDI Jaw			E0	4	Noto 5	
33	E-UTRA Dallu 1, 3, 8, 34, 38, 39, 40 F-LITRA Band 1 3 7 8 0 11 22 20 20		-	ru∟nign	-5U	1	NOTE	
54	40	FDL low	-	FDL high	-50	1	Note ⁵	
	Frequency range	860	-	895	-50	1		
		1884.5	-	1919.6		· · · · · · · · · · · · · · · · · · ·	Note ⁷	
	Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁸	
35								
36			l					
37			-					

Table 6.6.3.2.3-1: Spurious emission band UE co-existence limits

38	E-UTRA Band 1,3, 33, 34	FDL_low	-	FDL_high	-50	1	
39	E-UTRA Band 34, 40	FDL_low	1	FDL_high	-50	1	
40	E-UTRA Band 1, 3, 33, 34, 39	FDL_low	I	FDL_high	-50	1	
NOTE 1: F	DL_low and FDL_high refer to each E-UTRA	frequency b	and	specified in	Table 5.2-1		
NOTE 2: A	as exceptions, measurements with a level up t	o the applica	able	requirement	s defined in	Table 6.6.3.1.3	3-2 are
	permitted for each assigned E-UTRA carrier u	used in the n	neas	surement due	e to 2nd or 3	rd harmonic s	ourious
	emissions. An exception is allowed if there is	s at least on	e ind	dividual RE v	vithin the tra	nsmission ban	dwidth (see
	Figure 5.4.2-1) for which the 2nd or 3rd harme	onic, i.e. the	free	quency equal	to two or th	ree times the f	requency of
	that RE, is within the measurement bandwidth	า.					
NOTE 3: T	o meet these requirements some restriction w	/ill be neede	d fo	r either the o	perating bar	nd or protected	band
NOTE 4: F	Requirements are specified in terms of E-UTR	A sub-bands	5				
NOTE 5: F	or non synchronised TDD operation to meet t	hese require	eme	nts some res	triction will b	e needed for e	either the
	operating band or protected band						
NOTE 6: A	pplicable when NS_05 in section 6.6.3.3.3.1 i	s signalled b	by th	ne network.			
NOTE 7: A	pplicable when co-existence with PHS system	n operating i	n 18	384.5 -1919.6	6MHz.		
NOTE 8: A	pplicable when co-existence with PHS system	n operating i	n 18	384.5 -1915.7	7MHz.		
NOTE 9: A	pplicable when NS_08 in section 6.6.3.3.3.3 i	s signalled b	by th	ne network			

NOTE: Bands 1,6,9,11,34 in the tables shall be reviewed after June 2012 because of PHS band operation change

The normative reference for this requirement is TS 36.101 [2] subclause 6.6.3.2.

6.6.3.2.4 Test description

6.6.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 6.6.3.2.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		In	itial Condition	าร			
Test Environr	nent			NC			
(as specified	in TS 36.508 [7	7] subclause 4.	1)	NO			
Test Frequen	cies				lid range High	range	
(as specified	in TS36.508 [7] subclause 4.3	3.1)	Low range, iv	liu range, riign	Tange	
Test Channel	Bandwidths			Lowest 5MH	z Highest		
(as specified	in TS 36.508 [7	7] subclause 4.	3.1)	Lowest, Sivill	z, riignest		
		Test Paramete	ers for Channe	el Bandwidths			
	Dowr	nlink Configur	ation	Upli	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	6	[FFS]	QPSK	Full	[FFS]	
1.4MHz	QPSK	6	[FFS]	QPSK	1	[FFS]	
3MHz	QPSK	4	[FFS]	QPSK	Full	[FFS]	
3MHz	QPSK	4	[FFS]	QPSK	1	[FFS]	
5MHz	QPSK	8	[FFS]	QPSK	Full	[FFS]	
5MHz	QPSK	8	[FFS]	QPSK	1	[FFS]	
10MHz	QPSK	16	[FFS]	QPSK	Full	[FFS]	
10MHz	QPSK	16	[FFS]	QPSK	1	[FFS]	
15MHz	QPSK	25	[FFS]	QPSK	Full	[FFS]	
15MHz	QPSK	25	[FFS]	QPSK	1	[FFS]	
20MHz	QPSK	30	[FFS]	QPSK	Full	[FFS]	
20MHz	QPSK	30	[FFS]	QPSK	1	[FFS]	
Note 1: Test	Channel Bandy	widths are chec	ked separately	for each E-UT	RA band, which	ch applicable	
cha	annel bandwidt	ths are specifie	d in Table 5.4.	2.1-1.			
Note 2. The 1	Note 2. The 1 RB allocation shall be tested at both RB #0 and RB #max.						

Table 6.6.3.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.6.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.6.3.2.4.3.

6.6.3.2.4.2 Test procedure

- 1. Send continuously uplink power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.6.3.2.4.1-1.
- 2. Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.

6.6.3.2.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.6.3.2.5 Test requirement

The measured average power of spurious emission [in one active slot], derived in step 2, shall not exceed the described value in tables 6.6.3.2.5-1.

	Spurious emission						
Band	Protected band	Frequ	enc (MH	y range z)	Level (dBm)	Bandwidth (MHz)	Comment
1	E-UTRA Band 1, 3, 7, 8, 9, 11, 34, 38, 40	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	895	-50	1	
		1884.5	-	1919.6			Note 6, 7
	Frequency range	1884.5	-	1915.7	-41	0.3	Note 6, 8
	E-UTRA band 33	1900	-	1920	-50	1	Note ³
	E-UTRA band 39	1880	-	1920	-50	1	Note ³
2	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
3	E-UTRA Band 1, 3, 7, 8, 9, 11, 33, 34, 38	FDL_low	-	FDL_high	-50	1	
4	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
6	E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1	
	Frequency range	860	-	875	-37	1	
	Frequency range	875	-	895	-50	1	
		1884.5	-	1919.6			Note
	Frequency range	1884.5	-	1915.7	-41	0.3	Note
(E-UTRA Band 1, 3, 7, 8, 33, 34	FDL_low	-	FDL_high	-50	1	N 4 3
0	E-UTRA Band 38	2570	-	2620	-50	1	Note °
8	E-UTRA Band 1, 8, 7, 33, 34, 38, 39, 40	FDL_IOW	-	FDL_nign	-50	1	Nets 4
	E-UTRA band 3	1805	-	1830	-50	1	Note
	E-UTRA band 3	1805	-	1880	-36	0.1	Note
	E-UTRA band 3	1830	-	1880	-50	1	Note
	E-UTRA band 7	2040	-	2690	-50	0.1	Note 2,4
9	E-UTRA Dand 7	2040	-	2090 EDL bigb	-30	0.1	Note
5	E-OTRA Ballu 1, 9, 11, 34		-		-50	1	
		1994 5	-	1010.6	-50	I	Noto ⁷
	Frequency range	1884.5	-	1919.0	_/11	0.3	Note ⁸
10	$F_{\text{LITRA Band}} = 2 4 5 10 12 13 14 17$	FDI Iow	-	FDI high	-41	0.5	NOLE
11	E-UTRA Band 1 9 11 34	FDL low	-	FDL high	-50	1	
	Frequency range	860	-	895	-50	1	
		1884.5	-	1919.6	00		Note ⁷
	Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁸
12	E-UTRA Band 2. 4. 5. 10. 12. 13. 14. 17	FDL low	-	FDL high	-50	1	
13	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
	Frequency range	763	-	775	-35	0.00625	
14	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
	Frequency range	763	-	775	-35	0.00625	
17	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
18	E-UTRA Band 1, 9, 11, 34	FDL_low		FDL_high	-50	1	
	Frequency range	860		895	-40	1	
		1884.5		1919.6			Note ⁷
	Frequency range	1884.5		1915.7	-41	0.3	Note ⁸
19	E-UTRA Band 1, 9, 11, 34	FDL_low		FDL_high	-50	1	
	Frequency range	860		895	-40	1	Note ⁹
		1884.5		1919.6			Note ²
	Frequency range	1884.5		1915.7	-41	0.3	Note°
			 				
33	E-UTRA Band 1, 3, 8, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	Note [°]
34	E = U I RA Band 1, 3, 7, 8, 9, 11, 33, 38, 39, 40	EDI Jour		EDI biab	50	4	Noto ⁵
	40 Frequency range		-	PUL_nign	-50	1	NUCE
		1221 5	-	090 1010 G	-50		Noto ⁷
	Frequency range	1884.5	-	1015 7	_/11	0.2	Noto ⁸
35		1004.0	<u> </u>	1910.7	+1	0.3	INDLE
36			-				
37			-				
<u> </u>		l	<u> </u>			L	

Table 6.6.3.2.5-1: Spurious emission band UE co-existence limits

38	E-UTRA Band 1,3, 33, 34	FDL_low	-	FDL_high	-50	1	1
39	E-UTRA Band 34, 40	FDL_low	-	FDL_high	-50	1	
40	E-UTRA Band 1, 3, 33, 34, 39	FDL_low	•	FDL_high	-50	1	
NOTE 1: F	DL_low and FDL_high refer to each E-UTRA	frequency b	and	specified in	Table 5.2-1		
NOTE 2: A	s exceptions, measurements with a level up t	o the applica	able	requirement	s defined in	Table 6.6.3.1.3	3-2 are
	permitted for each assigned E-UTRA carrier u	used in the n	neas	surement due	e to 2nd or 3	ord harmonic sp	ourious
	emissions. An exception is allowed if there is	s at least on	e ind	dividual RE v	vithin the tra	nsmission ban	dwidth (see
	Figure 5.4.2-1) for which the 2nd or 3rd harm	onic, i.e. the	frec	quency equal	to two or th	ree times the f	requency of
	that RE, is within the measurement bandwidth	า.					
NOTE 3: T	o meet these requirements some restriction w	/ill be neede	d fo	r either the o	perating bar	nd or protected	band
NOTE 4: R	Requirements are specified in terms of E-UTR	A sub-bands	5				
NOTE 5: F	or non synchronised TDD operation to meet t	hese require	eme	nts some res	triction will b	be needed for e	either the
	operating band or protected band						
NOTE 6: A	pplicable when NS_05 in section 6.6.3.3.3.1 i	s signalled b	by th	e network.			
NOTE 7: A	pplicable when co-existence with PHS system	n operating i	n 18	384.5 -1919.6	6MHz.		
NOTE 8: A	pplicable when co-existence with PHS system	n operating i	n 18	384.5 -1915.7	7MHz.		
NOTE 9: A	pplicable when NS_08 in section 6.6.3.3.3.3 i	s signalled b	by th	e network			

NOTE: Bands 1,6,9,11,34 in the tables shall be reviewed after June 2012 because of PHS band operation change

6.6.3.3 Additional spurious emissions

6.6.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.6.3.3.2 Test applicability

This test case applies to all types of E-UTRA UE release 8 and forward.

6.6.3.3.3 Minimum conformance requirements

6.6.3.3.3.1 Minimum conformance requirements (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3.1-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Frequency band	Channel bandwidth / Spectrum emission limit (dBm)						Measurement
(MHz)	1.4	3.0	5	10	15	20	bandwidth
	MHZ	MHZ	MHZ	MHZ	MHZ	MHZ	
1884.5 ≤ f ≤1919.6	-41	-41	-41	-41	-41	-41	300 KHz
1884.5 ≤ f ≤1915.7 ^{*2}	-41	-41	-41	-41	-41	-41	300 KHz
NOTE 1: Applicable when the edge of the assigned E-UTRA UL channel bandwidth frequency is larger							
than or equal to the upper edge of PHS band (1919.6MHz)+ 4 MHz + the Channel BW							
assigned. Operations below this point are for further study.							
NOTE 2: Applicable when the edge of the assigned E-UTRA UL channel bandwidth frequency is larger							
than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the Channel BW							
assigned. Operations below this point are for further study.							

Table 6.6.3.3.3.1-1: Additional r	quirements	(PHS)	limits
-----------------------------------	------------	-------	--------

NOTE: Notes in the tables shall be reviewed after June 2012 because of PHS band operation change

The normative reference for this requirement is TS 36.101[2] subclause 6.6.3.3.1.

6.6.3.3.3.2 Minimum conformance requirements (network signalled value "NS_07")

When "NS 07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3.2-1.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth	
	10 MHz		
763 ≤ f ≤ 775	[-60]	6.25 kHz	

Table 6.6.3.3.3.2-1: Additional requirements

The normative reference for this requirement is TS 36.101[2] subclause 6.6.3.3.2.

6.6.3.3.3.3 Minimum requirement (network signalled value "NS_08")

When "NS 08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel band	Measurement bandwidth		
	5MHz	10MHz		
860 ≤ f ≤ 895	-40	-40	-40	1 MHz

6.6.3.3.4 Test description

6.6.3.3.4.1 Initial conditions

Table 6.6.3.3.4.1-1: Test Configuration Table

Initial Conditions							
Test Environment as specified in			Normal				
TS 36.508[7]	subclause 4.1						
Test Frequen	cies as specifie	ed in	Low range, N	lid range, High	range		
TS36.508 [7]	subclause 4.3.	1	For network s	signalled "NS_0)5",		
			For 5MHz cha	annel bandwidt	h: the low range	e test frequencies	
			to be tested a	are UL 1927.2N	1Hz (N_UL = 18	072), DL	
			2117.2MHz (N_DL = 72) and	d UL 1931.1MH	z (N_UL =	
			18111) DL 21	21.1 MHz (N_I	DL = 111)		
			For 20MHz c	hannel bandwid	dth: low range te	est frequency is	
			not used				
Test Channel	Bandwidths as	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7] subclause 4.3.1							
Test Parame	ters for Chan	nel Bandwidth	IS				
	Dowr	nlink Configur	ation Uplink Configuration				
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB a	llocation	
		FDD	TDD		FDD	TDD	
1.4MHz	[FFS]	6	[FFS]	QPSK	[FFS]	[FFS]	
3MHz	[FFS]	4	[FSS]	QPSK	[FFS]	[FSS]	
5MHz	[FFS]	8	[FFS]	QPSK	[FFS]	[FFS]	
10MHz	[FFS]	16	[FFS]	QPSK	[FFS]	[FFS]	
15MHz	[FFS]	25	[FFS]	QPSK	[FFS]	[FFS]	
20MHz	[FFS]	30	[FFS]	QPSK	[FFS]	[FFS]	
Note 1: Test	Channel Bandy	vidths are cheo	ked separately	/ for each E-UT	RA band, the a	pplicable	
chann	el bandwidths	are specified ir	Table 5.4.2.1	·1.			
Note 2: Low range frequencies for 5MHz channel bandwidth in case of network signalled "NS_05" shall							
be reviewed after June 2012 because of PHS band operation change.							

^{1.} Connect the SS to the UE to the UE antenna connectors as shown in Figure TS 36.508 [7] Annex A, Figure A3.

^{2.} The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.

- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.6.3.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 6.6.3.3.4.3.

6.6.3.3.4.2 Test procedure

- 1. Send continuously uplink power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 6.6.3.3.4.1-1.
- 2. Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.
- 6.6.3.3.4.3 Message contents

6.6.3.3.4.3.1 Message contents (network signalled value "NS_05")

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_05. This can be set in the

SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.1-1: SystemInformationBlockType2 : Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4	.4.3.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	5 (NS_05)		

6.6.3.3.4.3.2 Message contents (network signalled value "NS_07")

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions:

 Information element additionalSpectrumEmission is set to NS_07. This can be set in the SystemInformationblockType2 as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.2-1: SystemInformationBlockType2 : Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.	.4.3.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	7 (NS_07)		

6.6.3.3.4.3.3 Message contents (network signalled value "NS_08")

Message contents are according to TS 36.508 [7] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_08. This can be set in the *SystemInformationblockType2* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.6.3.3.4.3.3-1: SystemInformationBlockType2 : Additional spurious emissions requirement

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.	.4.3.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	8 (NS_08)		

6.6.3.3.5 Test requirement

6.6.3.3.5.1 Test requirement (network signalled value "NS_05")

The measured average power of spurious emission, derived in step 2, shall not exceed the described value in tables 6.6.3.3.5.1-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Frequency band	Channel bandwidth / Spectrum emission limit (dBm)						Measurement
(MHz)	1.4	3.0	5	10	15	20	bandwidth
	MHz	MHz	MHz	MHz	MHz	MHz	
1884.5 ≤ f ≤1919.6	-41	-41	-41	-41	-41	-41	300 KHz
1884.5 ≤ f ≤1915.7 ^{*2}	-41	-41	-41	-41	-41	-41	300 KHz
 1884.5 ≤ t ≤ 1915.7 -41 -41 -41 -41 -41 -41 -41 300 KHZ NOTE 1: Applicable when the edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1919.6 MHz) + 4 MHz + the Channel BW assigned. Operations below this point are for further study. NOTE 2: Applicable when the edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + the Channel BW assigned. Operations below this point are for further study. 							

NOTE: Notes in the tables shall be reviewed after June 2012 because of PHS band operation change

6.6.3.3.5.2 Test requirement (network signalled value "NS_07")

The measured average power of spurious emission, derived in step 2, shall not exceed the described value in tables 6.6.3.3.5.2-1.

Table 6.6.3.3.5.2-1: Additional requirements (network signalled value "NS_07")

Frequ	uency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 10 MHz	Measurement bandwidth
763	≤f ≤775	[-60]	6.25 kHz

6.6.3.3.5.3 Test requirement (network signalled value "NS_08")

The measured average power of spurious emission, derived in step 2, shall not exceed the described value in tables 6.6.3.3.5.3-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1.3-1 from the edge of the channel bandwidth.

Table 6.6.3.3.5.3-1: Additional requirements (network signalled value "NS_08")

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)			Measurement bandwidth
	5MHz	10MHz	15MHz	
860 ≤ f ≤ 895	-40	-40	-40	1 MHz
6.7 Transmit intermodulation

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Reference Measurement Channel is undefined
- The Test system uncertainties and test tolerance applicable to this test are not confirmed
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- Test description section needs to be verified or modified (if necessary) for TDD applicability
- The test case description has been verified to apply for both FDD and TDD

6.7.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.7.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

6.7.3 Minimum conformance requirements

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.3-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.3-1.

BWChannel (UL)	5M	Hz	10N	/Hz	15N	ИНz	20N	1Hz
Interference Signal Frequency Offset	5MHz	10MHz	10MHz	20MHz	15MHz	30MHz	20MHz	40MHz
Interference CW Signal Level				-40	dBc			
Intermodulation Product	-29dBc	-35dBc	-29dBc	-35dBc	-29dBc	-35dBc	-29dBc	-35dBc
Measurement bandwidth	4.5MHz	4.5MHz	9.0MHz	9.0MHz	13.5MHz	13.5MHz	18MHz	18MHz

Table 6.7.3-1: T	ransmit Intermodulation
------------------	-------------------------

The normative reference for this requirement is TS 36.101 [2] clause 6.7.1.

6.7.4 Test description

6.7.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA operating bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 6.7.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Condit	tions						
Test Environr	ment as specifie	ed in	Normal				
TS 36.508[7] subclause 4.1							
Test Frequen	cies as specifie	ed in	Mid range				
TS36.508 [7]	subclause 4.3.	1	-				
Test Channel	Bandwidths as	s specified in	5MHz and Hi	ghest			
TS 36.508 [7]	subclause 4.3	.1		-			
Test Parameters for Channel Bandwidths							
Downlink Configur			ation	Upli	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
5MHz	QPSK	8	8	QPSK	8	8	
10MHz	QPSK	16	16	QPSK	12	12	
15MHz	QPSK	25	25	QPSK	16	16	
20MHz	QPSK	30	30	QPSK	18	18	
Note 1: Test	Channel Bandv	vidths are chec	cked separately	/ for each E-UT	RA band, the	applicable	
chann	el bandwidths a	are specified ir	1 Table 5.4.2.1-	-1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.2.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, and C.3.0, and uplink signals according to Annex H.1 and H.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.7.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS.Message contents are defined in clause 6.7.4.3.

6.7.4.3 Test procedure

- 1. Send continuously uplink power control "up" commands to the UE until the UE transmits at its maximum output power state according to the test configuration from Table [FFS].
- 2. Measure the rectangular filtered mean power of the UE.
- 3. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.7.5-1.
- 4. Set the interference CW signal level according to table 6.7.5-1.
- 5. Search the intermodulation product signals below and above the UL carrier frequency, then measure the RRC filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 2.
- 6. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.7.5-1.
- 7. Search the intermodulation product signals below and above the UL carrier frequency, then measure the RRC filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 2.
- 8. Repeat the measurement using the second offset in table 6.7.5-1.

6.7.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6.

6.7.5 Test requirement

The ratio derived in step 5 and 7, shall not exceed the described value in table 6.7.5-1

Table 6.7.5-1: Transmit Intermodulation

BWChannel (UL)	5N	lHz	10N	/Hz	15N	ЛНz	201	/Hz
Interference Signal Frequency Offset	5MHz	10MHz	10MHz	20MHz	15MHz	30MHz	20MHz	40MHz
Interference CW Signal Level				[-40)dBc]			
Intermodulation Product	[-29dBc]	[-35dBc]	[-29dBc]	[-35dBc]	[-29dBc]	[-35dBc]	[-29dBc]	[-35dBc]
Measurement bandwidth	4.5MHz	4.5MHz	9.0MHz	9.0MHz	13.5MHz	13.5MHz	18MHz	18MHz

7 Receiver Characteristics

7.1 General

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Any required test functions used for Rx tests are undefined
- It is not yet known whether there is any requirement to transmit DCCH and DTCH data continuously
- It is not yet known whether there is any requirement to transmit specific MAC headers

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

Unless otherwise stated, the test signal levels are defined at each antenna port, and specified in the respective sections below. Any specific test conditions are defined in the paragraph for each test. Unless stated otherwise, power control of the Downlink is OFF.

In general, the UE is set into the correct state in the "Initial conditions" part of the test, using normal SS signalling procedures over the air interface under easy radio conditions to ensure reliable message exchange. In the "Test procedure" part of the test, specific radio conditions are applied according to the test requirement and the desired measurement is made or the desired response is tested.

The ACS, blocking, spurious emissions and intermodulation requirements in sections 7.5, 7.6, 7.7 and 7.8 are defined for full band width signals i.e. for signals where all resource blocks are allocated for a specific user.

7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. Requirements for 4 ports are FFS. With the exception of clause 7.9, All requirements shall be verified by using both (all) antenna ports simultaneously.

7.3 Reference sensitivity level

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- The Message contents are undefined
- The Maximum Sensitivity Degradation figures for large transmission configurations are not finalised in the core specification.
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- Test cases in this clause have been verified to apply for both TDD and FDD.

7.3.1 Test purpose

To verify the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area of an e-NodeB.

7.3.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.3.3 Minimum conformance requirements

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channel as specified in Annex A.3.2 with parameters specified in Table 7.3.3-1, Table 7.3.3-2 and Table 7.3.3-3.

Channel bandwidth										
E-UTRA	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex			
	(авш)	(автт)	(UBIII) 100				EDD			
2	-	-	-100	-97	-90.2	-94				
2	-103.2	-100.2	-90	-95	-93.2	-92				
3	-102.2	-99.2	-97	-94	-92.2	-91				
4	-105.2	-102.2	-100	-97	-95.2	-94	FDD			
5	-103.2	-100.2	-98	-95			FDD			
6	-	-	-100	-97			FDD			
7	-	-	-98	-95	-93.2	-92	FDD			
8	-102.2	-99.2	-97	-94			FDD			
9	-	-	-99	-96	-94.2	-93	FDD			
10	-	-	-100	-97	-95.2	-94	FDD			
11	-	-	-98	-95	-93.2	-92	FDD			
12	-102.2	-99.2	-97	-94			FDD			
13	-102.2	-99.2	-97	-94			FDD			
14							FDD			
17	-102.2	-99.2	-97	-94			FDD			
18	-	-	-100	-97	-95.2	-	FDD			
19	-	-	-100	-97	-95.2	-	FDD			
33	-	-	-100	-97	-95.2	-94	TDD			
34	-	-	-100	-97	-95.2	-94	TDD			
35	-106.2	-102.2	-100	-97	-95.2	-94	TDD			
36	-106.2	-102.2	-100	-97	-95.2	-94	TDD			
37	-	-	-100	-97	-95.2	-94	TDD			
38	-	-	-100	-97	-95.2	-94	TDD			
39	-	-	-100	-97	-95.2	-94	TDD			
40	-	-	-100	-97	-95.2	-94	TDD			
NOTE 1: Th NOTE 2: Th NOTE 3: Th NOTE 4: Fo	40 - - -100 -97 -95.2 -94 TDD NOTE 1: The transmitter shall be set to maximum output power level (Table 7.3.3-2) NOTE 2: The reference measurement channel is specified in A.3.2 NOTE 3: The signal power is specified per port NOTE 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity									

Table 7.3.3-1: Reference sensitivity QPSK PREFSENS

NOTE 1: The relation to the received PSD is $\langle \text{REF } \hat{I}_{or} \rangle = P_{REFSENS} (N_{sc}^{RB} N_{RB} \Delta f)^{-1}$ with N_{RB} is the maximum transmission configuration according to Table 5.4.2-1.

Table 7.3.3-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement must be met.

	E-UTRA	Band / Cl	nannel ba	ndwidth /	N _{RB} / Dupl	ex mode	
E- UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
1	-	-	25	50	75	100	FDD
2	6	15	25	50	50 ¹	50 ¹	FDD
3	6	15	25	50	50 ¹	50 ¹	FDD
4	6	15	25	50	75	100	FDD
5	6	15	25	25 ¹	-	-	FDD
6	-	-	25	25 ¹	-	-	FDD
7	-	-	25	50	75 ¹	75 ¹	FDD
8	6	15	25	25 ¹	-	-	FDD
9	-	-	25	50	50 ¹	50 ¹	FDD
10	-	-	25	50	75	100	FDD
11	-	-	25	25 ¹	25 ¹	25 ¹	FDD
12	6	15	20 ¹	20 ¹			FDD
13	6	15	20 ¹	20 ¹			FDD
14							FDD
17	6	15	20 ¹	20 ¹			FDD
18	-	-	25	25 ¹	25 ¹	-	FDD
19	-	-	25	25 ¹	25 ¹	-	FDD
33	-	-	25	50	75	100	TDD
34	-	-	25	50	75	-	TDD
35	6	15	25	50	75	100	TDD
36	6	15	25	50	75	100	TDD
37	-	-	25	50	75	100	TDD
38	-	-	25	50	75	100	TDD
39			25	50	75	100	TDD
40			25	50	75	100	TDD
NOTE: M	aximum nur resources	nber of U blocks su	L resour	ces blocks y the chan	allocated i nel bandwi	s less than dth	the total

 Table 7.3.3-2: Maximum uplink configuration for reference sensitivity

The normative reference for this requirement is TS 36.101 [2] clause 7.3.1.

7.3.4 Test description

7.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.3.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions										
Test Envi	ronment as sp	ecified in	NC, TL/VL, TL/VH, TH/VL, TH/VH							
TS 36.	508[7] subclau	ise 4.1								
Test Freq	uencies as sp	ecified in	Lov	v range, Mid r	ange, High raı	nge				
TS36.50	8 [7] subclau	se 4.3.1								
Test Ch	annel Bandwi	dths as		Lowest, 5M	Hz, Highest					
	specified in									
TS 36.50)8 [7] subclau	se 4.3.1								
		Test Paramete	ers for Channe	el Bandwidths						
	Dowr	nlink Configur	ation	Upl	ink Configura	tion				
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation				
		FDD	TDD		FDD	TDD				
1.4MHz	QPSK	6	6	QPSK	6	6				
3MHz	QPSK	15	15	QPSK	15	15				
5MHz	QPSK	25	25	QPSK	25	25				
5MHz	QPSK	25	N/A	QPSK	20	N/A				
10MHz	QPSK	50	50	QPSK	50	50				
10MHz	QPSK	50	N/A	QPSK	25	N/A				
10MHz	QPSK	50	N/A	QPSK	20	N/A				
15MHz	QPSK	75	75	QPSK	75	75				
15MHz	QPSK	75	N/A	QPSK	50	N/A				
15MHz	QPSK	75	N/A	QPSK	25	N/A				
20MHz	QPSK	100	100	QPSK	100	100				
20MHz	QPSK	100	N/A	QPSK	75	N/A				
20MHz	QPSK	100	N/A	QPSK	50	N/A				
20MHz	QPSK	100	N/A	QPSK	25	N/A				
Note 1:Test C	hannel Bandw	idths are chec	ked separately	for each E-UT	RA band, whic	h applicable				
cha	annel bandwidt	ths are specifie	ed in Table 5.4.	2.1-1.						
Note 2. Depe	nding on E-UT	RA band, only	the appropriate	e Uplink RB alle	ocation value a	ccording to				
tab	le 7.3.3-2 is te	sted per Test (Channel Bandw	vidth.						

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A according to TS 36.508 [7] clause 4.5.3A. Message contents are defined in clause 7.3.4.3.

7.3.4.2 Test procedure

- 1. SS transmits PDSCH every TTI via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to Table 6.5.2.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information every TTI via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 6.5.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at its maximum output power state according to the test configuration from Table 7.3.4.1-1.
- 4. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.5-1.
- 5. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.3.4.3 Message contents

Message contents are according to [clause FFS in reference FFS].

7.3.5 Test requirement

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.3.5-1, Table 7.3.5-2, and Table 7.3.5-3.

Channel bandwidth											
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode				
1	-	-	-99.3	-96.3	-94.5	-93.3	FDD				
2	-102.5	-99.5	-97.3	-94.3	-92.5	-91.3	FDD				
3	-101.5	-98.5	-96.3	-93.3	-91.5	-90.3	FDD				
4	-104.5	-101.5	-99.3	-96.3	-94.5	-93.3	FDD				
5	-102.5	-99.5	-97.3	-94.3			FDD				
6	-	-	-99.3	-96.3			FDD				
7	-	-	-97.3	-94.3	-92.5	-91.3	FDD				
8	-101.5	-98.5	-96.3	-93.3			FDD				
9	-	-	-98.3	-95.3	-93.5	-92.3	FDD				
10	-	-	-99.3	-96.3	-94.5	-93.3	FDD				
11	-	-	-97.3	-94.3	-92.5	-91.3	FDD				
12	-101.5	-98.5	-96.3	-93.3			FDD				
13	-101.5	-98.5	-96.3	-93.3			FDD				
14							FDD				
17	-101.5	-98.5	-96.3	-93.3			FDD				
18	-	-	-99,3	-96.3	-94.5	-	FDD				
19	-	-	-99,3	-96.3	-94.5	-	FDD				
33	-	-	-99,3	-96.3	-94.5	-93.3	TDD				
34	-	-	-99.3	-96.3	-94.5	-93.3	TDD				
35	-105.5	-101.5	-99.3	-96.3	-94.5	-93.3	TDD				
36	-105.5	-101.5	-99.3	-96.3	-94.5	-93.3	TDD				
37	-	-	-99.3	-96.3	-94.5	-93.3	TDD				
38	-	-	-99.3	-96.3	-94.5	-93.3	TDD				
39	-	-	-99.3	-96.3	-94.5	-93.3	TDD				
40	-	-	-99.3	-96.3	-94.5	-93.3	TDD				
NOTE 1: Th NOTE 2: Th NOTE 3: Th NOTE 4: Fo	NOTE 1: The transmitter shall be set to maximum output power level (Table 7.3.5-2) NOTE 2: The reference measurement channel is specified in A.3.2 NOTE 3: The signal power is specified per port NOTE 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity										

Table 7.3.5-1: Reference sensitivity QPSK PREFSENS

NOTE: The relation to the received PSD is $\langle \text{REF } \hat{I}_{or} \rangle = P_{REFSENS} (N_{sc}^{RB} N_{RB} \Delta f)^{-1}$ with N_{RB} is the maximum transmission configuration according to Table 5.4.2-1.

Table 7.3.5-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement must be met.

	E-UTRA	Band / Cl	nannel ba	ndwidth /	N _{RB} / Dupl	ex mode	
E- UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode
1	-	-	25	50	75	100	FDD
2	6	15	25	50	50 ¹	50 ¹	FDD
3	6	15	25	50	50 ¹	50 ¹	FDD
4	6	15	25	50	75	100	FDD
5	6	15	25	25 ¹	-	-	FDD
6	-	-	25	25 ¹	-	-	FDD
7	-	-	25	50	75 ¹	75 ¹	FDD
8	6	15	25	25 ¹	-	-	FDD
9	-	-	25	50	50 ¹	50 ¹	FDD
10	-	-	25	50	75	100	FDD
11	-	-	25	25 ¹	25 ¹	25 ¹	FDD
12	6	15	20 ¹	20 ¹			FDD
13	6	15	20 ¹	20 ¹			FDD
14							FDD
17	6	15	20 ¹	20 ¹			FDD
18	-	-	25	25 ¹	25 ¹	-	FDD
19	-	-	25	25 ¹	25 ¹	-	FDD
33	-	-	25	50	75	100	TDD
34	-	-	25	50	75	-	TDD
35	6	15	25	50	75	100	TDD
36	6	15	25	50	75	100	TDD
37	-	-	25	50	75	100	TDD
38	-	-	25	50	75	100	TDD
39			25	50	75	100	TDD
40			25	50	75	100	TDD
NOTE: M	aximum nur resources	mber of U blocks su	L resour pported b	ces blocks y the chan	allocated is nel bandwi	s less than dth	the total

Table 7.3.5-2: Maximum uplink configuration for reference sensitivity

7.4 Maximum input level

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- The acceptable window for the UE Tx power is not confirmed
- The power control method and message IEs for setting the UE output power to a constant level are undefined
- The Message contents are undefined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- Test case in this clause has been verified to apply for both TDD and FDD.

7.4.1 Test purpose

Maximum input level tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area near to an e-NodeB.

7.4.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.4.3 Minimum conformance requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.4.3-1.

Rx Parameter	Units	Channel bandwidth								
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
Wanted signal mean power	dBm			-2	5					
NOTE: The transmitter shall be set to 4dB below the supported maximum output power.										
Reference measurement chan	nel is Anne	ex A.3.2 6	4QAM R=3	3/4 variant						

Table 7.4.3-1: Maximum input level

The normative reference for this requirement is TS 36.101 [2] clause 7.4.1.

7.4.4 Test description

7.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively.Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	Initial Conditions						
Test Environ	ment as specifi	ed in	NC				
TS 36.508[7]	subclause 4.1						
Test Frequer	icies as specifi	ed in	Mid range				
TS36.508 [7]	subclause 4.3	.1					
Test Channe	l Bandwidths a	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]	subclause 4.3	3.1		-			
Test Parameters for Channel Bandwidths							
	Downlink Configu			Upl	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
1.4MHz	64-QAM	Full	Full	QPSK	[5]	[5]	
3MHz	64-QAM	Full	Full	QPSK	[4]	[4]	
5MHz	64-QAM	Full	Full	QPSK	[8]	[8]	
10MHz	64-QAM	Full	Full	QPSK	[12]	[12]	
15MHz	64-QAM	Full	Full	QPSK	[16]	[16]	
20MHz	64-QAM	Full	Full	QPSK	[18]	[18]	
Note 1:Test Channel Bandwidths are checked separately for each E-UTRA band. The applicable channel bandwidths are specified in Table 7.3.3-2.							

Table 7.4.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Figure A.3.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. 4The UL and DL Reference Measurement channels are set according to Table 7.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 7.4.4.3.

7.4.4.2 Test procedure

- 1. Send Uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in Table 7.4.5-1 for at least the duration of the Throughput measurement.
- 2. Set the Downlink signal level to the value defined in Table 7.4.5-1.
- 3. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.4.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce	
		the RSRP	
		measurement	
		variation	
}			

Table 7.4.4.3-1: UplinkPowerControlDedicated

7.4.5 Test requirement

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.4.5-1.

Table 7	7.4.5-1:	Maximum	input I	evel
---------	----------	---------	---------	------

Rx Parameter Units Channel bandwidth							
		1.4	3	5	10	15	20
		MHz	MHz	MHz	MHz	MHz	MHz
Wanted signal mean power	dBm	dBm -25.7					
NOTE: The transmitter shall be set to 4dB below the supported maximum output power.							
Reference measurement channel is Annex A.3.2 64QAM R=3/4variant.							

7.5 Adjacent Channel Selectivity (ACS)

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- The acceptable window for the UE Tx power is not confirmed
- The power control method and message IEs for setting the UE output power to a constant level are undefined
- The Interferer offset frequency is in [] in the core specification
- The Message contents are undefined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- Test case in this clause has been verified to apply for both TDD and FDD.

7.5.1 Test purpose

Adjacent channel selectivity tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when other e-NodeB transmitters exist in the adjacent channel.

7.5.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.5.3 Minimum conformance requirements

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The UE shall fulfil the minimum requirement specified in Table 7.5.3-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.3-2 and Table 7.5.3-3 where the throughput R_{av} shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2.

			C	hannel b	andwidth		
Rx Parameter	Units	1.4	3	5	10	15	20
		MHz	MHz	MHz	MHz	MHz	MHz
ACS	dB	33.0	33.0	33.0	33.0	30	27

Table 7.3.3-2. Test parameters for Aujacent channel selectivity, case	Table 7	.5.3-2: Tes	t parameters	for Ad	jacent char	nnel selectiv	ity, Case [·]
---	---------	-------------	--------------	--------	-------------	---------------	------------------------

Rx	Units		Channel bandwidth				
Parameter		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Wanted signal mean power	dBm		L	REFSENS	S + 14 dB	I	I
	dBm	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS
PInterferer		+45.5dB	+45.5dB	+45.5dB*	+45.5dB	+42.5dB	+39.5dB
BWInterferer	MHz	1.4	3	5	5	5	5
FInterferer	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002
(offset)							5
NOTE 1: The transmitter shall be set to 4dB below the supported maximum output power.							
NOTE 2: The int	NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with set-up						
accor	according to Annex C.3.1.						

Table 7.5.3-3: Test	parameters for	Adjacent channel	selectivity, Case 2
---------------------	----------------	------------------	---------------------

Rx Parameter	Units		Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Wanted signal	dBm	-56.5	-56.5	-56.5	-56.5	-53.5	-50.5	
PInterferer	dBm							
BWInterferer	MHz	1.4	3	5	5	5	5	
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002 5	
NOTE 1: The transmitter shall be set to 24dB below the supported maximum output power. NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with set-up according to Annex C.3.1.								

The normative reference for this requirement is TS 36.101 [2] clause 7.5.1.

7.5.4 Test description

7.5.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	Initial Conditions						
Test Environ	ment as specifi	ed in	NC				
TS 36.508[7]	subclause 4.1						
Test Frequer	icies as specifi	ed in	Mid range				
TS36.508 [7]	subclause 4.3	.1					
Test Channe	l Bandwidths a	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]	subclause 4.3	3.1					
Test Parameters for Channel Bandwidths							
Downlink Configur			ation	Upl	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	Full	Full	QPSK	[5]	[5]	
3MHz	QPSK	Full	Full	QPSK	[4]	[4]	
5MHz	QPSK	Full	Full	QPSK	[8]	[8]	
10MHz	QPSK	Full	Full	QPSK	[12]	[12]	
15MHz	QPSK	Full	Full	QPSK	[16]	[16]	
20MHz	QPSK	PSK Full Full QPSK [18] [18]				[18]	
Note 1:Test Channel Bandwidths are checked separately for each E-UTRA band. The applicable channel bandwidths are specified in Table 7.3.3-2.							

Table 7.5.4.1-1: Test Configuration Table

- 1. Connect the SS and interfering source to the UE antenna connectors as shown in TS 36.508 [7] Figure A.4.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 7.5.4.3.

7.5.4.2 Test procedure

- 1. Send Uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in Table 7.5.5-2 (Case 1) for at least the duration of the Throughput measurement.
- 2. Set the Downlink signal level to the value as defined in Table 7.5.5-2 (Case 1).
- 3. Set the Interferer signal level to the value as defined in Table 7.5.5-2 (Case 1), using a modulated interferer bandwidth as defined in Annex D of the present document.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

- 5. Send Uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in Table 7.5.5-3 (Case 2) for at least the duration of the Throughput measurement.
- 6. Set the Downlink signal level to the value as defined in Table 7.5.5-3 (Case 2).
- 7. Set the Interferer signal level to the value as defined in Table 7.5.5-3 (Case 2), using a modulated interferer bandwidth as defined in Annex D of the present document.
- 8. Measure the average throughput for a duration sufficient to achieve statistical significance according to [FFS in clause FFS of this document].
- 9. Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

7.5.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception

Table 7.5.4.3-1: U	plinkPowerControlDedicated
--------------------	----------------------------

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement variation	
}			

7.5.5 Test requirement

The throughput R_{av} shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 under the conditions specified in table 7.5.5-2, and also under the conditions specified in table 7.5.5-3.

Table 7.5.5-1:	Adjacent channel	selectivity
----------------	------------------	-------------

		Channel bandwidth					
Rx Parameter	Units	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
ACS	dB	33.0	33.0	33.0	33.0	30	27

[able 7.5.5-2: Test	parameters	for Ad	jacent channel	selectivity,	Case	1
---------------------	------------	--------	----------------	--------------	------	---

Rx Parameter	Units		Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Wanted signal mean power	dBm	REFSENS + 14 dB						
	dBm	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	REFSENS	
PInterferer		+45.5dB	+45.5dB	+45.5dB*	+45.5dB	+42.5dB	+39.5dB	
BWInterferer	MHz	1.4	3	5	5	5	5	
FInterferer	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002	
(offset)							5	
NOTE 1: The transmitter shall be set to 4dB below the supported maximum output power.								
NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with set-up								
accor	ding to A	nnex C.3.1.					-	

Rx Parameter	Units		Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Wanted signal mean power	dBm	-56.5	-56.5	-56.5	-56.5	-53.5	-50.5	
PInterferer	dBm		-25					
BWInterferer	MHz	1.4	3	5	5	5	5	
F _{Interferer} (offset)	MHz	1.4+0.0025	3+0.0075	5+0.0025	7.5+0.0075	10+0.0125	12.5+0.002 5	
NOTE 1: The tra	NOTE 1: The transmitter shall be set to 24dB below the supported maximum output power.							
NOTE 2: The int	NOTE 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with set-up							
accor	ding to A	nnex C.3.1.						

Table 7.5.5-3: Test parameters for Adjacent channel selectivity, Case 2

7.6 Blocking characteristics

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- For narrow-band blocking, the frequency offset for 7.5kHz hasn't been defined...
- Output power level tolerance is not confirmed
- The Message contents are undefined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- The test cases in this clause have been verified to apply for both FDD and TDD

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 In-band blocking

7.6.1.1 Test Purpose

In-band blocking is defined for an unwanted interfering signal falling into the range from 15MHz below to 15MHz above the UE receive band, at which the relative throughput shall meet or exceed the requirement for the specified measurement channels.

The lack of in-band blocking ability will decrease the coverage area when other e-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6.1.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward..

7.6.1.3 Minimum Conformance Requirements

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.1.3-1 and 7.6.1.3-2.

Rx Parameter	Units		Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Wanted signal	dBm		REFSENS	+ channel band	width specific	value below		
mean power	UDIII	6	6	6	6	7	9	
BWInterferer	MHz	1.4	3	5	5	5	5	
Floffset, case 1	MHz	2.1[+0.012	4.5[+0.007	7.5[+0.0125]	7.5[+0.002	7.5[+0.007	7.5[+0.012	
		5]	5]		5]	5]	5]	
Floffset, case 2	MHz	3.5[+0.007	7.5[+0.007	12.5[+0.0075	12.5[+0.01	12.5[+0.00	12.5[+0.00	
		5]	5]]	25]	25]	75]	
NOTE 1: The tran	smitter s rferer cor	hall be set to 4 sists of the Re	dB below the seference meas	supported maxin	num output po	wer. Annex A.3.2 wi	th a set-up	
accord	ing to An	nex C.3.1.						

Table 7.6.1.3-1:	In band	blocking	parameters
	III Nulla	biooning	purumeters

Table 7.6.	1.3-2:	In-band	blocking
------------	--------	---------	----------

E-UTRA band	Parameter	Units	Case 1	Case 2	Case
	PInterferer	dBm	-56	-44	[-30
	F _{Interferer} (Offset)	MHz	$=-BW/2 - F_{\text{loffset, case 1}}$	\leq -BW/2- F _{loffset, case 2} &	-BW/2 – 9 & -BW/2 – 1
1, 2, 3, 4, 5, 6. 7, 8, 9, 10, 11, 12, 13, 18, 19 33,34,35,36,37, 38,39,40	FInterferer	MHz	(NOTE 2)	EVV/2 + Ploffset, case 2 FDL_low -15 to FDL_high +15	-DW/2 - 1
17	F _{Interferer}	MHz	(NOTE 2)	F _{DL_low} -9.0 to F _{DL_high} +15	F _{DL_low} -1 F _{DL_low} -9.0
NOTE 1: For certa band, b NOTE 2: For each a. b. NOTE 3: Finterferer NOTE 4: Case 3 of	ain bands, the unwa but within the first 1 carrier frequency the carrier freque the carrier freque range values for un ponly applies to assig	anted modu 5 MHz belo the require ency -BW/2 ency + BW/ wanted mo gned UE ch	Ilated interfering signal may no w or above the UE receive ba ment is valid for two frequenci -Floffset, case 1 and 2 + Floffset, case 1. dulated interfering signal are i nannel bandwidth of 5 MHz.	ot fall inside the UE receive nd. es: nterferer center frequencies.	

The normative reference for this requirement is TS 36.101 [2] clause 7.6.1.

7.6.1.4 Test Description

7.6.1.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.6.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions								
Test Environment as specified in			NC					
TS 36.508[7]	subclause 4.1							
Test Frequen	cies as specifie	ed in	Mid range					
TS36.508 [7]	subclause 4.3.	1						
Test Channel	Bandwidths as	s specified in	Lowest, 5MH	z, Highest				
TS 36.508 [7]	subclause 4.3	.1						
		Test Paramete	ers for Channe	el Bandwidths				
	Dowr	nlink Configur	ation	Upl	ink Configura	tion		
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation		
		FDD	TDD		FDD	TDD		
1.4MHz	QPSK	6	6	QPSK	6	6		
3MHz	QPSK	15	15	QPSK	15	15		
5MHz	QPSK	25	25	QPSK	25	25		
5MHz	QPSK	25	N/A	QPSK	20	N/A		
10MHz	QPSK	50	50	QPSK	50	50		
10MHz	QPSK	50	N/A	QPSK	25	N/A		
10MHz	QPSK	50	N/A	QPSK	20	N/A		
15MHz	QPSK	75	75	QPSK	75	75		
15MHz	QPSK	75	N/A	QPSK	50	N/A		
15MHz	QPSK	75	N/A	QPSK	25	N/A		
20MHz	QPSK	100	100	QPSK	100	100		
20MHz	QPSK	100	N/A	QPSK	75	N/A		
20MHz	QPSK	100	N/A	QPSK	50	N/A		
20MHz	QPSK	100	N/A	QPSK	25	N/A		
Note 1: Test	Channel Bandv	vidths are cheo	ked separately	/ for each E-U1	RA band, whic	ch applicable		
cha	annel bandwidt	ths are specifie	ed in Table 5.4.	2.1-1.				
Note 2. Depe	nding on E-UT	RA band, only	the appropriate	e Uplink RB all	ocation value a	ccording to		
tab	ole 7.3.3-2 is te	sted per Test (Channel Bandv	vidth.				

Table 7.6.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A.4.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to in Table 7.6.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 7.6.1.4.3.

7.6.1.4.2 Test Procedure

- 1. Set the parameters of the signal generator for an interfering signal below the wanted signal in Case 1 according to Tables 7.6.1.5-1 and 7.6.1.5-2.
- 2. Set the output power level of the UE according to the table 7.6.1.5-1 or send uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in table 7.6.1.5-1 for at least the duration of the throughput measurement.
- 3. Set the downlink signal level according to the table 7.6.1.5-1.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.
- 5. Repeat steps from 1 to 4, using an interfering signal above the wanted signal in Case 1 at step 1.
- 6. Repeat steps from 1 to 5, using interfering signals in Case 2 at step 1 and 5. The ranges of case 2 are covered in steps equal to the interferer bandwidth. The test frequencies are chosen in analogy to table 7.6.1.4.2-1.

7. Repeat steps from 1 to 4, using successively all interfering signals in Case 3 at step 1.

Table 7.6.1.4.2-1:	Example for	interferer frequ	lencies
--------------------	-------------	------------------	---------

	Lower frequency	Upper frequency
Band 1 DL	2110 MHz	2170 MHz
Band 1 Midrange	214	0 MHz
Receive band wanted signal (BW 5MHz)	2137.5 MHz	2142.5 MHz
Interferer case 1	2129.9875 MHz	2150.0125 MHz
Interferer case 2 (inner frequency)	2124.9925 MHz	2155.0075 MHz
Interferer case 2 (outer frequency)	2099.9925 MHz	2180.0075 MHz
Outer limit for inband blocking	2095MHz	2185MHz
Number of test frequencies case 2	6	6
Number of test frequencies for Band 17(asymmetric!), BW 5MHz, case 2	0	2

7.6.1.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement variation	
}			

7.6.1.5 Test Requirement

.

The measurement derived in step 4) shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.1.5-1 and 7.6.1.5-2.

Table 7.6.1.5-1: In band blocking parameters

Rx Parameter	Units		Channel bandwidth								
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
Wanted signal	dBm		REFSENS	+ channel band	width specific v	/alue below					
mean power	ubiii	6	6	6	6	7	9				
BWInterferer	MHz	1.4	3	5	5	5	5				
Floffset, case 1	MHz	2.1[+0.012	4.5[+0.007	7.5[+0.0125]	7.5[+0.002	7.5[+0.007	7.5[+0.012				
		5]	5]		5]	5]	5]				
Floffset, case 2	MHz	3.5[+0.007	7.5[+0.007	12.5[+0.0075	12.5[+0.01	12.5[+0.00	12.5[+0.00				
		5]	5]]	25]	25]	75]				
NOTE 1: The tran	smitter sl	hall be set to 4	dB below the	supported maxin	num output pov	wer.					
NOTE 2: The inte	rferer cor	isists of the Re	eference meas	urement channe	I specified in A	nnex A.3.2 v	vith a set-up				
accordi	ing to Ani	nex C.3.1.									

E-UTRA band	Parameter	Units	Case 1	Case 2	Case 3		
	PInterferer	dBm	-56	-44	[-30]		
	F _{Interferer} (Offset)	MHz	=-BW/2 - Floffset, case 1 & =+BW/2 + Floffset, case 1	\leq -BW/2- F _{loffset, case 2} & \geq +BW/2 + F _{loffset, case 2}	-BW/2 – 9 MHz & -BW/2 – 15 MHz		
1, 2, 3, 4, 5, 6. 7, 8, 9, 10, 11, 12, 13, 18, 19 33,34,35,36,37, 38,39,40	FInterferer	MHz	(NOTE 2)	F _{DL_low} -15 to F _{DL_high} +15			
17	F _{Interferer}	MHz	(NOTE 2)	F _{DL_low} -9.0 to F _{DL_high} +15	F _{DL_low} -15 and F _{DL_low} -9.0 (NOTE 3)		
3) NOTE 1: For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band. NOTE 2: For each carrier frequency the requirement is valid for two frequencies: a. the carrier frequency -BW/2 -Floffset, case 1 and b. the carrier frequency + BW/2 + Floffset, case 1. NOTE 3: Finterferer range values for unwanted modulated interfering signal are interferer center frequencies. NOTE 4: Core 3 only applies to accigned UE channel bandwidth of 5 MHz							

Table 7.6.1.5-2: In-band blocking

7.6.2 Out-of-band blocking

7.6.2.1 Test Purpose

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band, at which a given average throughput shall meet or exceed the requirement for the specified measurement channels.

For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in sub-clause 7.5.1 and sub-clause 7.6.1 shall be applied.

The lack of out-of-band blocking ability will decrease the coverage area when other e-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6.2.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.6.2.3 Minimum Conformance Requirements

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.2.3-1 and 7.6.2.3-2.

For Table 7.6.2.3-2 in frequency range 1, 2 and 3, up to $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ exceptions are allowed for spurious

response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.4.2-1). For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

For Table 7.6.2.3-2 in frequency range 4, up to $\max(8, \left[(N_{RB} + 2 \cdot L_{CRBs})/8 \right])$ exceptions are allowed for spurious

response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the

number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.4.2-1) and L_{CRBs} is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Wanted signal mean	dPm	REFSENS + channel bandwidth specific value below					
power	UDIII	6	6	6	6	7	9
NOTE 1: The transmitte NOTE 2: The reference	er shall be s measuren	set to 4dE nent char	B below th Inel is spe	e support cified in A	ed maxim Innex A.3.	um output 2	power.

Table 7.6.2.3-1: Out-of-band blocking parameters

Table 7.6.2.3-2: Out of band blocking

E-UTRA band	Parameter	Units	Frequency					
			range 1	range 2	range 3	range 4		
	PInterferer	dBm	-44	-30	-15	-15		
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,	F		F _{DL_low} -15 to F _{DL_low} -60	F _{DL_low} -60 to F _{DL_low} -85	F _{DL_low} -85 to 1 MHz	-		
11, 12, 13, 17, 18, 19 33,34,35,36,37 ,38,39,40	CInterferer (CW)	MHz	F _{DL_high} +15 to F _{DL_high} +60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz	-		
2, 5, 12, 17	FInterferer	MHz	-	-	-	$F_{UL_{low}}$, $F_{UL_{high}}$		

The normative reference for this requirement is TS 36.101 [2] clause 7.6.2.

7.6.2.4 Test Description

7.6.2.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.6.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions								
Test Environment as specified in			NC					
TS 36.508[7]	subclause 4.1							
Test Frequen	cies as specifie	ed in	Low range fo	r F _{Interferer} below	/ F _{DL_low}			
TS36.508 [7]	subclause 4.3.	.1	High range fo	or F _{Interferer} abov	e F _{DL_high}			
Test Channel	Bandwidths as	s specified in	Lowest, 5MH	z, Highest				
TS 36.508 [7]	subclause 4.3	9.1						
		Test Paramete	ers for Channe	el Bandwidths				
	Dowr	nlink Configur	ation	Upl	ink Configura	tion		
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation		
		FDD	TDD		FDD	TDD		
1.4MHz	QPSK	6	6	QPSK	6	6		
3MHz	QPSK	15	15	QPSK	15	15		
5MHz	QPSK	25	25	QPSK	25	25		
5MHz	QPSK	25	N/A	QPSK	20	N/A		
10MHz	QPSK	50	50	QPSK	50	50		
10MHz	QPSK	50	N/A	QPSK	25	N/A		
10MHz	QPSK	50	N/A	QPSK	20	N/A		
15MHz	QPSK	75	75	QPSK	75	75		
15MHz	QPSK	75	N/A	QPSK	50	N/A		
15MHz	QPSK	75	N/A	QPSK	25	N/A		
20MHz	QPSK	100	100	QPSK	100	100		
20MHz	QPSK	100	N/A	QPSK	75	N/A		
20MHz	QPSK	100	N/A	QPSK	50	N/A		
20MHz	QPSK	100	N/A	QPSK	25	N/A		
Note 1: Test	Channel Bandv	widths are cheo	ked separately	/ for each E-U1	RA band, whic	ch applicable		
cha	annel bandwidt	ths are specifie	d in Table 5.4.	2.1-1.				
Note 2. Depe	nding on E-UT	RA band, only	the appropriate	e Uplink RB all	ocation value a	according to		
tab	ole 7.3.3-2 is te	sted per Test (Channel Bandv	vidth.				

Table 7.6.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, in Figure A.5.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.6.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 7.6.2.4.3.

7.6.2.4.2 Test Procedure

- 1. Set the parameters of the CW signal generator for an interfering signal according to Table 7.6.1.5-2. The frequency step size is 1MHz.
- 2. Set the output power level of the UE according to the table 7.6.2.5-1 or send uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in table 7.6.2.5-1 for at least the duration of the throughput measurement.
- 3. Set the downlink signal level according to the table 7.6.2.5-1.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.
- 5. Record the frequencies for which the throughput doesn't meet the requirements.

7.6.2.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement variation	
}			

Table 7.6.2.4.3-1: UplinkPowerControlDedicated

7.6.2.5 Test Requirement

Except for the spurious response frequencies recorded at step 5), the measurement derived in step 4) shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.6.2.5-1 and 7.6.2.5-2.

For frequency range 1, 2, and 3, the number of spurious response frequencies recorded in step 5) shall not exceed $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

For frequency range 4, the number of spurious response frequencies recorded in step 5) shall not exceed $\max(8, \lceil (N_{RB} + 2 \cdot L_{CRBs})/8 \rceil)$ in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 Spurious Response are applicable.

Table 7.6.2.5-1: Out-of-band blocking parameters

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Wanted signal mean	dBm	REFSENS + channel bandwidth specific value below							
power	ubiii	6	6	6	6	7	9		
NOTE 1: The transmitter shall be set to 4dB below the supported maximum output power. NOTE 2: The reference measurement channel is specified in Annex A.3.2									

Table 7.6.2.5-2: Out of band blocking

E-UTRA band	Parameter	Units	Frequency					
			range 1	range 2	range 3	range 4		
	PInterferer	dBm	-44	-30	-15	-15		
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,	F		F _{DL_low} -15 to F _{DL_low} -60	F _{DL_low} -60 to F _{DL_low} -85	F _{DL_low} -85 to 1 MHz	-		
11, 12, 13, 17, 18, 19 33,34,35,36,37 ,38,39,40	CInterferer (CW)	MHz	F _{DL_high} +15 to F _{DL_high} + 60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz	-		
2, 5, 12, 17	FInterferer	MHz	-	-	-	FUL_low - FUL_high		
NOTE: Range 3	shall be tested	only with	the highest channe	el bandwidth.				

7.6.3 Narrow band blocking

7.6.3.1 Test Purpose

Verifies a receiver's ability to receive an E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

The lack of narrow-band blocking ability will decrease the coverage area when other e-NodeB transmitters exist (except in the adjacent channels and spurious response).

7.6.3.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.6.3.3 Minimum Conformance Requirements

The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.6.3.3-1.

Parameter	Unit		Channel Bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Pw	dBm	PR	EFSENS + cha	nnel-bandwi	dth specific	value belo	w		
		22	18	16	13	14	16		
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55		
Fuw (offset for	MHz	0.9075	1.7025	2.7075	5.2125	7.7025	10.2075		
<i>∆f</i> = 15 kHz)									
Fuw (offset for	MHz								
⊿f = 7.5 kHz)									
NOTE 1: The tra	nsmitter shall	be set a 4 dB	below the s	upported ma	ximum pov	ver.	•		
NOTE 2: The ref	erence measu	irement chan	nel is specifie	ed in Annex	A.3.2.				

Table	7.6.3.3-1	I: Narrow	-band blocking
-------	-----------	-----------	----------------

The normative reference for this requirement is TS 36.101 [2] clause 7.6.3.

7.6.3.4 Test Description

7.6.3.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.6.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions						
Test Environment as specified in		NC				
TS 36.508[7]	subclause 4.1					
Test Frequen	cies as specifie	ed in	Mid range			
TS36.508 [7]	subclause 4.3.	1				
Test Channel	Bandwidths as	s specified in	Lowest, 5MH	z, Highest		
TS 36.508 [7]	subclause 4.3	5.1				
		Test Paramete	ers for Channe	el Bandwidths		
	Dowr	nlink Configur	ation	Upl	ink Configura	tion
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation
		FDD	TDD		FDD	TDD
1.4MHz	QPSK	6	6	QPSK	6	6
3MHz	QPSK	15	15	QPSK	15	15
5MHz	QPSK	25	25	QPSK	25	25
5MHz	QPSK	25	N/A	QPSK	20	N/A
10MHz	QPSK	50	50	QPSK	50	50
10MHz	QPSK	50	N/A	QPSK	25	N/A
10MHz	QPSK	50	N/A	QPSK	20	N/A
15MHz	QPSK	75	75	QPSK	75	75
15MHz	QPSK	75	N/A	QPSK	50	N/A
15MHz	QPSK	75	N/A	QPSK	25	N/A
20MHz	QPSK	100	100	QPSK	100	100
20MHz	QPSK	100	N/A	QPSK	75	N/A
20MHz	QPSK	100	N/A	QPSK	50	N/A
20MHz	QPSK	100	N/A	QPSK	25	N/A
Note 1: Test	Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band, which applicable					
channel bandwidths are specified in Table 5.4.2.1-1.						
Note 2. Depe	nding on E-UT	RA band, only	the appropriate	e Uplink RB all	ocation value a	according to
table 7.3.3-2 is tested per Test Channel Bandwidth.						

Table 7.6.3.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.5.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1
- 4. The UL and DL Reference Measurement channels are set according to Table 7.6.3.4.1-1..
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 7.6.3.4.3.

7.6.3.4.2 Test Procedure

- 1. Set the parameters of the CW signal generator for an interfering signal according to Table 7.6.3.5-1.
- 2. Set the output power level of the UE according to the table 7.6.3.5-1 or send uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in table 7.6.3.5-1 for at least the duration of the throughput measurement.
- 3. Set the downlink signal level according to the table 7.6.3.5-1.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.6.3.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length is used to reduce the RSRP measurement	
}		variation	

Table 7.6.3.4.3-1: UplinkPowerControlDedicated

7.6.3.5 Test Requirement

The measurement derived in step 4) shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.6.3.5-1.

Parameter	Unit	Channel Bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Pw	dBm	P _R	EFSENS + cha	nnel-bandwid	dth specific	value belo	w
		22	18	16	13	14	16
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55
F _{uw} (offset for	MHz	0.9075	1.7025	2.7075	5.2125	7.7025	10.2075
<i>∆f</i> = 15 kHz)							
Fuw (offset for	MHz						
⊿f = 7.5 kHz)							
NOTE 1: The transmitter shall be set a 4 dB below the supported maximum power.							
NOTE 2 The reference measurement channel is specified in Anney A 3.2							

Table 7.6.3.5-1: Narrow-band blocking

7.7 Spurious response

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Output power level tolerance is not confirmed
- The Message contents are undefined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
- The test cases in this clause have been verified to apply for both FDD and TDD

7.7.1 Test Purpose

Spurious response verifies the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6.2 is not met.

The lack of the spurious response ability decreases the coverage area when other unwanted interfering signal exists at any other frequency.

7.7.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.7.3 Minimum Conformance Requirements

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.7.3-1 and 7.7.3-2.

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz	3	MHz	5	MHz	10 MHz	15 MHz	20 MHz
Wanted signal	dDm	REFSENS + channel bandwidth specific value below							
mean power	UDIII	6		6		6	6	7	9
NOTE 1:The transmitter shall be set to 4dB below the supported maximum output power.									
NOTE 2: The reference measurement channel is specified in Annex A.3.2									

Table 7.7.3-1: Spurious response parameters

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

The normative reference for this requirement is TS 36.101 [2] clause 7.7.

7.7.4 Test Description

7.7.4.1 Initial Conditions

The initial conditions shall be the same as in clause 7.6.2.4.1 in order to test spurious responses obtained in clause 7.6.2 under the same conditions.

7.7.4.2 Test Procedure

- 1. Set the parameters of the CW signal generator for an interfering signal according to Table 7.7.5-2. The spurious frequencies are taken from step 5) records in clause 7.6.2.4.2.
- 2. Set the output power level of the UE according to the table 7.7.5-1 or send uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in table 7.7.5-1 for at least the duration of the throughput measurement.
- 3. Set the downlink signal level according to the table 7.7.5-1.
- 4. For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.7.4.3 Message Contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Table 7.7.4.3-1:	UplinkPowerControlDedicated
------------------	-----------------------------

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length	
		is used to reduce	
		the RSRP	
		measurement	
		variation	
}			

7.7.5 Test Requirement

The measurement derived in step 4) shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Tables 7.7.5-1 and 7.7.5-2.

Table 7.7.5-1: Spuriou	s response parameters
------------------------	-----------------------

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz	3	MHz	5	MHz	10 MHz	15 MHz	20 MHz
Wanted signal	dDm	REFSENS + channel bandwidth specific value below							
mean power	aBm	6		6		6	6	7	9
NOTE 1: The transmitter shall be set to 4dB below the supported maximum output power.									
NOTE 2: The reference measurement channel is specified in Annex A.3.2									

Table 7.7.5-2: Spurious Response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
FInterferer	MHz	Spurious response frequencies

7.8 Intermodulation characteristics

7.8.1 Wide band Intermodulation

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- Some of the channel bandwidth specific dB values are not yet finalised
- The acceptable window for the UE Tx power is not confirmed
- The power control method and message IEs for setting the UE output power to a constant level are undefined

- In the Core requirements it is unclear whether the formal reference to the interfering signal as defined in 36.101 Annex D applies to channel bandwidths of less than 5MHz. In this test specification the modulated interferer definition .has been assumed to be that in the Core spec Annex D for all channel bandwidths.
- The Message contents are undefined
- *Test case is not complete for FDD*

TDD aspects missing or not yet determined:

- *Test case is not complete for TDD*
- Test description section needs to be verified or modified (if necessary) for TDD applicability

7.8.1.1 Test purpose

Intermodulation response tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal, under conditions of ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area when two or more interfering signals exist which have a specific frequency relationship to the wanted signal.

7.8.1.2 Test applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.8.1.3 Minimum conformance requirements

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.8.1.3-1 for the specified wanted signal mean power in the presence of two interfering signals.

Rx Parameter	Units		(hann	el ban	dwidth		
		1.4 MHz	3 MHz	5	MHz	10 MHz	15 MHz	20 MHz
Wanted signal	dBm	REI	REFSENS + channel bandwidth specific value below					
mean power	UDIII	[12]	[8]		6	6	7	9
P _{Interferer 1} (CW)	dBm				-46			
P _{Interferer 2} (Modulated)	dBm				-46			
BW Interferer 2		1.4	3				5	
FInterferer 1	MHz	-BW/2 –2.1	-BW/2 –4.5			-BW/2	2 – 7.5	
(Offset)		/	/				/	
		+BW/2+ 2.1	+BW/2 + 4.5			+BW	/2 + 7.5	
F _{Interferer 2} (Offset)	MHz			2*	FInterfer	er 1		
NOTE 1: The trans	mitter shal	be set to 4dB b	elow the supp	orted n	naximu	um output p	ower.	
NOTE 2: The refere	ence meas	urement channe	I is specified in	Anne	x A.3.2	2		
NOTE 3: The modu	NOTE 3: The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2							
with set-up according to Annex C.3.1.The interfering modulated signal is 5MHz E-UTRA signal as								
describe	d in Annex	D for channel b	andwidth ≥5M	Ηz				

 Table 7.8.1.3-1: Wide band intermodulation

The normative reference for this requirement is TS 36.101 [2] clause 7.8.1 and TS 36.101 [2] Annexes A and D.

[FFS: Although it is not explicitly stated in TS 36.101 [2] whether the modulated interferer defined in 36.101 Annex D applies to wanted channel bandwidths of less than 5MHz, this test specification has assumed that the modulated

interferer definition applies to all channel bandwidths. The content of TS 36.101 [2] Annex D.2 has been copied into Annex FFS of the present document]

7.8.1.4 Test description

7.8.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.8.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions							
Test Environment as specified in			NC				
TS 36.508[7]	subclause 4.1						
Test Frequen	icies as specifie	ed in	Mid range				
TS36.508 [7]	subclause 4.3.	1					
Test Channel	Bandwidths a	s specified in	Lowest, 5MH	z, Highest			
TS 36.508 [7]	subclause 4.3	.1					
		Test Paramete	ers for Channe	el Bandwidths		-	
	Dowr	nlink Configur	ation	Upl	ink Configura	tion	
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation	
		FDD	TDD		FDD	TDD	
1.4MHz	QPSK	6	6	QPSK	6	6	
3MHz	QPSK	15	15	QPSK	15	15	
5MHz	QPSK	25	25	QPSK	25	25	
5MHz	QPSK	25	N/A	QPSK	20	N/A	
10MHz	QPSK	50	50	QPSK	50	50	
10MHz	QPSK	50	N/A	QPSK	25	N/A	
10MHz	QPSK	50	N/A	QPSK	20	N/A	
15MHz	QPSK	75	75	QPSK	75	75	
15MHz	QPSK	75	N/A	QPSK	50	N/A	
15MHz	QPSK	75	N/A	QPSK	25	N/A	
20MHz	QPSK	100	100	QPSK	100	100	
20MHz	QPSK	100	N/A	QPSK	75	N/A	
20MHz	QPSK	100	N/A	QPSK	50	N/A	
20MHz	QPSK	100	N/A	QPSK	25	N/A	
Note 1: Test	Channel Bandy	vidths are cheo	cked separately	/ for each E-U1	RA band, which	ch applicable	
ch	channel bandwidths are specified in Table 5.4.2.1-1.						
Note 2. Depe	Note 2. Depending on E-UTRA band, only the appropriate Uplink RB allocation value according to						
tat	ole 7.3.3-2 is te	sted per Test (Channel Bandv	vidth.			

Table 7.8.1.4.1-1: Test Configuration Table

- 1. Connect the SS and interfering sources to the UE antenna connectors as shown in TS 36.508 [7] Figure A.6.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1, and uplink signals according to Annex H.1 and H.3.1.
- 4. The UL and DL Reference Measurement channels are set according to Table 7.8.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 7.8.1.4.3.

7.8.1.4.2 Test procedure

- 1. Send Uplink power control commands to the UE, to ensure that the UE output power is within [+0dB, -5dB] of the target level in Table 7.8.1.5-1 for at least the duration of the Throughput measurement.
- 2. Set the Downlink signal level to the value as defined in Table 7.8.1.5-1.
- 3. Set the Interfering signal levels to the values as defined in Table 7.8.1.5-1, using a modulated interferer bandwidth as defined in Annex D of the present document.
- 4. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G.2.

7.8.1.4.3 Message contents

Message contents are according to TS 36.508 [7] subclause 4.6 with the following exception.

Table 7.8.1.4.3-1: UplinkPowerControlDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
UplinkPowerControlDedicated-DEFAULT ::=			
SEQUENCE {			
p0-UePUSCH	0		
deltaMCS-Enabled	en0		
accumulationEnabled	TRUE		
p0-uePUCCH	0		
pSRS-Offset	3 (-6 dB)		
filterCoefficient	fc8	larger filter length	
		is used to reduce	
		the RSRP	
		measurement	
		variation	
}			

7.8.1.5 Test requirements

The throughput shall be $\ge 95\%$ of the maximum throughput of the reference measurement channels as specified in Annex A.3.2 with parameters specified in Table 7.8.1.5-1 for the specified wanted signal mean power in the presence of two interfering signals.

		1						
Rx Parameter	Units		C	hannel ban	dwidth			
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Wanted signal	dDm	REI	REFSENS + channel bandwidth specific value below					
mean power	UDIII	[12]	[8]	6	6	7	9	
P _{Interferer 1} (CW)	dBm			-46				
P _{Interferer 2} (Modulated)	dBm			-46				
BW Interferer 2		1.4	3			5		
FInterferer 1	MHz	-BW/2 –2.1	-BW/2 –4.5		-BW/2	2 – 7.5		
(Offset)		/	/			/		
		+BW/2+ 2.1	+BW/2 + 4.5		+BW	/2 + 7.5		
F _{Interferer 2} (Offset)	MHz			2*FInterfer	er 1			
NOTE 1: The transi	mitter shal	be set to 4dB b	elow the suppo	rted maxim	um output p	ower		
NOTE 2: The refere	ence meas	urement channe	I is specified in	Annex A.3.	2			
NOTE 3: The modu	lated inter	ferer consists of	the Reference	measureme	nt channel s	specified in A	Annex A.3.2	
with set-up according to Annex C.3.1.The interfering modulated signal is 5MHz E-UTRA signal as								
describe	d in Annex	D for channel b	andwidth ≥5MH	łz				

Table 7.8.1.5-1: Test parameters for Wide band intermodulation

7.8.2 Void

7.9 Spurious emissions

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

FDD aspects missing or not yet determined:

- The fixed power allocation for the RB(s) is undefined
- The Message contents are undefined
- Test case is not complete for FDD

TDD aspects missing or not yet determined:

- Test case is not complete for TDD
 - The test cases in this clause have been verified to apply for both FDD and TDD

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Test Purpose

Test verifies the UE's spurious emissions meet the requirements described in clause 7.9.3.

Excess spurious emissions increase the interference to other systems.

7.9.2 Test Applicability

This test applies to all types of E-UTRA UE release 8 and forward.

7.9.3 Minimum Conformance Requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.3-1

Table 7.9.3-1: Genera	receiver spurious emiss	sion requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	

The normative reference for this requirement is TS 36.101 [2] clause 7.9.

7.9.4 Test Description

7.9.4.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in table 5.4.2.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in table 7.9.4.1-1. The details of the downlink and uplink reference measurement channels (RMCs) are specified in Annexes A.3 and A.2 respectively.

Initial Conditions								
Test Environ	ment as specifi	ed in	NC					
TS 36.508[7]	subclause 4.1							
Test Frequen	cies as specifi	ed in	Low range, N	lid range, High	range			
TS36.508 [7]	subclause 4.3.	.1						
Test Channel	Bandwidths a	s specified in	Highest					
TS 36.508 [7]	subclause 4.3	3.1	-					
Test Parameters for Channel Bandwidths								
	Dowr	nlink Configur	ation	tion Uplink Configuration				
Ch BW	Mod'n	RB allo	ocation	Mod'n	RB allo	ocation		
		FDD	TDD		FDD	TDD		
1.4MHz	QPSK	0	0	QPSK	0	0		
3MHz	QPSK	0	0	QPSK	0	0		
5MHz	QPSK	0	0	QPSK	0	0		
10MHz	QPSK	0	0	QPSK	0	0		
15MHz	QPSK	0	0	QPSK	0	0		
20MHz QPSK 0 0 QPSK 0 0								
Note 1: Test Channel Bandwidths are checked separately for each E-UTRA band. The applicable channel bandwidths are specified in Table 7.3.3-2.								

Table 7.9.4.1-1: Test Configuration Table

- 1. Connect a spectrum analyzer (or other suitable test equipment) to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.8.
- 2. The parameter settings for the cell are set up according to TS 36.508 [7] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.1.
- 4. The DL Reference Measurement channels are set according to Table 7.9.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State 3A according to TS 36.508 [7] clause 4.5.3A. Message contents are defined in clause 7.9.4.3.

7.9.4.2 Test Procedure

1. Sweep the spectrum analyzer (or equivalent equipment) over a frequency range and measure the average power of spurious emission.

7.9.4.3 Message Contents

Message contents are according to [clause FFS in reference FFS].

7.9.5 Test Requirement

The measured spurious emissions derived in step 1), shall not exceed the maximum level specified in Table 7.9.5-1

Table 7.9.5-1: General receiver spurious emission requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	

8 Performance Requirement

8.1 General

The performance requirements for the physical channels specified in TS 36.211 [8] clause 6 (for downlink physical channels) shall be as defined in the respective sections below.

The requirements for the UE in this clause are specified for the downlink reference measurement channels specified in Annex A, the propagation conditions specified in Annex B and the downlink physical channels specified in Annex C.

Unelss otherwise stated the throughput measurements in clause 8 shall be performed according to the general rules for statistical testing in Annex G clause G.3.

The requirement for a UE that support 64QAM in uplink shall be tested according to the declared UE PUSCH category 5 specified in TS 36.306 [14].

The requirement for a UE that support E-UTRA in downlink shall be tested according to the declared UE PDSCH category.

8.1.1 Dual-antenna receiver capability

The performance requirements are based on UE(s) that utilize a dual-antenna receiver.

- 8.1.1.1 Simultaneous unicast and MBMS operations
- 8.1.1.2 Dual-antenna receiver capability in idle mode
- 8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

Parameter	Unit	Value	Comments
Inter-TTI Distance		1	
Number of HARQ processes	Processes	8	For FDD, 8 HARQ processes in the DL, as specified in TS 36.213 [10] clause 7
Maximum number of HARQ transmission		4	It is always 4 for FDD, as specified in TS 36.213 [10] clause 8
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM	
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths	The PCFICH carries information about the number of OFDM symbols used for transmission of PDCCHs in a subframe, as specified in TS 36.211 [8] clause 6.7
Cyclic Prefix		Normal	CP consist of the following physical resource blocks (RBs) parameters: 12 consecutive subcarriers at a 15 kHz spacing and 7 OFDM symbols, as specified in TS 36.211 [8] clause 6.2.3
NOTE: TBD			

Table 8.2.1-1: Common Test Parameters (FDD)

For all test cases, the SNR is defined as:

$$SNR = \frac{\hat{E}_s^{(1)} + \hat{E}_s^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}},$$

where the superscript indicates the receiver antenna connector. The SNR requirement applies for the UE categories given for each test.

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.

8.2.1.1 FDD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)

8.2.1.1.1 FDD PDSCH Single Antenna Port Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.1.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port with different channel models and MCS.

8.2.1.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.1.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.1, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.1.1.3-2 for the specified SNR. For QPSK and 64QAM performance the bandwidths specified in Table 5.4.2.1-1 are verified.

Parameter		Unit	Test 1-5	Test 6-8	Test 9- 15	Test 16-	
						18	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	
$N_{_{oc}}$ at antenna port		dBm/15kHz	-98	-98	-98	TBD	
Cell ID						0	
Symbols for unused PRBs			-	-	-	OCNG (Note 2)	
Modulation			QPSK	16QAM	64QAM	16QAM	
Note 1: $P_B = 0$							
Note 2: Each unused physical resource block (PRB) is assigned to an individual virtual UE. The data for each virtual UE shall be uncorrelated with data from other virtual UEs over the period of any measurement. The data shall be ORSK medulated							

Table 8.2.1.1.1.	3-1: Test Parame	ters for Testing
------------------	------------------	------------------

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	[R.2 FDD]	-	EVA5	1x2 Low	70	-1.0	1-5
2	10 MHz	[R.2 FDD]	-	ETU70	1x2 Low	70	-0.4	1-5
3	10 MHz	[R.2 FDD]	-	ETU300	1x2 Low	70	0.0	1-5
4	10 MHz	[R.2 FDD]	-	HST	1x2 Low	70	-2.4	1-5
5	1.4 MHz	[R.4 FDD]	-	EVA5	1x2 Low	70	-0.5	1-5
6	10 MHz	[R.3 FDD]	-	EVA5	1x2 Low	70	6.7	2-5
7	10 MHz	[R.3 FDD]	-	ETU70	1x2 Low	30	1.4	2-5
8	10 MHz	[R.3 FDD]	-	ETU300	1x2 High	70	9.4	2-5
9	3 MHz	[R.5 FDD]	-	EVA5	1x2 Low	70	17.6	1-5
10	5 MHz	[R.6 FDD]	-	EVA5	1x2 Low	70	17.4	2-5
11	10 MHz	[R.7 FDD]	-	EVA5	1x2 Low	70	17.7	2-5
12	10 MHz	[R.7 FDD]	-	ETU70	1x2 Low	70	19.0	2-5
13	10 MHz	[R.7 FDD]	-	EVA5	1x2 High	70	19.1	2-5
14	15 MHz	[R.8 FDD]	-	EVA5	1x2 Low	70	17.7	2-5
15	20 MHz	[R.9 FDD]	-	EVA5	1x2 Low	70	17.6	3-5
16	3 MHz	R.0 FDD	OP.1	ETU70	1x2 Low	30	1.9	1-5
17	10 MHz	R.1 FDD	OP.2	ETU70	1x2 Low	30	1.9	1-5
18	20 MHz	R.1 FDD	OP.3	ETU70	1x2 Low	30	1.9	1-5

Table 8.2.1.1.1.3-2: Minimum performance (FRC)

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.1.

8.2.1.1.1.4 Test description

8.2.1.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested for full allocation: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Frequencies to be tested for 1PRB allocation: Low Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.1.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 8.2.1-1 and 8.2.1.1.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.1.1.4.3.

8.2.1.1.1.4.2 Test procedure

1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Tables 8.2.1.1.1.5-1as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 3. Repeat steps from 1 to 2 for each subtest in Table 8.2.1.1.1.5-1 as appropriate.

8.2.1.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.1.1.4.3-1: SystemInformationBlockType2: Additional FDD PDSCH Single Antenna Port Performance for 1 PRB allocation test point 1 requirement for Test number [3.4]

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1 SystemInformationBlockType2					
Information Element	Value/remark	Comment	Condition		
SystemInformationBlockType2 ::= SEQUENCE {					
mbsfn-SubframeConfig ::= SEQUENCE {					
radioframeAllocationPeriod	n1	Every radio frame is with MBSFN subframe			
radioframeAllocationOffset	0				
subframeAllocation CHOICE {					
oneFrame	111111	Subframe 1, 2, 3, 6, 7, 8 is used for MBSFN	FDD		
}					
}					

8.2.1.1.1.5 Test requirement

Table 8.2.1.1.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.1 for each throughput test shall meet or exceed the specified value in Table 8.2.1.1.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	[R.2 FDD]	-	EVA5	1x2 Low	70	-	1-5
		[]		2.7.0			1.0+T T	
2	10 MHz	[R.2 FDD]	-	ETU70	1x2 Low	70	- 0.4+T T	1-5
3	10 MHz	[R.2 FDD]	-	ETU300	1x2 Low	70	0.0+T T	1-5
4	10 MHz	[R.2 FDD]	-	HST	1x2 Low	70	- 2.4+T T	1-5
5	1.4 MHz	[R.4 FDD]	-	EVA5	1x2 Low	70	- 0.5+T T	1-5
6	10 MHz	[R.3 FDD]	-	EVA5	1x2 Low	70	6.7+T T	2-5
7	10 MHz	[R.3 FDD]	-	ETU70	1x2 Low	30	1.4+T T	2-5
8	10 MHz	[R.3 FDD]	-	ETU300	1x2 High	70	9.4+T T	2-5
9	3 MHz	[R.5 FDD]	-	EVA5	1x2 Low	70	17.6+ TT	1-5
10	5 MHz	[R.6 FDD]	-	EVA5	1x2 Low	70	17.4+ TT	2-5
11	10 MHz	[R.7 FDD]	-	EVA5	1x2 Low	70	17.7+ TT	2-5
12	10 MHz	[R.7 FDD]	-	ETU70	1x2 Low	70	19.0+ TT	2-5
13	10 MHz	[R.7 FDD]	-	EVA5	1x2 High	70	19.1+ TT	2-5
14	15 MHz	[R.8 FDD]	-	EVA5	1x2 Low	70	17.7+ TT	2-5
15	20 MHz	[R.9 FDD]	-	EVA5	1x2 Low	70	17.6+ TT	3-5
16	3 MHz	R.0 FDD	OP.1	ETU70	1x2 Low	30	1.9+T T	1-5
17	10 MHz	R.1 FDD	OP.2	ETU70	1x2 Low	30	1.9+T T	1-5
18	20 MHz	R.1 FDD	OP.3	ETU70	1x2 Low	30	1.9+T T	1-5

Table 8.2.1.1.1.5-1: Test requirement (FRC)

8.2.1.1.2 FDD PDSCH Single Antenna Port Performance with 1PRB

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.1.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port with different channel models and MCS.

8.2.1.1.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.1.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.1, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.1.2.3-1, and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.1.1.2.3-2, for the specified SNR.

Parameter			Unit	Test 1	
Downli	nk power	$ ho_{\scriptscriptstyle A}$	dB	0	
allo	cation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	
N	_{oc} at antenna	port	dBm/15kHz	TBD	
	Cell ID			0	
Symbols for MBSFN portion of MBSFN subframes (Note 2)				OCNG (Note 3)	
Note 1:	$P_B = 0$				
Note 2:	The MBSFI whole MBS first slot.	N portion of a	an MBSFN subfrar e except the first tv	ne comprises the vo symbols in the	
Note 3:	Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.				

 Table 8.2.1.1.2.3-1: Test Parameters for Testing 1 PRB allocation

Table 8.2.1.1.2.3-2: Minimum	performance (FRC)
------------------------------	-------------------

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.29 FDD	OP.4 FDD	ETU70	1x2 Low	30	2.0	

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.1.

8.2.1.1.2.4 Test description

8.2.1.1.2.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Low Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Tables 8.2.1.1.2.3-2as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1, 8.2.1.1.2.3-1as appropriate.

- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.1.2.4.3.

8.2.1.1.2.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.2.1.1.2.5-1as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.1.2.4.3-1: SystemInformationBlockType2: Additional FDD PDSCH Single Antenna Port Performance for 1 PRB allocation test point 1 requirement for Test number [3.4]

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table 4.4.3.3-1 SystemInformationBlockType2				
Information Element	Value/remark	Comment	Condition	
SystemInformationBlockType2 ::= SEQUENCE {				
mbsfn-SubframeConfig ::= SEQUENCE {				
radioframeAllocationPeriod	n1	Every radio frame is with MBSFN subframe		
radioframeAllocationOffset	0			
subframeAllocation CHOICE {				
oneFrame	111111	Subframe 1, 2, 3, 6, 7, 8 is used for MBSFN	FDD	
}				
}				

8.2.1.1.2.5 Test requirement

Table 8.2.1.1.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.1 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.1.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.1.1.2.5-1: Test requirement 1 PRB allocation (FRC) (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Referenc	e value	UE
number		Channel	Condition	Matrix and	Fraction of	SNR (dB)	Category
				Antenna	Maximum		
				Configuration	Throughput		
					(%)		
1	10 MHz	[R.29 FDD]	ETU70	1x2 Low	30	TBD + TT	

8.2.1.2 FDD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)

8.2.1.2.1 FDD PDSCH Transmit Diversity 2x2

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.2.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using transmit diversity (SFBC).

8.2.1.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.2.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.2.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.3.2.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.2.1.3-2 for the specified SNR. For transmit diversity (SFBC) performance with 2 transmitter antennas as specified.

Parameter		Unit	Test 1-2
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
N_{oc} at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

 Table 8.2.1.2.1.3-1: Test Parameters for Testing Transmit Diversity Performance

Table 8.2.1.2.1.3-2: Minimum	performance Transmit Diversity	(FRC)
------------------------------	--------------------------------	-------

Test number	Bandwidth	Reference Channel	Propagation Condition	Correlation Matrix and	Reference value		UE Category
				Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
1	10 MHz	[R.11 FDD]	EVA5	2x2 Medium	70	6.8	2-5
2	10 MHz	[R.10 FDD]	HST	2x2 Low	70	-2.3	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.2.

3GPP TS 36.521-1 version 8.3.1 Release 8

149

8.2.1.2.1.4 Test description

8.2.1.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.2.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.2.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.2.1.4.3.

8.2.1.2.1.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.2.1.5-1 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 3. Repeat steps from 1 to 2 for each test interval in Table 8.2.1.2.1.5-1 as appropriate.

8.2.1.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.2.1.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH transmit diversity performance downlink power allocation test point 1 requirement

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-6 PDSCH-ConfigDedicated-DEFAULT						
Information Element	Value/remark	Comment	Condition			
PDSCH-ConfigDedicated-DEFAULT ::=						
p-a	dB-3					
}						

8.2.1.2.1.5 Test requirement

Table 8.2.1.2.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Table 8.2.1.2.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	[R.11 FDD]	EVA5	2x2 Medium	70	6.8 + TT	2-5
2	10 MHz	[R.10 FDD]	HST	2x2 Low	70	-2.3 + TT	1-5

Table 8.2.1.2.1.5-1: Test requirement Transmit Diversity (FRC)

8.2.1.2.2 FDD PDSCH Transmit Diversity 4x2

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.2.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using transmit diversity (SFBC).

8.2.1.2.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.2.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.2.2.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.3.2.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.2.2.3-2 for the specified SNR. For transmit diversity (SFBC) performance with 4 transmitter antennas as specified.

Fable 8.2.1.2.2.3-1: Test Parameters for	Testing Transmit Diversity	/ Performance
---	----------------------------	---------------

Parameter		Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
N_{oc} at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Test number	Bandwidth	Reference Channel	Propagation Condition	Correlation Matrix and	Reference v	alue	UE Category
				Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
1	1.4 MHz	[R.12 FDD]	EPA5	4x2 Medium	70	0.2	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.2.

8.2.1.2.2.4 Test description

8.2.1.2.2.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.2.2.3-2 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.2.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.2.2.4.3.

8.2.1.2.2.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.2.2.5-1 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.2.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH transmit diversity performance downlink power allocation test point 1 requirement

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-3		
}			

8.2.1.2.2.5 Test requirement

Table 8.2.1.2.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Table 8.2.1.2.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	[R.12 FDD]	EPA5	4x2 Medium	70	0.2 + TT	1-5

Table 8.2.1.2.2.5-1: Test requirement Transmit Diversity (FRC)

8.2.1.3 FDD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

8.2.1.3.1 FDD PDSCH Open Loop Spatial Multiplexing 2x2

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.3.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using large delay CDD.

8.2.1.3.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.3.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.3.1.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.3.1.3-1 for the specified SNR. For open-loop spatial multiplexing performance with large delay CDD is specified.

Table 8.2.1.3.1.3-1: T	est Parameters for	r Large Delay CD	D (FRC)
------------------------	--------------------	------------------	---------

Parameter		Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
N_{oc} at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Table 8.2.1.3.1.3-2: Minimum pe	rformance Large Dela	y CDD (FRC)	
---------------------------------	----------------------	-------------	--

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Categor y
1	10 MHz 16QAM 1/2	[R.11 FDD]	EVA70	2x2 Low	70	13.0	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.3.

8.2.1.3.1.4 Test description

8.2.1.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.3.1.3-1, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.3.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.3.1.4.3.

8.2.1.3.1.4.2 Test procedure

- 1. Set the parameters of the reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.2.1.3.1.5-1 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.3.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.3.1.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH open loop spatial multiplexing performance downlink power allocation test point

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-6 PDSCH-ConfigDedicated-DEFAULT					
Information Element Value/remark Comment Condition					
PDSCH-ConfigDedicated-DEFAULT ::=					
SEQUENCE {					
p-a	dB-3				
}					

Table 8.2.1.3.1.4.3-2: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH closed loop spatial multiplexing performance downlink power allocation test point 2 requirement for Test numbers [4.3, 5.3]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-6		
}			

Table 8.2.1.3.1.4.3-3: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH open loop spatial multiplexing performance downlink power allocation test point 3 requirement for Test number [6.1 – 6.2]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm3		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

8.2.1.3.1.5 Test requirement

Table 8.2.1.3.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.3.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Fable 8.2.1.3.1.5-1: Minimum	performance Large	e Delay CDD	(FRC)
------------------------------	-------------------	-------------	-------

Test	Bandwidth	Reference	Propagatio	Correlation	Reference	value	UE
numbe r	and MCS	Channel	n Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz 16QAM 1/2	[R.11 FDD]	EVA70	2x2 Low	70	13.0 + TT	2-5

8.2.1.3.2 FDD PDSCH Open Loop Spatial Multiplexing 4x2

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.3.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using large delay CDD.

8.2.1.3.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.3.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1 and 8.2.1.3.2.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.1.3.2.3-1 for the specified SNR. For open-loop spatial multiplexing performance with large delay CDD is specified.

Table 8.2.1.3.2.3-1: Test Parameters for	or Large Delay CDD (FRC)
--	--------------------------

Parameter	•	Unit	Test 1
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98
Note 1: $P_B = 1$			

Fable 8.2.1.3.2.3-2: Minimum	n performance Large	Delay CDD	(FRC)
------------------------------	---------------------	-----------	-------

Test	Bandwidth	Reference	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput	SNR (dB)	Categor y
				_	(%)		
1	10 MHz	[R.14 FDD]	EVA70	4x2 Low	70	14.3	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.3.

8.2.1.3.2.4 Test description

8.2.1.3.2.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Table 8.2.1.3.1.3-1, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1 and 8.2.1.3.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.3.2.4.3.

8.2.1.3.2.4.2 Test procedure

- 1. Set the parameters of the reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.2.1.3.2.5-1 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

8.2.1.3.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.3.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH open loop spatial multiplexing performance downlink power allocation test point

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-6		
}			

Table 8.2.1.3.2.4.3-3: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH open loop spatial multiplexing performance downlink power allocation test point 3 requirement for Test number [6.1 – 6.2]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm3		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

8.2.1.3.2.5 Test requirement

Table 8.2.1.3.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.3.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	[R.14 FDD]	EVA70	4x2 Low	70	14.3 + TT	2-5

8.2.1.4 FDD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

8.2.1.4.1 FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 2 x 2

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.4.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using closed-loop spatial multiplexing.

8.2.1.4.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.4.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.4.1.3-1 and 8.2.1.4.1.3-3 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.1.4.1.3-2 and 8.2.1.4.1.3-4 for the specified SNR. For single-layer spatial multiplexing closed loop rank-one performance with wideband and frequency selective precoding is specified. For multi-layer spatial multiplexing closed loop rank-two performance with wideband and frequency selective precoding is specified.

Parameter		Unit	Test [4.1]	Test [4.2]	Test [4.3]		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-6		
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-6 (Note 1)		
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98	-98	-98		
Precoding granularity		PRB	6	50	6		
PMI delay (Note 2)		ms	8	8	8		
Reporting inte	rval	ms	TBD	TBD	TBD		
Reporting mo	de		PUSCH 1-2	PUSCH 3-1	PUSCH 1-2		
Note 1: $P_{R} = 1$							
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)							

Table 8.2.1.4.1.3-1: Test Parameters for Testing Single-Layer Spatial Multiplexing

Table 8.2.1.4.1.3-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	[R.10]	EVA5	2x2 Low	70	-2.5	1-5
2	10 MHz QPSK 1/3	[R.10]	EPA5	2x2 High	70	-2.8	1-5

Parameter		Unit	Test [5.1]	Test [5.2]	Test [5.3]		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-6		
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-6 (Note 1)		
N_{oc} at antenna port		dBm/15kHz	-98	-98	-98		
Precoding granu	Ilarity	PRB	50	50	6		
PMI delay (Note 2)		ms	8	8	8		
Reporting inte	rval	ms	TBD	TBD	TBD		
Reporting mo	de		PUSCH 1-2	PUSCH 3-1	PUSCH 1-2		
Note 1: $P_B = 1$							
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)							

 Table 8.2.1.4.1.3-3: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Table 8.2.1.4.1.3-4: Minimum	performance Multi-La	yer Spatial Multiplexing	g (FRC)
------------------------------	----------------------	--------------------------	---------

Test number	Bandwidth and MCS	Reference Channel	Propagation Condition	Correlation Matrix and	Reference value		UE Category
				Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
1	10 MHz	[R.11 FDD]	EVA5	2x2 Low	70	12.9	2-5
2	10 MHz	[R.11 FDD]	ETU70	2x2 Low	70	14.3	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.4.

8.2.1.4.1.4 Test description

8.2.1.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Tables 8.2.1.4.1.3-2 and 8.2.1.4.1.3-4 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2 or Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1, 8.2.1.4.1.3-1 and 8.2.1.4.1.3-3 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.4.1.4.3.

8.2.1.4.1.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.4.1.5-1 and 8.2.1.4.1.5-2 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 3. Repeat steps from 1 to 2 for each test interval in Tables 8.2.1.4.1.5-1 and 8.2.1.4.1.5-2 as appropriate.

8.2.1.4.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.4.1.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH closed loop spatial multiplexing performance downlink power allocation test point 1 requirement for Test numbers 1,2,3,4[4.1-4.2, 5.1-5.2]

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-6 PDSCH-ConfigDedicated-DEFAULT							
Information Element	Value/remark	Comment	Condition				
PDSCH-ConfigDedicated-DEFAULT ::=							
SEQUENCE {							
p-a	dB-3						
}							

Table 8.2.1.4.1.4.3-3: PhysicalConfigDedicated-DEFAULT: Additional FDD PDSCH closed loop single-layer spatial multiplexing performance downlink power allocation test point 3 requirement for Test number [4.1 – 4.3]

Derivation Path: 36.331 clause 6.3.2						
Information Element	Value/remark	Comment	Condition			
PhysicalConfigDedicated-DEFAULT ::=						
SEQUENCE {						
antennaInfo CHOICE {						
antennaInfoDedicated ::= SEQUENCE {						
transmissionMode	tm6					
}						
ue-TransmitAntennaSelection CHOICE {						
release	NULL					
}						
}						
}						

Table 8.2.1.4.1.4.3-4: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH closed loop multilayer spatial multiplexing performance downlink power allocation test point 4 requirement for Test number [5.1 – 5.3]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

8.2.1.4.1.5 Test requirement

Tables 8.2.1.4.3-1 and 8.2.1.4.3-3 define the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.4.1.5-1 and 8.2.1.4.1.5-2 for the specified SNR including test tolerances for all throughput tests.

|--|

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput	SNR (dB)	Category
					(70)		
1	10 MHz	[R.10]	EVA5	2x2 Low	70	-2.5 + TT	1-5
2]	10 MHz	[R.10]	EPA5	2x2 High	70	-2.8 + TT	1-5

Table 8.2.1.4.1.5-2: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test Bandwidt		dth Reference	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
3	10 MHz	[R.11 FDD]	EVA5	2x2 Low	70	12.9 + TT	2-5
4	10 MHz	[R.11 FDD]	ETU70	2x2 Low	70	14.3 + TT	2-5

8.2.1.4.2 FDD PDSCH Closed Loop Single/Multi Layer Spatial Multiplexing 4 x 2

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.1.4.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement

Channel (RMC) not falling below a specified value for transmission on two antenna ports using closed-loop spatial multiplexing.

8.2.1.4.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.2.1.4.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.3.2, with the addition of the relevant parameters in Tables 8.2.1-1, 8.2.1.4.2.3-1 and 8.2.1.4.2.3-3 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.1.4.2.3-2 and 8.2.1.4.2.3-4 for the specified SNR. For single-layer spatial multiplexing closed loop rank-one performance with wideband and frequency selective precoding is specified. For multi-layer spatial multiplexing closed loop rank-two performance with wideband and frequency selective precoding is specified.

Table 8.2.1.4.2.3-1: Test Parameters for Testing Single-Layer Spatial Multiplexing

Paramet	er	Unit	Test 1			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6			
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)			
$N_{\it oc}$ at anten	na port	dBm/15kHz	-98			
Precoding gra	nularity	PRB	6			
PMI delay (N	lote 2)	ms	8			
Reporting in	terval	ms	TBD			
Reporting r	node		PUSCH 1-2			
Note 1: $P_B = 1$						
Note 2: If the U	If the UE reports in an available uplink reporting instance at					
subrame SF#n based on PMI estimation at a downlink SF						
not later than SF#(n-4), this reported PMI cannot be applied						
at the eNB downlink before SF#(n+4)						

Table 8.2.1.4.2.3-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	Propagation	Correlation Referen		alue	UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	[R.13]	EVA5	4x2 Low	70	-3.4	1-5

Parameter		Unit	Test 1		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-6		
allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)		
N_{oc} at antenna port		dBm/15kHz	-98		
Precoding granu	larity	PRB	6		
PMI delay (Note 2)		ms	8		
Reporting interval		ms	TBD		
Reporting mode			PUSCH 1-2		
Note 1: $P_B = 1$	$P_{B} = 1$				
Note 2: If the UE r subrame S not later th at the eNE	If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)				

Table 8.2.1.4.2.3-3: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Test number	Bandwidth and MCS	Reference Channel	Propagation Condition	Correlation Matrix and	Reference v	alue	UE Category
				Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
1	10 MHz	[R.14 FDD]	EVA5	4x2 Low	70	10.5	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.1.4.

8.2.1.4.2.4 Test description

8.2.1.4.2.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: As specified per test number in Tables 8.2.1.4.2.3-2 and 8.2.1.4.2.3-4 as defined in TS 36.508 [7] clause 4.3.1.1.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.1-1, 8.2.1.4.2.3-1 and 8.2.1.4.2.3-3 as appropriate.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.1.4.2.4.3.

8.2.1.4.2.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.1.4.2.5-1 and 8.2.1.4.2.5-2 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

3. Repeat steps from 1 to 2 for each test interval in Tables 8.2.1.4.2.5-1 and 8.2.1.4.2.5-2 as appropriate.

8.2.1.4.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 8.2.1.4.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional FDD PDSCH closed loop spatial multiplexing performance downlink power allocation test point 1 requirement for Test numbers 1, 2

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-6 PDSCH-ConfigDedicated-DEFAULT					
Information Element	Value/remark	Comment	Condition		
PDSCH-ConfigDedicated-DEFAULT ::= SEQUENCE {					
p-a	dB-6				
}					

Table 8.2.1.4.2.4.3-3: *PhysicalConfigDedicated-DEFAULT*: Additional FDD PDSCH closed loop singlelayer spatial multiplexing performance downlink power allocation test point 3 requirement for Test number [4.1 – 4.3]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 8.2.1.4.2.4.3-4: PhysicalConfigDedicated-DEFAULT: Additional FDD PDSCH closed loop multilayer spatial multiplexing performance downlink power allocation test point 4 requirement for Test number [5.1 – 5.3]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

8.2.1.4.2.5 Test requirement

Tables 8.2.1.4.2.3-1 and 8.2.1.4.2.3-3 define the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.3.2 for each throughput test shall meet or exceed the specified value in Tables 8.2.1.4.25-1 and 8.2.1.4.2.5-2 for the specified SNR including test tolerances for all throughput tests.

Test	Bandwidth	Reference	Propagation	Correlation	Reference	e value	UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	[R.13]	EVA5	4x2 Low	70	-3.4 + TT	1-5

 Table 8.2.1.4.2.5-1: Test requirement Single-Layer Spatial Multiplexing (FRC)

Table 8.2.1.4.2.5-2: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test number	Bandwidth	Reference Channel	Propagation Condition	Correlation Matrix and Antenna Configuration	Reference Fraction of Maximum Throughput	value SNR (dB)	UE Category
					(%)		
2	10 MHz	[R.14 FDD]	EVA5	4x2 Low	70	10.5 + TT	2-5

8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

Parameter	Unit	Value	Comments		
Uplink downlink configuration (Note 1)		1			
Special subframe configuration (Note 2)		4			
Inter-TTI Distance		1			
Number of HARQ processes	Processes	7	For TDD, 7 HARQ processes in the DL, as specified in TS 36.213 [10] clause 7		
Maximum number of HARQ transmission		4	It is always 4 for TDD, as specified in TS 36.213 [10] clause 8		
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM			
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths	The PCFICH carries information about the number of OFDM symbols used for transmission of PDCCHs in a subframe, as specified in TS 36.211 [8] clause 6.7		
Cyclic Prefix		Normal	CP consist of the following physical resource blocks (RBs) parameters: 12 consecutive subcarriers at a 15 kHz spacing and 7 OFDM symbols, as specified in TS 36.211 [8] clause 6.2.3		
Note 1:as specified in Table 4.2-2 in TS 36.211 [8]Note 2:as specified in Table 4.2-1 in TS 36.211 [8]					

Table 8.2.2-1: Common Test Parameters (TDD)

For all test cases, the SNR is defined as:

$$SNR = \frac{\hat{E}_s^{(1)} + \hat{E}_s^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}},$$

where the superscript indicates the receiver antenna connector. The SNR requirement applies for the UE categories given for each test.

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.

8.2.2.1 TDD PDSCH Single Antenna Port Performance (Cell-Specific Reference Symbols)

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.2.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port with different channel models and MCS and also for the transmission on a single-antenna port with full RB or single RB allocation.

8.2.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.1, with the addition of the relevant parameters in Tables 8.2.2.1.3-1, 8.2.2.1.3-3 and 8.2.2.1.3-5 and 8.2.2.1.3-7 and the downlink physical channel setup according to table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.1.3-2, 8.2.2.1.3-4, 8.2.2.1.3-6 and 8.2.2.1.3-8 for the specified SNR.

Table 8.2.2.1.3-1: Test Pa	rameters for Testing QPSK
----------------------------	---------------------------

Parameter		Unit	Test [1.1-1.4,2.1]
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
N_{oc} at antenna port		dBm/15kHz	-98
Note 1: $P_B = 0$			

Table 8.2.2.1.3-2: Minimum	performance QPSK	(FRC)
----------------------------	------------------	-------

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[1.1]	10 MHz	[R.2 TDD]	EVA5	1x2 Low	70	-1.2	1-5
[1.2]	10 MHz	[R.2 TDD]	ETU70	1x2 Low	70	-0.6	1-5
[1.3]	10 MHz	[R.2 TDD]	ETU300	1x2 Low	70	-0.2	1-5
[1.4]	10 MHz	[R.2 TDD]	HST	1x2 Low	70	2.6	1-5
[2.1]	1.4 MHz	[R.4 TDD]	EVA5	1x2 Low	70	0.5	1-5

Parameter		Unit	Test [1.5-1.7]
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98
Note 1: $P_B = 0$			

Table 8.2.2.1.3-3: Test Parameters for Testing 16QAM

Test	Bandwidth	Reference	Propagation	Correlation	Reference v	alue	UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[1.5]	10 MHz	[R.3 TDD]	EVA5	1x2 Low	70	6.7	2-5
[1.6]	10 MHz	[R.3 TDD]	ETU70	1x2 Low	30	1.4	2-5
[1.7]	10 MHz	[R.3 TDD]	ETU300	1x2 High	70	9.3	2-5

Table 8.2.2.1.3-5: Test Parameters for Testing 64QAM

Parameter		Unit	Test [1.8-1.10,2.2-2.5]
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98
Note 1: $P_B = 0$			

Table 8.2.2.1.3-6: Minimum performance 64QAM (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[2.2]	3 MHz	[R.5 TDD]	EVA5	1x2 Low	70	17.6	1-5
[2.3]	5 MHz	[R.6 TDD]	EVA5	1x2 Low	70	17.6	2-5
[1.8]	10 MHz	[R.7 TDD]	EVA5	1x2 Low	70	17.6	2-5
[1.9]	10 MHz	[R.7 TDD]	ETU70	1x2 Low	70	19.1	2-5
[1.10]	10 MHz	[R.7 TDD]	EVA5	1x2 High	70	19.1	2-5
[2.4]	15 MHz	[R.8 TDD]	EVA5	1x2 Low	70	17.8	2-5
[2.5]	20 MHz	[R.9 TDD]	EVA5	1x2 Low	70	17.7	3-5

Parame	ter	Unit	Test [3.1-3.3]	Test [3.4]				
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0	0				
allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)				
$N_{_{oc}}$ at ante	nna port	dBm/15kHz	-98	-98				
Cell I	C		0	0				
Symbols for un	used PRBs		OCNG (Note 2)	OCNG (Note 2)				
Symbols for MBS MBSFN subfran	FN portion of les (Note 3)		-	OCNG (Note 4)				
Note 1: $P_B = 0$ Note 2: Each ur each vir measur	used physical r tual UE shall be ement. The data	esource block (PRE uncorrelated with c a shall be QPSK mo	3) is assigned to an individua lata from other virtual UEs o dulated.	l virtual UE. The data for ver the period of any				
Note 3: The MB first two	SFN portion of a symbols in the	an MBSFN subfram first slot.	e comprises the whole MBS	FN subframe except the				
Note 4: The MB reference modulat	The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.							

Table 8.2.2.1.3-7: Test Parameters for Testing 1 PRB allocation

Table 8.2.2.1.3-8: Minimum performance 1 PRB allocation (FRC)

Test	Test Bandwidt Reference OC		OCNG	Propagation	Correlation	Reference v	UE	
number	h and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[3.1]	3 MHz 16QAM 1/2	[R.0 TDD]	OP.1 TDD	ETU70	1x2 Low	30	2.1	1-5
[3.2]	10 MHz 16QAM 1/2	[R.1 TDD]	OP.2 TDD	ETU70	1x2 Low	30	2.0	1-5
[3.3]	20 MHz 16QAM 1/2	[R.1 TDD]	OP.3 TDD	ETU70	1x2 Low	30	2.1	1-5
[3.4]	10MHz 16QAM 1/2	[R.29 TDD]	OP.4 TDD	ETU70	1x2 Low	30	2.0	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.

8.2.2.1.4 Test description

8.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested for full allocation: Mid Range , as defined in TS 36.508 [7] clause 4.3.1.2.

Frequencies to be tested for 1PRB allocation: Low Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Bandwidths to be tested: As specified per test number in Tables 8.2.2.1.3-2, 8.2.2.1.3-4, 8.2.2.1.3-6 and 8.2.2.1.3-8 as defined in TS 36.508 [7] clause 4.3.1.2.

1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.

- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1, 8.2.2.1.3-1, 8.2.2.1.3-3, 8.2.2.1.3-5 and 8.2.2.1.3-7 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.2.1.4.3.

8.2.2.1.4.2 Test procedure

1. Set the parameters of the reference channel, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Tables 8.2.2.1.5-1, 8.2.2.1.5-2 and 8.2.2.1.5-3 and 8.2.2.1.5-4 as appropriate.

2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.

3. Repeat steps from 1 to 2 for each subtest in Tables 8.2.2.1.5-1, 8.2.2.1.5-2 and 8.2.2.1.5-3 and 8.2.2.1.5-4 as appropriate.

8.2.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions..

Table 8.2.2.1.4.3-1: *SystemInformationBlockType2*: Additional TDD PDSCH Single Antenna Port Performance for 1 PRB allocation test point 1 requirement for Test number [3.4]

Derivation Path: TS 36.508 [7] clause 4.4.3.3, Table	e 4.4.3.3-1 SystemInformationBlockType2					
Information Element	Value/remark	Comment	Condition			
SystemInformationBlockType2 ::= SEQUENCE {						
mbsfn-SubframeConfig ::= SEQUENCE {						
radioframeAllocationPeriod	n1	Every radio frame is with MBSFN subframe				
radioframeAllocationOffset	0					
subframeAllocation CHOICE {						
oneFrame	01001x	subframe 4 and 9 is used for MBSFN.	TDD			
}						
}						
}						

8.2.2.1.5 Test requirement

Tables 8.2.2.1.3-1, 8.2.2.1.3-2 and 8.2.2.1.3-5 and 8.2.2.1.3-7 define the primary level settings including test tolerances for all throughput tests.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A for each throughput test shall meet or exceed the specified value in Tables 8.2.2.1.5-1, 8.2.2.1.5-2, 8.2.2.1.5-3 and 8.2.2.1.5-4 for the specified SNR including test tolerances for all throughput tests.

Test	Bandwidth	Reference	Propagation	Correlation	Reference	e value	UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[1.1]	10 MHz	[R.2 TDD]	EVA5	1x2 Low	70	-1.2+TT	1-5
[1.2]	10 MHz	[R.2 TDD]	ETU70	1x2 Low	70	-0.6+TT	1-5
[1.3]	10 MHz	[R.2 TDD]	ETU300	1x2 Low	70	-0.2+TT	1-5
[1.4]	10 MHz	[R.2 TDD]	HST	1x2 Low	70	2.6+TT	1-5
[2.1]	1.4 MHz	[R.4 TDD]	EVA5	1x2 Low	70	0.5+TT	1-5

Table 8.2.2.1.5-1: Test Requirement QPSK (FRC)

Table 8.2.2.1.5-2: Test Requirement 16QAM (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number		Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[1.5]	10 MHz	[R.3 TDD]	EVA5	1x2 Low	70	6.7+TT	2-5
[1.6]	10 MHz	[R.3 TDD]	ETU70	1x2 Low	30	1.4+TT	2-5
[1.7]	10 MHz	[R.3 TDD]	ETU300	1x2 High	70	9.3+TT	2-5

Table 8.2.2.1.5-3: Test Requirement 64QAM (FRC)

Test	Bandwidt	Reference	Propagation	Correlation	Reference value		UE
number	h	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[2.2]	3 MHz	[R.5 TDD]	EVA5	1x2 Low	70	17.6+TT	1-5
[2.3]	5 MHz	[R.6 TDD]	EVA5	1x2 Low	70	17.6+TT	2-5
[1.8]	10 MHz	[R.7 TDD]	EVA5	1x2 Low	70	17.6+TT	2-5
[1.9]	10 MHz	[R.7 TDD]	ETU70	1x2 Low	70	19.1+TT	2-5
[1.10]	10 MHz	[R.7 TDD]	EVA5	1x2 High	70	19.1+TT	2-5
[2.4]	15 MHz	[R.8 TDD]	EVA5	1x2 Low	70	17.8+TT	2-5
[2.5]	20 MHz	[R.9 TDD]	EVA5	1x2 Low	70	17.7+TT	3-5

Table 8.2.2.1.5-4: Test Requirement 1 PRB allocation (FRC)

Test number	Bandwidth and MCS	Reference Channel	OCNG Pattern	Propagati on	Correlation Matrix and	Reference	value	UE Category
				Condition	Antenna Configurati on	Fraction of Maximum Throughput (%)	SNR (dB)	1-5
[3.1]	31.4 MHz 16QAM 1/2	[R.0 TDD]	OP.1 TDD	ETU70	1x2 Low	30	2.1+TT	1-5
[3.2]	10 MHz 16QAM 1/2	[R.1 TDD]	OP.2 TDD	ETU70	1x2 Low	30	2.0+TT	1-5
[3.3]	20 MHz 16QAM 1/2	[R.1 TDD]	OP.3 TDD	ETU70	1x2 Low	30	2.1+TT	1-5
[3.4]	10 MHz 16QAM 1/2	[R.29 TDD]	OP.4 TDD	ETU70	1x2 Low	30	2.0+TT	1-5

8.2.2.2 TDD PDSCH Transmit Diversity Performance (Cell-Specific Reference Symbols)

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.2.2.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using transmit diversity (SFBC).

8.2.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.2.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1 and 8.2.2.2.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.3.2.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Table 8.2.2.2.3-2 for the specified SNR. For transmit diversity (SFBC) performance with 2 and 4 transmitter antennas as specified.

Table 8.2.2.2.3-1: Test Parameters for Testing Transmit Diversity Performance (FRC)

Parameter		Unit	Test [7.1-7-3]
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98
Note 1: $P_B = 1$			

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[7.1]	10 MHz 16QAM 1/2	[R.11 TDD]	EVA5	2x2 Medium	70	6.8	2-5
[7.2]	10 MHz QPSK 1/3	[R.10 TDD]	HST	2x2 Low	70	-2.3	1-5
[7.3]	1.4 MHz QPSK 1/3	[R.12 TDD]	EPA5	4x2 Medium	70	-0.2	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.2.

8.2.2.2.4 Test description

8.2.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Table 8.2.2.2.3-2 as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2 or Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1 and 8.2.2.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.2.2.4.3.

8.2.2.2.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Table 8.2.2.5-1 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 3. Repeat steps from 1 to 2 for each test interval in Table 8.2.2.2.5-1 as appropriate.

8.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.2.4.3-1: PDSCH-ConfigDedicated-DEFAULT: Additional TDD PDSCH transmit diversity performance downlink power allocation test point 1 requirement for Test numbers [7.1-7-3]

Derivation Path: 36.508 clause 4.6.3						
Information Element	Value/remark	Comment	Condition			
PDSCH-ConfigDedicated-DEFAULT ::=						
SEQUENCE {						
p-a	dB-3					
}						

8.2.2.2.5 Test requirement

Table 8.2.2.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Table 8.2.2.5-1 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.2.5-1: Test requirement Transmit Diversity (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[7.1]	10 MHz 16QAM 1/2	[R.11 TDD]	EVA5	2x2 Medium	70	6.8+TT	2-5
[7.2]	10 MHz QPSK 1/3	[R.10 TDD]	HST	2x2 Low	70	-2.3+TT	1-5
[7.3]	1.4 MHz QPSK 1/3	[R.12 TDD]	EPA5	4x2 Medium	70	-0.2+TT	1-5

8.2.2.3 TDD PDSCH Open Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.2.3.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using large delay CDD.

8.2.2.3.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.3.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1 and 8.2.2.3.3-1 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.3.3-2 for the specified SNR. For open-loop spatial multiplexing performance with large delay CDD is specified.

Parameter		Unit	Test [6.1]	Test [6.2]	
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3	-6	
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-6 (Note 1)	
N_{oc} at antenna port		dBm/15kHz	-98	-98	
Note 1: $P_B = 1$					

Table 8.2.2.3.3-1: Test Parameters for Large Delay CDD (FRC)

Table 8.2.2.3.3-2: Minimum	performance Large	Delay CDD	(FRC)
----------------------------	-------------------	-----------	-------

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[6.1]	10 MHz 16QAM 1/2	[R.11 TDD]	EVA70	2x2 Low	70	13.1	2-5
[6.2]	10 MHz 16QAM 1/2	[R.14 TDD]	EVA70	4x2 Low	70	14.2	2-5

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.3.

8.2.2.3.4 Test description

8.2.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Table 8.2.2.3.3-1 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2 or Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1 and 8.2.2.3.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.2.3.4.3.

8.2.2.3.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Table 8.2.2.3.5-1 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 3. Repeat steps from 1 to 2 for each test interval in Table 8.2.2.3.5-1 as appropriate.

8.2.2.3.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.3.4.3-1: *PDSCH-ConfigDedicated-DEFAULT*: Additional TDD PDSCH open loop spatial multiplexing performance downlink power allocation test point 1 requirement for Test number [6.1]

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-3		
}			

Table 8.2.2.3.4.3-2: *PDSCH-ConfigDedicated-DEFAULT*: Additional TDD PDSCH open loop spatial multiplexing performance downlink power allocation test point 2 requirement for Test number [6.2]

Derivation Path: 36.508 clause 4.6.3						
Information Element	Value/remark	Comment	Condition			
PDSCH-ConfigDedicated-DEFAULT ::=						
SEQUENCE {						
p-a	dB-6					
}						

Table 8.2.2.3.4.3-3: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH open loop spatial multiplexing performance downlink power allocation test point 3 requirement for Test number [6.1 – 6.2]

Derivation Path: 36.331 clause 6.3.2					
Information Element	Value/remark	Comment	Condition		
PhysicalConfigDedicated-DEFAULT ::=					
SEQUENCE {					
antennaInfo CHOICE {					
antennaInfoDedicated ::= SEQUENCE {					
transmissionMode	tm3				
}					
ue-TransmitAntennaSelection CHOICE {					
release	NULL				
}					
}					
}					

8.2.2.3.5 Test requirement

Table 8.2.2.3.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Tables 8.2.2.3.5-1 for the specified SNR including test tolerances for all throughput tests.

	Bandwidth and MCS	Reference Channel	Propagation Condition	Correlation Matrix and	Reference value		UE Category
				Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
[6.1]	10 MHz 16QAM 1/2	[R.11 TDD]	EVA70	2x2 Low	70	13.1+T T	2-5
[6.2]	10 MHz 16QAM 1/2	[R.14 TDD]	EVA70	4x2 Low	70	14.2+T T	2-5

8.2.2.4 TDD PDSCH Closed Loop Spatial Multiplexing Performance (Cell-Specific Reference Symbols)

Editor's note: This test case is incomplete. The following aspectsare either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.2.2.4.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on two antenna ports using closed loop spatial multiplexing with wideband and frequency selective precoding.

8.2.2.4.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.2.2.4.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.2, with the addition of the relevant parameters in Tables 8.2.2-1, 8.2.2.4.3-1 and 8.2.2.4.3-3 and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.2.2.4.3-2 and 8.2.2.4.3-4 for the specified SNR. For single-layer spatial multiplexing closed loop rank-one performance with wideband and frequency selective precoding is specified. For multi-layer spatial multiplexing closed loop rank-two performance with wideband and frequency selective precoding is specified.

Table 8.2.2.4.3-1: Test Parameters for Testing Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test [4.1]	Test [4.2]	Test [4.3]		
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-6		
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-6 (Note 1)		
$N_{\scriptscriptstyle oc}$ at antenna p	oort	dBm/15kHz	-98	-98	-98		
Precoding granula	arity	PRB	6	50	6		
Minimum PMI delay (Note 2)		ms	8	8	8		
Reporting interv	al	ms	TBD	TBD	TBD		
Reporting mod	е		PUSCH 1-2	PUSCH 3-1	PUSCH 1-2		
Note 1: $P_B = 1$ Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4)							

Table 8.2.2.4.3-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference	UE	
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[4.1]	10 MHz QPSK 1/3	[R.10]	EVA5	2x2 Low	70	-3.1	1-5
[4.2]	10 MHz QPSK 1/3	[R.10]	EPA5	2x2 High	70	-3.3	1-5
[4.3]	10 MHz QPSK 1/3	[R.13]	EVA5	4x2 Low	70	-3.7	1-5

Table 8.2.2.4.3-3: Test Parameters for Testing Multi-Layer Spatial Multiplexing

Paramete	r	Unit	Test [5.1]	Test [5.2]	Test [5.3]			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	-3	-3	-6			
allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)	-6 (Note 1)			
N_{oc} at antenna port		dBm/15kHz	-98	-98	-98			
Precoding gran	ularity	PRB	50	50	6			
Reporting interval		ms	TBD	TBD	TBD			
Reporting mo	ode		PUSCH 1-2	PUSCH 3-1	PUSCH 1-2			
Minimum PMI delay (Note 2)		ms	8	8	8			
Note 1: $P_B = 1$ Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the								

Test number	Bandwidth and MCS	Reference Channel	Propagation Condition	Correlation Matrix and	Reference value		UE Category
				Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
[5.1]	10 MHz 16QAM 1/2	[R.11 TDD]	EVA5	2x2 Low	70	12.8	2-5
[5.2]	10 MHz 16QAM 1/2	[R.11 TDD]	ETU70	2x2 Low	70	13.9	2-5
[5.3]	10 MHz 16QAM 1/2	[R.14 TDD]	EVA5	4x2 Low	70	10.7	2-5

 Table 8.2.2.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

The normative reference for this requirement is TS 36.101 [2] clause 8.2.2.4.

8.2.2.4.4 Test description

8.2.2.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: As specified per test number in Tables 8.2.2.4.3-2 and 8.2.2.4.3-4 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2 or Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to Tables 8.2.2-1, 8.2.2.4.3-1 and 8.2.2.4.3-3 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.2.2.4.4.3.

8.2.2.4.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.2.2.4.5-1 and 8.2.2.4.5-2 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 3. Repeat steps from 1 to 2 for each test interval in Tables 8.2.2.4.5-1 and 8.2.2.4.5-2 as appropriate.

8.2.2.4.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions.

Table 8.2.2.4.4.3-1: *PDSCH-ConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop spatial multiplexing performance downlink power allocation test point 1 requirement for Test numbers [4.1-4.2, 5.1-5.2]

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-3		
}			

Table 8.2.2.4.4.3-2: *PDSCH-ConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop spatial multiplexing performance downlink power allocation test point 2 requirement for Test numbers [4.3, 5.3]

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-6		
}			

Table 8.2.2.4.4.3-3: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop singlelayer spatial multiplexing performance downlink power allocation test point 3 requirement for Test number [4.1 – 4.3]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 8.2.2.4.4.3-4: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH closed loop multilayer spatial multiplexing performance downlink power allocation test point 4 requirement for Test number [5.1 – 5.3]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennaInfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

8.2.2.4.5 Test requirement

Tables 8.2.2.4.3-1 and 8.2.2.4.3-3 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.2, for each throughput test shall meet or exceed the specified value in Tables 8.2.2.4.5-1 and 8.2.2.4.5-2 for the specified SNR including test tolerances for all throughput tests.

Table 8.2.2.4.5-1: Test requirement Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[4.1]	10 MHz QPSK 1/3	[R.10]	EVA5	2x2 Low	70	-3.1+TT	1-5
[4.2]	10 MHz QPSK 1/3	[R.10]	EPA5	2x2 High	70	-3.3+TT	1-5
[4.3]	10 MHz QPSK 1/3	[R.13]	EVA5	4x2 Low	70	-3.7+TT	1-5

Table 8.2.2.4.5-2: Test requirement Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	Propagation	Correlation	Reference	UE	
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[5.1]	10 MHz 16QAM 1/2	[R.11 TDD]	EVA5	2x2 Low	70	12.8+TT	2-5
[5.2]	10 MHz 16QAM 1/2	[R.11 TDD]	ETU70	2x2 Low	70	13.9+TT	2-5
[5.3]	10 MHz 16QAM 1/2	[R.14 TDD]	EVA5	4x2 Low	70	10.7+TT	2-5

8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

8.3.1 FDD

[FFS]

8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Parameter	Unit	Value
Uplink downlink configuration (Note 1)		1
Special subframe configuration (Note 2)		4
Cyclic prefix		Normal
Inter-TTI Distance		1
Number of HARQ processes	Processes	7
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH	OFDM symbols	2
Precoder update		Frequency domain: 1 PRB
granularity		Time domain: 1 ms
Note 1:as specified in Table 4.2-2 in [TS 36.211]Note 2:as specified in Table 4.2-1 in [TS 36.211]		

Table 8.3.2-1: Common Test Parameters for DRS

For all test cases, the SNR is defined as:

$$SNR = \frac{\hat{E}_s^{(1)} + \hat{E}_s^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}},$$

where the superscript indicates the receiver antenna connector. The SNR requirement applies for the UE categories given for each test.

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.1 TDD PDSCH Performance (UE-Specific Reference Symbols)

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

8.3.2.1.1 Test purpose

To verify the UE's ability to receive a predefined test signal, representing a multi-path fading channel that is determined by the SNR with a percentage of the information bit throughput for a specified downlink Reference Measurement Channel (RMC) not falling below a specified value for transmission on a single-antenna port using user-specific reference signals with full RB or single RB allocation.

8.3.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.3.2.1.3 Minimum conformance requirements

The requirements are specified in terms of the percentage of information bit throughput for the downlink reference measurement channels specified in Annex A clause A.3.4.3, with the addition of the relevant parameters in Tables 8.3.2-1, 8.3.2.1.3-1, and the downlink physical channel setup according to Table C.3.2-1 in Annex C.

Using this configuration the fraction of maximum throughput percentage shall meet or exceed the minimum requirements specified in Tables 8.3.2.1.3-2 for the specified SNR.
parameter		Unit	Test [11.1]	Test [11.2]	Test [11.3]	Test [11.4]	
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	
$N_{_{oc}}$ at antenna port		dBm/15kHz	-98	-98	-98	-98	
Number of allocated resource blocks		PRB	50	50	50	1 (Note 2)	
Note 1: $P_B = 0$							
Note 2: Zeros shall be ir	nserted	for unused PR	RBs				

Table 8.3.2.1.3-1: Test Parameters for Testing DRS

Table 8.3.2.1.3-2:	Minimum	performance	DRS (FRC)
--------------------	---------	-------------	-------	------

Test	Bandwidth	Reference	Propagation	Correlation	ation Reference value		
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[11.1]	10 MHz QPSK 1/3	[R.25 TDD]	EPA5	1x2 Low	70	-0.8	1-5
[11.2]	10 MHz 16QAM 1/2	[R.26 TDD]	EPA5	1x2 Low	70	7.0	2-5
[11.3]	10 MHz 64QAM 3/4	[R.27 TDD]	EPA5	1x2 Low	70	17.0	2-5
[11.4]	10 MHz 16QAM 1/2	[R.28 TDD]	EPA5	1x2 Low	30	1.7	1-5

The normative reference for this requirement is TS 36.101 [2] clause 8.3.2.

8.3.2.1.4 Test description

8.3.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Tables 8.3.2-1 and 8.3.2.1.3-1 as appropriate.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.3.2.1.4.3.

8.3.2.1.4.2 Test procedure

- 1. Set the parameters of the bandwidth, MCS, reference channel, the propagation condition, the correlation matrix and the SNR according to Table 8.3.2.1.5-1 as appropriate.
- 2. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each test interval and decide pass or fail according to Tables G.3.5 and G.3.6 in Annex G clause G.3.
- 3. Repeat steps from 1 to 2 for each test interval in Tables 8.3.2.1.5-1 as appropriate.

8.3.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions .

Table 8.3.2.1.4.3-1: *PhysicalConfigDedicated-DEFAULT*: Additional TDD PDSCH DRS performance downlink power allocation test point 1 requirement for Test number [11.1 – 11.4]

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm7		
}			
}			
}			

8.3.2.1.4.4 Test requirement

Table 8.3.2.1.3-1 defines the primary level settings.

The fraction of maximum throughput percentage for the downlink reference measurement channels specified in Annex A clause A.3.4.3 for each throughput test shall meet or exceed the specified value in Table 8.3.2.1.5-1 for the specified SNR including test tolerances for all throughput tests.

Test	Bandwidth	Reference	Propagation	Correlation	Reference	value	UE
number	and MCS	Channel	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
[11.1]	10 MHz QPSK 1/3	[R.25 TDD]	EPA5	1x2 Low	70	-0.8+TT	1-5
[11.2]	10 MHz 16QAM 1/2	[R.26 TDD]	EPA5	1x2 Low	70	7.0+TT	2-5
[11.3]	10 MHz 64QAM 3/4	[R.27 TDD]	EPA5	1x2 Low	70	17.0+TT	2-5
[11.4]	10 MHz 16QAM 1/2	[R.28 TDD]	EPA5	1x2 Low	30	1.7+TT	1-5

Table 8.3.2.1.5-1: Test requirement DRS

8.4 Demodulation of PCFICH/PDCCH

8.4.1 FDD

8.4.1.1 FDD PCFICH/PDCCH Single-antenna Port Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances have not yet been applied to the wanted and interfering signal levels

8.4.1.1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for a single-antenna port with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.1 remains below a given reference value.

8.4.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.4.1.1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Param	neter	Unit	Test [8.1]	
Number of PD0	CCH symbols	symbols	2	
Number of PHIC	H groups (Ng)		1	
PHICH d	uration		Normal	
Cell	ID		0	
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA	dB	0	
allocation	PCFICH_RB PDCCH_RB PHICH_RB	dB	0	
N_{oc} at ante	enna port	dBm/15kHz	-98	
Cyclic	orefix		Normal	

 Table 8.4.1.1.3-1: Test Parameters for PDCCH/PCFICH

For the parameters specified in Table 8.4.1.1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1.3-2.

 Table 8.4.1.1.3-2: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	Propagation Condition	Antenna configuration	Reference	ce value
					and Correlation Matrix	Pm-dsg (%)	SNR (dB)
[8.1]	10 MHz	8 CCE	[R.15 FDD]	ETU70	1x2 Low	1	-1.6

The normative reference for this requirement is TS 36.101 [2] clause 8.4.1.

8.4.1.1.4 Test description

8.4.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 8.4.1.1.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.4.1.1.4.3.

8.4.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, aggregation level, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.4.1.1.5-1 as appropriate.
- 2. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the ratio (statDTX)/(NACK+ACK+statDTX).

8.4.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

8.4.1.1.5 Test requirement

For the parameters specified in Table 8.4.1.1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1.5-1.

Table 8.4.1.1.5-1: Test requirement PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	Propagation Condition	Antenna configuration	Refer	ence value
					and correlation Matrix	Pm- dsg (%)	SNR (dB)
[8.1]	10 MHz	8 CCE	[R.15 FDD]	ETU70	1x2 Low	1	-1.6 + [TT]

8.4.1.2 FDD PCFICH/PDCCH Transmit Diversity Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances have not yet been applied to the wanted and interfering signal levels

8.4.1.2.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.1 remains below a given reference value.

8.4.1.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.4.1.2.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Param	neter	Unit	Test [8.2, 8.3]	
Number of PDCCH symbols		symbols	2	
Number of PHIC	H groups (Ng)		1	
PHICH d	uration		Normal	
Cell	ID		0	
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA	dB	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB	dB	-3	
$N_{\scriptscriptstyle oc}$ at ante	enna port	dBm/15kHz	-98	
Cyclic	orefix		Normal	

Table 8.4.1.2.3-1: Tes	t Parameters for	PDCCH/PCFICH
------------------------	------------------	--------------

For the parameters specified in Table 8.4.1.2.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-2.

 Table 8.4.1.2.3-2: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	Propagation	Antenna	Refere	nce value
number		level	Channel	Condition	configuration and correlation Matrix	Pm- dsg (%)	SNR (dB)
[8.2]	1.4 MHz	2 CCE	[R.16 FDD]	EPA5	2 x 2 Low	1	4.3
[8.3]	10 MHz	4 CCE	[R.17 FDD]	EVA5	4 x 2 Medium	1	0.9

The normative reference for this requirement is TS 36.101 [2] clause 8.4.1.

8.4.1.2.4 Test description

8.4.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 1.4MHz, 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 8.4.1.2.3-1.
- 3. The downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.

5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.4.1.2.4.3.

8.4.1.2.4.2 Test procedure

- 1. Set the parameters of bandwidth, aggregation level, reference Channel, the propagation condition, antenna configuration, the correlation matrix and the SNR according to Table 8.4.1.2.5-1 as appropriate.
- 2. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL PUCCH during each subtest interval. Pm-dsg is the ratio (statDTX)/(NACK+ACK+statDTX).
- 3. Repeat steps from 1 to 2 for each test interval in Table 8.4.1.2.5-1 as appropriate.

8.4.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6.

8.4.1.2.5 Test requirement

For the parameters specified in Table 8.4.1.2.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.5-1.

Test	Bandwidth	Aggregation	Reference	Propagation	Antenna	Refere	nce value
number		level	Channel	Condition	configuration	Pm-	SNR (dB)
					and	dsg	
					correlation	(%)	
					Matrix		
[8.2]	1.4 MHz	2 CCE	[R.16 FDD]	EPA5	2 x 2 Low	1	4.3 +[TT]
[8.3]	10 MHz	4 CCE	[R.17 FDD]	EVA5	4 x 2 Medium	1	0.9 +[TT]

Table 8.4.1.2.5-1: Test requirement PDCCH/PCFICH

8.4.2 TDD

8.4.2.1 TDD PCFICH/PDCCH Single-antenna Port Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances have not yet been applied to the wanted and interfering signal levels

8.4.2.1.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for a single-antenna port with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.2 remains below a given reference value.

8.4.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.4.2.1.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Parame	eter	Unit	Test [8.1]	
Uplink downlink o (Note	configuration 1)		1	
Special subframe (Note 2	configuration 2)		4	
Number of PDC	CH symbols	symbols	2	
Number of PHICH	l groups (<i>N</i> g)		1	
PHICH du	ration		Normal	
Cell ID			0	
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA	dB	0	
allocation	PCFICH_RB PDCCH_RB PHICH_RB	dB	0	
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98	
Cyclic prefix			Normal	
Note 1: as specified in Table 4.2 Note 2: as specified in Table 4.2		-2 in TS 36.211 [8 -1 in TS 36.211 [8]]	

Table 8.4.2.1.3-1: Test Parameters for PDCCH/PCFICH

For the parameters specified in Table 8.4.2.1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1.3-2.

Table 8.4.2.1.3-2: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	Propagation Condition	Antenna configurati	Refere valu	ence Je
					on and correlation Matrix	Pm- dsg (%)	SNR (dB)
[8.1]	10 MHz	8 CCE	[R.15 TDD]	ETU70	1x2Low	1	-1.6

The normative reference for this requirement is TS 36.101 [2] clause 8.4.2.

8.4.2.1.4 Test description

8.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to 8.4.2.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State [3a] according to TS 36.508 [7] clause 4.5.3 and receiving payload data from the SS. Message contents are defined in clause 8.4.2.1.4.3.

8.4.2.1.4.2 Test procedure

Set the parameters of the bandwidth, aggregation level, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.4.2.1.5-1 as appropriate.

Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest interval. Pm-dsg is the radio (statDTX)/(NACK + ACK+statDTX)

8.4.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exception:.

Table 8.4.2.1.4.3-1: TDD-Configuration-DEFAULT

Derivation Path: 36.508 clause 4.6.4			
Information Element	Value/remark	Comment	Condition
TDD-Configuration-DEFAULT ::= SEQUENCE {			
subframeAssignment	sa1		
specialSubframePatterns	Ssp4		
}			

8.4.2.1.5 Test requirement

For the parameters specified in Table 8.4.2.1.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1.5-1.

Test	Bandwidth	Aggregation	Reference	Propagation	Antenna	Reference value	
number		level	Channel	Condition	configuratio n and correlation Matrix	Pm- dsg (%)	SNR (dB)
[8.1]	10 MHz	8 CCE	[R.15 TDD]	ETU70	1x2Low	1	-1.6 +TT

Table 8.4.2.1.5-1: Test requirement PDCCH/PCFICH

8.4.2.2 TDD PCFICH/PDCCH Transmit Diversity Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

The Test system uncertainties applicable to this test are undefined

Test tolerances have not yet been applied to the wanted and interfering signal levels

8.4.2.2.1 Test purpose

This test verifies the demodulation performance of PCFICH/PDCCH for transmit diversity with a given SNR for which the average probability of miss-detection of the Downlink Scheduling Grant, tested jointly on PDCCH and PCFICH of the specified reference measurement channels in A.3.5.2 remains below a given reference value.

8.4.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.4.2.2.3 Minimum conformance requirements

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

Parame	eter	Unit	Test [8.2, 8.3]	
Uplink downlink o (Note	configuration 1)		1	
Special subframe (Note 2	configuration 2)		4	
Number of PDC	CH symbols	symbols	2	
Number of PHICH	l groups (<i>N</i> g)		1	
PHICH du	ration		Normal	
Cell II	D		0	
Downlink power	PCFICH_RA PDCCH_RA PHICH_RA	dB	-3	
allocation	PCFICH_RA PDCCH_RB PHICH_RA	dB	-3	
$N_{_{oc}}$ at antenna port		dBm/15kHz	-98	
Cyclic prefix			Normal	
Note 1:as specified in Table 4.2Note 2:as specified in Table 4.2		-2 in TS 36.211 [8 -1 in TS 36.211 [8]	

Table 8.4.2.2.3-1: Test Parameters for PDCCH/PCFICH

For the parameters specified in Table 8.4.2.1.3-2 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.3-2.

 Table 8.4.2.2.3-2: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	egation Reference Propagation Antenna vel Channel Condition configurati		Refere valu	ence Je	
					on and correlation Matrix	Pm- dsg (%)	SNR (dB)
[8.2]	1.4 MHz	2 CCE	[R.16 TDD]	EPA5	2 x 2 Low	1	4.2
[8.3]	10 MHz	4 CCE	[R.17 TDD]	EVA5	4 x 2 Medium	1	1.2

The normative reference for this requirement is TS 36.101 [2] clause 8.4.2.

8.4.2.2.4 Test description

8.4.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 1.4MHz,10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connectors as shown in TS 36.508 [7] Annex A, Figure A.10 for antenna configuration 2x2 or Figure A.11 for antenna configuration 4x2.
- 2. The parameter settings for the cell are set up according to 8.4.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.

5. Ensure the UE is in State [3a] according to TS 36.508 [7] clause 4.5.3 and receiving payload data from the SS. Message contents are defined in clause 8.4.2.2.4.3.

8.4.2.2.4.2 Test procedure

- 1. Set the parameters of the bandwidth, aggregation level, reference channel, the propagation condition, the correlation matrix, antenna configuration and the SNR according to Tables 8.4.2.2.5-1 as appropriate.
- 2. Measure the Pm-dsg for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during each subtest interval. Pm-dsg is the radio (statDTX)/(NACK + ACK+statDTX)
- 3. Repeat steps from 1 to 2 for each test interval in Table 8.4.2.2.5-1 as appropriate

8.4.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exception:.

Table 8.4.2.2.4.3-1: TDD-Configuration-DEFAULT

Derivation Path: 36.508 clause 4.6.4			
Information Element	Value/remark	Comment	Condition
TDD-Configuration-DEFAULT ::= SEQUENCE {			
subframeAssignment	sa1		
specialSubframePatterns	Ssp4		
}			

8.4.2.2.5 Test requirement

For the parameters specified in Table 8.4.2.2.3-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.5-1.

Table 8.4.2.2.5-1: Test requirement PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	Propagation	Antenna	Reference value	
number		level	Channel	Condition	configuratio n and correlation Matrix	Pm- dsg (%)	SNR (dB)
[8.2]	1.4 MHz	2 CCE	[R.16 TDD]	EPA5	2 x 2 Low	1	4.2+TT
[8.3]	10 MHz	4 CCE	[R.17 TDD]	EVA5	4 x 2 Medium	1	1.2+TT

8.5 Demodulation of PHICH

8.5.1 FDD

8.5.1.1 FDD PHICH Single-antenna Port Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- *The test procedure is undefined.*
- The Test system uncertainties applicable to this test are undefined
- Test tolerances have not yet been applied to the wanted and interfering signal levels
- Test numbers in minimum conformance requirements are undefined.

8.5.1.1.1 Test purpose

This test verifies the demodulation performance of PHICH for a single antenna port with a given SNR for which the average probability of miss detection of Hybrid Indicator ("ACK to NACK") of the specified reference measurement channels [clause FFS] remains below a specified value.

8.5.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.5.1.1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold delection).

Param	eter	Unit	Test [TBD]			
	PHICH_RA	dB				
	PHICH_RB	dB	0			
Downlink power	PCFICH_RA	dB				
allocation	PCFICH_RB	dB				
	PDCCH_RA	dB	0			
	PDCCH_RB	dB				
PHICH du	uration		Normal			
Number of PHICH	groups (Note 1)		Ng = 1			
PDCCH content			All PDCCH resources shall be occupied by non-zero data			
$N_{_{oc}}$ at ante	nna port	dBm/15kHz	-98			
Cyclic prefix			Normal			
Note 1: according to Clause 6.9 in TS 36.211[8]						

Table 8.5.1.1.3-1: Test Parameters for PHICH

For the parameters specified in Table 8.5.1.1.3-1 the average probability of a miss-detecting an ACK for a NACK (Pm-an) shall be below the specified value in Table 8.5.1.1.3-2.

 Table 8.5.1.1.3-2: Minimum performance PHICH

Test	Bandwidth	Reference	Propagation	Antenna	Reference value	
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
[9.1]	10 MHz	[R.18]	ETU70	1 x 2 Low	0.1	5.5
[9.4]	10 MHz	[R.24]	ETU70	1 x 2 Low	0.1	0.6

The normative reference for this requirement is TS 36.101 [2] clause 8.5.

8.5.1.1.4 Test description

8.5.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 8.5.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.5.1.1.4.3.

8.5.1.1.4.2 Test procedure

1. SS shall schedule PUSCH transmissions to happen during 8 consecutive uplink TTIs via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions will transmit the associated ACKs. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.1.1.4.2-1 indicates the transmissions for one cycle.

TTI	1-4	5-8	9-12	13-16	17-20	21-24
PDCCH	S	S	-	-	S	S
PHICH	-	-	A	A	-	-
PUSCH		Т	Т	R	R	Т
UL HARQ Process	1-4	5-8	1-4	5-8	1-4	5-8
Note 1: This table gives an e. Note 2: Following notation is S: represents sending A: represents the ACP T: represents a sched R: represents a poten	xample test used: PDCCH D (transmissi uled PUSC tial PUSCH	pattern for CI format 0 on on PHIC H transmiss re-transmis	HARQ proc to schedule H ion ssion due to	ess for FD a future PU a missed A	D PHICH te ISCH transr CK	est nission

Table 8.5.1.1.4.2-1: PHICH test pattern

- 2. SS will only monitor for uplink retransmissions due to ACK missed-detections. Such re-transmissions (if they occur) will potentially happen in TTI 13 to 20. DTXs on TTI 13 to 20 are counted as successful ACK receptions while any transmission on these TTIs is counted as NACKs.
- 3. Repeat steps 1 2 for a duration sufficient to achieve statistical significance according to Annex G clause G.3 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).
- 4. Repeat the same procedure (steps 1 to 3) with test conditions according to the Table 8.5.1.1.5-1 for Test 2.

8.5.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1							
Information Element	Value/remark	Comment	Condition				
MAC-MainConfig-RBC ::= SEQUENCE {							
dl-SCH-Config SEQUENCE {}	Not present						
ul-SCH-Config SEQUENCE {							
maxHARQ-Tx	n2	Only one retransmission per UL HARQ					

Table 8.5.1.1.4.3-1: MAC-MainConfig-RBC

8.5.1.1.5 Test requirement

For the parameters specified in Table 8.5.1.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-dsg) shall be below the specified value in Table 8.5.1.1.5-1.

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
[9.1]	10 MHz	[R.18]	ETU70	1 x 2 Low	0.1	5.5 + [TT]
[9.4]	10 MHz	[R.24]	ETU70	1 x 2 Low	0.1	0.6 + [TT]

Table 8.5.1	1.5-1:	Test requirement PHICH
-------------	--------	------------------------

8.5.1.2 FDD PHICH Transmit Diversity Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- *The test procedure is undefined.*
- The Message contents are undefined
- The Test system uncertainties applicable to this test are undefined
- Test tolerances have not yet been applied to the wanted and interfering signal levels
- Test numbers in minimum conformance requirements are undefined.

8.5.1.2.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which the average probability of miss detection of Hybrid Indicator ("ACK to NACK") of the specified reference measurement channels [clause FFS] remains below a specified value.

8.5.1.2.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

8.5.1.2.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold delection).

Paramo	eter	Unit	Test [TBD]				
	PHICH_RA	dB					
	PHICH_RB	dB	2				
Downlink power	PCFICH_RA	dB	-3				
allocation	PCFICH_RB	dB					
	PDCCH_RA	dB	2				
	PDCCH_RB	dB	-3				
PHICH du	uration		Normal				
Number of PHICH groups (Note 1)			Ng = 1				
PDCCH content			All PDCCH resources shall be occupied by non-zero data				
$N_{\it oc}$ at antenna port		dBm/15kHz	-98				
Cyclic prefix			Normal				
Note 1: according to Clause 6.9 in TS 36.211[10]							

Table 8.5.1.2.3-1: Test Parameters for PHICH

For the parameters specified in Table 8.5.1.2.3-1 the average probability of a miss-detecting an ACK for a NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.3-2

Table 8.5.1.2.3-2: Minimum performance PHICH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
[9.2]	1.4 MHz	[R.19]	EPA5	2 x 2 Low	0.1	5.6
[9.3]	10 MHz	[R.20]	EVA5	4 x 2 Medium	0.1	6.0

The normative reference for this requirement is TS 36.101 [2] clause 8.5.

8.5.1.2.4 Test description

8.5.1.2.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 1.4MHz, 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, the faders and AWGN noise sources to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10 or A.11.
- 2. The parameter settings for the cell are set up according to Table 8.5.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clauses B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 8.5.1.2.4.3.

8.5.1.2.4.2 Test procedure

1. SS shall schedule PUSCH transmissions to happen during 8 consecutive uplink TTIs via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions will transmit the associated ACKs. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.1.2.4.2-1 indicates the transmissions for one cycle.

TTI	1-4	5-8	9-12	13-16	17-20	21-24		
PDCCH	S	S	-	-	S	S		
PHICH	-	-	A	A	-	-		
PUSCH		Т	Т	R	R	Т		
UL HARQ Process	1-4	5-8	1-4	5-8	1-4	5-8		
Note 1: This table gives an ex	Note 1: This table gives an example test pattern for HARQ process for FDD PHICH test							
Note 2: Following notation is used:								
S: represents sending PDC	CH DCI for	rmat 0 to sc	hedule a fut	ure PUSCH	I transmissio	on		
		B · · · A · ·						

Table 8.5.1.2.4.2-1. Phich test batter	Table	8.5.1.2	.4.2-1:	PHICH	test	patterr
--	-------	---------	---------	-------	------	---------

A: represents the ACK transmission on PHICH

T: represents a scheduled PUSCH transmission

R: represents a potential PUSCH re-transmission due to a missed ACK

- 2. SS will only monitor for uplink retransmissions due to ACK missed-detections. Such re-transmissions (if they occur) will potentially happen in TTI 13 to 20. DTXs on TTI 13 to 20 are counted as successful ACK receptions while any transmission on these TTIs is counted as NACKs.
- 3. Repeat steps 1 2 for a duration sufficient to achieve statistical significance according to Annex G clause G.3 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).
- 4. Repeat the same procedure (steps 1 to 3) with test conditions according to the table8.5.1.2.5-1 for Test 2.

8.5.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions

Table 8.5.1.2.4.3-1	MAC-N	MainConfig-RBC
---------------------	-------	----------------

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table	4.8.2.1.5-1		
Information Element	Value/remark	Comment	Condition
MAC-MainConfig-RBC ::= SEQUENCE {			
dl-SCH-Config SEQUENCE {}	Not present		
ul-SCH-Config SEQUENCE {			
maxHARQ-Tx	n2	Only one retransmission per UL HARQ	

8.5.1.2.5 Test requirement

For the parameters specified in Table 8.5.1.2.3-1 the average probability of a miss-detecting ACK for NACK (Pm-dsg) shall be below the specified value in Table 8.5.1.2.5-1.

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
[9.2]	1.4 MHz	[R.19]	EPA5	2 x 2 Low	0.1	5.6 + [TT]
[9.3]	10 MHz	[R.20]	EVA5	4 x 2 Medium	0.1	6.0 + [TT]

Table 8	5.5.1.2.5-1	: Test r	equirement	PHICH
---------	-------------	----------	------------	-------

8.5.2 TDD

8.5.2.1 TDD PHICH Single-antenna Port Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- A diagram showing connections between the SS, interfering source and the UE antenna port (s) is missing
- The test procedure is undefined
- The Message contents are undefined
- The Test system uncertainties applicable to this test are undefined
- Test tolerances have not yet been applied to the wanted and interfering signal levels

8.5.2.1.1 Test purpose

This test verifies the demodulation performance of PHICH for a single antenna port with a given SNR for which a certain Hybrid Indicator detection error rate (i.e. missed detection of "NACK to ACK" and "ACK to NACK") of the specified reference measurement channels [clause FFS] is achieved.

8.5.2.1.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.5.2.1.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Param	eter	Unit	Test [TBD]		
Uplink downlink cor 1)	nfiguration (Note		1		
Special subframe (Note	e configuration 2)		4		
	PHICH_RA	dB			
	PHICH_RB	dB	0		
Downlink power	PCFICH_RA	dB			
allocation	PCFICH_RB	dB			
	PDCCH_RA	dB	0		
PDCCH_RB		dB			
PHICH duration			Normal		
Number of PHICH	groups (Note 3)		Ng = 1		
PDCCH content			All PDCCH resources shall be occupied by non-zero data		
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98		
Cyclic prefix			Normal		
Note 1: as specified in Table 4.2-2 in [TS 36.211] Note 2: as specified in Table 4.2-1 in [TS 36.211] Note 3: according to Clause 6.9 in [TS 36.211]					

 Table 8.5.2.1.3-1: Test Parameters for PHICH

For the parameters specified in Table 8.5.2.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1.3-2.

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
10.41	10.141	15.401	ETURA			
[9.1]	10 MHz	[K.18]	E1070	1 x 2 Low	0.1	5.8
[9.4]	10 MHz	[R.24]	ETU70	1 x 2 Low	0.1	1.3

Table 8.5.2.1.3-2: Minimum performance of PHICH

The normative reference for this requirement is TS 36.101 [2] clause 8.5.

8.5.2.1.4 Test description

8.5.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1

Frequencies to be tested: Mid Range , as defined in TS 36.508 [7] clause 4.3.1.1

Bandwidths to be tested: As specified per test number in Tables 8.5.2.1.3-2 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS, the faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A,Figure A.9.
- 2. The parameter settings for the cell are set up according to 8.5.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 3 according to TS 36.508 [7] clause 4.5.3 and receiving payload data from the SS. Message contents are defined in clause 8.5.2.4.3.

8.5.2.1.4.2 Test procedure

- In Each HARQ process (4 HARQ processes for UL/DL configuration 1), SS shall schedule PUSCH transmissions via PDCCH DCI format 0 with new data indicator set to true. Since the UE has no payload, the UE shall send uplink MAC padding bits in PUSCH. SS upon receiving the PUSCH transmissions shall transmit the associated ACKs. SS will only transmit PDCCH to schedule PUSCH transmission in the appropriate sub-frames. Table 8.5.2.1.4.2-1 indicates the transmissions for one cycle.
- 2. SS will only monitor for uplink retransmissions due to ACK missed-detections. DTX from the UE side is counted as successful ACK reception, while any transmission on these subframes is counted as NACKs.

Subframe	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
Index																				
PDCCH		S			S		S			S										
PHICH												Α			Α		Α			А
PUSCH			R?	R?				Г	Г				Г	Г				R?	R?	
HARQ		1	3	4	2		3	1	2	4		1	3	4	2		3	1	2	4
process																				
Note 1: This	Note 1: This table gives an example test pattern for HARQ process for TDD PHICH test																			
Note 2: Foll	Note 2: Following notation is used:																			
S: represen	S: represents sending PDCCH DCI format 0 to schedule a future PUSCH transmission																			
A: represents the ACK transmission on PHICH																				
T: represents a scheduled PUSCH transmission																				
R: represents a potential PUSCH re-transmission due to a missed ACK																				
Note 3:TDD UL/DL configuration 1 is used here, special subframe is denoted as blue																				

Table 8.5.2.1.4.2-1: PHICH test pattern

- 3. Repeat steps 1 2 for a duration sufficient to achieve statistical significance according to Annex G clause G.3 and measure Pm-an. Pm-an is (NACK) / (ACK + NACK).
- 4. Repeat the same procedure (steps 1 to 3) with test conditions according to the Table 8.5.2.1.5-1 for Test 2.

8.5.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6, with the following exceptions

Table 8.5.1.1.4.3-1: MAC-MainConfig-RBC

Derivation Path: TS 36.508 [7] clause 4.8.2.1.5, Table 4.8.2.1.5-1							
Information Element	Value/remark	Comment	Condition				
MAC-MainConfig-RBC ::= SEQUENCE {							
dl-SCH-Config SEQUENCE {}	Not present						
ul-SCH-Config SEQUENCE {							
maxHARQ-Tx	n2	Only one retransmission per UL HARQ					

8.5.2.1.5 Test requirement

For the parameters specified in Table 8.5.2.1.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1.5-1.

Test	Bandwidth	Reference	Propagation	Antenna	Reference value		
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
[9.1]	10 MHz	[R.18]	ETU70	1 x 2 Low	0.1	5.8+TT	
[9.4]	10 MHz	[R.24]	ETU70	1 x 2 Low	0.1	1.3+TT	

8.5.2.2 TDD PHICH Transmit Diversity Performance

Editor's note: This test case is incomplete. The following aspects are either missing or not yet determined:

- A diagram showing connections between the SS, interfering source and the UE antenna port (s) is missing
- The test procedure is undefined
- The Message contents are undefined

- The Test system uncertainties applicable to this test are undefined
- Test tolerances have not yet been applied to the wanted and interfering signal levels

8.5.2.2.1 Test purpose

This test verifies the demodulation performance of PHICH for transmit diversity with a given SNR for which a certain Hybrid Indicator detection error rate (i.e. missed detection of "NACK to ACK" and "ACK to NACK") of the specified reference measurement channels [clause FFS] is achieved.

8.5.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

8.5.2.2.3 Minimum conformance requirements

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

Param	eter	Unit	Test [TBD]	
Uplink downlink cor 1)	nfiguration (Note		1	
Special subframe configuration (Note 2)			4	
	PHICH_RA	dB		
	PHICH_RB	dB	-3	
Downlink power	PCFICH_RA	dB		
allocation	PCFICH_RB	dB		
	PDCCH_RA	dB	-3	
	PDCCH_RB	dB		
PHICH duration			Normal	
Number of PHICH	groups (Note 3)		Ng = 1	
PDCCH content			All PDCCH resources shall be occupied by non-zero data	
$N_{_{oc}}$ at ante	nna port	dBm/15kHz	-98	
Cyclic p	orefix		Normal	
Note 1: as specified	l in Table 4.2-2 in	[TS 36.211]		
Note 2: as specified	I in Table 4.2-1 in	[TS 36.211]		
Note 3: according to	Clause 6.9 in [T	S 36.211]		

Table 8.5.2.2.3-1: Test Parameters for PHICH

For the parameters specified in Table 8.5.2.2.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.3-2.

Table 8.5.2.2.3-2: Minimum performance of PHICH

Test Bandwidth		Reference	Propagation	Antenna	Reference value		
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
[9.2]	1.4 MHz	[R.19]	EPA5	2 x 2 Low	0.1	5.3	
[9.3]	10 MHz	[R.20]	EVA5	4 x 2 Medium	0.1	6.1	

The normative reference for this requirement is TS 36.101 [2] clause 8.5.

8.5.2.2.4 Test description

8.5.2.2.4.1 Initial conditions

Test Environment: Normal, as defined in TS 36.508 [7] clause 4.1

Frequencies to be tested: Mid Range, as defined in TS 36.508 [7] clause 4.3.1.1

Bandwidths to be tested: As specified per test number in Tables 8.5.2.2.3-2 as defined in TS 36.508 [7] clause 4.3.1.2.

- 1. Connect the SS to the UE antenna connector (s) as shown in Figure [FFS in clause FFS of this document].
- 2. The parameter settings for the cell are set up according to [clause FFS in reference FFS].
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 clause FFS and receiving payload data from the SS. Message contents are defined in clause 8.5.2.2.4.3.

8.5.2.2.4.2 Test procedure

[FFS]

8.5.2.2.4.3 Message contents

Message contents are according to [clause FFS in reference FFS].

8.5.2.2.5 Test requirement

For the parameters specified in Table 8.5.2.2.3-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.5-1.

Table 8.5.2.2.5-1: Test requirement of PHICH

Test	Bandwidth	Bandwidth Reference		Antenna	Reference value		
number		Channel	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)	
[9.2]	1.4 MHz	[R.19]	EPA5	2 x 2 Low	0.1	5.3+TT	
[9.3]	10 MHz	[R.20]	EVA5	4 x 2 Medium	0.1	6.1+TT	

8.6 Demodulation of PBCH

RAN4 will specify the PBCH performance requirements and has recommended that these requirements do not need to be tested.

9 Reporting of Channel State Information

9.1 General

Editor's note: The following aspects are either missing or not yet determined:

- The different combination of transmission modes and reporting modes applicable to verify the the reporting of CSI are undefined
- Methods for testng CQI reporting under fading still FFS
- Testing of PMI/RI reporting performance still FFS
- Test parameters and static levels are undefined.

This section includes requirements for the reporting of channel state information (CSI).

9.2 CQI Reporting under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in [TS 36.211].

9.2.1 CQI Reporting under AWGN conditions - PUCCH 1-0

9.2.1.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-0

Editor's note: The following aspects are either missing or not yet determined:

- Brackets [] need to be removed in table 9.2.1.1.3-1
- The Test procedure and test requirements are undefined

9.2.1.1.1 Test purpose

To verify the variance of the wideband CQI reports is within the limits defined and a PDSCH BLER of 10% falls between the transport format based median CQI-1 and median CQI or the transport format based median CQI and median CQI +1.

9.2.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.2.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.2.1.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI +1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI -1) shall be less than or equal to 0.1

Parameter		Unit	Test 1	Test 2	
Bandwidth	Bandwidth			10	
PDSCH transmission mode				1	
Downlink power	$ ho_{\scriptscriptstyle A}$	dB	0		
allocation	$ ho_{\scriptscriptstyle B}$	3 dB 0	0		
Propagation condition and antenna configuration			AWG	V (1 x 2)	
SNR		dB	[0]	[6]	
$N_{oc}^{(j)}$		dB[mW/15kHz]	[-98] [-98]		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	[-98]	[-92]	
Max number of HARQ transmissions			1		
PUCCH Format			[For	mat 2]	
PUCCH Report Type				4	
Reporting periodicity		ms	$[N_{\rm P} = 5 {\rm ms}]$		
cqi-pmi-ConfigurationIndex			5		
Note: Reference mea	surement c	hannel according to	Table A.4-1		

Table 9.2.1.1.3-1: PUCCH 1-0 static test

9.2.1.1.4 Test description

9.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.2.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.2.1.1.4.3.

9.2.1.1.4.2 Test procedure

[FFS]

9.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			CQI_PERIO DIC
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	5	(see Table 7.2.2- 1A in TS 36.213)	FDD
cqi-FormatIndicatorPeriodic CHOICE {			
widebandCQI	NULL		
}			
ri-ConfigIndex	NULL	(see Table 7.2.2- 1B in TS 36.213)	FDD
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.2.1.1.4.3-1: CQI-ReportConfig-DEFAULT

9.2.1.1.5 Test requirement

[FFS]

9.2.1.2 TDD CQI Reporting under AWGN conditions – PUCCH 1-0

Editor's note: The following aspects are either missing or not yet determined:

- Brackets[] need to be removed in table 9.2.1.2.3-1
- The Test procedure and test requirements are undefined

9.2.1.2.1 Test purpose

To verify the variance of the wideband CQI reports is within the limits defined and a PDSCH BLER of 10% falls between the transport format based on median CQI-1 and median CQI or the transport format based on median CQI and median CQI +1.

9.2.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.2.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.2.1.2.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-2 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI +1) shall be greater than 0.1. If the PDSCH BLER using the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1. The BLER using transport format indicated by the median CQI is greater than 0.1. The BLER using transport format indicated by (median CQI -1) shall be less than or equal to 0.1.

Parameter		Unit	Test 1	Test 2		
Bandwidth		MHz	10			
PDSCH transmissio	on mode		1			
Uplink downlink conf	iguration			1		
Special subfra configuration	me า		4			
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		0		
allocation	$ ho_{\scriptscriptstyle B}$	dB	0			
Propagation condition and antenna configuration			AWGN (1 x 2)			
SNR		dB	[0]	[6]		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	[-98]	[-92]		
Maximum number of HARQ transmissions			1			
PUCCH Format			[For	mat 2]		
PUCCH Report Type				4		
Reporting periodicity		ms	N _P	9 = 5		
cqi-pmi-Configurati	onIndex		4			
Note: Reference mea	surement o	channel according to	clause A.4			

Table 9.2.1.2.3-1: PUCCH 1-0 static test (TDD)

9.2.1.2.4 Test description

9.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS,faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.9.
- 2. The parameter settings for the cell are set up according to Table 9.2.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.2.1.2.4.3.

9.2.1.2.4.2 Test procedure

[FFS]

9.2.1.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	4		
cqi-FormatIndicatorPeriodic CHOICE {			
widebandCQI	NULL		
}			
ri-ConfigIndex	NULL		
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.2.1.2.4.3-1: CQI-ReportConfig-DEFAULT

Table 9.2.	1.2.4.3-2:	TDD-Config-	DEFAULT
------------	------------	--------------------	---------

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	sa2		
specialSubframePatterns	ssp4		
}			

9.2.1.2.5 Test requirement

[FFS]

9.2.2 CQI Reporting under AWGN conditions - PUCCH 1-1

9.2.2.1 FDD CQI Reporting under AWGN conditions – PUCCH 1-1

Editor's note: The following aspects are either missing or not yet determined:

- Brackets[] need to be removed in table 9.2.2.1.3-1
- The Test procedure and test requirements are undefined

9.2.2.1.1 Test purpose

To verify the variance of the wideband spatial differential CQI between codeword #0 and codeword #1 are within the limits defined and for both codeword #0 and codeword #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 - 1$ and median $CQI_1 - 1$ shall be less than or equal to 0.1 and the PDSCH BLER using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

9.2.2.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.2.2.1.3 Minimum conformance requirements

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband spatial differential CQI between codeword #0 and codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed

precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

For the parameters specified in table 9.2.2.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2.2 in [TS 36.213]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 – Codeword 1 offset level

The wideband CQI_1 shall be within the set {median $CQI_1 - 1$, median $CQI_1 + 1$ } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 - 1$ and median $CQI_1 - 1$ shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

Parameter		Unit	Test 1	Test 2
Bandwidth		MHz	10	
PDSCH transmissio	on mode			4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3
Propagation condit antenna configur	ion and ation		Clause B.1 (2 x 2)	
CodeBookSubsetRestriction bitmap			010000	
SNR		dB	[10]	[16]
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	[-88]	[-82]
Max number of H transmission	IARQ s		1	
PUCCH Form	at		[Format 2]	
PUCCH Report Type			2	
Reporting periodicity		ms	N _P = 5	
cqi-pmi-ConfigurationIndex			5	
ri-ConfigurationInd			[966 (<i>M</i>	RI = OFF)]
Note 1: Reference me	easuremen	t channel according	to clause A.4	

Table 9.2.2.1.3-1: PUCCH 1-1 static test (FDD)

9.2.2.1.4 Test description

9.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.2.2.1.3-1.

- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.2.2.1.4.3.

9.2.2.1.4.2 Test procedure

[FFS]

9.2.2.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.2.2.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	010000		
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 9.2.2.1.4.3-2: PDSCH-ConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
р-а	dB-3		
}			

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			CQI_PERIO DIC
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	5	(see Table 7.2.2- 1A in TS 36.213)	FDD
cqi-FormatIndicatorPeriodic CHOICE {			
subbandCQI	NULL		
}			
ri-ConfigIndex	[966]	(see Table 7.2.2- 1B in TS 36.213)	FDD
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.2.2.1.4.3-3: CQI-ReportConfig-DEFAULT

9.2.2.1.5 Test requirement

[FFS]

9.2.2.2 TDD CQI Reporting under AWGN conditions – PUCCH 1-1

- Brackets[] need to be removed in table 9.2.2.1.3-1
- The Test procedure and test requirements are undefined

9.2.2.2.1 Test purpose

To verify the variance of the wideband spatial differential CQI between codeword #0 and codeword #1 are within the limits defined and for both codeword #0 and codeword #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 - 1$ and median $CQI_1 - 1$ shall be less than or equal to 0.1 and the PDSCH BLER using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

9.2.2.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.2.2.2.3 Minimum conformance requirements

For the parameters specified in table 9.2.2.3-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2.2 in [TS 36.213]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 – Codeword 1 offset level

The wideband CQI_1 shall be within the set {median $CQI_1 - 1$, median $CQI_1 + 1$ } for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median $CQI_0 - 1$ and median $CQI_1 - 1$ shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER

using the transport format indicated by the respective median $CQI_0 + 1$ and median $CQI_1 + 1$ shall be greater than or equal to 0.1.

Parameter		Unit	Test 1	Test 2
Bandwidth		MHz	10	
PDSCH transmission	on mode			4
Uplink downlink cont	figuration			1
Special subfra configuration	me า			4
Downlink power	$ ho_{\scriptscriptstyle A}$	dB		-3
allocation	$ ho_{\scriptscriptstyle B}$	dB		-3
Propagation condition and antenna configuration			Clause B.1 (2 x 2)	
CodeBookSubsetRe bitmap	estriction		010000	
SNR		dB	[10]	[16]
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	-98
$\hat{I}^{(j)}_{or}$		dB[mW/15kHz]	[-88]	[-82]
Maximum number o transmission	of HARQ s		1	
PUCCH Form	nat		[Format 2]	
PUCCH Report Type			2	
Reporting period	Reporting periodicity		N _F	o = 5
cqi-pmi-Configurati	cqi-pmi-ConfigurationIndex			4
ri-Configuratior	nInd		[966 (<i>M</i>	_{RI} = OFF)]
Note 1: Reference m	easuremen	t channel according	to clause A.4	

Table 9.2.2.3-1: PUCCH 1-1 static test (TDD)

9.2.2.2.4 Test description

9.2.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS, faders and AWGN noise source to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.2.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2 and uplink signals according to Annex H1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.2.2.2.4.3.

9.2.2.2.4.2 Test procedure

[FFS]

9.2.2.2.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.2.2.2.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::=			
SEQUENCE {			
antennalnfo CHOICE {			
antennalnfoDedicated ::= SEQUENCE {			
transmissionMode	tm4		
}			
codebookSubsetRestriction CHOICE {			
n2TxAntenna-tm4	010000		
ue-TransmitAntennaSelection CHOICE {			
release	NULL		
}			
}			
}			

Table 9.2.2.2.4.3-2: PDSCH-ConfigDedicated-DEFAULT

Derivation Path: TS 36.508 [7] clause 4.6.3, Table 4.6.3-6 PDSCH-ConfigDedicated-DEFAULT			
Information Element	Value/remark	Comment	Condition
PDSCH-ConfigDedicated-DEFAULT ::=			
SEQUENCE {			
p-a	dB-3		
}			

Table 9.2.2.2.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	Not present		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic CHOICE {			
setup SEQUENCE {			
cqi-PUCCH-ResourceIndex	0		
cqi-pmi-ConfigIndex	4		
cqi-FormatIndicatorPeriodic CHOICE {			
widebandCQI	NULL		
}			
ri-ConfigIndex	[966]		
simultaneousAckNackAndCQI	FALSE		
}			
}			
}			

Table 9.2.2.2.4.3-4: TDD-Config-DEFAULT

Derivation Path: 36.508 clause 4.6.3			
Information Element	Value/remark	Comment	Condition
TDD-Config-DEFAULT ::= SEQUENCE {			
subframeAssignment	Sa2		
specialSubframePatterns	Ssp4		
}			

9.2.2.2.5 Test requirement

[FFS]

9.3 CQI Reporting under fading conditions

9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on any one of the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* [36.213].

9.3.1.1 Frequency-selective scheduling mode - PUSCH 3-0

9.3.1.1.1 FDD Frequency-selective scheduling mode – PUSCH 3-0

Editor's note: The following aspects are either missing or not yet determined:

- Physical channels used are undefined
- The Initial Conditions including UE setup are undefined
- The Test procedure and test requirements are undefined
- The Message contents are undefined
- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

9.3.1.1.1.1 Test purpose

To verify that preferred sub-bands can be used for frequently-selective scheduling.

9.3.1.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.3.1.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.3.1.1.1.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in Table 9.3.1.1.1.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on any one of the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;
- c) [BLER requirement]
- [Editors note: use of requirement (c) is TBD]

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI. The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 [TS 36.213] that corresponds to the sub-band size.

Parameter	Unit	Test 1	Test 2
Bandwidth	MHz	10	MHz
Transmission mode		1 (po	ort 0)
SNR	dB	[9]	[14]
$N_{oc}^{(j)}$	dB[mW/15kHz]	[-98]	[-98]
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	[-89]	[-84]
Descention showed		[Clause B.2.4 wi	th $\tau_d = 0.45 \mu \text{s}$,
Propagation channel		$a = 1, f_{1}$	$_{\rm p}=5{\rm Hz}$]
Correlation		[Fi	ull]
Reporting interval	ms	[!	5]
CQI delay		8	3
Reporting mode		PUSC	CH 3-0
Max number of HARQ		[·	11
transmissions		L	1]
Note 1: If the UE reports	in an available upli	nk reporting instar	ice at subframe
SF#n based on CQI estimation at a downlink subframe not later			
than SF#(n-4), this reported subband or wideband CQI cannot be			
applied at the eNB downlink before SF#(n+4)			
NOTE2: Reference measurement channel according to Table A.4-4			

Table 9.3.1.1.1.3-1 Sub-band test for single antenna transmission (FDD)

Table 9.3.1.1.1.3-2	Minimum	requirement (FDD)
	Willingth	requirement	וששי

	Test 1	Test 2	
α[%]	TBD	TBD	
β [%]	TBD	TBD	
γ	TBD	TBD	

9.3.1.1.1.4 Test description

9.3.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure [FFS].
- 2. The parameter settings for the cell are set up according to Table 9.3.1.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.3.1.1.1.4.3.

9.3.1.1.1.4.2 Test procedure

[FFS]

9.3.1.1.1.4.3 Message contents

Message contents are according to [clause FFS in reference FFS].

931115	Test requirement
0.0.1.1.1.0	restrequirement

[FFS]

.

9.3.1.1.2 TDD Frequency-selective scheduling mode – PUSCH 3-0

9.3.1.1.2.1 Test purpose

To verify that preferred sub-bands can be used for frequently-selective scheduling.

9.3.1.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.3.1.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.3.1.1.2.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in Table 9.3.1.1.2.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on any one of the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;

c) [BLER requirement]

[Editors note: details of additional requirements (c) is TBD]

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each available downlink transmission instance]. The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 [TS 36.213] that corresponds to the sub-band size.

Parameter	Unit	Test 1	Test 2	
Bandwidth	MHz	10 MHz		
Transmission mode		1 (port 0)		
Uplink downlink		1		
configuration				
Special subframe configuration		4		
SNR	dB	[9]	[14]	
$N_{oc}^{(j)}$	dB[mW/15kHz]	[-98]	[-98]	
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	[-89]	[-84]	
Propagation channel		[Clause B.2.4 with $\tau_d = 0.45 \mu { m s}$ a = 1, f_D = 5 Hz]		
r topagation channel				
Correlation		[Full]		
Reporting interval	ms	[5]		
Minimum CQI delay	ms	8		
Reporting mode		PUSCH 3-0		
Max number of HARQ		[4]		
transmissions		[1]		
Note 1: If the UE reports in an available uplink reporting instance at subframe				
SF#n based on CQI estimation at a downlink subframe not later				
than SF#(n-4), this reported subband or wideband CQI cannot be				
applied at the eNB downlink before SF#(n+4)				

Table 9.3.1.1.2.3-1: Sub-band test for single antenna transmission (TDD)

Table 9.3.1.1.2.3-2: Minimum requirement (TDD)

	Test 1	Test 2	
α[%]	TBD	TBD	
β [%]	TBD	TBD	
γ	TBD	TBD	

9.3.1.1.2.4 Test description

9.3.1.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure [FFS].
- 2. The parameter settings for the cell are set up according to Table 9.3.1.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B.0
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.3.1.1.2.4.3.

9.3.1.1.2.4.2 Test procedure

[FFS]

9.3.1.1.2.4.3 Message contents

Message contents are according to [clause FFS in FFS].

9.3.1.1.2.5 Test requirement

[FFS]

9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by a double-sided percentile of the reported CQI, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI.

9.3.2.1 Frequency non-selective scheduling mode – PUCCH 1-0

9.3.2.1.1 FDD Frequency non-selective scheduling mode – PUCCH 1-0

Editor's note: The following aspects are either missing or not yet determined:

- Measurement channel used is undefined
- Physical channels used are undefined
- The Initial Conditions including UE setup are undefined
- The Test procedure and test requirements are undefined
- The Message contents are undefined
- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

9.3.2.1.1.1 Test purpose

To verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling

9.3.2.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.3.2.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.3.2.1.1.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in Table 9.3.2.1.1.3-2 and by the following

- a) CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to TBD

The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 [36.213] that corresponds to the maximum transmission configuration (Table 5.6-1).

Parameter	Unit	Test 1	Test 2
Bandwidth	MHz	10 MHz	
Transmission mode		1 (port 0)	
SNR	dB	6	12
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-92	-86
Propagation channel		EPA5	
Correlation		High	
Reporting mode		PUCCH 1-0	
Reporting periodicity	ms	[N _P = 2]	
CQI delay	ms	8	
PUCCH Format		[Format 2]	
PUCCH Report Type		4	
cqi-pmi-		[4]	
ConfigurationIndex		[1]	
Max number of HARQ transmissions		1	
Note 1: If the UE reports in an available uplink reporting instance at			
subframe SF#n based on CQI estimation at a downlink SE not later			
than SF#(n-4), this reported wideband CQI cannot be applied at the			
eNB downlink before SF#(n+4)			
Note 2 [.] Reference me	Note 2: Reference measurement channel according to Table A 4-1		

Table 9.3.2.1.1.3-1	Fading t	est for sin	gle antenna ((FDD))
---------------------	----------	-------------	---------------	-------	---

Table 9.3.2.1.1.3-2 Minimum requirement (FDD)

	Test 1	Test 2	
α[%]	[20]	[20]	
γ	TBD	TBD	

9.3.2.1.1.4 Test description

9.3.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.1

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure [FFS].
- 2. The parameter settings for the cell are set up according to Table 9.3.2.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.3.2.1.1.4.3.
216

[FFS]

9.3.2.1.1.4.3 Message contents

Message contents are according to [clause FFS in reference FFS].

9.3.2.1.1.5 Test requirement

[FFS]

9.3.2.1.2 TDD Frequency non-selective scheduling mode – PUCCH 1-0

9.3.2.1.2.1 Test purpose

To verify that the UE is tracking the channel variations and selecting the transport format according to the prevailing channel state for frequently non-selective scheduling

9.3.2.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.3.2.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.3.2.1.2.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in Table 9.3.2.1.2.3-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to TBD

The transport block size TBS(wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the N_{PRB} entry in Table 7.1.7.2.1-1 [36.213] that corresponds to the maximum transmission configuration (Table 5.6-1).

Parameter	Unit	Test 1	Test 2	
Bandwidth	MHz	10 MHz		
Transmission mode		1 (po	ort 0)	
Uplink downlink configuration		ŕ	l	
Special subframe configuration		2	1	
SNR	dB	6	12	
$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	-98	
$\hat{I}_{or}^{(j)}$	dB[mW/15kHz]	-92	-86	
Propagation channel		EP	A5	
Correlation		Hi	gh	
Reporting mode		PUCC	H 1-0	
Reporting periodicity	ms	[<i>N</i> _P	= 1]	
CQI delay	ms	8	3	
Minimum CQI delay	ms	8	3	
PUCCH Format		[Forn	nat 2]	
PUCCH Report Type		4	1	
cqi-pmi- ConfigurationIndex		[()]	
Max number of HARQ transmissions			l	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)				

Table 9.3.2.1.2.3-1: Fadin	g test for single anter	າna (TDD)
----------------------------	-------------------------	-----------

	Table 9.	3.2.1.2.3-2:	Minimum	requirement	(TDD)
--	----------	--------------	---------	-------------	-------

	Test 1	Test 2	
α[%]	[20]	[20]	
γ	TBD	TBD	

9.3.2.1.2.4 Test description

9.3.2.1.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure [FFS].
- 2. The parameter settings for the cell are set up according to Table 9.3.2.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C0, C.1 and Annex C.3.2, and uplink signals according to Annex H.3.2.
- 4. Propagation conditions are set according to Annex B.0.
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.3.2.1.2.4.3.

218

9.3.2.1.2.4.2	Test procedure
0.0.2.1.2.4.2	rest procedure

[FFS]

9.3.2.1.2.4.3 Message contents

Message contents are according to [clause FFS in reference FFS].

9.3.2.1.2.5 Test requirement

[FFS]

9.4 Reporting of Precoding Matrix Indicator (PMI)

[Editors note: the test procedure described in this setion is still FFS]

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding. Transmission mode [8] is used with a fixed transport format (FRC)

configured. The requirements are specified in terms of the ratio $\gamma = \frac{t_{ue}}{1}$

Where t_{rnd} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding, and t_{ue} the throughput measured at SNR_{rnd} with precoders configured according to the UE reports.

9.4.1 Single PMI

9.4.1.1 Single PMI – PUSCH 3-1

9.4.1.1.1 FDD Single PMI – PUSCH 3-1

Editor's note: The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

9.4.1.1.1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.1.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.4.1.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.1.1.1.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in Table 9.4.1.1.1.3-2.

Pai	rameter	Unit	Test 1	Test 2	
Ba	ndwidth	MHz	10		
Transm	ission mode		6		
Propaga	ation channel		EVA5		
Precodir	ng granularity		50		
Corre antenna	lation and configuration		Low 2 x 2		
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-98		
Repo	rting mode	node PUSCH 3-1			
Report	ting interval	Ms [1]			
PN (N	PMI delay (Note 2) Ms 8				
Measure	ment channel	nent channel [R.10 FDD]			
Max num trans	Max number of HARQ transmissions 4				
Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity)					
Note 2:	Note 2: If the UE reports in an available uplink reporting instance at				
	subrame SF#n based on PMI estimation at a downlink SF not later				
than SF#(n-4), this reported PMI cannot be applied at the eNB					
downlink before SF#(n+4).					

Table 9.4.1.1.1.3-1 PMI test for single-layer (FDD)

Table 9.4.1.1.1.3-2 Minimum	requirement (FDD)
-----------------------------	-------------------

	Test 1	Test 2
γ	[1.1]	

9.4.1.1.1.4 Test description

9.4.1.1.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.1.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.1.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.4.1.1.4.3.

9.4.1.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.4.1.1.1.3-1 as appropriate. Set SNR to [x] dB.
- 2. The SS shall transmit PDSCH with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.213 [10]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. Measure the average throughput for a duration sufficient to achieve statistical significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.

- 3. If throughput is more than or equal to 60% of the maximum throughput according to Tables G.3.5 and G.3.6 in Annex G clause G.3, go to step 4. Otherwise go to step 5.
- 4. Decrease SNR by [y] dB and do the same procedure as step 2 until throughput is below 60% of the maximum throughput. Once throughput is below 60% of the maximum throughput, declair current SNR+[y] as SNR_{rnd} and the throughput at SNR_{rnd} as t_{rnd} . Then go to step 6.5. Increase SNR by [y] dB and do the same procedure as step 2 until throughput is more than or equal to 60% of the maximum throughput. Once throughput is more than or equal to 60% of the maximum throughput. Once throughput at SNR_{rnd} as t_{rnd} . Then go to step 6.
- Set SNR to SNR_{rnd}. The SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. Measure the average throughput. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.

If the ratio (throughput / t_{rnd}) $\geq \gamma$ which is specified in table 9.4.1.1.1.5-1, then pass the UE. Otherwise fail the UE.

7. Repeat the same procedure (steps 1 to 6) with test conditions according to the table 9.4.1.1.3-1 for Test 2.

9.4.1.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.1.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
antennaInfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.1.1.1.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennalnfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction	Not present		
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			

Table 9.4.1.1.1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm31		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

9.4.1.1.1.5 Test requirement

Table 9.4.1.1.1.5-1 Test requirement (FDD)

	Test 1	Test 2
γ	[1.1+TT]	

The ratio of throughput using precoding matrix of PMI reports from the UE to using random precoding matrix shall equal or exceed the value specified in table 9.4.1.1.1.5.

9.4.1.1.2 TDD Single PMI – PUSCH 3-1

9.4.1.1.2.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.1.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.4.1.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.4.1.1.2.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in 9.4.1.1.2.3-2.

_				
Par	ameter	Unit	lest 1	lest 2
Bai	ndwidth	MHz	10	
Transm	ission mode		6	
Uplink	< downlink		1	
conf	iguration		I	
Specia	al subframe		Λ	
conf	iguration		4	
Propaga	tion channel		EVA5	
Precodir	ng granularity		50	
Corre	lation and			
antenna	configuration			
	$N^{(j)}$	$dB[m]//(15kH_7)$	-08	
	v _{oc}		-30	
Repor	rting mode		PUSCH 3-1	
Report	ing interval	Ms	[1]	
Minimu	m PMIdelay	Ma	0	
(N	ode-2)	1015	0	
Measure	ment channel		[R.2 TDD]	
Max num	ber of HARQ		Λ	
trans	missions		4	
Note 1:	For random p	recoder selection, th	ne precoder shall	be updated in
	each available	available downlink transmission instance		
Note 2:	If the UE repo	rts in an available u	plink reporting in:	stance at
	subrame SF#	n based on PMI est	imation at a down	link SF not later
	than SF#(n-4)	, this reported PMI	cannot be applied	d at the eNB
downlink before SF#(n+4)				

Table 9.4.1.1.2.3-1 PMI test for single-layer (TDD)

Table 9.4.1.1.2.3-2 Minimum requirement (TDD)

	Test 1	Test 2
γ	[1.1]	

9.4.1.1.2.4 Test description

9.4.1.1.2.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure [FFS].
- 2. The parameter settings for the cell are set up according to Table 9.4.1.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.4.1.1.2.4.3.

9.4.1.1.2.4.2 Test procedure

[FFS]

9.4.1.1.2.4.3 Message contents

Message contents are according to [clause FFS in FFS].

9.4.1.1.2.5 Test requirement

[FFS]

9.4.2 Multiple PMI

9.4.2.1 Multiple PMI – PUSCH 1-2

9.4.2.1.1 FDD Multiple PMI – PUSCH 1-2

Editor's note: The following aspects are either missing or not yet determined:

- The Test system uncertainties applicable to this test are undefined
- Test tolerances for SNR have not yet been applied

9.4.2.1.1.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.1.1.2 Test applicability

This test applies to all types of E-UTRA FDD UE release 8 and forward.

9.4.2.1.1.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.1.1.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in 9.4.2.1.1.3-2.

Pa	rameter	Unit	Test 1	Test 2
Ba	ndwidth	MHz	20	
Transm	nission mode		6	
Propaga	ation channel		EPA5	
Precodii	ng granularity		8	
Corre antenna	elation and configuration		Low 2 x 2	
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	
Repo	rting mode		PUSCH 1-2	
Repor	ting interval	Ms	[1]	
PN	/II delay	Ms	8	
Measure	ment channel		[R.30 FDD]	
Max num trans	nber of HARQ smissions		4	
Note 1:	Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity)			ll be updated in
Note 2:	If the UE repo	rts in an available u	plink reporting ins	tance at
	subrame SF#	n based on PMI est	imation at a downl	ink SF not later
	than SF#(n-4)	, this reported PMI	cannot be applied	at the eNB
downlink before SF#(n+4)				

Table 9.4.2.1.1.3-1 PMI test for single-layer (FDD)

Table 9.4.2.1.1.3-2 Minimum requirement (FDD)

	Test 1	Test 2
γ	[1.2]	

9.4.2.1.1.4 Test description

9.4.2.1.1.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 20MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure A.10.
- 2. The parameter settings for the cell are set up according to Table 9.4.2.1.1.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.4.2.1.1.4.3.

9.4.2.1.1.4.2 Test procedure

- 1. Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 9.4.1.1.1.3-1 as appropriate. Set SNR to [x] dB.
- 2. The SS shall transmit PDSCH with randomly selected precoding matrix from codebook (Table 6.3.4.2.3-1 in TS 36.213 [10]) every subframe regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. Measure the average throughput for a duration sufficient to achieve statistical

significance according to Annex G clause G.3. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.

- 3. If throughput is more than or equal to 60% of the maximum throughput according to Tables G.3.5 and G.3.6 in Annex G clause G.3, go to step 4. Otherwise go to step 5.
- 4. Decrease SNR by [y] dB and do the same procedure as step 2 until throughput is below 60% of the maximum throughput. Once throughput is below 60% of the maximum throughput, declair current SNR+[y] as SNR_{rnd} and the throughput at SNR_{rnd} as t_{rnd} . Then go to step 6.
- 5. Increase SNR by [y] dB and do the same procedure as step 2 until throughput is more than or equal to 60% of the maximum throughput. Once throughput is more than or equal 60% of the maximum throughput, declair current SNR as SNR_{rnd} and the throughput at SNR_{rnd} as t_{rnd} . Then go to step 6.
- Set SNR to SNR_{rnd}. The SS shall transmit PDSCH with precoding matrix according to PMI report from the UE. Measure the average throughput. Count the number of NACKs, ACKs and statDTXs on the UL during the test interval.

7. Repeat the same procedure (steps 1 to 6) with test conditions according to the table 9.4.2.1.1.3-1 for Test 2.

9.4.2.1.1.4.3 Message contents

Message contents are according to TS 36.508 [7] clause 4.6 with the following exceptions:

Table 9.4.2.1.1.4.3-1: PhysicalConfigDedicated-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
antennaInfo CHOICE {			
explicitValue	AntennaInfoDedicated		
}			
}			

Table 9.4.2.1.1.4.3-2: AntennalnfoDedicated

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
AntennaInfoDedicated ::= SEQUENCE {			
transmissionMode	tm6		
codebookSubsetRestriction	Not present		
ue-TransmitAntennaSelection CHOICE{			
release	NULL		
}			

Table 9.4.2.1.1.4.3-3: CQI-ReportConfig-DEFAULT

Derivation Path: 36.331 clause 6.3.2			
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	rm12		
nomPDSCH-RS-EPRE-Offset	0		
cqi-ReportPeriodic	Not present		
}			

If the ratio (throughput / t_{rnd}) $\geq \gamma$ which is specified in table 9.4.2.1.1.5-1, then pass the UE. Otherwise fail the UE.

225

9.4.2.1.1.5 Test requirement

Table 9.4.2.1.1.5-1 Test requirement (FDD)

	Test 1	Test 2
γ	[1.2+TT]	
		•

9.4.2.1.2 TDD Multiple PMI – PUSCH 1-2

9.4.2.1.2.1 Test purpose

To test the accuracy of the Precoding Matrix Indicator (PMI) reporting such that the system throughput is maximized based on the precoders configured according to the UE reports.

9.4.2.1.2.2 Test applicability

This test applies to all types of E-UTRA TDD UE release 8 and forward.

9.4.2.1.2.3 Minimum conformance requirements

For the parameters specified in Table 9.4.2.1.2.3-1, [and using the downlink physical channels specified in Annex C,] the minimum requirements are specified in 9.4.2.1.2.3-2.

Pa	rameter	Unit	Test 1	Test 2
Ba	ndwidth	MHz	20	
Transm	ission mode		6	
Uplin	k downlink		1	
cont	figuration		1	
Specia	al subframe		4	
cont	figuration			
Propaga	ation channel		EPA5	
Precodir	ng granularity		8	
Corre	elation and		10w2x2	
antenna	configuration			
	$N_{oc}^{(j)}$	dB[mW/15kHz]	-98	
Repo	rting mode		PUSCH 1-2	
Repor	ting interval	Ms	[1]	
Minimu	m PMI delay	Ms	8	
Measure	ment channel		[16QAM 1/2]	
Max num	nber of HARQ		4	
trans	smissions		4	
Note 1:	For random p	recoder selection, th	ne precoders shal	I be updated in
	each available	ble downlink transmission instance		
Note 2:	If the UE repo	rts in an available u	plink reporting ins	stance at
	subrame SF#	n based on PMI est	imation at a down	link SF not later
	than SF#(n-4)	, this reported PMI	cannot be applied	l at the eNB
downlink before SF#(n+4)				

Table 9.4.2.1.2.3-1 PMI test for single-layer (TDD)

Table 9.4.2.1.2.3-2 Minimum	requirement ((TDD))
-----------------------------	---------------	-------	---

	Test 1	Test 2
γ	[1.2]	

226

9.4.2.1.2.4 Test description

9.4.2.1.2.4.1 Initial conditions

Test Environment: Normal as defined in TS 36.508 [7] clause 4.1.

Frequencies to be tested: Mid Range as defined in TS 36.508 [7] clause 4.3.1.2.

Channel Bandwidths to be tested: 10MHz, as defined in TS 36.508 [7] clause 4.3.1.2

- 1. Connect the SS to the UE antenna connector (s) as shown in TS 36.508 [7] Annex A, Figure [FFS].
- 2. The parameter settings for the cell are set up according to Table 9.4.2.1.2.3-1.
- 3. Downlink signals are initially set up according to Annex C.1 and Annex C.3.2, and uplink signals according to Annex H.1 and H.3.2.
- 4. Propagation conditions are set according to Annex B clause B.0
- 5. Ensure the UE is in State 4 according to TS 36.508 [7] clause 4.5.4 and receiving payload data from the SS. Message contents are defined in clause 9.4.2.1.2.4.3.

9.4.2.1.2.4.2 Test procedure

[FFS]

9.4.2.1.2.4.3 Message contents

Message contents are according to [clause FFS in FFS].

9.4.2.1.2.5 Test requirement

[FFS]

Annex A (normative): Measurement Channels

A.1 General

A schematic overview of the encoding process for the reference measurement channels is provided in Figure A-1.

Figure A-1: Schematic overview of the encoding process

A.2 UL reference measurement channels

A.2.1 General

A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- HARQ transmission
- Cyclic Prefix normal

- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [8] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [9] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

 $\min |R - (A + 24) / N_{ch}|,$

subject to

- a) A is a valid TB size according to clause 7.1.7 of TS 36.213 [10] assuming an allocation of $N_{\rm RB}$ resource blocks.
- b) Segmentation is not included in this formula, but should be considered in the TBS calculation.
- c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.
- 3. If there is more than one A that minimises the equation above, then the larger value is chosen per default.

A.2.2 Reference measurement channels for FDD

A.2.2.1 Full RB allocation

A.2.2.1.1 QPSK

Table A.2.2.1.1-1: Reference Channels for QPSK with full RB allocation

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
DFT-OFDM Symbols per subframe		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks - C		1	1	1	1	1	1
Code block CRC size	Bits	0	0	0	0	0	0
Total number of bits per sub-frame	Bits	1728	4320	7200	14400	21600	28800
Total symbols per sub-frame		864	2160	3600	7200	10800	14400
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1: Reference Channels for 16-QAM with full RB allocation

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
DFT-OFDM Symbols per subframe		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3
Payload size	Bits	2600	4264	4968	21384	21384	19848
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks - C		1	1	1	4	4	4
Code block CRC size	Bits	0	0	0	24	24	24
Total number of bits per sub-frame	Bits	3456	8640	14400	28800	43200	57600
Total symbols per sub-frame		864	2160	3600	7200	10800	14400
UE Category		1-5	1-5	1-5	2-5	2-5	2-5

A.2.2.1.3 64-QAM

[FFS]

A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.2.2.1 QPSK

Table A.2.2.2.1-1: Reference Channels for 1.4MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
DFT-OFDM Symbols per subframe		12	12
Modulation		QPSK	QPSK
Target Coding rate		1/3	1/3
Payload size	Bits	72	424
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	288	1440
Total symbols per sub-frame		144	720
UE Category		1-5	1-5

Table A.2.2.2.1-2: Reference Channels for 3MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
DFT-OFDM Symbols per subframe		12	12
Modulation		QPSK	QPSK
Target Coding rate		1/3	1/3
Payload size	Bits	72	392
Transport block CRC	Bits	24	24
Number of code blocks – C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	288	1152
Total symbols per sub-frame		144	576
UE Category		1-5	1-5

Table A.2.2.2.1-3: Reference	Channels for 5MHz	QPSK with part	ial RB allocation
------------------------------	-------------------	-----------------------	-------------------

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	5	5	5
Allocated resource blocks		1	8	20
DFT-OFDM Symbols per subframe		12	12	12
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size	Bits	72	808	1736
Transport block CRC	Bits	24	24	24
Number of code blocks - C		1	1	1
Code block CRC size	Bits	0	0	0
Total number of bits per sub-frame	Bits	288	2304	5760
Total symbols per sub-frame		144	1152	2880
UE Category		1-5	1-5	1-5

Parameter	Unit	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10
Allocated resource blocks		1	12	20	25
DFT-OFDM Symbols per subframe		12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3
Payload size	Bits	72	1224	1736	2216
Transport block CRC	Bits	24	24	24	24
Number of code blocks - C		1	1	1	1
Code block CRC size	Bits	0	0	0	0
Total number of bits per sub-frame	Bits	288	3456	5760	7200
Total symbols per sub-frame		144	1728	2880	3600
UE Category		1-5	1-5	1-5	1-5

Table A.2.2.2.1-4: Reference Channels for 10MHz QPSK with partial RB allocation

Table A.2.2.2.1-5: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	15	15	15
Allocated resource blocks		1	16	50
DFT-OFDM Symbols per subframe		12	12	12
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size	Bits	72	1384	5160
Transport block CRC	Bits	24	24	24
Number of code blocks - C		1	1	1
Code block CRC size	Bits	0	0	0
Total number of bits per sub-frame	Bits	288	4608	14400
Total symbols per sub-frame		144	2304	7200
UE Category		1-5	1-5	1-5

Table A.2.2.2.1-6: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20
Allocated resource blocks		1	18	25	50	75
DFT-OFDM Symbols per subframe		12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5
Payload size	Bits	72	1864	2216	5160	3492
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks - C		1	1	1	1	1
Code block CRC size	Bits	0	0	0	0	0
Total number of bits per sub-frame	Bits	288	5184	7200	14400	21600
Total symbols per sub-frame		144	2592	3600	7200	10800
UE Category		1-5	1-5	1-5	1-5	1-5

A.2.2.2.2 16-QAM

Table A.2.2.2.1: Reference Channels for 1.4MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	2152
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	2880
Total symbols per sub-frame		144	720
UE Category		1-5	1-5

Table A.2.2.2.2-2: Reference Channels for 3MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	1736
Transport block CRC	Bits	24	24
Number of code blocks – C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	2304
Total symbols per sub-frame		144	576
UE Category		1-5	1-5

Table A.2.2.2.3: Reference Channels for 5MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	5	5
Allocated resource blocks		1	8
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	3496
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	4608
Total symbols per sub-frame		144	1152
UE Category		1-5	1-5

Parameter	Unit	Value	Value
Channel bandwidth	MHz	10	10
Allocated resource blocks		1	12
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	5160
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	6912
Total symbols per sub-frame		144	1728
UE Category		1-5	1-5

Table A.2.2.2.2-4: Reference Channels for 10MHz 16-QAM with partial RB allocation

Table A.2.2.2.2-5: Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	15	15
Allocated resource blocks		1	16
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	1/2
Payload size	Bits	408	4584
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	9216
Total symbols per sub-frame		144	2304
UE Category		1-5	1-5

Table A.2.2.2.2-6: Reference Channels for 20MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	20	20
Allocated resource blocks		1	18
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	1/2
Payload size	Bits	408	5160
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame	Bits	576	10368
Total symbols per sub-frame		144	2592
UE Category		1-5	1-5

A.2.2.2.3 64-QAM

[FFS]

A.2.3 Reference measurement channels for TDD

For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

A.2.3.1 Full RB allocation

A.2.3.1.1 QPSK

Table A.2.3.1.1-1: Reference Channels for QPSK with full RB allocation

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per subframe		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size							
For Sub-Frame 2,3,7,8	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks - C		1	1	1	1	1	1
Code block CRC size	Bits	0	0	0	0	0	0
Total number of bits per sub-frame							
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	14400	21600	28800
Total symbols per sub-frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		1-5	1-5	1-5	1-5	1-5	1-5

A.2.3.1.2 16-QAM

Table A.2.3.1.2-1: Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per subframe		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	1736	4264	4968	21384	21384	19848
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks - C		1	1	1	4	4	4
Code block CRC size	Bits	0	0	0	24	24	24
Total number of bits per sub-frame							
For Sub-Frame 2,3,7,8	Bits	3456	8640	14400	28800	43200	57600
Total symbols per sub-frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		1-5	1-5	1-5	2-5	2-5	2-5

A.2.3.1.3 64-QAM

[FFS]

A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.3.2.1 QPSK

 Table A.2.3.2.1-1: Reference Channels for 1.4MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		QPSK	QPSK
Target Coding rate		1/3	1/3
Payload size			
For Sub-Frame 2,3,7,8	Bits	72	424
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	288	1440
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	720
UE Category		1-5	1-5

Table A.2.3.2.1-2: Reference Channels for 3MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		QPSK	QPSK
Target Coding rate		1/3	1/3
Payload size			
For Sub-Frame 2,3,7,8	Bits	72	392
Transport block CRC	Bits	24	24
Number of code blocks – C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	288	1152
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	576
UE Category		1-5	1-5

Table A.2.3.2.1-3: Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	5	5	5
Allocated resource blocks		1	8	20
Uplink-Downlink Configuration		1	1	1
DFT-OFDM Symbols per subframe		12	12	12
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size				
For Sub-Frame 2,3,7,8	Bits	72	808	1736
Transport block CRC	Bits	24	24	24
Number of code blocks - C		1	1	1
Code block CRC size	Bits	0	0	0
Total number of bits per sub-frame	Bits			
For Sub-Frame 2,3,7,8		288	2304	5760
Total symbols per sub-frame				
For Sub-Frame 2,3,7,8		144	1152	2880
UE Category		1-5	1-5	1-5

Parameter	Unit	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10
Allocated resource blocks		1	12	20	25
Uplink-Downlink Configuration		1	1	1	1
DFT-OFDM Symbols per subframe		12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3
Payload size					
For Sub-Frame 2,3,7,8	Bits	72	1224	1736	2216
Transport block CRC	Bits	24	24	24	24
Number of code blocks - C		1	1	1	1
Code block CRC size	Bits	0	0	0	0
Total number of bits per sub-frame					
For Sub-Frame 2,3,7,8	Bits	288	3456	5760	7200
Total symbols per sub-frame					
For Sub-Frame 2,3,7,8		144	1728	2880	3600
UE Category		1-5	1-5	1-5	1-5

Table A.2.3.2.1-4: Reference Channels for 10MHz QPSK with partial RB allocation

Table A.2.3.2.1-5: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	15	15	15
Allocated resource blocks		1	16	50
Uplink-Downlink Configuration		1	1	1
DFT-OFDM Symbols per subframe		12	12	12
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3
Payload size				
For Sub-Frame 2,3,7,8	Bits	72	1384	5160
Transport block CRC	Bits	24	24	24
Number of code blocks - C		1	1	1
Code block CRC size	Bits	0	0	0
Total number of bits per sub-frame				
For Sub-Frame 2,3,7,8	Bits	288	4608	14400
Total symbols per sub-frame				
For Sub-Frame 2,3,7,8		144	2304	7200
UE Category		1-5	1-5	1-5

Table A.2.3.2.1-6: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20
Allocated resource blocks		1	18	25	50	75
Uplink-Downlink Configuration		1	1	1	1	1
DFT-OFDM Symbols per subframe		12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5
Payload size						
For Sub-Frame 2,3,7,8	Bits	72	1864	2216	5160	4392
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks - C		1	1	1	1	1
Code block CRC size	Bits	0	0	0	0	0
Total number of bits per sub-frame						
For Sub-Frame 2,3,7,8	Bits	288	5184	7200	14400	21600
Total symbols per sub-frame						
For Sub-Frame 2,3,7,8		144	2592	3600	7200	10800
UE Category		1-5	1-5	1-5	1-5	1-5

A.2.3.2.2 16-QAM

Table A.2.3.2.2-1: Reference Channels for 1.4MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	2152
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	576	2880
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	720
UE Category		1-5	1-5

Table A.2.3.2.2-2: Reference Channels for 3MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	1736
Transport block CRC	Bits	24	24
Number of code blocks – C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	576	2304
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	576
UE Category		1-5	1-5

Table A.2.3.2.2-3: Reference Channels for 5MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	5	5
Allocated resource blocks		1	8
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	3496
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	576	4608
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	1152
UE Category		1-5	1-5

Parameter	Unit	Value	Value
Channel bandwidth	MHz	10	10
Allocated resource blocks		1	12
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	5160
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	576	6912
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	1728
UE Category		1-5	1-5

Table A.2.3.2.2-4: Reference Channels for 10MHz 16-QAM with partial RB allocation

Table A.2.3.2.2-5: Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	15	15
Allocated resource blocks		1	16
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	1/2
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	4584
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	576	9216
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	2304
UE Category		1-5	1-5

Table A.2.3.2.2-6: Reference Channels for 20MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	20	20
Allocated resource blocks		1	18
Uplink-Downlink Configuration		1	1
DFT-OFDM Symbols per subframe		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	1/2
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	5160
Transport block CRC	Bits	24	24
Number of code blocks - C		1	1
Code block CRC size	Bits	0	0
Total number of bits per sub-frame			
For Sub-Frame 2,3,7,8	Bits	576	10368
Total symbols per sub-frame			
For Sub-Frame 2,3,7,8		144	2592
UE Category		1-5	1-5

239

A.2.3.2.3 64-QAM

[FFS]

A.3 DL reference measurement channels

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.
- 2. [Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24) / N_{ch}|,$$

subject to

- a) A is a valid TB size (according to TS 36.213 [10] clause 7.1.7) assuming an allocation of N_{RB} resource blocks]
- b) Segmentation is not included in this formula, but should be considered in the TBS calculation
- 3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default.
- 4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of sub-clause 7.4 (Maximum input level).

Tables A.3.2-3 and A.3.2-4 are applicable for sub-clause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Parameter	Unit			Va	lue								
Channel bandwidth	MHz	1.4	3	5	10	15	20						
Allocated resource blocks		6	15	25	50	75	100						
Subcarriers per resource block		12	12	12	12	12	12						
Allocated subframes per Radio Frame		10	10	10	10	10	10						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK						
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3						
Number of HARQ Processes	Processes	8	8	8	8	8	8						
Maximum number of HARQ transmissions		1	1	1	1	1	1						
Information Bit Payload per Sub-Frame													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1320	2216	4392	6712	8760						
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a						
For Sub-Frame 0	Bits	152	872	1800	4392	6712	8760						
Transport block CRC	Bits	24	24	24	24	24	24						
Number of Code Blocks per subframe(see		1	1	1	1	2	2						
Note 4)													
Binary Channel Bits Per Sub-Frame													
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3780	6300	13800	20700	27600						
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a						
For Sub-Frame 0	Bits	528	2940	5460	12960	19860	26760						
Max. Throughput averaged over 1 frame	kbps	341.6	1143.	1952.	3952.	6040.	7884						
			2	8	8	8							
		1-5	1-5	1-5	1-5	1-5	1-5						
NOTE 1: 2 symbols allocated to PDCCH for	[·] 20 MHz, 15 M	MHz and	10 MHz o	channel E	SW. 3 syn	nbols allo	cated						
to PDCCH for 5 MHz and 3 MHz.	4 symbols allo	cated to	PDCCH (for 1.4 MI	Hz.								
NOTE 2: Reference signal, Synchronization	signals and	PBCH all	ocated as	s per TS	36.211 [8]							
NOTE 3: The RLC should be configured to	Unacknowledg	ged Mode	;		NOTE 3: The RLC should be configured to Unacknowledged Mode								

Table A.3.2-1: Fixe	ed Reference	Channel for	Receiver	Requirements	(FDD)
---------------------	--------------	-------------	----------	--------------	-------

NOTE 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Parameter	Unit			Va	lue			
Channel Bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks	1	6	15	25	50	75	100	
Uplink-Downlink Configuration		1	1	1	1	1	1	
Allocated subframes per Radio Frame (D+S)		4	4+2	4+2	4+2	4+2	4+2	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmission		1	1	1	1	1	1	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3	
Information Bit Payload per Sub-Frame	Bits							
For Sub-Frame 4, 9		408	1320	2216	4392	6712	8760	
For Sub-Frame 1, 6		n/a	968	1544	3240	4968	6712	
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0		208	1064	1800	4392	6712	8760	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame (see Note 5)								
For Sub-Frame 4, 9		1	1	1	1	2	2	
For Sub-Frame 1, 6		n/a	1	1	1	1	2	
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0		1	1	1	1	2	2	
Binary Channel Bits Per Sub-Frame	Bits							
For Sub-Frame 4, 9		1368	3780	6300	13800	20700	27600	
For Sub-Frame 1, 6		n/a	3276	5556	11256	16956	22656	
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0		672	3084	5604	13104	20004	26904	
Max. Throughput averaged over 1frame	kbps	102.4	564	932	1965. 6	3007. 2	3970.4	
UE Category		1-5	1-5	1-5	1-5	1-5	1-5	
Note 1: For normal subframes(0,4,5,9), 2 channel BW; 3 symbols allocated	symbols alloca to PDCCH for	ated to PI 5 MHz a	DCCH for nd 3 MHz	[.] 20 MHz, z; 4 symb	15 MHz ols alloca	and 10 M ated to PI	1Hz DCCH	
for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs. Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance								
Note 3: Reference signal, Synchronization	Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 4: The RLC should be configured to	Unacknowled	ged Mode	Э					
Note 5: If more than one Code Block is pro each Code Block (otherwise L = 0	esent, an addi Bit).	tional CR	C seque	nce of L =	₂ 24 Bits i	s attache	d to	

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	12576	28336	45352	61664
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame		1	2	3	5	8	11
(see Note 4)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	55498
Note 1: 2 symbols allocated to PDCCH for	20 MHz, 15 M	/Hz and 10) MHz char	nnel BW. 3	symbols a	llocated to	PDCCH
for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz							
Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 3: The RLC should be configured to Unacknowledged Mode							

Table A.3.2-3: Fixed Reference Channel for Maximum input level (FDD)

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.2-3a: Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	16	16	16	16
(see Note 5)				(Note 5)	(Note 5)	(Note 5)	(Note 5)
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	10296	10296	10296	10296
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	7480	9912	9912	9912
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame		1	2	2	2	2	2
(see Note 4)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	13824	13824	13824	13824
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	10008	13248	13248	13248
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	8984.8	9228	9228	9228
Note 1: 2 symbols allocated to PDCCH for	20 MHz, 15 M	/Hz and 10) MHz cha	nnel BW. 3	symbols a	llocated to	PDCCH
for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz							
Note 2: Reference signal, Synchronization	signals and	PBCH allo	cated as pe	er TS 36.21	1 [8]		
Note 3: The RLC should be configured to U	Jnacknowledg	ged Mode					

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 5: In case of partial allocation, the unallocated RB-s are filled with OCNG (Annex A.5). The total signal mean power and the power density over the channel bandwidth configuration i.e. for data (allocated RB-s) and OCNG (unallocated RB-s) remain the same as for full allocation.

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	80
(see Note 5)							(Note 5)
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	51024
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	12576	28336	45352	48936
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame		1	2	3	5	8	9
(see Note 4)							8
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	69120
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	16380	38880	59580	64152
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	4571,3
Note 1: 2 symbols allocated to PDCCH for	[.] 20 MHz, 15 M	MHz and 10) MHz chai	nnel BW. 3	symbols a	llocated to	PDCCH
for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz							
Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 3: The RLC should be configured to	Unacknowled	ged Mode					
Note 4: If more than one Code Block is present, an additional CRC sequence of $L = 24$ Bits is attached to each Code							

Table A.3.2-3b: Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

Block (otherwise L = 0 Bit) Note 5: In case of partial allocation, the unallocated RB-s are filled with OCNG (Annex A.5). The total signal mean

power and the power density over the channel bandwidth configuration i.e. for data (allocated RB-s) and OCNG (unallocated RB-s) remain the same as for full allocation.

	Parameter	Unit			Va	lue		
	Channel bandwidth	MHz	1.4	3	5	10	15	20
	Allocated resource blocks		6	15	25	50	75	100
Su	bcarriers per resource block		12	12	12	12	12	12
Up	blink-Downlink Configuration		1	1	1	1	1	1
Allocat	ted subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2
	Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
	Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
N	umber of HARQ Processes	Processes	7	7	7	7	7	7
Maximur	m number of HARQ transmissions		1	1	1	1	1	1
Informa	ation Bit Payload per Sub-Frame							
	For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	61664
	For Sub-Frames 1,6	Bits	n/a	6968	11448	23688	35160	46888
	For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
	For Sub-Frame 0	Bits	n/a	6968	12576	30576	45352	61664
	Transport block CRC	Bits	24	24	24	24	24	24
Numbe	Number of Code Blocks per Sub-Frame							
	(see Note 5)							
	For Sub-Frames 4,9		1	2	3	5	8	11
	For Sub-Frames 1,6		n/a	2	3	5	7	9
	For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
	For Sub-Frame 0		n/a	2	3	5	8	11
Binar	y Channel Bits per Sub-Frame							
	For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	82800
	For Sub-Frames 1,6		n/a	9828	16668	33768	50868	67968
	For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
	For Sub-Frame 0	Bits	n/a	9252	16380	39312	60012	80712
Max. Th	nroughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	27877
Note 1:	For normal subframes(0,4,5,9), 2 s	symbols alloca	ated to PD0	CCH for 20	MHz, 15 N	IHz and 10) MHz char	nnel BW;
	3 symbols allocated to PDCCH for	5 MHz and 3	MHz; 4 sy	mbols alloc	ated to PD	CCH for 1	.4 MHz. Fo	r special
	subframe (1&6), only 2 OFDM syn	nbols are alloo	cated to PD	CCH for a	I BWs.			
Note 2:	be 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH							t PDCCH
	performance							
Note 3:	3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 4:	The RLC should be configured to	Unacknowled	ged Mode		() O (F			
Note 5:	It more than one Code Block is pre	esent, an addi	tional CRC	sequence	of $L = 24 E$	sits is attac	ned to eac	n Code
	Block (otherwise $L = 0$ Bit).							

Table A.3.2-4: Fixed Reference Channel for Maximum input level (TDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	16	16	16	16
(see Note 6)				(Note 6)	(Note 6)	(Note 6)	(Note 6)
Subcarriers per resource block		12	12	12	12	12	12
Uplink-Downlink Configuration		1	1	1	1	1	1
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 4,9	Bits	2984	8504	10296	10296	10296	10296
For Sub-Frames 1,6	Bits	n/a	6968	7480	7480	7480	7480
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6968	7480	9912	9912	9912
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(see Note 5)							
For Sub-Frames 4,9		1	2	2	2	2	2
For Sub-Frames 1,6		n/a	2	2	2	2	2
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	2	2	2	2
Binary Channel Bits per Sub-Frame							
For Sub-Frames 4,9	Bits	4104	11340	13824	13824	13824	13824
For Sub-Frames 1,6		n/a	9828	10512	10944	10944	10944
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	9252	10008	13248	13248	13248
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	4303.2	4546.4	4546.4	4546.4
Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special							
Subirame (160), only 2 UFDIVI SYMDOIS are allocated to PDUUH for all BWS.							
performance			163(100) [Insumcien	

Table A.3.2-4a: Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 4: The RLC should be configured to Unacknowledged Mode

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 6: In case of partial allocation, the unallocated RB-s are filled with OCNG (Annex A.5). The total signal mean power and the power density over the channel bandwidth configuration i.e. for data (allocated RB-s) and OCNG (unallocated RB-s) remain the same as for full allocation.

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	15	25	50	75	80	
(see Note 6)							(Note 6)	
Subcarriers per resource block		12	12	12	12	12	12	
Uplink-Downlink Configuration		1	1	1	1	1	1	
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2	
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM	
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4	
Number of HARQ Processes	Processes	7	7	7	7	7	7	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload per Sub-Frame								
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	51024	
For Sub-Frames 1,6	Bits	n/a	6968	11448	23688	35160	37888	
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0	Bits	n/a	6968	12576	30576	45352	48936	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per Sub-Frame								
(see Note 5)								
For Sub-Frames 4,9		1	2	3	5	8	9	
For Sub-Frames 1,6		n/a	2	3	5	7	7	
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0		n/a	2	3	5	8	8	
Binary Channel Bits per Sub-Frame								
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	69120	
For Sub-Frames 1,6		n/a	9828	16668	33768	50868	54288	
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a	
For Sub-Frame 0	Bits	n/a	9252	16380	39312	60012	64152	
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	22676	
Note 1: For normal subframes(0,4,5,9), 2	symbols alloc	ated to PD	CCH for 20) MHz, 15	MHz and 1	0 MHz cha	annel BW;	
3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special								
subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.								
Note 2: For 1.4MHz, no data shall be sche	Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH							
performance								
Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]								
Note 4: The RLC should be configured to Unacknowledged Mode								
Note 5: If more than one Code Block is p	5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code							

Table A.3.2-4b: Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

Block (otherwise L = 0 Bit) Note 5: In case of partial allocation, the unallocated RB-s are filled with OCNG (Annex A.5). The total signal mean power and the power density over the channel bandwidth configuration i.e. for data (allocated RB-s) and OCNG (unallocated RB-s) remain the same as for full allocation.

A.3.2A Downlink Reference measurement channel for TX characteristics

Tables A.3.2A-1 and A.3.2A-2 describes the reference measurement channels to be used on the downlink during Transmitter Characteristics (clause 6) for FDD and TDD respectively. The number of allocated resource blocks have been defined (partial allocation) to allow the transmission of PBCH, PSS/SSS and system information mapped on PDSCH.

Parameter	Unit			Va	lue			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	4	8	16	25	30	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		10	10	10	10	10	10	
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	
Target Coding Rate		(NOT E 5)	1/3	1/3	1/3	1/3	1/3	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Information Bit Payload								
For Sub-Frames 0, 1, 2, 3, 4, 5, 6, 7, 8, 9	Bits	152	328	680	1384	2216	2664	
Transport block CRC	Bits	24	24	24	24	24	24	
Number of Code Blocks per subframe		1	1	1	1	1	1	
Code block CRC size	Bits	0	0	0	0	0	0	
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1, 2, 3, 4, 6, 7, 8, 9	Bits	1368	1008	2016	4416	6900	8280	
For Sub-Frames 5		1080	1008	2016	4416	6900	8280	
For Sub-Frames 0		528	1008	2016	4416	6900	8280	
Max. Throughput averaged over 1 frame	. Throughput averaged over 1 frame kbps 152 328 680 1384 2216 2664						2664	
Note 1: 2 symbols allocated to PDCCH for PDCCH for 5 MHz and 3 MHz. 4 s	Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz							

Table A.3.2A-1: Fixed DL PDSCH Dedicated Reference Channel for TX Requirements (FDD)

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 3: The RLC should be configured to Unacknowledged Mode

Note 4: The PDSCH shall be assigned to the UE under test with a set of allocated localized virtual resource blocks starting from one end of the channel bandwidth and transmitted in the resource blocks not containing PBCH, PSS/SSS.

Note 5: To ensure constant transport block size in 1.4MHz, the code rate for subframes varies approx. within $\{1/6-1/3\}$

Parameter	Unit			Valu	le		
Channel Bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	4	8	16	25	30
Uplink-Downlink Configuration(NOTE 7)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		4	4	4	4	4	4
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmission		1	1	1	1	1	1
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target coding rate		(NOTE 6)	1/3	1/3	1/3	1/3	1/3
Information Bit Payload per Sub-Frame	Bits						
For Sub-Frame 1, 6		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0, 4, 5, 9		208	328	680	1384	2216	2664
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks		1	1	1	1	1	1
Code block CRC size		0	0	0	0	0	0
Binary Channel Bits Per Sub-Frame	Bits						
For Sub-Frame 1, 6		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 4, 9		1368	1008	2016	4416	6900	8280
For Sub-Frame 0		672	1008	2016	4416	6900	8280
For Sub-Frame 5		1224	1008	2016	4416	6900	8280
Max. Throughput averaged over one frame	kbps	83.2	131.2	272	553.6	886.4	1065. 6
Note 1: For normal subframes (0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs. Note 2: For simplicity, no data shall be scheduled on special subframes (1&6).							

Table A.3.2A-2: Fixed DL PDSCH Dedicated Reference Channel for TX Requirements (TDD)

Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [8]

Note 4: The RLC should be configured to Unacknowledged Mode

Note 5: The PDSCH shall be assigned to the UE under test with a set of allocated localized virtual resource blocks starting from one end of the channel bandwidth and transmitted in the resource blocks not containing PBCH, PSS/SSS.

NOTE 6: To ensure constant transport block size in 1.4MHz, the code rate for subframes varies approx. within {1/6-1/3}. In order to have a constant transport block size for 1.4MHz, the code rate for different subframes varies in a range approx. {1/6-1/3}.

NOTE 7: as per Table 4.2-2 in TS 36.211 [8]

A.3.3 Reference measurement channel for PDSCH performance requirements (FDD)

A.3.3.1 Single-antenna transmission (Common Reference Symbols)

Parameter	Unit			Va	lue		
Reference channel		[R.4			[R.2		
		FDD]			FDD]		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Allocated subframes per Radio Frame		10			10		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408			4392		
For Sub-Frame 5	Bits	n/a			n/a		
For Sub-Frame 0	Bits	152			4392		
Number of Code Blocks per Sub-Frame		1			1		
(see Note 3)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368			13800		
For Sub-Frame 5	Bits	n/a			n/a		
For Sub-Frame 0	Bits	528			12960		
Max. Throughput averaged over 1 frame	Mbps	0.342			3.953		
UE Category		1-5			1-5		
Note 1: 2 symbols allocated to PDCCH for	r 20 MHz, 15 I	MHz and	10 MHz (channel E	3W; 3 sym	bols allo	cated
to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz							
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to						ed to	
each Code Block (otherwise L = 0	Bit)						

Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

Table A.3.3.1-2: F	Fixed Reference	Channel 16QAM	R=1/2
--------------------	-----------------	---------------	-------

Parameter	Unit			١	/alue		
Reference channel					[R.3 FDD]		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks					50		
Allocated subframes per Radio Frame					10		
Modulation					16QAM		
Target Coding Rate					1/2		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				14112		
For Sub-Frame 5	Bits				n/a		
For Sub-Frame 0	Bits				12960		
Number of Code Blocks per Sub-Frame					3		
(see Note 3)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				27600		
For Sub-Frame 5	Bits				n/a		
For Sub-Frame 0	Bits				25920		
Max. Throughput averaged over 1 frame	Mbps				12.586		
UE Category					2-5		
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz							cated
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]							
ote 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)						ed to	

Parameter	Unit			Va	lue		
Reference channel			[R.5	[R.6	[R.7	[R.8	[R.9
			FDD]	FDD]	FDD]	FDD]	FDD]
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks			15	25	50	75	100
Allocated subframes per Radio Frame			10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		8504	14112	30576	46888	61664
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits		6456	12576	28336	45352	61664
Number of Code Blocks per Sub-Frame			2	3	5	8	11
(see Note 3)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		11340	18900	41400	62100	82800
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits		8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	Mbps		7.449	12.547	27.294	42.046	55.498
UE Category			1-5	2-5	2-5	2-5	3-5
Note 1: 2 symbols allocated to PDCCH for	r 20 MHz, 1	15 MHz and	d 10 MHz c	hannel BW	/; 3 symbol	s allocated	to
PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz							
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 3: If more than one Code Block is pre-	esent, an a	dditional C	RC sequer	nce of $L = 2$	24 Bits is at	tached to e	each Code
Block (otherwise $L = 0$ Bit)							

Table A.3.3.1-3: Fixed Reference Ch	annel 64QAM R=3/4
-------------------------------------	-------------------

Table A.3.3.1-4: Fixed Reference Channel Single PRB (Channel Edge)

Parameter	Unit			Val	ue		
Reference channel			[R.0		[R.1		
			FDD		FDDJ		
Channel bandwidth	MHz	1.4	3	5	10/20	15	20
Allocated resource blocks			1		1		
Allocated subframes per Radio Frame			10		10		
Modulation			16QAM		16QAM		
Target Coding Rate			1/2		1/2		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		224		256		
For Sub-Frame 5	Bits		n/a		n/a		
For Sub-Frame 0	Bits		224		256		
Number of Code Blocks per Sub-Frame			1		1		
(see Note 3)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		504		552		
For Sub-Frame 5	Bits		n/a		n/a		
For Sub-Frame 0	Bits		504		552		
Max. Throughput averaged over 1 frame	Mbps		0.202		0.230		
UE Category			1-5		1-5		
Note 1: 2 symbols allocated to PDCCH fo	r 20 MHz, 15 M	MHz and	10 MHz cha	annel BW	3 symbols	allocate	d to
PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz							
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 3: If more than one Code Block is pr	Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each						each
Code Block (otherwise $L = 0$ Bit)							

	Parameter	Unit	Value				
Reference	e channel		R.29 FDD				
			(MBSFN)				
Channel	bandwidth	MHz	10				
Allocated	l resource blocks		1				
MBSFN	Configuration		TBD				
Allocated	I subframes per Radio Frame		4				
Modulatio	วท		16QAM				
Target C	oding Rate		1/2				
Informati	on Bit Payload						
For Sub	-Frames 4,9	Bits	256				
For Sub	-Frame 5	Bits	n/a				
For Sub	-Frame 0	Bits	256				
For Sub	-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)				
Number	of Code Blocks per subframe		1				
(see Note	e 3)						
Binary C	hannel Bits Per Sub-Frame						
For Sub	-Frames 4,9	Bits	552				
For Sub	-Frame 5	Bits	n/a				
For Sub	-Frame 0	Bits	552				
For Sub	-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)				
Max. Thr	oughput averaged over 1 frame	kbps	102.4				
UE Cate	gory						
Note 1:	2 symbols allocated to PDCCH						
Note 2:	Reference signal, synchronizatio	n signals a	ind PBCH				
	allocated as per TS 36.211 [4]						
Note 3:	If more than one Code Block is p	resent, an	additional				
	CRC sequence of L = 24 Bits is a	attached to	each Code				
	Block (otherwise L = 0 Bit						

Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)
A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

A.3.3.2.1 Two antenna ports

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit			Va	lue		
Reference channel			[R.10 FDD]	[R.11 FDD]			
Channel bandwidth	MHz		10	10			
Allocated resource blocks			50	50			
Allocated subframes per Radio Frame			10	10			
Modulation			QPSK	16QAM			
Target Coding Rate			1/3	1/2			
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		4392	12960			
For Sub-Frame 5	Bits		n/a	n/a			
For Sub-Frame 0	Bits		4392	12960			
Number of Code Blocks per Sub-Frame			1	3			
(see Note 3)							
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		13200	26400			
For Sub-Frame 5	Bits		n/a	n/a			
For Sub-Frame 0	Bits		12384	24768			
Max. Throughput averaged over 1 frame	Mbps		3.953	11.664			
UE Category			1-5	2-5			
Note 1: 2 symbols allocated to PDCCH f	or 20 MHz	, 15 MHz ai	nd 10 MHz	channel B	W; 3 symb	ols allocat	ed to
PDCCH for 5 MHz and 3 MHz; 4	symbols a	allocated to	PDCCH fo	or 1.4 MHz			
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 3: If more than one Code Block is p	present, an	additional	CRC sequ	ence of L =	24 Bits is	attached to	o each
Code Block (otherwise L = 0 Bit)							

A.3.3.2.2 Four antenna ports

Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit			Valu	е		
Reference channel		[R.12	[R.13	[R.14			
		FDD]	FDD]	FDD]			
Channel bandwidth	MHz	1.4	10	10			
Allocated resource blocks		6	50	50			
Allocated subframes per Radio Frame		10	10	10			
Modulation		QPSK	QPSK	16QAM			
Target Coding Rate		1/3	1/3	1/2			
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	4392	12960			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	152	3624	11448			
Number of Code Blocks per Sub-Frame							
(see Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	3			
For Sub-Frame 5		n/a	n/a	n/a			
For Sub-Frame 0		1	1	2			
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1248	12800	25600			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	480	12032	24064			
Max. Throughput averaged over 1	Mbps	0.342	3.876	11.513			
frame							
UE Category		1-5	1-5	2-5			
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to							
PUCCH for 5 IVIHZ and 3 MHZ; 4 symbols allocated to PUCCH for 1.4 MHZ							
Note 2. Reference signal, synchronizat	non signals			sperio 30	.211 [0] 24 Rite is 4	attachad t	o ooch
Code Block (otherwise L – 0 Bi	it)		UNC Seque		24 DIIS 15 (U Cauli

A.3.4 Reference measurement channel for PDSCH performance requirements (TDD)

A.3.4.1 Single-antenna transmission (Common Reference Symbols)

Parameter	Unit	Value						
Reference channel		[R.4			[R.2			
		TDD]			TDD]			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6			50			
Uplink-Downlink Configuration (Note 3)		1			1			
Allocated subframes per Radio Frame (D+S)		4+2			4+2			
Modulation		QPSK			QPSK			
Target Coding Rate		1/3			1/3			
Information Bit Payload								
For Sub-Frames 4,9	Bits	408			4392			
For Sub-Frames 1,6	Bits	n/a			3240			
For Sub-Frame 5	Bits	n/a			n/a			
For Sub-Frame 0	Bits	208			4392			
Number of Code Blocks per Sub-Frame		1			1			
(see Note 5)								
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits	1368			13800			
For Sub-Frames 1,6	Bits	n/a			11256			
For Sub-Frame 5	Bits	n/a			n/a			
For Sub-Frame 0	Bits	672			13104			
Max. Throughput averaged over 1 frame	Mbps	0.102			1.966			
UE Category		1-5			1-5			
Note 1: 2 symbols allocated to PDCCH for	20 MHz, 15	MHz and	d 10 MHz	channel	BW; 3 s	ymbols a	llocated	
to PDCCH for 5 MHz and 3 MHz;	4 symbols a	llocated t	to PDCC	H for 1.4	MHz. Fo	or subfrar	ne 1&6,	
only 2 OFDM symbols are allocated	to PDCCH.							
Note 2: For BW=1.4 MHz, the information b	oit payloads	of specia	l subfram	nes are s	et to zerc) (no sch	eduling)	
to avoid problems with insufficient P	DCCH perfo	ormance a	at the tes	t point.				
Note 3: Reference signal, synchronization s	ignals and F	BCH allo	cated as	per IS 3	6.211 [8]			
Note 4: as per Table 4.2-2 in TS 36.211 [8]								
Note 5: If more than one Code Block is pre	esent, an ad	iditional C	C sequ	lence of	L = 24 B	its is atta	iched to	
each Code Block (otherwise L = 0 B	iit)							

Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Value						
Reference channel					[R.3			
					TDD]			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks					50			
Uplink-Downlink Configuration (Note 3)					1			
Allocated subframes per Radio Frame (D+S)					4+2			
Modulation					16QAM			
Target Coding Rate					1/2			
Information Bit Payload								
For Sub-Frames 4,9	Bits				14112			
For Sub-Frames 1,6	Bits				11448			
For Sub-Frame 5	Bits				n/a			
For Sub-Frame 0	Bits				12960			
Number of Code Blocks per Sub-Frame								
(see Note 4)								
For Sub-Frames 4,9					3			
For Sub-Frames 1,6					2			
For Sub-Frame 5					n/a			
For Sub-Frame 0					3			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits				27600			
For Sub-Frames 1,6	Bits				22512			
For Sub-Frame 5	Bits				n/a			
For Sub-Frame 0	Bits				26208			
Max. Throughput averaged over 1 frame	Mbps				6.408			
UE Category					2-5			
Note 1: 2 symbols allocated to PDCCH for 2	0 MHz, 1	5 MHz and	d 10 MHz o	channel BW	/; 3 symbols	s allocated	d to	
PDCCH for 5 MHz and 3 MHz; 4 sy	mbols allo	ocated to F	PDCCH for	1.4 MHz. F	For subfram	e 1&6, on	ly 2	
OFDM symbols are allocated to PD	CCH.							
Note 2: Reference signal, synchronization s	ignals an	d PBCH a	llocated as	s per TS 36	.211 [8]			
Note 3: as per Table 4.2-2 in TS 36.211 [8]								
Note 4: If more than one Code Block is pres	ent, an a	dditional C	RC seque	nce of $L = 2$	24 Bits is at	tached to	each	
Code Block (otherwise L = 0 Bit)								

Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value							
Reference channel			[R.5	[R.6	[R.7	[R.8	[R.9		
			TDD]	TDD]	TDD]	TDD]	TDD]		
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks			15	25	50	75	100		
Uplink-Downlink Configuration (Note 3)			1	1	1	1	1		
Allocated subframes per Radio Frame (D+S)			4+2	4+2	4+2	4+2	4+2		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate			3/4	3/4	3/4	3/4	3/4		
Information Bit Payload									
For Sub-Frames 4,9	Bits		8504	14112	30576	46888	61664		
For Sub-Frames 1,6	Bits		6968	11448	23688	35160	46888		
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits		6968	12576	30576	45352	61664		
Number of Code Blocks per Sub-Frame									
(see Note 4)									
For Sub-Frames 4,9			2	3	5	8	11		
For Sub-Frames 1,6			2	2	4	6	8		
For Sub-Frame 5			n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0			2	3	5	8	11		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 4,9	Bits		11340	18900	41400	62100	82800		
For Sub-Frames 1,6	Bits		9828	16668	33768	50868	67968		
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits		9252	16812	39312	60012	80712		
Max. Throughput averaged over 1 frame	Mbps		3.791	6.370	13.910	20.945	27.877		
UE Category			1-5	2-5	2-5	2-5	3-5		
Note 1: 2 symbols allocated to PDCCH for 2	20 MHz, 15	MHz and '	10 MHz cha	annel BW; 3	3 symbols a	allocated to	PDCCH		
for 5 MHz and 3 MHz; 4 symbols all	ocated to I	PDCCH for	1.4 MHz. F	For subfram	e 1&6, only	2 OFDM :	symbols		
are allocated to PDCCH.									
Note 2: Reference signal, synchronization s	ignals and	PBCH allo	ocated as p	er TS 36.21	1 [8]				
Note 3: as per Table 4.2-2 TS 36.211 [8]									

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Parameter	Unit	Value						
Reference channel			[R.0		[R.1			
			TDD]		TDD]			
Channel bandwidth	MHz	1.4	3	5	10/20	15	20	
Allocated resource blocks			1		1			
Uplink-Downlink Configuration (Note 3)			1		1			
Allocated subframes per Radio Frame (D+S)			4+2		4+2			
Modulation			16QAM		16QAM			
Target Coding Rate			1/2		1/2			
Information Bit Payload								
For Sub-Frames 4,9	Bits		224		256			
For Sub-Frames 1,6	Bits		208		208			
For Sub-Frame 5	Bits		n/a		n/a			
For Sub-Frame 0	Bits		224		256			
Number of Code Blocks per Sub-Frame			1		1			
(see Note 4)								
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits		504		552			
For Sub-Frames 1,6	Bits		456		456			
For Sub-Frame 5	Bits		n/a		n/a			
For Sub-Frame 0	Bits		504		552			
Max. Throughput averaged over 1 frame	Mbps		0.109		0.118			
UE Category			1-5		1-5			
Note 1: 2 symbols allocated to PDCCH for 2	20 MHz, 15	MHz and	10 MHz cha	annel BW;	3 symbols a	llocated	to	
PDCCH for 5 MHz and 3 MHz; 4 sy	mbols alloc	ated to PE	DCCH for 1.	4 MHz. Fo	r subframe '	1&6, only	/ 2	
OFDM symbols are allocated to PD	CCH.							
Note 2: Reference signal, synchronization s	ignals and	PBCH all	ocated as p	er TS 36.2	11 [8]			
Note 3: as per Table 4.2-2 in TS 36.211 [8]			_					
Max. Throughput averaged over 1 frame UE Category Note 1: 2 symbols allocated to PDCCH for 2 PDCCH for 5 MHz and 3 MHz; 4 sy OFDM symbols are allocated to PD Note 2: Reference signal, synchronization s Note 3: as per Table 4.2-2 in TS 36.211 [8]	Mbps 20 MHz, 15 mbols alloc CCH. ignals and	MHz and ated to PE PBCH all	0.109 1-5 10 MHz cha DCCH for 1.	annel BW; 4 MHz. Fo er TS 36.2	0.118 1-5 3 symbols a r subframe 11 [8]	Illocated 1&6, only	to ¹ 2	

Table A.3.4.1-4: Fixed Reference Channel Single PRB

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

	Parameter	Unit	Value				
Referenc	e channel		[R.29 TDD]				
			(MBSFN)				
Channel	bandwidth	MHz	10				
Allocated	resource blocks		1				
MBSFN (Configuration		[TBD]				
Uplink-Do	ownlink Configuration (Note 3)		1				
Allocated	subframes per Radio Frame (D+S)		2+2				
Modulatio	วท		16QAM				
Target Co	oding Rate		1/2				
Information	on Bit Payload						
For Sub	-Frames 4,9	Bits	0 (MBSFN)				
For Sub	-Frames 1,6	Bits	208				
For Sub	-Frame 5	Bits	n/a				
For Sub	-Frame 0	Bits	256				
Number of	of Code Blocks per Sub-Frame		1				
(see Note	e 4)						
Binary Cl	nannel Bits Per Sub-Frame						
For Sub	-Frames 4,9	Bits	0 (MBSFN)				
For Sub	-Frames 1,6	Bits	456				
For Sub	-Frame 5	Bits	n/a				
For Sub	-Frame 0	Bits	552				
Max. Thre	oughput averaged over 1 frame	kbps	67.2				
UE Categ	gory		1-5				
Note 1:	2 symbols allocated to PDCCH						
Note 2:	Reference signal, synchronization s	ignals and	PBCH allocated as				
per TS 36.211 [8]							
Note 3:	as per Table 4.2-2 in TS 36.211 [8]						
Note 4:	If more than one Code Block is pres	ent, an ado	ditional CRC				
	sequence of $L = 24$ Bits is attached	to each Co	de Block (otherwise				
	L = 0 Bit)						

Table A.3.4.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

A.3.4.2 Multi-antenna transmission (Common Reference Symbols)

A.3.4.2.1 Two antenna ports

Table A.3.4.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit			Va	lue		
Reference channel			[R.10	[R.11			
			TDD]	TDD]			
Channel bandwidth	MHz		10	10			
Allocated resource blocks			50	50			
Uplink-Downlink Configuration (Note 3)			1	1			
Allocated subframes per Radio Frame			4+2	4+2			
(D+S)							
Modulation			QPSK	16QAM			
Target Coding Rate			1/3	1/2			
Information Bit Payload							
For Sub-Frames 4,9	Bits		4392	12960			
For Sub-Frames 1,6			3240	9528			
For Sub-Frame 5	Bits		n/a	n/a			
For Sub-Frame 0	Bits		4392	12960			
Number of Code Blocks per Sub-Frame							
(see Note 4)							
For Sub-Frames 4,9			1	3			
For Sub-Frames 1,6			1	2			
For Sub-Frame 5			n/a	n/a			
For Sub-Frame 0			1	3			
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits		13200	26400			
For Sub-Frames 1,6			10656	21312			
For Sub-Frame 5	Bits		n/a	n/a			
For Sub-Frame 0	Bits		12528	25056			
Max. Throughput averaged over 1 frame	Mbps		1.966	5.794			
UE Category			1-5	2-5			
Note 1: 2 symbols allocated to PDCCH f	for 20 MHz	, 15 MHz a	nd 10 MHz	channel B	W; 3 symb	ols allocat	ed to
PDCCH for 5 MHz and 3 MHz; 4	1 symbols a	allocated to	PDCCH fo	or 1.4 MHz.	For subfra	ame 1&6, d	only 2
OFDM symbols are allocated to	PDCCH.						
Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 3: as per Table 4.2-2 in TS 36.211	[8]						
Note 4: If more than one Code Block is p	present, an	additional	CRC sequ	ence of L =	= 24 Bits is	attached t	o each
Code Block (otherwise L = 0 Bit))						

A.3.4.2.2 Four antenna ports

Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit			Valu	е		
Reference channel		[R.12	[R.13	[R.14			
		TDD]	TDD]	TDD]			
Channel bandwidth	MHz	1.4	10	10			
Allocated resource blocks		6	50	50			
Uplink-Downlink Configuration (Note 4)		1	1	1			
Allocated subframes per Radio Frame		4+2	4+2	4+2			
(D+S)							
Modulation		QPSK	QPSK	16QAM			
Target Coding Rate		1/3	1/3	1/2			
Information Bit Payload							
For Sub-Frames 4,9	Bits	408	4392	12960			
For Sub-Frames 1,6	Bits	n/a	3240	9528			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	208	4392	11448			
Number of Code Blocks per Sub-Frame							
(see Note 5)							
For Sub-Frames 4,9		1	1	3			
For Sub-Frames 1,6		n/a	1	2			
For Sub-Frame 5		n/a	n/a	n/a			
For Sub-Frame 0		1	1	2			
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	1248	12800	25600			
For Sub-Frames 1,6		n/a	10256	20512			
For Sub-Frame 5	Bits	n/a	n/a	n/a			
For Sub-Frame 0	Bits	624	12176	24352			
Max. Throughput averaged over 1	Mbps	0.102	1.966	5.642			
frame							
UE Category		1-5	1-5	2-5			
Note 1: 2 symbols allocated to PDCCH	I for 20 MH	lz, 15 MHz a	nd 10 MHz	channel B	V; 3 symb	ols allocat	ed to
PDCCH for 5 MHz and 3 MHz;	4 symbols	allocated to	PDCCH fo	r 1.4 MHz.	For subfra	me 1&6, c	only 2
OFDM symbols are allocated t	o PDCCH.				. ,		N .
Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to							
avoid problems with insufficient PDCCH performance at the test point.							
Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8]							
Note 4: as per Table 4.2-2 in TS 36.21	1 [8] 						h
INOTE 5: IT MORE THAN ONE CODE BLOCK IS	s present, a	in additional	CKC seque	ence of L =	24 BITS IS	anached t	o each
Code Block (otherwise L = 0 B	π)						

A.3.4.3 UE-Specific Reference Symbols

Parameter	Unit	Value						
Reference channel		[R.25 TDD]	[R.26 TDD]	[R.27 TDD]	[R.28 TDD]			
Channel bandwidth	MHz	10	10	10	10			
Allocated resource blocks		50 ⁴	50 ⁴	50 ⁴	1			
Uplink-Downlink Configuration (Note 3)		1	1	1	1			
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2	4+2			
Modulation	QPSK 16QAM 64Q/							
Target Coding Rate		1/3	1/2	3/4	1/2			
Information Bit Payload								
For Sub-Frames 4,9	Bits	4392	12960	28336	224			
For Sub-Frames 1,6	Bits	3240	9528	22920	176			
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits	2984	9528	22152	224			
Number of Code Blocks per Sub-Frame (see Note 5)								
For Sub-Frames 4,9		1	3	5	1			
For Sub-Frames 1,6		1	2	4	1			
For Sub-Frame 5		n/a	n/a	n/a	n/a			
For Sub-Frame 0		1	2	4	1			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits	12600	25200	37800	504			
For Sub-Frames 1,6	Bits	10356	20712	31068	420			
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a			
For Sub-Frame 0	Bits	10332	20664	30996	504			
Max. Throughput averaged over 1 frame	Mbps	1.825	5.450	12.466	0.102			
UE Category		1-5	2-5	2-5	1-5			
 Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [8] Note 3: as per Table 4.2-2 in TS 36.211 [8] Note 4: For R.25, R.26 and R.27, 50 resource blocks are allocated in sub-frames 1–9 and 41 resource blocks 								

(RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

A.3.5.1 FDD

Parameter	Unit	Value					
Reference channel		[R.15 FDD]	[R.16 FDD]	[R.17 FDD]			
Number if transmitter antennas		1	2	4			
Channel bandwidth	MHz	10	1.4	10			
Number of OFDM symbols for PDCCH	symbols	2	2	2			
Aggregation level	CCE	8	2	4			
DCI Format		Format 1	Format 1	Format 2			
Cell ID		0	0	0			
Payload (without CRC)	Bits	31	32+1	46			

Table A.3.5.1-1: Reference Channel FDD

Table A.3.5.1-2: Additional PDSCH Reference Channel FDD

Parameter	Unit	Value					
Number of transmitter antennas		1	2	4			
Channel bandwidth	MHz	10	1.4	10			
Allocated Resource Blocks		50	6	50			
Modulation		QPSK	QPSK	QPSK			
Target Coding Rate		1/3	1/3	1/3			
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	504	4392			
For Sub-Frame 0,5	Bits	FFS	FFS	FFS			
Number of Code Blocks per subframe							
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	1			
For Sub-Frame 0,5		FFS	FFS	FFS			
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13800	1584	12800			
For Sub-Frame 0,5	Bits	FFS	FFS	FFS			
Note 1: 2 symbols allocated to PDCCH fo	rall BW.						

A.3.5.2 TDD

Table A.3.5.2-1: Reference Channel TDD

Parameter	Unit		Value	
Reference channel		[R.15 TDD]	[R.16 TDD]	[R.17 TDD]
Number if transmitter antennas		1	2	4
Channel bandwidth	MHz	10	1.4	10
Number of OFDM symbols for PDCCH	symbols	2	2	2
Aggregation level	CCE	8	2	4
DCI Format		Format 1	Format 1	Format 2
Cell ID		0	0	0
Payload (without CRC)	Bits	34	35	49

Parameter	Unit	Value				
Number of transmitter antennas		1	2	4		
Channel bandwidth	MHz	10	1.4	10		
Uplink-Downlink Configuration (Note 2)		1	1	1		
Allocated Resource Blocks		50	6	50		
Modulation		QPSK	QPSK	QPSK		
Target Coding Rate		1/3	1/3	1/3		
Information Bit Payload						
For Sub-Frames 4,9	Bits	4392	504	4392		
For Sub-Frame 0,5	Bits	FFS	FFS	FFS		
For Sub-Frame 1,6	Bits	3624	n/a	3624		
Number of Code Blocks per subframe						
For Sub-Frames 4,9		1	1	1		
For Sub-Frame 0,5	Bits	FFS	FFS	FFS		
For Sub-Frame 1,6			n/a			
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 4,9	Bits	13800	1584	12800		
For Sub-Frame 0,5	Bits	FFS	FFS	FFS		
For Sub-Frame 1,6	Bits	11256	n/a	10256		
Note 1: 2 symbols allocated to PDCCH for	rall BW.					
Note 2: as per Table 4.2-2 in TS 36.211 [8]					

A.4 CQI reference measurement channels

This section defines the DL signal applicable to the reporting of channel quality information (Clause 9.2 and 9.3).

The reference channels in Table A.4-1, A.4-2, A.4-4 and A.4-5 comply with the CQI definition specified in Sec. 7.2.3 of TS 36.213 [10]. Table A.4-3 and A.4-6 specify the transport format corresponding to each CQI.

Table A 1-1. Reference	channel for COI	requirements	(בטט)	full PRB	allocation
Table A.4-1: Reference	channel for Cul	requirements	(רטט)		anocation

Parameter	Unit			Va	lue	-	-
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		8	8	8	8	8	8
Modulation					Table		
					A.4-3		
Target coding rate					Table		
					A.4-3	ļ	
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Note 1: 3 symbols allocated to PDCCH							
Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead							
Note 3: The RLC should be configured to Unacknowledged Mode							

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		4	4	4	4	4	4
Modulation					Table		
Target coding rate					Table A.4-3		
Number of HARQ Processes	Processes	10	10	10	10	10	10
Maximum number of HARQ transmissions		1	1	1	1	1	1
Note 1: 3 symbols allocated to PDCCH							
Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead							
Note 3: The RLC should be configured to	Unacknowledg	ged Mode					

Table A.4-2: Reference channel for CQI requirements (TDD) full PRB allocation

Table A.4-3: Transport format corresponding to each CQI index for 50 PRB allocation

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	12600	-
1	QPSK	0.0762	0	1384	12600	0.1117
2	QPSK	0.1172	0	1384	12600	0.1117
3	QPSK	0.1885	2	2216	12600	0.1778
4	QPSK	0.3008	4	3624	12600	0.2895
5	QPSK	0.4385	6	5160	12600	0.4114
6	QPSK	0.5879	8	6968	12600	0.5549
7	16QAM	0.3691	11	8760	25200	0.3486
8	16QAM	0.4785	13	11448	25200	0.4552
9	16QAM	0.6016	16	15264	25200	0.6067
10	64QAM	0.4551	18	16416	37800	0.4349
11	64QAM	0.5537	21	21384	37800	0.5663
12	64QAM	0.6504	23	25456	37800	0.6741
13	64QAM	0.7539	25	28336	37800	0.7503
14	64QAM	0.8525	27	31704	37800	0.8394
15	64QAM	0.9258	28	36696	37800	0.9714

Table A.4-4: Reference channel for CQI requirements (FDD) 6 PRB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6	6	6	6	6	6	
Subcarriers per resource block		12	12	12	12	12	12	
Allocated subframes per Radio Frame		8	8	8	8	8	8	
Modulation		N/A	N/A	N/A	Table A.4-6	N/A	N/A	
Target coding rate		N/A	N/A	N/A	Table A.4-6	N/A	N/A	
Number of HARQ Processes	Processes	8	8	8	8	8	8	
Maximum number of HARQ transmissions		1	1	1	1	1	1	
Note 1:3 symbols allocated to PDCCHNote 2:Only subframes 1,2,3,4,6,7,8, andNote 3:The RLC should be configured to	l 9 are allocate Unacknowledg	d to avoid Jed Mode	PBCH and	l synchroni	zation sign	al overhea	d	

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	6	6	6	6	6
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		4	4	4	4	4	4
Modulation		N/A	N/A	N/A	Table A.4-6	N/A	N/A
Target coding rate		N/A	N/A	N/A	Table A.4-6	N/A	N/A
Number of HARQ Processes	Processes	10	10	10	10	10	10
Maximum number of HARQ transmissions		1	1	1	1	1	1
Note 1: 3 symbols allocated to PDCCH							
Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead							
Note 3: The RLC should be configured to	Unacknowledg	ged Mode					

Table A.4-5: Reference channel for CQI requirements (TDD) 6 PRB allocation

Table A.4-6: Transport format corresponding to each CQI index for 6 PRB allocation

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	1512	-
1	QPSK	0.0762	0	152	1512	0.1005
2	QPSK	0.1172	0	152	1512	0.1005
3	QPSK	0.1885	2	256	1512	0.1693
4	QPSK	0.3008	4	408	1512	0.2698
5	QPSK	0.4385	6	600	1512	0.3968
6	QPSK	0.5879	8	808	1512	0.5344
7	16QAM	0.3691	11	1032	3024	0.3413
8	16QAM	0.4785	13	1352	3024	0.4471
9	16QAM	0.6016	16	1800	3024	0.5952
10	64QAM	0.4551	19	2152	4536	0.4744
11	64QAM	0.5537	21	2600	4536	0.5732
12	64QAM	0.6504	23	2984	4536	0.6578
13	64QAM	0.7539	25	3496	4536	0.7707
14	64QAM	0.8525	27	3752	4536	0.8272
15	64QAM	0.9258	28	4392	4536	0.9683

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

A.5.1.1 OCNG FDD pattern 1: 14 RB OCNG allocation in 3 MHz

Allocation	ţ	Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]			PDSCH Data
n_{PRB}	ngi		Subframe		
	lei	0	5	1-4,6-9	
	С С	Control region OFDM symbols ^{Note 2}			
	-	1 2 3	1 2 3	1 2 3	

Table A.5.1.1-1: OP.1 FDD: OCNG FDD Pattern 1

1 – 14	N	0	0	0	Note 1	
Note 1: The	se physical	resource blocks	are assigned to	an arbitrary num	ber of virtual UEs	
with	one PDSC	H per virtual UE;	the data transm	itted over the OC	NG PDSCHs	
shal	l be uncorre	elated pseudo ra	ndom data, whic	h is QPSK modu	lated.	
Note 2: The	control reg	ion consists of P	CFICH, PHICH a	and PDCCH. Nur	nber of OFDM	
sym	bols belong	jing to the contro	I region may vary	y between subfra	ames.	
Note 3: If tw	o or more t	ransmit antennas	s are used in the	test, the OCNG	shall be	
tran	smitted to t	he virtual users b	by all the transmit	t antennas accor	ding to	
tran	smission m	ode 2. The trans	mit power shall b	e equally split be	etween all the	
tran	transmit antennas used in the test. The antenna transmission modes are specified					
in se	in section 7.1 in 3GPP TS 36.213 [10].					
N: Normal						

A.5.1.2 OCNG FDD pattern 2: 49 RB OCNG allocation in 10 MHz

Allocation	ų		Relative	power	level γ	_{PRB} [dB]		PDSCH Data
n _{PRB}	ngt			Sub	frame			
	e		0		5	1 – 4,	6 – 9	
	L L	С	ontrol re	gion O	FDM syr	nbols ^{∾ote}	92	
	•	1	2	1	2	1	2	
1 – 49	Ν		0		0	0		Note 1
Note 1: These with or shall b Note 2: The co symbol Note 3: If two transn transn transn in sec	1-49N00Note 1ote 1:These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.ote 2:The control region consists of PCFICH, PHICH and PDCCH. Number of OFDM symbols belonging to the control region may vary between subframes.ote 3:If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213 [10].							
N: Normal								

Table A.5.1.2-1: OP.2 FDD: OCNG FDD Pattern 2

A.5.1.3 OCNG FDD pattern 3: 99 RB OCNG allocation in 20 MHz

Allocation	ų	Relative power level $\gamma_{_{PRB}}$ [dB]					PDSCH Data	
n_{PRB}	ngt			Sub	frame	_		
	e	Ū.	0		5	1 – 4,	6-9	
	с С	Control region OFDM symbols ^{Note 2}						
	-	1	2	1	2	1	2	

Table A.5.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

1 – 99	N	0	0	0	Note 1				
Note 1: The	e physical	hysical resource blocks are assigned to an arbitrary number of virtual UEs							
with	one PDSC	H per virtual UE;	the data transm	itted over the OC	NG PDSCHs				
shal	be uncorre	elated pseudo ra	ndom data, whicl	h is QPSK modu	lated.				
Note 2: The	control reg	ion consists of P	CFICH, PHICH a	and PDCCH. Nur	nber of OFDM				
sym	ools belong	ging to the contro	I region may vary	y between subfra	imes.				
Note 3: If tw	o or more t	ransmit antennas	s are used in the	test, the OCNG	shall be				
tran	mitted to t	he virtual users b	y all the transmit	t antennas accor	ding to				
tran	mission m	ode 2. The trans	mit power shall b	e equally split be	etween all the				
tran	transmit antennas used in the test. The antenna transmission modes are specified								
in se	in section 7.1 in 3GPP TS 36.213 [10].								
N: Normal									

A.5.1.4 OCNG FDD pattern 4: 49 RB OCNG allocation with MBSFN in 10 MHz

Allocatio	n 🚽	Relative power level γ_{PRB} [dB] PDSCH PMCH Data Data					PMCH Data	
n_{PRB}	bu			Subfi	rame		Dulu	Data
	le	0		5	4, 9	1 – 3, 6 – 8		
	Б	1	Cont	rol region OF	DM symbols			
		1	2	1 2	1 2	1 2		
1 – 49	N	0		0	0	N/A	Note 1	N/A
0 – 49	N	N/A	Ą	N/A	N/A	0	N/A	Note 3
Note 1: Note 2:	Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. Note 2: The control region consists of PCFICH, PHICH and PDCCH. Number of OFDM							
Note 3:	symbols belonging to the control region may vary between subframes. Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot.							
The parameter γ_{PRB} is used to scale the power of PMCH. Note 4: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213 [10].								
N: Normal N/A: Not A	pplicabl	е						

Table A.5.1.4-1: OP.4 FDD: OCNG FDD Pattern 4

Annex B (normative): Propagation Conditions

The propagation conditions and channel models for various environments are specified. For each environment a propagation model is used to evaluate the propagation pathless due to the distance. Channel models are formed by combining delay profiles with a Doppler spectrum, with the addition of correlation properties in the case of a multi-antenna scenario.

B.0 No interference

The downlink connection between the System Simulator and the UE is without Additive White Gaussian Noise, and has no fading or multipath effects.

B.1 Static propagation condition

The downlink connection between the System Simulator and the UE is an Additive White Gaussian Noise (AWGN) environment with no fading or multipath effects.

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}$$

B.1.1 Definition of Additive White Gaussian Noise (AWGN) Interferer

Note that the AWGN interferer can be used in static propagation conditions, or in conjunction with multi-path fading.

[FFS]

B.2 Multi-path fading Propagation Conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency
- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multiantenna systems.

B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)
Extended Pedestrian A (EPA)	7	45 ns	410 ns
Extended Vehicular A model (EVA)	9	357 ns	2510 ns
Extended Typical Urban model (ETU)	9	991 ns	5000 ns

Table B.2.1-1: Delay profiles for E-UTRA channel models

Table B.2.1-2: Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2.1-3: Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2.1-4: Extended T	ypical Urban model (ETU)	1
---------------------------	----------------------	------	---

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

B.2.2 Combinations of channel model parameters

Table B.2.2-1 shows propagation conditions that are used for the performance measurements in multi-path fading environment for low, medium and high Doppler frequencies

Model	Maximum Doppler frequency
EPA 5Hz	5 Hz
EVA 5Hz	5 Hz
EVA 70Hz	70 Hz
ETU 70Hz	70 Hz
ETU 300Hz	300 Hz

Table B.2.2-1: Channel model parameters

B.2.3 MIMO Channel Correlation Matrices

B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

	One antenna	Two antennas	Four antennas
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$

Table B.2.3.1-2 defines the correlation matrix for the UE:

Table B.2.3.1-2: UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{UE} = 1$	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 \end{pmatrix}$

Table B.2.3.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

1x2 case	$R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$
2x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^* & \alpha^*\beta & 1 & \beta \\ \alpha^*\beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$
4x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^{*} & 1 \end{bmatrix}$
4x4 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\ast} & \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 \end{bmatrix}$

Table B.2.3.1-3: R_{snat} correlation matrices

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{eNB} and R_{UE} according to $R_{spat} = R_{eNB} \otimes R_{UE}$.

B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.2-1.

|--|

Low cor	rrelation	Medium C	orrelation	High Correlation			
α	β	α	β	α	β		
0	0	0.3	0.9	0.9	0.9		

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.2-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in the Table B.2.3.2-2 table have been adjusted for the $4x^2$ and $4x^4$ high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the $4x^2$ high correlation case, a=0.00010. For the $4x^4$ high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a = 0.00012.

1x2 case		$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$									
2x2 case					$R_{high} = $	1 0.9 0.9 1 0.9 0.81 0.81 0.9	0.9 0.81 0.81 0.9 1 0.9 0.9 1				
4x2 case		$R_{high} =$	1.0000 0.8999 0.9883 0.8894 0.9542 0.8587 0.8999 0.8099	0.8999 1.0000 0.8894 0.9883 0.8587 0.9542 0.8099 0.8999	0.9883 0.8894 1.0000 0.8999 0.9883 0.8894 0.9542 0.8587	0.8894 0.9883 0.8999 1.0000 0.8894 0.9883 0.8587 0.9542	0.9542 0.8587 0.9883 0.8894 1.0000 0.8999 0.9883 0.8894	0.8587 0.9542 0.8894 0.9883 0.8999 1.0000 0.8894 0.9883	0.8999 0.8099 0.9542 0.8587 0.9883 0.8894 1.0000 0.8999	0.8099 0.8999 0.8587 0.9542 0.8894 0.9883 0.8999 1.0000	
4x4 case	$R_{high} =$	1.0000 0.9882 0.09882 0.0000 0.9882 1.0000 0.000 0.9882 1.0000 0.000 0.9541 0.9882 1.0000 0.09882 1.0000 0.09882 1.0000 0.09882 1.0000 0.09882 1.0000 0.9882 1.0000 0.9882 0.09767 0.000 0.9767 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.9430 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.8587 0.000 0.000 0.000	.9541 0.899 .9882 0.954 .0000 0.988 .9882 1.000 0.9430 0.889 0.9767 0.943 0.9767 0.943 0.9767 0.988 0.9105 0.858 0.9430 0.910 0.9541 0.943 0.9430 0.954 0.8587 0.809 0.8894 0.858 0.8999 0.889	9 0.9882 (1 0.9767 (2 0.9430 (0 0.8894 (4 1.0000 (0 0.9882 (7 0.9541 (2 0.8999 (7 0.9882 (5 0.9767 (0 0.9430 (1 0.8894 (9 0.9541 (7 0.9430 (4 0.9105 (9 0.8587 (1 0.9767 (1 0.97	0.9767 0.94 0.9882 0.97 0.9767 0.98 0.9430 0.97 0.9882 0.95 0.9882 0.95 0.9882 1.00 0.9541 0.98 0.9767 0.94 0.9767 0.94 0.9430 0.97 0.9430 0.91 0.9541 0.94 0.9430 0.95 0.9105 0.94	30 0.8894 (67 0.9430 (82 0.9767 (67 0.9882 (41 0.8999 (82 0.9541 (00 0.9882 (82 1.0000 (30 0.8894 (67 0.9430 (82 0.9767 (67 0.9882 (05 0.8587 (30 0.9105 (41 0.9430 (30 0.9541 (0.9541 0.94 0.9430 0.95 0.9105 0.94 0.8587 0.91 0.9882 0.97 0.9767 0.98 0.9430 0.97 0.8894 0.94 1.0000 0.98 0.9882 1.00 0.9541 0.98 0.9882 0.97 0.9882 0.97 0.9767 0.98 0.9430 0.97	30 0.9105 41 0.9430 30 0.9541 05 0.9430 67 0.9430 82 0.9767 67 0.9882 30 0.9767 82 0.9541 00 0.9882 82 1.0000 541 0.9882 767 0.9430 82 0.9767 767 0.9882 130 0.9767	0.8587 0.8 0.9105 0.8 0.9430 0.8 0.9541 0.8 0.8894 0.9 0.9430 0.9 0.9767 0.9 0.9882 0.8 0.8999 0.9 0.9541 0.9 0.9882 0.9 1.0000 0.8 0.8894 1.0 0.9430 0.9 0.9767 0.9 0.9882 0.8	999 0.8894 894 0.8999 587 0.8894 099 0.8587 541 0.9430 430 0.9541 105 0.9430 587 0.9105 882 0.9767 767 0.9882 430 0.9767 894 0.9430 000 0.9882 9882 1.0000 541 0.9882	0.8587 0.8099 0.8894 0.8587 0.8999 0.8894 0.8894 0.8999 0.9105 0.8587 0.9430 0.9105 0.9541 0.9430 0.9541 0.9430 0.9430 0.8894 0.9767 0.9430 0.9767 0.9430 0.9767 0.9882 0.9767 0.9882 0.9767 0.9882 0.9541 0.8999 0.9882 0.9541 2.1.0000 0.9882

1x2		N/A														
case																
		(1 0.9 0.3 0.27)														
2x2	0.9 1 0.27 0.3															
case						R _{mediun}	n = 0	3 0 27	7 1	0.9						
								.5 0.27	0.0	1						
							(0.	27 0.3	0.9	1)						
			(1.0000	0.900	0 0.	8748	0.787	3 0.5	5856	0.527	1 0.3	000	0.2700	n)	
				0.9000	1.000	0 0.	7873	0.874	8 0.5	5271	0.5856	5 0.2	700	0.3000	1	
				0.8748	0.787	73 1.0	0000	0.900	0 0.8	8748	0.7873	3 0.5	856	0.5271		
4x2		D		0.7873	0.874	8 0.	9000	1.000	0 0.′	7873	0.8748	3 0.5	271	0.5856		
case		R _{medium}	=	0.5856	0.527	1 0.	8748	0.787	3 1.0	0000	0.9000	0.8	748	0.7873		
				0.5271	0.585	6 0.	7873	0.874	8 0.9	9000	1.0000) 0.7	873	0.8748		
				0.3000	0.270)0 0.	5856	0.527	1 0.3	8748	0.787	3 1.0	000	0.9000		
				0.2700	0.300	0 0	5271	0.585	6 0'	7873	0.874	8 0.0	0000	1 0000		
	$(0.2/00 \ 0.3000 \ 0.52/1 \ 0.5856 \ 0.7873 \ 0.8748 \ 0.9000 \ 1.00$					1.0000	9									
4x4		1.0000 0.98	32 0.95	541 0.8999	0.8747	0.8645	0.8347	0.7872	0.5855	0.5787	0.5588	0.5270	0.3000	0.2965	0.2862	0.2700
case		0.9882 1.000	0 0.98	882 0.9541	0.8645	0.8747	0.8645	0.8347	0.5787	0.5855	0.5787	0.5588	0.2965	0.3000	0.2965	0.2862
		0.9541 0.98	32 1.00	000 0.9882	0.8347	0.8645	0.8747	0.8645	0.5588	0.5787	0.5855	0.5787	0.2862	0.2965	0.3000	0.2965
		0.8999 0.95	41 0.98	882 1.0000	0.7872	0.8347	0.8645	0.8747	0.5270	0.5588	0.5787	0.5855	0.2700	0.2862	0.2965	0.3000
		0.8747 0.86	45 0.83	347 0.7872	1.0000	0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872	0.5855	0.5787	0.5588	0.5270
		0.8645 0.874	47 0.86	645 0.8347	0.9882	1.0000	0.9882	0.9541	0.8645	0.8747	0.8645	0.8347	0.5787	0.5855	0.5787	0.5588
		0.8347 0.86	45 0.87	747 0.8645	0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645	0.5588	0.5787	0.5855	0.5787
	<i>R</i> =	0.7872 0.83	47 0.86	645 0.8747	0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645	0.8747	0.5270	0.5588	0.5787	0.5855
	* medium	0.5855 0.57	37 0.55	588 0.5270	0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999	0.8747	0.8645	0.8347	0.7872
		0.5787 0.58	55 0.57	787 0.5588	0.8645	0.8747	0.8645	0.8347	0.9882	1.0000	0.9882	0.9541	0.8645	0.8747	0.8645	0.8347
		0.5588 0.57	87 0.58	855 0.5787	0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882	0.8347	0.8645	0.8747	0.8645
		0.5270 0.55	38 0.57	787 0.5855	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000	0.7872	0.8347	0.8645	0.8747
		0.3000 0.29	55 0.28	862 0.2700	0.5855	0.5787	0.5588	0.5270	0.8747	0.8645	0.8347	0.7872	1.0000	0.9882	0.9541	0.8999
		0.2965 0.30	0 0.29	965 0.2862	0.5787	0.5855	0.5787	0.5588	0.8645	0.8747	0.8645	0.8347	0.9882	1.0000	0.9882	0.9541
		0.2862 0.29	65 0.30	000 0.2965	0.5588	0.5787	0.5855	0.5787	0.8347	0.8645	0.8747	0.8645	0.9541	0.9882	1.0000	0.9882
		0.2700 0.28	52 0.29	965 0.3000	0.5270	0.5588	0.5787	0.5855	0.7872	0.8347	0.8645	0.8747	0.8999	0.9541	0.9882	1.0000

Table B.2.3.2-3: MIMO	correlation	matrices for	medium	correlation
	0011010101011	1110000 101	moundin	oononation

Table B.2.3.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
4x2 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.2.3.2-4, \mathbf{I}_d is the $d \times d$ identity matrix.

B.2.4 Propagation conditions for CQI tests

[For Channel Quality Indication (CQI) tests, the following additional multi-path profile is used:

$$h(t,\tau) = \delta(\tau) + a \exp(-i2\pi f_D t) \delta(\tau - \tau_d)$$

in continuous time (t, τ) representation, with τ_d the delay, *a* a constant and f_D the Doppler frequency.]

B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos\theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{B.3.4}$$

where $D_s/2$ is the initial distance of the train form eNodeB, and D_{\min} is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift is shown in Figure B.3-1 are applied for all frequency bands.

Parameter	Value
D_s	300 m
D_{\min}	2 m
V	300 km/h
f_d	750 Hz

Table B.3-1: High speed train scenario

NOTE1: Parameters for HST conditions in table B.3-1 including f_d and Doppler shift trajectories presented on figure B.3-1 were derived for Band7.

Figure B.3-1: Doppler shift trajectory

Annex C (normative): Downlink Physical Channels

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.0 Downlink signal levels

The downlink power settings in Table C.0-1 are used unless otherwise specified in a test case.

If the UE has two Rx antennas, the downlink signal is applied to each one. Both UE Rx antennas shall be connected.

If the UE has one Rx antenna, the downlink signal is applied to it.

		Unit	Channel bandwidth					
			1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Number of R	RBs		6	15	25	50	75	100
Channel BW	/ Power	dBm	-66	-62	-60	-57	-55	-54
RS EPRE		dBm/15kHz	-85	-85	-85	-85	-85	-85
Note 1: T R dl al	Det 1: The channel bandwidth powers and RB allocations are informative, based on -85dBm/15kHz RS_EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed in this calculation, but allocation may vary during setup.							
Note 2: T	Note 2: The power level is specified at each UE Rx antenna.							

Table C.0-1: Default Downlink power levels

The default signal level uncertainty is +/-3dB at each test port, for any level specified. If the uncertainty value is critical for the test purpose, a tighter uncertainty is specified for the related test case in Annex F.

C.1 General

Table C.1-1 describes the mapping of downlink physical channels and signals to physical resources for FDD.

Table C.1-2 describes the mapping of downlink physical channels and signals to physical resources for TDD.

Physical channel	Time Domain Location	Frequency Domain Location	Note		
RS	Symbols 0, 4 of each subframe for antenna port 0 & 1 Symbol 1 of each subframe for antenna port 2 & 3	Downlink system bandwidth dependent.	Mapping rule is specified in TS36.211 6.10.1.2 - CELL_ID = 0		
PBCH	Symbols 0 to 3 of slot 1 of subframe 0 of each radio frame	Occupies 72 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211 Section 6.6.4 (*2)		
PSS	Symbol 6 of slot 0 and 10 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211 Section 6.11.1.2		
SSS	Symbol 5 of slots 0 and 10 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211 Section 6.11.2.2		
PCFICH	Symbol 0 of each subframe	Downlink system bandwidth dependent. Maps into 4 REGs uniformly spread in the frequency domain over the whole system bandwidth.	Mapping rule is specified in TS36.211 Section 6.7.4 (*1) - CELL_ID = 0		
PHICH	Symbol 0 of each subframe	Downlink system bandwidth dependent. Each PHICH group maps into 3 REGs in the frequency domain on the REGs not assigned to PCFICH over the whole system bandwidth,	Mapping rule is specified in TS36.211 Section 6.9.3 (*1) - CELL_ID = 0 - Ng = 1 - Normal PHICH duration		
PDCCH	Symbols 0, 1, 2, 3 of each subframe for 1.4 MHz Symbols 0, 1, 2, of each subframe for 3 and 5 MHz Symbols 0, 1 of each subframe for 10, 15 and 20 MHz	The remaining REGs not allocated to both PCFICH and PHICH are used for PDCCH	Mapping rule is specified in TS36.211 Section 6.8.5 (*1)		
PDSCH	All remaining OFDM symbols of each subframe not allocated to PDCCH	For Subframe 0, REs not allocated to RS, PSS, SSS and PBCH, is allocated to PDSCH For Subframe 5, REs not allocated to RS, PSS and SSS, is allocated to PDSCH For other subframes, REs not allocated to RS, is allocated to PDSCH	Note that there are reserved REs that are not used for transmission of any physical channels (*3) & (*4) which need to be taken into account when allocating REs to PDSCH		
NOTE 1: In case a single cell-specific RS is configured, cell-specific RS shall be assume to be present on antenna					
 TS 36.211 Section 6.2.4). NOTE 2: PBCH is mapped into RE assuming RS from 4 antennas are used at the eNB transmitter, irrespective of the actual number of Tx antenna. Resource elements assumed to be reserved for RS but not used for transmission of RS shall not be used for transmission of any physical channel. (See TS 36.211 Section 6.6.4). NOTE 3: In slot 0 and slot 10 of each radioframe, there are reserved REs for PSS and SSS that are not used for transmission of any physical channels. (See TS 36.211 Section 6.11.1.2 & 6.11.2.2). 					
NOTE 4: F	NOTE 4: REs used for RS transmission on any of the antenna ports in a slot shall not be used for any transmission				

Table C.1-1: Mapping of downlink physical channels and signals to physical resources for FDD

IOTE 4: REs used for RS transmission on any of the antenna ports in a slot shall not be used for any transmission on any other antenna port in the same slot and set to zero. (See TS 36.211 Section 6.10.1.2).

Physical channel	Time Domain Location	Frequency Domain Location	Note		
RS	Symbols 0, 4 of each subframe for antenna port 0 & 1 Symbol 1 of each subframe for antenna port 2 & 3	Downlink system bandwidth dependent.	Mapping rule is specified in TS36.211[8] 6.10.1.2 - CELL_ID = 0		
PBCH	Symbols 0 to 3 of slot 1 of subframe 0 of each radio frame	Occupies 72 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211[8] Section 6.6.4 (*3)		
PSS	Symbol 2 of slot 2 and 12 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211[8] Section 6.11.1.2		
SSS	Symbol 6 of slots 1 and 11 of each radio frame	Occupies 62 subcarriers centered on the DC subcarrier	Mapping rule is specified in TS36.211[8] Section 6.11.2.2		
PCFICH	Symbol 0 of each subframe and special subframe	Downlink system bandwidth dependent. Maps into 4 REGs uniformly spread in the frequency domain over the whole system bandwidth.	Mapping rule is specified in TS36.211[8] Section 6.7.4 (*2) - CELL_ID = 0		
PHICH	Symbol 0 of each subframe and special subframe	Downlink system bandwidth dependent. Each PHICH group maps into 3 REGs in the frequency domain on the REGs not assigned to PCFICH over the whole system bandwidth,	Mapping rule is specified in TS36.211[8] Section 6.9.3 (*2) - CELL_ID = 0 - Ng = 1 - Normal PHICH duration		
PDCCH	For normal subframes(0,4,5,9) Symbols 0, 1, 2, 3 of each subframe for 1.4 MHz Symbols 0, 1, 2, of each subframe for 3 and 5 MHz Symbols 0, 1 of each subframe for 10, 15 and 20 MHz For special subframe (1&6) Symbols 0, 1 of each subframe for all BWs	The remaining REGs not allocated to both PCFICH and PHICH are used for PDCCH	Mapping rule is specified in TS36.211[8] Section 6.8.5 (*2)		
PDSCH	,All remaining OFDM symbols of each subframe not allocated to PDCCH with the following exception: For 1.4MHz,no data shall be scheduled on special subframes (1&6) to avoid problems with insufficient PDCCH performance	For Subframe 0, REs not allocated to RS, SSS and PBCH, is allocated to PDSCH For Subframe 5, REs not allocated to RS and SSS, is allocated to PDSCH For Subframe 1 and 6, REs not allocated to RS, PSS, GP and UpPTS is allocated to PDSCH For other downlink subframes, REs not allocated to RS is allocated to PDSCH	Note that there are reserved REs that are not used for transmission of any physical channels (*4) & (*5) which need to be taken into account when allocating REs to PDSCH		
NOTE 1: T NOTE 2: II NOTE 3: F	 NOTE 1. The mapping is based on the default FDD configuration for subframe assignment and special subframe patterns (see 36.508 [7]subclause 4.6.3) NOTE 2: In case a single cell-specific RS is configured, cell-specific RS shall be assume to be present on antenna ports 0 and 1 for the purpose of mapping a symbol-quadruplet to a REG (resource-element group). (See TS 36.211[8] Section 6.2.4). NOTE 3: PBCH is mapped into RE assuming RS from 4 antennas are used at the eNB transmitter, irrespective of the actual number of Tx antenna. Resource elements assumed to be reserved for RS but not used for transmission of RS shall not be used for transmission of any physical channel. (See TS 36.211[8] Section 6.6.4). 				
transmission of any physical channels. (See TS 36.211[8] Section 6.11.1.2 & 6.11.2.2).					

Table C.1-2: Mapping of downlink physical channels and signals to physical resources for TDD

NOTE 5: REs used for RS transmission on any of the antenna ports in a slot shall not be used for any transmission on any other antenna port in the same slot and set to zero. (See TS 36.211[8] Section 6.10.1.2).

C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Fable C.2-1: Downlink Physical C	hannels required for	connection set-up
----------------------------------	----------------------	-------------------

Table C.2-2 describes the configuration of PDSCH and PDCCH before measurement for FDD and Table C.2-3 for TDD.

Table C.2-2:	PDSCH and	PDCCH	configuration for	or FDD
--------------	-----------	-------	-------------------	--------

	Parameter	Unit	Value	Comments
Allocated res	source blocks		[6]	
MCS Index			[0]	
Number of H	IARQ processes	Processes	8	
Maximum nu	umber of HARQ transmission		[1]	
Aggregation	level	CCE	[FFS]	
DCI Format f	for PDSCH		[Format 1A]	
DCI Format f	DCI Format for PUSCH [Format 0]			
Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to				
PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.				
Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].				
Note 3: The PDSCH shall be occupied 6 resource blocks centered on the DC subcarrier.				

Table C.2-3: PDSCH and PDCCH configuration for TDD

Parameter	Unit	Value	Comments
Allocated resource blocks		[6]	
MCS Index		[0]	
Number of HARQ processes (Note 1)	Processes	7	
Maximum number of HARQ transmission		[1]	
Aggregation level	CCE	[FFS]	
DCI Format for PDSCH		[Format 1A]	
DCI Format for PUSCH		Format 0	
Note 1: Number of HARQ processes shall be determined by UL/DL configuration, for configuration other than 1, the			on, for configuration other than 1, the
process number shall be set per TS 36.213 [10] Table 8-1.			
Note 2: For normal downlink subframes, 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel			MHz, 15 MHz and 10 MHz channel
BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.			
For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.			
Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].			
Note 4: The DDSCH shall be accurated 6 recourse blocks contered on the DC subcarrier			

Note 4: The PDSCH shall be occupied 6 resource blocks centered on the DC subcarrier.

C.3 Connection

The following clauses describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.0 Measurement of Transmitter Characteristics

Table C.3.0-1 is applicable for measurements on the Transmitter Characteristics (clause 6).

Table C 3 0-1: Downlink Ph	vsical Channels transmitted	during a connection	(FDD and TDD)
	ysical chamicis hansinitteu	a during a connection	

Physical Channel	EPRE Ratio	
PBCH	$PBCH_RA = 0 dB$	
	$PBCH_RB = 0 dB$	
PSS	$PSS_RA = 0 dB$	
SSS	$SSS_RA = 0 dB$	
PCFICH	$PCFICH_RB = 0 dB$	
PDCCH	$PDCCH_RA = 0 dB$	
	$PDCCH_RB = 0 dB$	
PDSCH	$PDSCH_RA = 0 dB$	
	$PDSCH_RB = 0 dB$	
PHICH	$PHICH_RB = 0 dB$	

NOTE 1: No boosting is applied.

Table C.3.0-2: Pov	wer allocation fo	r OFDM symbols a	and reference signals
--------------------	-------------------	------------------	-----------------------

Parameter	Unit	Value	Note
Transmitted power spectral	dBm/15 kHz	Test specific	1. I_{or} shall be kept
density I_{or}			constant throughout all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{\rm \scriptscriptstyle RS}$ / $I_{\rm \scriptscriptstyle or}$			

C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical	Channels transmitted during	g a connection	(FDD and TD	D)
----------------------------------	-----------------------------	----------------	-------------	----

Physical Channel	EPRE Ratio	
PBCH	$PBCH_RA = 0 dB$	
	$PBCH_RB = 0 dB$	
PSS	$PSS_RA = 0 dB$	
SSS	$SSS_RA = 0 dB$	
PCFICH	$PCFICH_RB = 0 dB$	
PDCCH	$PDCCH_RA = 0 dB$	
	$PDCCH_RB = 0 dB$	
PDSCH	$PDSCH_RA = 0 dB$	
	$PDSCH_RB = 0 dB$	
PHICH	$PHICH_RB = 0 dB$	

NOTE 1: No boosting is applied.

Parameter	Unit	Value	Note
Transmitted power spectral density $I_{\it or}$	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{\rm RS}$ / $I_{\rm or}$			

 Table C.3.1-2: Power allocation for OFDM symbols and reference signals

C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Physical Channel	EPRE Ratio	
PBCH	$PBCH_RA = \rho_A$	
	$PBCH_RB = \rho_B$	
PSS	$PSS_RA = \rho_A$	
SSS	$SSS_RA = \rho_A$	
PCFICH	PCFICH_RB = ρ_B	
PDCCH	PDCCH_RA = ρ_A	
	PDCCH_RB = ρ_B	
PDSCH	PDSCH_RA = ρ_A	
	PDSCH_RB = ρ_B	
PHICH	PHICH_RB = ρ_B	

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: ρ_A denotes the ratio of PDSCH EPRE to cell-specific RS EPRE among PDSCH REs in all the OFDM symbols not containing cell-specific RS. ρ_B denotes the ratio of PDSCH EPRE to cell-specific RS EPRE among PDSCH REs in all the OFDM symbols containing cell-specific RS.

Table C.3.2-2: Powe	r allocation for	OFDM s	ymbols and	reference	signals
---------------------	------------------	--------	------------	-----------	---------

Parameter	Unit	Value	Note
Total transmitted power spectral density $I_{\it or}$	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference signal power ratio $E_{\rm RS}$ / $I_{\rm or}$		Test specific	1. Applies for antenna port <i>p</i>

Annex D (normative): Characteristics of the Interfering Signal

D.1 General

Some RF performance requirements for the E-UTRA UE receiver are defined with interfering signals present in addition to the wanted signal. When the wanted channel band width is wider than or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal, and in some cases an additional CW signal, are used. For wanted channel band widths below 5MHz, the band width of the modulated interferer should be equal to the channel band width of the wanted signal.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

	Channel bandwidth					
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
RB	6	15	25	25	25	25
BWInterferer	1.4 MHz	3 MHz	5 MHz	5 MHz	5 MHz	5 MHz

Table D.2-1: Description of modulated E-UTRA interferer

Annex E (normative): Global In-Channel TX-Test

Editor's note: This annex is incomplete. The following aspects are either missing or not yet determined:

- An average EVM, comprising 20 individual values, is defined and compared against the test limit. The other sub-results of the Global In channel TX-Test deliver one value per slot, hence 20 values. It is tbd, how to compare this individual values against the test limit.
- Clause E.2.2 to E.4.5 describe EVM, including the subresults IQ offset, Frequency error, Inband emissions(image IQ and general) and spectral flatness for PUSCH.

Clause E.4.6 describe EVM of the DMRS.

Clause E.5 to E.5.9.3 describe EVM and inband emissions of PUCCH.

Clause E.6 to E.6.9.2 describe EVM of PRACH.

Clauses E.2.2 to E.5.9.3 are descriptions, which exclude any transients due to power on/off or power change.

EVM for PRACH and transition periods due to on/off power change are not yet implemented

E.1 General

The global in-channel TX test enables the measurement of all relevant parameters that describe the in-channel quality of the output signal of the TX under test in a single measurement process.

The parameters describing the in-channel quality of a transmitter, however, are not necessarily independent. The algorithm chosen for description inside this annex places particular emphasis on the exclusion of all interdependencies among the parameters.

E.2 Signals and results

E.2.1 Basic principle

The process is based on the comparison of the actual **output signal of the TX under test**, received by an ideal receiver, with a **reference signal**, that is generated by the measuring equipment and represents an ideal error free received signal. All signals are represented as equivalent (generally complex) baseband signals.

The description below uses numbers as examples. These numbers are taken from frame structure 1 with normal CP length and 20 MHz bandwidth. The application of the text below, however, is not restricted to this frame structure and bandwidth.

E.2.2 Output signal of the TX under test

The output signal of the TX under test is acquired by the measuring equipment and stored for further processing. It is sampled at a sampling rate of 30.72 Msps. In the time domain it comprises at least 10 consecutive uplink subframes. It is named z(v). Each slot is modelled as a signal with the following parameters: demodulated data content, carrier frequency, amplitude and phase for each subcarrier, timing, IQ offset.

NOTE 1: TDD

For frame structure type 2, subframes with special fields (UpPTS) do not undergo any evaluation. Since the uplink subframes are not continuous, the 20 slots should be extracted from more than 1 continuous radio frame:

Figure E.2.2-1 is an example for uplink-downlink configuration 1 (DSUUDDSUUD) as specified in TS 36.211 [8] Table 4.2-2, assuming all uplink subframes are active.

Figure E.2.2-1: Example of uplink – downlink configuration 1

E.2.3 Reference signal

Two types of reference signal are defined:

The reference signal $i_1(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: demodulated data content, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no IQ offset. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain.

The reference signal $i_2(v)$ is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: restricted data content: nominal reference symbols, (all modulation symbols for user data symbols are set to 0V), nominal carrier frequency, nominal amplitude and phase for each applicable subcarrier, nominal timing, no IQ offset. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain.

NOTE: The PUCCH is not tested and is off during the time under test.

E.2.4 Measurement results

The measurement results, achieved by the global in channel TX test are the following:

- Carrier Frequency error
- EVM (Error Vector Magnitude)
- Origin offset
- Unwanted emissions, falling into non allocated resource blocks.
- Spectrum flatness

E.2.5 Measurement points

The unwanted emission falling into non-allocated RB(s) is calculated directly after the FFT as described below. In contrast to this, the EVM for the allocated RB(s) is calculated after the IDFT. The samples after the TX-RX chain equalizer are used to calculate spectrum flatness. Carrier frequency error and IQ offset is calculated in the block "RF correction".

Figure E.2.5-1: EVM measurement points

E.3 Signal processing

E.3.1 Pre FFT minimization process

Before applying the pre-FFT minimization process, z(v) and i(v) are portioned into 20 pieces, comprising one slot each. Each slot is processed separately. Sample timing, Carrier frequency and I/Q offset in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

The carrier frequency variation and the IQ variation are the measurement results: Carrier Frequency Error and Origin Offset.

From the acquired samples 20 carrier frequencies and 20 IQ offsets can be derived.

- NOTE 1: The minimisation process, to derive IQ offset and RF error can be supported by Post FFT operations. However the minimisation process defined in the pre FFT domain comprises all acquired samples (i.e. it does not exclude the samples in between the FFT widths and it does not exclude the bandwidth outside the transmission bandwidth configuration. This corresponds to the definition of the observation period in 36.101 Clause 6.5.1)
- NOTE 2: The algorithm would allow to derive Carrier Frequency error and Sample Frequency error of the TX under test separately. However there are no requirements for Sample Frequeny error. Hence the algorithm models the RF and the sample frequency commonly (not independently). It returns one error and does not distinuish between both.

After this process the samples z(v) are called $z^{0}(v)$.

E.3.2 Timing of the FFT window

The FFT window length is 2048 samples per OFDM symbol. 7 FFTs (14336 samples) cover less than the acquired number of samples (15360 samples) The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP. There are three different instants for FFT:

Centre of the reduced window, called $\Delta \tilde{c}$, $\Delta \tilde{c}$ –W/2 and $\Delta \tilde{c}$ +W/2.

The timing of the measured signal is determined in the pre FFT domain as follows, using $z^{0}(v)$ and $i_{2}(v)$:

- 1. The measured signal is delay spread by the TX filter. Hence the distinct boarders between the OFDM symbols and between Data and CP are also spread and the timing is not obvious.
- 2. In the Reference Signal $i_2(v)$ the timing is known.

3. Correlation between (1.) and (2.) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The meaning of "impulse response" assumes that the autocorrelation of the reference signal $i_2(v)$ is a Dirac peak and that the correlation between the reference signal $i_2(v)$ and the data in the measured signal is 0. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal.

From the acquired samples 20 timings can be derived.

For all calculations, except EVM, the number of samples in $z^{0}(v)$ is reduced to 7 blocks of samples, comprising 2048 samples (FFT width) and starting with $\Delta \tilde{c}$ in each OFDM symbol including the demodulation reference signal.

For the EVM calculation the output signal under test is reduced to 14 blocks of samples, comprising 2048 samples (FFT width) and starting with $\Delta \tilde{c}$ –W/2 and $\Delta \tilde{c}$ +W/2 in each OFDM symbol including the demodulation reference signal.

The number of samples, used for FFT is reduced compared to $z^{0}(v)$. This subset of samples is called z'(v).

The timing of the centre $\Delta \tilde{c}$ with respect to the different CP length in a slot is as follows: (Frame structure 1, normal CP length)

 $\Delta \tilde{c}$ is on T_f=72 within the CP of length 144 (in OFDM symbol 1 to 6)

 $\Delta \tilde{c}$ is on T_f=88 (=160-72) within the CP of length 160 (in OFDM symbol 0)

E.3.3 Post FFT equalisation

Perform 7 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \tilde{c}$, including the demodulation reference symbol. The result is an array of samples, 7 in the time axis t times 2048 in the frequency axis f. The samples represent the DFT coded data symbols (in OFDM-symbol 0,1,2,4,5and 6 in each slot) and demodulation reference symbols (OFDM symbol 3 in each slot) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal demodulation reference symbols and nominal DFT coded data symbols are used to equalize the measured data symbols. (Location for equalization see Figure E.2.5-1)

NOTE: (The nomenclature inside this note is local and not valid outside)

The nominal DFT coded data symbols are created by a demodulation process. The location to gain the demodulated data symbols is "EVM" in Figure E.2.5-1. A demodulation process as follows is recommended:

- 1. Equalize the measured DFT coded data symbols using the reference symbols for equalisation. Result: Equalized DFT coded data symbols
- 2. iDFT transform the equalized DFT coded data symbols: Result: Equalized data symbols
- 3. Decide for the nearest constellation point: Result: Nominal data symbols
- 4. DFT transform the nominal data symbols: Result: Nominal DFT coded data symbols

At this stage we have an array of <u>M</u>easured data-<u>Symbols</u> and reference-<u>Symbols</u> (MS(f,t))

versus an array of Nominal data-Symbols and reference Symbols (NS(f,t))

(complex, the arrays comprise 6 DFT coded data symbols and 1 demodulation reference symbol in the time axis and the number of allocated subcarriers in the frequency axis.)

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f)

$$EC(f) = \frac{\sum_{t=0}^{7} NS(f,t)^* NS(f,t)}{\sum_{t=0}^{7} MS(f,t)^* NS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the DFT-coded data symbols. The measured DFT-coded data and the references symbols are equalized by:

$$Z'(f,t) = MS(f,t) * EC(f)$$

Z'(f,t), restricted to the data symbol (excluding t=3) is used to calculate EVM, as described in E.4.1.

EC(f) is used in E.4.4 to calculate spectral flatness.

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.4 Derivation of the results

E.4.1 EVM

For EVM create two sets of Z'(f,t)., according to the timing " $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$ " using the equalizer coefficients from E.3.3.

Perform the iDFTs on Z'(f,t). The IDFT-decoding preserves the meaning of t but transforms the variable f (representing the allocated sub carriers) into an another variable g, covering the same count and representing the demodulated symbols. The samples in the post IDFT domain are called iZ'(g, t). The equivalent ideal samples are called iI(g,t). Those samples of Z'(f,t), carrying the reference symbols (=symbol 3) are not iDFT processed.

The EVM is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{t \in T} \sum_{g \in G} \left| iZ \right|^{2} \left(g, t\right) - iI\left(g, t\right)^{2}}{\left|T\right| \cdot P_{0}}},$$

where

t covers the count of demodulated symbols with the considered modulation scheme being active within the measurement period, (i.e. symbol 0,1,2,4,5and 6 in each slot, $\rightarrow |T|=6$)

g covers the count of demodulated symbols with the considered modulation scheme being active within the allocated bandwidth. ($|G|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

iZ'(g,t) are the samples of the signal evaluated for the EVM.

iI(g,t) is the ideal signal reconstructed by the measurement equipment, and
P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 40 EVM value can be derived, 20 values for the timing $\Delta \tilde{c} -W/2$ and 20 values for the timing $\Delta \tilde{c} +W/2$

E.4.2 Averaged EVM

EVM is averaged over all basic EVM measurements.

The averaging comprises 20 consecutive UL slots (for frame structure 2: excluding special fields(UpPTS))

$$\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}$$

The averaging is done separately for timing $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$ leading to \overline{EVM}_1 and \overline{EVM}_h

 $EVM_{\text{final}} = \max(\overline{\text{EVM}}_1, \overline{\text{EVM}}_h)$ is compared against the test requirements.

E.4.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

Explanatory Note:

The inband emission measurement is only meaningful with allocated RBs next to non allocated RB. The allocated RBs are necessary but not under test. The non allocated RBs are under test. The RB allocation for this test is as follows: The allocated RBs are at one end of the channel BW, leaving the other end unallocated. The number of allocated RBs is smaller than half of the number of RBs, available in the channel BW. This means that the vicinity of the DC carrier in the centre is unallocated.

There are 3 types of inband emissions:

- 1. General
- 2. IQ image
- 3. DC

DC are inband emissions next to the DC carrier.

IQ image are inband emissions symmetrically (with respect to the DC carrier) on the other side of the allocated RBs.

General are the remaining unallocated RBs.

- 1 and 2 is expressed in terms of power in one non allocated RB under test, normalized to the average power of an allocated RB (unit dB).
- 3 is expressed in terms of power in one non allocated RB, normalized to the power of all allocated RBs. (unit dBc).

This is the reason for two formulas Emissions relative

Create one set of Y(t,f) per slot according to the timing " $\Delta \tilde{c}$ "

For the non-allocated RBs below the in-band emissions are calculated as follows

$$Emissions_{absolute} (\Delta_{RB}) = \begin{cases} \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{max(f_{\min}, (c_l + 12 \cdot \Delta_{RB}) * \Delta f) \\ min(f_{\max}, (c_h + 12 \cdot \Delta_{RB}) * \Delta f) \\ min(f_{\max}, (c_h + 12 \cdot \Delta_{RB}) * \Delta f) \\ \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{c_h + (12 \cdot \Delta_{RB} - 11) * \Delta f \\ c_h + (12 \cdot \Delta_{RB} - 11) * \Delta f}} |Y(t, f)|^2, \Delta_{RB} < 0 \end{cases}$$

where

the upper formula represents the in band emissions below the allocated frequency block and the lower one the in band emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ for the first upper or $\Delta_{RB} = -1$ for the first lower adjacent RB),

 f_{\min} and f_{\max} are the lower and upper edge of the UL transmission BW configuration,

 c_l and c_h are the lower and upper edge of the allocated BW,

 Δf is 15kHz,and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.3.3

The allocated RB power per RB and the total allocated RB power are given by:

$$P_{RB} = \frac{1}{\left|T_{s}\right| \cdot N_{RB}} \sum_{t \in T_{s}} \sum_{c_{1}}^{c_{1} + (12 \cdot L_{CRBs} - 1)^{*} \Delta f} \left| MS(t, f) \right|^{2} [dBm/180 \text{ kHz}]$$

$$P_{All-RBs} = \frac{1}{\left|T_{s}\right|} \sum_{t \in T_{s}} \sum_{c_{1}}^{c_{1} + (12 \cdot L_{CRBs} - 1)^{*} \Delta f} \left| MS(t, f) \right|^{2} [dBm]$$

The relative in-band emissions, applicable for General and IQ image, are given by:

$$Emissions_{relative}(\Delta_{RB}) = 10 \cdot \log_{10}\left(\frac{Emissions_{absolute}(\Delta_{RB})}{\left|\frac{1}{|T_s| \cdot N_{RB}} \sum_{t \in T_s} \sum_{c_1}^{c_1 + (12 \cdot L_{CRBs} - 1)^* \Delta f} \left| MS(t, f) \right|^2} \right) [dB]$$
$$= Emissions_{absolute}(\Delta_{RB}) [dBm/180 \text{ kHz}] - P_{RB} [dBm/180 \text{ kHz}]$$

where

 L_{CRBs} is the number of allocated resource blocks,

 $N_{\rm \it RB}$ is the Transmission Bandwidth Configuration.

and MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.3.3. The relative in-band emissions, applicable for DC, is given by:

$$Emissions_{relative} = 10 \cdot \log_{10} \left(\frac{Emissions_{absolute}(RBnextDC)}{\left| \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{c_1}^{c_1 + (12 \cdot L_{CRBs} - 1)^* \Delta f} \left| MS(t, f) \right|^2} \right) [dBc]$$
$$= Emissions_{absolute}(RBnextDC) [dBm/180kHz] - P_{All-RBs} [dBm]$$

where RBnextDC means: Ressouce Block next to the DCcarrier.

This is one RB, namely the central one in case of an odd number of RBs in the channel BW.

This is one pair of RBs, namely the immediately adjacent RBs to the DC carrier in case of an even number of RBs in the channel BW.

The basic in-band emissions measurement interval is defined over one slot in the time domain.

From the acquired samples 20 functions for general in band emissions and IQ image inband emissions can be derived. 20 values or 20 pairs of DC inband emissions can be derived. They are compared against different limits.

E.4.4 Spectral flatness

For spectral flatness use EC(f) as defined in E.3.3. Note, EC(f) represents the inverse complex channel coefficients.

$$\Delta P(f) = 10 * \log \frac{\frac{1}{12 * L_{CRBs}} \sum_{12 * L_{CRBs}} EC(f) * EC(f)}{EC(f) * EC(f)}$$

With * denoting complex conjugation.

 $12* L_{CRBs}$: Number of allocated subcarriers

This function represents the relative frequency response of the TX chain in dB (after equalization) and is compared against limits.

From the acquired samples 20 functions $\Delta P(f)$ can be derived.

E.4.5 Frequency error and IQ offset

See E.3.1.

E.4.6 EVM of Demodulation reference symbols (EVM_{DMRS})

For the purpose of EVM $_{DMRS}$, the steps E.2.2 to E.4.2 are repeated 6 times, constituting 6 EVM $_{DMRS}$ sub-periods. The only purpose of the repetition is to cover the longer gross measurement period of EVM $_{DMRS}$ (120 time slots) and to derive the FFT window timing per sub-period.

The bigger of the EVM results in one 20 TS period corresponding to the timing $\Delta \tilde{c} - W/2$ or $\Delta \tilde{c} + W/2$ is compared against the limit. (Clause E.4.2) This timing is re-used for EVM _{DMRS} in the equivalent EVM _{DMRS} sub-period.

For EVM the demodulation reference symbols are exlcuded, while the data symbols are used. For EVM_{DMRS} the data symbols are excluded, while the demodulation references symbols are used.

Re-use the following formula from E.3.3:

$$Z'(f,t) = MS(f,t) * EC(f)$$

To calculate EVM_{DMRS} , the data symbol (t=0,1,2,4,5,6) in Z'(f,t) are excluded and only the reference symbol (t=3) is used.

The EVM $_{DMRS}$ is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{DMRS} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z \left(f, t \right) - I(f, t) \right|^2}{\left| T \right| \cdot P_0}}$$

where

t covers the count of demodulation reference symbols (i.e. only symbol 3 in each slot, so count =1)

f covers the count of demodulation reference symbols within the allocated bandwidth. ($|F|=12*L_{CRBs}$ (with L_{CRBs} : number of allocated resource blocks)).

Z'(f,t) are the samples of the signal evaluated for the EVM _{DMRS}

I(f, t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

20 such results are generated per measurement sub-period.

E.4.6.1 1st average for EVM _{DMRS}

EVM DMRS is averaged over all basic EVM DMRS measurements in one sub-period

The averaging comprises 20 consecutive UL slots (for frame structure 2: excluding special fields(UpPTS))

$$1 \, stEVM_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS} \frac{2}{i}}$$

The timing is taken from the EVM for the data. 6 of those results are achieved from the samples. In general the timing is not the same for each result.

E.4.6.2 Final average for EVM _{DMRS}

finalEVM _{DMRS} =
$$\sqrt{\frac{1}{6}\sum_{i=1}^{6}1stEVM DMRS_{i}^{2}}$$

E.5 EVM and inband emissions for PUCCH

For the purpose of worst case testing, the PUCCH shall be located on the edges of the Transmission Bandwidth Configuration (6,15,25,50,75,100 RBs).

The EVM for PUCCH (EVM_{PUCCH}) is averaged over 20 slots. At least 20 consecutive TSs shall be transmitted by the UE without power change. SRS multiplexing shall be avoided during this period. Although discontinuous in the frequency domain due to band edge alternation, the signal in the time domain is continuous in power. So EVM_{PUCCH} is measured without power change. Transition periods are not applicable.

Editors note:

36.101, clause 6.5.2.1, 3rd paragraph defines the applicability of transition periods only in case of power change.

36.101. Clause 6.3.4.2: it is not clear, if this clause defines the applicability of transition periods for this test.

The applicability of transition periods for TDD is FFS.

The description below is generic in the sense that all 6 PUCCH formats are covered. Although the number of OFDM symbols in one slot is 6 or 7 (depending on the preamble length), the text below uses 7 without excluding 6.

E.5.1 Basic principle

The basis principle is the same as described in E.2.1

E.5.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

NOTE: TDD is FFS.

E.5.3 Reference signal

The reference signal is defined same as in E.2.3. Same as in E.2.3, $i_1(v)$ is the ideal reference for EVM_{PUCCH} and $i_2(v)$ is used to estimate the FFT window timing.

Note PUSCH is off during the PUCCH measurement period.

E.5.4 Measurement results

The measurement results are:

- EVM_{PUCCH}
- Inband emissions with the sub-results: General in-band emission, IQ image (according to: 36.101. Annex F.4, Clause starting with: "At this stage the")

E.5.5 Measurement points

The measurement points are illustrated in the figure below:

E.5.6 Pre FFT minimization process

The pre FFT minimisation process is the same as describes in clause E.3.1.

RF error, and origin offset are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.5.7 Timing of the FFT window

Timing of the FFT window is estimated with the same method as described in E.3.2.

E.5.8 Post FFT equalisation

The post FFT equalisation is described separately without reference to E.3.3:

Perform 7 FFTs on z'(v), one for each OFDM symbol in a slot using the timing $\Delta \tilde{c}$, including the demodulation reference symbol. The result is an array of samples, 7 in the time axis t times 2048 in the frequency axis f. The samples represent the OFDM symbols (data and reference symbols) in the allocated RBs and inband emissions in the non allocated RBs within the transmission BW.

Only the allocated resource blocks in the frequency domain are used for equalisation.

The nominal reference symbols and **nominal** OFDM data symbols are used to equalize the measured data symbols.

Note: (The nomenclature inside this note is local and not valid outside)

The nominal OFDM data symbols are created by a demodulation process. A demodulation process as follows is recommended:

- 1. Equalize the measured OFDM data symbols using the reference symbols for equalisation. Result: Equalized OFDM data symbols
- 2. Decide for the nearest constellation point, however not independent for each subcarrier in the RB. 12 constellation points are decided dependent, using the applicable CAZAC sequence. Result: Nominal OFDM data symbols

At this stage we have an array of <u>Measured data-Symbols</u> and reference-<u>Symbols</u> (MS(f,t))

versus an array of Nominal data-Symbols and reference Symbols (NS(f,t))

The arrays comprise in sum 7 data and reference symols, depending on the PUCCH format, in the time axis and the number of allocated sub-carriers in the frequency axis.

MS(f,t) and NS(f,t) are processed with a least square (LS) estimator, to derive one equalizer coefficient per time slot and per allocated subcarrier. EC(f)

$$EC(f) = \frac{\sum_{t=0}^{7} NS(f,t)^* NS(f,t)}{\sum_{t=0}^{7} MS(f,t)^* NS(f,t)}$$

With * denoting complex conjugation.

EC(f) are used to equalize the OFDM data together with the demodulation reference symbols by:

$$Z'(f,t) = MS(f,t) * EC(f)$$

Z'(f,t) is used to calculate EVM_{PUCCH}, as described in E.5.9 1

The samples of the non allocated resource blocks within the transmission bandwidth configuration in the post FFT domain are called Y(f,t) (f covering the non allocated subcarriers within the transmission bandwidth configuration, t covering the OFDM symbols during 1 slot).

E.5.9 Derivation of the results

E.5.9.1 EVM_{PUCCH}

For EVM_{PUCCH} create two sets of Z'(f,t)., according to the timing " $\Delta \tilde{c}$ –W/2 and $\Delta \tilde{c}$ +W/2" using the equalizer coefficients from E.5.8

The EVM_{PUCCH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s)

$$EVM_{PUCCH} = \sqrt{\frac{\sum_{t \in T} \sum_{f \in F} \left| Z^{-1}(f, t) - I(f, t) \right|^2}{\left| T \right| \cdot P_0}},$$

where

t covers the count of demodulated symbols in the slot (|T|=7)

f covers the count of demodulated symbols within the allocated bandwidth. (|F|=12)

Z'(f,t) are the samples of the signal evaluated for the EVM_{PUCCH}

I(g,t) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 40 EVM_{PUCCH} value can be derived, 20 values for the timing $\Delta \tilde{c}$ –W/2 and 20 values for the timing $\Delta \tilde{c}$ +W/2

E.5.9.2 Averaged EVM_{PUCCH}

EVM_{PUCCH} is averaged over all basic EVM_{PUCCH} measurements

The averaging comprises 20 consecutive UL slots (for frame structure 2: excluding special fields(UpPTS))

$$\overline{EVM}_{PUCCH} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{PUCCH}_{i}^{2}}$$

The averaging is done separately for timing $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$ leading to $\overline{EVM}_{PUCCH, low}$ and $\overline{EVM}_{PUCCH, high}$

 $EVM_{PUCCH, final} = \max(\overline{EVM}_{PUCCH, low}, \overline{EVM}_{PUCCH, high})$ is compared against the test requirements.

E.5.9.3 In-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

Create one set of Y(t,f) per slot according to the timing " $\Delta \tilde{c}$ "

For the non-allocated RBs the in-band emissions are calculated as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{max(f_{\min}, (c_l + 12 \cdot \Delta_{RB} + 11)^* \Delta f \\ min(f_{\max}, (c_l + 12 \cdot \Delta_{RB})^* \Delta f) \\ min(f_{\max}, (c_h + 12 \cdot \Delta_{RB})^* \Delta f) \\ \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{c_h + (12 \cdot \Delta_{RB} - 11)^* \Delta f \\ c_h + (12 \cdot \Delta_{RB} - 11)^* \Delta f}} |Y(t, f)|^2, \Delta_{RB} > 0 \end{cases}$$

where

the upper formula represents the inband emissions below the allocated frequency block and the lower one the inband emissions above the allocated frequency block.

 T_s is a set of $|T_s|$ OFDM symbols in the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ for the first upper or $\Delta_{RB} = -1$ for the first lower adjacent RB),

 f_{\min} and f_{\max} are the lower and upper edge of the UL system BW,

 c_l and c_h are the lower and upper edge of the allocated BW,

 Δf is 15kHz,and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection E.5.8

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{|T_s| \cdot L_{CRBs}} \sum_{t \in T_s} \sum_{c_1}^{c_1 + (12 \cdot L_{CRBs} - 1)^* \Delta f} |MS(t, f)|^2}$$

where

 L_{CRBs} is the number of allocated RBs, which is always 1 in case of PUCCH

and MS(t, f) is the frequency domain samples for the allocated bandwidth, as defined in the subsection E.5.8

The basic in-band emissions measurement interval is defined over one slot in the time domain.

From the acquired samples 20 functions for inband emissions can be derived.

Since the PUCCH allocation is always on the upper or lower band-edge, the opposite to the allocated one represents the IQ image, and the remaining inner RBs represent the general inband emissions. They are compared against different limits.

E.6 EVM for PRACH

The description below is generic in the sense that all 5 PRACH formats are covered. The numbers, used in the text below are taken from PRACH format#0 without excluding the other formats.

E.6.1 Basic principle

The basis principle is the same as described in E.2.1

E.6.2 Output signal of the TX under test

The output signal of the TX under test is processed same as described in E.2.2

The measurement period is different:

- 2 PRACH preambles are recorded for format 0and 1,
- 1 PRACH preamble is recorded for format 2 and 3, each containing 1 CP and 2 preamble sequences
- 10 RPRACH preambles are recorded for format 4.

E.6.3 Reference signal

The test description in 6.5.2.1.4.1A is based on non contention based access:

- PRACH configuration index (responsible for Preamble format, System frame number and subframe number)
- Preamble ID
- Preamble power
- signalled to the UE, defines the reference signal unambiguously, such that no demodulation process is necessary to gain the reference signal.

The reference signal i(v) is constructed by the measuring equipment according to the relevant TX specifications, using the following parameters: the applicable Zadoff Chu sequence, nominal carrier frequency, nominal amplitude and phase for each subcarrier, nominal timing, no IQ offset. It is represented as a sequence of samples at a sampling rate of 30.72 Msps in the time domain.

E.6.4 Measurement results

The measurement result is:

• EVM_{PRACH}

E.6.5 Measurement points

The measurement points are illustrated in the figure below:

E.6.6 Pre FFT minimization process

The pre-FFT minimization process is applied to each PRACH preamble separately. The time period for the pre-FFT minimisation process includes the complete CP and Zadoff-Chu sequence (in other words, the power transition period is per definition outside of this time period) Sample timing, Carrier frequency and I/Q offset in z(v) are jointly varied in order to minimise the difference between z(v) and i(v). Best fit (minimum difference) is achieved when the RMS difference value between z(v) and i(v) is an absolute minimum.

After this process the samples z(v) are called $z^{0}(v)$.

RF error, and origin offset are necessary for best fit of the measured signal towards the ideal signal in the pre FFT domain. However they are not used to compare them against the limits.

E.6.7 Timing of the FFT window

The FFT window length is 24576 samples for preamble format 0, however in the measurement period is at least 27744 samples are taken. The position in time for FFT must be determined.

In an ideal signal, the FFT may start at any instant within the cyclic prefix without causing an error. The TX filter, however, reduces the window. The EVM requirements shall be met within a window W<CP.

The reference instant for the FFT start is the centre of the reduced window, called $\Delta \tilde{c}$,

EVM is measured at the following two instants: $\Delta \tilde{c} = W/2$ and $\Delta \tilde{c} = W/2$.

The timing of the measured signal $z^{0}(v)$ with respect to the ideal signal i(v) is determined in the pre FFT domain as follows:

Correlation between $z^0(v)$ and i(v) will result in a correlation peak. The meaning of the correlation peak is approx. the "impulse response" of the TX filter. The correlation peak, (the highest, or in case of more than one, the earliest) indicates the timing in the measured signal with respect to the ideal signal.

W is different for different preamble formats and shown in Table E.7.1-1.

Table E.7.1-1 EVM window length for PRACH

Preamble format	$\begin{array}{c} \textbf{Cyclic} \\ \textbf{prefix} \\ \textbf{length}^1 \ N_{cp} \end{array}$	Nominal FFT size ²	EVM window length <i>W</i> in FFT samples	Ratio of <i>W</i> to CP*
0	3168	24576	[TBD]	[TBD]
1	21024	24576	[TBD]	[TBD]
2	6240	49152	[TBD]	[TBD]
3	21024	49152	[TBD]	[TBD]
4	448	4096	[TBD]	[TBD]
Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed				
Note 2: Decimation of time samples by 12 is assumed				
Note 3: These percentages are informative				

The number of samples, used for FFT is reduced compared to $z^{0}(v)$. This subset of samples is called z''(v).

The sample frequency 30.72 MHz is oversampled with respect to the PRACH-subcarrier spacing of 1.25MHz. EVM is based on 2048 samples per PRACH preamble and requires decimation of the time samples by the factor of 12. The final number of samples per PRACH preamble, used for FFT is reduced compared to z'(v) by the factor of 12. This subset of samples is called z'(v).

E.6.8 Post FFT equalisation

Equalisation is not applicable for the PRACH.

E.6.9 Derivation of the results

E.6.9.1 EVM_{PRACH}

Perform FFT on z'(v) and i(v) using the FFT timing $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$.

For format 2 and 3 the first and the repeated preamble sequence are FFT-converted separately.

The EVM_{PRACH} is the difference between the ideal waveform and the measured and equalized waveform for the allocated RB(s).

$$EVM_{PRACH} = \sqrt{\frac{\sum_{f \in F} \left| Z^{-}(f^{-}) - I(f^{-}) \right|^{2}}{\cdot P_{0}}},$$

where

f covers the count of demodulated symbols within the allocated bandwidth.

Z'(f) are the samples of the signal evaluated for the EVM_{PRACH}

I(f) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

From the acquired samples 4 EVM_{PRACH} value can be derived, 2 values for the timing $\Delta \tilde{c}$ –W/2 and 2 values for the timing $\Delta \tilde{c}$ +W/2 (4 and 2 applies for format 0,1,2,3. 20 and 10 applies for format 4).

E.6.9.2 Averaged EVM_{PRACH}

EVM_{PRACH} is averaged over all basic EVM_{PRACH} measurements

$$\overline{EVM}_{PRACH} = \sqrt{\frac{1}{2}\sum_{i=1}^{2}EVM_{PRACH}}_{i}^{2}$$

(i= 2 applies for format 0,1,2,3. i= 10 applies for format 4)

The averaging is done separately for timing $\Delta \tilde{c} - W/2$ and $\Delta \tilde{c} + W/2$ leading to $\overline{EVM}_{PRACH,low}$ and $\overline{EVM}_{PRACH,high}$

 $EVM_{PRACH, final} = \max(\overline{EVM}_{PRACH, low}, \overline{EVM}_{PRACH, high})$ is compared against the test requirements.

Annex F: (normative) Measurement uncertainties and Test Tolerances

Editor's note: Annex is incomplete. The following aspects are either missing or not yet determined:

In Annex F.1 the Acceptable uncertainty of Test System has not yet been defined for all tests

In Annex F.3 the Derivation of Test Requirements has not yet been defined for all test

The references to other specifications need to be formalised

The requirements of this clause apply to all applicable tests in the present document.

F.1 Acceptable uncertainty of Test System (normative)

The maximum acceptable uncertainty of the Test System is specified below for each test, where appropriate. The Test System shall enable the stimulus signals in the test case to be adjusted to within the specified range, and the equipment under test to be measured with an uncertainty not exceeding the specified values. All ranges and uncertainties are absolute values, and are valid for a confidence level of 95 %, unless otherwise stated.

A confidence level of 95 % is the measurement uncertainty tolerance interval for a specific measurement that contains 95 % of the performance of a population of test equipment.

For RF tests it should be noted that the uncertainties in clause F.1 apply to the Test System operating into a nominal 50 ohm load and do not include system effects due to mismatch between the DUT and the Test System.

F.1.1 Measurement of test environments

The measurement accuracy of the UE test environments defined in TS 36.508 subclause 4.1, Test environments shall be.

- Pressure ±5 kPa.
- Temperature ± 2 degrees.
- Relative Humidity ±5 %.
- DC Voltage ±1,0 %.
- AC Voltage ±1,5 %.
- Vibration 10%.
- Vibration frequency 0,1 Hz.

The above values shall apply unless the test environment is otherwise controlled and the specification for the control of the test environment specifies the uncertainty for the parameter.

F.1.2 Measurement of transmitter

Subclause	Maximum Test System Uncertainty	Derivation of Test System Uncertainty
6.2.2. UE Maximum Output Power	±0.7 dB	
6.2.3 Maximum Power Reduction	±0.7 dB	
6.2.4 UE Maximum Output Power with additional requirements	±0.7 dB	
6.2.5 Configured UE transmitted Output Power	±0.7 dB	
6.3.1 Power Control	[TBD]	
6.3.2 Minimum Output Power	±1.0 dB	
6.3.3 Transmission ON/OFF Power	Transmission OFF Power: ±1.5 dB	
6.3.4 ON/OFF time mask		
6.3.5.1 Power Control Absolute power tolerance	±1.0 dB	
6.3.5.2 Power Control Relative power tolerance	[TBD]	
6.3.5.3 Aggregate power control tolerance	±0.7 dB	
6.5.1 Frequency Error	±15 Hz DL Signal level: +0.7 dB	
6.5.2.1 Error Vector	ITBD1	
Magnitude	[]	
6.5.2.2IQ-component	[TBD]	
6.5.2.3 In-band emissions for non allocated RB	[TBD]	
6.5.2.4 Spectrum flatness	[TBD]	
6.6.1 Occupied bandwidth	1.4MHz, 3MHz: 30kHz 5MHz, 10MHz: 100kHz 15MHz, 20MHz: 300kHz	
6.6.2.1 Spectrum Emission Mask	±1.5 dB	
6.6.2.2 Additional Spectrum Emission Mask	±1.5 dB	
6.6.2.3 Adjacent Channel Leakage power Ratio	±0.8 dB	
6.6.2.4 Additional ACLR	±0.8 dB	
6631 Transmitter Spurious	9kHz < f < 4 GHz: + 2 0 dB	
emissions	4 GHz < f ≤ 12.75 GHz: ± 4.0 dB	
6.6.3.2 Spurious emission band UE co-existence	\pm 2.0 dB for results > -60 dBm \pm 3.0 dB for results ≤ -60 dBm	
6.6.3.3 Additional spurious emissions	9kHz < f ≤ 4 GHz: ± 2.0 dB	
6.7 Transmit intermodulation	[TBD]	

F.1.3 Measurement of receiver

Subclause	Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty
7.3.1 Reference sensitivity power level; Minimum	±0.7 dB	
requirements (QPSK)		
7.4 Maximum input level	±0.7 dB	
7.5 Adjacent Channel Selectivity (ACS)	±1.1 dB	Overall system uncertainty comprises three quantities:
		 Wanted signal level error Interferer signal level error Additional impact of interferer ACLR
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The interferer ACLR effect is systematic, and is added aritmetically.
		Test System uncertainty = [SQRT (wanted_level_error ² + interferer_level_error ²)] + ACLR effect.
		Wanted signal level ± 0.7dB Interferer signal level ± 0.7dB Impact of interferer ACLR 0.1dB
7.6.1 In-band blocking	±1.4 dB	Overall system uncertainty can have these contributions:
		 Wanted signal level error Interferer signal level error Interferer ACLR Interferer broadband noise
		Items 1 and 2 are assumed to be uncorrelated so can be root sum squared to provide the ratio error of the two signals. The Interferer ACLR or Broadband noise effect is systematic, and is added aritmetically.
		Test System uncertainty = [SQRT (wanted_level_error ² + interferer_level_error ²)] + ACLR effect + Broadband noise effect.
		In-band blocking, using modulated interferer: Wanted signal level ± 0.7dB Interferer signal level: ± 0.7dB Interferer ACLR 0.4dB Broadband noise not
		applicable

Table F.1.3-1: Maximum	Test System	Uncertainty	for receiver tests

7.6.2 Out of-band blocking	1MHz < f _{interferer} ≤ 3 GHz: ±1.3 dB 3 GHz < f _{interferer} ≤ 12.75 GHz: ±3.2 dB	Out of band blocking, using <u>CW interferer:</u> Wanted signal level ± 0.7dB Interferer signal level: ± 1.0dB up to 3GHz ± 3.0dB up to 12.75GHz Interferer ACLR not applicable Impact of interferer Broadband noise 0.1dB Figures are combined to give
		Test System uncertainty, using formula given for 7.6.1
7.6.3 Narrow band blocking	±1.3 dB	Narrow band blocking, using <u>CW interferer:</u> Wanted signal level ± 0.7dB Interferer signal level: ± 1.0dB Interferer ACLR not applicable Impact of interferer Broadband noise 0.1dB Figures are combined to give Test System uncertainty, using formula given for 7.6.1
7.7 Spurious response	1MHz < f _{interferer} ≤ 3 GHz: ±1.3 dB 3 GHz < f _{interferer} ≤ 12.75 GHz: ±3.2 dB	Spurious response, using CW interferer: Wanted signal level ± 0.7dB Interferer signal level: ± 1.0dB up to 3GHz ± 3.0dB up to 12.75GHz Interferer ACLR not applicable Impact of interferer Broadband noise 0.1dB
		Figures are combined to give Test System uncertainty, using formula given for 7.6.1

7.8.1 Wide band	±1.4 dB	Overall system uncertainty	
intermodulation		comprises three quantities:	
		 Wanted signal level error CW Interferer level error Modulated Interferer level error 	
		Effect of interferer ACLR has not been included as modulated interferer has larger frequency offset	
		The effect of the closer CW signal has twice the effect.	
		Items 1, 2 and 3 are assumed to be uncorrelated so can be root sum squared to provide the combined effect of the three signals.	
		Test System uncertainty = SQRT [(2 x CW_level_error) ² +(mod interferer_level_error) ² +(wanted signal_level_error) ²]	
		Wanted signal level ± 0.7dB CW Interferer level ± 0.5dB Mod Interferer level ± 0.7dB	
7.9 Spurious emissions	30MHz ≤ f ≤ 4.0GHz: ± 2.0 dB		
	<u> 4 GHz < f ≤ 12.75 GHz: ± 4.0 dB</u>	<u> </u>	
INULE 1: Unless otherwise noted, only the Lest System stimulus error is considered here. The effect of errors in the			
throughput measurements due to finite test duration is not considered.			

F.1.4 Measurement of performance requirements

Table F.1.4-1: Maximum Test System Uncertainty for Performance Requirements

Subclause		Maximum Test System Uncertainty ¹	Derivation of Test System Uncertainty	
[TBD]		[TBD]	[TBD]	
NOTE 1:	1: Only the overall stimulus error is considered here. The effect of errors in the throughput measurements			
	due to finite test duration is not considered.			

F.2 Interpretation of measurement results (normative)

The measurement results returned by the Test System are compared – without any modification – against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ETR 273-1-2 clause 6.5.

The actual measurement uncertainty of the Test System for the measurement of each parameter shall be included in the test report.

The recorded value for the Test System uncertainty shall be, for each measurement, equal to or lower than the appropriate figure in clause F.1 of the present document.

If the Test System for a test is known to have a measurement uncertainty greater than that specified in clause F.1, it is still permitted to use this apparatus provided that an adjustment is made value as follows:

Any additional uncertainty in the Test System over and above that specified in clause F.1 shall be used to tighten the Test Requirement, making the test harder to pass. For some tests, for example receiver tests, this may require modification of stimulus signals. This procedure will ensure that a Test System not compliant with clause F.1does not increase the chance of passing a device under test where that device would otherwise have failed the test if a Test System compliant with clause F.1 had been used.

F.3 Test Tolerance and Derivation of Test Requirements (informative)

The Test Requirements in the present document have been calculated by relaxing the Minimum Requirements of the core specification using the Test Tolerances defined in this clause. When the Test Tolerance is zero, the Test Requirement will be the same as the Minimum Requirement. When the Test Tolerance is non-zero, the Test Requirements will differ from the Minimum Requirements, and the formula used for the relaxation is given in this clause.

The Test Tolerances are derived from Test System uncertainties, regulatory requirements and criticality to system performance. As a result, the Test Tolerances may sometimes be set to zero.

The test tolerances should not be modified for any reason e.g. to take account of commonly known test system errors (such as mismatch, cable loss, etc.).

F.3.1 Measurement of test environments

The UE test environments are set to the values defined in TS 36.508 subclause 4.1, without any relaxation. The applied Test Tolerance is therfore zero.

F.3.2 Measurement of transmitter

Test	Minimum Requirement in TS 36.101	Test Tolerance (TT)	Test Requirement in TS 36.521-1
6.2.2. UE Maximum Output Power			Formula: Upper limit + TT, Lower limit - TT
	Power class 1: [FFS] Power class 2: [FFS] Power class 3: 23dBm ±2 dB Power class 4: [FFS]	0.7 dB 0.7 dB 0.7 dB 0.7 dB	Power class 1: [FFS] Power class 2: [FFS] Power class 3: 23dBm ±2.7 dB Power class 4: [FFS]
6.2.3 Maximum Power Reduction	Power class 3:	0.7 dB	Formula: Upper limit + TT,
			Lower limit – MPR – TT
	QPSK: MPR ≤ 1dB		Power class 3: QPSK: 23dBm +2.7 / - 3.7dB
	16QAM: Depending on the number RB allocated: 16QAM: MPR ≤ 1dB 16QAM: MPR ≤ 2dB		16QAM: 23dBm +2.7 / - 3.7dB 23dBm +2.7 / - 4.7dB

Table F.3.2-1: Derivation of Test Requirements (Transmitter tests)

6.2.4 LIE Maximum Output	Power class 3	0.7 dB	Formula:
Power with additional		0.1 42	I Ipper limit + TT
requirements			$\Delta : L $ ower limit – TT
requirements			A. Lower limit – 11, B. Lower limit MDD TT
			B. Lower IIIIII - MPR - 11,
			C: Lower limit – A-MPR – 11,
			D: Lower limit – A-MPR – MPR – TT
			Power class 3:
			Network signalled value NS_03 to
	QPSK: MPR ≤ 1dB		NS 06:
			_
	For network signalled value		23dBm +2.7 / -2.7dB – [A]
	NS 03 to NS 06: A-MPR ≤ 1 dB		23dBm + 2.7 / -3.7dB - [B]
			23dBm + 2.7 / -4.7dB = [D]
	For potwork signalled value		
	NC 07: Depending on the		
	NS_07; Depending on the		
	RB_start and RB allocation:		Network signalled value NS_07:
			23dBm +2.7 / - 14.7dB – [C]
	Region A with RB_start = 0-12 &		
	RB allocation 1 to 5 and 9-50: A-		23dBm +2.7 / - 10.7dB – [C]
	MPR = 12dB		
	Region A with RB start = 0-12 &		23dBm +2.7 / - 2.7dB – [A]
	RB allocation 6-8: A -MPR = 8dB		
	Region B with RB_start = 13-18		
	& RB allocation $< 8^{\circ}$ A-MPR $<$		23dBm +2 7 / - 15 7dB – [D]
	6dB		
	Region B with RB_start = 13-18		
	& RB allocation $> 8^{\circ}$ A-MPR <		23dBm +2 7 / - 3 7dB - [B]
			230biii +2.77 - 3.70b - [b]
	IZUB		
	Decise Rwith DR stort 10.42		
	Region D with RD_start = 19-42		
	& RB allocation < 18: A-MPR =		230Bm +2.7 / - 9.70B – [D]
	UdB		
	Region B with RB_start = 19-42		
	& RB allocation \geq 18: A-MPR =		23dBm +2.7 / - 2.7dB – [A]
	6dB		
	Region C with RB_start = 43-49		
	& RB allocation \leq 2: A-MPR =		23dBm +2.7 / - 5.7dB – [C]
	0dB		
	Region C with RB_start = 43-49		
	& \overline{RB} allocation > 2 : A-MPR =		23dBm +2.7 / - 15.7dB – [D]
	3dB		
	Region A with RB start = 0-12 &		
	RB allocation 1 to 5 and 9-50° A-		
	MPR = 12dB		

6.2.5 Configured UE transmitted Output Power	TS 36.101 [2] clause 6.2.5 PCMAX normal conditions: 23 \pm 2.0 22 \pm 2.5 21 \pm 3.0 20 \pm 3.5 19 \pm 4.0 18 \pm 4.5 13 \leq PCMAX < 18 \pm 5.0 8 \leq PCMAX < 13 \pm 6.0	0.7 dB	Formula: Upper limit + TT, Lower limit – TT PCMAX normal conditions: 23 ± 2.7 22 ± 3.2 21 ± 3.7 20 ± 4.2 19 ± 4.7 18 ± 5.2 $13 \leq PCMAX < 18 \pm 5.7$ $8 \leq PCMAX < 13 \pm 6.7$
	-40 S POWAX < 6 ± 7.0		-40 S POWAX < 8 ± 7.7
6.3.1 Power Control	[TBD]	[TBD]	[TBD]
6.3.2 Minimum Output Power	-40 dBm	1 dB	Formula: Minimum Requirement + TT
			UE minimum ouput power =-39 dBm
6.3.3 Transmission	Transmission OFF Power \leq -50	1.5 dB	Transmission OFF power formula:
ON/OFF Power	dBm		Transmission OFF power Minimum Requirement + TT
			Transmission OFF Power = -48.5 dBm
6.3.4 ON/OFE time mask			
6.3.5.1 Power Control	Normal conditions ± 9.0 dB	1.0 dB	Formula:
Absolute power tolerance	Extremed conditions ± 12.0 dB		Upper limit + TT, Lower limit - TT
			Normal conditions ± 10.0 dB Extremed conditions ± 13.0 dB
6.3.5.1 Power Control Relative power tolerance	[TBD]		
6.3.5.1 Aggregate power control tolerance	Aggregate power control tolerance within 21 ms:	0.7 dB	Formula: Upper limit + TT, Lower limit - TT
	$PUCCH = \pm 2.5 \text{ dB}$ $PUSCH = \pm 3.5 \text{ dB}$		$PUCCH = \pm 3.2 \text{ dB}$ PUSCH = $\pm 4.2 \text{ dB}$
6.5.1 Frequency Error	The UE modulated carrier frequency shall be accurate to within ± 0.1 ppm compared to the carrier frequency received from the E-UTRA Node B.	15 Hz	Formula: modulated carrier frequency error + TT modulated carrier frequency error = $\pm(0.1 \text{ ppm} + 15 \text{ Hz}).$
6.5.2.1 Error Vector	[TBD]	[TBD]	[TBD]
Magnitude			
		1 1 1 1 1 1 1 1	

6.5.2.4 Spectrum flatness	Normal conditions : If (F-FUL_low \geq [3MHz])&(FUL_high-F \geq [3MHz]) [+2/-2] else [+3/-5] Extreme conditions: If (F-FUL_low \geq [3MHz])&(FUL_high-F \geq [3MHz]) [+2/-2] else [+4/-8]	[TBD]	Formula: Minimum Requirement + TT
6.5.2.3 In-band emissions for non allocated RB	[TBD]	[TBD]	[TBD]
6.6.1 Occupied bandwidth	For 1.4 MHz channel bandwidth: Occupied channel bandwidth = 1.4 MHz For 3.0 MHz channel bandwidth: Occupied channel bandwidth = 3.0 MHz For 5 MHz channel bandwidth: Occupied channel bandwidth = 5 MHz For 10 MHz channel bandwidth = 10 MHz For 15 MHz channel bandwidth = 15 MHz For 20 MHz channel bandwidth = 20 MHz	0kHz	Formula: Minimum Requirement + TT

6.6.2.1 Spectrum Emission	For 1.4 MHz BW:	1.5dB	Formula:
Mask	-10 dBm / 30kHz	(Δf _{OOB} < 2 x	Minimum Requirement + TT
	-25dBm to -10dBm / 1MHz	Channel	
		Bandwidth)	
		0dB	
		(∆f _{OOB} ≥ 2 x	
		Channel	
		Bandwidth)	
	For 3 MHz BW:		
	-10 dBm / 30kHz		
	-25dBm to -10dBm / 1MHz	1.50B	
	FOR 5 MHZ BW:		
	25dBm to 10dBm / 1MHz	1.5dB	
		noub	
	For 10 MHz BW:		
	-18dBm / 30kHz		
	-25dBm to -10dBm / 1MHz	1.5dB	
	For 15 MHz BW		
	-20dBm / 30kHz		
	-25dBm to -10dBm / 1MHz	1.5dB	
	For 20 MHz BW:		
	-21dBm / 30KHz		
	-25aBm to -10aBm / 1MHZ	1.5dB	

6.6.2.2 Additional Spectrum	For 1.4 MHz BW:	1.5dB	Formula:
Emission Mask	NS_03, NS_04	(∆f _{OOB} < 2 x Channel	Minimum Requirement + TT
	-25 dBm to -13 dBm / 1MHz	Bandwidth)	
		OdP	
	NS_06 or NS_07	(Δf _{OOB} ≥ 2 x	
	-13 dBm / 30 kHz	Channel	
	-13 dBm / 100 kHz -25 dBm to -13 dBm / 1MHz	Bandwidth)	
	For 3 MHz BW:	1.5dB	
	-13 dBm / 30 kHz		
	-25 dBm to -13 dBm / 1 MHz		
	NS_06 or NS_07		
	-13 dBm / 30 kHz		
	-13 dBm / 100kHz -25 dBm to -13 dBm / 1 MHz		
	NS 03. NS 04	1.50B	
	-15 dBm / 30 kHz		
	-25 dBm to -13 dBm / 1 MHz		
	NS 06 or NS 07		
	-15 dBm / 30 kHz		
	-13 dBm / 100 kHz		
		1.5dB	
	NS_03, NS_04,	noub	
	-18 dBm / 30 kHz		
	NS_06 or NS_07		
	-18 dBm / 30 kHz -13 dBm / 100 kHz		
	-25 dBm to - 13dBm / 1 MHz		
	For 15 MHz BW:	1.5dB	
	NS_03, NS_04 -20 dBm / 30kHz		
	-25 dBm to -13 dBm / 1 MHz		
	For 20 MHz BW:	1.5dB	
	NS_03, NS_04		
	-21 dBm / 30 kHz -25 dBm to -13 dBm / 1 MHz		
			Formation
Leakage power Ratio	greater than –50 dBm then the	0 aB	ACLR Minimum Requirement + TT
	ACLR shall be higher than the		Formaulau
	values specified below.		ACLR Minimum Requirement - TT
	E-UTRA ACLR:		E-UTRA ACLR:
	30 dB	0.8 dB	29.2 dB
	UTRA ACI R:		UTRA ACLR:
	33 dB for UTRA ACLR 1	0.8 dB	32.2 dB for UTRA ACLR 1
	36 dB for UTRA ACLR 2	0.8 dB	35.2 dB for UTRA ACLR 2

6.6.2.4 Additional ACLR requirements	If the adjacent channel power is greater than –50 dBm then the ACLR shall be higher than the values specified below.	0 dB	Formula: ACLR Minimum Requirement + TT Formula: ACLR Minimum Requirement – TT
	E-UTRA ACLR: 43 dB for UTRA ACLR 2	0.8 dB	E-UTRA ACLR: 42.2 dB for UTRA ACLR 2
6.6.3.1 Transmitter Spurious emissions	9 kHz \leq f < 150 kHz: -36dBm / 1kHz 150 kHz \leq f < 30 MHz: -36dBm / 10kHz 30 MHz \leq f < 1 GHz: -36dBm / 100kHz 1 GHz \leq f < 12.75 GHz: -30dBm / 1MHz	0 dB	Formula: Minimum Requirement + TT
6.6.3.2 Spurious emission band UE co-existence	-35 dBm / 6.25kHz -36 dBm / 100kHz -41 dBm / 300kHz -37 dBm / 1MHz -40 dBm / 1MHz -50 dBm / 1MHz Frequencies as detailed in core requirement	0 dB	Formula: Minimum Requirement + TT
6.6.3.3 Additional spurious emissions	$\begin{array}{l} 1884.5 \text{MHz} \leq f \leq 1919.6 \text{MHz}: \\ -41 \text{dBm} \ / \ 300 \text{kHz} \\ \\ 1884.5 \text{MHz} \leq f \leq 1915.7 \text{MHz}: \\ -41 \text{dBm} \ / \ 300 \text{kHz} \\ \\ 860 \leq f \ \leq 895 \\ -40 \text{dBm} \ / \ 1 \text{MHz} \end{array}$	0 dB	Formula: Minimum Requirement + TT
6.7 Transmit intermodulation	[TBD]	[TBD]	[TBD]

NOTE: Section 6.6.3.3 in the table shall be reviewed after June 2012 because of PHS band operation change

F.3.3 Measurement of receiver

Test	Minimum Requirement in TS	Test Tolerance	Test Requirement in TS 36.521-1
	56.101	(TT)	
7.3.1 Reference sensitivity power level; Minimum	Reference sensitivity power level:	0.7dB	Formula: Reference sensitivity power level + TT
requirements (QPSK)	For 1.4MHz -102.2dBm -103.2dBm -105.2dBm -106.2dBm		T-put limit unchanged
	For 3MHz -99.2dBm -100.2dBm -102.2dBm		
	For 5MHz -97dBm -98dBm -99dBm -100dBm -96.5dBm Band 9 with Multi band		
	For 10MHz -94dBm -95dBm -96dBm -97dBm -93.5dBm Band 9 with Multi band		
	For 15MHz -92.2dBm -93.2dBm -94.2dBm -95.2dBm -91.7dBm Band 9 with Multi band		
	For 20MHz -91dBm -92dBm -93dBm -94dBm -90.5dBm Band 9 with Multi band		
	T-put limit = 95% of maximum for the Ref Meas channel		
7.4 Maximum input level			Formula: Maximum input level - TT
	Signal level -25dBm	0.7 dB	Signal level -25.7 dBm
	T-put limit = 95% of maximum for the Ref Meas channel		T-put limit unchanged
7.5 Adjacent Channel Selectivity (ACS)	Case 1: Wanted signal power, all BWs: (REFSENS + 14 dB)	0 dB	Formula: Wanted signal power + TT

	Interferer signal power For 1.4 MHz, 3 MHz, 5 MHz, 10 MHz BW: (REFSENS + [45] dB) For 15 MHz BW: (REFSENS + [42] dB) For 20 MHz BW: (REFSENS + [39] dB) Case 2: Wanted signal power For 1.4 MHz, 3 MHz, 5 MHz, 10 MHz BW: [-56] dBm For 15 MHz BW: [-53] dBm For 20 MHz BW: [-50] dBm Interferer signal power, all BWs: -25 dBm T-put limit = 95% of maximum for the Ref Meas channel		Interferer signal power unchanged T-put limit unchanged
7.6.1 In-band blocking	Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -56dBm or -44dBm T-put limit = 95% of maximum for the Ref Meas channel	0 dB	Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged
7.6.2 Out of-band blocking	Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm, -30dBm or -15dBm T-put limit = 95% of maximum for the Ref Meas channel	0 dB	Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged
7.6.3 Narrow band blocking	Wanted signal power,: (REFSENS + BW dependent value) Interferer signal power: -55dBm T-put limit = 95% of maximum for the Ref Meas channel	0 dB	Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged
7.7 Spurious response	Wanted signal power: (REFSENS + BW dependent value) Interferer signal power: -44dBm T-put limit = 95% of maximum for the Ref Meas channel	0 dB	Formula: Wanted signal power + TT Interferer signal power unchanged T-put limit unchanged
7.8.1 Wide band intermodulation	Wanted signal power: For 1.4 MHz BW: (REFSENS + [12] dB) For 3 MHz BW:	0 dB	Formula: Wanted signal power +TT CW Interferer signal power

	(REFSENS + [8] dB) For 5 MHz and 10MHz BW: (REFSENS + 6 dB) For 15 MHz BW: (REFSENS + 7 dB) For 20 MHz BW: (REFSENS + 9 dB) <u>CW</u> Interferer power, aall BWs: -46 dBm <u>Modulated</u> Interferer power:, aall BWs: -46 dBm T-put limit = 95% of maximum for the Ref Meas channel		unchanged Modulated Interferer signal power unchanged T-put limit unchanged
7.9 Spurious emissions	30MHz ≤ f < 1GHz: -57dBm / 100kHz 1GHz ≤ f ≤ 12.75 GHz: -47dBm / 1MHz	0 dB	Formula: Minimum Requirement + TT

F.3.4 Measurement of performance requirements

Table F.3.4-1: Derivation of Test Requirements (performance tests)

Test	Minimum Requirement in TS 36.133	Test Tolerance (TT)	Test Requirement in TS 36.521-1
[TBD]	[TBD]	[TBD]	[TBD]

Annex G (normative): Statistical Testing

G.1 General

FFS.

G.2 Statistical testing of receiver characteristics

G.2.1 General

The test of receiver characteristics is two fold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver tests is >95% of the maximum throughput.

All receiver tests are performed in static propagation conditions. No fading conditions are applied.

G.2.2 Mapping throughput to error ratio

- a) The measured information bit throughput R is defined as the sum (in kilobits) of the information bit payloads successfully received during the test interval, divided by the duration of the test interval (in seconds).
- b) In measurement practice the UE indicates successfully received information bit payload by signalling an ACK to the SS.

If payload is received, but damaged and cannot be decoded, the UE signals a NACK.

- c) Only the ACK and NACK signals, not the data bits received, are accessible to the SS. The number of bits is known in the SS from knowledge of what payload was sent.
- d) For the reference measurement channel, applied for testing, the number of bits is different in different subframes, however in a radio frame it is fixed during one test.
- e) The time in the measurement interval is composed of successfully received subframes (ACK), unsuccessfully received subframes (NACK) and no reception at all (DTX-subframes).
- f) DTX-subframes may occur regularly according the appliccable reference measurment channel (regDTX). In real live networks this is the time when other UEs are served. In TDD these are the UL and special subframes. regDTX vary from test to test but are fixed within the test.
- g) Additional DTX-subframes occur statistically when the UE is not responding ACK or NACK where it should. (statDTX)

This may happen when the UE was not expecting data or decided that the data were not intended for it.

The pass / fail decision is done by observing the:

- number of NACKs
- number of ACKs and
- number of statDTXs (regDTX is implicitly known to the SS)

The ratio (NACK + statDTX) / (NACK+ statDTX + ACK) is the Error Ratio (ER). Taking into account the time consumed by the ACK, NACK, and DTX-TTIs (regular and statistical), ER can be mapped unambiguously to throughput for any single reference measurement channel test.

G.2.3 Design of the test

The test is defined by the following design principles (see clause G.x, Theory....):

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail

Cusomer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1. Limit ER = 0.05 (Throughput limit = 95%)
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

G.2.4 Numerical definition of the pass fail limits

Table G.2.4-1: pass fail limits

ne	ns _p	ns _f	ne	ns _p	ns _f	ne	ns _p	ns _f	ne	ns _p	ns _f
0	67	NA	39	763	500	78	1366	1148	117	1951	1828
1	95	NA	40	778	516	79	1381	1166	118	1965	1845
2	119	2	41	794	532	80	1396	1183	119	1980	1863
3	141	7	42	810	548	81	1412	1200	120	1995	1881
4	162	14	43	826	564	82	1427	1217	121	2010	1899
5	183	22	44	842	580	83	1442	1234	122	2025	1916
6	202	32	45	858	596	84	1457	1252	123	2039	1934
7	222	42	46	873	612	85	1472	1269	124	2054	1952
8	241	53	47	889	629	86	1487	1286	125	2069	1969
9	259	64	48	905	645	87	1502	1303	126	2084	1987
10	278	76	49	920	661	88	1517	1321	127	2099	2005
11	296	88	50	936	678	89	1532	1338	128	2113	2023
12	314	100	51	952	694	90	1547	1355	129	2128	2040
13	332	113	52	967	711	91	1562	1373	130	2143	2058
14	349	126	53	983	727	92	1577	1390	131	2158	2076
15	367	140	54	998	744	93	1592	1407	132	2172	2094
16	384	153	55	1014	760	94	1607	1425	133	2187	2111
17	401	167	56	1029	777	95	1623	1442	134	2202	2129
18	418	181	57	1045	793	96	1637	1459	135	2217	2147
19	435	195	58	1060	810	97	1652	1477	136	2231	2165
20	452	209	59	1076	827	98	1667	1494	137	2246	2183
21	469	224	60	1091	844	99	1682	1512	138	2261	2201
22	486	238	61	1106	860	100	1697	1529	139	2275	2218
23	503	253	62	1122	877	101	1712	1547	140	2290	2236

24	519	268	63	1137	894	102	1727	1564	141	2305	2254
25	536	283	64	1153	911	103	1742	1582	142	2320	2272
26	552	298	65	1168	928	104	1757	1599	143	2334	2290
27	569	313	66	1183	944	105	1772	1617	144	2349	2308
28	585	328	67	1199	961	106	1787	1634	145	2364	2326
29	602	343	68	1214	978	107	1802	1652	146	2378	2344
30	618	359	69	1229	995	108	1817	1669	147	2393	2361
31	634	374	70	1244	1012	109	1832	1687	148	2408	2379
32	650	389	71	1260	1029	110	1847	1704	149	2422	2397
33	667	405	72	1275	1046	111	1861	1722	150	2437	2415
34	683	421	73	1290	1063	112	1876	1740	151	2452	2433
35	699	436	74	1305	1080	113	1891	1757	152	2466	2451
36	715	452	75	1321	1097	114	1906	1775			
37	731	468	76	1336	1114	115	1921	1793			
38	747	484	77	1351	1131	116	1936	1810			

NOTE 1: The first column is the number of errors (ne = number of NACK + statDTX)

NOTE 2: The second column is the number of samples for the pass limit (ns_p , ns=Number of Samples= number of NACK + statDTX + ACK)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

G.2.5 Pass fail decision rules

The pass fail decision rules apply for a single test, comprising one component in the test vector. The over all Pass /Fail conditions are defined in clause G.2.1.5.

Having observed	0 errors, pass th	he test at 67+	samples,	otherwise continue
Having observed	1 error, pass t	the test at 95+	otherwise continue	
Having observed	2 errors, pass t	the test at 119+	- samples, fail the test at 2- samples	ples, otherwise continue
		Etc.	etc.	

Having observed 151 errors, pass the test at 2452+ samples, fail the test at 2433- samples, otherwise continue

Having observed 152 errors, pass the test at 2466+ samples, fail the test at 2451 samples.

Where x+ means: x or more, x- means x or less

NOTE 1: an ideal DUT passes after 67 samples. The maximum test time is 2466 samples.

NOTE 2: since subframe 0 contain less bits than the remaining subframes and subframe 5 contains no data, it is allowed to postpone the decision until the radio frame limit i.e. decide or continue every 10th sample.

G.2.6 Test conditions for receiver tests

Test	Statistical independence	Number of components in the test vector, as specified in the test requirements and initial conditions of the applicable test	Over all Pass/Fail condition
7.3 Reference	Yes: the inherent receiver noise	tbd	To pass 7.3 each component in the
sensitivity level	is assumed to be AWGN		test vector must pass
7.4 Maximum input level	Unclear: in case, clipping causes errors, errors are data dependent. Statistical independence is assumed.	tbd	test vector must pass
7.5 Adjacent Channel Selectivity (ACS)	Unclear: errors are data dependent on the interferers data. Statistical independence is assumed.	tbd	To pass 7.5 each component in the test vector must pass
7.6.1 In-band blocking	Unclear: errors are data dependent on the interferers data. Statistical independence is assumed.	tbd	To pass 7.6.1 each component in the test vector must pass
7.6.2 Out of-band blocking	yes: it is assumed that the CW interferer causes errors, which are independent and time invariant.	tbd	To pass 7.6.2, all except [tbd] components in the test vector must pass
7.6.3 Narrow band blocking	yes: it is assumed that the CW interferer causes errors, which are independent and time invariant.	tbd	To pass 7.6.3 each component in the test vector must pass
7.7 Spurious response	yes: it is assumed that the CW interferer causes errors, which are independent and time invariant.	tbd	To pass 7.7 each component in the test vector must pass
7.8.1 Wide band Intermodulation	Unclear: errors are dependent on the data content of the interferer. Statistical independence is assumed.	tbd	To pass 7.8.1 each component in the test vector must pass

Table G.2.6-1: Test conditions for receiver tests

G.3 Statistical testing of Performance Requirements with throughput

G.3.1 General

The test of receiver performance characteristics is two fold.

- 1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
- 2. The ability of the receiver to demodulate /decode this signal is verified by measuring the throughput.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for all receiver performance tests is either 70% or 30% of the maximum throughput.

All receiver performance tests are performed in fading conditions. In addition to the statistical considerations, this requires the definition of a minimum test time.

G.3.2 Mapping throughput to error ratio

G.2.2 applies

G.3.3 Design of the test

The test is defined by the following design principles (see clause G.x, Theory....):

- 1. The standard concept is applied. (not the early decision concept)
- 2. A second limit is introduced: The second limit is different, whether 30% or 70% throughput is tested.
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT quality

To decide the test fail:

Cusomer Risk is applied based on the specified DUT quality

The test is defined by the following parameters:

- 1a) Limit Error Ratio = 0.3 (in case 70% Throughput is tested) or
- 1b) Limit Througput = 0.3 (in case 30% Throughput is tested)
- 2a) Bad DUT factor M=1.387 (selectivity)
- 2b) Bad DUT factor m=0.692 (selectivity)

justification see: TS 34.121 Clause F.6.3.3

3) Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

G.3.4 Pass Fail limit

Testing Throughput = 30%, then the test limit is

Number of successes (ACK) / number of samples \geq 59 / 233

Testing Throughput = 70% then the test limit is

Number of fails (NACK and statDTX) / number of samples \leq 66 / 184

We have to distinguish 3 cases:

a) The duration for the number of samples (233 or 184) is greater than the minimum test time:

Then the number of samples (233 or 184) is predefined and the decision is done according to the number of events (59 successes or 66 fails)

b) Since subframe 0 and 5 contain less bits than the remaining subframes, it is allowed to predefine a number of samples contained in an integer number of frames In this case test-limit-ratio applies.

c) The minimum test time is greater than the duration for the number of samples:

The minimum testtime is predefined and the decision is done comparing the measured ratio at that instant against the test-limit-ratio.

NOTE 1: since subframe 0 contain less bits than the remaining subframes and subframe 5 contains no data, it is allowed to postpone the decision until the radio frame limit.

NOTE 2: The test time for most of the tests is governed by the Minimum Test Time

G.3.5 Minimum Test time

If a pass fail decision in G.3.4 can be achieved earlier than the minimum test time, then the test shall not be decided, but continued until the minimum test time is elapsed.

- NOTE 1: The following delay profiles are applied: EPA, EVA and ETU. It is TBD, if different delay profiles need different minimum test time.
- NOTE 2: The following doppler frequency shifts 5, 70 and 300 Hz are applied for the fading profiles. They influence the minimum test time. For 5 MHz bandwidth and a continuous DL-signal the minimum test time can be derived from the following rule: No stop of the test until 990 wavelengths are crossed with the speed given in the fading profile. (see TS34.121 clause F.6.1) In TS36.521-1 Annex B Doppler frequency shift is defined instead of speed. This transformes to: No stop until 990 doppler periods are elapsed.
- NOTE 3: The follwing bandwidths are applied: 1.4, 3, 5, 10, 15 and 20 MHz. It is TBD, if the different bandwidths need different minimum test times and which ones. Even single physical resource block (1 PRB) are tested under fading conditions. This corresponsites to a BW 0.18MHz.
- NOTE 4: Inter TTI distance and TDD create discontinuous transmission. It is TBD, if the prolongation factor for the minimum test time is "time slots per frame" / "time slots containing DL payload"

Δf doppler max	Minimum test time in sec (NOTE1)							
BW	1 PRB	1.4 MHz	3MHz	5MHz	10MHz	15 MHz	20 MHz	
5 Hz	tbd	tbd	tbd	[198]	tbd	tbd	tbd	
70 Hz	tbd	tbd	tbd	[14.1]	tbd	tbd	tbd	
300 Hz	tbd	tbd	tbd	[3.3]	tbd	tbd	tbd	
NOTE 1: in case the DL signal is discontinuous during the testtime, the minimum test time must be multiplied by a factor p>1. p = "time slots per frame" / "time slots containing DL payload" The precise value of p is tbd.								

Table G.3.5-1: Minimum Test time

G.3.6 Test conditions for receiver performance tests

Table G.3.6: Test conditions for receiver performance tests

Test	Statistical	Numbe	er of com	Over all Pass/Fail		
	independence	test vector, as specified in the				condition
		conditio	ons of the			
8.2.1.1 FDD PDSCH Single	subframes are independent	CAT	1	2	3-5	To pass 8.2.1.1 and 8.2.2.1each component in the test vector must
Port		QPSK	5	5	5	pass
Performance (Cell- Specific						For UEs, supporting multiple E_UTRA-bands
Reference Symbols)		16QAM	0	3	3	(number of bands =B), the number of repetitions must be multiplied by B.
8.2.1.2 TDD PDSCH Single Antenna Port Performance	subframes are independent	64 QAM	1	6	7	If a test is defined over a BW>(BW of the E_UTRA band), the test is not applicable and reduces the
(Cell- Specific Reference Symbols)		1PRB	4	4	4	number of repetitions. If a test is defined
						over a BW, which is not supported in the E_UTRAN
		Σ	10	18	19	band, the test is not applicable and reduces the number of repetitions.

Table G.3.6-1: Single Antenna Port Performance (Cell-specific Reference Symbols) for test case 8.2.1.1 and 8.2.2.1 demodulation of PDSCH

Test	Statistical independence	Number of components in the test vector, as specified in the test requirements and initial				Over all Pass/Fail condition
8.2.1.2 FDD	subframes are independent	CAT	1	2 2	3-5	To pass 8.2.1.2 and 8.2.2.2 each component in the
PDSCH Transmit Diversity		QPSK	2	2	2	test vector must pass
Performance (Cell- Specific Reference Symbols)						For UEs, supporting multiple E_UTRA-bands (number of bands =B), the number of repetitions must be multiplied by B. If a test is defined over a BW, which is
8.2.2.2 TDD PDSCH Transmit	subframes are independent	16QAM	0	1	1	
Diversity Performance (Cell- Specific Reference Symbols)		Σ	2	3	3	not supported in the E_UTRAN band, the test is not applicable and reduces the number of repetitions

Table G.3.6-2: Transmit Diversity Performance (Cell-specific Reference Symbols) for test case 8.2.1.2 and 8.2.2.2 demodulation of PDSCH

Table G.3.6-3: Open Loop Spatial Multiplexing Performance (Cell-specific Reference Symbols) for test case 8.2.1.3 and 8.2.2.3 demodulation of PDSCH

Test	Statistical independence	Numbe test ve test r conditio	er of com ector, as s equireme ons of the	Over all Pass/Fail condition		
8.2.1.3 FDD PDSCH	subframes are independent	CAT	1	2	3-5	To pass 8.2.1.3 and 8.2.2.3 each component in the test vector must
Spatial Multiplexing Performance (Cell- Specific Reference Symbols)		16QAM	0	2	2	pass
8.2.2.3 TDD PDSCH Open Loop Spatial Multiplexing Performance (Cell- Specific Reference Symbols)	subframes are independent	Σ	0	2	2	

Test	Statistical	Numbe	er of comp	Over all Pass/Fail		
	independence	test vector, as specified in the test				condition
		requirements and initial				
0.0.4.4		conditio	ons of the	applicat	ole test	T 0044
8.2.1.4	subtrames are	CAI	1	2	3-5	10 pass 8.2.1.4
FDD	independent					component in the
PDSCH						test vector must
Closed Loop		Single	3	3	3	pass
Spatial		layer	0	0	0	
Performance		QPSK				
(Cell-						
Specific						
Reference						
Symbols)	subframes are	Multi	0	2	2	
0.2.2.4	independent	laver	0	3	3	
TDD		16QAM				
PDSCH						
Closed Loop						
Multiplexing						
Performance		Σ	3	6	6	
(Cell-						
Specific						
Symbols						
	l					

Table G.3.6-4: Closed Loop Spatial Multiplexing Performance (Cell-specific Reference Symbols) for test case 8.2.1.4 and 8.2.2.4 demodulation of PDSCH

Table G.3.6-5: Performance (UE-specific Reference Symbols) for test case 8.3.2.1 demodulation of PDSCH

Test	Statistical independence	Number of components in the test vector, as specified in the test requirements and initial conditions of the applicable test				Over all Pass/Fail condition
8.3.2.1	subframes are	Cat	1	2	3-5	To pass 8.3.2.1
TDD Demodulation	independent	QPSK	1	1	1	the test vector must
of PDSCH		16QAM	1	2	2	pass
Reference Symbols)		64 QAM	0	1	1	
, , , , , , , , , , , , , , , , , , ,		Σ	2	4	4	

G.4 Statistical testing of Performance Requirements with probability of misdetection

G.4.1 General

The test of receiver performance characteristics is two fold.

1. A signal or a combination of signals is offered to the RX port(s) of the receiver.
2. The ability of the receiver to demodulate /decode this signal is verified by analyzing the reaction of the UE to this signal.

In (2) is the statistical aspect of the test and is treated here.

The minimum requirement for those receiver performance tests is 1% misdetection probability

All receiver performance tests are performed in fading conditions. In addition to the statistical considerations, this requires the definition of a minimum test time.

G.4.2 Mapping the UE reaction to error ratio

The UE can not indicate the detection or misdetection of the physical channel under test directly. Indirect methods are described in the procedure of the applicable test.

G.4.3 Design of the test

G.2.3 applies, exception:

Limit ER = 0.01

G.4.4 Numerical definition of the pass fail limits

ne	nsp	ns _f	ne	nsp	ns _f	ne	nsp	ns _f	ne	nsp	ns _f
0	344	NA	40	3929	2553	80	7033	5874	120	10036	9354
1	485	NA	41	4009	2632	81	7109	5960	121	10110	9442
2	607	10	42	4089	2712	82	7185	6046	122	10184	9530
3	719	33	43	4168	2792	83	7261	6131	123	10259	9619
4	826	66	44	4247	2873	84	7336	6217	124	10333	9707
5	929	107	45	4327	2953	85	7412	6303	125	10407	9796
6	1029	152	46	4406	3034	86	7488	6389	126	10481	9884
7	1127	202	47	4484	3115	87	7564	6475	127	10555	9972
8	1223	255	48	4563	3196	88	7639	6561	128	10629	10061
9	1317	311	49	4642	3278	89	7715	6648	129	10703	10150
10	1409	370	50	4720	3359	90	7790	6734	130	10777	10238
11	1501	430	51	4799	3441	91	7866	6820	131	10851	10327
12	1592	492	52	4877	3523	92	7941	6907	132	10925	10416
13	1681	555	53	4955	3605	93	8017	6993	133	10999	10504
14	1770	620	54	5033	3688	94	8092	7080	134	11073	10593
15	1858	686	55	5111	3770	95	8167	7167	135	11147	10682
16	1946	754	56	5189	3853	96	8242	7253	136	11221	10771
17	2032	822	57	5267	3935	97	8317	7340	137	11295	10860
18	2119	891	58	5344	4018	98	8393	7427	138	11369	10949
19	2204	961	59	5422	4101	99	8468	7514	139	11442	11038
20	2290	1032	60	5499	4185	100	8543	7601	140	11516	11127
21	2374	1103	61	5577	4268	101	8618	7688	141	11590	11216
22	2459	1175	62	5654	4352	102	8693	7775	142	11664	11305
23	2543	1248	63	5731	4435	103	8768	7863	143	11737	11394
24	2627	1321	64	5809	4519	104	8843	7950	144	11811	11483
25	2710	1395	65	5886	4603	105	8917	8037	145	11885	11573
26	2793	1470	66	5963	4687	106	8992	8125	146	11958	11662
27	2876	1544	67	6039	4771	107	9067	8212	147	12032	11751
28	2958	1620	68	6116	4855	108	9142	8300	148	12105	11840
29	3040	1696	69	6193	4940	109	9216	8387	149	12179	11930
30	3122	1772	70	6270	5024	110	9291	8475	150	12252	12019
31	3204	1848	71	6346	5109	111	9366	8562	151	12326	12109
32	3285	1925	72	6423	5193	112	9440	8650	152	12399	12198
33	3366	2003	73	6499	5278	113	9515	8738	153	12473	12288
34	3447	2080	74	6576	5363	114	9589	8826	154	12546	12377
35	3528	2158	75	6652	5448	115	9664	8914	155	12620	12467
36	3609	2237	76	6728	5533	116	9738	9002	156	12693	12556
37	3689	2315	77	6805	5618	117	9813	9090	157	12767	12646
38	3769	2394	78	6881	5704	118	9887	9178	158	12840	12736
39	3850	2473	79	6957	5789	119	9962	9266	159	12913	12826

Table G.2.3-1 pass fail limits

NOTE 1: The first column is the number of errors (ne = number of misdetections)

NOTE 2: The second column is the number of samples for the pass limit (ns_p , ns=Number of Samples= number misdetections + number of detections)

NOTE 3: The third column is the number of samples for the fail limit (ns_f)

G.4.5 Pass fail decision rules

G.2.5 applies

NOTE 1: an ideal DUT passes after 344 samples. The maximum test time is 12913 samples.

G.4.6 Minimum Test time

G.3.5 applies

G.4.7 Test conditions for receiver performance tests

Test	Statistical	Number of	
Test	Statistical independence	Number of components in the test vector, as specified in the test requirements and initial conditions of the applicable	Over all Pass/Fail condition
0.4.4.4	A mindatantian in an	test	NIA
8.4.1.1 FDD PCFICH/PDCCH Single-antenna Port Performance	A misdetection is an independent event	1	NA
8.4.1.2FDD PCFICH/PDCCH Transmit Diversity Performance	A misdetection is an independent event	2	To pass 8.4.1.2 each component in the test vector must pass
8.4.2.1 TDD PCFICH/PDCCH Single-antenna Port Performance	A misdetection is an independent event	1	NA
8.4.2.2 TDD PCFICH/PDCCH Transmit Diversity Performance	A misdetection is an independent event	2	To pass 8.4.2.2 each component in the test vector must pass
8.5.1.1 FDD PHICH Single-antenna Port Performance	A misdetection is an independent event		
8.5.1.2FDD PHICH Transmit Diversity Performance	A misdetection is an independent event		
8.5.2.1 TDD PHICH Single- antenna Port Performance	A misdetection is an independent event		
8.5.2.2TDD PHICH Transmit Diversity Performance	A misdetection is an independent event		

Table G.4.7: Test conditions for receiver performance tests

G.X Theory to derive the numbers in Table G.2.1.3-1 (Informative)

Editor's note: this section of the Annex G is for information only and it described the background theory and information to derive the entries in the table G.2.1.3-1.

G.X.1 Error Ratio (ER)

The Error Ratio (ER) is defined as the ratio of number of errors (ne) to all results, number of samples (ns).

(1-ER is the success ratio).

G.X.2 Test Design

A statistical test is characterised by:

Test-time, Selectivity and Confidence level.

G.X.3 Confidence level

The outcome of a statistical test is a decision. This decision may be correct or in-correct. The Confidence Level CL describes the probability that the decision is a correct one. The complement is the wrong decision probability (risk) D = 1-CL

G.X.4 Introduction: Supplier Risk versus Customer Risk

There are two targets of decision:

1. A measurement on the pass-limit shows, that the DUT has the specified quality or is better with probability CL (CL e.g.95%) This shall lead to a "pass decision"

The pass-limit is on the good side of the specified DUT-quality. A more stringent CL (CL e.g.99%) shifts the pass-limit farer into the the good direction. Given the quality of the DUTs is distributed, a greater CL passes less and better DUTs.

A measurement on the bad side of the pass-limit is simply "not pass" (undecided or artificial fail).

Complementary:

A measurement on the fail-limit shows, that the DUT is worse than the specified quality with probability CL.

The fail-limit is on the bad side of the specified DUT-quality. A more stringent CL shifts the fail-limit farer into the the bad direction. Given the quality of the DUTs is distributed, a greater CL fails less and worse DUTs.

A measurement on the good side of the fail-limit is simply "not fail".

2. A DUT, known to have the specified quality, shall be measured and decided pass with probability CL. This leads to the test limit.

For CL e.g. 95%, the test limit is on the bad side of the specified DUT-quality. CL e.g.99% shifts the passlimit farer into the bad direction. Given the DUT-quality is distributed, a greater CL passes more and worse DUTs.

A DUT, known to be an $(\varepsilon \rightarrow 0)$ beyond the specified quality, shall be measured and decided fail with probability CL.

For CL e.g.95%, the test limit is on the good side of the specified DUT-quality.

NOTE 1: the different sense for CL in (a), (aa) versus (b), (bb)

NOTE 2: for constant CL in all 4 bullets (a) is equivalent to (bb) and (aa) is equivalent to (b)

G.X.5 Supplier Risk versus Customer Risk

The table below summarizes the different targets of decision.

Table G.X.5-1	Equivalent	statements
---------------	------------	------------

	Equivalent statements, using different cause-to-effect- directions, and assuming CL = constant >1/2						
cause-to-effect- directions	Known measurement result → estimation of the DUT's quality	Known DUT's quality → estimation of the measurement's outcome					
Supplier Risk	A measurement on the pass-limit shows, that the DUT has the specified quality or is better (a)	A DUT, known to have an (ε→0) beyond the specified DUT- quality, shall be measured and decided fail (bb)					
Customer Risk	A measurement on the fail-limit shall shows, that the DUT is worse than the specified quality (aa)	A DUT, known to have the specified quality, shall be measured and decided pass (b)					

The shaded area shown the direct interpretation of Supplier Risk and Customer Risk.

The same statements can be based on other DUT-quality-definitions.

G.X.6 Introduction: Standard test versus early decision concept

In standard statistical tests, a certain number of results (ns) is predefined in advance to the test. After ns results the number of bad results (ne) is counted and the error ratio (ER) is calculated by ne/ns.

Applying statistical theory, a decision limit can be designed, against which the calculated ER is compared to derive the decision. Such a limit is one decision point and is characterised by:

- D: the wrong decision probability (a predefined parameter)
- ns: the number of results (a fixed predefined parameter)
- ne: the number of bad results (the limit based on just ns)

In the formula for the limit, D and ns can be understood as variable parameter and variable. However the standard test execution requires fixed ns and D. The property of such a test is: It discriminate between two states only, depending on the test design:

- pass (with CL) / undecided (undecided in the sense: finally undecided)
- fail (with CL) / undecided (undecided in the sense: finally undecided)
- pass(with CL) / fail (with CL) (however against two limits).

In contrast to the standard statistical tests, the early decision concept predefines a set of (ne,ns) co-ordinates, representing the limit-curve for decision. After each result a preliminary ER is calculated and compared against the limit-curve. After each result one may make the decision or not (undecided for later decision) The parameters and variables in the limit-curve for the early decision concept have a similar but not equal meaning:

- D: the wrong decision probability (a predefined parameter)
- ns: the number of results (a variable parameter)
- ne: the number of bad results (the limit. It varies together with ns)

To avoid a "final undecided" in the standard test, a second limit must be introduced and the single decision co-ordinate (ne,ns) needs a high ne, leading to a fixed (high) test time. In the early decision concept, having the same selectivity and the same confidence level an "undecided" need not to be avoided, as it can be decided later. A perfect DUT will hit the decision coordinate (ne,ns) with ne=0. This test time is short.

G.X.7 Standard test versus early decision concept

For Supplier Risk:

The wrong decision probability D in the standard test is the probability, to decide a DUT in-correct in the single decision point. In the early decision concept there is a probability of in-correct decisions d at each point of the limit-curve. The sum of all those wrong decision probabilities accumulate to D. Hence d<D

For Customer Risk:

The correct decision probability CL in the standard test is the probability, to decide a DUT correct in the single decision point. In the early decision concept there is a probability of correct decisions cl at each point of the limit-curve. The sum of all those correct decision probabilities accumulate to CL. Hence cl<CL or d>D

G.X.8 Selectivity

There is no statistical test which can discriminate between a limit DUT and a DUT which is an $(\epsilon \rightarrow 0)$ apart from the limit in finite time and high confidence level CL. Either the test discriminates against one limit with the results pass (with CL)/undecided or fail (with CL)/undecided, or the test ends in a result pass (with CL)/fail (with CL) but this requires a second limit.

For CL>1/2, a (measurement-result = specified-DUT-quality), generates undecided in test "supplier risk against pass limit" (a, from above) and also in the test "customer risk against the fail limit" (aa)

For CL>1/2, a DUT, known to be on the limit, will be decided pass for the test "customer risk against pass limit" (b) and also "supplier risk against fail limit" (bb).

This overlap or undecided area is not a fault or a contradiction, however it can be avoided by introducing a Bad or a Good DUT quality according to:

- Bad DUT quality: specified DUT-quality * M (M>1)
- Good DUT quality: specified DUT-qualityt * m (m<1)

Using e.g M>1 and CL=95% the test for different DUT qualities yield different pass probabilities:

Figure G.X.8-1: Pass probability versus DUT quality

G.X.9 Design of the test

The receiver characteristic test are defined by the following design principles:

- 1. The early decision concept is applied.
- 2. A second limit is introduced: Bad DUT factor M>1
- 3. To decide the test pass:

Supplier risk is applied based on the Bad DUT qualityFail-
ProbaTo decide the test failbility

Cusomer Risk is applied based on the specified DUT quality

The receiver characteristic test are defined by the following parameters:

- 1. Limit ER = 0.05
- 2. Bad DUT factor M=1.5 (selectivity)
- 3. Confidence level CL = 95% (for specified DUT and Bad DUT-quality)

This has the following consequences:

1. A measurement on the fail limit is connected with 2 equivalent statements:

		A measurement on the fail-limit shows, that the	A DUT, known have the specified quality,
		DUT is worse than the specified DUT-quality	shall be measured and decided pass
2.	A n	neasurement on the pass limit is connected with the	complementary statements:

A measurement on the pass limit shows, that the	A DUT, known to have the Bad DUT quality,
DUT is better than the Bad DUT-quality.	shall be measured and decided fail

The left comumn is used to decide the measurement.

The right column is used to verify the design of the test by simulation.

The simulation is based on the two fulcrums A and B only in Figure G.x.8-1

3. Test time

The minimum and maximum test time is fixed.

The average test time is a function of the DUT's quality.

The individual test time is not predictable.

4. The number of decision co-ordinates (ne,ns) in the early decision concept is responsible for the selectivity of the test and the maximum test time. Having fixed the number of decision co-ordinates there is still freedom to select the individual decision co-ordinates in many combinations, all leading to the same confidence level.

G.X.10 Simulation to derive the pass fail limits in Table G.2.1.3-1

There is freedom to design the decision co-ordinates (ne,ns).

The binomial distribution and its inverse is used to design the pass and fail limits. Note that this method is not unique and that other methods exist.

 $fail(ne, d_f) := \frac{ne}{(ne + qnbinom(d_f, ne, ER))}$

$$pas(ne, cl_p, M) := \frac{ne}{\left(ne + qnbinom(cl_p, ne, ER \cdot M)\right)}$$

Where

- fail(..) is the error ratio for the fail limit
- pass(..) is the error ratio for the pass limit
- ER is the specified error ratio 0.05
- ne is the number of bad results. This is the variable in both equations
- M is the Bad DUT factor M=1.5
- d_f is the wrong decision probability of a single (ne,ns) co-ordinate for the fail limit. It is found by simulation to be $d_f = 0.004$
- cl_p is the confidence level of a single (ne,ns) co-ordinate for the pass limit. It is found by simulation to be $cl_p = 0.9975$
- qnbinom(..): The inverse cumulative function of the negative binomial distribution

The simulation works as follows:

- A large population of limit DUTs with true ER = 0.05 is decided against the pass and fail limits.
- cl_p and d_f are tuned such that CL (95%) of the population passes and D (5%) of the population fails.
- A population of Bad DUTs with true ER = M*0.05 is decided against the same pass and fail limits.
- cl_p and d_f are tuned such that CL (95%) of the population fails and D (5%) of the population passes.

- This procedure and the relationship to the measurement is justified in clause G.x.9. The number of DUTs decrease during the simulation, as the decided DUTs leave the population. That number decreases with an approximately exponential characteristics. After 169 bad results all DUTs of the population are decided.

NOTE: The exponential decrease of the population is an optimal design goal for the decision co-ordinates (ne,ns), which can be achieved with other formulas or methods as well.

Annex H (normative): Uplink Physical Channels

H.0 Uplink Signal Levels

Editor's note: The configuration of SRS is FFS

The uplink power levels are specified within the test cases.

H.1 General

This annex specifies the uplink physical channels that are needed for setting a connection and channels that are needed during a connection. Table H.1-1 describes the mapping of uplink physical channels and signals to physical resources for FDD. Table H.1-2 describes the mapping of uplink physical channels and signals to physical resources for TDD.

Table H.1-1: Mapping of uplink physical channels and signals to physical resources for FDD

Physical	Time Domain Location	Frequency Domain Location	Note
channel			
PRACH	Allowed for the parameter prach-	[Allowed for the parameter prach-	Mapping rule is specified in
	Configuration Index provided by	FrequencyOffset provided by higher	TS36.211 Section 5.7.1
	higher layers	layers]	
DMRS	For PUCCH:	Uplink system bandwidth	Mapping rule of DMRS for
	Symbols 2 to 4 of each slot	dependent.	PUCCH is specified in
	(PUCCH format: 1, 1a, 1b)		TS36.211 5.5.2.2.2
	Symbol 1 and 5 of each slot (PUCCH format: 2, 2a, 2b)		Mapping rule of DMRS for PUSCH is specified in TS36.211 5.5.2.1.2
	For PUSCH:		
	Symbol 3 of each slot		
PUCCH	Slot 0 and 1 of each subframe	[Each 12 subcarriers of both ends of the bandwidth]	Mapping rule is specified in TS36.211 Section 5.4.3
PUSCH	All remaining SC-FDMA symbols	RBs allocated according to	Mapping rule is specified in
	of each subframe not allocated to DMRS	Reference Measurement channel in Annex A.2	TS36.211 Section 5.4.2

Physical	Time Domain Location	Frequency Domain Location	Note
channel			
PRACH	Allowed for the parameters $(t_{p}^{0}, t_{p}^{1}, t_{p}^{2})$ in prach-	For format 0-3, the frequency location allowed is by <i>prach</i> -	Mapping rule is specified in TS36.211 Section 5.7.1
	Configration Index provided by	FrequencyOffset and $(f_{\rm RA})$ in	
	higher layers	by higher layers. Preamble format 4	
		is mapped only on UpPTS, where the frequency location allowed is	
		only by $(f_{_{R\!A}})$ in prach-	
		Configration Index provided by higher layers.	
DMRS	For PUCCH:	Uplink system bandwidth	Mapping rule of DMRS for
	(PUCCH format: 1, 1a, 1b)	dependent.	TS36.211 5.5.2.2.2
	Symbol 1 and 5 of each slot		Mapping rule of DMRS for
	(PUCCH format: 2, 2a, 2b)		TS36.211 5.5.2.1.2
	For PUSCH:		
	Symbol 3 of each slot		
PUCCH	Slot 0 and 1 of each subframe	[Each 12 subcarriers of both ends of	Mapping rule is specified in
		the bandwidth]	1536.211 Section 5.4.3
PUSCH	All remaining SC-FDMA symbols	RBs allocated according to	Mapping rule is specified in
	of each subframe not allocated to DMRS	Reference Measurement channel in Annex A.2	TS36.211 Section 5.4.2

Table H.1-2: Mapping	of uplink physical	channels and sig	anals to phys	sical resources for TDD

NOTE: PUSCH, PUCCH, DMRS are not present in UpPTS for TDD.

H.2 Set-up

Table H.2-1 describes the uplink physical channels that are required for connection set up.

Table H.2-1: Uplink Physical Channels required for connection set-up

Physical Channel	
PRACH	
DMRS	
PUCCH	
PUSCH	

H.3 Connection

The following clauses describes the uplink physical channels that are transmitted during a connection i.e., when measurements are done.

Table H.3-1: Uplink Physical Channels required during a connection

[Table contents FFS]

H.3.0 Measurement of Transmitter Characteristics

[FFS]

H.3.1 Measurement of Receiver Characteristics

[FFS]

H.3.2 Measurement of Performance Requirements

[FFS]

Annex I (informative): Change history

Change history							
Date	TSG #	TSG Doc.	CR	R ev	Subject/Comment	Old	New
2007-08	RAN5 #36	R5-072185			Skeleton proposed for RAN5#36Athens		0.0.1
2007-08	RAN5 #36	R5-072419			Update the skeleton base on R4- 071234 TR36.803.0.4.0.doc	0.0.1	0.0.2
2007-08	RAN5 #36	R5-072424			Update with editorial changes	0.0.2	0.0.3
2007-11	RAN5 #37	R5-073043			Update document with some info as following: Section 5: Frequency band information Section 6.2: Maximum output power Section 6.5: Output RF spectrum emissions Section 6.5.1: Occupied bandwidth Section 6.5.2: Out of band emission Section 6.5.3: Spurious emissions	0.0.3	0.0.4
2007-11	RAN5 #37	R5-073360			Editorial change to split MOP and UE Power classes	0.0.4	0.0.5
2008-03	KAN0 #38	K2-080069			 Battorial changes to sync up with 36. TOT V1.0.0 as much as feasible for the moment: Update definitions, symbols and abbreviations Update frequency bands, channel bandwidth, channel numbers information. Restructure document to move "frequency error" subsection inside Transmit signal quality. Add "additional spectrum Emission Mask" sub-test (mask A,B,C) section to address the regulatory requirements that are not met with the general mask (OOB and spurious emission). Add "Additional ACLR requirements" to address additional requirements that the network might indicate to the UE via signalling for a specific deployment scenario (in terms of additional requirements for UTRA/ACLR2 Restructure "Spurious Emission" to indicate we need to have 3 test cases to address: "E-UTRA Spurious Emission" requirements, and "Additional spurious emissions" requirements and "Additional spurious emission" to indicate we need to have 3 test cases to address: "E-UTRA Spurious Emission" requirements and "Additional spurious emissions" requirements and "Additional spurious emission" to indicate we need to have 3 test cases to address: "E-UTRA Spurious Emission band UE co-existence" requirements, and "Additional spurious emissions" requirements and "Additional spurious emissions" requirements and "Additional spurious emissions" requirements 	0.0.5	0.0.8
2008-03	RAN5 #38	R5-080408			LTE Reference Sensitivity test Text proposal		0.0.7
2008-03	RAN5 #38	R5-080409			LTE Maximum Rx input level test Text proposal		0.0.7
2008-03	RAN5 #38	R5-080410			LTE Adjacent Channel Selectivity test Text proposal		0.0.7
2008-03	RAN5 #38	R5-080064			LTE RF Receiver tests, General section Text proposal		0.0.7
2008-03	RAN5 #38	R5-080412			LTE RF: transmission modulation initial EVM test proposal		0.0.7
2008-03	RAN5 Workshop- UE LTE Test (9-11 April)	R5w08000 27			Modify styles and formats of tables and others according to drafting rules. Add some definitions and abbreviations Modified section 6.2 structure to be aligned with 36.101 v8.1.0 Modify tables of requirements to remove 1.6 MHz and 3.2MHz channel bandwidth according to new requirements 36.101 v8.1.0		0.0.9
2008-03	RAN5 Workshop- UE LTE Test (9-11 April)	R5w08000 28			Following TPs have been included: R5w080013r1 R5w080014r1 R5w080008r2 R5w080009r2 R5w080040r1 R5w080015r1 R5w080016r1 R5w080017r1	0.0.9	0.1.0

				R5w080018r2		
2008-05	RAN5#39	R5-081046		36-521-1 alignment of measurement state for test cases	0.1.0	0.1.1
2008-05	RAN5#39	R5-081042		Following approved TPs have been included: R5-081040 36.521-1 after April LTE-RF workshop R5-081415 36-521-1 alignment of measurement state for test cases – also the measurement state for each test cases has been updated according to R5-081404 R5-081416 Cover for LTE E-UTRAN RRC_IDLE State Mobility text proposal R5-081417 Cover for LTE E-UTRAN RRC_CONNECTED State Mobility text proposal R5-081404 LTE Rx Intermodulation test case text proposal R5-081409 Annex structure for Measurement uncertainty & Test Tools R5-081406 Text Proposal for TS36.521-1 TC7.6 Blocking Characteristics R5-081403 Text Proposal for TS36.521-1 TC7.7 Spurious Response R5-081410 Uncertainties and Test Tools for subset of UE tests R5-081331 Clarification of diversity characteristics section for multiple UE antennas R5-081335 36-521-1 update of nominal and additional	0.1.1	0.2.0
2008-06	RAN5 #39bis	R5-082029		Internet bandwidthsFollowing approved TPs have been included:R5-082129: Restructure of TS 36.521-1 and RRMproposal (Split of RRM from 36.521-1 v0.2.0 in its ownspecification 36.521-3.)R5-082166: Text Proposal for Annex C DownlinkPhysical ChannelsR5-082130: Text Proposal for Chan bandwidths in TS36.521-1R5-082027: Text Proposal for Occupied bandwidth inTS 36.521-1R5-082027: Text Proposal for Occupied bandwidth inTS 36.521-1R5-082027: Text Proposal for LTE Adjacent ChannelLeakage power RatioR5-082134: Text Proposal for LTE Tx SpuriousEmissionsR5-082135: Text Proposal for LTE UE MaximumOutput PowerR5-082136: Text Proposal for LTE Spectrum EmissionMaskR5-082136: Text Proposal for LTE Spectrum EmissionMaskR5-082138: UE Spurious Emissions Measurementuncertainty & Test TolerancesR5-082169: LTE Spectrum Emission Mask testuncertainties and TTsR5-082151: LTE UE Max Power and ACLR testsuncertainties and TTsR5-082152: Text proposal for LTE Transmit OFF PowerR5-082082: LTE Rx Intermodulation test caseuncertainties and TTsR5-082093: Text Proposal for TS36.521-1 TC7.6Blocking CharacteristicsR5-082154: Text Proposal for TS36.521-1 TC7.7Spurious ResponseR5-082154: Text Proposal for TS36.521-1 TC7.7Spurious ResponseR5-082154: Text Proposal for TS36.521-1 TC7.7Spurious ResponseR5-082154: Text Proposal for TS	0.2.0	0.3.0

					PCFICH/PDCCH and PHICH R5-082156: Text proposal for LTE Tx Minimum Output			ĺ
					Power Uncertainty			
					R5-082157: Text proposal for LTE Tx Minimum Output			
					R5-082164: Statistical testing of receiver characteristics			
					R5-082170: Cover for LTE Propagation Conditions Text			
					Editorial changes to align tables and figures numbering			
			DE 000400		with R5-082025		4.0.0	
2	80-800	RAN5 #40	R5-083163		R5-083804: LTE Demodulation Performance text	0.3.0	1.0.0	
					proposal			
					measurement uncertainty and TT text proposal			
					R5-083160: Transmission OFF power: TP,			
					measurement uncertainty and test tolerances proposal R5-083805: Frequency Error test case / measurement			
					uncertainty and TT test proposal			
					R5-083162: Propagation conditions correction text			
					R5-083220:Text Proposal for LTE Tx Minimum Output			
					Power			
					36.521-1			
					R5-083344: Test Tolerance and System uncertainty for			
					R5-083848:Test Tolerance and System uncertainty for			
					Reference sensitivity test			
					R5-083840: Test Tolerances for Spectrum Emission Mask			
					R5-083808: Reference Measurement Channel for LTE			
					UE Receiver tests R5-083350: Test Tolerance and System uncertainty for			
					Blocking and Spurious response			
					R5-083366: Text Proposal for LTE Reporting of			
					R5-083810: LTE PBCH Demodulation Performance			
					Requirements			
					Characteristics			
					R5-083809: LTE-RF TP for Test Case 7.7 Spurious			
					Response R5-083484: LTE-RE TP for Test Case 7.9 Sourious			
					Emissions			
					R5-083811: Annex E Global In-Channel TX-Test			
2	008-10	RAN5	R5-084072		Following approved TPs have been included:	1.0.0	1.1.0	
		#40Bis			R5-084072 TS 36.521-1 after RAN5#40Bis			
					Abbreviations			
					R5-084304 LTE-RF-TP for general section			
					R5-084036 Test Tolerances for additional SEM R5-084303 LTE-RE TP for Channel bandwidths and			
					frequency range			
					R5-084305 LTE-RF TP for new Absolute Power Tolerance test case			l
					R5-084067 LTE-RF TP for Transmission OFF test case			
					R5-084318 LTE-RF TP for Transmission Modulation test cases			l
					R5-084069 LTE-RF Investigation of E-UTRA-TDD			
					Frequency Error test case applicability			l
					R5-084309 Text Proposal for LTE Tx Spurious			l
					Emissions			
					Leakage power Ratio			l
1					R5-084320 Text Proposal for LTE Additional Spectrum			l

r			r	1		1	1
					Emission Mask R5-08/310 Test Tolerances for additional spurious		
					lemission		
					R5-084321 Text Proposal for Occupied bandwidth R5-084321 Text Proposal for LTE Spectrum Emission		
					Mask		
					R5-084060 Modification to section 7.2 Diversity		
					R5-084312 References in 36.521-1 tests initial		
					conditions		
					R5-084148 Update of Reference Measurement		
					Channel for LTE UE Rx tests		
					R5-084167 LTE-RF TP for TC7.9 Spurious Emissions		
					for PDSCH (FDD) text proposal		
					R5-084077 LTE Measurement of Performance		
					Requirements text proposal		
					R5-084313 LTE Demodulation of PDSCH Test		
					R5-084147 Specification of DL propagation conditions		
					for LTE UE tests		
					R5-084315 Text Proposal for LTE Demodulation of		
					PCFICH/PDCCH R5-084323 Text Proposal for Appex E Global In-		
					Channel		
2008-12	RAN#42	RP-080863			Approval of version 2.0.0 at RAN#42, then put to	2.0.0	8.0.0
					version 8.0.0.		
2008-01	B 1 1 1 1 1				Editorial corrections.	8.0.0	8.0.1
2009-03	RAN#43	R5-086011	0001	-	IP for In-band emissions	8.0.1	8.1.0
2009-03	RAN#43 RAN#43	R5-086012 R5-086013	0002	-	TP for IO-component	8.0.1	8.1.0
2009-03	RAN#43	R5-086064	0003	-	I TE-RE: UE max output power	8.0.1	8.1.0
2009-03	RAN#43	R5-086093	0005	-	Clarification of measurement period in minimum output	8.0.1	8.1.0
	_				power test procedure		
2009-03	RAN#43	R5-086094	0006	-	Clarification of measurement period in transmit OFF power test procedure	8.0.1	8.1.0
2009-03	RAN#43	R5-086120	0007	-	Update of Max.input level test	8.0.1	8.1.0
2009-03	RAN#43	R5-086125	0008	-	Addition of UL Reference Measurement Channels in Annex A2	8.0.1	8.1.0
2009-03	RAN#43	R5-086160	0009	-	correction for Maximum Power Reduction (MPR)	8.0.1	8.1.0
2009-03	RAN#43	R5-086167	0010	-	LTE-RF: TDD applicability and CR for Blocking Characteristics and Spurious Response	8.0.1	8.1.0
2009-03	RAN#43	R5-086168	0011	-	LTE-RF: TDD applicability and CR for Spurious Emissions	8.0.1	8.1.0
2009-03	RAN#43	R5-086239	0012	-	Update of Symbols	8.0.1	8.1.0
2009-03	RAN#43	R5-086401	0013	-	LTE-RF: TX-RX channel freq separation	8.0.1	8.1.0
2009-03	RAN#43	R5-086405	0014	-	Update of 6.7 Transmit intermodulation test	8.0.1	8.1.0
2009-03	RAN#43 RAN#43	R5-086406	0015	-	Update of Initial conditions for TX and RX test cases	8.0.1	8.1.0
2009-03	RAN#43	R5-086409	0017	-	Removal of [] from Clause 7 Receiver Characteristics	8.0.1	8.1.0
2009-03	RAN#43	R5-086413	0018	-	Updates to Demodulation of PCFICH/PDCCH test case	8.0.1	8.1.0
2009-03	RAN#43	R5-086414	0019	-	Text proposal for Reporting of Channel State	8.0.1	8.1.0
0000	D 4 1 1 1 -	 	0.000		Information		
2009-03	RAN#43	R5-086415	0020	-	Correction of RS_EPRE powers for default DL signal levels	8.0.1	8.1.0
2009-03	RAN#43	R5-086416	0021	-	Update of DL Reference Measurement Channels in Annex A3	8.0.1	8.1.0
2009-03	RAN#43	R5-086417	0022		Update to Annex E	8.0.1	8.1.0
2009-03	RAN#43	R5-086425	0023	-	Update of General text in clause 6	8.0.1	8.1.0
2009-03	RAN#43	R5-086426	0024	-	emission mask test	8.0.1	8.1.0
2009-03	RAN#43	R5-086428	0025	-	Demodulation of TDD PHICH test requirements text proposal	8.0.1	8.1.0
2009-03	RAN#43	R5-086429	0026	-	Demodulation of TDD PCFICH/PDCCH test requirements text proposal	8.0.1	8.1.0
2009-03	RAN#43	R5-090306	0027	-	New Annex H for Uplink Physical Channels	8.0.1	8.1.0

2009-03	RAN#43	R5-090308	0028	-	Text proposal for Reporting of Channel State	8.0.1	8.1.0
2000 02		P5 000400	0020		CP to 26 521 1: Undate of Spurious Emissions test	0 0 1	010
2009-03	11/11/#43	105-090403	0029	[0.0.1	0.1.0
	D 4 1 1 4 4 6	55.000404				0.0.4	
2009-03	KAN#43	R5-090404	0030	-	UK to 36.521-1: Update of ACLR test case	8.0.1	8.1.0
2009-03	RAN#43	R5-090443	0031	-	LTE-RF: Correction to 36.521-1 Frequency error test	8.0.1	8.1.0
					case		
2009-03	RAN#43	R5-090488	0032	-	LTE TDD applicability for Transmit intermodulation test	8.0.1	8.1.0
				1	case		
2009-03	RAN#43	R5-091002	0033	-	I TE Demodulation of PDSCH Test Requirements text	801	810
2000 00	10 10	110 001002	0000		proposal	0.0.1	0.1.0
2000 02		P5 001004	0024	-	I TE DE: CD for LIE may now or toot case	0 0 1	010
2009-03	DAN#43	R5-091004	0034	1-		0.0.1	0.1.0
2009-03	RAN#43	R5-091007	0035	-	LIE-RF: IDD Applicability and CR for Spectrum	8.0.1	8.1.0
					Emission Mask and Additional Spectrum Emission		
					Mask		
2009-03	RAN#43	R5-091008	0036	-	LTE-RF Investigation of E-UTRA-TDD for Occupied	8.0.1	8.1.0
					bandwidth test case applicability		
2009-03	RAN#43	R5-091009	0037	-	LTE-RF: Investigation of E-UTRA-TDD for Adjacent	8.0.1	8,1.0
					Channel Leakage power Ratio test case applicability	0.0	00
2000-02	RAN#13	R5-001011	0038	-	I TE-RE: TDD applicability and CR for Maximum Input	801	810
2003-03	117111#43	1.3-031011	0030	[⁻		0.0.1	0.1.0
0000.00	DAN// 40	DE 001010	0000			0.0.1	0.4.0
2009-03	KAN#43	R5-091012	0039	-	LIE-RF: IDD applicability and CR for Adjacent	8.0.1	8.1.0
		4			Channel Selectivity (ACS)		
2009-03	RAN#43	R5-091017	0040	-	Removal of Rx Narrowband Intermod 7.8.2	8.0.1	8.1.0
2009-03	RAN#43	R5-091019	0041	-	Relocation of 36.521-1 Annex C DL mapping	8.0.1	8.1.0
2009-03	RAN#43	R5-091020	0042	-	Removal of "Out-of-synchronization handling of output	8.0.1	8.1.0
					power" heading		
2000-02	RAN#42	R5-001022	0042	1_	Test requirements of TDD DDSCH demodulation	8 0 1	810
2009-03	KAN#43	1023	0043	-	hereformance with upor apositio reference symbols	0.0.1	0.1.0
0000 00	DANUUCO	DE 00400 :	0011	-		0.0.1	0.1.0
2009-03	KAN#43	R5-091024	0044	-	CR to 36.521-1: Update of Annex F.3.2 Measurement	8.0.1	8.1.0
		4			of transmitter		
2009-03	RAN#43	R5-091025	0045	-	CR to 36.521-1: Update of SEM and Additional SEM	8.0.1	8.1.0
			L	L	test cases	L	L
2009-03	RAN#43	R5-091077	0046	-	CR to 36.521-1: Addition of test combinations for test	8.0.1	8.1.0
				1	cases with MPR application		-
2009-03	RAN#43	R5-091082	0047	1_	Spurious emission requirements on PHS band	8.01	8.1 0
2000 00			0011		including the future plan in Japan	5.5.1	0.1.0
2000 02	PAN#42	P5-001101	0049	<u> </u>	I TE_PE: CP for MPP tost appa	801	810
2009-03	DAN#43	R5-091101	0040	F		0.0.1	0.1.0
2009-03	KAN#43	K5-091106	0049		Update of Reference sensitivity test in 7.3	8.0.1	8.1.0
2009-03	RAN#43	R5-091111	0050	1	Update of initial conditions for Rx tests	8.0.1	8.1.0
2009-05	RAN#44	R5-092144	0051	-	LTE-RF: Resubmission of R5-086424 UE output power	8.1.0	8.2.0
				1	dynamics 36.521-1 v8.1.0 (re-submit no changes)		
2009-05	RAN#44	R5-092146	0052	-	LTE-RE: CR for UE configured UE transmitted output	8.1.0	8.2.0
				1	nower test case (re-submit no changes)	0.1.0	0.2.0
2000 05		D5 002447	0052	-	TE DE: CD for LE minimum output newer test acco	010	0 2 0
2009-05	13AN#44	K0-092147	0053	[-	// a submit no shange	0.1.0	0.2.0
0000.05	DANKER						
2009-05	RAN#44	R5-092149	0054	-	LIE-RF: CR for Power Control Absolute power	8.1.0	8.2.0
					tolerance test case (re-submit no changes)		
2009-05	RAN#44	R5-092150	0055	-	LTE-RF: CR for Power Control Relative power	8.1.0	8.2.0
				1	tolerance test case (re-submit no changes)		
2009-05	RAN#44	R5-092151	0056	-	LTE-RE: New test case for Aggregate power control	8.1.0	8.2.0
					tolerance (re-submit no changes)	5.1.0	0.2.0
2000 05		P5-002262	0057	1	Taxt proposal for Reporting of Chappel State	810	820
2009-05	13AN#44	1092203	0057	1-	Information	0.1.0	0.2.0
0000	D A A B C C C C C C C C C C		0.0			a : -	
2009-05	RAN#44	R5-092264	0058	-	Propagation conditions for CQI tests	8.1.0	8.2.0
2009-05	RAN#44	R5-092265	0059	-	Correction to Demodulation of PDCCH/PCFICH test	8.1.0	8.2.0
				1	cases		
2009-05	RAN#44	R5-092273	0060	-	Mapping of downlink physical channels for TDD	8.1.0	8.2.0
2000-05	RAN#44	R5-002277	0061	t	Anney A RMC undates	810	820
2009-00		DE 000000	0001	[Undete of A 2.4.2 for DMO with LIE	0.1.0	0.2.0
2009-05	KAN#44	KD-092369	0062	-	Update of A.3.4.3 for KIVIC with UE-specific RS	0.1.0	ö.2.0
2009-05	RAN#44	R5-092372	0063	-	Maintenance on Initial configurations for Perf TCs	8.1.0	8.2.0
2009-05	RAN#44	R5-092436	0064	-	CR to 36.521-1: Update of ACLR test case	8.1.0	8.2.0
2009-05	RAN#44	R5-092442	0065	-	CR to 36.521-1: Update of Spurious Emissions test	8.1.0	8.2.0
				1	case		
2009-05	RAN#44	R5-092467	0066	-	LTE-RF: Transmit OFF Power update	8.1.0	8.2.0

	B A A A B A						
2009-05	RAN#44	R5-092473	0067	-	LTE_RF - Update on TC 7.7 Spurious Response (re-	8.1.0	8.2.0
					submit with no changes)		
2009-05	RAN#44	R5-092474	0068	-	LTE_RF - Update on TC 7.9 Spurious Emissions (re-	8.1.0	8.2.0
					submit with no changes)		
2009-05	RAN#44	R5-092527	0069	-	Update of TDD PDSCH test cases	8.1.0	8.2.0
2009-05	RAN#44	R5-092602	0070	-	LTE-RF: CR for Maximum Power Reduction test case	8.1.0	8.2.0
					(re-submit no changes)		
2009-05	RAN#44	R5-092603	0071	-	TP for Demodulation of TDD PDCCH/PCFICH	8.1.0	8.2.0
2009-05	RAN#44	R5-092605	0072	-	Mapping of uplink physical channels for FDD	810	820
2000-05		R5-002606	0073	_	Independent of Annex C	810	820
2009-05		R5-092000	0073	-	CD to 26 521 1. Undeto of test personators for	0.1.0	0.2.0
2009-05	KAN#44	K5-092607	0074	-	CR to 30.521-1. Opdate of test parameters for	0.1.0	0.2.0
					Demodulation of PDSCH (FDD) tests		
2009-05	RAN#44	R5-092614	0075	-	Update of SEM test case	8.1.0	8.2.0
2009-05	RAN#44	R5-092642	0076	-	Update of transmit quality test cases	8.1.0	8.2.0
2009-05	RAN#44	R5-092643	0077	-	Text proposal for TDD part of CQI Reporting under Fading conditions	8.1.0	8.2.0
2009-05	RAN#44	R5-092644	0078	-	Text proposal for TDD part of CQI Reporting under	8.1.0	8.2.0
2000.05		P5 002645	0070		I TE PE: Undate of Additional Spectrum Emission mask	910	020
2009-05	NAN#44	K5-092045	0079	-	Test appa with TDD Unlink Test configuration	0.1.0	0.2.0
0000.05		DE 000040	0000		Test case with TDD Oplink Test configuration	0.4.0	0.0.0
2009-05	RAN#44	R5-092649	0080	-	LIE-RF: CR for IDD DL RMC to be used in IX test	8.1.0	8.2.0
		-			cases	Ļ	
2009-05	RAN#44	R5-092653	0081	-	LTE-RF: CR for Additional Maximum Power Reduction	8.1.0	8.2.0
					test case		
2009-05	RAN#44	R5-092661	0082	-	RMC update for PDCCH/PCFICH peformance	8.1.0	8.2.0
					requirement		
2009-05	RAN#44	RP-090444	1161	-	Test frequencies for Additional Spurious Emission test	8.6.0	8.7.0
					case		
2009-05	RAN#44	R5-092366	0084	-	Update of 7.3.1	8.1.0	8.2.0
2000-05	RAN#11	R5-092440	0085	_	TE-RE: CR for LIE may output power test case	810	820
2003-05		R5-092440	0000	-	LTE DE Undete en TC 7 6 Displaing Characteristica	0.1.0	0.2.0
2009-05	RAN#44	R5-092472	0086	-	LIE_RF - Update on TC 7.6 Blocking Characteristics	8.1.0	8.2.0
	DAN1 // / /						
2009-05	RAN#44	R5-092636	0087	-	CR to 36.521-1 Addition of frequencies for band 18 and	8.1.0	8.2.0
					band 19	Ļ	
2009-05	RAN#44	R5-092652	0088	2	Improved stability of TC 7.8.5 Power Control in the DL	8.1.0	8.2.0
					fro F-DPCH to HSUPA TC 5.2D and 5.13.2B		
-	-	-	-	-	Editorial corrections	8.2.0	8.2.1
2009-09	RAN#45	R5-094032	0089	-	Correction CR to 36.521-1: Update of Requirements for	8.2.1	8.3.0
					Demodulation of PDSCH (FDD) tests		
2009-09	RAN#45	R5-094034	0090	-	Correction CR to 36 521-1: Update of General	821	830
2000 00		100 00 100 1	0000		Requirements for Demodulation tests	0.2.1	0.0.0
2000.00		P5 004214	0001		Lindate of in hand emissions	921	020
2009-09		NJ-034214	0091	-		0.2.1	0.3.0
2009-09	RAN#45	R5-094215	0092	-	I DD Initial downlink channel setting	8.2.1	8.3.0
2009-09	RAN#45	R5-094216	0093	-	Correction to Annex B	8.2.1	8.3.0
2009-09	RAN#45	R5-094248	0094	-	CR to 36.521-1: Update to ACLR test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094250	0095	-	CR to 36.521-1: Update to UE max output power test	8.2.1	8.3.0
					case		
2009-09	RAN#45	R5-094281	0096	-	Mapping of uplink physical channels for TDD	8.2.1	8.3.0
2009-09	RAN#45	R5-094282	0097	-	LTE-RF: CR for notes in TDD DL RMC to be used in TX	8.2.1	8.3.0
	_				test cases		-
2009-09	RAN#45	R5-094283	0098	-	I TE-RE: message undate to keep Tx power constant	821	830
2000 00	10.00	110 004200	0000		for some Ry test cases	0.2.1	0.0.0
2000.00		DE 004212	0000		I TE RE: CR to toot appoint Aggregate power control	0 2 1	020
2009-09	KAN#45	K5-094313	0099	-	televenee	0.2.1	0.3.0
	D 4 1 1 4 5	DE 00 (0 (7	0400			0.0.1	
2009-09	RAN#45	R5-094317	0100	-	LIE-RF: CR for UE minimum output power test case for	8.2.1	8.3.0
					לטו		
2009-09	RAN#45	R5-094318	0101	-	LTE-RF: CR for Power Control Relative power	8.2.1	8.3.0
					tolerance test case		
2009-09	RAN#45	R5-094319	0102	-	In band emission for non-allocated RB	8.2.1	8.3.0
2009-09	RAN#45	R5-094320	0103	-	LTE RF: correction for subclause 6.6.2.2.5 (A-SEM)	8.2.1	8.3.0
					supported band list		0.0.0
2000.00	PAN#45	P5-004262	0104	-	Correction of PMCs (36 521 Appay A)	821	830
2008-08		DE 004000	0104	F	Upper of the Clobal In Channels TV Test stress	0.2.1	0.3.0
2009-09	RAN#45	105-094303	0105	-	Usage of the Global In-Channels TA-Test across	0.2.1	0.3.0
	D A A U = 7	D = = = = = = = = = = = = = = = = = = =		<u> </u>			
2009-09	KAN#45	K5-094365	0106	-	LIE IX: 1to2 RX antenna	8.2.1	8.3.0

2009-09	RAN#45	R5-094367	0107	-	Correction to 6.6.2.2 Additional Spectrum Emission Mask	8.2.1	8.3.0
2009-09	RAN#45	R5-094370	0108	-	Correction to 6.6.2.3 ACLR	8.2.1	8.3.0
2009-09	RAN#45	R5-094371	0109	-	Correction to 6.7 TX Intermodulation	8.2.1	8.3.0
2009-09	RAN#45	R5-094374	0110	-	Correction to 7.6.1 In-Band Blocking	8.2.1	8.3.0
2009-09	RAN#45	R5-094375	0111	-	UE category (36.521 clause 8)	8.2.1	8.3.0
2009-09	RAN#45	R5-094378	0112	-	Completion of Global in-Channel TX-Test (36.521 Annex E)	8.2.1	8.3.0
2009-09	RAN#45	R5-094379	0113	-	Completion of Global in-Channel TX-Test with PRACH (36.521 Annex E)	8.2.1	8.3.0
2009-09	RAN#45	R5-094380	0114	-	Completion of Statistical testing (36.521 Annex G)	8.2.1	8.3.0
2009-09	RAN#45	R5-094385	0115	-	Correction to Annex D.2 Interference signals	8.2.1	8.3.0
2009-09	RAN#45	R5-094439	0116	-	Update for ACS	8.2.1	8.3.0
2009-09	RAN#45	R5-094661	0117	-	LTE RF - Core update on TC7.6.2 Out-of-band Blocking	8.2.1	8.3.0
2009-09	RAN#45	R5-094663	0118	-	LTE RF - Symbols Update on UL transmission configurations	8.2.1	8.3.0
2009-09	RAN#45	R5-094665	0119	-	LTE RF - Clarification for Test Configurations in General Section	8.2.1	8.3.0
2009-09	RAN#45	R5-094668	0120	-	LTE RF - Applicability of 6.2.3 MPR	8.2.1	8.3.0
2009-09	RAN#45	R5-094671	0121	-	LTE RF - Verification of UE Output Power in Out of Band Emission tests	8.2.1	8.3.0
2009-09	RAN#45	R5-094684	0122	-	CR to 36.521-1: Update to UE max output power test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094686	0123	-	LTE-RF CR to 36.521-1: Update the E-UTRA channel numbers	8.2.1	8.3.0
2009-09	RAN#45	R5-094687	0124	-	LTE-RF: CR for UE maximum power reduction(MPR) test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094699	0125	-	Update to SEM and spurious emissions TC	8.2.1	8.3.0
2009-09	RAN#45	R5-094706	0126	-	Resubmission-Update to the Requirements for frequency-selective fading test	8.2.1	8.3.0
2009-09	RAN#45	R5-094717	0127	-	Update of SEM	8.2.1	8.3.0
2009-09	RAN#45	R5-094718	0128	-	Update of initial conditions with Annex references	8.2.1	8.3.0
2009-09	RAN#45	R5-094721	0129	-	Update of 6.7 Tx Inter Mod	8.2.1	8.3.0
2009-09	RAN#45	R5-094725	0130	-	Correction to E-UTRA channel numbers for Band 2	8.2.1	8.3.0
2009-09	RAN#45	R5-094726	0131	-	Correction to Tx spurious emissions	8.2.1	8.3.0
2009-09	RAN#45	R5-094757	0132	-	Update of TDD PHICH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094874	0133	-	Correction to Demodulation of PDCCH/PCFICH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094902	0134	-	Addition of 15 MHz and 20 MHz bandwidths and corresponding sensitivity requirements into band 38	8.2.1	8.3.0
2009-09	RAN#45	R5-094903	0135	-	Correction CR to 36.521-1: Update of Transmitter tests network signalled parameter value	8.2.1	8.3.0
2009-09	RAN#45	R5-094905	0136	-	Update of TDD PDSCH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094908	0137	-	LTE-RF: CR for Power Control Absolute power tolerance test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094909	0138	-	Update to Output Power dynamics test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094913	0139	-	Clarification for downlink signal setting in RX tests	8.2.1	8.3.0
2009-09	RAN#45	R5-094914	0140	-	UL RB allocation for receiver tests	8.2.1	8.3.0
2009-09	RAN#45	R5-094915	0141	-	Update of TDD PCFICH/PDCCH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094921	0142	-	Correction to CQI performance test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094922	0143	-	Test description for CQI test cases under AWGN conditions	8.2.1	8.3.0
2009-09	RAN#45	R5-094923	0144	-	Resubmission - Requirements for PMI reporting (Single and Multiple PMI)	8.2.1	8.3.0
2009-09	RAN#45	R5-094966	0145	-	CR to 36.521-1: Addition of A-MPR for band 19	8.2.1	8.3.0
2009-09	RAN#45	R5-094976	0146	-	Without loop back: 6.2.2 UE maximum output power	8.2.1	8.3.0
2009-09	RAN#45	R5-094977	0147	-	Without loop back: 6.3.2 Minimum output power	8.2.1	8.3.0
2009-09	RAN#45	R5-094979	0148	-	LTE-RF: CR for UE configured UE transmitted output power test case	8.2.1	8.3.0
2009-09	RAN#45	R5-094980	0149	-	CR to 36.521-1: Definition of Maximum Power state in TX/RX test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094982	0150	1	Correction of Tx general discription	8.2.1	8.3.0
2009-09	RAN#45	R5-094986	0151	-	Update of 6.6.10BW	8.2.1	8.3.0
2009-09	RAN#45	R5-094989	0152	-	Correction to 1PRB tests in Demodulation of PDSCH	8.2.1	8.3.0

2009-09	RAN#45	R5-094995	0153	-	Correction CR to 36.521-1: Update of Requirements for	8.2.1	8.3.0
					Additional Maximum Power Reduction (A-MPR) test		
2009-09	RAN#45	R5-094996	0154	-	Correction to Demodulation of PHICH test cases	8.2.1	8.3.0
2009-09	RAN#45	R5-094997	0155	-	EVM TC update	8.2.1	8.3.0
2009-09	RAN#45	R5-095300	0156	-	LTE-RF: test description update	8.2.1	8.3.0
2009-09	RAN#45	R5-095301	0157	-	Correction CR to 36.521-1: Addition of measurement	8.2.1	8.3.0
					uncertainty and test tolerances for A-MPR		
2009-09	RAN#45	R5-095304	0158	-	Sorting out Demodulation of PDSCH for FDD	8.2.1	8.3.0
2009-09	-	-	-	-	TOC update and Annexes' titles formattings	8.3.0	8.3.1

History

Document history									
V8.0.1 January 2009		Publication							
V8.1.0	April 2009	Publication							
V8.2.1	June 2009	Publication							
V8.3.1 November 2009		Publication							