LTE;
Evolved Universal Terrestrial Radio Access (E-UTRA);
Radio Resource Control (RRC);
Protocol specification
(3GPP TS 36.331 version 14.6.2 Release 14)
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
5.3.6.2 Initiation
5.3.6.3 Reception of the CounterCheck message by the UE

5.7 RRC connection re-establishment

5.7.1 General
5.7.2 Initiation
5.7.3 Actions following cell selection while T311 is running
5.7.4 Actions related to transmission of RRCConnectionReestablishmentRequest message
5.7.5 Reception of the RRCConnectionReestablishment by the UE
5.7.6 T311 expiry
5.7.7 T301 expiry or selected cell no longer suitable
5.7.8 Reception of RRCConnectionReestablishmentReject by the UE

5.8 RRC connection release

5.8.1 General
5.8.2 Initiation
5.8.3 Reception of the RRCConnectionRelease by the UE
5.8.4 T320 expiry
5.8.5 T322 expiry
5.8.6 UE actions upon receiving the expiry of DataInactivityTimer

5.9 RRC connection release requested by upper layers

5.9.1 General
5.9.2 Initiation

5.10 Radio resource configuration

5.10.0 General
5.10.1 SRB addition/ modification
5.10.2 DRB release
5.10.3 DRB addition/ modification
5.10.3a DC specific DRB addition or reconfiguration
5.10.3a2 LWA specific DRB addition or reconfiguration
5.10.3a3 LWIP specific DRB addition or reconfiguration
5.10.3a SCell release
5.10.3b SCell addition/ modification
5.10.3c PSCell addition or modification
5.10.4 MAC main reconfiguration
5.10.5 Semi-persistent scheduling reconfiguration
5.10.6 Physical channel reconfiguration
5.10.7 Radio Link Failure Timers and Constants reconfiguration
5.10.8 Time domain measurement resource restriction for serving cell
5.10.9 Other configuration
5.10.10 SCG reconfiguration
5.10.11 SCG dedicated resource configuration
5.10.12 Reconfiguration SCG or split DRB by drb-ToAddModList
5.10.13 Neighbour cell information reconfiguration
5.10.14 Void
5.10.15 Sidelink dedicated configuration
5.10.15a V2X sidelink Communication dedicated configuration
5.10.16 T370 expiry

5.11 Radio link failure related actions

5.11.1 Detection of physical layer problems in RRC_CONNECTED
5.11.1a Early detection of physical layer problems in RRC_CONNECTED
5.11.1b Detection of physical layer improvements in RRC_CONNECTED
5.11.2 Recovery of physical layer problems
5.11.2a Recovery of early detection of physical layer problems
5.11.2b Cancellation of physical layer improvements in RRC_CONNECTED
5.11.3 Detection of radio link failure
5.11.3a Detection of early-out-of-sync event
5.11.3b Detection of early-in-sync event
5.12 UE actions upon leaving RRC_CONNECTED
5.13 UE actions upon PU/CH/ SRS release request

5.14 Proximity indication

5.14.1 General
5.14.2 Initiation
5.14.3 Actions related to transmission of ProximityIndication message
5.5.4.9 Event C1 (CSI-RS resource becomes better than threshold) .. 160

5.5.4.8 Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better than

5.5.4.6 Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better than

5.5.4.5 Event A4 (Neighbour becomes better than threshold) 156

5.5.4.3 Event A2 (Serving becomes worse than threshold) 155

5.5.4.1 General 149

5.5.3 Measurement report triggering 149

5.5.3.2 Layer 3 filtering 149

5.5.3.1 General 145

5.5.2 Performing measurements 145

5.5.2.12 Measurement gap sharing configuration 145

5.5.2.11 RSSI measurement timing configuration 145

5.5.2.10 Discovery signals measurement timing configuration 145

5.5.2.9 Measurement gap configuration 143

5.5.2.8 Quantity configuration 143

5.5.2.5 Measurement object addition/ modification 140

5.5.2.4 Measurement object removal .. 139

5.5.2.3 Measurement identity addition/ modification ... 139

5.5.2.2a Measurement identity autonomous removal .. 138

5.5.2.2 Measurement identity removal .. 138

5.5.2.1 General 137

5.5.1 Introduction... 135

5.4.6.3 UE fails to complete an inter-RAT cell change order 135

5.4.6.1 General 134

5.4.5 UL handover preparation transfer (CDMA2000) .. 134

5.4.5.1 General 134

5.4.5.2 Initiation ... 134

5.4.5.3 Actions related to transmission of the ULHandoverPreparationTransfer message 134

5.4.5.4 Failure to deliver the ULHandoverPreparationTransfer message .. 134

5.4.6 Inter-RAT cell change order to E-UTRAN .. 134

5.4.6.1 General 134

5.4.6.2 Initiation ... 135

5.4.6.3 UE fails to complete an inter-RAT cell change order .. 135

5.5 Measurements.. 135

5.5.1 Introduction .. 135

5.5.2 Measurement configuration .. 137

5.5.2.1 General 137

5.5.2.2 Measurement identity removal .. 138

5.5.2.2a Measurement identity autonomous removal .. 138

5.5.2.3 Measurement identity addition/ modification ... 139

5.5.2.4 Measurement object removal .. 139

5.5.2.5 Measurement object addition/ modification ... 140

5.5.2.6 Reporting configuration removal .. 142

5.5.2.7 Reporting configuration addition/ modification ... 143

5.5.2.8 Quantity configuration 143

5.5.2.9 Measurement gap configuration .. 143

5.5.2.10 Discovery signals measurement timing configuration ... 145

5.5.2.11 RSSI measurement timing configuration .. 145

5.5.2.12 Measurement gap sharing configuration .. 145

5.5.3 Performing measurements .. 145

5.5.3.1 General 145

5.5.3.2 Layer 3 filtering 149

5.5.4 Measurement report triggering .. 149

5.5.4.1 General ... 149

5.5.4.2 Event A1 (Serving becomes better than threshold) ... 154

5.5.4.3 Event A2 (Serving becomes worse than threshold) ... 155

5.5.4.4 Event A3 (Neighbour becomes offset better than PCell/ PSCell) ... 155

5.5.4.5 Event A4 (Neighbour becomes better than threshold) ... 156

5.5.4.6 Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better than

5.5.4.5a Event A6 (Neighbour becomes offset better than SCell) ... 157

5.5.4.7 Event B1 (Inter RAT neighbour becomes better than threshold) ... 158

5.5.4.8 Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better than

5.5.4.9 Event C1 (CSI-RS resource becomes better than threshold) ... 159

5.5.4.10 Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) ... 160

5.5.4.11 Event W1 (WLAN becomes better than a threshold) ... 161
5.5.12 Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLAN outside WLAN mobility set becomes better than threshold2) .. 161
5.5.13 Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) 162
5.5.14 Event V1 (The channel busy ratio is above a threshold) ... 163
5.5.15 Event V2 (The channel busy ratio is below a threshold) ... 163
5.5.5 Measurement reporting .. 164
5.5.6 Measurement related actions .. 169
5.5.6.1 Actions upon handover and re-establishment ... 169
5.5.6.2 Speed dependent scaling of measurement related parameters ... 170
5.5.7 Inter-frequency RSTD measurement indication .. 170
5.5.7.1 General ... 170
5.5.7.2 Initiation ... 170
5.5.7.3 Actions related to transmission of InterFreqRSTDMeasurementIndication message 171
5.6 Other .. 171
5.6.0 General.. 171
5.6.1 DL information transfer .. 172
5.6.1.1 General .. 172
5.6.1.2 Initiation ... 172
5.6.1.3 Reception of the DLInformationTransfer by the UE ... 172
5.6.2 UL information transfer .. 172
5.6.2.1 General ... 172
5.6.2.2 Initiation ... 172
5.6.2.3 Actions related to transmission of ULInformationTransfer message 173
5.6.2.4 Failure to deliver ULInformationTransfer message ... 173
5.6.3 UE capability transfer .. 173
5.6.3.1 General ... 173
5.6.3.2 Initiation ... 174
5.6.3.3 Reception of the UECapabilityEnquiry by the UE ... 174
5.6.4 CSFB to 1x Parameter transfer ... 177
5.6.4.1 General ... 177
5.6.4.2 Initiation ... 178
5.6.4.3 Actions related to transmission of CSFBParametersRequestCDMA2000 message 178
5.6.4.4 Reception of the CSFBParametersResponseCDMA2000 message ... 178
5.6.5 UE Information .. 178
5.6.5.1 General ... 178
5.6.5.2 Initiation ... 178
5.6.5.3 Reception of the UEInformationRequest message .. 178
5.6.6 Logged Measurement Configuration .. 180
5.6.6.1 General ... 180
5.6.6.2 Initiation ... 180
5.6.6.3 Reception of the LoggedMeasurementConfiguration by the UE .. 180
5.6.6.4 T330 expiry .. 180
5.6.7 Release of Logged Measurement Configuration ... 181
5.6.7.1 General ... 181
5.6.7.2 Initiation ... 181
5.6.8 Measurements logging .. 181
5.6.8.1 General ... 181
5.6.8.2 Initiation ... 181
5.6.9 In-device coexistence indication .. 184
5.6.9.1 General ... 184
5.6.9.2 Initiation ... 184
5.6.9.3 Actions related to transmission of InDeviceCoexIndication message 185
5.6.10 UE Assistance Information ... 186
5.6.10.1 General ... 186
5.6.10.2 Initiation ... 186
5.6.10.3 Actions related to transmission of UEAssistanceInformation message 187
5.6.11 Mobility history information ... 189
5.6.11.1 General ... 189
5.6.11.2 Initiation ... 189
5.6.12 RAN-assisted WLAN interworking ... 189
5.6.12.1 General ... 189
5.6.12.2 Dedicated WLAN offload configuration .. 190
5.8a.1.3 SC-MCCH information validity and notification of changes .. 207
5.8a.1.4 Procedures .. 208
5.8a.2 SC-MCCH information acquisition .. 208
5.8a.2.1 General ... 208
5.8a.2.2 Initiation ... 208
5.8a.2.3 SC-MCCH information acquisition by the UE ... 208
5.8a.2.4 Actions upon reception of the SCPMTMConfiguration message ... 209
5.8a.3 SC-PTM radio bearer configuration .. 209
5.8a.3.1 General ... 209
5.8a.3.2 Initiation ... 209
5.8a.3.3 SC-MRB establishment .. 209
5.8a.3.4 SC-MRB release .. 209
5.9 RN procedures .. 210
5.9.1 RN reconfiguration .. 210
5.9.1.1 General ... 210
5.9.1.2 Initiation ... 210
5.9.1.3 Reception of the RNReconfiguration by the RN ... 210
5.10 Sidelink ... 211
5.10.1 Introduction .. 211
5.10.1a Conditions for sidelink communication operation ... 211
5.10.1b Conditions for V2X sidelink communication operation ... 212
5.10.2 Sidelink UE information .. 212
5.10.2.1 General ... 212
5.10.2.2 Initiation ... 213
5.10.2.3 Actions related to transmission of SidelinkUEInformation message ... 218
5.10.3 Sidelink communication monitoring .. 220
5.10.4 Sidelink communication transmission .. 222
5.10.5 Sidelink discovery monitoring .. 223
5.10.6 Sidelink discovery announcement ... 224
5.10.6a Sidelink discovery announcement pool selection ... 227
5.10.6b Sidelink discovery announcement reference carrier selection .. 227
5.10.7 Sidelink synchronisation information transmission .. 228
5.10.7.1 General ... 228
5.10.7.2 Initiation ... 229
5.10.7.3 Transmission of SLSS ... 230
5.10.7.4 Transmission of MasterInformationBlock-SL or MasterInformationBlock-SL-V2X message 233
5.10.7.5 Void ... 234
5.10.8 Sidelink synchronisation reference ... 234
5.10.8.1 General ... 234
5.10.8.2 Selection and reselection of synchronisation reference .. 234
5.10.9 Sidelink common control information .. 236
5.10.9.1 General ... 236
5.10.9.2 Actions related to reception of MasterInformationBlock-SL/MasterInformationBlock-SL-V2X message ... 237
5.10.10 Sidelink relay UE operation .. 237
5.10.10.1 General ... 237
5.10.10.2 AS-conditions for relay related sidelink communication transmission by sidelink relay UE 237
5.10.10.3 AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE 237
5.10.10.4 Sidelink relay UE threshold conditions .. 238
5.10.11 Sidelink remote UE operation .. 238
5.10.11.1 General ... 238
5.10.11.2 AS-conditions for relay related sidelink communication transmission by sidelink remote UE 238
5.10.11.3 AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE 239
5.10.11.4 Selection and reselection of sidelink relay UE .. 239
5.10.11.5 Sidelink remote UE threshold conditions .. 239
5.10.12 V2X sidelink communication monitoring .. 240
5.10.13 V2X sidelink communication transmission .. 240
5.10.13.1 Transmission of V2X sidelink communication ... 240
5.10.13.1a Transmission of P2X related V2X sidelink communication .. 243
5.10.13.2 V2X sidelink communication transmission pool selection ... 243
5.10.13.3 V2X sidelink communication transmission reference cell selection .. 245
5.10.14 DFN derivation from GNSS .. 245
6 Protocol data units, formats and parameters (tabular & ASN.1) .. 246
6.1 General .. 246
6.2 RRC messages ... 247
6.2.1 General message structure .. 248
 - EUTRA-RRC-Definitions .. 248
 - BCCH-BCH-Message .. 248
 - BCCH-BCH-Message-MBMS ... 248
 - BCCH-DL-SCH-Message .. 248
 - BCCH-DL-SCH-Message-BR ... 249
 - BCCH-DL-SCH-Message-MBMS ... 249
 - MCCH-Message .. 249
 - PCCH-Message .. 249
 - DL-CCCH-Message ... 250
 - DL-DCCCH-Message ... 250
 - UL-CCCH-Message ... 251
 - UL-DCCCH-Message ... 251
 - SC-MCCCH-Message ... 252
6.2.2 Message definitions ... 252
 - CounterCheck ... 252
 - CounterCheckResponse .. 253
 - CSFBParametersRequestCDMA2000 .. 254
 - CSFBParametersResponseCDMA2000 ... 254
 - DLInformationTransfer .. 255
 - HandoverFromEUTRAPreparationRequest (CDMA2000) ... 255
 - InDeviceCoexIndication .. 257
 - InterFreqRSTDMeasurementIndication .. 259
 - LoggedMeasurementConfiguration .. 261
 - MasterInformationBlock .. 262
 - MasterInformationBlock-MBMS .. 263
 - MBMSCountingRequest .. 263
 - MBMSCountingResponse ... 264
 - MBMSInterestIndication ... 265
 - MBSFNAreaConfiguration ... 265
 - MeasurementReport ... 266
 - MobilityFromEUTRACCommand .. 267
 - Paging ... 270
 - ProximityIndication .. 271
 - RNReconfiguration .. 272
 - RNReconfigurationComplete .. 272
 - RRCConnectionReconfiguration ... 273
 - RRCConnectionReconfigurationComplete .. 279
 - RRCConnectionReestablishment .. 280
 - RRCConnectionReestablishmentComplete .. 281
 - RRCConnectionReestablishmentReject ... 282
 - RRCConnectionReestablishmentRequest ... 282
 - RRCConnectionReject ... 283
 - RRCConnectionRelease ... 284
 - RRCConnectionRequest ... 287
 - RRCConnectionResume ... 288
 - RRCConnectionResumeComplete .. 289
 - RRCConnectionResumeRequest ... 290
 - RRCConnectionSetup ... 290
 - RRCConnectionSetupComplete .. 291
 - SCGFailureInformation .. 293
 - SCPTMConfiguration ... 294
 - SCPTMConfiguration-BR ... 295
 - SecurityModeCommand .. 295
 - SecurityModeComplete ... 296
 - SecurityModeFailure ... 296
 - SidelinkUEInformation ... 297
 - SystemInformation .. 300
 - SystemInformationBlockType1 .. 300

ETSI
6.3 RRC information elements ... 322

6.3.1 System information blocks .. 322

- SystemInformationBlockType1-MBMS ... 307
- UEAssistanceInformation .. 309
- UECapabilityEnquiry ... 311
- UECapabilityInformation .. 313
- UEInformationRequest .. 314
- UEInformationResponse ... 314
- ULHandoverPreparationTransfer (CDMA2000) 320
- ULInformationTransfer ... 321
- WLANConnectionStatusReport .. 321

6.3.2 Radio resource control information elements 357

- AntennaInfo ... 357
- AntennaInfoUL .. 359
- CQI-ReportAperiodic .. 360
- CQI-ReportBoth ... 363
- CQI-ReportConfig ... 364
- CQI-ReportPeriodic .. 366
- CQI-ReportPeriodicProcExtId ... 369
- CrossCarrierSchedulingConfig ... 369
- CSI-IM-Config ... 370
- CSI-IM-ConfigId .. 371
- CSI-Process ... 371
- CSI-ProcessId .. 372
- CSI-RS-Config .. 372
- CSI-RS-ConfigBeamformed ... 374
- CSI-RS-ConfigEMIMO .. 375
- CSI-RS-ConfigNonPrecoded ... 375
- CSI-RS-ConfigNZP ... 376
- CSI-RS-ConfigNZPId .. 377
- CSI-RS-ConfigZP .. 378
- CSI-RS-ConfigZPId .. 379
- DataInactivityTimer ... 379
- DMRSCongig ... 379
- DRB-Identity .. 380
- EPDCCH-Config ... 380
- EIMTA-MaintConfig ... 382
- LogicalChannelConfig ... 383
- LWA-Configuration ... 384
- LWIP-Configuration ... 385
- MAC-MaintConfig .. 385
- P-C-AndCBSR .. 391
6.3.4 Mobility control information elements ... 456

- PDCCH-ConfigSCell .. 392
- PDCP-Config .. 393
- PDSCH-Config ... 396
- PDSCH-RE-MappingQCL-ConfigId ... 398
- PerCC-GapIndicationList ... 399
- PHICH-Config ... 399
- PhysicalConfigDedicated ... 399
- P-Max ... 407
- PRACH-Config ... 408
- PresenceAntennaPort1 ... 411
- PUCCH-Config .. 411
- PUSCH-Config ... 415
- RACH-ConfigDedicated ... 421
- RACH-ConfigDedicated ... 423
- RadioResourceConfigCommon ... 423
- RadioResourceConfigDedicated ... 428
- RLC-Config .. 434
- RLF-TimersAndConstants ... 437
- RN-SubframeConfig .. 438
- SchedulingRequestConfig .. 439
- SoundingRS-UL-Config .. 440
- SPS-Config ... 443
- SRS-TPC-PDCCH-Config ... 447
- TDD-Config .. 448
- TimeAlignmentTimer ... 449
- TPC-PDCCH-Config .. 449
- TunnelConfigLWIP .. 450
- UplinkPowerControl ... 450
- WLAN-Id-List ... 454
- WLAN-MobilityConfig .. 454

6.3.3 Security control information elements .. 455

- NextHopChainingCount ... 455
- SecurityAlgorithmConfig .. 455
- ShortMAC-I .. 455

6.3.4 Mobility control information elements ... 456

- AdditionalSpectrumEmission .. 456
- ARFCN-ValueCDMA2000 .. 456
- ARFCN-ValueEUTRA .. 456
- ARFCN-ValueGERAN ... 457
- ARFCN-ValueUTRA ... 457
- BandclassCDMA2000 ... 457
- BandIndicatorGERAN ... 457
- CarrierFreqCDMA2000 ... 457
- CarrierFreqGERAN ... 458
- CarrierFreqListMBMS .. 458
- CDMA2000-Type .. 459
- CellIdentity .. 459
- CellIndexList .. 459
- CellReselectionPriority ... 460
- CellSelectionInfoCE .. 460
- CellSelectionInfoCE1 .. 460
- CellReselectionSubPriority ... 461
- CSFB-RegistrationParam1XRIT ... 461
- CellGlobalIdEUTRA .. 462
- CellGlobalIdUTRA ... 462
- CellGlobalIdGERAN .. 463
- CellGlobalIdCDMA2000 .. 463
- CellSelectionInfoNFreq ... 464
- CSG-Identity .. 464
- FreqBandIndicator ... 464
6.3.5 Measurement information elements

- AllowedMeasBandwidth ... 477
- CSI-RSRP-Range .. 477
- Hysteresis .. 478
- LocationInfo .. 478
- MBSFN-RSRQ-Range ... 479
- MeasConfig .. 479
- MeasDS-Config .. 481
- MeasGapConfig ... 482
- MeasGapConfigPerCC-List ... 483
- MeasGapSharingConfig ... 484
- MeasId .. 484
- MeasIdToAddModList ... 484
- MeasObjectCDMA2000 ... 485
- MeasObjectEUTRA ... 486
- MeasObjectGERAN .. 489
- MeasObjectId ... 489
- MeasObjectToAddModList ... 490
- MeasObjectUTRA ... 490
- MeasObjectWLAN .. 491
- MeasResults .. 492
- MeasScaleFactor .. 498
- QuantityConfig ... 498
- ReportConfigEUTRA ... 500
- ReportConfigId .. 503
- ReportConfigInterRAT ... 503
- ReportConfigToAddModList ... 506
- ReportInterval ... 507
- RSRP-Range .. 507
- RSRQ-Range .. 508
- RSRQ-Type .. 508
- RS-SINR-Range .. 509
- RSSI-Range-r13 ... 509
6.3.6 Other information elements ... 511
 – AbsoluteTimeInfo .. 511
 – AreaConfiguration ... 511
 – C-RNTI ... 512
 – DedicatedInfoCDMA2000 ... 512
 – DedicatedInfoNAS ... 512
 – FilterCoefficient .. 513
 – LoggingDuration ... 513
 – LoggingInterval .. 513
 – MeasSubframePattern .. 513
 – MMEC ... 514
 – NeighCellConfig .. 514
 – OtherConfig ... 514
 – RAND-CDMA2000 (1xRTT) ... 516
 – RAT-Type ... 517
 – ResumeIdentity .. 517
 – RRC-TransactionIdentifier ... 517
 – S-TMSI ... 517
 – TraceReference ... 518
 – UE-CapabilityRAT-ContainerList ... 518
 – UE-EUTRA-Capability ... 519
 – UE-RadioPagingInfo .. 560
 – UE-TimersAndConstants .. 561
 – VisitedCellInfoList ... 561
 – WLAN-OffloadConfig .. 562

6.3.7 MBMS information elements ... 564
 – MBMS-NotificationConfig .. 564
 – MBMS-ServiceList ... 564
 – MBMSFN-Arealld .. 564
 – MBMSFN-AreaInfoList ... 565
 – MBMSFN-SubframeConfig .. 566
 – PMCH-InfoList ... 567

6.3.7a SC-PTM information elements ... 569
 – SC-MTCH-InfoList ... 569
 – SC-MTCH-InfoList-BR ... 570
 – SCPTM-NeighbourCellList .. 572

6.3.8 Sidelink information elements .. 573
 – SL-AnchorCarrierFreqList-V2X ... 573
 – SL-CBR-CommonTxConfigList .. 573
 – SL-CBR-PPP-P-TxConfigList ... 574
 – SL-CommConfig .. 575
 – SL-CommResourcePool ... 576
 – SL-CommTxPoolSensingConfig .. 579
 – SL-CP-Len .. 580
 – SL-DiscConfig ... 580
 – SL-DiscResourcePool .. 583
 – SL-DiscSysInfoReport ... 584
 – SL-DiscTxPowerInfo ... 585
 – SL-GapConfig ... 585
 – SL-GapRequest .. 586
 – SL-HoppingConfig ... 586
 – SL-InterFreqInfoListV2X .. 587
 – SL-V2X-UE-ConfigList ... 588
 – SL-OffsetIndicator ... 588
 – SL-P2X-ResourceSelectionConfig .. 589
 – SL-PeriodComm .. 589

ETS1
6.4 RRC multiplicity and type constraint values ... 599
- Multiplicity and type constraint definitions ... 599
- End of EUTRA-RRC-Definitions .. 602
6.5 PC5 RRC messages .. 602
6.5.1 General message structure ... 602
- PC5-RRC-Definitions .. 602
- SBCCH-SL-BCH-Message ... 602
- SBCCH-SL-BCH-Message-V2X .. 602
6.5.2 Message definitions ... 603
- MasterInformationBlock-SL ... 603
- MasterInformationBlock-SL-V2X .. 603
- End of PC5-RRC-Definitions .. 604
6.6 Direct Indication Information ... 604
6.6a Direct Indication FeMBMS ... 604
6.7 NB-IoT RRC messages ... 605
6.7.1 General NB-IoT message structure .. 605
- BCCH-BCH-Message-NB ... 605
- BCCH-DL-SCH-Message-NB ... 605
- PCCH-Message-NB ... 605
- DL-CCCH-Message-NB ... 605
- DL-DCCH-Message-NB ... 606
- UL-CCCH-Message-NB ... 606
- SC-MCCH-Message-NB ... 607
- UL-DCCCH-Message-NB ... 608
6.7.2 NB-IoT Message definitions ... 608
- DLInformationTransfer-NB ... 608
- MasterInformationBlock-NB ... 609
- Paging-NB .. 610
- RRCCConnectionReconfiguration-NB ... 611
- RRCCConnectionReconfigurationComplete-NB ... 612
- RRCCConnectionReestabishment-NB .. 612
- RRCCConnectionReestabishmentComplete-NB ... 613
- RRCCConnectionReestabishmentRequest-NB .. 613
- RRCCConnectionReject-NB ... 614
- RRCCConnectionRelease-NB ... 615
- RRCCConnectionRequest-NB ... 616
- RRCCConnectionResume-NB ... 617
- RRCCConnectionResumeComplete-NB ... 617
- RRCCConnectionResumeRequest-NB .. 618
- RRCCConnectionSetup-NB ... 619
- RRCCConnectionSetupComplete-NB .. 619
- SCPTMConfiguration-NB ... 620
- SystemInformation-NB ... 621
- SystemInformationBlockType1-NB .. 621
- UECapabilityEnquiry-NB .. 625
- UECapabilityInformation-NB ... 626
- ULInformationTransfer-NB .. 626
8.7.3 NB-IoT information elements

8.7.3.1 NB-IoT System information blocks

- SystemInformationBlockType2-NB
- SystemInformationBlockType3-NB
- SystemInformationBlockType4-NB
- SystemInformationBlockType5-NB
- SystemInformationBlockType14-NB
- SystemInformationBlockType15-NB
- SystemInformationBlockType16-NB
- SystemInformationBlockType20-NB
- SystemInformationBlockType22-NB

8.7.3.2 NB-IoT Radio resource control information elements

- CarrierFreq-NB
- DL-Bitmap-NB
- DL-CarrierConfigCommon-NB
- DL-GapConfig-NB
- LogicalChannelConfig-NB
- MAC-MainConfig-NB
- NPDCCH-ConfigDedicated-NB
- NPDSCCH-ConfigCommon-NB
- NPRACH-ConfigSIB-NB
- NPUSCH-Config-NB
- PDCP-Config-NB
- PhysicalConfigDedicated-NB
- RACH-ConfigCommon-NB
- RadioResourceConfigCommonSIB-NB
- RadioResourceConfigDedicated-NB
- RLC-Config-NB
- RLF-TimersAndConstants-NB
- UplinkPowerControl-NB

8.7.3.3 NB-IoT Security control information elements

8.7.3.4 NB-IoT Mobility control information elements

- AdditionalBandInfoList-NB
- FreqBandIndicator-NB
- MultiBandInfoList-NB
- NS-PmaxList-NB
- T-Reselection-NB

8.7.3.5 NB-IoT Measurement information elements

8.7.3.6 NB-IoT Other information elements

- EstablishmentCause-NB
- UE-Capability-NB
- UE-RadioPagingInfo-NB
- UE-TimersAndConstants-NB

8.7.3.7 NB-IoT MBMS information elements

8.7.3.7a NB-IoT SC-PTM information elements

- SC-MTCH-InfoList-NB
- SCPTM-NeighbourCellList-NB

8.7.4 NB-IoT RRC multiplicity and type constraint values

- Multiplicity and type constraint definitions
- End of NBIOT-RRC-Definitions

8.7.5 Direct Indication Information

7 Variables and constants

7.1 UE variables

- EUTRA-UE-Variables
- VarConnEstFailReport
- VarLogMeasConfig
- VarLogMeasReport
- VarMeasConfig
- VarMeasReportList
- VarMobilityHistoryReport
A.3.7 Guidelines on use of lists with elements of SEQUENCE type ... 721
A.3.4 Information elements ... 719
A.3.3 Message definition .. 717
A.3.1.2 ASN.1 identifier naming conventions 715
A.3.1 General principles ... 714
A.2.1 General principles .. 714
A.2.2 More detailed aspects .. 714
A.3 PDU specification... 714
A.3.1 General principles ... 714
A.3.1.1 ASN.1 sections .. 714
A.3.1.2 ASN.1 identifier naming conventions ... 715
A.3.1.3 Text references using ASN.1 identifiers .. 716
A.3.2 High-level message structure .. 717
A.3.3 Message definition ... 717
A.3.4 Information elements .. 719
A.3.5 Fields with optional presence.. 720
A.3.6 Fields with conditional presence ... 720
A.3.7 Guidelines on use of lists with elements of SEQUENCE type ... 721
A.4 Extension of the PDU specifications .. 722
A.4.1 General principles to ensure compatibility ... 722
A.4.2 Critical extension of messages and fields ... 722
A.4.3 Non-critical extension of messages .. 724
A.4.3.1 General principles .. 724
A.4.3.2 Further guidelines .. 724
A.4.3.3 Typical example of evolution of IE with local extensions ... 725
A.4.3.4 Typical examples of non critical extension at the end of a message .. 725
A.4.3.5 Examples of non-critical extensions not placed at the default extension location 726
A.4.3.6 ParentIE-WithoutEM ... 727
A.4.3.7 ChildIE1-WithoutEM .. 727
A.4.3.8 ChildIE2-WithoutEM .. 728
A.5 Guidelines regarding inclusion of transaction identifiers in RRC messages 728
A.6 Protection of RRC messages (informative) .. 729
A.7 Miscellaneous ... 731

Annex B (normative): Release 8 and 9 AS feature handling ... 732
B.1 Feature group indicators .. 732
B.2 CSG support ... 742

Annex C (normative): Release 10 AS feature handling ... 743
C.1 Feature group indicators .. 743

Annex D (informative): Descriptive background information .. 747
D.1 Signalling of Multiple Frequency Band Indicators (Multiple FBI) .. 747
D.1.1 Mapping between frequency band indicator and multiple frequency band indicator 747
D.1.2 Mapping between inter-frequency neighbour list and multiple frequency band indicator 747
D.1.3 Mapping between UTRA FDD frequency list and multiple frequency band indicator 748

Annex E (normative): TDD/FDD differentiation of FGIs/capabilities in TDD-FDD CA 750

Annex F (normative): UE requirements on ASN.1 comprehension ... 752

Annex G (informative): Change history .. 753

History .. 773
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document specifies the Radio Resource Control protocol for the radio interface between UE and E-UTRAN as well as for the radio interface between RN and E-UTRAN.

The scope of the present document also includes:

- the radio related information transported in a transparent container between source eNB and target eNB upon inter eNB handover;
- the radio related information transported in a transparent container between a source or target eNB and another system upon inter RAT handover.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[3] 3GPP TS 36.302: "Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer ".
[10] 3GPP TS 22.011: "Service accessibility".

3GPP TS 36.133: "Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management".

3GPP TS 25.101: "Universal Terrestrial Radio Access (UTRA); User Equipment (UE) radio transmission and reception (FDD)".

3GPP TS 25.102: "Universal Terrestrial Radio Access (UTRA); User Equipment (UE) radio transmission and reception (TDD)".

3GPP TS 25.331: "Universal Terrestrial Radio Access (UTRA); Radio Resource Control (RRC); Protocol specification".

3GPP TS 45.005: "Radio transmission and reception".

3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation".

3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding".

3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures".

3GPP2 C.S0024-C v2.0: "cdma2000 High Rate Packet Data Air Interface Specification".

3GPP TS 23.003: "Numbering, addressing and identification".

3GPP TS 45.008: "Radio subsystem link control".

3GPP TS 25.133: "Requirements for Support of Radio Resource Management (FDD)".

3GPP TS 25.123: "Requirements for Support of Radio Resource Management (TDD)".

3GPP TS 36.401: "Evolved Universal Terrestrial Radio Access (E-UTRA); Architecture description".

3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture".

3GPP2 A.S0008-C v4.0: "Interoperability Specification (IOS) for High Rate Packet Data (HRPD) Radio Access Network Interfaces with Session Control in the Access Network"

3GPP TS 24.301: "Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3".

3GPP TS 44.060: "General Packet Radio Service (GPRS); Mobile Station (MS) - Base Station System (BSS) interface; Radio Link Control/Medium Access Control (RLC/MAC) protocol".

3GPP TS 23.041: "Technical realization of Cell Broadcast Service (CBS)".

3GPP TS 23.038: "Alphabets and Language".
[39] 3GPP TS 36.413: "Evolved Universal Terrestrial Radio Access (E-UTRAN); S1 Application Protocol (S1 AP)".

[40] 3GPP TS 25.304: "Universal Terrestrial Radio Access (UTRAN); User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected mode".

[42] 3GPP TS 36.101: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception".

[43] 3GPP TS 45.005: "GSM/EDGE Radio transmission and reception".

[44] 3GPP2 C.S0087-A v2.0: "E-UTRAN - cdma2000 HRPD Connectivity and Interworking Air Interface Specification"

[45] 3GPP TS 44.018: "Mobile radio interface layer 3 specification; Radio Resource Control (RRC) protocol".

[46] 3GPP TS 25.223: "Spreading and modulation (TDD)".

[47] 3GPP TS 36.104: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception".

[49] 3GPP TS 24.008: "Mobile radio interface layer 3 specification; Core network protocols; Stage 3".

[50] 3GPP TS 45.010: "Radio subsystem synchronization".

[51] 3GPP TS 23.272: "Circuit Switched Fallback in Evolved Packet System; Stage 2".

[52] 3GPP TS 29.061: "Interworking between the Public Land Mobile Network (PLMN) supporting packet based services and Packet Data Networks (PDN)"

[53] 3GPP2 C.S0097-0 v3.0: "E-UTRAN - cdma2000 1x Connectivity and Interworking Air Interface Specification"

[54] 3GPP TS 36.355: "LTE Positioning Protocol (LPP)"

[55] 3GPP TS 36.216: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation"

[56] 3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and functional description"

[57] 3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs"

[58] 3GPP TS 32.422: "Telecommunication management; Subscriber and equipment trace; Trace control and configuration management"

[59] 3GPP TS 22.368: "Service Requirements for Machine Type Communications; Stage 1"

[60] 3GPP TS 37.320: "Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio measurement collection for Minimization of Drive Tests (MDT); Overall description; Stage 2"

[61] 3GPP TS 23.216: "Single Radio Voice Call Continuity (SRVCC); Stage 2"

[62] 3GPP TS 22.146: "Multimedia Broadcast/Multicast Service (MBMS); Stage 1"

[63] 3GPP TR 36.816: "Evolved Universal Terrestrial Radio Access (E-UTRA); Study on signalling and procedure for interference avoidance for in-device coexistence"

[64] IS-GPS-200F: "Navstar GPS Space Segment/Navigation User Segment Interfaces"
3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Anchor carrier: In NB-IoT, a carrier where the UE assumes that NPSS/NSSS/NPBCH/SIB-NB are transmitted.

Bandwidth Reduced: Refers to operation in downlink and uplink with a limited channel bandwidth of 6 PRBs.

Cellular IoT EPS Optimisation: Provides improved support of small data transfer, as defined in TS 24.301 [35].

Commercial Mobile Alert System: Public Warning System that delivers Warning Notifications provided by Warning Notification Providers to CMAS capable UEs.

Common access barring parameters: The common access barring parameters refer to the access class barring parameters that are broadcast in SystemInformationBlockType2 outside the list of PLMN specific parameters (i.e. in ac-BarringPerPLMN-List).
Control plane CIoT EPS optimisation: Enables support of efficient transport of user data (IP, non-IP or SMS) over control plane via the MME without triggering data radio bearer establishment, as defined in TS 24.301 [35].

CSG member cell: A cell broadcasting the identity of the selected PLMN, registered PLMN or equivalent PLMN and for which the CSG whitelist of the UE includes an entry comprising cell's CSG ID and the respective PLMN identity.

Dual Connectivity: A UE in RRC_CONNECTED is configured with Dual Connectivity when configured with a Master and a Secondary Cell Group.

EU-Alert: Public Warning System that delivers Warning Notifications provided by Warning Notification Providers using the same AS mechanisms as defined for CMAS.

Field: The individual contents of an information element are referred as fields.

Floor: Mathematical function used to 'round down' i.e. to the nearest integer having a lower or equal value.

Information element: A structural element containing a single or multiple fields is referred as information element.

Korean Public Alert System (KPAS): Public Warning System that delivers Warning Notifications provided by Warning Notification Providers using the same AS mechanisms as defined for CMAS.

Master Cell Group: For a UE not configured with DC, the MCG comprises all serving cells. For a UE configured with DC, the MCG concerns a subset of the serving cells comprising of the PCell and zero or more secondary cells.

MBMS service: MBMS bearer service as defined in TS 23.246 [56] (i.e. provided via an MRB or an SC-MRB).

NB-IoT: NB-IoT allows access to network services via E-UTRA with a channel bandwidth limited to 200 kHz.

NB-IoT UE: A UE that uses NB-IoT.

NCSG: Network controlled small gap as defined in TS 36.133 [16].

Non-anchor carrier: In NB-IoT, a carrier where the UE does not assume that NPSS/NSSS/NPBCH/SIB-NB are transmitted.

Primary Cell: The cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure, or the cell indicated as the primary cell in the handover procedure.

Primary Secondary Cell: The SCG cell in which the UE is instructed to perform random access or initial PUSCH transmission if random access procedure is skipped when performing the SCG change procedure.

Primary Timing Advance Group: Timing Advance Group containing the PCell or the PSCell.

PUCCH SCell: An SCell configured with PUCCH.

Secondary Cell: A cell, operating on a secondary frequency, which may be configured once an RRC connection is established and which may be used to provide additional radio resources.

Secondary Cell Group: For a UE configured with DC, the subset of serving cells not part of the MCG, i.e. comprising of the PSCell and zero or more other secondary cells.

Secondary Timing Advance Group: Timing Advance Group neither containing the PCell nor the PSCell. A secondary timing advance group contains at least one cell with configured uplink.

Serving Cell: For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA/DC the term 'serving cells' is used to denote the set of one or more cells comprising of the primary cell and all secondary cells.

Sidelink: UE to UE interface for sidelink communication, V2X sidelink communication and sidelink discovery. The sidelink corresponds to the PC5 interface as defined in TS 23.303 [68].

Sidelink communication: AS functionality enabling ProSe Direct Communication as defined in TS 23.303 [68], between two or more nearby UEs, using E-UTRA technology but not traversing any network node. In this version, the terminology "sidelink communication" without "V2X" prefix only concerns PS unless specifically stated otherwise.
Sidelink discovery: AS functionality enabling ProSe Direct Discovery as defined in TS 23.303 [68], using E-UTRA technology but not traversing any network node.

Sidelink operation: Includes sidelink communication, V2X sidelink communication and sidelink discovery.

UE in CE: Refers to a UE that is capable of using coverage enhancement, and requires coverage enhancement mode to access a cell or is configured in a coverage enhancement mode.

User plane CloT EPS optimisation: Enables support for change from EMM-IDLE mode to EMM-CONNECTED mode without the need for using the Service Request procedure, as defined in TS 24.301 [35].

Timing Advance Group: A group of serving cells that is configured by RRC and that, for the cells with an UL configured, use the same timing reference cell and the same Timing Advance value. A Timing Advance Group only includes cells of the same cell group i.e. it either includes MCG cells or SCG cells.

V2X Sidelink communication: AS functionality enabling V2X Communication as defined in TS 23.285 [78], between nearby UEs, using E-UTRA technology but not traversing any network node.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1], TS 36.300 [9] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1] or TS 36.300 [9].

1xRTT CDMA2000 1x Radio Transmission Technology
AB Access Barring
ACDC Application specific Congestion control for Data Communication
ACK Acknowledgement
AM Acknowledged Mode
ANDSF Access Network Discovery and Selection Function
ARQ Automatic Repeat Request
AS Access Stratum
ASN.1 Abstract Syntax Notation One
BCCH Broadcast Control Channel
BCD Binary Coded Decimal
BCH Broadcast Channel
BL Bandwidth reduced Low complexity
BLER Block Error Rate
BR Bandwidth Reduced
BR-BCCCH Bandwidth Reduced Broadcast Control Channel
CA Carrier Aggregation
CBR Channel Busy Ratio
CCCH Common Control Channel
CCO Cell Change Order
CE Coverage Enhancement
CG Cell Group
CloT Cellular IoT
CMAS Commercial Mobile Alert Service
CP Control Plane
C-RNTI Cell RNTI
CRS Cell-specific Reference Signal
CSFB CS fallback
CSG Closed Subscriber Group
CSI Channel State Information
DC Dual Connectivity
DCCH Dedicated Control Channel
DCI Downlink Control Information
DCN Dedicated Core Networks
DFN Direct Frame Number
DL Downlink
DL-SCH Downlink Shared Channel
DRB (user) Data Radio Bearer
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRX</td>
<td>Discontinuous Reception</td>
</tr>
<tr>
<td>DTCH</td>
<td>Dedicated Traffic Channel</td>
</tr>
<tr>
<td>EAB</td>
<td>Extended Access Barring</td>
</tr>
<tr>
<td>eDRX</td>
<td>Extended DRX</td>
</tr>
<tr>
<td>EHLPLMN</td>
<td>Equivalent Home Public Land Mobile Network</td>
</tr>
<tr>
<td>eIMTA</td>
<td>Enhanced Interference Management and Traffic Adaptation</td>
</tr>
<tr>
<td>ENB</td>
<td>Evolved Node B</td>
</tr>
<tr>
<td>EPC</td>
<td>Evolved Packet Core</td>
</tr>
<tr>
<td>EPDCCH</td>
<td>Enhanced Physical Downlink Control Channel</td>
</tr>
<tr>
<td>EPS</td>
<td>Evolved Packet System</td>
</tr>
<tr>
<td>ETWS</td>
<td>Earthquake and Tsunami Warning System</td>
</tr>
<tr>
<td>E-UTRA</td>
<td>Evolved Universal Terrestrial Radio Access</td>
</tr>
<tr>
<td>E-UTRAN</td>
<td>Evolved Universal Terrestrial Radio Access Network</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplex</td>
</tr>
<tr>
<td>FFS</td>
<td>For Further Study</td>
</tr>
<tr>
<td>GERAN</td>
<td>GSM/EDGE Radio Access Network</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>G-RNTI</td>
<td>Group RNTI</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>HARQ</td>
<td>Hybrid Automatic Repeat Request</td>
</tr>
<tr>
<td>HFN</td>
<td>Hyper Frame Number</td>
</tr>
<tr>
<td>HPLMN</td>
<td>Home Public Land Mobile Network</td>
</tr>
<tr>
<td>HRPD</td>
<td>CDMA2000 High Rate Packet Data</td>
</tr>
<tr>
<td>H-SFN</td>
<td>Hyper SFN</td>
</tr>
<tr>
<td>IDC</td>
<td>In-Device Coexistence</td>
</tr>
<tr>
<td>IE</td>
<td>Information element</td>
</tr>
<tr>
<td>IMEI</td>
<td>International Mobile Equipment Identity</td>
</tr>
<tr>
<td>IMSI</td>
<td>International Mobile Subscriber Identity</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, Scientific and Medical</td>
</tr>
<tr>
<td>kB</td>
<td>Kilobyte (1000 bytes)</td>
</tr>
<tr>
<td>L1</td>
<td>Layer 1</td>
</tr>
<tr>
<td>L2</td>
<td>Layer 2</td>
</tr>
<tr>
<td>L3</td>
<td>Layer 3</td>
</tr>
<tr>
<td>LAA</td>
<td>Licensed-Assisted Access</td>
</tr>
<tr>
<td>LWA</td>
<td>LTE-WLAN Aggregation</td>
</tr>
<tr>
<td>LWAP</td>
<td>LTE-WLAN Aggregation Adaptation Protocol</td>
</tr>
<tr>
<td>LWIP</td>
<td>LTE-WLAN Radio Level Integration with IPsec Tunnel</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>MBMS</td>
<td>Multimedia Broadcast Multicast Service</td>
</tr>
<tr>
<td>MBSFN</td>
<td>Multimedia Broadcast multicast service Single Frequency Network</td>
</tr>
<tr>
<td>MCG</td>
<td>Master Cell Group</td>
</tr>
<tr>
<td>MCPTT</td>
<td>Mission Critical Push To Talk</td>
</tr>
<tr>
<td>MDT</td>
<td>Minimization of Drive Tests</td>
</tr>
<tr>
<td>MIB</td>
<td>Master Information Block</td>
</tr>
<tr>
<td>MO</td>
<td>Mobile Originating</td>
</tr>
<tr>
<td>MDCCH</td>
<td>MTC Physical Downlink Control Channel</td>
</tr>
<tr>
<td>MRB</td>
<td>MBMS Point to Multipoint Radio Bearer</td>
</tr>
<tr>
<td>MRO</td>
<td>Mobility Robustness Optimisation</td>
</tr>
<tr>
<td>MSI</td>
<td>MCH Scheduling Information</td>
</tr>
<tr>
<td>MT</td>
<td>Mobile Terminating</td>
</tr>
<tr>
<td>MUST</td>
<td>MultiUser Superposition Transmission</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NACC</td>
<td>Network Assisted Cell Change</td>
</tr>
<tr>
<td>NAICS</td>
<td>Network Assisted Interference Cancellation/Suppression</td>
</tr>
<tr>
<td>NAS</td>
<td>Non Access Stratum</td>
</tr>
<tr>
<td>NB-IoT</td>
<td>NarrowBand Internet of Things</td>
</tr>
<tr>
<td>NPBCH</td>
<td>Narrowband Physical Broadcast channel</td>
</tr>
<tr>
<td>NPDCCH</td>
<td>Narrowband Physical Downlink Control channel</td>
</tr>
<tr>
<td>NPDSCH</td>
<td>Narrowband Physical Downlink Shared channel</td>
</tr>
<tr>
<td>NPRACH</td>
<td>Narrowband Physical Random Access channel</td>
</tr>
<tr>
<td>NPS</td>
<td>Narrowband Primary Synchronization Signal</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>NPUSCH</td>
<td>Narrowband Physical Uplink Shared channel</td>
</tr>
<tr>
<td>NRS</td>
<td>Narrowband Reference Signal</td>
</tr>
<tr>
<td>NSSS</td>
<td>Narrowband Secondary Synchronization Signal</td>
</tr>
<tr>
<td>P2X</td>
<td>Pedestrian-to-Everything</td>
</tr>
<tr>
<td>PCCH</td>
<td>Paging Control Channel</td>
</tr>
<tr>
<td>PCell</td>
<td>Primary Cell</td>
</tr>
<tr>
<td>PDCCH</td>
<td>Physical Downlink Control Channel</td>
</tr>
<tr>
<td>PDCP</td>
<td>Packet Data Convergence Protocol</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PLMN</td>
<td>Public Land Mobile Network</td>
</tr>
<tr>
<td>PMK</td>
<td>Pairwise Master Key</td>
</tr>
<tr>
<td>ProSe</td>
<td>Proximity based Services</td>
</tr>
<tr>
<td>PS</td>
<td>Public Safety (in context of sidelink), Packet Switched (otherwise)</td>
</tr>
<tr>
<td>PCell</td>
<td>Primary Secondary Cell</td>
</tr>
<tr>
<td>PSK</td>
<td>Pre-Shared Key</td>
</tr>
<tr>
<td>PTAG</td>
<td>Primary Timing Advance Group</td>
</tr>
<tr>
<td>PUCCH</td>
<td>Physical Uplink Control Channel</td>
</tr>
<tr>
<td>QCI</td>
<td>QoS Class Identifier</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RACH</td>
<td>Random Access Channel</td>
</tr>
<tr>
<td>RAI</td>
<td>Release Assistance Indication</td>
</tr>
<tr>
<td>RAT</td>
<td>Radio Access Technology</td>
</tr>
<tr>
<td>RB</td>
<td>Radio Bearer</td>
</tr>
<tr>
<td>RCLWI</td>
<td>RAN Controlled LTE-WLAN Integration</td>
</tr>
<tr>
<td>RLC</td>
<td>Radio Link Control</td>
</tr>
<tr>
<td>RMTC</td>
<td>RSSI Measurement Timing Configuration</td>
</tr>
<tr>
<td>RN</td>
<td>Relay Node</td>
</tr>
<tr>
<td>RNTI</td>
<td>Radio Network Temporary Identifier</td>
</tr>
<tr>
<td>ROHC</td>
<td>ROBust Header Compression</td>
</tr>
<tr>
<td>RPLMN</td>
<td>Registered Public Land Mobile Network</td>
</tr>
<tr>
<td>RRC</td>
<td>Radio Resource Control</td>
</tr>
<tr>
<td>RSCP</td>
<td>Received Signal Code Power</td>
</tr>
<tr>
<td>RSRP</td>
<td>Reference Signal Received Power</td>
</tr>
<tr>
<td>RSRQ</td>
<td>Reference Signal Received Quality</td>
</tr>
<tr>
<td>RSSI</td>
<td>Received Signal Strength Indicator</td>
</tr>
<tr>
<td>SAE</td>
<td>System Architecture Evolution</td>
</tr>
<tr>
<td>SAP</td>
<td>Service Access Point</td>
</tr>
<tr>
<td>SC</td>
<td>Sidelink Control</td>
</tr>
<tr>
<td>SCell</td>
<td>Secondary Cell</td>
</tr>
<tr>
<td>SCG</td>
<td>Secondary Cell Group</td>
</tr>
<tr>
<td>SC-MRB</td>
<td>Single Cell MRB</td>
</tr>
<tr>
<td>SC-RNTI</td>
<td>Single Cell RNTI</td>
</tr>
<tr>
<td>SD-RSRP</td>
<td>Sidelink Discovery Reference Signal Received Power</td>
</tr>
<tr>
<td>SFN</td>
<td>System Frame Number</td>
</tr>
<tr>
<td>SI</td>
<td>System Information</td>
</tr>
<tr>
<td>SIB</td>
<td>System Information Block</td>
</tr>
<tr>
<td>SI-RNTI</td>
<td>System Information RNTI</td>
</tr>
<tr>
<td>SL</td>
<td>Sidelink</td>
</tr>
<tr>
<td>SLSS</td>
<td>Sidelink Synchronisation Signal</td>
</tr>
<tr>
<td>SMC</td>
<td>Security Mode Control</td>
</tr>
<tr>
<td>SPS</td>
<td>Semi-Persistent Scheduling</td>
</tr>
<tr>
<td>SR</td>
<td>Scheduling Request</td>
</tr>
<tr>
<td>SRB</td>
<td>Signalling Radio Bearer</td>
</tr>
<tr>
<td>S-RSRP</td>
<td>Sidelink Reference Signal Received Power</td>
</tr>
<tr>
<td>SSAC</td>
<td>Service Specific Access Control</td>
</tr>
<tr>
<td>SSTD</td>
<td>SFN and Subframe Timing Difference</td>
</tr>
<tr>
<td>STAG</td>
<td>Secondary Timing Advance Group</td>
</tr>
<tr>
<td>S-TMSI</td>
<td>SAE Temporary Mobile Station Identifier</td>
</tr>
<tr>
<td>TA</td>
<td>Tracking Area</td>
</tr>
<tr>
<td>TAG</td>
<td>Timing Advance Group</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplex</td>
</tr>
<tr>
<td>TDM</td>
<td>Time Division Multiplexing</td>
</tr>
</tbody>
</table>
4.1 Introduction

In this specification, (parts of) procedures and messages specified for the UE equally apply to the RN for functionality necessary for the RN. There are also (parts of) procedures and messages which are only applicable to the RN in its communication with the E-UTRAN, in which case the specification denotes the RN instead of the UE. Such RN-specific aspects are not applicable to the UE.

NB-IoT is a non backward compatible variant of E-UTRAN supporting a reduced set of functionality. In this specification, (parts of) procedures and messages specified for the UE equally apply to the UE in NB-IoT. There are also some features and related procedures and messages that are not supported by UEs in NB-IoT.

In particular, the following features are not supported in NB-IoT and corresponding procedures and messages do not apply to the UE in NB-IoT:

- Connected mode mobility (Handover and measurement reporting);
- Inter-RAT cell reselection or inter-RAT mobility in connected mode;
- CSG;
- Relay Node (RN);
- Carrier Aggregation (CA);
- Dual connectivity (DC);
- GBR (QoS);
- ACB, EAB, SSAC and ACDC;
- MBMS, except for MBMS via SC-PTM in Idle mode;
- Self-configuration and self-optimisation;
- Measurement logging and reporting for network performance optimisation;
- Public warning systems e.g. CMAS, ETWS and PWS;
- Real time services (including emergency call);
- CS services and CS fallback;
- In-device coexistence;
- RAN assisted WLAN interworking;
- Network-assisted interference cancellation/suppression;
- Sidelink (including direct communication and direct discovery).

NOTE: In regard to mobility, NB-IoT is a separate RAT from E-UTRAN.

In this specification, there are also (parts of) procedures and messages which are only applicable to UEs in NB-IoT, in which case this is stated explicitly.

This specification is organised as follows:

- sub-clause 4.2 describes the RRC protocol model;
- sub-clause 4.3 specifies the services provided to upper layers as well as the services expected from lower layers;
- sub-clause 4.4 lists the RRC functions;
- clause 5 specifies RRC procedures, including UE state transitions;
- clause 6 specifies the RRC message in a mixed format (i.e. tabular & ASN.1 together);
- clause 7 specifies the variables (including protocol timers and constants) and counters to be used by the UE;
- clause 8 specifies the encoding of the RRC messages;
- clause 9 specifies the specified and default radio configurations;
- clause 10 specifies the RRC messages transferred across network nodes;
- clause 11 specifies the UE capability related constraints and performance requirements.

4.2 Architecture

4.2.1 UE states and state transitions including inter RAT

A UE is in RRC_CONNECTED when an RRC connection has been established. If this is not the case, i.e. no RRC connection is established, the UE is in RRC_IDLE state. The RRC states can further be characterised as follows:

- **RRC_IDLE:**
 - A UE specific DRX may be configured by upper layers (not applicable for NB-IoT);
 - UE controlled mobility;
 - The UE:
 - Monitors a Paging channel to detect incoming calls, system information change, for ETWS capable UEs, ETWS notification, and for CMAS capable UEs, CMAS notification;
 - Performs neighbouring cell measurements and cell (re-)selection;
 - Acquires system information.
 - Performs logging of available measurements together with location and time for logged measurement configured UEs.

- **RRC_CONNECTED:**
 - Transfer of unicast data to/from UE.
 - At lower layers, the UE may be configured with a UE specific DRX.
- For UEs supporting CA, use of one or more SCells, aggregated with the PCell, for increased bandwidth;
- For UEs supporting DC, use of one SCG, aggregated with the MCG, for increased bandwidth;
- Network controlled mobility, i.e. handover and cell change order with optional network assistance (NACC) to GERAN (not applicable for NB-IoT);
- The UE:
 - Monitors a Paging channel and/ or System Information Block Type 1 contents to detect system information change, for ETWS capable UEs, ETWS notification, and for CMAS capable UEs, CMAS notification (not applicable for NB-IoT);
 - Monitors control channels associated with the shared data channel to determine if data is scheduled for it;
 - Provides channel quality and feedback information (not applicable for NB-IoT);
 - Performs neighbouring cell measurements and measurement reporting (not applicable for NB-IoT);
 - Acquires system information (not applicable for NB-IoT).

The following figure not only provides an overview of the RRC states in E-UTRA, but also illustrates the mobility support between E-UTRAN, UTRAN and GERAN.

![E-UTRA states and inter RAT mobility procedures, 3GPP](image)

Figure 4.2.1-1: E-UTRA states and inter RAT mobility procedures, 3GPP

The following figure illustrates the mobility support between E-UTRAN, CDMA2000 1xRTT and CDMA2000 HRPD. The details of the CDMA2000 state models are out of the scope of this specification.
The inter-RAT handover procedure(s) supports the case of signalling, conversational services, non-conversational services and combinations of these.

In addition to the state transitions shown in Figure 4.2.1-1 and Figure 4.2.1-2, there is support for connection release with redirection information from E-UTRA RRC_CONNECTED to GERAN, UTRAN and CDMA2000 (HRPD Idle/1xRTT Dormant mode).

For NB-IoT, mobility between E-UTRA and UTRAN, GERAN and between E-UTRA and CDMA2000 1xRTT and CDMA2000 HRPD is not supported at AS level and hence only the E-UTRA states depicted in Figure 4.2.1-1 are applicable.

4.2.2 Signalling radio bearers

"Signalling Radio Bearers" (SRBs) are defined as Radio Bearers (RB) that are used only for the transmission of RRC and NAS messages. More specifically, the following SRBs are defined:

- SRB0 is for RRC messages using the CCCH logical channel;
- SRB1 is for RRC messages (which may include a piggybacked NAS message) as well as for NAS messages prior to the establishment of SRB2, all using DCCH logical channel;
- For NB-IoT, SRB1bis is for RRC messages (which may include a piggybacked NAS message) as well as for NAS messages prior to the activation of security, all using DCCH logical channel;
- SRB2 is for RRC messages which include logged measurement information as well as for NAS messages, all using DCCH logical channel. SRB2 has a lower-priority than SRB1 and is always configured by E-UTRAN after security activation. SRB2 is not applicable for NB-IoT.

In downlink piggybacking of NAS messages is used only for one dependant (i.e. with joint success/ failure) procedure: bearer establishment/ modification/ release. In uplink NAS message piggybacking is used only for transferring the initial NAS message during connection setup.

NOTE: The NAS messages transferred via SRB2 are also contained in RRC messages, which however do not include any RRC protocol control information.

Once security is activated, all RRC messages on SRB1 and SRB2, including those containing NAS or non-3GPP messages, are integrity protected and ciphered by PDCP. NAS independently applies integrity protection and ciphering to the NAS messages.

For a UE configured with DC, all RRC messages, regardless of the SRB used and both in downlink and uplink, are transferred via the MCG.
4.3 Services

4.3.1 Services provided to upper layers

The RRC protocol offers the following services to upper layers:

- Broadcast of common control information;
- Notification of UEs in RRC_IDLE, e.g. about a terminating call, for ETWS, for CMAS;
- Transfer of dedicated control information, i.e. information for one specific UE.

4.3.2 Services expected from lower layers

In brief, the following are the main services that RRC expects from lower layers:

- PDCP: integrity protection and ciphering;
- RLC: reliable and in-sequence transfer of information, without introducing duplicates and with support for segmentation and concatenation.

Further details about the services provided by Packet Data Convergence Protocol layer (e.g. integrity and ciphering) are provided in TS 36.323 [8]. The services provided by Radio Link Control layer (e.g. the RLC modes) are specified in TS 36.322 [7]. Further details about the services provided by Medium Access Control layer (e.g. the logical channels) are provided in TS 36.321 [6]. The services provided by physical layer (e.g. the transport channels) are specified in TS 36.302 [3].

4.4 Functions

The RRC protocol includes the following main functions:

- Broadcast of system information:
 - Including NAS common information;
 - Information applicable for UEs in RRC_IDLE, e.g. cell (re-)selection parameters, neighbouring cell information and information (also) applicable for UEs in RRC_CONNECTED, e.g. common channel configuration information.
 - Including ETWS notification, CMAS notification (not applicable for NB-IoT);
- RRC connection control:
 - Paging;
 - Establishment/ modification/ suspension / resumption / release of RRC connection, including e.g. assignment/ modification of UE identity (C-RNTI), establishment/ modification/ release of SRB1, SRB1bis and SRB2, access class barring;
 - Initial security activation, i.e. initial configuration of AS integrity protection (SRBs) and AS ciphering (SRBs, DRBs);
 - For RNs, configuration of AS integrity protection for DRBs;
 - RRC connection mobility including e.g. intra-frequency and inter-frequency handover, associated security handling, i.e. key/ algorithm change, specification of RRC context information transferred between network nodes;

NOTE 1: In NB-IoT, only key change (but no re-keying) at RRC Connection Resumption and RRC context information transfer are applicable.

- Establishment/ modification/ release of RBs carrying user data (DRBs);
- Radio configuration control including e.g. assignment/ modification of ARQ configuration, HARQ configuration, DRX configuration;
- For RNs, RN-specific radio configuration control for the radio interface between RN and E-UTRAN;
- In case of CA, cell management including e.g. change of PCell, addition/ modification/ release of SCell(s) and addition/modification/release of STAG(s);
- In case of DC, cell management including e.g. change of PSCell, addition/ modification/ release of SCG cell(s) and addition/modification/release of SCG TAG(s).
- QoS control including assignment/ modification of semi-persistent scheduling (SPS) configuration information for DL and UL, assignment/ modification of parameters for UL rate control in the UE, i.e. allocation of a priority and a prioritised bit rate (PBR) for each RB (not applicable for NB-IoT);
- Recovery from radio link failure;
- In case of LWA, RCLWI and LWIP, WLAN mobility set management including e.g. addition/ modification/ release of WLAN(s) from the WLAN mobility set;
- Inter-RAT mobility including e.g. security activation, transfer of RRC context information (not applicable for NB-IoT);
- Measurement configuration and reporting (not applicable for NB-IoT):
 - Establishment/ modification/ release of measurements (e.g. intra-frequency, inter-frequency and inter- RAT measurements);
 - Setup and release of measurement gaps;
 - Measurement reporting;
- Other functions including e.g. transfer of dedicated NAS information and non-3GPP dedicated information, transfer of UE radio access capability information, support for E-UTRAN sharing (multiple PLMN identities);
- Generic protocol error handling;
- Support of self-configuration and self-optimisation (not applicable for NB-IoT);
- Support of measurement logging and reporting for network performance optimisation [60] (not applicable for NB-IoT);

NOTE 2: Random access is specified entirely in the MAC including initial transmission power estimation.

4.5 Data available for transmission for NB-IoT

For the purpose of MAC Data Volume and Power Headroom reporting, the NB-IoT UE shall consider the following as data available for transmission in the RRC layer:

- For SDUs to be submitted to lower layers:
 - the SDU itself, if the SDU has not yet been processed by RRC, or
 - the PDU if the SDU has been processed by RRC; or
- The data available for transmission in upper layers not submitted to the RRC layer.
5 Procedures

5.1 General

5.1.1 Introduction

The procedural requirements are structured according to the main functional areas: system information (5.2), connection control (5.3), inter-RAT mobility (5.4) and measurements (5.5). In addition, sub-clause 5.6 covers other aspects e.g. NAS dedicated information transfer, UE capability transfer, sub-clause 5.7 specifies the generic error handling, sub-clause 5.8 covers MBMS (i.e. MBMS service reception via MRB), sub-clause 5.8a covers SC-PTM (i.e. MBMS service reception via SC-MRB), sub-clause 5.9 covers RN-specific procedures and sub-clause 5.10 covers sidelink.

For NB-IoT, only a subset of the above procedural requirements applies: system information (5.2), connection control (5.3), some part of other aspects (5.6), general error handling (5.7), and SC-PTM (5.8a). Subclauses inter-RAT mobility (5.4), measurements (5.5), MBMS (5.8), RN procedures (5.9) and Sidelink (5.10) are not applicable in NB-IoT.

5.1.2 General requirements

The UE shall:

1> process the received messages in order of reception by RRC, i.e. the processing of a message shall be completed before starting the processing of a subsequent message;

 NOTE 1: E-UTRAN may initiate a subsequent procedure prior to receiving the UE's response of a previously initiated procedure.

1> within a sub-clause execute the steps according to the order specified in the procedural description;

1> consider the term 'radio bearer' (RB) to cover SRBs and DRBs but not MRBs or SC-MRBs unless explicitly stated otherwise;

1> set the \textit{rrc-TransactionIdentifier} in the response message, if included, to the same value as included in the message received from E-UTRAN that triggered the response message;

1> upon receiving a choice value set to setup:

 2> apply the corresponding received configuration and start using the associated resources, unless explicitly specified otherwise;

1> upon receiving a choice value set to release:

 2> clear the corresponding configuration and stop using the associated resources;

 NOTE 1a: Following receipt of choice value set to release, the UE considers the field as if it was never configured.

1> upon handover to E-UTRA; or

1> upon receiving an \textit{RRCConnectionReconfiguration} message including the \textit{fullConfig}:

 2> apply the Conditions in the ASN.1 for inclusion of the fields for the DRB/PDCP/RLC setup during the reconfiguration of the DRBs included in the \textit{drb-ToAddModList};

 NOTE 2: At each point in time, the UE keeps a single value for each field except for during handover when the UE temporarily stores the previous configuration so it can revert back upon handover failure. In other words: when the UE reconfigures a field, the existing value is released except for during handover.

 NOTE 3: Although not explicitly stated, the UE initially considers all functionality to be deactivated/ released until it is explicitly stated that the functionality is setup/ activated. Correspondingly, the UE initially considers lists to be empty e.g. the list of radio bearers, the list of measurements.
1> upon receiving an extension field comprising the entries in addition to the ones carried by the original field (regardless of whether E-UTRAN may signal more entries in total); apply the following generic behaviour if explicitly stated to be applicable:

2> create a combined list by concatenating the additional entries included in the extension field to the original field while maintaining the order among both the original and the additional entries;

2> for the combined list, created according to the previous, apply the same behaviour as defined for the original field;

NOTE 4: A field comprising a list of entries normally includes ‘list’ in the field name. The typical way to extend (the size of) such a list is to introduce a field comprising the additional entries, which should include ‘listExt’ in the name of the field/IE. E.g. field1List-RAT, field1ListExt-RAT.

5.2 System information

5.2.1 Introduction

5.2.1.1 General

System information is divided into the MasterInformationBlock (MIB) and a number of SystemInformationBlocks (SIBs). The MIB includes a limited number of most essential and most frequently transmitted parameters that are needed to acquire other information from the cell, and is transmitted on BCH. SIBs other than SystemInformationBlockType1 are carried in SystemInformation (SI) messages and mapping of SIBs to SI messages is flexibly configurable by schedulingInfoList included in SystemInformationBlockType1, with restrictions that: each SIB is contained only in a single SI message, and at most once in that message; only SIBs having the same scheduling requirement (periodicity) can be mapped to the same SI message; SystemInformationBlockType2 is always mapped to the SI message that corresponds to the first entry in the list of SI messages in schedulingInfoList. There may be multiple SI messages transmitted with the same periodicity. SystemInformationBlockType1 and all SI messages are transmitted on DL-SCH.

The Bandwidth reduced Low Complexity (BL) UEs and UEs in Coverage Enhancement (CE) apply Bandwidth Reduced (BR) version of the SIB or SI messages. A UE considers itself in enhanced coverage as specified in TS 36.304 [4]. In this and subsequent clauses, anything applicable for a particular SIB or SI message equally applies to the corresponding BR version unless explicitly stated otherwise.

For NB-IoT, a reduced set of system information block with similar functionality but different content is defined; the UE applies the NB-IoT (NB) version of the MIB and the SIBs. These are denoted MasterInformationBlock-NB and SystemInformationBlockTypeX-NB in this specification. All other system information blocks (without NB suffix) are not applicable to NB-IoT; this is not further stated in the corresponding text.

NOTE 1: The physical layer imposes a limit to the maximum size a SIB can take. When DCI format 1C is used the maximum allowed by the physical layer is 1736 bits (217 bytes) while for format 1A the limit is 2216 bits (277 bytes), see TS 36.212 [22] and TS 36.213 [23]. For BL UEs and UEs in CE, the maximum SIB and SI message size is 936 bits, see TS 36.213 [23]. For NB-IoT, the maximum SIB and SI message size is 680 bits, see TS 36.213 [23].

In addition to broadcasting, E-UTRAN may provide SystemInformationBlockType1 and/or SystemInformationBlockType2, including the same parameter values, via dedicated signalling i.e., within an RRCConnectionReconfiguration message.

The UE applies the system information acquisition and change monitoring procedures for the PCell, except when being a BL UE or a UE in CE or a NB-IoT UE in RRC_CONNECTED mode while T311 is not running. For an SCell, E-UTRAN provides, via dedicated signalling, all system information relevant for operation in RRC_CONNECTED when adding the SCell. However, a UE that is configured with DC shall acquire the MasterInformationBlock of the PSCell but use it only to determine the SFN timing of the SCG, which may be different from the MCG. Upon change of the relevant system information of a configured SCell, E-UTRAN releases and subsequently adds the concerned SCell, which may be done with a single RRCConnectionReconfiguration message. If the UE is receiving or interested to receive an MBMS service in a cell, the UE shall apply the system information acquisition and change monitoring procedure to acquire parameters relevant for MBMS operation and apply the parameters acquired from system information only for MBMS operation for this cell.
NOTE 2: E-UTRAN may configure via dedicated signalling different parameter values than the ones broadcast in the concerned SCell.

In MBMS-dedicated cell, non-MBSFN subframes are used for providing MasterInformationBlock-MBMS (MIB-MBMS) and SystemInformationBlockType1-MBMS. SIBs other than SystemInformationBlockType1-MBMS are carried in SystemInformation-MBMS message which is also provided on non-MBSFN subframes.

An RN configured with an RN subframe configuration does not need to apply the system information acquisition and change monitoring procedures. Upon change of any system information relevant to an RN, E-UTRAN provides the system information blocks containing the relevant system information to an RN configured with an RN subframe configuration via dedicated signalling using the RNRenconfiguration message. For RNs configured with an RN subframe configuration, the system information contained in this dedicated signalling replaces any corresponding stored system information and takes precedence over any corresponding system information acquired through the system information acquisition procedure. The dedicated system information remains valid until overridden.

NOTE 3: E-UTRAN may configure an RN, via dedicated signalling, with different parameter values than the ones broadcast in the concerned cell.

5.2.1.2 Scheduling

The MIB uses a fixed schedule with a periodicity of 40 ms and repetitions made within 40 ms. The first transmission of the MIB is scheduled in subframe #0 of radio frames for which the SFN mod 4 = 0, and repetitions are scheduled in subframe #0 of all other radio frames. For TDD/FDD system with a bandwidth larger than 1.4 MHz that supports BL UEs or UEs in CE, MIB transmission may additionally be repeated in subframe#0 of the same radio frame, and in subframe#9 of the previous radio frame for FDD and subframe #5 of the same radio frame for TDD.

NOTE: The UE may assume the scheduling of MIB repetitions does not change. E-UTRAN may indicate in MobilityControlInfo whether optional MIB repetitions are enabled or not.

The MIB-MBMS uses a fixed schedule with a periodicity of 160 ms and repetitions made within 160 ms. The first transmission of the MIB-MBMS is scheduled in subframe #0 of radio frames for which the SFN mod 16 = 0, and repetitions are scheduled in subframe #0 of all other radio frames for which the SFN mod 4 = 0.

The SystemInformationBlockType1 uses a fixed schedule with a periodicity of 80 ms and repetitions made within 80 ms. The first transmission of SystemInformationBlockType1 is scheduled in subframe #5 of radio frames for which the SFN mod 8 = 0, and repetitions are scheduled in subframe #5 of all other radio frames for which SFN mod 2 = 0.

For BL UEs or UEs in CE, MIB is applied which may be provided with additional repetitions, while for SIB1 and further SI messages, separate messages are used which are scheduled independently and with content that may differ. The separate instance of SIB1 is named SystemInformationBlockType1-BR. The SystemInformationBlockType1-BR uses a schedule with a periodicity of 80ms. TBS for SystemInformationBlockType1-BR and the repetitions made within 80ms are indicated via schedulingInfoSIB1-BR in MIB or optionally in the RRConnectionReconfiguration message including the MobilityControlInfo.

The SystemInformationBlockType1-BR uses fixed schedule with a periodicity of 160 ms. The first transmission of SystemInformationBlockType1-MBMS is scheduled in subframe #0 of radio frames for which the SFN mod 16 = 0, and repetitions are scheduled in subframe #0 of all other radio frames for which SFN mod 2 = 0. Additionally, the SystemInformationBlockType1-MBMS and other system informations blocks may be scheduled in additional non-MBSFN subframes indicated in MasterInformationBlock-MBMS.

The SI messages are transmitted within periodically occurring time domain windows (referred to as SI-windows) using dynamic scheduling. Each SI message is associated with a SI-window and the SI-windows of different SI messages do not overlap. That is, within one SI-window only the corresponding SI is transmitted. The length of the SI-window is common for all SI messages, and is configurable. Within the SI-window, the corresponding SI message can be transmitted a number of times in any subframe other than MBSFN subframes, uplink subframes in TDD, and subframe #5 of radio frames for which SFN mod 2 = 0. The UE acquires the detailed time-domain scheduling (and other information, e.g. frequency-domain scheduling, used transport format) from decoding SI-RNTI on PDCCCH (see TS 36.321 [6]). For a BL UE or a UE in CE, the detailed time/frequency domain scheduling information for the SI messages is provided in SystemInformationBlockType1-BR.

For UEs other than BL UE or UEs in CE SI-RNTI is used to address SystemInformationBlockType1 as well as all SI messages. On MBMS-dedicated cell and on FeMBMS/Unicast-mixed cell, SI-RNTI with value in accordance with TS 36.321 [6] is used to address all SI messages whereas SI-RNTI with value in accordance with TS 36.321 [6] is used to address SystemInformationBlockType1-MBMS.
5.2.1.2a Scheduling for NB-IoT

The MasterInformationBlock-NB (MIB-NB) uses a fixed schedule with a periodicity of 640 ms and repetitions made within 640 ms. The first transmission of the MIB-NB is scheduled in subframe #0 of radio frames for which the SFN mod 64 = 0 and repetitions are scheduled in subframe #0 of all other radio frames. The transmissions are arranged in 8 independently decodable blocks of 80 ms duration. The SI messages are transmitted within periodically occurring time domain windows (referred to as SI-windows) using scheduling information provided in SystemInformationBlockType1-NB. Each SI message is associated with a SI-window and the SI-windows of different SI messages do not overlap. That is, within one SI-window only the corresponding SI is transmitted. The length of the SI-window is common for all SI messages, and is configurable.

Within the SI-window, the corresponding SI message can be transmitted a number of times over 2 or 8 consecutive NB-IoT downlink subframes depending on TBS. The UE acquires the detailed time/frequency domain scheduling information and other information, e.g. used transport format for the SI messages from schedulingInfoList field in SystemInformationBlockType1-NB. The UE is not required to accumulate several SI messages in parallel but may need to accumulate a SI message across multiple SI windows, depending on coverage condition.

SystemInformationBlockType1-NB configures the SI-window length and the transmission periodicity for all SI messages.

5.2.1.3 System information validity and notification of changes

Change of system information (other than for ETWS, CMAS and EAB parameters and other than for AB parameters for NB-IoT) only occurs at specific radio frames, i.e. the concept of a modification period is used. System information may be transmitted a number of times with the same content within a modification period, as defined by its scheduling. The modification period boundaries are defined by SFN values for which SFN mod m = 0, where m is the number of radio frames comprising the modification period. The modification period is configured by system information. If H-SFN is provided in SystemInformationBlockType1-BR, modification period boundaries for BL UEs and UEs in CE are defined by SFN values for which (H-SFN * 1024 + SFN) mod m=0. For NB-IoT, H-SFN is always provided and the modification period boundaries are defined by SFN values for which (H-SFN * 1024 + SFN) mod m=0.

To enable system information update notification for RRC_IDLE UEs configured to use a DRX cycle longer than the modification period, an eDRX acquisition period is defined. The boundaries of the eDRX acquisition period are determined by H-SFN values for which H-SFN mod 256 =0. For NB-IoT, the boundaries of the eDRX acquisition period are determined by H-SFN values for which H-SFN mod 1024 =0.

NOTE 1: If the UE in RRC_IDLE is configured to use extended DRX cycle, e.g., in the order of several minutes or longer, in case the eNB is reset the UE SFN may not be synchronized to the new eNB SFN. The UE is expected to recover, e.g., acquire MIB within a reasonable time, to avoid repeated paging failures.

When the network changes (some of the) system information, it first notifies the UEs about this change, i.e. this may be done throughout a modification period. In the next modification period, the network transmits the updated system information. These general principles are illustrated in figure 5.2.1.3-1, in which different colours indicate different system information. Upon receiving a change notification, the UE not configured to use a DRX cycle that is longer than the modification period acquires the new system information immediately from the start of the next modification period. Upon receiving a change notification applicable to eDRX, a UE in RRC_IDLE configured to use a DRX cycle that is longer than the modification period acquires the updated system information immediately from the start of the next eDRX acquisition period. The UE applies the previously acquired system information until the UE acquires the new system information. The possible boundaries of modification for SystemInformationBlockType1-BR are defined by SFN values for which SFN mod 512 =0 except for notification of ETWS/CMAS for which the eNB may change SystemInformationBlockType1-BR content at any time. For NB-IoT, the possible boundaries of modification for SystemInformationBlockType1-NB are defined by SFN values for which (H-SFN * 1024 + SFN) mod 4096 = 0.
The *Paging* message is used to inform UEs in RRC_IDLE and UEs in RRC_CONNECTED about a system information change. If the UE is in RRC_CONNECTED or is not configured to use a DRX cycle longer than the modification period in RRC_IDLE, and receives a *Paging* message including the *systemInfoModification*, it knows that the system information will change at the next modification period boundary. A UE in RRC_IDLE that is configured to use a DRX cycle longer than the modification period, and receives in an eDRX acquisition period at least one *Paging* message including the *systemInfoModification-eDRX*, shall acquire the updated system information at the next eDRX acquisition period boundary. Although the UE may be informed about changes in system information, no further details are provided e.g. regarding which system information will change, except if *systemInfoValueTagSI* is received by BL UEs or UEs in CE.

In RRC_CONNECTED, BL UEs or UEs in CE or NB-IoT UEs are not required to acquire system information except when T311 is running or upon handover where the UE is only required to acquire the *MasterInformationBlock* in the target PCell. In RRC_IDLE, E-UTRAN may notify BL UEs or UEs in CE or NB-IoT UEs about SI update, and except for NB-IoT, ETWS and CMAS notification and EAB modification, using Direct Indication information, as specified in 6.6 (or 6.7.5 in NB-IoT) and TS 36.212 [22].

NOTE 2: Upon system information change essential for BL UEs, UEs in CE, or NB-IoT UEs in RRC_CONNECTED, E-UTRAN may initiate connection release.

SystemInformationBlockType1 (or *MasterInformationBlock-NB* in NB-IoT) includes a value tag *systemInfoValueTag*, that indicates if a change has occurred in the SI messages. UEs may use *systemInfoValueTag*, e.g. upon return from out of coverage, to verify if the previously stored SI messages are still valid. Additionally, for other than BL UEs or UEs in CE or NB-IoT UEs, the UE considers stored system information to be invalid after 3 hours from the moment it was successfully confirmed as valid, unless specified otherwise. BL UE or UE in CE considers stored system information to be invalid after 24 hours from the moment it was successfully confirmed as valid, unless the UE is configured by parameter *si-ValidityTime* to consider stored system information to be invalid 3 hours after validity confirmation. NB-IoT UE considers stored system information to be invalid after 24 hours from the moment it was successfully confirmed as valid. If a BL UE, UE in CE or NB-IoT UE in RRC_CONNECTED state considers the stored system information invalid, the UE shall continue using the stored system information while in RRC_CONNECTED state in the serving cell.

For BL UEs or UEs in CE or NB-IoT UEs, the change of specific SI message can additionally be indicated by a SI message specific value tag *systemInfoValueTagSI*. *systemInfoValueTagSI* included in the *SystemInformationBlockType1-BR* (or *MasterInformationBlock-NB* in NB-IoT) is different from the one of the stored system information and if *systemInfoValueTagSI* is included in the *SystemInformationBlockType1-BR* (or *SystemInformationBlockType1-NB* in NB-IoT) for a specific SI message and is different from the stored one, the UE shall consider this specific SI message to be invalid. If only *systemInfoValueTag* is included and is different from the stored one, the BL UE or UE in CE should consider any stored system information except *SystemInformationBlockType10, SystemInformationBlockType11, SystemInformationBlockType12* and *SystemInformationBlockType14* to be invalid; the NB-IoT UE should consider any stored system information except *SystemInformationBlockType14-NB* to be invalid.

On MBMS-dedicated cell and on FeMBMS/Unicast-mixed cell, the change of system information and ETWS/CMAS notification is indicated by using Direct Indication FeMBMS defined in 6.6a. The modification periodicity follows MCCH modification periodicity as defined in 5.8.1.3.

E-UTRAN may not update *systemInfoValueTag* upon change of some system information e.g. ETWS information, CMAS information, regularly changing parameters like time information (*SystemInformationBlockType8, SystemInformationBlockType16, hyperSFN-MSB* in *SystemInformationBlockType1-NB*), EAB and AB parameters. Similarly, E-UTRAN may not include the *systemInfoModification* within the *Paging* message upon change of some system information.
The UE that is not configured to use a DRX cycle longer than the modification period verifies that stored system information remains valid by either checking `systemInfoValueTag` in `SystemInformationBlockType1` (or `MasterInformationBlock-NB` in NB-IoT) after the modification period boundary, or attempting to find the `systemInfoModification` indication at least `modificationPeriodCoeff` times during the modification period in case no paging is received, in every modification period. If no paging message is received by the UE during a modification period, the UE may assume that no change of system information will occur at the next modification period boundary. If UE in RRC_CONNECTED, during a modification period, receives one paging message, it may deduce from the presence/absence of `systemInfoModification` whether a change of system information other than ETWS information, CMAS information and EAB parameters will occur in the next modification period or not.

When the RRC_IDLE UE is configured with a DRX cycle that is longer than the modification period, and at least one modification period boundary has passed since the UE last verified validity of stored system information, the UE verifies that stored system information remains valid by checking the `systemInfoValueTag` before establishing or resuming an RRC connection.

ETWS and/or CMAS capable UEs in RRC_CONNECTED, other than BL UEs and UEs in CE, shall attempt to read paging at least once every `defaultPagingCycle` to check whether ETWS and/or CMAS notification is present or not.

5.2.1.4 Indication of ETWS notification

ETWS primary notification and/or ETWS secondary notification can occur at any point in time. The `Paging` message is used to inform ETWS capable UEs in RRC_IDLE and UEs in RRC_CONNECTED about presence of an ETWS primary notification and/or ETWS secondary notification. If the UE receives a `Paging` message including the `etws-Indication`, it shall start receiving the ETWS primary notification and/or ETWS secondary notification according to `schedulingInfoList` contained in `SystemInformationBlockType1`. If the UE receives `Paging` message including the `etws-Indication` while it is acquiring ETWS notification(s), the UE shall continue acquiring ETWS notification(s) based on the previously acquired `schedulingInfoList` until it re-acquires `schedulingInfoList` in `SystemInformationBlockType1`.

NOTE: The UE is not required to periodically check `schedulingInfoList` contained in `SystemInformationBlockType1`, but `Paging` message including the `etws-Indication` triggers the UE to re-acquire `schedulingInfoList` contained in `SystemInformationBlockType1` for scheduling changes for `SystemInformationBlockType10` and `SystemInformationBlockType11`. The UE may or may not receive a `Paging` message including the `etws-Indication` and/or `systemInfoModification` when ETWS is no longer scheduled.

ETWS primary notification is contained in `SystemInformationBlockType10` and ETWS secondary notification is contained in `SystemInformationBlockType11`. Segmentation can be applied for the delivery of a secondary notification. The segmentation is fixed for transmission of a given secondary notification within a cell (i.e. the same segment size for a given segment with the same `messageIdentifier`, `serialNumber` and `warningMessageSegmentNumber`). An ETWS secondary notification corresponds to a single `CB data` IE as defined according to TS 23.041 [37].

5.2.1.5 Indication of CMAS notification

CMAS notification can occur at any point in time. The `Paging` message is used to inform CMAS capable UEs in RRC_IDLE and UEs in RRC_CONNECTED about presence of one or more CMAS notifications. If the UE receives a `Paging` message including the `cmas-Indication`, it shall start receiving the CMAS notifications according to `schedulingInfoList` contained in `SystemInformationBlockType1`. If the UE receives `Paging` message including the `cmas-Indication` while it is acquiring CMAS notification(s), the UE shall continue acquiring CMAS notification(s) based on the previously acquired `schedulingInfoList` until it re-acquires `schedulingInfoList` in `SystemInformationBlockType1`.

NOTE: The UE is not required to periodically check `schedulingInfoList` contained in `SystemInformationBlockType1`, but `Paging` message including the `cmas-Indication` triggers the UE to re-acquire `schedulingInfoList` contained in `SystemInformationBlockType1` for scheduling changes for `SystemInformationBlockType12`. The UE may or may not receive a `Paging` message including the `cmas-Indication` and/or `systemInfoModification` when `SystemInformationBlockType12` is no longer scheduled.

CMAS notification is contained in `SystemInformationBlockType12`. Segmentation can be applied for the delivery of a CMAS notification. The segmentation is fixed for transmission of a given CMAS notification within a cell (i.e. the same segment size for a given segment with the same `messageIdentifier`, `serialNumber` and `warningMessageSegmentNumber`). E-UTRAN does not interleave transmissions of CMAS notifications, i.e. all segments of a given CMAS notification transmission are transmitted prior to those of another CMAS notification. A CMAS notification corresponds to a single `CB data` IE as defined according to TS 23.041 [37].
5.2.1.6 Notification of EAB parameters change

Change of EAB parameters can occur at any point in time. The EAB parameters are contained in `SystemInformationBlockType14`. The `Paging` message is used to inform EAB capable UEs in RRC_IDLE about a change of EAB parameters or that `SystemInformationBlockType14` is no longer scheduled. If the UE receives a `Paging` message including the `eab-ParamModification`, it shall acquire `SystemInformationBlockType14` according to `schedulingInfoList` contained in `SystemInformationBlockType1`. If the UE receives a `Paging` message including the `eab-ParamModification` while it is acquiring `SystemInformationBlockType14`, the UE shall continue acquiring `SystemInformationBlockType14` based on the previously acquired `schedulingInfoList` until it re-acquires `schedulingInfoList` in `SystemInformationBlockType1`.

NOTE: The EAB capable UE is not expected to periodically check `schedulingInfoList` contained in `SystemInformationBlockType1`.

5.2.1.7 Access Barring parameters change in NB-IoT

Change of Access Barring (AB) parameters can occur at any point in time. The AB parameters are contained in `SystemInformationBlockType14-NB`. Update of the AB parameters does not impact the `systemInfoValueTag` in the `MasterInformationBlock-NB` or the `systemInfoValueTagSI` in `SystemInformationBlockType1-NB`.

A NB-IoT UE checks `ab-Enabled` indication in the `MasterInformationBlock-NB` to know whether access barring is enabled. If access barring is enabled the UE shall not initiate the RRC connection establishment / resume for all access causes except mobile terminating calls until the UE has a valid version of `SystemInformationBlockType14-NB`.

5.2.2 System information acquisition

5.2.2.1 General

The UE applies the system information acquisition procedure to acquire the AS- and NAS- system information that is broadcasted by the E-UTRAN. The procedure applies to UEs in RRC_IDLE and UEs in RRC_CONNECTED.

For BL UE, UE in CE and NB-IoT UE, specific conditions apply, as specified below.

5.2.2.2 Initiation

The UE shall apply the system information acquisition procedure upon selecting (e.g. upon power on) and upon re-selecting a cell, after handover completion, after entering E-UTRA from another RAT, upon return from out of coverage, upon receiving a notification that the system information has changed, upon receiving an indication about the presence of an ETWS notification, upon receiving an indication about the presence of a CMAS notification, upon receiving a notification that the EAB parameters have changed, upon receiving a request from CDMA2000 upper layers and upon exceeding the maximum validity duration. Unless explicitly stated otherwise in the procedural specification, the system information acquisition procedure overwrites any stored system information, i.e. delta configuration is not applicable for system information and the UE discontinues using a field if it is absent in system information unless explicitly specified otherwise.

In RRC_CONNECTED, BL UEs and UEs in CE are required to acquire system information when T311 is running or upon handover where the UE is only required to acquire the `MasterInformationBlock` in the target PCell.
NOTE: Upon handover, E-UTRAN provides system information required by the UE in RRC_CONNECTED except MIB with RRC signalling, i.e. systemInformationBlockType1Dedicated and mobilityControlInfo.

5.2.2.3 System information required by the UE

The UE shall:

1> ensure having a valid version, as defined below, of (at least) the following system information, also referred to as the 'required' system information:

2> if in RRC_IDLE:

3> if the UE is a NB-IoT UE:

4> the MasterInformationBlock-NB and SystemInformationBlockType1-NB as well as SystemInformationBlockType2-NB through SystemInformationBlockType5-NB, SystemInformationBlockType22-NB;

3> else:

4> the MasterInformationBlock and SystemInformationBlockType1 (or SystemInformationBlockType1-BR depending on whether the UE is a BL UE or the UE in CE) as well as SystemInformationBlockType2 through SystemInformationBlockType8 (depending on support of the concerned RATs), SystemInformationBlockType17 (depending on support of RAN-assisted WLAN interworking);

2> if in RRC_CONNECTED; and

2> the UE is not a BL UE; and

2> the UE is not in CE; and

2> the UE is not a NB-IoT UE:

3> the MasterInformationBlock, SystemInformationBlockType1 and SystemInformationBlockType2 as well as SystemInformationBlockType8 (depending on support of CDMA2000), SystemInformationBlockType17 (depending on support of RAN-assisted WLAN interworking);

2> if in RRC_CONNECTED and T311 is running; and

2> the UE is a BL UE or the UE is in CE or the UE is a NB-IoT UE;

3> the MasterInformationBlock (or MasterInformationBlock-NB in NB-IoT), SystemInformationBlockType1-BR (or SystemInformationBlockType1-NB in NB-IoT) and SystemInformationBlockType2 (or SystemInformationBlockType2-NB in NB-IoT), and for NB-IoT SystemInformationBlockType22-NB;

1> delete any stored system information after 3 hours or 24 hours from the moment it was confirmed to be valid as defined in 5.2.1.3, unless specified otherwise;

1> consider any stored system information except SystemInformationBlockType10, SystemInformationBlockType11, systemInformationBlockType12 and systemInformationBlockType14 (systemInformationBlockType14-NB in NB-IoT) to be invalid if systemInfoValueTag included in the SystemInformationBlockType1 (MasterInformationBlock-NB in NB-IoT) is different from the one of the stored system information and in case of NB-IoT UEs, BL UEs and UEs in CE, systemInfoValueTagSI is not broadcasted. Otherwise consider system information validity as defined in 5.2.1.3;

5.2.2.4 System information acquisition by the UE

The UE shall:

1> apply the specified BCCH configuration defined in 9.1.1.1 or BR-BCCH configuration defined in 9.1.1.8;

1> if the procedure is triggered by a system information change notification:

2> if the UE uses an idle DRX cycle longer than the modification period:
3> start acquiring the required system information, as defined in 5.2.2.3, from the next eDRX acquisition period boundary;

2> else

3> start acquiring the required system information, as defined in 5.2.2.3, from the beginning of the modification period following the one in which the change notification was received;

NOTE 1: The UE continues using the previously received system information until the new system information has been acquired.

1> if the UE is in RRC_IDLE and enters a cell for which the UE does not have stored a valid version of the system information required in RRC_IDLE, as defined in 5.2.2.3:

2> acquire, using the system information acquisition procedure as defined in 5.2.3, the system information required in RRC_IDLE, as defined in 5.2.2.3;

1> following successful handover completion to a PCell for which the UE does not have stored a valid version of the system information required in RRC_CONNECTED, as defined in 5.2.2.3:

2> acquire, using the system information acquisition procedure as defined in 5.2.3, the system information required in RRC_CONNECTED, as defined in 5.2.2.3;

2> upon acquiring the concerned system information:

3> discard the corresponding radio resource configuration information included in the radioResourceConfigCommon previously received in a dedicated message, if any;

1> following a request from CDMA2000 upper layers:

2> acquire SystemInformationBlockType8, as defined in 5.2.3;

1> neither initiate the RRC connection establishment/resume procedure nor initiate transmission of the RRCConnectionReestabilishmentRequest message until the UE has a valid version of the MasterInformationBlock (MasterInformationBlock-NB in NB-IoT) and SystemInformationBlockType1 (SystemInformationBlockType1-NB in NB-IoT) messages as well as SystemInformationBlockType2 (SystemInformationBlockType2-NB in NB-IoT), and for NB-IoT, SystemInformationBlockType22-NB;

1> not initiate the RRC connection establishment/resume procedure subject to EAB until the UE has a valid version of SystemInformationBlockType14, if broadcast;

1> if the UE is ETWS capable:

2> upon entering a cell during RRC_IDLE, following successful handover or upon connection re-establishment:

3> discard any previously buffered warningMessageSegment;

3> clear, if any, the current values of messageIdentifier and serialNumber for SystemInformationBlockType11;

2> when the UE acquires SystemInformationBlockType1 following ETWS indication, upon entering a cell during RRC_IDLE, following successful handover or upon connection re-establishment:

3> if schedulingInfoList indicates that SystemInformationBlockType10 is present:

4> if the UE is in CE:

5> start acquiring SystemInformationBlockType10;

4> else

5> start acquiring SystemInformationBlockType10 immediately;

3> if schedulingInfoList indicates that SystemInformationBlockType11 is present:

4> start acquiring SystemInformationBlockType11 immediately;
NOTE 2: UEs shall start acquiring SystemInformationBlockType10 and SystemInformationBlockType11 as described above even when systemInfoValueTag in SystemInformationBlockType1 has not changed.

1> if the UE is CMAS capable:
 2> upon entering a cell during RRC_IDLE, following successful handover or upon connection re-establishment:
 3> discard any previously buffered warningMessageSegment;
 3> clear, if any, stored values of messageIdentifier and serialNumber for SystemInformationBlockType12 associated with the discarded warningMessageSegment;
 2> when the UE acquires SystemInformationBlockType1 following CMAS indication, upon entering a cell during RRC_IDLE, following successful handover and upon connection re-establishment:
 3> if schedulingInfoList indicates that SystemInformationBlockType12 is present:
 4> acquire SystemInformationBlockType12;

NOTE 3: UEs shall start acquiring SystemInformationBlockType12 as described above even when systemInfoValueTag in SystemInformationBlockType1 has not changed.

1> if the UE is interested to receive MBMS services:
 2> if the UE is capable of MBMS reception as specified in 5.8:
 3> if schedulingInfoList indicates that SystemInformationBlockType13 is present and the UE does not have stored a valid version of this system information block:
 4> acquire SystemInformationBlockType13;
 3> else if SystemInformationBlockType13 is present in SystemInformationBlockType1-MBMS and the UE does not have stored a valid version of this system information block:
 4> acquire SystemInformationBlockType13 from SystemInformationBlockType1-MBMS;
 2> if the UE is capable of SC-PTM reception as specified in 5.8a:
 3> if schedulingInfoList indicates that SystemInformationBlockType20 (SystemInformationBlockType20-NB in NB-IoT) is present and the UE does not have stored a valid version of this system information block:
 4> acquire SystemInformationBlockType20 (SystemInformationBlockType20-NB in NB-IoT);
 2> if the UE is capable of MBMS Service Continuity:
 3> if schedulingInfoList indicates that SystemInformationBlockType15 (SystemInformationBlockType15-NB in NB-IoT) is present and the UE does not have stored a valid version of this system information block:
 4> acquire SystemInformationBlockType15 (SystemInformationBlockType15-NB in NB-IoT);

1> if the UE is EAB capable:
 2> when the UE does not have stored a valid version of SystemInformationBlockType14 upon entering RRC_IDLE, or when the UE acquires SystemInformationBlockType1 following EAB parameters change notification, or upon entering a cell during RRC_IDLE, or before establishing an RRC connection if using eDRX with DRX cycle longer than the modification period:
 3> if schedulingInfoList indicates that SystemInformationBlockType14 is present:
 4> start acquiring SystemInformationBlockType14 immediately;
 3> else:
 4> discard SystemInformationBlockType14, if previously received;

NOTE 4: EAB capable UEs start acquiring SystemInformationBlockType14 as described above even when systemInfoValueTag in SystemInformationBlockType1 has not changed.
NOTE 5: EAB capable UEs maintain an up to date SystemInformationBlockType14 in RRC_IDLE.

1> if the UE is capable of sidelink communication and is configured by upper layers to receive or transmit sidelink communication:
 2> if the cell used for sidelink communication meets the S-criteria as defined in TS 36.304 [4]; and
 2> if schedulingInfoList indicates that SystemInformationBlockType18 is present and the UE does not have stored a valid version of this system information block:
 3> acquire SystemInformationBlockType18;

1> if the UE is capable of sidelink discovery and is configured by upper layers to receive or transmit sidelink discovery announcements on the primary frequency:
 2> if schedulingInfoList of the serving cell/ PCell indicates that SystemInformationBlockType19 is present and the UE does not have stored a valid version of this system information block:
 3> acquire SystemInformationBlockType19;

1> if the UE is capable of sidelink discovery and, for each of the one or more frequencies included in discInterFreqList, if included in SystemInformationBlockType19 and for which the UE is configured by upper layers to receive sidelink discovery announcements on:
 2> if SystemInformationBlockType19 of the serving cell/ PCell does not provide the corresponding reception resources; and
 2> if schedulingInfoList of the cell on the concerned frequency indicates that SystemInformationBlockType19 is present and the UE does not have stored a valid version of this system information block:
 3> acquire SystemInformationBlockType19;

1> if the UE is capable of sidelink discovery and, for each of the one or more frequencies included in discInterFreqList, if included in SystemInformationBlockType19 and for which the UE is configured by upper layers to transmit sidelink discovery announcements on:
 2> if SystemInformationBlockType19 of the serving cell/ PCell includes discTxResourcesInterFreq which is set to acquireSI-FromCarrier; and
 2> if schedulingInfoList of the cell on the concerned frequency indicates that SystemInformationBlockType19 is present and the UE does not have stored a valid version of this system information block:
 3> acquire SystemInformationBlockType19;

1> if the UE is a NB-IoT UE and if ab-Enabled included in MasterInformationBlock-NB is set to TRUE:
 2> not initiate the RRC connection establishment/resume procedure for all access causes except mobile terminating calls until the UE has acquired the SystemInformationBlockType14-NB;

1> if the UE is capable of V2X sidelink communication and is configured by upper layers to receive or transmit V2X sidelink communication on a frequency:
 2> if schedulingInfoList on the serving cell/ PCell indicates that SystemInformationBlockType21 is present and the UE does not have stored valid version of this system information block:
 3> acquire SystemInformationBlockType21 from serving cell/ PCell;

1> if the UE is capable of V2X sidelink communication and is configured by upper layers to receive V2X sidelink communication on a frequency, which is not primary frequency:
 2> if SystemInformationBlockType21 of the serving cell/ PCell does not provide reception resource pool for V2X sidelink communication for the concerned frequency; and
 2> if the cell used for V2X sidelink communication on the concerned frequency meets the S-criteria as defined in TS 36.304 [4]; and
2> if schedulingInfoList on the concerned frequency indicates that SystemInformationBlockType21 is present and the UE does not have stored a valid version of this system information block:

3> acquire SystemInformationBlockType21 from the concerned frequency;

1> if the UE is capable of V2X sidelink communication and is configured by upper layers to transmit V2X sidelink communication on a frequency, which is not primary frequency and is not included in v2x-InterFreqInfoList in SystemInformationBlockType21 of the serving cell/PCell:

2> if the cell used for V2X sidelink communication on the concerned frequency meets the S-criteria as defined in TS 36.304 [4]; and

2> if schedulingInfoList on the concerned frequency indicates that SystemInformationBlockType21 is present and the UE does not have stored a valid version of this system information block:

3> acquire SystemInformationBlockType21 from the concerned frequency;

The UE may apply the received SIBs immediately, i.e. the UE does not need to delay using a SIB until all SI messages have been received. The UE may delay applying the received SIBs until completing lower layer procedures associated with a received or a UE originated RRC message, e.g. an ongoing random access procedure.

NOTE 6: While attempting to acquire a particular SIB, if the UE detects from schedulingInfoList that it is no longer present, the UE should stop trying to acquire the particular SIB.

5.2.2.5 Essential system information missing

The UE shall:

1> if in RRC_IDLE or in RRC_CONNECTED while T311 is running:

2> if the UE is unable to acquire the MasterInformationBlock (MasterInformationBlock-NB in NB-IoT); or

2> if the UE is neither a BL UE nor in CE nor in NB-IoT and the UE is unable to acquire the SystemInformationBlockType1; or

2> if the BL UE or UE in CE is unable to acquire SystemInformationBlockType1-BR or SystemInformationBlockType1-BR is not scheduled; or

2> if the NB-IoT UE is unable to acquire the SystemInformationBlockType1-NB:

3> consider the cell as barred in accordance with TS 36.304 [4]; and

3> perform barring as if intraFreqReselection is set to allowed, and as if the csg-Indication is set to FALSE;

2> else if the UE is unable to acquire the SystemInformationBlockType2 (or SystemInformationBlockType2-NB in NB-IoT) and for NB-IoT, SystemInformationBlockType22-NB if scheduled:

3> treat the cell as barred in accordance with TS 36.304 [4];

5.2.2.6 Actions upon reception of the MasterInformationBlock message

Upon receiving the MasterInformationBlock message the UE shall:

1> apply the radio resource configuration included in the phich-Config;

1> if the UE is in RRC_IDLE or if the UE is in RRC_CONNECTED while T311 is running:

2> if the UE has no valid system information stored according to 5.2.2.3 for the concerned cell:

3> apply the received value of dl-Bandwidth to the ul-Bandwidth until SystemInformationBlockType2 is received;

Upon receiving the MasterInformationBlock-NB message the UE shall:

1> apply the radio resource configuration included in accordance with the operationModeInfo.
No UE requirements related to the contents of MasterInformationBlock-MBMS apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.7 Actions upon reception of the SystemInformationBlockType1 message

Upon receiving the SystemInformationBlockType1 or SystemInformationBlockType1-BR either via broadcast or via dedicated signalling, the UE shall:

1> if the cellAccessRelatedInfoList contains an entry with the PLMN-Identity of the selected PLMN:
 2> in the remainder of the procedures use plmn-IdentityList, trackingAreaCode, and cellIdentity for the cell as received in the corresponding cellAccessRelatedInfoList containing the selected PLMN;
1> if in RRC_IDLE or in RRC_CONNECTED while T311 is running; and
1> if the UE is a category 0 UE according to TS 36.306 [5]; and
1> if category0Allowed is not included in SystemInformationBlockType1:
 2> consider the cell as barred in accordance with TS 36.304 [4];
1> if in RRC_CONNECTED while T311 is not running, and the UE supports multi-band cells as defined by bit 31 in featureGroupIndicators:
 2> disregard the freqBandIndicator and multiBandInfoList, if received, while in RRC_CONNECTED;
 2> forward the cellIdentity to upper layers;
 2> forward the trackingAreaCode to upper layers;
1> else:
 2> if the frequency band indicated in the freqBandIndicator is part of the frequency bands supported by the UE and it is not a downlink only band; or
 2> if the UE supports multiBandInfoList, and if one or more of the frequency bands indicated in the multiBandInfoList are part of the frequency bands supported by the UE and they are not downlink only bands:
 3> forward the cellIdentity to upper layers;
 3> forward the trackingAreaCode to upper layers;
 3> forward the ims-EmergencySupport to upper layers, if present;
 3> forward the eCallOverIMS-Support to upper layers, if present;
 3> if, for the frequency band selected by the UE (from freqBandIndicator or multiBandInfoList), the freqBandInfo or the multiBandInfoList-v10j0 is present and the UE capable of multiNS-Pmax supports at least one additionalSpectrumEmission in the NS-PmaxList within the freqBandInfo or multiBandInfoList-v10j0:
 4> apply the first listed additionalSpectrumEmission which it supports among the values included in NS-PmaxList within freqBandInfo or multiBandInfoList-v10j0;
 4> if the additionalPmax is present in the same entry of the selected additionalSpectrumEmission within NS-PmaxList:
 5> apply the additionalPmax;
 4> else:
 5> apply the p-Max;
 3> else:
4> apply the additionalSpectrumEmission in SystemInformationBlockType2 and the p-Max;
2> else:
3> consider the cell as barred in accordance with TS 36.304 [4]; and
3> perform barring as if intraFreqReselection is set to notAllowed, and as if the csg-Indication is set to FALSE;

Upon receiving the SystemInformationBlockType1-NB, the UE shall:
1> if the frequency band indicated in the freqBandIndicator is part of the frequency bands supported by the UE; or
1> if one or more of the frequency bands indicated in the multiBandInfoList are part of the frequency bands supported by the UE:
2> forward the cellIdentity to upper layers;
2> forward the trackingAreaCode to upper layers;
2> if attachWithoutPDN-Connectivity is received for the selected PLMN:
 3> forward the attachWithoutPDN-Connectivity to upper layers;
2> else
 3> indicate to upper layers that attachWithoutPDN-Connectivity is not present;
2> if, for the frequency band selected by the UE (from freqBandIndicator or multiBandInfoList), the freqBandInfo is present and the UE capable of multiNS-Pmax supports at least one additionalSpectrumEmission in the NS-PmaxList within the freqBandInfo:
 3> apply the first listed additionalSpectrumEmission which it supports among the values included in NS-PmaxList within freqBandInfo;
 3> if the additionalPmax is present in the same entry of the selected additionalSpectrumEmission within NS-PmaxList:
 4> apply the additionalPmax;
 3> else:
 4> apply the p-Max;
2> else:
 3> apply the additionalSpectrumEmission in SystemInformationBlockType2-NB and the p-Max;
1> else:
 2> consider the cell as barred in accordance with TS 36.304 [4]; and
 2> perform barring as if intraFreqReselection is set to notAllowed.

No UE requirements related to the contents of SystemInformationBlockType1-MBMS apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.

5.2.2.8 Actions upon reception of SystemInformation messages

No UE requirements related to the contents of the SystemInformation messages apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.
5.2.2.9 Actions upon reception of SystemInformationBlockType2

Upon receiving SystemInformationBlockType2, the UE shall:

1> apply the configuration included in the radioResourceConfigCommon;
1> if upper layers indicate that a (UE specific) paging cycle is configured:
 2> apply the shortest of the (UE specific) paging cycle and the defaultPagingCycle included in the radioResourceConfigCommon;
1> if the mbsfn-SubframeConfigList is included:
 2> consider that DL assignments may occur in the MBSFN subframes indicated in the mbsfn-SubframeConfigList under the conditions specified in [23, 7.1];
1> apply the specified PCCH configuration defined in 9.1.1.3;
1> not apply the timeAlignmentTimerCommon;
1> if in RRC_CONNECTED and UE is configured with RLF timers and constants values received within rlf-TimersAndConstants:
 2> not update its values of the timers and constants in ue-TimersAndConstants except for the value of timer T300;
1> if in RRC_CONNECTED while T311 is not running; and the UE supports multi-band cells as defined by bit 31 in featureGroupIndicators or multipleNS-Pmax:
 2> disregard the additionalSpectrumEmission and ul-CarrierFreq, if received, while in RRC_CONNECTED;
1> if attachWithoutPDN-Connectivity is received for the selected PLMN:
 2> forward attachWithoutPDN-Connectivity to upper layers;
1> else
 2> indicate to upper layers that attachWithoutPDN-Connectivity is not present;
1> if cp-CIoT-EPS-Optimisation is received for the selected PLMN:
 2> forward cp-CIoT-EPS-Optimisation to upper layers;
1> else
 2> indicate to upper layers that cp-CIoT-EPS-Optimisation is not present;
1> if up-CIoT-EPS-Optimisation is received for the selected PLMN:
 2> forward up-CIoT-EPS-Optimisation to upper layers;
1> else
 2> indicate to upper layers that up-CIoT-EPS-Optimisation is not present;

Upon receiving SystemInformationBlockType2-NB, the UE shall:

1> apply the configuration included in the radioResourceConfigCommon;
1> apply the defaultPagingCycle included in the radioResourceConfigCommon;
1> if SystemInformationBlockType22-NB is scheduled:
 2> read and act on information sent in SystemInformationBlockType22-NB;
1> apply the specified PCCH configuration defined in 9.1.1.3.
1> if in RRC_CONNECTED and UE is configured with RLF timers and constants values received within rlf-TimersAndConstants:

2> not update its values of the timers and constants in ue-TimersAndConstants except for the value of timer T300;

5.2.2.10 Actions upon reception of SystemInformationBlockType3

Upon receiving SystemInformationBlockType3, the UE shall:

1> if in RRC_IDLE, the redistributionServingInfo is included and the UE is redistribution capable:

2> perform E-UTRAN inter-frequency redistribution procedure as specified in TS 36.304 [4, 5.2.4.10];

1> if in RRC_IDLE, or in RRC_CONNECTED while T311 is running:

2> if, for the frequency band selected by the UE (from the procedure in Section 5.2.2.7) to represent the serving cell's carrier frequency, the freqBandInfo or the multiBandInfoList-v10j0 is present in SystemInformationBlockType3 and the UE capable of multiNS-Pmax supports at least one additionalSpectrumEmission in the NS-PmaxList within the freqBandInfo or multiBandInfoList-v10j0:

3> apply the first listed additionalSpectrumEmission which it supports among the values included in NS-PmaxList within freqBandInfo or multiBandInfoList-v10j0;

3> if the additionalPmax is present in the same entry of the selected additionalSpectrumEmission within NS-PmaxList:

4> apply the additionalPmax;

3> else:

4> apply the p-Max;

2> else:

3> apply the p-Max;

Upon receiving SystemInformationBlockType3-NB, the UE shall:

1> if in RRC_IDLE, or in RRC_CONNECTED while T311 is running:

2> if, for the frequency band selected by the UE (from the procedure in subclause 5.2.2.7) to represent the serving cell's carrier frequency, the freqBandInfo or the multiBandInfoList is present in SystemInformationBlockType3-NB and the UE capable of multiNS-Pmax supports at least one additionalSpectrumEmission in the NS-PmaxList within the freqBandInfo or the multiBandInfoList:

3> apply the first listed additionalSpectrumEmission which it supports among the values included in NS-PmaxList within freqBandInfo or multiBandInfoList;

3> if the additionalPmax is present in the same entry of the selected additionalSpectrumEmission within NS-PmaxList:

4> apply the additionalPmax;

3> else:

4> apply the p-Max;

2> else:

3> apply the p-Max;
5.2.2.11 Actions upon reception of SystemInformationBlockType4

No UE requirements related to the contents of this SystemInformationBlock (SystemInformationBlockType4 or SystemInformationBlockType4-NB) apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.12 Actions upon reception of SystemInformationBlockType5

Upon receiving SystemInformationBlockType5, the UE shall:

1> if in RRC_IDLE, the redistributionInterFreqInfo is included and the UE is redistribution capable:
 2> perform E-UTRAN inter-frequency redistribution procedure as specified in TS 36.304 [4, 5.2.4.10];
1> if in RRC_IDLE, or in RRC_CONNECTED while T311 is running:
 2> if the frequency band selected by the UE to represent a non-serving E UTRA carrier frequency is not a downlink only band:
 3> if, for the selected frequency band, the freqBandInfo or the multiBandInfoList-v10j0 is present and the UE capable of multiNS-Pmax supports at least one additionalSpectrumEmission in the NS-PmaxList within freqBandInfo or multiBandInfoList-v10j0:
 4> apply the first listed additionalSpectrumEmission which it supports among the values included in NS-PmaxList within freqBandInfo or multiBandInfoList-v10j0;
 4> if the additionalPmax is present in the same entry of the selected additionalSpectrumEmission within NS-PmaxList:
 5> apply the additionalPmax;
 4> else:
 5> apply the p-Max;
 3> else:
 4> apply the p-Max;
Upon receiving SystemInformationBlockType5-NB, the UE shall:

1> if in RRC_IDLE, or in RRC_CONNECTED while T311 is running:
 2> if, for the frequency band selected by the UE (from multiBandInfoList) to represent a non-serving NB-IoT carrier frequency, the freqBandInfo is present and the UE capable of multiNS-Pmax supports at least one additionalSpectrumEmission in the NS-PmaxList within the freqBandInfo:
 3> apply the first listed additionalSpectrumEmission which it supports among the values included in NS-PmaxList within freqBandInfo;
 3> if the additionalPmax is present in the same entry of the selected additionalSpectrumEmission within NS-PmaxList:
 4> apply the additionalPmax;
 3> else:
 4> apply the p-Max;
 2> else:
 3> apply the p-Max;
5.2.2.13 Actions upon reception of SystemInformationBlockType6

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.

5.2.2.14 Actions upon reception of SystemInformationBlockType7

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.

5.2.2.15 Actions upon reception of SystemInformationBlockType8

Upon receiving SystemInformationBlockType8, the UE shall:

1> if sib8-PerPLMN-List is included and the UE is capable of network sharing for CDMA2000:
 2> apply the CDMA2000 parameters below corresponding to the RPLMN;
1> if the systemTimeInfo is included:
 2> forward the systemTimeInfo to CDMA2000 upper layers;
1> if the UE is in RRC_IDLE and if searchWindowSize is included:
 2> forward the searchWindowSize to CDMA2000 upper layers;
1> if parametersHRPD is included:
 2> forward the preRegistrationInfoHRPD to CDMA2000 upper layers only if the UE has not received the preRegistrationInfoHRPD within an RRCConnectionReconfiguration message after entering this cell;
 2> if the cellReselectionParametersHRPD is included:
 3> forward the neighCellList to the CDMA2000 upper layers;
1> if the parameters1XRTT is included:
 2> if the csfb-RegistrationParam1XRTT is included:
 3> forward the csfb-RegistrationParam1XRTT to the CDMA2000 upper layers which will use this information to determine if a CS registration/re-registration towards CDMA2000 1xRTT in the EUTRA cell is required;
 2> else:
 3> indicate to CDMA2000 upper layers that CSFB Registration to CDMA2000 1xRTT is not allowed;
 2> if the longCodeState1XRTT is included:
 3> forward the longCodeState1XRTT to CDMA2000 upper layers;
 2> if the cellReselectionParameters1XRTT is included:
 3> forward the neighCellList to the CDMA2000 upper layers;
 2> if the csfb-SupportForDualRxUEs is included:
 3> forward csfb-SupportForDualRxUEs to the CDMA2000 upper layers;
 2> else:
 3> forward csfb-SupportForDualRxUEs, with its value set to FALSE, to the CDMA2000 upper layers;
 2> if ac-BarringConfig1XRTT is included:
 3> forward ac-BarringConfig1XRTT to the CDMA2000 upper layers;
2> if the csfb-DualRxTxSupport is included:
 3> forward csfb-DualRxTxSupport to the CDMA2000 upper layers;
2> else:
 3> forward csfb-DualRxTxSupport, with its value set to FALSE, to the CDMA2000 upper layers;

5.2.2.16 Actions upon reception of SystemInformationBlockType9

Upon receiving SystemInformationBlockType9, the UE shall:

1> if hnb-Name is included, forward the hnb-Name to upper layers;

5.2.2.17 Actions upon reception of SystemInformationBlockType10

Upon receiving SystemInformationBlockType10, the UE shall:

1> forward the received warningType, messageIdentifier and serialNumber to upper layers;

5.2.2.18 Actions upon reception of SystemInformationBlockType11

Upon receiving SystemInformationBlockType11, the UE shall:

1> if there is no current value for messageIdentifier and serialNumber for SystemInformationBlockType11; or
1> if either the received value of messageIdentifier or of serialNumber or of both are different from the current values of messageIdentifier and serialNumber for SystemInformationBlockType11:
 2> use the received values of messageIdentifier and serialNumber for SystemInformationBlockType11 as the current values of messageIdentifier and serialNumber for SystemInformationBlockType11;
 2> discard any previously buffered warningMessageSegment;
2> if all segments of a warning message have been received:
 3> assemble the warning message from the received warningMessageSegment;
 3> forward the received warning message, messageIdentifier, serialNumber and dataCodingScheme to upper layers;
 3> stop reception of SystemInformationBlockType11;
 3> discard the current values of messageIdentifier and serialNumber for SystemInformationBlockType11;
2> else:
 3> store the received warningMessageSegment;
 3> continue reception of SystemInformationBlockType11;
1> else if all segments of a warning message have been received:
 2> assemble the warning message from the received warningMessageSegment;
 2> forward the received complete warning message, messageIdentifier, serialNumber and dataCodingScheme to upper layers;
 2> stop reception of SystemInformationBlockType11;
 2> discard the current values of messageIdentifier and serialNumber for SystemInformationBlockType11;
1> else:
 2> store the received warningMessageSegment;
 2> continue reception of SystemInformationBlockType11;
The UE should discard any stored `warningMessageSegment` and the current value of `messageIdentifier` and `serialNumber` for `SystemInformationBlockType11` if the complete warning message has not been assembled within a period of 3 hours.

5.2.2.19 Actions upon reception of `SystemInformationBlockType12`

Upon receiving `SystemInformationBlockType12`, the UE shall:

1> if the `SystemInformationBlockType12` contains a complete warning message:
 2> forward the received warning message, `messageIdentifier`, `serialNumber` and `dataCodingScheme` to upper layers;
 2> continue reception of `SystemInformationBlockType12`;
1> else:
 2> if the received values of `messageIdentifier` and `serialNumber` are the same (each value is the same) as a pair for which a warning message is currently being assembled:
 3> store the received `warningMessageSegment`;
 3> if all segments of a warning message have been received:
 4> assemble the warning message from the received `warningMessageSegment`;
 4> forward the received warning message, `messageIdentifier`, `serialNumber` and `dataCodingScheme` to upper layers;
 4> stop assembling a warning message for this `messageIdentifier` and `serialNumber` and delete all stored information held for it;
 3> continue reception of `SystemInformationBlockType12`;
 2> else if the received values of `messageIdentifier` and/or `serialNumber` are not the same as any of the pairs for which a warning message is currently being assembled:
 3> start assembling a warning message for this `messageIdentifier` and `serialNumber` pair;
 3> store the received `warningMessageSegment`;
 3> continue reception of `SystemInformationBlockType12`;

The UE should discard `warningMessageSegment` and the associated values of `messageIdentifier` and `serialNumber` for `SystemInformationBlockType12` if the complete warning message has not been assembled within a period of 3 hours.

NOTE: The number of warning messages that a UE can re-assemble simultaneously is a function of UE implementation.

5.2.2.20 Actions upon reception of `SystemInformationBlockType13`

No UE requirements related to the contents of this `SystemInformationBlock` apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.21 Actions upon reception of `SystemInformationBlockType14`

No UE requirements related to the contents of this `SystemInformationBlock` (`SystemInformationBlockType14` or `SystemInformationBlockType14-NB`) apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.
5.2.2.22 Actions upon reception of SystemInformationBlockType15

No UE requirements related to the contents of this SystemInformationBlock (SystemInformationBlockType15 or SystemInformationBlockType15-NB) apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.23 Actions upon reception of SystemInformationBlockType16

No UE requirements related to the contents of this SystemInformationBlock (SystemInformationBlockType16 or SystemInformationBlockType16-NB) apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.24 Actions upon reception of SystemInformationBlockType17

Upon receiving SystemInformationBlockType17, the UE shall:

1> if wlan-OffloadConfigCommon corresponding to the RPLMN is included:
 2> if the UE is not configured with rclwi-Configuration with command set to steerToWLAN:
 3> apply the wlan-Id-List corresponding to the RPLMN;
 2> if not configured with the wlan-OffloadConfigDedicated:
 3> apply the wlan-OffloadConfigCommon corresponding to the RPLMN;

5.2.2.25 Actions upon reception of SystemInformationBlockType18

Upon receiving SystemInformationBlockType18, the UE shall:

1> if SystemInformationBlockType18 message includes the commConfig:
 2> if configured to receive sidelink communication:
 3> from the next SC period, as defined by sc-Period, use the resource pool indicated by commRxPool for sidelink communication monitoring, as specified in 5.10.3;
 2> if configured to transmit sidelink communication:
 3> from the next SC period, as defined by sc-Period, use the resource pool indicated by commTxPoolNormalCommon, commTxPoolNormalCommonExt or by commTxPoolExceptional for sidelink communication transmission, as specified in 5.10.4;

5.2.2.26 Actions upon reception of SystemInformationBlockType19

Upon receiving SystemInformationBlockType19, the UE shall:

1> if SystemInformationBlockType19 message includes the discConfig or discConfigPS:
 2> from the next discovery period, as defined by discPeriod, use the resources indicated by discRxPool, discRxResourcesInterFreq or discRxPoolPS for sidelink discovery monitoring, as specified in 5.10.5;
 2> if SystemInformationBlockType19 message includes the discTxPoolCommon or discTxPoolPS-Common; and the UE is in RRC_IDLE:
 3> from the next discovery period, as defined by discPeriod, use the resources indicated by discTxPoolCommon or discTxPoolPS-Common for sidelink discovery announcement, as specified in 5.10.6;
 2> if the SystemInformationBlockType19 message includes the discTxPowerInfo:
 3> use the power information included in discTxPowerInfo for sidelink discovery transmission on the serving frequency, as specified in TS 36.213 [23];
1> if SystemInformationBlockType19 message includes the discConfigRelay:

2> if the SystemInformationBlockType19 message includes the txPowerInfo:

3> use the power information included in txPowerInfo for sidelink discovery transmission on the corresponding non-serving frequency, as specified in TS 36.213 [23];

5.2.2.27 Actions upon reception of SystemInformationBlockType20

No UE requirements related to the contents of this SystemInformationBlock (SystemInformationBlockType20 or SystemInformationBlockType20-NB) apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.

5.2.2.28 Actions upon reception of SystemInformationBlockType21

Upon receiving SystemInformationBlockType21, the UE shall:

1> if SystemInformationBlockType21 message includes sl-V2X-ConfigCommon:

2> if configured to receive V2X sidelink communication:

3> use the resource pool indicated by v2x-CommRxPool in sl-V2X-ConfigCommon for V2X sidelink communication monitoring, as specified in 5.10.12;

2> if configured to transmit V2X sidelink communication:

3> use the resource pool indicated by v2x-CommTxPoolNormalCommon, p2x-CommTxPoolNormalCommon, v2x-CommTxPoolNormal, p2x-CommTxPoolNormal or by v2x-CommTxPoolExceptional for V2X sidelink communication transmission, as specified in 5.10.13;

3> perform CBR measurement on the transmission resource pool(s) indicated by v2x-CommTxPoolNormalCommon, v2x-CommTxPoolNormal and v2x-CommTxPoolExceptional for V2X sidelink communication transmission, as specified in 5.5.3;

5.2.2.29 Actions upon reception of SystemInformationBlockType22-NB

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.

5.2.3 Acquisition of an SI message

When acquiring an SI message, the UE shall:

1> determine the start of the SI-window for the concerned SI message as follows:

2> for the concerned SI message, determine the number \(n \) which corresponds to the order of entry in the list of SI messages configured by schedulingInfoList in SystemInformationBlockType1;

2> determine the integer value \(x = (n - 1) \cdot w \), where \(w \) is the si-WindowLength;

2> the SI-window starts at the subframe \(#a \), where \(a = x \mod 10 \), in the radio frame for which SFN mod \(T = \text{FLOOR}(x/10) \), where \(T \) is the si-Periodicity of the concerned SI message;

NOTE: E-UTRAN should configure an SI-window of 1 ms only if all SIs are scheduled before subframe #5 in radio frames for which SFN mod 2 = 0.

1> receive DL-SCH using the SI-RNTI from the start of the SI-window and continue until the end of the SI-window whose absolute length in time is given by si-WindowLength, or until the SI message was received, excluding the following subframes:

2> subframe #5 in radio frames for which SFN mod 2 = 0;

2> any MBSFN subframes;
2> any uplink subframes in TDD;

1> if the SI message was not received by the end of the SI-window, repeat reception at the next SI-window occasion for the concerned SI message;

5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE

When acquiring an SI message, the BL UE or UE in CE or NB-IoT UE shall:

1> determine the start of the SI-window for the concerned SI message as follows:

2> for the concerned SI message, determine the number n which corresponds to the order of entry in the list of SI messages configured by $\text{schedulingInfoList}$ in $\text{SystemInformationBlockType1-BR}$ (or $\text{SystemInformationBlockType1-NB}$ in NB-IoT);

2> determine the integer value $x = (n - 1) \times w$, where w is the $\text{si-WindowLength-BR}$ (or si-WindowLength in NB-IoT);

2> if the UE is a NB-IoT UE:

3> the SI-window starts at the subframe #0 in the radio frame for which $(H - \text{SFN} \times 1024 + \text{SFN}) \mod T = \text{FLOOR}(x/10) + \text{Offset}$, where T is the si-Periodicity of the concerned SI message and, Offset is the offset of the start of the SI-Window ($\text{si-RadioFrameOffset}$);

2> else:

3> the SI-window starts at the subframe #0 in the radio frame for which $\text{SFN} \mod T = \text{FLOOR}(x/10)$, where T is the si-Periodicity of the concerned SI message;

1> if the UE is a NB-IoT UE:

2> receive and accumulate SI message transmissions on DL-SCH from the start of the SI-window and continue until the end of the SI-window whose absolute length in time is given by si-WindowLength, starting from the radio frames as provided in $\text{si-RepetitionPattern}$ and in subframes as provided in downlinkBitmap, or until successful decoding of the accumulated SI message transmissions excluding the subframes used for transmission of NPSS, NSSS, $\text{MasterInformationBlock-NB}$ and $\text{SystemInformationBlockType1-NB}$. If there are not enough subframes for one SI message transmission in the radio frames as provided in $\text{si-RepetitionPattern}$, the UE shall continue to receive the SI message transmission in the radio frames following the radio frame indicated in $\text{si-RepetitionPattern}$;

1> else:

2> receive and accumulate SI message transmissions on DL-SCH on narrowband provided by si-Narrowband, from the start of the SI-window and continue until the end of the SI-window whose absolute length in time is given by $\text{si-WindowLength-BR}$, only in radio frames as provided in $\text{si-RepetitionPattern}$ and subframes as provided in $\text{fdd-DownlinkOrTddSubframeBitmapBR}$ in $\text{bandwidthReducedAccessRelatedInfo}$, or until successful decoding of the accumulated SI message transmissions;

1> if the SI message was not possible to decode from the accumulated SI message transmissions by the end of the SI-window, continue reception and accumulation of SI message transmissions on DL-SCH in the next SI-window occasion for the concerned SI message;

5.2.3b Acquisition of an SI message from MBMS-dedicated cell

When acquiring an SI message, the UE shall:

1> determine the start of the SI-window for the concerned SI message as follows:

2> for the concerned SI message, determine the number n which corresponds to the order of entry in the list of SI messages configured by $\text{schedulingInfoList}$ in $\text{SystemInformationBlockType1-MBMS}$;

2> determine the integer value $x = (n - 1) \times w$, where w is the si-WindowLength;
2> the SI-window starts always at the subframe \(a \), where \(a = x \mod 10 \), in the radio frame for which SFN mod \(T = \text{FLOOR}(x/10) \), where \(T \) is the si-Periodicity of the concerned SI message;

1> receive DL-SCH using SI-RNTI with value in accordance with 36.321 [6] from the start of the SI-window and continue until the end of the SI-window whose absolute length in time is given by \(\text{si-WindowLength} \), or until the SI message was received, excluding the following subframes:

2> any MBSFN subframes;

1> if the SI message was not received by the end of the SI-window, repeat reception at the next SI-window occasion for the concerned SI message;

5.3 Connection control

5.3.1 Introduction

5.3.1.1 RRC connection control

RRC connection establishment involves the establishment of SRB1. E-UTRAN completes RRC connection establishment prior to completing the establishment of the S1 connection, i.e. prior to receiving the UE context information from the EPC. Consequently, AS security is not activated during the initial phase of the RRC connection. During this initial phase of the RRC connection, the E-UTRAN may configure the UE to perform measurement reporting, but the UE only sends the corresponding measurement reports after successful security activation. However, the UE only accepts a handover message when security has been activated.

NOTE: In case the serving frequency broadcasts multiple overlapping bands, E-UTRAN can only configure measurements after having obtained the UE capabilities, as the measurement configuration needs to be set according to the band selected by the UE.

Upon receiving the UE context from the EPC, E-UTRAN activates security (both ciphering and integrity protection) using the initial security activation procedure. The RRC messages to activate security (command and successful response) are integrity protected, while ciphering is started only after completion of the procedure. That is, the response to the message used to activate security is not ciphered, while the subsequent messages (e.g. used to establish SRB2 and DRBs) are both integrity protected and ciphered.

After having initiated the initial security activation procedure, E-UTRAN may do this prior to receiving the confirmation of the initial security activation from the UE. In any case, E-UTRAN will apply both ciphering and integrity protection for the RRC connection reconfiguration messages used to establish SRB2 and DRBs. E-UTRAN should release the RRC connection if the initial security activation and/or the radio bearer establishment fails (i.e. security activation and DRB establishment are triggered by a joint S1-procedure, which does not support partial success).

For SRB2 and DRBs, security is always activated from the start, i.e. the E-UTRAN does not establish these bearers prior to activating security.

For some radio configuration fields, a critical extension has been defined. A switch from the original version of the field to the critically extended version is allowed using any connection reconfiguration. The UE reverts to the original version of some critically extended fields upon handover and re-establishment as specified elsewhere in this specification. Otherwise, switching a field from the critically extended version to the original version is only possible using the handover or re-establishment procedure with the full configuration option. This also applies for fields that are critically extended within a release (i.e. original and extended version defined in same release).

After having initiated the initial security activation procedure, E-UTRAN may configure a UE that supports CA, with one or more SCells in addition to the PCell that was initially configured during connection establishment. The PCell is used to provide the security inputs and upper layer system information (i.e. the NAS mobility information e.g. TAI). SCells are used to provide additional downlink and optionally uplink radio resources. When not configured with DC all SCells the UE is configured with, if any, are part of the MCG. When configured with DC however, some of the SCells are part of a SCG. In this case, user data carried by a DRB may either be transferred via MCG (i.e. MCG-DRB), via SCG (SCG-DRB) or via both MCG and SCG in DL while E-UTRAN configures the CG used in UL (split DRB). An RRC connection reconfiguration message may be used to change the DRB type from MCG-DRB to SCG-DRB or to split DRB, as well as from SCG-DRB or split DRB to MCG-DRB.
SCG change is a synchronous SCG reconfiguration procedure (i.e. involving RA to the PSCell) including reset/re-establishment of layer 2 and, if SCG DRBs are configured, refresh of security. The procedure is used in a number of different scenarios e.g. SCG establishment, PCell change. Key refresh, change of DRB type. The UE performs the SCG change related actions upon receiving an **RRCConnectionReconfiguration** message including **mobilityControlInfoSCG**, see 5.3.10.10.

The release of the RRC connection normally is initiated by E-UTRAN. The procedure may be used to re-direct the UE to an E-UTRA frequency or an inter-RAT carrier frequency. Only in exceptional cases, as specified within this specification, TS 36.300 [9], TS 36.304 [4] or TS 24.301 [35], may the UE abort the RRC connection, i.e. move to RRC_IDLE without notifying E-UTRAN.

The suspension of the RRC connection is initiated by E-UTRAN. When the RRC connection is suspended, the UE stores the UE AS context and the **resumeIdentity**, and transitions to RRC_IDLE state. The RRC message to suspend the RRC connection is integrity protected and ciphered. Suspension can only be performed when at least 1 DRB is successfully established.

The resumption of a suspended RRC connection is initiated by upper layers when the UE has a stored UE AS context, RRC connection resume is permitted by E-UTRAN and the UE needs to transit from RRC_IDLE state to RRC_CONNECTED state. When the RRC connection is resumed, RRC configures the UE according to the RRC connection resume procedure based on the stored UE AS context and any RRC configuration received from E-UTRAN. The RRC connection resume procedure re-activates security and re-establishes SRB(s) and DRB(s). The request to resume the RRC connection includes the **resumeIdentity**. The request is not ciphered, but protected with a message authentication code.

In response to a request to resume the RRC connection, E-UTRAN may resume the suspended RRC connection, reject the request to resume and instruct the UE to either keep or discard the stored context, or setup a new RRC connection.

5.3.1.2 Security

AS security comprises of the integrity protection of RRC signalling (SRBs) as well as the ciphering of RRC signalling (SRBs) and user data (DRBs).

RRC handles the configuration of the security parameters which are part of the AS configuration: the integrity protection algorithm, the ciphering algorithm and two parameters, namely the **keyChangeIndicator** and the **nextHopChainingCount**, which are used by the UE to determine the AS security keys upon handover, connection re-establishment and/or connection resume.

The integrity protection algorithm is common for signalling radio bearers SRB1 and SRB2. The ciphering algorithm is common for all radio bearers (i.e. SRB1, SRB2 and DRBs). Neither integrity protection nor ciphering applies for SRB0.

RRC integrity and ciphering are always activated together, i.e. in one message/procedure. RRC integrity and ciphering are never de-activated. However, it is possible to switch to a ‘NULL’ ciphering algorithm (eea0).

The ‘NULL’ integrity protection algorithm (eia0) is used only for the UE in limited service mode [32, TS33.401]. In case the ‘NULL’ integrity protection algorithm is used, ‘NULL’ ciphering algorithm is also used.

NOTE 1: Lower layers discard RRC messages for which the integrity check has failed and indicate the integrity verification check failure to RRC.

The AS applies three different security keys: one for the integrity protection of RRC signalling (K_{RRCint}), one for the ciphering of RRC signalling (K_{RRCenc}) and one for the ciphering of user data (K_{UPenc}). All three AS keys are derived from the K_{eNB} key. The K_{eNB} is based on the K_{ASME} key, which is handled by upper layers.

Upon connection establishment new AS keys are derived. No AS-parameters are exchanged to serve as inputs for the derivation of the new AS keys at connection establishment.

The integrity and ciphering of the RRC message used to perform handover is based on the security configuration used prior to the handover and is performed by the source eNB.

The integrity and ciphering algorithms can only be changed upon handover. The four AS keys (K_{eNB}, K_{RRCint}, K_{RRCenc} and K_{UPenc}) change upon every handover, connection re-establishment and connection resume. The **keyChangeIndicator** is used upon handover and indicates whether the UE should use the keys associated with the K_{ASME} key taken into use with the latest successful NAS SMC procedure. The **nextHopChainingCount** parameter is used upon handover, connection re-establishment and connection resume by the UE when deriving the new K_{eNB} key that is used to generate
For each radio bearer an independent counter (COUNT, as specified in TS 36.323 [8]) is maintained for each direction. For each DRB, the COUNT is used as input for ciphering. For each SRB, the COUNT is used as input for both ciphering and integrity protection. It is not allowed to use the same COUNT value more than once for a given security key. At connection resume the COUNT is reset. In order to limit the signalling overhead, individual messages/packets include a short sequence number (PDCP SN, as specified in TS 36.323 [8]). In addition, an overflow counter mechanism is used: the hyper frame number (TX_HFN and RX_HFN, as specified in TS 36.323 [8]). The HFN needs to be synchronized between the UE and the eNB. The eNB is responsible for avoiding reuse of the COUNT with the same RB identity and with the same KeNB, e.g. due to the transfer of large volumes of data, release and establishment of new RBs. In order to avoid such re-use, the eNB may e.g. use different RB identities for successive RB establishments, trigger an intra cell handover or an RRC_CONNECTED to RRC_IDLE to RRC_CONNECTED transition.

For each SRB, the value provided by RRC to lower layers to derive the 5-bit BEARER parameter used as input for ciphering and for integrity protection is the value of the corresponding srb-Identity with the MSBs padded with zeroes.

In case of DC, a separate KeNB is used for SCG-DRBs (S-K_{eNB}). This key is derived from the key used for the MCG (K_{eNB}) and an SCG counter that is used to ensure freshness. To refresh the S-K_{eNB} e.g. when the COUNT will wrap around, E-UTRAN employs an SCG change, i.e. an RRCConnectionReconfiguration message including mobilityControlInfoSCG. When performing handover, while at least one SCG-DRB remains configured, both K_{eNB} and S-K_{eNB} are refreshed. In such case E-UTRAN performs handover with SCG change i.e. an RRCConnectionReconfiguration message including both mobilityControlInfo and mobilityControlInfoSCG. The ciphering algorithm is common for all radio bearers within a CG but may be different between MCG and SCG. The ciphering algorithm for SCG DRBs can only be changed upon SCG change.

5.3.1.2a RN security

For RNs, AS security follows the procedures in 5.3.1.2. Furthermore, E-UTRAN may configure per DRB whether or not integrity protection is used. The use of integrity protection may be configured only upon DRB establishment and reconfigured only upon handover or upon the first reconfiguration following RRC connection re-establishment.

To provide integrity protection on DRBs between the RN and the E-UTRAN, the K_{U_{PASP}} key is derived from the K_{eNB} key as described in TS33.401 [32]. The same integrity protection algorithm used for SRBs also applies to the DRBs. The K_{U_{PASP}} changes at every handover and RRC connection re-establishment and is based on an updated K_{eNB} which is derived by taking into account the nextHopChainingCount. The COUNT value maintained for DRB ciphering is also used for integrity protection, if the integrity protection is configured for the DRB.

5.3.1.3 Connected mode mobility

In RRC_CONNECTED, the network controls UE mobility, i.e. the network decides when the UE shall connect to which E-UTRA cell(s), or inter-RAT cell. For network controlled mobility in RRC_CONNECTED, the PCell can be changed using an RRCConnectionReconfiguration message including the mobilityControlInfo (handover), whereas the SCell(s) can be changed using the RRCConnectionReconfiguration message either with or without the mobilityControlInfo.

An SCG can be established, reconfigured or released by using an RRCConnectionReconfiguration message with or without the mobilityControlInfo. In case Random Access to the PCell or initial PUSCH transmission to the PCell if rach-SkipSCG is configured is required upon SCG reconfiguration, E-UTRAN employs the SCG change procedure (i.e. an RRCConnectionReconfiguration message including the mobilityControlInfoSCG). The PCell can only be changed using the SCG change procedure and by release and addition of the PCell.

The network triggers the handover procedure e.g. based on radio conditions, load. To facilitate this, the network may configure the UE to perform measurement reporting (possibly including the configuration of measurement gaps). The network may also initiate handover blindly, i.e. without having received measurement reports from the UE.

Before sending the handover message to the UE, the source eNB prepares one or more target cells. The source eNB selects the target PCell. The source eNB may also provide the target eNB with a list of best cells on each frequency for which measurement information is available, in order of decreasing RSRP. The source eNB may also include available measurement information for the cells provided in the list. The target eNB decides which SCells are configured for use after handover, which may include cells other than the ones indicated by the source eNB. If an SCG is configured, handover involves either SCG release or SCG change. In case the UE was configured with DC, the target eNB indicates in the handover message whether the UE shall release the entire SCG configuration. Upon connection re-establishment,
the UE releases the entire SCG configuration except for the DRB configuration, while E-UTRAN in the first reconfiguration message following the re-establishment either releases the DRB(s) or reconfigures the DRB(s) to MCG DRB(s).

The target eNB generates the message used to perform the handover, i.e. the message including the AS-configuration to be used in the target cell(s). The source eNB transparently (i.e. does not alter values/ content) forwards the handover message/ information received from the target to the UE. When appropriate, the source eNB may initiate data forwarding for (a subset of) the DRBs.

After receiving the handover message, the UE attempts to access the target PCell at the first available RACH occasion according to Random Access resource selection defined in TS 36.321 [6], i.e. the handover is asynchronous, or at the first available PUSCH occasion if rach-Skip is configured. Consequently, when allocating a dedicated preamble for the random access in the target PCell, E-UTRA shall ensure it is available from the first RACH occasion the UE may use. The first available PUSCH occasion is provided by ul-ConfigInfo, if configured, otherwise UE shall monitor the PDCCH of target eNB. Upon successful completion of the handover, the UE sends a message used to confirm the handover.

If the target eNB does not support the release of RRC protocol which the source eNB used to configure the UE, the target eNB may be unable to comprehend the UE configuration provided by the source eNB. In this case, the target eNB should use the full configuration option to reconfigure the UE for Handover and Re-establishment. Full configuration option includes an initialization of the radio configuration, which makes the procedure independent of the configuration used in the source cell(s) with the exception that the security algorithms are continued for the RRC re-establishment.

After the successful completion of handover, PDCP SDUs may be re-transmitted in the target cell(s). This only applies for DRBs using RLC-AM mode and for handovers not involving full configuration option. The further details are specified in TS 36.323 [8]. After the successful completion of handover not involving full configuration option, the SN and the HFN are reset except for the DRBs using RLC-AM mode (for which both SN and HFN continue). For reconfigurations involving the full configuration option, the PDCP entities are newly established (SN and HFN do not continue) for all DRBs irrespective of the RLC mode. The further details are specified in TS 36.323 [8].

One UE behaviour to be performed upon handover is specified, i.e. this is regardless of the handover procedures used within the network (e.g. whether the handover includes X2 or S1 signalling procedures).

The source eNB should, for some time, maintain a context to enable the UE to return in case of handover failure. After having detected handover failure, the UE attempts to resume the RRC connection either in the source PCell or in another cell using the RRC re-establishment procedure. This connection resumption succeeds only if the accessed cell is prepared, i.e. concerns a cell of the source eNB or of another eNB towards which handover preparation has been performed. The cell in which the re-establishment procedure succeeds becomes the PCell while SCells and STAGs, if configured, are released.

Normal measurement and mobility procedures are used to support handover to cells broadcasting a CSG identity. In addition, E-UTRAN may configure the UE to enter or leave the proximity of cell(s) included in its CSG whitelist. Furthermore, E-UTRAN may request the UE to provide additional information broadcast by the handover candidate cell e.g. global cell identity, CSG identity, CSG membership status.

NOTE: E-UTRAN may use the ‘proximity report’ to configure measurements as well as to decide whether or not to request additional information broadcast by the handover candidate cell. The additional information is used to verify whether or not the UE is authorised to access the target PCell and may also be needed to identify handover candidate cell (PCI confusion i.e. when the physical layer identity that is included in the measurement report does not uniquely identify the cell).

5.3.1.4 Connection control in NB-IoT

In NB-IoT, during the RRC connection establishment procedure, SRB1bis is established implicitly with SRB1. SRB1bis uses the logical channel identity defined in 9.1.2a, with the same configuration as SRB1 but no PDCP entity. SRB1bis is used until security is activated. The RRC messages to activate security (command and successful response) are sent over SRB1 being integrity protected and ciphering is started after completion of the procedure. Once security is activated, new RRC messages shall be transmitted using SRB1. A NB-IoT UE that only supports the Control Plane CIoT EPS optimisation (see TS 24.301 [35]) only establishes SRB1bis.

A NB-IoT UE only supports 0, 1 or 2 DRBs, depending on its capability. A NB-IoT UE that only supports the Control Plane CIoT EPS optimisation (see TS 24.301 [35]) does not need to support any DRBs and associated procedures.
Table 5.3.1.4-1 lists the procedures that are applicable for NB-IoT. All other procedures are not applicable; this is not further stated in the corresponding procedures.

Table 5.3.1.4-1: Connection control procedures applicable to a NB-IoT UE

<table>
<thead>
<tr>
<th>Sub-clause</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2</td>
<td>Paging</td>
</tr>
<tr>
<td>5.3.3</td>
<td>RRC connection establishment</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Initial security activation (see NOTE)</td>
</tr>
<tr>
<td>5.3.5</td>
<td>RRC connection reconfiguration (see NOTE)</td>
</tr>
<tr>
<td>5.3.6</td>
<td>RRC connection re-establishment</td>
</tr>
<tr>
<td>5.3.7</td>
<td>RRC connection release</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Radio resource configuration</td>
</tr>
<tr>
<td>5.3.9</td>
<td>RRC connection release requested by upper layers</td>
</tr>
<tr>
<td>5.3.10</td>
<td>UE actions upon leaving RRC_CONNECTED</td>
</tr>
<tr>
<td>5.3.11</td>
<td>Radio link failure related actions</td>
</tr>
<tr>
<td>5.3.12</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Not applicable for a UE that only supports the Control Plane CIoT EPS optimisation (see TS 24.301 [35]).

5.3.2 Paging

5.3.2.1 General

![Figure 5.3.2.1-1: Paging](image)

The purpose of this procedure is:

- to transmit paging information to a UE in RRC_IDLE and/ or;
- to inform UEs in RRC_IDLE, and UEs in RRC_CONNECTED other than NB-IoT UEs, BL UEs and UEs in CE, about a system information change and/ or;
- to inform UEs in RRC_IDLE other than NB-IoT UEs, and UEs in RRC_CONNECTED other than NB-IoT UEs, BL UEs and UEs in CE, about an ETWS primary notification and/ or ETWS secondary notification and/ or;
- to inform UEs in RRC_IDLE other than NB-IoT UEs, and UEs in RRC_CONNECTED other than NB-IoT UEs, BL UEs and UEs in CE, about a CMAS notification and/ or;
- to inform UEs other than NB-IoT UEs in RRC_IDLE about an EAB parameters modification and/ or;
- to inform UEs other than NB-IoT UEs in RRC_IDLE to perform E-UTRAN inter-frequency redistribution procedure.

The paging information is provided to upper layers, which in response may initiate RRC connection establishment, e.g. to receive an incoming call.

5.3.2.2 Initiation

E-UTRAN initiates the paging procedure by transmitting the *Paging* message at the UE’s paging occasion as specified in TS 36.304 [4]. E-UTRAN may address multiple UEs within a *Paging* message by including one *PagingRecord* for
Each UE, E-UTRAN may also indicate a change of system information, and/or provide an ETWS notification or a CMAS notification in the Paging message.

5.3.2.3 Reception of the Paging message by the UE

Upon receiving the Paging message, the UE shall:

1> if in RRC_IDLE, for each of the PagingRecord, if any, included in the Paging message:
 2> if the ue-Identity included in the PagingRecord matches one of the UE identities allocated by upper layers:
 3> forward the ue-Identity and, except for NB-IoT, the cn-Domain to the upper layers;
1> if the UE is not configured with a DRX cycle longer than the modification period and the systemInfoModification is included; or
1> if the UE is configured with a DRX cycle longer than the modification period and the systemInfoModification-eDRX is included:
 2> re-acquire the required system information using the system information acquisition procedure as specified in 5.2.2.
1> if the etws-Indication is included and the UE is ETWS capable:
 2> re-acquire SystemInformationBlockType1 immediately, i.e., without waiting until the next system information modification period boundary;
 2> if the schedulingInfoList indicates that SystemInformationBlockType10 is present:
 3> acquire SystemInformationBlockType10;
NOTE: If the UE is in CE, it is up to UE implementation when to start acquiring SystemInformationBlockType10.
 2> if the schedulingInfoList indicates that SystemInformationBlockType11 is present:
 3> acquire SystemInformationBlockType11;
1> if the cmas-Indication is included and the UE is CMAS capable:
 2> re-acquire SystemInformationBlockType1 immediately, i.e., without waiting until the next system information modification period boundary as specified in 5.2.1.5;
 2> if the schedulingInfoList indicates that SystemInformationBlockType12 is present:
 3> acquire SystemInformationBlockType12;
1> if in RRC_IDLE, the eab-ParamModification is included and the UE is EAB capable:
 2> consider previously stored SystemInformationBlockType14 as invalid;
 2> re-acquire SystemInformationBlockType1 immediately, i.e., without waiting until the next system information modification period boundary as specified in 5.2.1.6;
 2> re-acquire SystemInformationBlockType14 using the system information acquisition procedure as specified in 5.2.2.4;
1> if in RRC_IDLE, the redistributionIndication is included and the UE is redistribution capable:
 2> Perform E-UTRAN inter-frequency redistribution procedure as specified in TS 36.304 (5.2.4.10, [4]);
5.3.3 RRC connection establishment

5.3.3.1 General

Figure 5.3.3.1-1: RRC connection establishment, successful

Figure 5.3.3.1-2: RRC connection establishment, network reject

Figure 5.3.3.1-3: RRC connection resume, successful
The purpose of this procedure is to establish or resume an RRC connection. RRC connection establishment involves SRB1 (and SRB1bis for NB-IoT) establishment. The procedure is also used to transfer the initial NAS dedicated information/message from the UE to E-UTRAN.

E-UTRAN applies the procedure as follows:

- When establishing an RRC connection:
 - to establish SRB1 and, for NB-IoT, SRB1bis;
- When resuming an RRC connection:
 - to restore the AS configuration from a stored context including resuming SRB(s) and DRB(s).

5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/discovery/V2X sidelink communication

For sidelink communication an RRC connection is initiated only in the following case:

1> if configured by upper layers to transmit non-relay related sidelink communication and related data is available for transmission:
 2> if SystemInformationBlockType18 is broadcast by the cell on which the UE camps; and if the valid version of SystemInformationBlockType18 does not include commTxPoolNormalCommon;

1> if configured by upper layers to transmit relay related sidelink communication:
 2> if the UE is acting as sidelink relay UE; and if SystemInformationBlockType18 is broadcast by the cell on which the UE camps; or
 2> if the UE has a selected sidelink relay UE; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met and if SystemInformationBlockType18 is broadcast by the cell on which the UE camps; and
if the valid version of SystemInformationBlockType18 does not include commTxPoolNormalCommon or commTxAllowRelayCommon;

For V2X sidelink communication an RRC connection is initiated only in the following case:

1> if configured by upper layers to transmit non-P2X related V2X sidelink communication and related data is available for transmission:

2> if the frequency on which the UE is configured to transmit non-P2X related V2X sidelink communication concerns the camped frequency; and if SystemInformationBlockType21 is broadcast by the cell on which the UE camps; and if the valid version of SystemInformationBlockType21 includes sl-V2X-ConfigCommon; and sl-V2X-ConfigCommon does not include v2x-CommTxPoolNormalCommon; or

2> if the frequency on which the UE is configured to transmit non-P2X related V2X sidelink communication is included in v2x-InterFreqInfoList within SystemInformationBlockType21 broadcast by the cell on which the UE camps; and if the valid version of SystemInformationBlockType21 does not include v2x-CommTxPoolNormal for the concerned frequency;

1> if configured by upper layers to transmit P2X related V2X sidelink communication and related data is available for transmission:

2> if the frequency on which the UE is configured to transmit P2X related V2X sidelink communication concerns the camped frequency; and if SystemInformationBlockType21 is broadcast by the cell on which the UE camps; and if the valid version of SystemInformationBlockType21 includes sl-V2X-ConfigCommon; and sl-V2X-ConfigCommon does not include p2x-CommTxPoolNormalCommon; or

2> if the frequency on which the UE is configured to transmit P2X related V2X sidelink communication is included in v2x-InterFreqInfoList within SystemInformationBlockType21 broadcast by the cell on which the UE camps; and if the valid version of SystemInformationBlockType21 does not include p2x-CommTxPoolNormal for the concerned frequency;

For sidelink discovery an RRC connection is initiated only in the following case:

1> if configured by upper layers to transmit non-PS related sidelink discovery announcements:

2> if the frequency on which the UE is configured to transmit non-PS related sidelink discovery announcements concerns the camped frequency; and SystemInformationBlockType19 of the cell on which the UE camps does not include discTxPoolCommon-r12; or

2> if the frequency on which the UE is configured to transmit non-PS related sidelink discovery announcements is included in discInterFreqList in SystemInformationBlockType19 broadcast by the cell on which the UE camps, with discTxResourcesInterFreq included within discResourcesNonPS and set to requestDedicated;

1> if configured by upper layers to transmit non-relay PS related sidelink discovery announcements:

2> if the frequency on which the UE is configured to transmit non-relay PS related sidelink discovery announcements concerns the camped frequency; and SystemInformationBlockType19 of the cell on which the UE camps includes discConfigPS but does not include discTxPoolPS-Common; or

2> if the frequency on which the UE is configured to transmit non-relay PS related sidelink discovery announcements (e.g. group member discovery) is included in discInterFreqList in SystemInformationBlockType19 broadcast by the cell on which the UE camps, with discTxResourcesInterFreq within discResourcesPS included and set to requestDedicated;

1> if configured by upper layers to transmit relay PS related sidelink discovery announcements:

2> if the UE is acting as sidelink relay UE; and if the sidelink relay UE threshold conditions as specified in 5.10.10.4 are met; or

2> if the UE is selecting a sidelink relay UE / has a selected sidelink relay UE; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met:

3> if the frequency on which the UE is configured to transmit relay PS related sidelink discovery announcements concerns the camped frequency; and SystemInformationBlockType19 of the cell on which the UE camps includes discConfigRelay and discConfigPS but does not include discTxPoolPS-Common;
NOTE: Upper layers initiate an RRC connection. The interaction with NAS is left to UE implementation.

5.3.3.2 Initiation

The UE initiates the procedure when upper layers request establishment or resume of an RRC connection while the UE is in RRC_IDLE.

Except for NB-IoT, upon initiation of the procedure, the UE shall:

1> if SystemInformationBlockType2 includes ac-BarringPerPLMN-List and the ac-BarringPerPLMN-List contains an AC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]):

2> select the AC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers;

2> in the remainder of this procedure, use the selected AC-BarringPerPLMN entry (i.e. presence or absence of access barring parameters in this entry) irrespective of the common access barring parameters included in SystemInformationBlockType2;

1> else:

2> in the remainder of this procedure use the common access barring parameters (i.e. presence or absence of these parameters) included in SystemInformationBlockType2;

1> if SystemInformationBlockType2 contains acdc-BarringPerPLMN-List and the acdc-BarringPerPLMN-List contains an ACDC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]):

2> select the ACDC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers;

2> in the remainder of this procedure, use the selected ACDC-BarringPerPLMN entry for ACDC barring check (i.e. presence or absence of access barring parameters in this entry) irrespective of the acdc-BarringForCommon parameters included in SystemInformationBlockType2;

1> else:

2> in the remainder of this procedure use the acdc-BarringForCommon (i.e. presence or absence of these parameters) included in SystemInformationBlockType2 for ACDC barring check;

1> if upper layers indicate that the RRC connection is subject to EAB (see TS 24.301 [35]):

2> if the result of the EAB check, as specified in 5.3.3.12, is that access to the cell is barred:

3> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that EAB is applicable, upon which the procedure ends;

1> if upper layers indicate that the RRC connection is subject to ACDC (see TS 24.301 [35]), SystemInformationBlockType2 contains BarringPerACDC-CategoryList, and acdc-HPLMNonly indicates that ACDC is applicable for the UE:

2> if the BarringPerACDC-CategoryList contains a BarringPerACDC-Category entry corresponding to the ACDC category selected by upper layers:

3> select the BarringPerACDC-Category entry corresponding to the ACDC category selected by upper layers;

2> else:

3> select the last BarringPerACDC-Category entry in the BarringPerACDC-CategoryList;

2> stop timer T308, if running;

2> perform access barring check as specified in 5.3.3.13, using T308 as “Tbarring” and acdc-BarringConfig in the BarringPerACDC-Category as “ACDC barring parameter”;
2> if access to the cell is barred:

3> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring is applicable due to ACDC, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile terminating calls:

2> if timer T302 is running:

3> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile terminating calls is applicable, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for emergency calls:

2> if SystemInformationBlockType2 includes the ac-BarringInfo:

3> if the ac-BarringForEmergency is set to TRUE:

4> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11]:

NOTE 1: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN.

5> if the ac-BarringInfo includes ac-BarringForMO-Data, and for all of these valid Access Classes for the UE, the corresponding bit in the ac-BarringForSpecialAC contained in ac-BarringForMO-Data is set to one:

6> consider access to the cell as barred;

4> else:

5> consider access to the cell as barred;

2> if access to the cell is barred:

3> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating calls:

2> perform access barring check as specified in 5.3.3.11, using T303 as “Tbarring” and ac-BarringForMO-Data as ”AC barring parameter”;

2> if access to the cell is barred:

3> if SystemInformationBlockType2 includes ac-BarringForCSFB or the UE does not support CS fallback:

4> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating calls is applicable, upon which the procedure ends;

3> else (SystemInformationBlockType2 does not include ac-BarringForCSFB and the UE supports CS fallback):

4> if timer T306 is not running, start T306 with the timer value of T303;

4> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating calls and mobile originating CS fallback is applicable, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating signalling:

2> perform access barring check as specified in 5.3.3.11, using T305 as ”Tbarring” and ac-BarringForMO-Signalling as ”AC barring parameter”;

2> if access to the cell is barred:
2> if access to the cell is barred:
 3> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating signalling is applicable, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating CS fallback:

2> if SystemInformationBlockType2 includes ac-BarringForCSFB:
 3> perform access barring check as specified in 5.3.3.11, using T306 as "Tbarring" and ac-BarringForCSFB as "AC barring parameter";
 3> if access to the cell is barred:
 4> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating CS fallback is applicable, due to ac-BarringForCSFB, upon which the procedure ends;

2> else:
 3> perform access barring check as specified in 5.3.3.11, using T306 as "Tbarring" and ac-BarringForMO-Data as "AC barring parameter";
 3> if access to the cell is barred:
 4> if timer T303 is not running, start T303 with the timer value of T306;
 4> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating CS fallback and mobile originating calls is applicable, due to ac-BarringForMO-Data, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating MMTEL voice, mobile originating MMTEL video, mobile originating SMS/SoIP or mobile originating SMS:

2> if the UE is establishing the RRC connection for mobile originating MMTEL voice and SystemInformationBlockType2 includes ac-BarringSkipForMMTELVoice; or

2> if the UE is establishing the RRC connection for mobile originating MMTEL video and SystemInformationBlockType2 includes ac-BarringSkipForMMTELVideo; or

2> if the UE is establishing the RRC connection for mobile originating SMS/SoIP or SMS and SystemInformationBlockType2 includes ac-BarringSkipForSMS:
 3> consider access to the cell as not barred;

2> else:
 3> if establishmentCause received from higher layers is set to mo-Signalling (including the case that mo-Signalling is replaced by highPriorityAccess according to 3GPP TS 24.301 [35] or by mo-VoiceCall according to the subclause 5.3.3.3):
 4> perform access barring check as specified in 5.3.3.11, using T305 as "Tbarring" and ac-BarringForMO-Signalling as "AC barring parameter";
 4> if access to the cell is barred:
 5> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating signalling is applicable, upon which the procedure ends;

3> if establishmentCause received from higher layers is set to mo-Data (including the case that mo-Data is replaced by highPriorityAccess according to 3GPP TS 24.301 [35] or by mo-VoiceCall according to the subclause 5.3.3.3):
 4> perform access barring check as specified in 5.3.3.11, using T303 as "Tbarring" and ac-BarringForMO-Data as "AC barring parameter";
if access to the cell is barred:

 if SystemInformationBlockType2 includes ac-BarringForCSFB or the UE does not support CS fallback:

 inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating calls is applicable, upon which the procedure ends;

 else (SystemInformationBlockType2 does not include ac-BarringForCSFB and the UE supports CS fallback):

 if timer T306 is not running, start T306 with the timer value of T303;

 inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring for mobile originating calls and mobile originating CS fallback is applicable, upon which the procedure ends;

if the UE is resuming an RRC connection:

 release the MCG Scell(s), if configured, in accordance with 5.3.10.3a;

 release powerPrefIndicationConfig, if configured and stop timer T340, if running;

 release reportProximityConfig and clear any associated proximity status reporting timer;

 release obtainLocationConfig, if configured;

 release idc-Config, if configured;

 release measSubframePatternPCell, if configured;

 release the entire SCG configuration, if configured, except for the DRB configuration (as configured by drb-ToAddModListSCG);

 release naics-Info for the PCell, if configured;

 release the LWA configuration, if configured, as described in 5.6.14.3;

 release the LWIP configuration, if configured, as described in 5.6.17.3;

 release bw-PreferenceIndicationTimer, if configured and stop timer T341, if running;

 release delayBudgetReportingConfig, if configured and stop timer T342, if running;

apply the default physical channel configuration as specified in 9.2.4;

apply the default semi-persistent scheduling configuration as specified in 9.2.3;

apply the default MAC main configuration as specified in 9.2.2;

apply the CCCH configuration as specified in 9.1.1.2;

apply the timeAlignmentTimerCommon included in SystemInformationBlockType2;

start timer T300;

if the UE is resuming an RRC connection:

 initiate transmission of the RRCConectionResumeRequest message in accordance with 5.3.3.3a;

else:

 if stored, discard the UE AS context and resumIdentity;

 initiate transmission of the RRCConectionRequest message in accordance with 5.3.3.3;
NOTE 2: Upon initiating the connection establishment procedure, the UE is not required to ensure it maintains up-to-date system information applicable only for UEs in RRC_IDLE state. However, the UE needs to perform system information acquisition upon cell re-selection.

For NB-IoT, upon initiation of the procedure, the UE shall:

1> if the UE is establishing or resuming the RRC connection for mobile originating exception data; or
1> if the UE is establishing or resuming the RRC connection for mobile originating data; or
1> if the UE is establishing or resuming the RRC connection for delay tolerant access; or
1> if the UE is establishing or resuming the RRC connection for mobile originating signalling;

2> perform access barring check as specified in 5.3.3.14;
2> if access to the cell is barred:
3> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication and that access barring is applicable, upon which the procedure ends;

1> apply the default physical channel configuration as specified in 9.2.4;
1> apply the default MAC main configuration as specified in 9.2.2;
1> apply the CCCH configuration as specified in 9.1.1.2;
1> start timer T300;
1> if the UE is establishing an RRC connection:
 2> initiate transmission of the \textit{RRCConnectionRequest} message in accordance with 5.3.3.3;
1> else if the UE is resuming an RRC connection:
 2> initiate transmission of the \textit{RRCConnectionResumeRequest} message in accordance with 5.3.3.3a;

NOTE 3: Upon initiating the connection establishment or resumption procedure, the UE is not required to ensure it maintains up-to-date system information applicable only for UEs in RRC_IDLE state. However, the UE needs to perform system information acquisition upon cell re-selection.

5.3.3.3 Actions related to transmission of \textit{RRCConnectionRequest} message

The UE shall set the contents of \textit{RRCConnectionRequest} message as follows:

1> set the \textit{ue-Identity} as follows:
 2> if upper layers provide an S-TMSI:
 3> set the \textit{ue-Identity} to the value received from upper layers;
 2> else:
 3> draw a random value in the range 0 .. 2^{40}-1 and set the \textit{ue-Identity} to this value;

NOTE 1: Upper layers provide the S-TMSI if the UE is registered in the TA of the current cell.

1> if the UE supports \textit{mo-VoiceCall} establishment cause and UE is establishing the RRC connection for mobile originating MMTEL voice and SystemInformationBlockType2 includes voiceServiceCauseIndication and the establishment cause received from upper layers is not the highPriorityAccess value:
 2> set the establishmentCause to \textit{mo-VoiceCall};
1> else if the UE supports \textit{mo-VoiceCall} establishment cause for mobile originating MMTEL video and UE is establishing the RRC connection for mobile originating MMTEL video and SystemInformationBlockType2 includes videoServiceCauseIndication and the establishment cause received from upper layers is not the highPriorityAccess value:
The UE shall set the establishmentCause to mo-VoiceCall;

else:

set the establishmentCause in accordance with the information received from upper layers;

if the UE is a NB-IoT UE:

if the UE supports multi-tone transmission, include multiToneSupport;

if the UE supports multi-carrier operation, include multiCarrierSupport;

The UE shall submit the RRCConnectionRequest message to lower layers for transmission.

The UE shall continue cell re-selection related measurements as well as cell re-selection evaluation. If the conditions for cell re-selection are fulfilled, the UE shall perform cell re-selection as specified in 5.3.3.5.

5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message

The UE shall set the contents of RRCConnectionResumeRequest message as follows:

if the UE is a NB-IoT UE; or

if field useFullResumeID is signalled in SystemInformationBlockType2:

set the resumeID to the stored resumeIdentity;

else

set the truncatedResumeID to include bits in bit position 9 to 20 and 29 to 40 from the left in the stored resumeIdentity.

if the UE supports mo-VoiceCall establishment cause and UE is resuming the RRC connection for mobile originating MMTEL voice and SystemInformationBlockType2 includes voiceServiceCauseIndication and the establishment cause received from upper layers is not the highPriorityAccess value:

set the resumeCause to mo-VoiceCall;

else if the UE supports mo-VoiceCall establishment cause for mobile originating MMTEL video and UE is resuming the RRC connection for mobile originating MMTEL video and SystemInformationBlockType2 includes videoServiceCauseIndication and the establishment cause received from upper layers is not the highPriorityAccess value:

set the resumeCause to mo-VoiceCall;

else

set the resumeCause in accordance with the information received from upper layers;

set the shortResumeMAC-I to the 16 least significant bits of the MAC-I calculated:

over the ASN.1 encoded as per section 8 (i.e., a multiple of 8 bits) VarShortResumeMAC-Input (or VarShortResumeMAC-Input-NB in NB-IoT);

with the KRRcut key and the previously configured integrity protection algorithm; and

with all input bits for COUNT, BEARER and DIRECTION set to binary ones;

restore the RRC configuration and security context from the stored UE AS context:

restore the PDCP state and re-establish PDCP entities for SRB1;

resume SRB1;

NOTE: Until successful connection resumption, the default physical layer configuration and the default MAC Main configuration are applied for the transmission of SRB0 and SRB1, and SRB1 is used only for the transfer of RRCConnectionResume message.
The UE shall submit the `RRCConnectionResumeRequest` message to lower layers for transmission.

The UE shall continue cell re-selection related measurements as well as cell re-selection evaluation. If the conditions for cell re-selection are fulfilled, the UE shall perform cell re-selection as specified in 5.3.3.5.

5.3.3.4 Reception of the `RRCConnectionSetup` by the UE

NOTE: Prior to this, lower layer signalling is used to allocate a C-RNTI. For further details see TS 36.321 [6];

The UE shall:

1. if the `RRCConnectionSetup` is received in response to an `RRCConnectionResumeRequest`:

 2. discard the stored UE AS context and `resumeIdentity`;

 2. indicate to upper layers that the RRC connection resume has been fallbacked;

1. perform the radio resource configuration procedure in accordance with the received `radioResourceConfigDedicated` and as specified in 5.3.10;

1. if stored, discard the cell reselection priority information provided by the `idleModeMobilityControlInfo` or inherited from another RAT;

1. if stored, discard the dedicated offset provided by the `redirectedCarrierOffsetDedicated`;

1. stop timer T300;

1. stop timer T302, if running;

1. stop timer T303, if running;

1. stop timer T305, if running;

1. stop timer T306, if running;

1. stop timer T308, if running;

1. stop timer T309, if running;

1. perform the actions as specified in 5.3.3.7;

1. stop timer T320, if running;

1. stop timer T350, if running;

1. perform the actions as specified in 5.6.12.4;

1. release `rclwi-Configuration`, if configured, as specified in 5.6.16.2;

1. stop timer T360, if running;

1. stop timer T322, if running;

1. enter RRC_CONNECTED;

1. stop the cell re-selection procedure;

1. consider the current cell to be the PCell;

1. set the content of `RRCConnectionSetupComplete` message as follows:

 2. if the `RRCConnectionSetup` is received in response to an `RRCConnectionResumeRequest`:

 3. if upper layers provide an S-TMSI:

 4. set the `s-TMSI` to the value received from upper layers;

 2. set the `selectedPLMN-Identity` to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]) from the PLMN(s) included in the `plmn-IdentityList` in `SystemInformationBlockType1` (or `SystemInformationBlockType1-NB` in NB-IoT);
if upper layers provide the 'Registered MME', include and set the \texttt{registeredMME} as follows:

if the PLMN identity of the 'Registered MME' is different from the PLMN selected by the upper layers:

- include the \texttt{plmnIdentity} in the \texttt{registeredMME} and set it to the value of the PLMN identity in the 'Registered MME' received from upper layers;
- set the \texttt{mmegi} and the \texttt{mmec} to the value received from upper layers;

if upper layers provided the 'Registered MME':

- include and set the \texttt{gummei-Type} to the value provided by the upper layers;

if the UE supports CIoT EPS optimisation(s):

- include \texttt{attachWithoutPDN-Connectivity} if received from upper layers;
- include \texttt{up-CIoT-EPS-Optimisation} if received from upper layers;
- except for NB-IoT, include \texttt{cp-CIoT-EPS-Optimisation} if received from upper layers;

if connecting as an RN:

- include the \texttt{rn-SubframeConfigReq};

set the \texttt{dedicatedInfoNAS} to include the information received from upper layers;

except for NB-IoT:

- if the UE has radio link failure or handover failure information available in \texttt{VarRLF-Report} and if the RPLMN is included in \texttt{plmn-IdentityList} stored in \texttt{VarRLF-Report}:
 - include \texttt{rlf-InfoAvailable};
- else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in \texttt{plmn-IdentityList} stored in \texttt{VarLogMeasReport}:
 - include \texttt{logMeasAvailableMBSFN};
- else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in \texttt{plmn-IdentityList} stored in \texttt{VarLogMeasReport}:
 - include \texttt{logMeasAvailable};
- if the UE has connection establishment failure information available in \texttt{VarConnEstFailReport} and if the RPLMN is equal to \texttt{plmn-Identity} stored in \texttt{VarConnEstFailReport}:
 - include \texttt{connEstFailInfoAvailable};
- include \texttt{mobilityState} and set it to the mobility state (as specified in TS 36.304 [4]) of the UE just prior to entering RRC_CONNECTED state;
- if the UE supports storage of mobility history information and the UE has mobility history information available in \texttt{VarMobilityHistoryReport}:
 - include \texttt{mobilityHistoryAvail};

- include \texttt{dcn-ID} if a DCN-ID value (see TS 23.401 [41]) is received from upper layers;

if UE needs UL gaps during continuous uplink transmission:

- include \texttt{ue-CE-NeedULGaps};

submit the \texttt{RRCConnectionSetupComplete} message to lower layers for transmission, upon which the procedure ends;
5.3.3.4a Reception of the \textit{RRCConnectionResume} by the UE

The UE shall:

1. stop timer T300;
2. restore the PDCP state and re-establish PDCP entities for SRB2 and all DRBs;

If \textit{drb-ContinueROHC} is included:

1. indicate to lower layers that stored UE AS context is used and that \textit{drb-ContinueROHC} is configured;
2. continue the header compression protocol context for the DRBs configured with the header compression protocol;

Else:

1. indicate to lower layers that stored UE AS context is used;
2. reset the header compression protocol context for the DRBs configured with the header compression protocol;

1. discard the stored UE AS context and \textit{resumeIdentity};
2. perform the radio resource configuration procedure in accordance with the received \textit{radioResourceConfigDedicated} and as specified in 5.3.10;

NOTE: When performing the radio resource configuration procedure, for the physical layer configuration and the MAC Main configuration, the restored RRC configuration from the stored UE AS context is used as basis for the reconfiguration.

1. resume SRB2 and all DRBs;
2. if stored, discard the cell reselection priority information provided by the \textit{idleModeMobilityControlInfo} or inherited from another RAT;
3. if stored, discard the dedicated offset provided by the \textit{redirectedCarrierOffsetDedicated};
4. if the \textit{RRCConnectionResume} message includes the \textit{measConfig}:
 1. perform the measurement configuration procedure as specified in 5.5.2;
5. stop timer T302, if running;
6. stop timer T303, if running;
7. stop timer T305, if running;
8. stop timer T306, if running;
9. stop timer T308, if running;
10. perform the actions as specified in 5.3.3.7;
11. perform the actions as specified in 5.6.12.4;
12. stop timer T360, if running;
13. stop timer T322, if running;

14. update the \textit{K\textsubscript{NB}} key based on the \textit{K\textsubscript{ASME}} key to which the current \textit{K\textsubscript{NB}} is associated, using the \textit{nextHopChainingCount} value indicated in the \textit{RRCConnectionResume} message, as specified in TS 33.401 [32];

15. store the \textit{nextHopChainingCount} value;
> derive the $K_{RRC\text{int}}$ key associated with the previously configured integrity algorithm, as specified in TS 33.401 [32];

> request lower layers to verify the integrity protection of the $RRC\text{ConnectionResume}$ message, using the previously configured algorithm and the $K_{RRC\text{int}}$ key;

> if the integrity protection check of the $RRC\text{ConnectionResume}$ message fails:

> perform the actions upon leaving $RRC_\text{CONNECTED}$ as specified in 5.3.12, with release cause 'other', upon which the procedure ends;

> derive the $K_{RRC\text{enc}}$ key and the K_{UPenc} key associated with the previously configured ciphering algorithm, as specified in TS 33.401 [32];

> configure lower layers to resume integrity protection using the previously configured algorithm and the $K_{RRC\text{int}}$ key immediately, i.e., integrity protection shall be applied to all subsequent messages received and sent by the UE;

> configure lower layers to resume ciphering and to apply the ciphering algorithm, the $K_{RRC\text{enc}}$ key and the K_{UPenc} key, i.e. the ciphering configuration shall be applied to all subsequent messages received and sent by the UE;

> enter $RRC_\text{CONNECTED}$;

> indicate to upper layers that the suspended RRC connection has been resumed;

> stop the cell re-selection procedure;

> consider the current cell to be the PCell;

> set the content of $RRC\text{ConnectionResumeComplete}$ message as follows:

> set the $\text{selectedPLMN-Identity}$ to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]) from the PLMN(s) included in the plmn-IdentityList in $\text{SystemInformationBlockType1}$;

> set the dedicatedInfoNAS to include the information received from upper layers;

> except for NB-IoT:

> if the UE has radio link failure or handover failure information available in VarRLF-Report and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:

> include rlf-InfoAvailable;

> if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:

> include $\text{logMeasAvailableMBSFN}$;

> else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:

> include logMeasAvailable;

> if the UE has connection establishment failure information available in $\text{VarConnEstFailReport}$ and if the RPLMN is equal to plmn-Identity stored in $\text{VarConnEstFailReport}$:

> include $\text{connEstFailInfoAvailable}$;

> include the mobilityState and set it to the mobility state (as specified in TS 36.304 [4]) of the UE just prior to entering $RRC_\text{CONNECTED}$ state;

> if the UE supports storage of mobility history information and the UE has mobility history information available in $\text{VarMobilityHistoryReport}$:

> include $\text{mobilityHistoryAvail}$;

> submit the $RRC\text{ConnectionResumeComplete}$ message to lower layers for transmission;
5.3.3.5 Cell re-selection while T300, T302, T303, T305, T306, or T308 is running

The UE shall:

1> if cell reselection occurs while T300, T302, T303, T305, T306, or T308 is running:

2> if timer T302, T303, T305, T306, and/or T308 is running:

3> stop timer T302, T303, T305, T306, and T308, whichever ones were running;

3> perform the actions as specified in 5.3.3.7;

2> if timer T300 is running:

3> stop timer T300;

3> reset MAC, release the MAC configuration and re-establish RLC for all RBs that are established;

3> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication;

5.3.3.6 T300 expiry

The UE shall:

1> if timer T300 expires:

2> reset MAC, release the MAC configuration and re-establish RLC for all RBs that are established;

2> if the UE is a NB-IoT UE:

3> if connEstFailOffset is included in SystemInformationBlockType2-NB:

4> use connEstFailOffset for the parameter Qoffsettemp for the concerned cell when performing cell selection and reselection according to TS 36.304 [4];

3> else:

4> use value of infinity for the parameter Qoffsettemp for the concerned cell when performing cell selection and reselection according to TS 36.304 [4];

NOTE 0: For NB-IoT, the number of times that the UE detects T300 expiry on the same cell before applying connEstFailOffset and the amount of time that the UE applies connEstFailOffset before removing the offset from evaluation of the cell is up to UE implementation.

2> else if the UE supports RRC Connection Establishment failure temporary Qoffset and T300 has expired a consecutive connEstFailCount times on the same cell for which txFailParams is included in SystemInformationBlockType2:

3> for a period as indicated by connEstFailOffsetValidity:

4> use connEstFailOffset for the parameter Qoffsettemp for the concerned cell when performing cell selection and reselection according to TS 36.304 [4] and TS 25.304 [40];

NOTE 1: When performing cell selection, if no suitable or acceptable cell can be found, it is up to UE implementation whether to stop using connEstFailOffset for the parameter Qoffsettemp during connEstFailOffsetValidity for the concerned cell.

2> except for NB-IoT, store the following connection establishment failure information in the VarConnEstFailReport by setting its fields as follows:

3> clear the information included in VarConnEstFailReport, if any;
3> set the `plmn-Identity` to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]) from the PLMN(s) included in the `plmn-IdentityList` in `SystemInformationBlockType1`;

3> set the `failedCellId` to the global cell identity of the cell where connection establishment failure is detected;

3> set the `measResultFailedCell` to include the RSRP and RSRQ, if available, of the cell where connection establishment failure is detected and based on measurements collected up to the moment the UE detected the failure;

3> if available, set the `measResultNeighCells`, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements for at most the following number of neighbouring cells: 6 intra-frequency and 3 inter-frequency neighbours per frequency as well as 3 inter-RAT neighbours, per frequency/ set of frequencies (GERAN) per RAT and according to the following:

4> for each neighbour cell included, include the optional fields that are available;

NOTE 2: The UE includes the latest results of the available measurements as used for cell reselection evaluation, which are performed in accordance with the performance requirements as specified in TS 36.133 [16].

3> if detailed location information is available, set the content of the `locationInfo` as follows:

4> include the `locationCoordinates`;

4> include the `horizontalVelocity`, if available;

3> set the `numberOfPreamblesSent` to indicate the number of preambles sent by MAC for the failed random access procedure;

3> set `contentionDetected` to indicate whether contention resolution was not successful as specified in TS 36.321 [6] for at least one of the transmitted preambles for the failed random access procedure;

3> set `maxTxPowerReached` to indicate whether or not the maximum power level was used for the last transmitted preamble, see TS 36.321 [6];

2> inform upper layers about the failure to establish the RRC connection or failure to resume the RRC connection with suspend indication, upon which the procedure ends;

The UE may discard the connection establishment failure information, i.e. release the UE variable `VarConnEstFailReport`, 48 hours after the failure is detected, upon power off or upon detach.

5.3.3.7 T302, T303, T305, T306, or T308 expiry or stop

The UE shall:

1> if timer T302 expires or is stopped:

2> inform upper layers about barring alleviation for mobile terminating access;

2> if timer T303 is not running:

3> inform upper layers about barring alleviation for mobile originating calls;

2> if timer T305 is not running:

3> inform upper layers about barring alleviation for mobile originating signalling;

2> if timer T306 is not running:

3> inform upper layers about barring alleviation for mobile originating CS fallback;

2> if timer T308 is not running:

3> inform upper layers about barring alleviation for ACDC;

1> if timer T303 expires or is stopped:
2> if timer T302 is not running:
 3> inform upper layers about barring alleviation for mobile originating calls;
1> if timer T305 expires or is stopped:
 2> if timer T302 is not running:
 3> inform upper layers about barring alleviation for mobile originating signalling;
1> if timer T306 expires or is stopped:
 2> if timer T302 is not running:
 3> inform upper layers about barring alleviation for mobile originating CS fallback;
1> if timer T308 expires or is stopped:
 2> if timer T302 is not running:
 3> inform upper layers about barring alleviation for ACDC;

5.3.3.8 Reception of the RRCConnectionReject by the UE

The UE shall:
1> stop timer T300;
1> reset MAC and release the MAC configuration;
1> except for NB-IoT, start timer T302, with the timer value set to the waitTime;
1> if the UE is a NB-IoT UE; or
1> if the extendedWaitTime is present and the UE supports delay tolerant access:
 2> forward the extendedWaitTime to upper layers;
1> if deprioritisationReq is included and the UE supports RRC Connection Reject with deprioritisation:
 2> start or restart timer T325 with the timer value set to the deprioritisationTimer signalled;
 2> store the deprioritisationReq until T325 expiry;

NOTE: The UE stores the deprioritisation request irrespective of any cell reselection absolute priority assignments (by dedicated or common signalling) and regardless of RRC connections in E-UTRAN or other RATs unless specified otherwise.

1> if the RRCConnectionReject is received in response to an RRCConnectionResumeRequest:
 2> if the rrc-SuspendIndication is not present:
 3> discard the stored UE AS context and resumIdentity;
 3> inform upper layers about the failure to resume the RRC connection without suspend indication and that access barring for mobile originating calls, mobile originating signalling, mobile terminating access and except for NB-IoT for mobile originating CS fallback is applicable, upon which the procedure ends;
 2> else:
 3> suspend SRB1;
 3> inform upper layers about the failure to resume the RRC connection with suspend indication and that access barring for mobile originating calls, mobile originating signalling, mobile terminating access and except for NB-IoT for mobile originating CS fallback is applicable, upon which the procedure ends;
1> else
inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating calls, mobile originating signalling, mobile terminating access and except for NB-IoT, for mobile originating CS fallback is applicable, upon which the procedure ends;

5.3.3.9 Abortion of RRC connection establishment

If upper layers abort the RRC connection establishment procedure while the UE has not yet entered RRC_CONNECTED, the UE shall:

1> stop timer T300, if running;
 1> reset MAC, release the MAC configuration and re-establish RLC for all RBs that are established;

5.3.3.10 Handling of SSAC related parameters

Upon request from the upper layers, the UE shall:

1> if SystemInformationBlockType2 includes ac-BarringPerPLMN-List and the ac-BarringPerPLMN-List contains an AC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]):
 2> select the AC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers;
 2> in the remainder of this procedure, use the selected AC-BarringPerPLMN entry (i.e. presence or absence of access barring parameters in this entry) irrespective of the common access barring parameters included in SystemInformationBlockType2;

1> else:
 2> in the remainder of this procedure use the common access barring parameters (i.e. presence or absence of these parameters) included in SystemInformationBlockType2;

1> set the local variables BarringFactorForMMTEL-Voice and BarringTimeForMMTEL-Voice as follows:
 2> if ssac-BarringForMMTEL-Voice is present:
 3> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11], and
 3> if, for at least one of these Access Classes, the corresponding bit in the ac-BarringForSpecialAC contained in ssac-BarringForMMTEL-Voice is set to zero:
 4> set BarringFactorForMMTEL-Voice to one and BarringTimeForMMTEL-Voice to zero;
 3> else:
 4> set BarringFactorForMMTEL-Voice and BarringTimeForMMTEL-Voice to the value of ac-BarringFactor and ac-BarringTime included in ssac-BarringForMMTEL-Voice, respectively;
 2> else set BarringFactorForMMTEL-Voice to one and BarringTimeForMMTEL-Voice to zero;

1> set the local variables BarringFactorForMMTEL-Video and BarringTimeForMMTEL-Video as follows:
 2> if ssac-BarringForMMTEL-Video is present:
 3> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11], and
 3> if, for at least one of these Access Classes, the corresponding bit in the ac-BarringForSpecialAC contained in ssac-BarringForMMTEL-Video is set to zero:
 4> set BarringFactorForMMTEL-Video to one and BarringTimeForMMTEL-Video to zero;
else:
 set BarringFactorForMMTEL-Video and BarringTimeForMMTEL-Video to the value of ac-BarringFactor and ac-BarringTime included in ssac-BarringForMMTEL-Video, respectively;

else set BarringFactorForMMTEL-Video to one and BarringTimeForMMTEL-Video to zero;

forward the variables BarringFactorForMMTEL-Voice, BarringTimeForMMTEL-Voice, BarringFactorForMMTEL-Video and BarringTimeForMMTEL-Video to the upper layers;

5.3.3.11 Access barring check

if timer T302 or "Tbarring" is running:
 consider access to the cell as barred;

else if SystemInformationBlockType2 includes "AC barring parameter":
 if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11], and
 NOTE: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN.
 for at least one of these valid Access Classes the corresponding bit in the ac-BarringForSpecialAC contained in "AC barring parameter" is set to zero:
 consider access to the cell as not barred;
 else:
 draw a random number 'rand' uniformly distributed in the range: 0 ≤ rand < 1;
 if 'rand' is lower than the value indicated by ac-BarringFactor included in "AC barring parameter":
 consider access to the cell as not barred;
 else:
 consider access to the cell as barred;

else:
 consider access to the cell as not barred;

if access to the cell is barred and both timers T302 and "Tbarring" are not running:
 draw a random number 'rand' that is uniformly distributed in the range 0 ≤ rand < 1;
 start timer "Tbarring" with the timer value calculated as follows, using the ac-BarringTime included in "AC barring parameter":
 "Tbarring" = (0.7+ 0.6 * rand) * ac-BarringTime;

5.3.3.12 EAB check

The UE shall:

if SystemInformationBlockType14 is present and includes the eab-Param:
 if the eab-Common is included in the eab-Param:
 if the UE belongs to the category of UEs as indicated in the eab-Category contained in eab-Common; and
 if for the Access Class of the UE, as stored on the USIM and with a value in the range 0..9, the corresponding bit in the eab-BarringBitmap contained in eab-Common is set to one:
4> consider access to the cell as barred;
3> else:
4> consider access to the cell as not barred due to EAB;
2> else (the *eab-PerPLMN-List* is included in the *eab-Param*):
3> select the entry in the *eab-PerPLMN-List* corresponding to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]);
3> if the *eab-Config* for that PLMN is included:
4> if the UE belongs to the category of UEs as indicated in the *eab-Category* contained in *eab-Config*; and
4> if for the Access Class of the UE, as stored on the USIM and with a value in the range 0..9, the corresponding bit in the *eab-BarringBitmap* contained in *eab-Config* is set to *one*:
5> consider access to the cell as barred;
4> else:
5> consider access to the cell as not barred due to EAB;
3> else:
4> consider access to the cell as not barred due to EAB;
1> else:
2> consider access to the cell as not barred due to EAB;

5.3.3.13 Access barring check for ACDC

The UE shall:

1> if timer T302 is running:
2> consider access to the cell as barred;
1> else if *SystemInformationBlockType2* includes "ACDC barring parameter":
2> draw a random number *'rand'* uniformly distributed in the range: \(0 \leq \text{rand} < 1\);
2> if *'rand'* is lower than the value indicated by *ac-BarringFactor* included in "ACDC barring parameter":
3> consider access to the cell as not barred;
2> else:
3> consider access to the cell as barred;
1> else:
2> consider access to the cell as not barred;
1> if access to the cell is barred and timer T302 is not running:
2> draw a random number *'rand'* that is uniformly distributed in the range \(0 \leq \text{rand} < 1\);
2> start timer "Tbarring" with the timer value calculated as follows, using the *ac-BarringTime* included in "ACDC barring parameter":

\[
\text{"Tbarring"} = (0.7 + 0.6 \cdot \text{rand}) \cdot \text{ac-BarringTime}.
\]
5.3.3.14 Access Barring check for NB-IoT

The UE shall:

1> if ab-Enabled included in MasterInformationBlock-NB is set to TRUE and SystemInformationBlockType14-NB is broadcast:

2> if the ab-Common is included in ab-Param:

3> if the UE belongs to the category of UEs as indicated in the ab-Category contained in ab-Common; and

3> if for the Access Class of the UE, as stored on the USIM and with a value in the range 0..9, the corresponding bit in the ab-BarringBitmap contained in ab-Common is set to one:

4> if the establishmentCause received from higher layers is set to mo-ExceptionData and ab-BarringForExceptionData is set to FALSE in the ab-Common:

5> consider access to the cell as not barred;

4> else:

5> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11] and for at least one of these valid Access Classes for the UE, the corresponding bit in the ab-BarringForSpecialAC contained in ab-Common is set to zero:

NOTE 1: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN.

6> consider access to the cell as not barred;

5> else:

6> consider access to the cell as barred;

3> else:

4> consider access to the cell as not barred;

2> else (the ab-PerPLMN-List is included in the ab-Param):

3> select the ab-PerPLMN entry in ab-PerPLMN-List corresponding to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]);

3> if the ab-Config for that PLMN is included:

4> if the UE belongs to the category of UEs as indicated in the ab-Category contained in ab-Config; and

4> if for the Access Class of the UE, as stored on the USIM and with a value in the range 0..9, the corresponding bit in the ab-BarringBitmap contained in ab-Config is set to one:

5> if the establishmentCause received from higher layers is set to mo-ExceptionData and ab-BarringForExceptionData is set to FALSE in the ab-Config:

6> consider access to the cell as not barred;

5> else:

6> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11] and for at least one of these valid Access Classes for the UE, the corresponding bit in the ab-BarringForSpecialAC contained in ab-Config is set to zero:

NOTE 2: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN.

7> consider access to the cell as not barred;
5.3.3.15 Failure to deliver NAS information in RRCConnectionSetupComplete message

The UE shall:

1> if the UE is a NB-IoT UE and radio link failure occurs before the successful delivery of
 RRCConnectionSetupComplete message has been confirmed by lower layers:
2> inform upper layers about the possible failure to deliver the NAS information contained in the
 RRCConnectionSetupComplete message;

5.3.4 Initial security activation

5.3.4.1 General

The purpose of this procedure is to activate AS security upon RRC connection establishment.
5.3.4.2 Initiation

E-UTRAN initiates the security mode command procedure to a UE in RRC_CONNECTED. Moreover, E-UTRAN applies the procedure as follows:

- when only SRB1, or for NB-IoT SRB1 and SRB1bis, is established, i.e. prior to establishment of SRB2 and/or DRBs.

5.3.4.3 Reception of the SecurityModeCommand by the UE

The UE shall:

1. derive the K_{C_NB} key, as specified in TS 33.401 [32];

1. derive the K_{RRCint} key associated with the integrityProtAlgorithm indicated in the SecurityModeCommand message, as specified in TS 33.401 [32];

1. request lower layers to verify the integrity protection of the SecurityModeCommand message, using the algorithm indicated by the integrityProtAlgorithm as included in the SecurityModeCommand message and the K_{RRCint} key;

1. if the SecurityModeCommand message passes the integrity protection check:

 2. derive the K_{RRCenc} key and the K_{UPenc} key associated with the cipheringAlgorithm indicated in the SecurityModeCommand message, as specified in TS 33.401 [32];

 2. if connected as an RN:

 3. derive the K_{UPint} key associated with the integrityProtAlgorithm indicated in the SecurityModeCommand message, as specified in TS 33.401 [32];

 2. configure lower layers to apply integrity protection using the indicated algorithm and the K_{RRCint} key immediately, i.e. integrity protection shall be applied to all subsequent messages received and sent by the UE, including the SecurityModeComplete message;

 2. configure lower layers to apply ciphering using the indicated algorithm, the K_{RRCenc} key and the K_{UPenc} key after completing the procedure, i.e. ciphering shall be applied to all subsequent messages received and sent by the UE, except for the SecurityModeComplete message which is sent unciphered;

 2. if connected as an RN:

 3. configure lower layers to apply integrity protection using the indicated algorithm and the K_{UPint} key, for DRBs that are subsequently configured to apply integrity protection, if any;

 2. consider AS security to be activated;

 2. upon RRC connection establishment, if UE does not need UL gaps during continuous uplink transmission:

 3. configure lower layers to stop using UL gaps during continuous uplink transmission in FDD for SecurityModeComplete message and subsequent uplink transmission in RRC_CONNECTED except for UL transmissions as specified in TS36.211 [21];

 2. submit the SecurityModeComplete message to lower layers for transmission, upon which the procedure ends;

1. else:

 2. continue using the configuration used prior to the reception of the SecurityModeCommand message, i.e. neither apply integrity protection nor ciphering.

 2. submit the SecurityModeFailure message to lower layers for transmission, upon which the procedure ends;
5.3.5 RRC connection reconfiguration

5.3.5.1 General

The purpose of this procedure is to modify an RRC connection, e.g. to establish/modify/release RBs, to perform handover, to setup/modify/release measurements, to add/modify/release SCells. As part of the procedure, NAS dedicated information may be transferred from E-UTRAN to the UE.

5.3.5.2 Initiation

E-UTRAN may initiate the RRC connection reconfiguration procedure to a UE in RRC_CONNECTED. E-UTRAN applies the procedure as follows:

- the mobilityControlInfo is included only when AS-security has been activated, and SRB2 with at least one DRB are setup and not suspended;
- the establishment of RBs (other than SRB1, that is established during RRC connection establishment) is included only when AS security has been activated;
- the addition of SCells is performed only when AS security has been activated;

5.3.5.3 Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by the UE

If the RRCConnectionReconfiguration message does not include the mobilityControlInfo and the UE is able to comply with the configuration included in this message, the UE shall:

1> if this is the first RRCConnectionReconfiguration message after successful completion of the RRC connection re-establishment procedure:
- re-establish PDCP for SRB2 and for all DRBs that are established, if any;
- re-establish RLC for SRB2 and for all DRBs that are established, if any;
if the `RRCConnectionReconfiguration` message includes the `fullConfig`:

3> perform the radio configuration procedure as specified in 5.3.5.8;

2> if the `RRCConnectionReconfiguration` message includes the `radioResourceConfigDedicated`:

3> perform the radio resource configuration procedure as specified in 5.3.10;

2> resume SRB2 and all DRBs that are suspended, if any;

NOTE 1: The handling of the radio bearers after the successful completion of the PDCP re-establishment, e.g. the re-transmission of unacknowledged PDCP SDUs (as well as the associated status reporting), the handling of the SN and the HFN, is specified in TS 36.323 [8].

NOTE 2: The UE may discard SRB2 messages and data that it receives prior to completing the reconfiguration used to resume these bearers.

1> else:

2> if the `RRCConnectionReconfiguration` message includes the `radioResourceConfigDedicated`:

3> perform the radio resource configuration procedure as specified in 5.3.10;

NOTE 3: If the `RRCConnectionReconfiguration` message includes the establishment of radio bearers other than SRB1, the UE may start using these radio bearers immediately, i.e. there is no need to wait for an outstanding acknowledgment of the `SecurityModeComplete` message.

1> if the received `RRCConnectionReconfiguration` includes the `scellToReleaseList`:

2> perform SCell release as specified in 5.3.10.3a;

1> if the received `RRCConnectionReconfiguration` includes the `scellToAddModList`:

2> perform SCell addition or modification as specified in 5.3.10.3b;

1> if the received `RRCConnectionReconfiguration` includes the `scg-configuration` or

1> if the current UE configuration includes one or more split DRBs and the received `RRCConnectionReconfiguration` includes `radioResourceConfigDedicated` including `drb-ToAddModList`:

2> perform SCG reconfiguration as specified in 5.3.10.10;

1> if the received `RRCConnectionReconfiguration` includes the `systemInformationBlockType1Dedicated`:

2> perform the actions upon reception of the `SystemInformationBlockType1` message as specified in 5.2.2.7;

1> if the `RRCConnectionReconfiguration` message includes the `dedicatedInfoNASList`:

2> forward each element of the `dedicatedInfoNASList` to upper layers in the same order as listed;

1> if the `RRCConnectionReconfiguration` message includes the `measConfig`:

2> perform the measurement configuration procedure as specified in 5.5.2;

1> if the `RRCConnectionReconfiguration` message includes the `otherConfig`:

2> perform the other configuration procedure as specified in 5.3.10.9;

1> if the `RRCConnectionReconfiguration` message includes the `sl-DiscConfig` or `sl-CommConfig`:

2> perform the sidelink dedicated configuration procedure as specified in 5.3.10.15;

1> if the `RRCConnectionReconfiguration` message includes the `sl-V2X-ConfigDedicated`:

2> perform the V2X sidelink communication dedicated configuration procedure as specified in 5.3.10.15a;
1> if the **RRCConnectionReconfiguration** message includes **wlan-OffloadInfo**:
2> perform the dedicated WLAN offload configuration procedure as specified in 5.6.12.2;

1> if the **RRCConnectionReconfiguration** message includes **rcliwi-Configuration**:
2> perform the WLAN traffic steering command procedure as specified in 5.6.16.2;

1> if the **RRCConnectionReconfiguration** message includes **lwa-Configuration**:
2> perform the LWA configuration procedure as specified in 5.6.14.2;

1> if the **RRCConnectionReconfiguration** message includes **lwip-Configuration**:
2> perform the LWIP reconfiguration procedure as specified in 5.6.17.2;

1> upon RRC connection establishment, if UE does not need UL gaps during continuous uplink transmission:
2> configure lower layers to stop using UL gaps during continuous uplink transmission in FDD for **RRCConnectionReconfigurationComplete** message and subsequent uplink transmission in **RRC_CONNECTED** except for UL transmissions as specified in TS36.211 [21];

1> set the content of **RRCConnectionReconfigurationComplete** message as follows:
2> if the **RRCConnectionReconfiguration** message includes **perCC-GapIndicationRequest**:
3> include **perCC-GapIndicationList** and **numFreqEffective**;
2> if the frequencies are configured for reduced measurement performance:
3> include **numFreqEffectiveReduced**;
1> submit the **RRCConnectionReconfigurationComplete** message to lower layers for transmission using the new configuration, upon which the procedure ends;

5.3.5.4 Reception of an **RRCConnectionReconfiguration** including the **mobilityControlInfo** by the UE (handover)

If the **RRCConnectionReconfiguration** message includes the **mobilityControlInfo** and the UE is able to comply with the configuration included in this message, the UE shall:

1> stop timer T310, if running;
1> stop timer T312, if running;
1> start timer T304 with the timer value set to *t304*, as included in the **mobilityControlInfo**;
1> stop timer T370, if running;
1> if the **carrierFreq** is included:
2> consider the target PCell to be one on the frequency indicated by the **carrierFreq** with a physical cell identity indicated by the **targetPhysCellId**;
1> else:
2> consider the target PCell to be one on the frequency of the source PCell with a physical cell identity indicated by the **targetPhysCellId**;
1> start synchronising to the DL of the target PCell;

NOTE 1: The UE should perform the handover as soon as possible following the reception of the RRC message triggering the handover, which could be before confirming successful reception (HARQ and ARQ) of this message.

1> if BL UE or UE in CE:
if sameSFN-Indication is not present in mobilityControlInfo:

3> acquire the MasterInformationBlock in the target PCell;

1> if makeBeforeBreak is configured:

2> perform the remainder of this procedure including and following resetting MAC after the UE has stopped the uplink transmission/downlink reception with the source cell(s);

NOTE 1a: It is up to UE implementation when to stop the uplink transmission/ downlink reception with the source cell(s) to initiate re-tuning for connection to the target cell [16], if makeBeforeBreak is configured.

1> reset MCG MAC and SCG MAC, if configured;

1> re-establish PDCP for all RBs that are established;

NOTE 2: The handling of the radio bearers after the successful completion of the PDCP re-establishment, e.g. the re-transmission of unacknowledged PDCP SDUs (as well as the associated status reporting), the handling of the SN and the HFN, is specified in TS 36.323 [8].

1> re-establish MCG RLC and SCG RLC, if configured, for all RBs that are established;

1> configure lower layers to consider the SCell(s) other than the PSCell, if configured, to be in deactivated state;

1> apply the value of the newUE-Identity as the C-RNTI;

1> if the RRCConnectionReconfiguration message includes the fullConfig:

2> perform the radio configuration procedure as specified in 5.3.5.8;

1> configure lower layers in accordance with the received radioResourceConfigCommon;

1> if the received RRCConnectionReconfiguration message includes the rach-Skip:

2> configure lower layers to apply the rach-Skip for the target MCG, as specified in TS 36.213 [23] and 36.321 [6];

1> configure lower layers in accordance with any additional fields, not covered in the previous, if included in the received mobilityControlInfo;

1> if the received RRCConnectionReconfiguration includes the sCellToReleaseList:

2> perform SCell release as specified in 5.3.10.3a;

1> if the received RRCConnectionReconfiguration includes the scg-Configuration; or

1> if the current UE configuration includes one or more split DRBs and the received RRCConnectionReconfiguration includes radioResourceConfigDedicated including drb-ToAddModList:

2> perform SCG reconfiguration as specified in 5.3.10.10;

1> if the RRCConnectionReconfiguration message includes the radioResourceConfigDedicated:

2> perform the radio resource configuration procedure as specified in 5.3.10;

1> if the keyChangeIndicator received in the securityConfigHO is set to TRUE:

2> update the K_{ASN} key based on the K_{ASME} key taken into use with the latest successful NAS SMC procedure, as specified in TS 33.401 [32];

1> else:

2> update the K_{ASN} key based on the current K_{ASN} or the NH, using the nextHopChainingCount value indicated in the securityConfigHO, as specified in TS 33.401 [32];

1> store the nextHopChainingCount value;

1> if the securityAlgorithmConfig is included in the securityConfigHO:
2> derive the $KRRC_{int}$ key associated with the $integrityProtAlgorithm$, as specified in TS 33.401 [32];
2> if connected as an RN:
 3> derive the $K_{UP_{int}}$ key associated with the $integrityProtAlgorithm$, as specified in TS 33.401 [32];
2> derive the $KRRC_{enc}$ key and the $K_{UP_{enc}}$ key associated with the $cipheringAlgorithm$, as specified in TS 33.401 [32];
1> else:
 2> derive the $KRRC_{int}$ key associated with the current integrity algorithm, as specified in TS 33.401 [32];
 2> if connected as an RN:
 3> derive the $K_{UP_{int}}$ key associated with the current integrity algorithm, as specified in TS 33.401 [32];
 2> derive the $KRRC_{enc}$ key and the $K_{UP_{enc}}$ key associated with the current ciphering algorithm, as specified in TS 33.401 [32];
1> configure lower layers to apply the integrity protection algorithm and the $KRRC_{int}$ key, i.e. the integrity protection configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;
1> configure lower layers to apply the ciphering algorithm, the $KRRC_{enc}$ key and the $K_{UP_{enc}}$ key, i.e. the ciphering configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;
1> if connected as an RN:
 2> configure lower layers to apply the integrity protection algorithm and the $K_{UP_{int}}$ key, for current or subsequently established DRBs that are configured to apply integrity protection, if any;
1> if the received $RRCConnectionReconfiguration$ includes the $sCellToAddModList$:
 2> perform SCell addition or modification as specified in 5.3.10.3b;
1> if the received $RRCConnectionReconfiguration$ includes the $systemInformationBlockType1Dedicated$:
 2> perform the actions upon reception of the $SystemInformationBlockType1$ message as specified in 5.2.2.7;
1> perform the measurement related actions as specified in 5.5.6.1;
1> if the $RRCConnectionReconfiguration$ message includes the $measConfig$:
 2> perform the measurement configuration procedure as specified in 5.5.2;
1> perform the measurement identity autonomous removal as specified in 5.5.2.2a;
1> release $reportProximityConfig$ and clear any associated proximity status reporting timer;
1> if the $RRCConnectionReconfiguration$ message includes the $otherConfig$:
 2> perform the other configuration procedure as specified in 5.3.10.9;
1> if the $RRCConnectionReconfiguration$ message includes the $sl-DiscConfig$ or $sl-CommConfig$:
 2> perform the sidelink dedicated configuration procedure as specified in 5.3.10.15;
1> if the $RRCConnectionReconfiguration$ message includes $wlan-OffloadInfo$:
 2> perform the dedicated WLAN offload configuration procedure as specified in 5.6.12.2;
1> if $handoverWithoutWT-Change$ is not configured:
 2> release the LWA configuration, if configured, as described in 5.6.14.3;
1> release the LWIP configuration, if configured, as described in 5.6.17.3;
1> if the **RRCConnectionReconfiguration** message includes `rclwi-Configuration`:

 2> perform the WLAN traffic steering command procedure as specified in 5.6.16.2;

1> if the **RRCConnectionReconfiguration** message includes `lwa-Configuration`:

 2> perform the LWA configuration procedure as specified in 5.6.14.2;

1> if the **RRCConnectionReconfiguration** message includes `lwip-Configuration`:

 2> perform the LWIP reconfiguration procedure as specified in 5.6.17.2;

1> if the **RRCConnectionReconfiguration** message includes the `sl-V2X-ConfigDedicated` or `mobilityControlInfoV2X`:

 2> perform the V2X sidelink communication dedicated configuration procedure as specified in 5.3.10.15a;

1> set the content of **RRCConnectionReconfigurationComplete** message as follows:

 2> if the UE has radio link failure or handover failure information available in `VarRLF-Report` and if the RPLMN is included in `plmn-IdentityList` stored in `VarRLF-Report`:

 3> include `rlf-InfoAvailable`;

 2> if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in `plmn-IdentityList` stored in `VarLogMeasReport` and if T330 is not running:

 3> include `logMeasAvailableMBSFN`;

 2> else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in `plmn-IdentityList` stored in `VarLogMeasReport`:

 3> include `logMeasAvailable`;

 2> if the UE has connection establishment failure information available in `VarConnEstFailReport` and if the RPLMN is equal to `plmn-Identity` stored in `VarConnEstFailReport`:

 3> include `connEstFailInfoAvailable`;

 2> if the **RRCConnectionReconfiguration** message includes `perCC-GapIndicationRequest`:

 3> include `perCC-GapIndicationList` and `numFreqEffective`;

 2> if the frequencies are configured for reduced measurement performance:

 3> include `numFreqEffectiveReduced`;

1> submit the **RRCConnectionReconfigurationComplete** message to lower layers for transmission;

1> if MAC successfully completes the random access procedure; or

1> if MAC indicates the successful reception of a PDCCH transmission addressed to C-RNTI and if `rach-Skip` is configured:

 2> stop timer T304;

 2> release `ul-ConfigInfo`, if configured;

 2> apply the parts of the CQI reporting configuration, the scheduling request configuration and the sounding RS configuration that do not require the UE to know the SFN of the target PCell, if any;

 2> apply the parts of the measurement and the radio resource configuration that require the UE to know the SFN of the target PCell (e.g. measurement gaps, periodic CQI reporting, scheduling request configuration, sounding RS configuration), if any, upon acquiring the SFN of the target PCell;

NOTE 3: Whenever the UE shall setup or reconfigure a configuration in accordance with a field that is received it applies the new configuration, except for the cases addressed by the above statements.
2> if the UE is configured to provide IDC indications:
 3> if the UE has transmitted an InDeviceCoexIndication message during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo:
 4> initiate transmission of the InDeviceCoexIndication message in accordance with 5.6.9.3;
2> if the UE is configured to provide power preference indications, overheating assistance information, SPS assistance information, delay budget report or maximum bandwidth preference indications:
 3> if the UE has transmitted a UEAssistanceInformation message during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo:
 4> initiate transmission of the UEAssistanceInformation message in accordance with 5.6.10.3;
2> if SystemInformationBlockType15 is broadcast by the PCell:
 3> if the UE has transmitted a MBMSInterestIndication message during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo:
 4> ensure having a valid version of SystemInformationBlockType15 for the PCell;
 4> determine the set of MBMS frequencies of interest in accordance with 5.8.5.3;
 4> determine the set of MBMS services of interest in accordance with 5.8.5.3a;
 4> initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;
2> if SystemInformationBlockType18 is broadcast by the target PCell; and the UE transmitted a SidelinkUEInformation message indicating a change of sidelink communication related parameters relevant in target PCell (i.e. change of commRxInterestedFreq or commTxResourceReq, commTxResourceReqUC if SystemInformationBlockType18 includes commTxResourceUC-ReqAllowed or commTxResourceInfoReqRelay if PCell broadcasts SystemInformationBlockType19 including discConfigRelay) during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo; or
2> if SystemInformationBlockType19 is broadcast by the target PCell; and the UE transmitted a SidelinkUEInformation message indicating a change of sidelink discovery related parameters relevant in target PCell (i.e. change of discRxInterest or discTxResourceReq, discTxResourceReqPS if SystemInformationBlockType19 includes discConfigPS or discRxGapReq or discTxGapReq if the UE is configured with gapRequestsAllowedDedicated set to true or if the UE is not configured with gapRequestsAllowedDedicated and SystemInformationBlockType19 includes gapRequestsAllowedCommon) during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo; or
2> if SystemInformationBlockType21 is broadcast by the target PCell; and the UE transmitted a SidelinkUEInformation message indicating a change of V2X sidelink communication related parameters relevant in target PCell (i.e. change of v2x-CommRxInterestedFreqList or v2x-CommTxResourceReq) during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo;
3> initiate transmission of the SidelinkUEInformation message in accordance with 5.10.2.3;
2> the procedure ends;

NOTE 4: The UE is not required to determine the SFN of the target PCell by acquiring system information from that cell before performing RACH access in the target PCell, except for BL UEs or UEs in CE when sameSFN-Indication is not present in mobilityControlInfo.

5.3.5.5 Reconfiguration failure

The UE shall:

1> if the UE is unable to comply with (part of) the configuration included in the RRCConnectionReconfiguration message:
2> continue using the configuration used prior to the reception of \textit{RRCConnectionReconfiguration} message;

2> if security has not been activated:

3> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause other;

2> else:

3> initiate the connection re-establishment procedure as specified in 5.3.7, upon which the connection reconfiguration procedure ends;

\textbf{NOTE 1:} The UE may apply above failure handling also in case the \textit{RRCConnectionReconfiguration} message causes a protocol error for which the generic error handling as defined in 5.7 specifies that the UE shall ignore the message.

\textbf{NOTE 2:} If the UE is unable to comply with part of the configuration, it does not apply any part of the configuration, i.e. there is no partial success/ failure.

\textbf{5.3.5.6 T304 expiry (handover failure)}

The UE shall:

1> if T304 expires (handover failure):

\textbf{NOTE 1:} Following T304 expiry any dedicated preamble, if provided within the \textit{rach-ConfigDedicated}, is not available for use by the UE anymore.

2> revert back to the configuration used in the source PCell, excluding the configuration configured by the \textit{physicalConfigDedicated}, the \textit{mac-MainConfig} and the \textit{sps-Config};

\textbf{NOTE 1a:} In the context above, "the configuration" includes state variables and parameters of each radio bearer. PDCP entities associated with RLC UM and SRB bearers are reset after the successful RRC connection re-establishment procedure according to Section 5.2 in TS 36.323 [8].

2> store the following handover failure information in \textit{VarRLF-Report} by setting its fields as follows:

3> clear the information included in \textit{VarRLF-Report}, if any;

3> set the \textit{plmn-IdentityList} to include the list of EPLMNs stored by the UE (i.e. includes the RPLMN);

3> set the \textit{measResultLastServCell} to include the RSRP and RSRQ, if available, of the source PCell based on measurements collected up to the moment the UE detected handover failure and in accordance with the following:

4> if the UE includes \textit{rsrqResult}, include the \textit{lastServCellRSRQ-Type};

3> set the \textit{measResultNeighCells} to include the best measured cells, other than the source PCell, ordered such that the best cell is listed first, and based on measurements collected up to the moment the UE detected handover failure, and set its fields as follows;

4> if the UE was configured to perform measurements for one or more EUTRA frequencies, include the \textit{measResultListEUTRA};

4> if the UE includes \textit{rsrqResult}, include the \textit{rsrq-Type};

4> if the UE was configured to perform measurement reporting for one or more neighbouring UTRA frequencies, include the \textit{measResultListUTRA};

4> if the UE was configured to perform measurement reporting for one or more neighbouring GERAN frequencies, include the \textit{measResultListGERAN};

4> if the UE was configured to perform measurement reporting for one or more neighbouring CDMA2000 frequencies, include the \textit{measResultsCDMA2000};

4> for each neighbour cell included, include the optional fields that are available;
NOTE 2: The measured quantities are filtered by the L3 filter as configured in the mobility measurement configuration. The measurements are based on the time domain measurement resource restriction, if configured. Blacklisted cells are not required to be reported.

3> if detailed location information is available, set the content of the locationInfo as follows:
 4> include the locationCoordinates;
 4> include the horizontalVelocity, if available;
3> set the failedPCellId to the global cell identity, if available, and otherwise to the physical cell identity and carrier frequency of the target PCell of the failed handover;
3> include previousPCellId and set it to the global cell identity of the PCell where the last RRCConnectionReconfiguration message including mobilityControlInfo was received;
3> set the timeConnFailure to the elapsed time since reception of the last RRCConnectionReconfiguration message including mobilityControlInfo;
3> set the connectionFailureType to 'hof';
3> set the c-RNTI to the C-RNTI used in the source PCell;
2> initiate the connection re-establishment procedure as specified in 5.3.7, upon which the RRC connection reconfiguration procedure ends;

The UE may discard the handover failure information, i.e. release the UE variable VarRLF-Report, 48 hours after the failure is detected, upon power off or upon detach.

NOTE 3: E-UTRAN may retrieve the handover failure information using the UE information procedure with rlf-ReportReq set to true, as specified in 5.6.5.3.

5.3.5.7 Void

5.3.5.7a T307 expiry (SCG change failure)

The UE shall:

1> if T307 expires:

 NOTE 1: Following T307 expiry any dedicated preamble, if provided within the rach-ConfigDedicatedSCG, is not available for use by the UE anymore.

 2> initiate the SCG failure information procedure as specified in 5.6.13 to report SCG change failure;

5.3.5.8 Radio Configuration involving full configuration option

The UE shall:

1> release/ clear all current dedicated radio configurations except the MCG C-RNTI, the MCG security configuration and the PDCP, RLC, logical channel configurations for the RBs and the logged measurement configuration;

NOTE 1: Radio configuration is not just the resource configuration but includes other configurations like MeasConfig and OtherConfig.

1> if the RRCConnectionReconfiguration message includes the mobilityControlInfo:

 2> release/ clear all current common radio configurations;

 2> use the default values specified in 9.2.5 for timer T310, T311 and constant N310, N311;
1> else:
2> use values for timers T301, T310, T311 and constants N310, N311, as included in `ue-TimersAndConstants`
 received in `SystemInformationBlockType2` (or `SystemInformationBlockType2-NB` in NB-IoT);

1> apply the default physical channel configuration as specified in 9.2.4;

1> apply the default semi-persistent scheduling configuration as specified in 9.2.3;

1> apply the default MAC main configuration as specified in 9.2.2;

1> if the UE is a NB-IoT UE; or

1> for each `srb-Identity` value included in the `srb-ToAddModList` (SRB reconfiguration):
 2> apply the specified configuration defined in 9.1.2 for the corresponding SRB;
 2> apply the corresponding default RLC configuration for the SRB specified in 9.2.1.1 for SRB1 or in 9.2.1.2
 for SRB2;
 2> apply the corresponding default logical channel configuration for the SRB as specified in 9.2.1.1 for SRB1 or
 in 9.2.1.2 for SRB2;

NOTE 2: This is to get the SRBs (SRB1 and SRB2 for handover and SRB2 for reconfiguration after
reestablishment) to a known state from which the reconfiguration message can do further configuration.

1> for each `eps-BearerIdentity` value included in the `drb-ToAddModList` that is part of the current UE configuration:
 2> release the PDCP entity;
 2> release the RLC entity or entities;
 2> release the DTCH logical channel;
 2> release the `drb-identity`;

NOTE 3: This will retain the `eps-bearerIdentity` but remove the DRBs including `drb-identity` of these bearers from
the current UE configuration and trigger the setup of the DRBs within the AS in Section 5.3.10.3 using
the new configuration. The `eps-bearerIdentity` acts as the anchor for associating the released and re-setup
DRB. In the AS the DRB re-setup is equivalent with a new DRB setup (including new PDCP and logical
channel configurations).

1> for each `eps-BearerIdentity` value that is part of the current UE configuration but not part of the `drb-
ToAddModList`:
 2> perform DRB release as specified in 5.3.10.2;

5.3.6 Counter check

5.3.6.1 General

![Counter check procedure diagram](image-url)

Figure 5.3.6.1-1: Counter check procedure
The counter check procedure is used by E-UTRAN to request the UE to verify the amount of data sent/received on each DRB. More specifically, the UE is requested to check if, for each DRB, the most significant bits of the COUNT match with the values indicated by E-UTRAN.

NOTE: The procedure enables E-UTRAN to detect packet insertion by an intruder (‘a man in the middle’).

5.3.6.2 Initiation

E-UTRAN initiates the procedure by sending a CounterCheck message.

NOTE: E-UTRAN may initiate the procedure when any of the COUNT values reaches a specific value.

5.3.6.3 Reception of the CounterCheck message by the UE

Upon receiving the CounterCheck message, the UE shall:

1> for each DRB that is established:
 2> if no COUNT exists for a given direction (uplink or downlink) because it is a uni-directional bearer configured only for the other direction:
 3> assume the COUNT value to be 0 for the unused direction;
 2> if the drb-Identity is not included in the drb-CountMSB-InfoList:
 3> include the DRB in the drb-CountInfoList in the CounterCheckResponse message by including the drb-Identity, the count-Uplink and the count-Downlink set to the value of the corresponding COUNT;
 2> else if, for at least one direction, the most significant bits of the COUNT are different from the value indicated in the drb-CountMSB-InfoList:
 3> include the DRB in the drb-CountInfoList in the CounterCheckResponse message by including the drb-Identity, the count-Uplink and the count-Downlink set to the value of the corresponding COUNT;

1> for each DRB that is included in the drb-CountMSB-InfoList in the CounterCheck message that is not established:
 2> include the DRB in the drb-CountInfoList in the CounterCheckResponse message by including the drb-Identity, the count-Uplink and the count-Downlink with the most significant bits set identical to the corresponding values in the drb-CountMSB-InfoList and the least significant bits set to zero;

1> submit the CounterCheckResponse message to lower layers for transmission upon which the procedure ends;

5.3.7 RRC connection re-establishment

5.3.7.1 General

![Diagram](https://via.placeholder.com/150)

Figure 5.3.7.1-1: RRC connection re-establishment, successful
5.3.7.1 RRCConnectionReestablishmentRequest

The purpose of this procedure is to re-establish the RRC connection, which involves the resumption of SRB1 (SRB1bis for a NB-IoT UE for which AS security has not been activated) operation, the re-activation of security (except for a NB-IoT UE for which AS security has not been activated) and the configuration of only the PCell.

Except for a NB-IoT UE for which AS security has not been activated, a UE in RRC_CONNECTED, for which security has been activated, may initiate the procedure in order to continue the RRC connection. The connection re-establishment succeeds only if the concerned cell is prepared i.e. has a valid UE context. In case E-UTRAN accepts the re-establishment, SRB1 operation resumes while the operation of other radio bearers remains suspended. If AS security has not been activated, the UE does not initiate the procedure but instead moves to RRC_IDLE directly.

When AS security has not been activated, a NB-IoT UE supporting RRC connection re-establishment for the Control Plane CIoT EPS optimisation in RRC_CONNECTED may initiate the procedure in order to continue the RRC connection.

E-UTRAN applies the procedure as follows:

- When AS security has been activated:
 - to reconfigure SRB1 and to resume data transfer only for this RB;
 - to re-activate AS security without changing algorithms.

- For a NB-IoT UE supporting RRC connection re-establishment for the Control Plane CIoT EPS optimisation, when AS security has not been activated:
 - to re-establish SRB1bis and to continue data transfer for this RB.

5.3.7.2 Initiation

The UE shall only initiate the procedure either when AS security has been activated or for a NB-IoT UE supporting RRC connection re-establishment for the Control Plane CIoT EPS optimisation. The UE initiates the procedure when one of the following conditions is met:

1. upon detecting radio link failure, in accordance with 5.3.11; or
2. upon handover failure, in accordance with 5.3.5.6; or
3. upon mobility from E-UTRA failure, in accordance with 5.4.3.5; or
4. upon integrity check failure indication from lower layers; or
5. upon an RRC connection reconfiguration failure, in accordance with 5.3.5.5;

Upon initiation of the procedure, the UE shall:

1. stop timer T310, if running;
2. stop timer T312, if running;
3. stop timer T313, if running;
4. stop timer T307, if running;
5.3.7.3 Actions following cell selection while T311 is running

Upon selecting a suitable E-UTRA cell, the UE shall:

1> stop timer T311;
1> start timer T301;
1> apply the timeAlignmentTimerCommon included in SystemInformationBlockType2;
1> if the UE is a NB-IoT UE supporting RRC connection re-establishment for the Control Plane CIoT EPS optimisation and AS security has not been activated; and
1> if cp-reestablishment is not included in SystemInformationBlockType2-NB:
2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';
1> else:
2> initiate transmission of the RRCConnectionReestablishmentRequest message in accordance with 5.3.7.4;
NOTE: This procedure applies also if the UE returns to the source PCell.

Upon selecting an inter-RAT cell, the UE shall:

1. if the selected cell is a UTRA cell, and if the UE supports Radio Link Failure Report for Inter-RAT MRO, include $selectedUTRA-CellId$ in the $VarRLF-Report$ and set it to the physical cell identity and carrier frequency of the selected UTRA cell;

1. perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';

5.3.7.4 Actions related to transmission of $RRConnectionReestablishmentRequest$ message

Except for NB-IoT, if the procedure was initiated due to radio link failure or handover failure, the UE shall:

1. set the $reestablishmentCellId$ in the $VarRLF-Report$ to the global cell identity of the selected cell;

The UE shall set the contents of $RRConnectionReestablishmentRequest$ message as follows:

1. except for a NB-IoT UE for which AS security has not been activated, set the $ue-Identity$ as follows:
 2. set the $c-RNTI$ to the C-RNTI used in the source PCell (handover and mobility from E-UTRA failure) or used in the PCell in which the trigger for the re-establishment occurred (other cases);
 2. set the $physCellId$ to the physical cell identity of the source PCell (handover and mobility from E-UTRA failure) or of the PCell in which the trigger for the re-establishment occurred (other cases);
 2. set the $shortMAC-I$ to the 16 least significant bits of the MAC-I calculated:
 3. over the ASN.1 encoded as per section 8 (i.e., a multiple of 8 bits) $VarShortMAC-Input$ (or $VarShortMAC-Input-NB$ in NB-IoT);
 3. with the K_{RRCint} key and integrity protection algorithm that was used in the source PCell (handover and mobility from E-UTRA failure) or of the PCell in which the trigger for the re-establishment occurred (other cases); and
 3. with all input bits for COUNT, BEARER and DIRECTION set to binary ones;
 1. for a NB-IoT UE for which AS security has not been activated, set the $ue-Identity$ as follows:
 2. request upper layers for calculated $ul-NAS-MAC$ and $ul-NAS-Count$ using the $cellIdentity$ of the PCell in which the trigger for the re-establishment occurred;
 2. set the $s-TMSI$ to the S-TMSI provided by upper layers;
 2. set the $ul-NAS-MAC$ to the $ul-NAS-MAC$ value provided by upper layers;
 2. set the $ul-NAS-Count$ to the $ul-NAS-Count$ value provided by upper layers;
 1. set the $reestablishmentCause$ as follows:
 2. if the re-establishment procedure was initiated due to reconfiguration failure as specified in 5.3.5.5 (the UE is unable to comply with the reconfiguration):
 3. set the $reestablishmentCause$ to the value $reconfigurationFailure$;
 2. else if the re-establishment procedure was initiated due to handover failure as specified in 5.3.5.6 (intra-LTE handover failure) or 5.4.3.5 (inter-RAT mobility from EUTRA failure):
 3. set the $reestablishmentCause$ to the value $handoverFailure$;
 2. else:
 3. set the $reestablishmentCause$ to the value $otherFailure$;

The UE shall submit the $RRConnectionReestablishmentRequest$ message to lower layers for transmission.
5.3.7.5 Reception of the RRCConnectionReestablishment by the UE

NOTE 1: Prior to this, lower layer signalling is used to allocate a C-RNTI. For further details see TS 36.321 [6];

The UE shall:

1> stop timer T301;
1> consider the current cell to be the PCell;
1> except for a NB-IoT UE for which AS security has not been activated:
 2> re-establish PDCP for SRB1;
 2> re-establish RLC for SRB1;
 2> perform the radio resource configuration procedure in accordance with the received radioResourceConfigDedicated and as specified in 5.3.10;
 2> resume SRB1;

NOTE 2: E-UTRAN should not transmit any message on SRB1 prior to receiving the RRCConnectionReestablishmentComplete message.

2> update the K_{NB} key based on the K_{ASME} key to which the current K_{NB} is associated, using the nextHopChainingCount value indicated in the RRCConnectionReestablishment message, as specified in TS 33.401 [32];
2> store the nextHopChainingCount value;
2> derive the K_{RRCint} key associated with the previously configured integrity algorithm, as specified in TS 33.401 [32];
2> derive the K_{RRCenc} key and the K_{UPenc} key associated with the previously configured ciphering algorithm, as specified in TS 33.401 [32];
2> if connected as an RN:
 3> derive the K_{UPint} key associated with the previously configured integrity algorithm, as specified in TS 33.401 [32];
2> configure lower layers to activate integrity protection using the previously configured algorithm and the K_{RRCint} key immediately, i.e., integrity protection shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;
2> if connected as an RN:
 3> configure lower layers to apply integrity protection using the previously configured algorithm and the K_{UPint} key, for subsequently resumed or subsequently established DRBs that are configured to apply integrity protection, if any;
2> configure lower layers to apply ciphering using the previously configured algorithm, the K_{RRCenc} key and the K_{UPenc} key immediately, i.e., ciphering shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;
2> if the UE is not a NB-IoT UE:
 3> set the content of RRCConnectionReestablishmentComplete message as follows:
 4> if the UE has radio link failure or handover failure information available in VarRLF-Report and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:
 5> include the rlf-InfoAvailable;
 4> if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport and if T330 is not running:
5> include logMeasAvailableMBSFN;

4> else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:

5> include the logMeasAvailable;

4> if the UE has connection establishment failure information available in VarConnEstFailReport and if the RPLMN is equal to plmn-Identity stored in VarConnEstFailReport:

5> include the connEstFailInfoAvailable;

3> perform the measurement related actions as specified in 5.5.6.1;

3> perform the measurement identity autonomous removal as specified in 5.5.2.2a;

2> submit the RRCConnectionReestablishmentComplete message to lower layers for transmission;

2> if SystemInformationBlockType15 is broadcast by the PCell:

3> if the UE has transmitted an MBMSInterestIndication message during the last 1 second preceding detection of radio link failure:

4> ensure having a valid version of SystemInformationBlockType15 for the PCell;

4> determine the set of MBMS frequencies of interest in accordance with 5.8.5.3;

4> determine the set of MBMS services of interest in accordance with 5.8.5.3a;

4> initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;

2> if SystemInformationBlockType18 is broadcast by the PCell; and the UE transmitted a SidelinkUEInformation message indicating a change of sidelink communication related parameters relevant in PCell (i.e. change of commRxInterestedFreq or commTxResourceReq, commTxResourceReqUC if SystemInformationBlockType18 includes commTxResourceUC-ReqAllowed or commTxResourceInfoReqRelay if PCell broadcasts SystemInformationBlockType19 including discConfigRelay) during the last 1 second preceding detection of radio link failure; or

2> if SystemInformationBlockType19 is broadcast by the PCell; and the UE transmitted a SidelinkUEInformation message indicating a change of sidelink discovery related parameters relevant in PCell (i.e. change of discRxInterest or discTxResourceReq, discTxResourceReqPS if SystemInformationBlockType19 includes discConfigPS or discRxGapReq or discTxGapReq if the UE is configured with gapRequestsAllowedDedicated set to true or if the UE is not configured with gapRequestsAllowedDedicated and SystemInformationBlockType19 includes gapRequestsAllowedCommon) during the last 1 second preceding detection of radio link failure; or

2> if SystemInformationBlockType21 including sl-V2X-ConfigCommon is broadcast by the PCell; and the UE transmitted a SidelinkUEInformation message indicating a change of V2X sidelink communication related parameters relevant in PCell (i.e. change of v2x-CommRxInterestedFreqList or v2x-CommTxResourceReq) during the last 1 second preceding detection of radio link failure:

3> initiate transmission of the SidelinkUEInformation message in accordance with 5.10.2.3;

1> for a NB-IoT UE for which AS security has not been activated:

2> validate dl-NAS-MAC, as specified in TS 33.401 [32];

2> if dl-NAS-MAC check fails:

3> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure', upon which the procedure ends;

2> except for a UE that only supports the Control Plane CIoT EPS optimisation:

3> re-establish PDCP for SRB1;

3> re-establish RLC for SRB1;
2> re-establish RLC for SRB1bis;
2> perform the radio resource configuration procedure in accordance with the received
 radioResourceConfigDedicated and as specified in 5.3.10;
2> except for a UE that only supports the Control Plane CIoT EPS optimisation:
 3> resume SRB1;
2> resume SRB1bis;

NOTE 3: E-UTRAN should not transmit any message on SRB1bis prior to receiving the
 RRConnectionReestabishmentComplete message.

2> submit the RRConnectionReestabishmentComplete message to lower layers for transmission;
1> the procedure ends;

5.3.7.6 T311 expiry

Upon T311 expiry, the UE shall:
1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC
 connection failure';

5.3.7.7 T301 expiry or selected cell no longer suitable

The UE shall:
1> if timer T301 expires; or
1> if the selected cell becomes no longer suitable according to the cell selection criteria as specified in TS 36.304
 [4]:
2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC
 connection failure';

5.3.7.8 Reception of RRConnectionReestabishmentReject by the UE

Upon receiving the RRConnectionReestabishmentReject message, the UE shall:
1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC
 connection failure';

5.3.8 RRC connection release

5.3.8.1 General

![Diagram](image)

Figure 5.3.8.1-1: RRC connection release, successful

The purpose of this procedure is:

- to release the RRC connection, which includes the release of the established radio bearers as well as all radio
 resources; or
- to suspend the RRC connection, which includes the suspension of the established radio bearers.

5.3.8.2 Initiation

E-UTRAN initiates the RRC connection release procedure to a UE in RRC_CONNECTED.

5.3.8.3 Reception of the RRCConnectionRelease by the UE

The UE shall:

1> except for NB-IoT, BL UEs or UEs in CE, delay the following actions defined in this sub-clause 60 ms from the moment the RRCConnectionRelease message was received or optionally when lower layers indicate that the receipt of the RRCConnectionRelease message has been successfully acknowledged, whichever is earlier;

1> for BL UEs or UEs in CE, delay the following actions defined in this sub-clause 1.25 seconds from the moment the RRCConnectionRelease message was received or optionally when lower layers indicate that the receipt of the RRCConnectionRelease message has been successfully acknowledged, whichever is earlier;

1> for NB-IoT, delay the following actions defined in this sub-clause 10 seconds from the moment the RRCConnectionRelease message was received or optionally when lower layers indicate that the receipt of the RRCConnectionRelease message has been successfully acknowledged, whichever is earlier.

NOTE: For NB-IoT, when STATUS reporting, as defined in TS 36.322 [7], has not been triggered and the UE has sent positive HARQ feedback (ACK), as defined in TS 36.321 [6], the lower layers can be considered to have indicated that the receipt of the RRCConnectionRelease message has been successfully acknowledged.

1> if the RRCConnectionRelease message includes redirectedCarrierInfo indicating redirection to geran; or

1> if the RRCConnectionRelease message includes idleModeMobilityControlInfo including freqPriorityListGERAN:

2> if AS security has not been activated, and

2> if upper layers indicate that redirect to GERAN without AS security is not allowed:

3> ignore the content of the RRCConnectionRelease;

3> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other', upon which the procedure ends;

1> if the RRCConnectionRelease message includes the idleModeMobilityControlInfo:

2> store the cell reselection priority information provided by the idleModeMobilityControlInfo;

2> if the t320 is included:

3> start timer T320, with the timer value set according to the value of t320;

1> else:

2> apply the cell reselection priority information broadcast in the system information;

1> for NB-IoT, if the RRCConnectionRelease message includes the redirectedCarrierInfo:

2> if the redirectedCarrierOffsetDedicated is included in the redirectedCarrierInfo:

3> store the dedicated offset for the frequency in redirectedCarrierInfo;

3> start timer T322, with the timer value set according to the value of T322 in redirectedCarrierInfo;

1> if the releaseCause received in the RRCConnectionRelease message indicates loadBalancingTAURequired:

2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'load balancing TAU required';

1> else if the releaseCause received in the RRCConnectionRelease message indicates cs-FallbackHighPriority:
2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'CS Fallback High Priority';

1> else:

2> if the extendedWaitTime is present; and

2> if the UE supports delay tolerant access or the UE is a NB-IoT UE:

3> forward the extendedWaitTime to upper layers;

2> if the extendedWaitTime-CPdata is present and the NB-IoT UE only supports the Control Plane CIoT EPS optimisation:

3> forward the extendedWaitTime-CPdata to upper layers;

2> if the releaseCause received in the RRCConnectionRelease message indicates rrc-Suspend:

3> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC suspension';

2> else:

3> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other';

5.3.8.4 T320 expiry

The UE shall:

1> if T320 expires:

2> if stored, discard the cell reselection priority information provided by the idleModeMobilityControlInfo or inherited from another RAT;

2> apply the cell reselection priority information broadcast in the system information;

5.3.8.5 T322 expiry

The UE shall:

1> if T322 expires:

2> discard the redirectedCarrierOffsetDedicated provided in RRCConnectionRelease message;

5.3.8.6 UE actions upon receiving the expiry of DataInactivityTimer

Upon receiving the expiry of DataInactivityTimer from lower layers, the UE shall:

1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';

5.3.9 RRC connection release requested by upper layers

5.3.9.1 General

The purpose of this procedure is to release the RRC connection. Access to the current PCell may be barred as a result of this procedure.

NOTE: Upper layers invoke the procedure, e.g. upon determining that the network has failed an authentication check, see TS 24.301 [35].
5.3.9.2 Initiation

The UE initiates the procedure when upper layers request the release of the RRC connection. The UE shall not initiate the procedure for power saving purposes.

The UE shall:

1. if the upper layers indicate barring of the PCell:
 2. treat the PCell used prior to entering RRC_IDLE as barred according to TS 36.304 [4];
1. perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other';

5.3.10 Radio resource configuration

5.3.10.0 General

The UE shall:

1. if the received radioResourceConfigDedicated includes the srb-ToAddModList:
 2. perform the SRB addition or reconfiguration as specified in 5.3.10.1;
1. if the received radioResourceConfigDedicated includes the drb-ToReleaseList:
 2. perform DRB release as specified in 5.3.10.2;
1. if the received radioResourceConfigDedicated includes the drb-ToAddModList:
 2. perform DRB addition or reconfiguration as specified in 5.3.10.3;
1. if the received radioResourceConfigDedicated includes the mac-MainConfig:
 2. perform MAC main reconfiguration as specified in 5.3.10.4;
1. if the received radioResourceConfigDedicated includes sps-Config:
 2. perform SPS reconfiguration according to 5.3.10.5;
1. if the received radioResourceConfigDedicated includes the physicalConfigDedicated:
 2. reconfigure the physical channel configuration as specified in 5.3.10.6;
1. if the received radioResourceConfigDedicated includes the rlf-TimersAndConstants:
 2. reconfigure the values of timers and constants as specified in 5.3.10.7;
1. if the received radioResourceConfigDedicated includes the measSubframePatternPCell:
 2. reconfigure the time domain measurement resource restriction for the serving cell as specified in 5.3.10.8;
1. if the received radioResourceConfigDedicated includes the naics-Info:
 2. perform NAICS neighbour cell information reconfiguration for the PCell as specified in 5.3.10.13;
1. if the received RadioResourceConfigDedicatedPSCell includes the naics-Info:
 2. perform NAICS neighbour cell information reconfiguration for the PSCell as specified in 5.3.10.13;
1. if the received RadioResourceConfigDedicatedSCell-r10 includes the naics-Info:
 2. perform NAICS neighbour cell information reconfiguration for the SCell as specified in 5.3.10.13;

5.3.10.1 SRB addition/ modification

The UE shall:
1> if the UE is a NB-IoT UE and SRB1 is not established; or

1> for each srb-Identity value included in the srb-ToAddModList that is not part of the current UE configuration (SRB establishment):

2> if the UE is not a NB-IoT UE that only supports the Control Plane CIoT EPS optimisation:

3> apply the specified configuration defined in 9.1.2 for the corresponding SRB;

3> establish a PDCP entity and configure it with the current (MCG) security configuration, if applicable;

3> establish an (MCG) RLC entity in accordance with the received rlc-Config;

3> establish a (MCG) DCCH logical channel in accordance with the received logicalChannelConfig and with the logical channel identity set in accordance with 9.1.2;

2> if the UE is a NB-IoT UE:

3> apply the specified configuration defined in 9.1.2 for SRB1bis;

3> establish an (MCG) RLC entity in accordance with the received rlc-Config;

3> establish a (MCG) DCCH logical channel in accordance with the received logicalChannelConfig and with the logical channel identity set in accordance with 9.1.2.1a;

1> if the UE is a NB-IoT UE and SRB1 is established; or

1> for each srb-Identity value included in the srb-ToAddModList that is part of the current UE configuration (SRB reconfiguration):

2> reconfigure the RLC entity in accordance with the received rlc-Config;

2> reconfigure the DCCH logical channel in accordance with the received logicalChannelConfig;

5.3.10.2 DRB release

The UE shall:

1> for each drb-Identity value included in the drb-ToReleaseList that is part of the current UE configuration (DRB release); or

1> for each drb-identity value that is to be released as the result of full configuration option according to 5.3.5.8:

2> release the PDCP entity;

2> release the RLC entity or entities;

2> release the DTCH logical channel;

1> if the procedure was triggered due to handover:

2> indicate the release of the DRB(s) and the eps-BearerIdentity of the released DRB(s) to upper layers after successful handover;

1> else:

2> indicate the release of the DRB(s) and the eps-BearerIdentity of the released DRB(s) to upper layers immediately.

NOTE: The UE does not consider the message as erroneous if the drb-ToReleaseList includes any drb-Identity value that is not part of the current UE configuration.

5.3.10.3 DRB addition/ modification

The UE shall:
for each `drb-Identity` value included in the `drb-ToAddModList` that is not part of the current UE configuration (DRB establishment including the case when full configuration option is used):

2> if the concerned entry of `drb-ToAddModList` includes the `drb-TypeLWA` set to `TRUE` (i.e. add LWA DRB):
 3> perform the LWA specific DRB addition or reconfiguration as specified in 5.3.10.3a2;
2> if the concerned entry of `drb-ToAddModList` includes the `drb-TypeLWIP` (i.e. add LWIP DRB):
 3> perform LWIP specific DRB addition or reconfiguration as specified in 5.3.10.3a3;
2> else if `drb-ToAddModListSCG` is not received or does not include the `drb-Identity` value (i.e. add MCG DRB):
 3> establish a PDCP entity and configure it with the current MCG security configuration and in accordance with the received `pdcp-Config`;
 3> establish an MCG RLC entity or entities in accordance with the received `rlc-Config`;
 3> establish an MCG DTCH logical channel in accordance with the received `logicalChannelIdentity` and the received `logicalChannelConfig`;
2> if the `RRCConnectionReconfiguration` message includes the `fullConfig` IE:
 3> associate the established DRB with corresponding included `eps-BearerIdentity`;
2> else:
 3> indicate the establishment of the DRB(s) and the `eps-BearerIdentity` of the established DRB(s) to upper layers;

for each `drb-Identity` value included in the `drb-ToAddModList` that is part of the current UE configuration (DRB reconfiguration):

2> if the DRB indicated by `drb-Identity` is an LWA DRB (i.e. LWA to LTE only or reconfigure LWA DRB):
 3> perform the LWA specific DRB reconfiguration as specified in 5.3.10.3a2;
2> else if the concerned entry of `drb-ToAddModList` includes the `drb-TypeLWA` set to `TRUE` (i.e. LTE only to LWA DRB):
 3> perform the LWA specific DRB reconfiguration as specified in 5.3.10.3a2;
2> if the concerned entry of `drb-ToAddModList` includes the `drb-TypeLWIP` (i.e. add or reconfigure LWIP DRB):
 3> perform LWIP specific DRB addition or reconfiguration as specified in 5.3.10.3a3;
2> if `drb-ToAddModListSCG` is not received or does not include the `drb-Identity` value:
 3> if the DRB indicated by `drb-Identity` is an MCG DRB (reconfigure MCG):
 4> if the `pdcp-Config` is included:
 5> reconfigure the PDCP entity in accordance with the received `pdcp-Config`;
 4> if the `rlc-Config` is included:
 5> reconfigure the RLC entity or entities in accordance with the received `rlc-Config`;
 4> if the `logicalChannelConfig` is included:
 5> reconfigure the DTCH logical channel in accordance with the received `logicalChannelConfig`;

NOTE: Removal and addition of the same `drb-Identity` in a single `radioResourceConfigDedicated` is not supported. In case `drb-Identity` is removed and added due to handover or re-establishment with the full configuration option, the eNB can use the same value of `drb-Identity`.
5.3.10.3a1 DC specific DRB addition or reconfiguration

For the $drb-Identity$ value for which this procedure is initiated, the UE shall:

1> if drb-ToAddModListSCG is received and includes the $drb-Identity$ value; and $drb-Identity$ value is not part of the current UE configuration (i.e. DC specific DRB establishment):

2> if drb-ToAddModList is received and includes the $drb-Identity$ value (i.e. add split DRB):

3> establish a PDCP entity and configure it with the current MCG security configuration and in accordance with the $pdcp-Config$ included in drb-ToAddModList;

3> establish an MCG RLC entity and an MCG DTCH logical channel in accordance with the $rlc-Config$, logicalChannelIdentity and logicalChannelConfig included in drb-ToAddModList;

3> establish an SCG RLC entity and an SCG DTCH logical channel in accordance with the $rlc-ConfigSCG$, logicalChannelIdentitySCG and logicalChannelConfigSCG included in drb-ToAddModListSCG;

2> else (i.e. add SCG DRB):

3> establish a PDCP entity and configure it with the current SCG security configuration and in accordance with the $pdcp-Config$ included in drb-ToAddModListSCG;

3> establish an SCG RLC entity or entities and an SCG DTCH logical channel in accordance with the $rlc-ConfigSCG$, logicalChannelIdentitySCG and logicalChannelConfigSCG included in drb-ToAddModListSCG;

2> indicate the establishment of the DRB(s) and the $eps-BearerIdentity$ of the established DRB(s) to upper layers;

1> else (i.e. DC specific DRB modification; drb-ToAddModList and/or drb-ToAddModListSCG received):

2> if the DRB indicated by $drb-Identity$ is a split DRB:

3> if drb-ToAddModList is received and includes the $drb-Identity$ value, while for this entry $drb-TypeChange$ is included and set to toMCG (i.e. split to MCG):

4> release the SCG RLC entity and the SCG DTCH logical channel;

4> reconfigure the PDCP entity in accordance with the $pdcp-Config$, if included in drb-ToAddModList;

4> reconfigure the MCG RLC entity and/or the MCG DTCH logical channel in accordance with the $rlc-Config$ and logicalChannelConfig, if included in drb-ToAddModList;

3> else (i.e. reconfigure split):

4> reconfigure the PDCP entity in accordance with the $pdcp-Config$, if included in drb-ToAddModList;

4> reconfigure the MCG RLC entity and/or the MCG DTCH logical channel in accordance with the $rlc-Config$ and logicalChannelConfig, if included in drb-ToAddModList;

4> reconfigure the SCG RLC entity and/or the SCG DTCH logical channel in accordance with the $rlc-ConfigSCG$ and logicalChannelConfigSCG, if included in drb-ToAddModListSCG;

2> if the DRB indicated by $drb-Identity$ is an SCG DRB:

3> if drb-ToAddModList is received and includes the $drb-Identity$ value, while for this entry $drb-TypeChange$ is included and set to toMCG (i.e. SCG to MCG):

4> reconfigure the PDCP entity with the current MCG security configuration and in accordance with the $pdcp-Config$, if included in drb-ToAddModList;

4> reconfigure the SCG RLC entity or entities and the SCG DTCH logical channel to be an MCG RLC entity or entities and an MCG DTCH logical channel;
4> reconfigure the MCG RLC entity or entities and/or the MCG DTCH logical channel in accordance with the rlc-Config, logicalChannelIdentity and logicalChannelConfig, if included in drb-ToAddModList;

3> else (i.e. drb-ToAddModListSCG is received and includes the drb-Identity value i.e. reconfigure SCG):

4> reconfigure the PDCP entity in accordance with the pdcp-Config, if included in drb-ToAddModListSCG;

4> reconfigure the SCG RLC entity or entities and/or the SCG DTCH logical channel in accordance with the rlc-ConfigSCG and logicalChannelConfigSCG, if included in drb-ToAddModListSCG;

2> if the DRB indicated by drb-Identity is an MCG DRB:

3> if drb-ToAddModListSCG is received and includes the drb-Identity value, while for this entry drb-Type is included and set to split (i.e. MCG to split):

4> reconfigure the PDCP entity in accordance with the pdcp-Config, if included in drb-ToAddModList;

4> reconfigure the MCG RLC entity and/or the MCG DTCH logical channel in accordance with the rlc-Config and logicalChannelConfig, if included in drb-ToAddModList;

4> establish an SCG RLC entity and an SCG DTCH logical channel in accordance with the rlc-ConfigSCG, logicalChannelIdentitySCG and logicalChannelConfigSCG, included in drb-ToAddModListSCG;

3> else (i.e. drb-Type is included and set to scg i.e. MCG to SCG):

4> reconfigure the PDCP entity with the current SCG security configuration and in accordance with the pdcp-Config, if included in drb-ToAddModListSCG;

4> reconfigure the MCG RLC entity or entities and the MCG DTCH logical channel to be an SCG RLC entity or entities and an SCG DTCH logical channel;

4> reconfigure the SCG RLC entity or entities and/or the SCG DTCH logical channel in accordance with the rlc-ConfigSCG, logicalChannelIdentitySCG and logicalChannelConfigSCG, if included in drb-ToAddModListSCG;

5.3.10.3a2 LWA specific DRB addition or reconfiguration

For the drb-Identity value for which this procedure is initiated, the UE shall:

1> if the drb-Identity value is not part of the current UE configuration (i.e. add LWA DRB):

2> establish a PDCP entity and configure it with the current security configuration and in accordance with the pdcp-Config included in drb-ToAddModList;

2> establish an RLC entity and a DTCH logical channel in accordance with the rlc-Config, logicalChannelIdentity and logicalChannelConfig included in drb-ToAddModList;

2> enable data handling for this DRB at the LWAAP entity;

2> if lwa-WLAN-AC is configured:

3> apply the received lwa-WLAN-AC when performing transmissions of packets for this DRB over WLAN;

2> indicate the establishment of the DRB and the eps-BearerIdentity of the established DRB to upper layers;

1> else if the DRB indicated by drb-Identity is not an LWA DRB (i.e. LTE only to LWA DRB):

2> reconfigure the PDCP entity in accordance with the pdcp-Config, if included in drb-ToAddModList;

2> reconfigure the RLC entity and/or the DTCH logical channel in accordance with the rlc-Config and logicalChannelConfig, if included in drb-ToAddModList;

2> enable data handling for this DRB at the LWAAP entity;
2> if lwa-WLAN-AC is configured:
 3> apply the received lwa-WLAN-AC when performing transmissions of packets for this DRB over WLAN;
1> else if the concerned entry of drb-ToAddModList includes the drb-TypeLWA set to FALSE (i.e. LWA to LTE only DRB):
 2> reconfigure the PDCP entity in accordance with the pdcp-Config, if included in drb-ToAddModList;
 2> reconfigure the RLC entity and/ or the DTCH logical channel in accordance with the rlc-Config and logicalChannelConfig, if included in drb-ToAddModList;
 2> perform PDCP data recovery as specified in TS 36.323 [8] if bearer is configured with RLC AM;
 2> disable data handling for this DRB at the LWAAP entity;
1> else (i.e. reconfigure LWA DRB):
 2> reconfigure the PDCP entity in accordance with the pdcp-Config, if included in drb-ToAddModList;
 2> reconfigure the RLC entity and/ or the DTCH logical channel in accordance with the rlc-Config and logicalChannelConfig, if included in drb-ToAddModList;
 2> if lwa-WLAN-AC is configured:
 3> apply the received lwa-WLAN-AC when performing transmissions of packets for this DRB over WLAN;

5.3.10.3a3 LWIP specific DRB addition or reconfiguration

For the drb-Identity value for which this procedure is initiated, the UE shall:

1> if the drb-TypeLWIP is set to lwip:
 2> indicate to higher layers to use LWIP resources in both UL and DL for the DRB associated with the drb-Identity;
 2> if lwip-DL-Aggregation is set to TRUE:
 3> indicate to higher layers to apply decoding of LWIPEP header with GRE sequence number for both LTE and WLAN DL reception for the DRB associated with the drb-Identity;
 2> if lwip-DL-Aggregation is set to FALSE:
 3> indicate to higher layers to stop decoding of LWIPEP header with GRE sequence number for both LTE and WLAN DL reception for the DRB associated with the drb-Identity;
 2> if lwip-UL-Aggregation is set to TRUE:
 3> indicate to higher layers to insert LWIPEP header with GRE sequence number for both LTE and WLAN UL transmissions for the DRB associated with the drb-Identity;
 2> if lwip-UL-Aggregation is set to FALSE:
 3> indicate to higher layers to stop inserting LWIPEP header with GRE sequence number for both LTE and WLAN UL transmissions for the DRB associated with the drb-Identity;
1> if the drb-TypeLWIP is set to lwip-DL-only:
 2> indicate to higher layers to use LWIP resources in the DL only for the DRB associated with the drb-Identity;
 2> if lwip-DL-Aggregation is set to TRUE:
 3> indicate to higher layers to apply decoding of LWIPEP header with GRE sequence number for both LTE and WLAN DL reception for the DRB associated with the drb-Identity;
1> if the drb-TypeLWIP is set to lwip-UL-only:
2> indicate to higher layers to use LWIP resources in the UL only for the DRB associated with the \textit{drb-Identity};

2> if \textit{lwip-UL-Aggregation} is set to TRUE:

3> indicate to higher layers to insert LWIPEP header with GRE sequence number for both LTE and WLAN UL transmissions for the DRB associated with the \textit{drb-Identity};

1> if the \textit{drb-TypeLWIP} is set to \textit{eutran}:

2> indicate to higher layers to stop using LWIP resources for the DRB associated with the \textit{drb-Identity};

5.3.10.3a SCell release

The UE shall:

1> if the release is triggered by reception of the \textit{sCellToReleaseList} or the \textit{sCellToReleaseListSCG}:

2> for each \textit{sCellIndex} value included either in the \textit{sCellToReleaseList} or in the \textit{sCellToReleaseListSCG}:

3> if the current UE configuration includes an SCell with value \textit{sCellIndex}:

4> release the SCell;

1> if the release is triggered by RRC connection re-establishment:

2> release all SCells that are part of the current UE configuration;

5.3.10.3b SCell addition/ modification

The UE shall:

1> for each \textit{sCellIndex} value included either in the \textit{sCellToAddModList} or in the \textit{sCellToAddModListSCG} that is not part of the current UE configuration (SCell addition):

2> add the SCell, corresponding to the \textit{cellIdentification}, in accordance with the \textit{radioResourceConfigCommonSCell} and \textit{radioResourceConfigDedicatedSCell}, both included either in the \textit{sCellToAddModList} or in the \textit{sCellToAddModListSCG};

2> configure lower layers to consider the SCell to be in deactivated state;

2> for each \textit{measId} included in the \textit{measIdList} within \textit{VarMeasConfig}:

3> if SCells are not applicable for the associated measurement; and

3> if the concerned SCell is included in \textit{cellsTriggeredList} defined within the \textit{VarMeasReportList} for this \textit{measId}:

4> remove the concerned SCell from \textit{cellsTriggeredList} defined within the \textit{VarMeasReportList} for this \textit{measId};

1> for each \textit{sCellIndex} value included either in the \textit{sCellToAddModList} or in the \textit{sCellToAddModListSCG} that is part of the current UE configuration (SCell modification):

2> modify the SCell configuration in accordance with the \textit{radioResourceConfigDedicatedSCell}, included either in the \textit{sCellToAddModList} or in the \textit{sCellToAddModListSCG};

5.3.10.3c PSCell addition or modification

The UE shall:

1> if the PSCell is not part of the current UE configuration (i.e. PSCell addition):

2> add the PSCell, corresponding to the \textit{cellIdentification}, in accordance with the received \textit{radioResourceConfigCommonPSCell} and \textit{radioResourceConfigDedicatedPSCell};

2> configure lower layers to consider the PSCell to be in activated state;
1> if the PSCell is part of the current UE configuration (i.e. PSCell modification):
 2> modify the PSCell configuration in accordance with the received `radioResourceConfigDedicatedPSCell`;

5.3.10.4 MAC main reconfiguration

Except for NB-IoT, the UE shall:

1> if the procedure is triggered to perform SCG MAC main reconfiguration:
 2> if SCG MAC is not part of the current UE configuration (i.e. SCG establishment):
 3> create an SCG MAC entity;
 2> reconfigure the SCG MAC main configuration as specified in the following i.e. assuming it concerns the SCG MAC whenever MAC main configuration is referenced and that it is based on the received `mac-MainConfigSCG` instead of `mac-MainConfig`:
 1> reconfigure the MAC main configuration in accordance with the received `mac-MainConfig` other than `stag-ToReleaseList` and `stag-ToAddModList`;

1> if the received `mac-MainConfig` includes the `stag-ToReleaseList`:
 2> for each `STAG-Id` value included in the `stag-ToReleaseList` that is part of the current UE configuration:
 3> release the STAG indicated by `STAG-Id`;

1> if the received `mac-MainConfig` includes the `stag-ToAddModList`:
 2> for each `stag-Id` value included in `stag-ToAddModList` that is not part of the current UE configuration (STAG addition):
 3> add the STAG, corresponding to the `stag-Id`, in accordance with the received `timeAlignmentTimerSTAG`;
 2> for each `stag-Id` value included in `stag-ToAddModList` that is part of the current UE configuration (STAG modification):
 3> reconfigure the STAG, corresponding to the `stag-Id`, in accordance with the received `timeAlignmentTimerSTAG`;

For NB-IoT, the UE shall:

1> reconfigure the MAC main configuration in accordance with the received `mac-MainConfig`;

5.3.10.5 Semi-persistent scheduling reconfiguration

The UE shall:

1> reconfigure the semi-persistent scheduling in accordance with the received `sps-Config`;

5.3.10.6 Physical channel reconfiguration

Except for NB-IoT, the UE shall:

1> if the `antennaInfo-r10` is included in the received `physicalConfigDedicated` and the previous version of this field that was received by the UE was `antennaInfo` (without suffix i.e. the version defined in REL-8):
 2> apply the default antenna configuration as specified in 9.2.4;

1> if the `cqi-ReportConfig-r10` is included in the received `physicalConfigDedicated` and the previous version of this field that was received by the UE was `cqi-ReportConfig` (without suffix i.e. the version defined in REL-8):
 2> apply the default CQI reporting configuration as specified in 9.2.4;

NOTE: Application of the default configuration involves release of all extensions introduced in REL-9 and later.
reconfigure the physical channel configuration in accordance with the received `physicalConfigDedicated`;

1> if the `antennaInfo` is included and set to `explicitValue`:

2> if the configured `transmissionMode` is `tm1`, `tm2`, `tm5`, `tm6` or `tm7`; or
2> if the configured `transmissionMode` is `tm8` and `pmi-RI-Report` is not present; or
2> if the configured `transmissionMode` is `tm9` and `pmi-RI-Report` is not present; or
2> if the configured `transmissionMode` is `tm9` and `pmi-RI-Report` is present and `antennaPortsCount` within `csi-RS` is set to `an1`:

3> release `ri-ConfigIndex` in `cqi-ReportPeriodic`, if previously configured;

1> else if the `antennaInfo` is included and set to `defaultValue`:

2> release `ri-ConfigIndex` in `cqi-ReportPeriodic`, if previously configured;

1> if the `pusch-EnhancementsConfig` is included in the received `physicalConfigDedicated`, for the associated serving cell:

2> if PUSCH enhancement mode is previously released or not configured and `pusch-EnhancementsConfig` is set to `setup`, or
2> if PUSCH enhancement mode is previously configured and `pusch-EnhancementConfig` is set to `release`:

3> instruct the associated MAC entity to perform partial reset;

1> if the procedure was not triggered due to handover and `ce-Mode` is included in the received `physicalConfigDedicated`, for the associated serving cell:

2> if `ce-Mode` is not currently configured and `ce-Mode` is set to `setup`, or
2> if `ce-Mode` is currently configured and `ce-Mode` is set to `release`:

3> instruct the associated MAC entity to perform partial reset;

For NB-IoT, the UE shall:

1> if the `carrierConfigDedicated` is not included in the received `physicalConfigDedicated`:

2> if the UE is configured with a carrier configuration previously received in `carrierConfigDedicated`:

3> use the carrier configuration received in `carrierConfigDedicated`;

2> else:

3> use the carrier configuration received in system information for the uplink and downlink carrier used during the random access procedure;

1> else:

2> use the carrier configuration received in `carrierConfigDedicated`;

2> start to use the new carrier immediately after the last transport block carrying the RRC message has been acknowledged by the MAC layer, and any subsequent RRC response message sent for the current RRC procedure is therefore sent on the new carrier;

1> reconfigure the physical channel configuration in accordance with the received `physicalConfigDedicated`.

5.3.10.7 Radio Link Failure Timers and Constants reconfiguration

The UE shall:

1> if the received `rlf-TimersAndConstants` is set to release:
2> use values for timers T301, T310, T311 and constants N310, N311, as included in ue-TimersAndConstants received in SystemInformationBlockType2 (or SystemInformationBlockType2-NB in NB-IoT);

1> else:
2> reconfigure the value of timers and constants in accordance with received rlf-TimersAndConstants;

1> if the received rlf-TimersAndConstantsSCG is set to release:
2> stop timer T313, if running, and
2> release the value of timer t313 as well as constants n313 and n314;
1> else:
2> reconfigure the value of timers and constants in accordance with received rlf-TimersAndConstantsSCG;

5.3.10.8 Time domain measurement resource restriction for serving cell

The UE shall:

1> if the received measSubframePatternPCell is set to release:
2> release the time domain measurement resource restriction for the PCell, if previously configured
1> else:
2> apply the time domain measurement resource restriction for the PCell in accordance with the received measSubframePatternPCell;

5.3.10.9 Other configuration

The UE shall:

1> if the received otherConfig includes the reportProximityConfig:
2> if proximityIndicationEUTRA is set to enabled:
3> consider itself to be configured to provide proximity indications for E-UTRA frequencies in accordance with 5.3.14;
2> else:
3> consider itself not to be configured to provide proximity indications for E-UTRA frequencies;
2> if proximityIndicationUTRA is set to enabled:
3> consider itself to be configured to provide proximity indications for UTRA frequencies in accordance with 5.3.14;
2> else:
3> consider itself not to be configured to provide proximity indications for UTRA frequencies;
1> if the received otherConfig includes the obtainLocation:
2> attempt to have detailed location information available for any subsequent measurement report;

NOTE: The UE is requested to attempt to have valid detailed location information available whenever sending a measurement report for which it is configured to include available detailed location information. The UE may not succeed e.g. because the user manually disabled the GPS hardware, due to no/poor satellite coverage. Further details, e.g. regarding when to activate GNSS, are up to UE implementation.

1> if the received otherConfig includes the idc-Config:
2> if idc-Indication is included (i.e. set to setup):
if idc-Indication-UL-CA is included (i.e. set to setup):
 consider itself to be configured to indicate UL CA related information in IDC indications in accordance with 5.6.9;
else:
 consider itself not to be configured to provide IDC indications;

if autonomousDenialParameters is included:
 consider itself to be allowed to deny any transmission in a particular UL subframe if during the number of subframes indicated by autonomousDenialValidity, preceeding and including this particular subframe, it autonomously denied fewer UL subframes than indicated by autonomousDenialSubframes;
else:
 consider itself not to be allowed to deny any UL transmission;

if the received otherConfig includes the powerPrefIndicationConfig:
 if powerPrefIndicationConfig is set to setup:
 consider itself to be configured to provide power preference indications in accordance with 5.6.10;
 else:
 consider itself not to be configured to provide power preference indications;

if the received otherConfig includes the sps-AssistanceInfoReport:
 if sps-AssistanceInfoReport is set to TRUE:
 consider itself to be configured to provide SPS assistance information in accordance with 5.6.10;
 else
 consider itself not to be configured to provide SPS assistance information;

if the received otherConfig includes the bw-PreferenceIndicationTimer:
 consider itself to be configured to provide maximum PDSCH/PUSCH bandwidth preference indication in accordance with 5.6.10;
else:
 consider itself not to be configured to provide maximum PDSCH/PUSCH bandwidth indication preference;

if the received otherConfig includes the delayBudgetReportingConfig:
 if delayBudgetReportingConfig is set to setup:
 consider itself to be configured to send delay budget reports in accordance with 5.6.18;
 else:
 consider itself not to be configured to send delay budget reports and stop timer T342, if running;

if the received otherConfig includes the overheatingAssistanceConfig:
 if overheatingAssistanceConfig is set to setup:
 consider itself to be configured to provide overheating assistance information in accordance with 5.6.10;
 else:
3> consider itself not to be configured to provide overheating assistance information and stop timer T345, if running;

1> for BL UEs or UEs in CE, if the received otherConfig includes the rlm-ReportConfig:

2> if rlm-ReportConfig is set to setup:

3> consider itself to be configured to detect "early-out-of-sync" and "early-in-sync" RLM events as specified in 5.3.11;

3> if rlmReportRep-MPDCCH is set to setup:

4> consider itself to be configured to report rlmReportRep-MPDCCH in accordance with 5.6.10;

2> else:

3> consider itself not to be configured to detect "early-out-of-sync" and "early-in-sync" RLM events and stop timer T343, timer T344, timer T314 and timer T315 if running;

5.3.10.10 SCG reconfiguration

The UE shall:

1> if makeBeforeBreakSCG is configured:

2> stop timer T313, if running;

2> start timer T307 with the timer value set to t307, as included in the mobilityControlInfoSCG;

2> start synchronising to the DL of the target PSCell, if needed;

2> perform the remainder of this procedure including and following resetting MAC after the UE has stopped the uplink transmission/downlink reception with the source SCG cell(s);

NOTE 0a: It is up to UE implementation when to stop the uplink transmission/downlink reception with the source SCG cell(s) to initiate re-tuning for the connection to the target cell [16], if makeBeforeBreakSCG is configured.

1> if the received scg-Configuration is set to release or includes the mobilityControlInfoSCG (i.e. SCG release/ change):

2> if mobilityControlInfo is not received (i.e. SCG release/ change without HO):

3> reset SCG MAC, if configured;

3> for each drb-Identity value that is part of the current UE configuration:

4> if the DRB indicated by drb-Identity is an SCG DRB:

5> re-establish the PDCP entity and the SCG RLC entity or entities;

4> if the DRB indicated by drb-Identity is a split DRB:

5> perform PDCP data recovery and re-establish the SCG RLC entity;

4> if the DRB indicated by drb-Identity is an MCG DRB; and

4> drb-ToAddModListSCG is received and includes the drb-Identity value, while for this entry drb-Type is included and set to scg (i.e. MCG to SCG):

5> re-establish the PDCP entity and the MCG RLC entity or entities;

3> configure lower layers to consider the SCG SCell(s), except for the PSCell, to be in deactivated state;

1> if the received scg-Configuration is set to release:
release the entire SCG configuration, except for the DRB configuration (i.e. as configured by \texttt{drb-ToAddModListSCG});

if the current UE configuration includes one or more split or SCG DRBs and the received \texttt{RRCConnectionReconfiguration} message includes \texttt{radioResourceConfigDedicated} including \texttt{drb-ToAddModList};

reconfigure the SCG or split DRB by \texttt{drb-ToAddModList} as specified in 5.3.10.12;

stop timer T313, if running;

stop timer T307, if running;

else:

if the received \texttt{scg-ConfigPartMCG} includes the \texttt{scg-Counter}:

update the S-K_{NB} key based on the K_{NB} key and using the received \texttt{scg-Counter} value, as specified in TS 33.401 [32];

derive the K_{UPenc} key associated with the \texttt{cipheringAlgorithmSCG} included in \texttt{mobilityControlInfoSCG} within the received \texttt{scg-ConfigPartSCG}, as specified in TS 33.401 [32];

configure lower layers to apply the ciphering algorithm and the K_{UPenc} key;

if the received \texttt{scg-ConfigPartSCG} includes the \texttt{radioResourceConfigDedicatedSCG}:

reconfigure the dedicated radio resource configuration for the SCG as specified in 5.3.10.11;

if the current UE configuration includes one or more split or SCG DRBs and the received \texttt{RRCConnectionReconfiguration} message includes \texttt{radioResourceConfigDedicated} including \texttt{drb-ToAddModList};

reconfigure the SCG or split DRB by \texttt{drb-ToAddModList} as specified in 5.3.10.12;

if the received \texttt{scg-ConfigPartSCG} includes the \texttt{sCellToReleaseListSCG}:

perform SCell release for the SCG as specified in 5.3.10.3a;

if the received \texttt{scg-ConfigPartSCG} includes the \texttt{pCellToAddMod}:

perform PSCell addition or modification as specified in 5.3.10.3c;

NOTE 0: This procedure is also used to release the PSCell e.g. PSCell change, SI change for the PSCell.

if the received \texttt{scg-ConfigPartSCG} includes the \texttt{sCellToAddModListSCG}:

perform SCell addition or modification as specified in 5.3.10.3b;

if \texttt{rach-SkipSCG} is configured:

configure lower layers to apply the \texttt{rach-SkipSCG} for the target SCG, as specified in TS 36.213 [23] and TS 36.321 [6];

if the received \texttt{scg-ConfigPartSCG} includes the \texttt{mobilityControlInfoSCG} (i.e. SCG change):

resume all SCG DRBs and resume SCG transmission for split DRBs, if suspended;

stop timer T313, if running;

start timer T307 with the timer value set to \texttt{t307}, as included in the \texttt{mobilityControlInfoSCG}, if \texttt{makeBeforeBreakSCG} is not configured;

start synchronising to the DL of the target PSCell;
3> initiate the random access procedure on the PSCell, as specified in TS 36.321 [6], if \textit{rach-SkipSCG} is not configured:

NOTE 1: The UE is not required to determine the SFN of the target PSCell by acquiring system information from that cell before performing RACH access in the target PSCell.

3> the procedure ends, except that the following actions are performed when MAC successfully completes the random access procedure on the PSCell or when MAC indicates the successful reception of a PDCCH transmission addressed to C-RNTI and if \textit{rach-skipSCG} is configured:

4> stop timer T307;
4> release \textit{ul-ConfigInfo}, if configured;
4> apply the parts of the CQI reporting configuration, the scheduling request configuration and the sounding RS configuration that do not require the UE to know the SFN of the target PSCell, if any;
4> apply the parts of the measurement and the radio resource configuration that require the UE to know the SFN of the target PSCell (e.g. periodic CQI reporting, scheduling request configuration, sounding RS configuration), if any, upon acquiring the SFN of the target PSCell;

NOTE 2: Whenever the UE shall setup or reconfigure a configuration in accordance with a field that is received it applies the new configuration, except for the cases addressed by the above statements.

5.3.10.11 SCG dedicated resource configuration

The UE shall:

1> if the received \textit{radioResourceConfigDedicatedSCG} includes the \textit{drb-ToAddModListSCG}:

2> for each \textit{drb-Identity} value included in the \textit{drb-ToAddModListSCG} perform the DC specific DRB addition or reconfiguration as specified in 5.3.10.3a1

1> if the received \textit{radioResourceConfigDedicatedSCG} includes the \textit{mac-MainConfigSCG}:

2> perform the SCG MAC main reconfiguration as specified in 5.3.10.4;

1> if the received \textit{radioResourceConfigDedicatedSCG} includes the \textit{rlf-TimersAndConstantsSCG}:

2> reconfigure the values of timers and constants as specified in 5.3.10.7;

5.3.10.12 Reconfiguration SCG or split DRB by \textit{drb-ToAddModList}

The UE shall:

1> for each split or SCG DRBs that is part of the current configuration:

2> if the corresponding \textit{drb-Identity} value is included in the received \textit{drb-ToAddModList}; and

2> if the corresponding \textit{drb-Identity} value is not included in the received \textit{drb-ToAddModListSCG} (i.e. reconfigure split, split to MCG or SCG to MCG):

3> perform the DC specific DRB addition or reconfiguration as specified in 5.3.10.3a1;

5.3.10.13 Neighbour cell information reconfiguration

The UE shall:

1> if the received \textit{naics-Info} is set to \textit{release}:

2> instruct lower layer to release all the NAICS neighbour cell information for the concerned cell, if previously configured;

1> if the received \textit{naics-Info} includes the \textit{neighCellsToReleaseList-r12}:
for each physCellId-r12 value included in the neighCellsToReleaseList-r12 that is part of the current NAICS neighbour cell information of the concerned cell:

3> instruct lower layer to release the NAICS neighbour cell information for the concerned cell;

1> if the received naics-Info includes the NeighCellsToAddModList-r12:

2> for each physCellId-r12 value included in the neighCellsToAddModList-r12 that is not part of the current NAICS neighbour cell information of the concerned cell:

3> instruct lower layer to add the NAICS neighbour cell information for the concerned cell;

2> for each physCellId-r12 value included in the neighCellsToAddModList-r12 that is part of the current NAICS neighbour cell information of the concerned cell:

3> instruct lower layer to modify the NAICS neighbour cell information in accordance with the received NeighCellsInfo for the concerned cell;

5.3.10.14 Void

5.3.10.15 Sidelink dedicated configuration

The UE shall:

1> if the RRCConnectionReconfiguration message includes the sl-CommConfig:

2> if commTxResources is included and set to setup:

3> from the next SC period use the resources indicated by commTxResources for sidelink communication transmission, as specified in 5.10.4;

2> else if commTxResources is included and set to release:

3> from the next SC period, release the resources allocated for sidelink communication transmission previously configured by commTxResources;

1> if the RRCConnectionReconfiguration message includes the sl-DiscConfig:

2> if discTxResources is included and set to setup:

3> from the next discovery period, as defined by discPeriod, use the resources indicated by discTxResources for sidelink discovery announcement, as specified in 5.10.6;

2> else if discTxResources is included and set to release:

3> from the next discovery period, as defined by discPeriod, release the resources allocated for sidelink discovery announcement previously configured by discTxResources;

2> if discTxResourcesPS is included and set to setup:

3> from the next discovery period, as defined by discPeriod, use the resources indicated by discTxResourcesPS for sidelink discovery announcement, as specified in 5.10.6;

2> else if discTxResourcesPS is included and set to release:

3> from the next discovery period, as defined by discPeriod, release the resources allocated for sidelink discovery announcement previously configured by discTxResourcesPS;

2> if discTxInterFreqInfo is included and set to setup:

3> from the next discovery period, as defined by discPeriod, use the resources indicated by discTxInterFreqInfo for sidelink discovery announcement, as specified in 5.10.6;

2> else if discTxInterFreqInfo is included and set to release:
3> from the next discovery period, as defined by \textit{discPeriod}, release the resources allocated for sidelink discovery announcement previously configured by \textit{discTxInterFreqInfo};

2> if \textit{discRxGapConfig} is included and set to \textit{setup}:

3> from the next gap period, as defined by \textit{gapPeriod}, use the gaps indicated by \textit{discRxGapConfig} for sidelink discovery monitoring, as specified in 5.10.5;

2> else if \textit{discRxGapConfig} is included and set to \textit{release}:

3> from the next gap period, as defined by \textit{gapPeriod}, release the gaps configured for sidelink discovery monitoring previously configured by \textit{discRxGapConfig};

2> if \textit{discTxGapConfig} is included and set to \textit{setup}:

3> from the next gap period, as defined by \textit{gapPeriod}, use the gaps indicated by \textit{discTxGapConfig} for sidelink discovery announcement, as specified in 5.10.6;

2> else if \textit{discTxGapConfig} is included and set to \textit{release}:

3> from the next gap period, as defined by \textit{gapPeriod}, release the gaps configured for sidelink discovery announcement previously configured by \textit{discTxGapConfig};

2> if \textit{discSysInfoToReportConfig} is included and set to \textit{setup}:

3> start timer T370 with the timer value set to 60s;

2> else if \textit{discSysInfoToReportConfig} is included and set to \textit{release}:

3> stop timer T370 and release \textit{discSysInfoToReportConfig};

5.3.10.15a V2X sidelink Communication dedicated configuration

The UE shall:

1> if the \textit{RRCConnectionReconfiguration} message includes the \textit{sl-V2X-ConfigDedicated}:

2> if \textit{commTxResources} is included and set to \textit{setup}:

3> use the resources indicated by \textit{commTxResources} for V2X sidelink communication transmission, as specified in 5.10.13;

3> perform CBR measurement on the transmission resource pool indicated in \textit{commTxResources} for V2X sidelink communication transmission, as specified in 5.5.3;

2> else if \textit{commTxResources} is included and set to \textit{release}:

3> release the resources allocated for V2X sidelink communication transmission previously configured by \textit{commTxResources};

2> if \textit{v2x-InterFreqInfoList} is included:

3> use the synchronization configuration and resource configuration parameters for V2X sidelink communication on frequencies included in \textit{v2x-InterFreqInfoList}, as specified in 5.10.13;

3> perform CBR measurement on the transmission resource pool indicated in \textit{v2x-InterFreqInfoList} for V2X sidelink communication transmission, as specified in 5.5.3;

1> if the \textit{RRCConnectionReconfiguration} message includes the \textit{mobilityControlInfoV2X}:

2> if \textit{v2x-CommRxPool} is included:

3> use the resources indicated by \textit{v2x-CommRxPool} for V2X sidelink communication reception, as specified in 5.10.12;

2> if \textit{v2x-CommTxPoolExceptional} is included:
3> use the resources indicated by \texttt{v2x-CommTxPoolExceptional} for V2X sidelink communication transmission, as specified in 5.10.13;

3> perform CBR measurement on the transmission resource pool indicated by \texttt{v2x-CommTxPoolExceptional} for V2X sidelink communication transmission, as specified in 5.5.3;

5.3.10.16 T370 expiry

The UE shall:

1> if T370 expires:

2> release \texttt{discSysInfoToReportConfig};

5.3.11 Radio link failure related actions

5.3.11.1 Detection of physical layer problems in RRC_CONNECTED

The UE shall:

1> upon receiving N310 consecutive "out-of-sync" indications for the PCell from lower layers while neither T300, T301, T304 nor T311 is running:

2> start timer T310;

1> upon receiving N313 consecutive "out-of-sync" indications for the PSCell from lower layers while T307 is not running:

2> start T313;

NOTE: Physical layer monitoring and related autonomous actions do not apply to SCells except for the PSCell.

5.3.11.1a Early detection of physical layer problems in RRC_CONNECTED

The UE shall:

1> upon receiving N310 consecutive "early-out-of-sync" indications for the PCell from lower layers:

2> start timer T314 with the timer value set to the value of T310;

5.3.11.1b Detection of physical layer improvements in RRC_CONNECTED

The UE shall:

1> upon receiving N311 consecutive "early-in-sync" indications for the PCell from lower layers:

2> start timer T315 with the timer value set to the value of T310;

5.3.11.2 Recovery of physical layer problems

Upon receiving N311 consecutive "in-sync" indications for the PCell from lower layers while T310 is running, the UE shall:

1> stop timer T310;

1> stop timer T312, if running;

NOTE 1: In this case, the UE maintains the RRC connection without explicit signalling, i.e. the UE maintains the entire radio resource configuration.

NOTE 2: Periods in time where neither "in-sync" nor "out-of-sync" is reported by layer 1 do not affect the evaluation of the number of consecutive "in-sync" or "out-of-sync" indications.
Upon receiving N314 consecutive “in-sync” indications for the PSCell from lower layers while T313 is running, the UE shall:

1> stop timer T313;

5.3.11.2a Recovery of early detection of physical layer problems

Upon receiving N311 consecutive “in-sync” indications for the PCell from lower layers while T314 is running, the UE shall:

1> stop timer T314;

5.3.11.2b Cancellation of physical layer improvements in RRC_CONNECTED

Upon receiving N311 consecutive “in-sync” indications for the PCell from lower layers while T315 is running, the UE shall:

1> stop timer T315;

5.3.11.3 Detection of radio link failure

The UE shall:

1> upon T310 expiry; or
1> upon T312 expiry; or
1> upon random access problem indication from MCG MAC while neither T300, T301, T304 nor T311 is running; or
1> upon indication from MCG RLC that the maximum number of retransmissions has been reached for an SRB or for an MCG or split DRB:

2> consider radio link failure to be detected for the MCG i.e. RLF; or
2> except for NB-IoT, store the following radio link failure information in the VarRLF-Report by setting its fields as follows:

3> clear the information included in VarRLF-Report, if any;
3> set the plmn-IdentityList to include the list of EPLMNs stored by the UE (i.e. includes the RPLMN);
3> set the measResultLastServCell to include the RSRP and RSRQ, if available, of the PCell based on measurements collected up to the moment the UE detected radio link failure;
3> set the measResultNeighCells to include the best measured cells, other than the PCell, ordered such that the best cell is listed first, and based on measurements collected up to the moment the UE detected radio link failure, and set its fields as follows:
4> if the UE was configured to perform measurements for one or more EUTRA frequencies, include the measResultListEUTRA;
4> if the UE was configured to perform measurement reporting for one or more neighbouring UTRA frequencies, include the measResultListUTRA;
4> if the UE was configured to perform measurement reporting for one or more neighbouring GERAN frequencies, include the measResultListGERAN;
4> if the UE was configured to perform measurement reporting for one or more neighbouring CDMA2000 frequencies, include the measResultsCDMA2000;
4> for each neighbour cell included, include the optional fields that are available;
NOTE 1: The measured quantities are filtered by the L3 filter as configured in the mobility measurement configuration. The measurements are based on the time domain measurement resource restriction, if configured. Blacklisted cells are not required to be reported.

3> if detailed location information is available, set the content of the locationInfo as follows:
 4> include the locationCoordinates;
 4> include the horizontalVelocity, if available;
3> set the failedPCellId to the global cell identity, if available, and otherwise to the physical cell identity and carrier frequency of the PCell where radio link failure is detected;
3> set the tac-FailedPCell to the tracking area code, if available, of the PCell where radio link failure is detected;
3> if an RRCConnectionReconfiguration message including the mobilityControlInfo was received before the connection failure:
 4> if the last RRCConnectionReconfiguration message including the mobilityControlInfo concerned an intra E-UTRA handover:
 5> include the previousPCellId and set it to the global cell identity of the PCell where the last RRCConnectionReconfiguration message including mobilityControlInfo was received;
 5> set the timeConnFailure to the elapsed time since reception of the last RRCConnectionReconfiguration message including the mobilityControlInfo;
 4> if the last RRCConnectionReconfiguration message including the mobilityControlInfo concerned a handover to E-UTRA from UTRA and if the UE supports Radio Link Failure Report for Inter-RAT MRO:
 5> include the previousUTRA-CellId and set it to the physical cell identity, the carrier frequency and the global cell identity, if available, of the UTRA Cell in which the last RRCConnectionReconfiguration message including mobilityControlInfo was received;
 5> set the timeConnFailure to the elapsed time since reception of the last RRCConnectionReconfiguration message including the mobilityControlInfo;
3> if the UE supports QCI1 indication in Radio Link Failure Report and has a DRB for which QCI is 1:
 4> include the drb-EstablishedWithQCI-1;
3> set the connectionFailureType to rlf;
3> set the c-RNTI to the C-RNTI used in the PCell;
3> set the rlf-Cause to the trigger for detecting radio link failure;
2> if AS security has not been activated:
 3> if the UE is a NB-IoT UE:
 4> if the UE supports RRC connection re-establishment for the Control Plane CIoT EPS optimisation:
 5> initiate the RRC connection re-establishment procedure as specified in 5.3.7;
 4> else:
 5> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';
 3> else:
 4> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other';
else:
 initiate the connection re-establishment procedure as specified in 5.3.7;

The UE shall:

1. upon T313 expiry; or
2. upon random access problem indication from SCG MAC; or
3. upon indication from SCG RLC that the maximum number of retransmissions has been reached for an SCG or split DRB:
 1. consider radio link failure to be detected for the SCG i.e. SCG-RLF;
 2. initiate the SCG failure information procedure as specified in 5.6.13 to report SCG radio link failure;

The UE may discard the radio link failure information, i.e. release the UE variable VarRLF-Report, 48 hours after the radio link failure is detected, upon power off or upon detach.

5.3.11.3a Detection of early-out-of-sync event

The UE shall:

1. upon T314 expiry;
 2. consider "early-out-of-sync" event to be detected and initiate transmission of the UEAssistanceInformation message in accordance with 5.6.10;

5.3.11.3b Detection of early-in-sync event

The UE shall:

1. upon T315 expiry;
 2. consider "early-in-sync" event to be detected and initiate transmission of the UEAssistanceInformation message in accordance with 5.6.10;

5.3.12 UE actions upon leaving RRC_CONNECTED

Upon leaving RRC_CONNECTED, the UE shall:

1. reset MAC;
2. stop all timers that are running except T320, T322, T325, T330;
3. if leaving RRC_CONNECTED was triggered by suspension of the RRC:
 1. re-establish RLC entities for all SRBs and DRBs;
 2. store the UE AS Context including the current RRC configuration, the current security context, the PDCP state including ROHC state, C-RNTI used in the source PCell, the cellIdentity and the physical cell identity of the source PCell;
 3. store the following information provided by E-UTRAN:
 1. the resumIdentity;
 2. suspend all SRB(s) and DRB(s), except SRB0;
 2. indicate the suspension of the RRC connection to upper layers;
 3. configure lower layers to suspend integrity protection and ciphering;

NOTE 1: Ciphering is not applied for the subsequent RRCConnectionResume message used to resume the connection. An integrity check is performed by lower layers, but merely upon request from RRC.
1> else:
2> release all radio resources, including release of the RLC entity, the MAC configuration and the associated PDCP entity for all established RBs;
3> indicate the release of the RRC connection to upper layers together with the release cause;

1> if leaving RRC_CONNECTED was triggered neither by reception of the MobilityFromEUTRACCommand message nor by selecting an inter-RAT cell while T311 was running:
2> if timer T350 is configured:
3> start timer T350;
4> apply wlan-OffloadConfigCommon if configured, otherwise apply the wlan-Id-List corresponding to the RPLMN included in SystemInformationBlockType17;
2> else:
3> release the wlan-OffloadConfigDedicated, if received;

3> if the wlan-OffloadConfigCommon corresponding to the RPLMN is broadcast by the cell:
4> apply the wlan-OffloadConfigCommon corresponding to the RPLMN included in SystemInformationBlockType17;

4> apply steerToWLAN if configured, otherwise apply the wlan-Id-List corresponding to the RPLMN included in SystemInformationBlockType17;
2> enter RRC_IDLE and perform procedures as specified in TS 36.304 [4, 5.2.7];
1> else:
2> release the wlan-OffloadConfigDedicated, if received;

NOTE 2: BL UEs or UEs in CE verifies validity of SI when released to RRC_IDLE.

1> release the LWA configuration, if configured, as described in 5.6.14.3;
1> release the LWIP configuration, if configured, as described in 5.6.17.3;

5.3.13 UE actions upon PUCCH/ SRS release request

Upon receiving a PUCCH release request from lower layers, for an indicated serving cell the UE shall:

1> apply the default physical channel configuration for cqi-ReportConfig for the indicated serving cell as specified in 9.2.4 and release cqi-ReportConfigSCell, for each SCell that sends HARQ feedback on the indicated serving cell, if any;
1> apply the default physical channel configuration for schedulingRequestConfig as specified in 9.2.4, for the concerned CG;

Upon receiving an SRS release request from lower layers, for an indicated serving cell the UE shall:

1> apply the default physical channel configuration for soundingRS-UL-ConfigDedicated, as specified in 9.2.4;

NOTE: Upon PUCCH/ SRS release request, the UE does not modify the soundingRS-UL-ConfigDedicatedAperiodic i.e. it does not apply the default for this field (release).
5.3.14 Proximity indication

5.3.14.1 General

Figure 5.3.14.1-1: Proximity indication

The purpose of this procedure is to indicate that the UE is entering or leaving the proximity of one or more CSG member cells. The detection of proximity is based on an autonomous search function as defined in TS 36.304 [4].

5.3.14.2 Initiation

A UE in RRC_CONNECTED shall:

1> if the UE enters the proximity of one or more CSG member cell(s) on an E-UTRA frequency while proximity indication is enabled for such E-UTRA cells; or

1> if the UE enters the proximity of one or more CSG member cell(s) on an UTRA frequency while proximity indication is enabled for such UTRA cells; or

1> if the UE leaves the proximity of all CSG member cell(s) on an E-UTRA frequency while proximity indication is enabled for such E-UTRA cells; or

1> if the UE leaves the proximity of all CSG member cell(s) on an UTRA frequency while proximity indication is enabled for such UTRA cells:

2> if the UE has previously not transmitted a ProximityIndication for the RAT and frequency during the current RRC connection, or if more than 5 s has elapsed since the UE has last transmitted a ProximityIndication (either entering or leaving) for the RAT and frequency:

3> initiate transmission of the ProximityIndication message in accordance with 5.3.14.3;

NOTE: In the conditions above, “if the UE enters the proximity of one or more CSG member cell(s)” includes the case of already being in the proximity of such cell(s) at the time proximity indication for the corresponding RAT is enabled.

5.3.14.3 Actions related to transmission of ProximityIndication message

The UE shall set the contents of ProximityIndication message as follows:

1> if the UE applies the procedure to report entering the proximity of CSG member cell(s):

2> set type to entering;

1> else if the UE applies the procedure to report leaving the proximity of CSG member cell(s):

2> set type to leaving;

1> if the proximity indication was triggered for one or more CSG member cell(s) on an E-UTRA frequency:

2> set the carrierFreq to eutra with the value set to the E-ARFCN value of the E-UTRA cell(s) for which proximity indication was triggered;
else if the proximity indication was triggered for one or more CSG member cell(s) on a UTRA frequency:

set the carrierFreq to utra with the value set to the ARFCN value of the UTRA cell(s) for which proximity indication was triggered;

The UE shall submit the ProximityIndication message to lower layers for transmission.

5.3.15 Void

5.4 Inter-RAT mobility

5.4.1 Introduction

The general principles of connected mode mobility are described in 5.3.1.3. The general principles of the security handling upon connected mode mobility are described in 5.3.1.2.

For the (network controlled) inter RAT mobility from E-UTRA for a UE in RRC_CONNECTED, a single procedure is defined that supports both handover, cell change order with optional network assistance (NACC) and enhanced CS fallback to CDMA2000 1xRTT. In case of mobility to CDMA2000, the eNB decides when to move to the other RAT while the target RAT determines to which cell the UE shall move.

5.4.2 Handover to E-UTRA

5.4.2.1 General

The purpose of this procedure is to, under the control of the network, transfer a connection between the UE and another Radio Access Network (e.g. GERAN or UTRAN) to E-UTRAN.

The handover to E-UTRA procedure applies when SRBs, possibly in combination with DRBs, are established in another RAT. Handover from UTRAN to E-UTRAN applies only after integrity has been activated in UTRAN.

5.4.2.2 Initiation

The RAN using another RAT initiates the handover to E-UTRA procedure, in accordance with the specifications applicable for the other RAT, by sending the RRCConnectionReconfiguration message via the radio access technology from which the inter-RAT handover is performed.

E-UTRAN applies the procedure as follows:

- to activate ciphering, possibly using NULL algorithm, if not yet activated in the other RAT;
- to establish SRB1, SRB2 and one or more DRBs, i.e. at least the DRB associated with the default EPS bearer is established;
5.4.2.3 Reception of the **RRCConnectionReconfiguration** by the UE

If the UE is able to comply with the configuration included in the **RRCConnectionReconfiguration** message, the UE shall:

1> apply the default physical channel configuration as specified in 9.2.4;
1> apply the default semi-persistent scheduling configuration as specified in 9.2.3;
1> apply the default MAC main configuration as specified in 9.2.2;
1> start timer T304 with the timer value set to \(t_{304} \), as included in the *mobilityControlInfo*;
1> consider the target PCell to be one on the frequency indicated by the *carrierFreq* with a physical cell identity indicated by the *targetPhysCellId*;
1> start synchronising to the DL of the target PCell;
1> set the C-RNTI to the value of the *newUE-Identity*;
1> for the target PCell, apply the downlink bandwidth indicated by the *dl-Bandwidth*;
1> for the target PCell, apply the uplink bandwidth indicated by (the absence or presence of) the *ul-Bandwidth*;
1> configure lower layers in accordance with the received *radioResourceConfigCommon*;
1> configure lower layers in accordance with any additional fields, not covered in the previous, if included in the received *mobilityControlInfo*;
1> perform the radio resource configuration procedure as specified in 5.3.10;
1> forward the *nas-SecurityParamToEUTRA* to the upper layers;
1> derive the \(K_{\text{NB}} \) key, as specified in TS 33.401 [32];
1> derive the \(K_{\text{RRCint}} \) key associated with the *integrityProtAlgorithm*, as specified in TS 33.401 [32];
1> derive the \(K_{\text{RRCenc}} \) key and the \(K_{\text{UPenc}} \) key associated with the *cipheringAlgorithm*, as specified in TS 33.401 [32];
1> configure lower layers to apply the indicated integrity protection algorithm and the \(K_{\text{RRCint}} \) key immediately, i.e. the indicated integrity protection configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;
1> configure lower layers to apply the indicated ciphering algorithm, the \(K_{\text{RRCenc}} \) key and the \(K_{\text{UPenc}} \) key immediately, i.e. the indicated ciphering configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;
1> if the received **RRCConnectionReconfiguration** includes the *sCellToAddModList*:
 2> perform SCell addition as specified in 5.3.10.3b;
1> if the **RRCConnectionReconfiguration** message includes the *measConfig*:
 2> perform the measurement configuration procedure as specified in 5.5.2;
1> perform the measurement identity autonomous removal as specified in 5.5.2.2a;
1> if the **RRCConnectionReconfiguration** message includes the *otherConfig*:
 2> perform the other configuration procedure as specified in 5.3.10.9;
1> if the **RRCConnectionReconfiguration** message includes *wlan-OffloadInfo*:
 2> perform the dedicated WLAN offload configuration procedure as specified in 5.6.12.2;
1> if the **RRCConnectionReconfiguration** message includes *rlwi-Configuration*:
 2> perform the WLAN traffic steering command procedure as specified in 5.6.16.2;
if the RRCConnectionReconfiguration message includes lwa-Configuration:
2> perform the LWA configuration procedure as specified in 5.6.14.2;

if the RRCConnectionReconfiguration message includes lwip-Configuration:
2> perform the LWIP reconfiguration procedure as specified in 5.6.17.2;

set the content of RRCConnectionReconfigurationComplete message as follows:
2> if the UE has radio link failure or handover failure information available in VarRLF-Report and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:
3> include rlf-InfoAvailable;

2> if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport and if T330 is not running:
3> include logMeasAvailableMBSFN;

2> else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:
3> include the logMeasAvailable;

2> if the UE has connection establishment failure information available in VarConnEstFailReport and if the RPLMN is equal to plmn-Identity stored in VarConnEstFailReport:
3> include connEstFailInfoAvailable;

1> submit the RRCConnectionReconfigurationComplete message to lower layers for transmission using the new configuration;

1> if the RRCConnectionReconfiguration message does not include rlf-TimersAndConstants set to setup:
2> use the default values specified in 9.2.5 for timer T310, T311 and constant N310, N311;

1> if MAC successfully completes the random access procedure:
2> stop timer T304;

2> apply the parts of the CQI reporting configuration, the scheduling request configuration and the sounding RS configuration that do not require the UE to know the SFN of the target PCell, if any;

2> apply the parts of the measurement and the radio resource configuration that require the UE to know the SFN of the target PCell (e.g. measurement gaps, periodic CQI reporting, scheduling request configuration, sounding RS configuration), if any, upon acquiring the SFN of the target PCell;

NOTE 1: Whenever the UE shall setup or reconfigure a configuration in accordance with a field that is received it applies the new configuration, except for the cases addressed by the above statements.

2> enter E-UTRA RRC_CONNECTED, upon which the procedure ends;

NOTE 2: The UE is not required to determine the SFN of the target PCell by acquiring system information from that cell before performing RACH access in the target PCell.

5.4.2.4 Reconfiguration failure

The UE shall:

1> if the UE is unable to comply with (part of) the configuration included in the RRCConnectionReconfiguration message:
2> perform the actions defined for this failure case as defined in the specifications applicable for the other RAT;
NOTE 1: The UE may apply above failure handling also in case the RRCConnectionReconfiguration message causes a protocol error for which the generic error handling as defined in 5.7 specifies that the UE shall ignore the message.

NOTE 2: If the UE is unable to comply with part of the configuration, it does not apply any part of the configuration, i.e. there is no partial success/failure.

5.4.2.5 T304 expiry (handover to E-UTRA failure)

The UE shall:

1> upon T304 expiry (handover to E-UTRA failure):
 2> reset MAC;
 2> perform the actions defined for this failure case as defined in the specifications applicable for the other RAT;

5.4.3 Mobility from E-UTRA

5.4.3.1 General

The purpose of this procedure is to move a UE in RRC_CONNECTED to a cell using another Radio Access Technology (RAT), e.g. GERAN, UTRA or CDMA2000 systems. The mobility from E-UTRA procedure covers the following type of mobility:

- handover, i.e. the MobilityFromEUTRACommand message includes radio resources that have been allocated for the UE in the target cell;
- cell change order, i.e. the MobilityFromEUTRACommand message may include information facilitating access of and/or connection establishment in the target cell, e.g. system information. Cell change order is applicable only to GERAN; and
- enhanced CS fallback to CDMA2000 1xRTT, i.e. the MobilityFromEUTRACommand message includes radio resources that have been allocated for the UE in the target cell. The enhanced CS fallback to CDMA2000 1xRTT may be combined with concurrent handover or redirection to CDMA2000 HRPD.
NOTE: For the case of dual receiver/transmitter enhanced CS fallback to CDMA2000 1xRTT, the
DLInformationTransfer message is used instead of the MobilityFromEUTRACommand message (see TS
36.300 [9]).

5.4.3.2 Initiation
E-UTRAN initiates the mobility from E-UTRA procedure to a UE in RRC_CONNECTED, possibly in response to a
MeasurementReport message or in response to reception of CS fallback indication for the UE from MME, by sending a
MobilityFromEUTRACommand message. E-UTRAN applies the procedure as follows:
- the procedure is initiated only when AS-security has been activated, and SRB2 with at least one DRB are setup
 and not suspended;

5.4.3.3 Reception of the MobilityFromEUTRACommand by the UE
The UE shall be able to receive a MobilityFromEUTRACommand message and perform a cell change order to GERAN,
even if no prior UE measurements have been performed on the target cell.
The UE shall:
1> stop timer T310, if running;
1> stop timer T312, if running;
1> if the MobilityFromEUTRACommand message includes the purpose set to handover:
 2> if the targetRAT-Type is set toutra or geran:
 3> consider inter-RAT mobility as initiated towards the RAT indicated by the targetRAT-Type included in
 the MobilityFromEUTRACommand message;
 3> forward the nas-SecurityParamFromEUTRA to the upper layers;
 3> access the target cell indicated in the inter-RAT message in accordance with the specifications of the
 target RAT;
 3> if the targetRAT-Type is set to geran:
 4> use the contents of systemInformation, if provided for PS Handover, as the system information to
 begin access on the target GERAN cell;
NOTE 1: If there are DRBs for which no radio bearers are established in the target RAT as indicated in the
targetRAT-MessageContainer in the message, the E-UTRA RRC part of the UE does not indicate the
release of the concerned DRBs to the upper layers. Upper layers may derive which bearers are not
established from information received from the AS of the target RAT.
NOTE 2: In case of SR-VCC, the DRB to be replaced is specified in [61].
 2> else if the targetRAT-Type is set to cdma2000-1XRTT or cdma2000-HRPD:
 3> forward the targetRAT-Type and the targetRAT-MessageContainer to the CDMA2000 upper layers for
 the UE to access the cell(s) indicated in the inter-RAT message in accordance with the specifications of
 the CDMA2000 target-RAT;
 1> else if the MobilityFromEUTRACommand message includes the purpose set to cellChangeOrder:
 2> start timer T304 with the timer value set to t304, as included in the MobilityFromEUTRACommand message;
 2> if the targetRAT-Type is set to geran:
 3> if networkControlOrder is included in the MobilityFromEUTRACommand message:
 4> apply the value as specified in TS 44.060 [36];
 3> else:
4> acquire networkControlOrder and apply the value as specified in TS 44.060 [36];
3> use the contents of systemInformation, if provided, as the system information to begin access on the target GERAN cell;
2> establish the connection to the target cell indicated in the CellChangeOrder;

NOTE 3: The criteria for success or failure of the cell change order to GERAN are specified in TS 44.060 [36].

1> if the MobilityFromEUTRACommand message includes the purpose set to e-CSFB:
 2> if messageContCDMA2000-1XRTT is present:
 3> forward the messageContCDMA2000-1XRTT to the CDMA2000 upper layers for the UE to access the cell(s) indicated in the inter-RAT message in accordance with the specification of the target RAT;
 2> if mobilityCDMA2000-HRPD is present and is set to handover:
 3> forward the messageContCDMA2000-HRPD to the CDMA2000 upper layers for the UE to access the cell(s) indicated in the inter-RAT message in accordance with the specification of the target RAT;
 2> if mobilityCDMA2000-HRPD is present and is set to redirection:
 3> forward the redirectCarrierCDMA2000-HRPD to the CDMA2000 upper layers;

NOTE 4: When the CDMA2000 upper layers in the UE receive both the messageContCDMA2000-1XRTT and messageContCDMA2000-HRPD the UE performs concurrent access to both CDMA2000 1xRTT and CDMA2000 HRPD RAT.

NOTE 5: The UE should perform the handover, the cell change order or enhanced 1xRTT CS fallback as soon as possible following the reception of the RRC message MobilityFromEUTRACommand, which could be before confirming successful reception (HARQ and ARQ) of this message.

5.4.3.4 Successful completion of the mobility from E-UTRA

Upon successfully completing the handover, the cell change order or enhanced 1xRTT CS fallback, the UE shall:

1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other';

NOTE: If the UE performs enhanced 1xRTT CS fallback along with concurrent mobility to CDMA2000 HRPD and the connection to either CDMA2000 1xRTT or CDMA2000 HRPD succeeds, then the mobility from E-UTRA is considered successful.

5.4.3.5 Mobility from E-UTRA failure

The UE shall:

1> if T304 expires (mobility from E-UTRA failure); or
1> if the UE does not succeed in establishing the connection to the target radio access technology; or
1> if the UE is unable to comply with (part of) the configuration included in the MobilityFromEUTRACommand message; or
1> if there is a protocol error in the inter RAT information included in the MobilityFromEUTRACommand message, causing the UE to fail the procedure according to the specifications applicable for the target RAT:

2> stop T304, if running;
2> if the cs-FallbackIndicator in the MobilityFromEUTRACommand message was set to TRUE or e-CSFB was present:
 3> indicate to upper layers that the CS fallback procedure has failed;
2> revert back to the configuration used in the source PCell, excluding the configuration configured by the physicalConfigDedicated, mac-MainConfig and sps-Config;
2> initiate the connection re-establishment procedure as specified in 5.3.7;

NOTE: For enhanced CS fallback to CDMA2000 1xRTT, the above UE behavior applies only when the UE is attempting the enhanced 1xRTT CS fallback and connection to the target radio access technology fails or if the UE is attempting enhanced 1xRTT CS fallback along with concurrent mobility to CDMA2000 HRPD and connection to both the target radio access technologies fails.

5.4.4 Handover from E-UTRA preparation request (CDMA2000)

5.4.4.1 General

The purpose of this procedure is to trigger the UE to prepare for handover or enhanced 1xRTT CS fallback to CDMA2000 by requesting a connection with this network. The UE may use this procedure to concurrently prepare for handover to CDMA2000 HRPD along with preparation for enhanced CS fallback to CDMA2000 1xRTT. This procedure applies to CDMA2000 capable UEs only.

This procedure is also used to trigger the UE which supports dual Rx/Tx enhanced 1xCSFB to redirect its second radio to CDMA2000 1xRTT.

The handover from E-UTRA preparation request procedure applies when signalling radio bearers are established.

5.4.4.2 Initiation

E-UTRAN initiates the handover from E-UTRA preparation request procedure to a UE in RRC_CONNECTED, possibly in response to a MeasurementReport message or CS fallback indication for the UE, by sending a HandoverFromEUTRAPreparationRequest message. E-UTRAN initiates the procedure only when AS security has been activated.

5.4.4.3 Reception of the HandoverFromEUTRAPreparationRequest by the UE

Upon reception of the HandoverFromEUTRAPreparationRequest message, the UE shall:

1> if dualRxTxRedirectIndicator is present in the received message:

2> forward dualRxTxRedirectIndicator to the CDMA2000 upper layers;

2> forward redirectCarrierCDMA2000-1XRTT to the CDMA2000 upper layers, if included;

1> else:

2> indicate the request to prepare handover or enhanced 1xRTT CS fallback and forward the cdma2000-Type to the CDMA2000 upper layers;

2> if cdma2000-Type is set to type1XRTT:

3> forward the rand and the mobilityParameters to the CDMA2000 upper layers;

2> if concurrPrepCDMA2000-HRPD is present in the received message:

3> forward concurrPrepCDMA2000-HRPD to the CDMA2000 upper layers;

2> else:
3> forward *concurrPrepCDMA2000-HRPD*, with its value set to *FALSE*, to the CDMA2000 upper layers;

5.4.5 UL handover preparation transfer (CDMA2000)

5.4.5.1 General

![Figure 5.4.5.1-1: UL handover preparation transfer](image)

The purpose of this procedure is to tunnel the handover related CDMA2000 dedicated information or enhanced 1xRTT CS fallback related CDMA2000 dedicated information from UE to E-UTRAN when requested by the higher layers. The procedure is triggered by the higher layers on receipt of *HandoverFromEUTRAPreparationRequest* message. If preparing for enhanced CS fallback to CDMA2000 1xRTT and handover to CDMA2000 HRPD, the UE sends two consecutive *ULHandoverPreparationTransfer* messages to E-UTRAN, one per addressed CDMA2000 RAT Type. This procedure applies to CDMA2000 capable UEs only.

5.4.5.2 Initiation

A UE in RRC_CONNECTED initiates the UL handover preparation transfer procedure whenever there is a need to transfer handover or enhanced 1xRTT CS fallback related non-3GPP dedicated information. The UE initiates the UL handover preparation transfer procedure by sending the *ULHandoverPreparationTransfer* message.

5.4.5.3 Actions related to transmission of the *ULHandoverPreparationTransfer* message

The UE shall set the contents of the *ULHandoverPreparationTransfer* message as follows:

1> include the *cdma2000-Type* and the *dedicatedInfo*;

1> if the *cdma2000-Type* is set to *type1XRTT*:

2> include the *meid* and set it to the value received from the CDMA2000 upper layers;

1> submit the *ULHandoverPreparationTransfer* message to lower layers for transmission, upon which the procedure ends;

5.4.5.4 Failure to deliver the *ULHandoverPreparationTransfer* message

The UE shall:

1> if the UE is unable to guarantee successful delivery of *ULHandoverPreparationTransfer* messages:

2> inform upper layers about the possible failure to deliver the information contained in the concerned *ULHandoverPreparationTransfer* message;

5.4.6 Inter-RAT cell change order to E-UTRAN

5.4.6.1 General

The purpose of the inter-RAT cell change order to E-UTRAN procedure is to transfer, under the control of the source radio access technology, a connection between the UE and another radio access technology (e.g. GSM/ GPRS) to E-UTRAN.
5.4.6.2 Initiation

The procedure is initiated when a radio access technology other than E-UTRAN, e.g. GSM/GPRS, using procedures specific for that RAT, orders the UE to change to an E-UTRAN cell. In response, upper layers request the establishment of an RRC connection as specified in subclause 5.3.3.

NOTE: Within the message used to order the UE to change to an E-UTRAN cell, the source RAT should specify the identity of the target E-UTRAN cell as specified in the specifications for that RAT.

The UE shall:

1> upon receiving an **RRCConnectionSetup** message:

2> consider the inter-RAT cell change order procedure to have completed successfully;

5.4.6.3 UE fails to complete an inter-RAT cell change order

If the inter-RAT cell change order fails the UE shall return to the other radio access technology and proceed as specified in the appropriate specifications for that RAT.

The UE shall:

1> upon failure to establish the RRC connection as specified in subclause 5.3.3:

2> consider the inter-RAT cell change order procedure to have failed;

NOTE: The cell change was network ordered. Therefore, failure to change to the target PCell should not cause the UE to move to UE-controlled cell selection.

5.5 Measurements

5.5.1 Introduction

The UE reports measurement information in accordance with the measurement configuration as provided by E-UTRAN. E-UTRAN provides the measurement configuration applicable for a UE in RRC_CONNECTED by means of dedicated signalling, i.e. using the **RRCConnectionReconfiguration** or **RRCConnectionResume** message.

The UE can be requested to perform the following types of measurements:

- Intra-frequency measurements: measurements at the downlink carrier frequency(ies) of the serving cell(s).
- Inter-frequency measurements: measurements at frequencies that differ from any of the downlink carrier frequency(ies) of the serving cell(s).
- Inter-RAT measurements of UTRA frequencies.
- Inter-RAT measurements of GERAN frequencies.
- Inter-RAT measurements of CDMA2000 HRPD or CDMA2000 1xRTT or WLAN frequencies.
- CBR measurements.

The measurement configuration includes the following parameters:

1. **Measurement objects**: The objects on which the UE shall perform the measurements.

 - For intra-frequency and inter-frequency measurements a measurement object is a single E-UTRA carrier frequency. Associated with this carrier frequency, E-UTRAN can configure a list of cell specific offsets, a list of 'blacklisted' cells and a list of 'whitelisted' cells. Blacklisted cells are not considered in event evaluation or measurement reporting.
 - For inter-RAT UTRA measurements a measurement object is a set of cells on a single UTRA carrier frequency.
- For inter-RAT GERAN measurements a measurement object is a set of GERAN carrier frequencies.
- For inter-RAT CDMA2000 measurements a measurement object is a set of cells on a single (HRPD or 1xRTT) carrier frequency.
- For inter-RAT WLAN measurements a measurement object is a set of WLAN identifiers and optionally a set of WLAN frequencies.
- For CBR measurements a measurement object is a set of transmission resource pools for V2X sidelink communication.

NOTE 1: Some measurements using the above mentioned measurement objects, only concern a single cell, e.g. measurements used to report neighbouring cell system information, PCell UE Rx-Tx time difference, or a pair of cells, e.g. SSTD measurements between the PCell and the PSCell.

2. **Reporting configurations**: A list of reporting configurations where each reporting configuration consists of the following:
 - Reporting criterion: The criterion that triggers the UE to send a measurement report. This can either be periodical or a single event description.
 - Reporting format: The quantities that the UE includes in the measurement report and associated information (e.g. number of cells to report).

3. **Measurement identities**: A list of measurement identities where each measurement identity links one measurement object with one reporting configuration. By configuring multiple measurement identities it is possible to link more than one measurement object to the same reporting configuration, as well as to link more than one reporting configuration to the same measurement object. The measurement identity is used as a reference number in the measurement report.

4. **Quantity configurations**: One quantity configuration is configured per RAT type. The quantity configuration defines the measurement quantities and associated filtering used for all event evaluation and related reporting of that measurement type. One filter can be configured per measurement quantity.

5. **Measurement gaps**: Periods that the UE may use to perform measurements, i.e. no (UL, DL) transmissions are scheduled.

E-UTRAN only configures a single measurement object for a given frequency (except for WLAN and except for CBR measurements), i.e. it is not possible to configure two or more measurement objects for the same frequency with different associated parameters, e.g. different offsets and/ or blacklists. E-UTRAN may configure multiple instances of the same event e.g. by configuring two reporting configurations with different thresholds.

The UE maintains a single measurement object list, a single reporting configuration list, and a single measurement identities list. The measurement object list includes measurement objects, that are specified per RAT type, possibly including intra-frequency object(s) (i.e. the object(s) corresponding to the serving frequency(ies)), inter-frequency object(s) and inter-RAT objects. Similarly, the reporting configuration list includes E-UTRA and inter-RAT reporting configurations. Any measurement object can be linked to any reporting configuration of the same RAT type. Some reporting configurations may not be linked to a measurement object. Likewise, some measurement objects may not be linked to a reporting configuration.

The measurement procedures distinguish the following types of cells:

1. The serving cell(s) - these are the PCell and one or more SCells, if configured for a UE supporting CA.
2. Listed cells - these are cells listed within the measurement object(s) or, for inter-RAT WLAN, the WLANs matching the WLAN identifiers configured in the measurement object or the WLAN the UE is connected to.
3. Detected cells - these are cells that are not listed within the measurement object(s) but are detected by the UE on the carrier frequency(ies) indicated by the measurement object(s) or, for inter-RAT WLAN, the WLANs not included in the measObjectWLAN but meeting the triggering requirements.

For E-UTRA, the UE measures and reports on the serving cell(s), listed cells, detected cells, transmission resource pools for V2X sidelink communication, and, for RSSI and channel occupancy measurements, the UE measures and reports on any reception on the indicated frequency. For inter-RAT UTRA, the UE measures and reports on listed cells and optionally on cells that are within a range for which reporting is allowed by E-UTRAN. For inter-RAT GERAN,
the UE measures and reports on detected cells. For inter-RAT CDMA2000, the UE measures and reports on listed cells. For inter-RAT WLAN, the UE measures and reports on listed cells.

NOTE 2: For inter-RAT UTRA and CDMA2000, the UE measures and reports also on detected cells for the purpose of SON.

NOTE 3: This specification is based on the assumption that typically CSG cells of home deployment type are not indicated within the neighbour list. Furthermore, the assumption is that for non-home deployments, the physical cell identity is unique within the area of a large macro cell (i.e. as for UTRAN).

Whenever the procedural specification, other than contained in sub-clause 5.5.2, refers to a field it concerns a field included in the VarMeasConfig unless explicitly stated otherwise i.e. only the measurement configuration procedure covers the direct UE action related to the received measConfig.

5.5.2 Measurement configuration

5.5.2.1 General

E-UTRAN applies the procedure as follows:

- to ensure that, whenever the UE has a measConfig, it includes a measObject for each serving frequency;
- to configure at most one measurement identity using a reporting configuration with the purpose set to reportCGI;
- for serving frequencies, set the EARFCN within the corresponding measObject according to the band as used for reception/ transmission;
- to configure at most one measurement identity using a reporting configuration with ul-DelayConfig;

The UE shall:

1> if the received measConfig includes the measObjectToRemoveList:
 2> perform the measurement object removal procedure as specified in 5.5.2.4;

1> if the received measConfig includes the measObjectToAddModList:
 2> perform the measurement object addition/ modification procedure as specified in 5.5.2.5;

1> if the received measConfig includes the reportConfigToRemoveList:
 2> perform the reporting configuration removal procedure as specified in 5.5.2.6;

1> if the received measConfig includes the reportConfigToAddModList:
 2> perform the reporting configuration addition/ modification procedure as specified in 5.5.2.7;

1> if the received measConfig includes the quantityConfig:
 2> perform the quantity configuration procedure as specified in 5.5.2.8;

1> if the received measConfig includes the measIdToRemoveList:
 2> perform the measurement identity removal procedure as specified in 5.5.2.2;

1> if the received measConfig includes the measIdToAddModList:
 2> perform the measurement identity addition/ modification procedure as specified in 5.5.2.3;

1> if the received measConfig includes the measGapConfig or measGapConfigPerCC-List:
 2> perform the measurement gap configuration procedure as specified in 5.5.2.9;

1> if the received measConfig includes the measGapSharingConfig:
2> perform the measurement gap sharing configuration procedure as specified in 5.5.2.12;

1> if the received measConfig includes the s-Measure:

2> set the parameter s-Measure within VarMeasConfig to the lowest value of the RSRP ranges indicated by the received value of s-Measure;

1> if the received measConfig includes the preRegistrationInfoHRPD:

2> forward the preRegistrationInfoHRPD to CDMA2000 upper layers;

1> if the received measConfig includes the speedStatePars:

2> set the parameter speedStatePars within VarMeasConfig to the received value of speedStatePars;

1> if the received measConfig includes the allowInterruptions:

2> set the parameter allowInterruptions within VarMeasConfig to the received value of allowInterruptions;

5.5.2.2 Measurement identity removal

The UE shall:

1> for each measId included in the received measIdToRemoveList that is part of the current UE configuration in VarMeasConfig:

2> remove the entry with the matching measId from the measIdList within the VarMeasConfig;

2> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

2> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE: The UE does not consider the message as erroneous if the measIdToRemoveList includes any measId value that is not part of the current UE configuration.

5.5.2.2a Measurement identity autonomous removal

The UE shall:

1> for each measId included in the measIdList within VarMeasConfig:

2> if the associated reportConfig concerns an event involving a serving cell while the concerned serving cell is not configured; or

2> if the associated reportConfig concerns an event involving a WLAN mobility set while the concerned WLAN mobility set is not configured; or

2> if the associated reportConfig concerns an event involving a transmission resource pool for V2X sidelink communication while the concerned resource pool is not configured:

3> remove the measId from the measIdList within the VarMeasConfig;

3> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

3> stop the periodical reporting timer if running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE 1: The above UE autonomous removal of measIds applies only for measurement events A1, A2, A6, and also applies for events A3 and A5 if configured for PSCell and W2 and W3 and V1 and V2, if configured.

NOTE 2: When performed during re-establishment, the UE is only configured with a primary frequency (i.e. the SCell(s) and WLAN mobility set are released, if configured).
5.5.2.3 Measurement identity addition/ modification

E-UTRAN applies the procedure as follows:

- configure a measId only if the corresponding measurement object, the corresponding reporting configuration and the corresponding quantity configuration, are configured;

The UE shall:

1> for each measId included in the received measIdToAddModList:
 2> if an entry with the matching measId exists in the measIdList within the VarMeasConfig:
 3> replace the entry with the value received for this measId;
 2> else:
 3> add a new entry for this measId within the VarMeasConfig;
 2> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;
 2> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;
 2> if the triggerType is set to periodical and the purpose is set to reportCGI in the reportConfig associated with this measId:
 3> if the measObject associated with this measId concerns E-UTRA:
 4> if the si-RequestForHO is included in the reportConfig associated with this measId:
 5> if the UE is a category 0 UE according to TS 36.306 [5]:
 6> start timer T321 with the timer value set to 190 ms for this measId;
 5> else:
 6> start timer T321 with the timer value set to 150 ms for this measId;
 4> else:
 5> start timer T321 with the timer value set to 1 second for this measId;
 3> else if the measObject associated with this measId concerns UTRA:
 4> if the si-RequestForHO is included in the reportConfig associated with this measId:
 5> for UTRA FDD, start timer T321 with the timer value set to 2 seconds for this measId;
 5> for UTRA TDD, start timer T321 with the timer value set to [1 second] for this measId;
 4> else:
 5> start timer T321 with the timer value set to 8 seconds for this measId;
 3> else:
 4> start timer T321 with the timer value set to 8 seconds for this measId;

5.5.2.4 Measurement object removal

The UE shall:

1> for each measObjectId included in the received measObjectToRemoveList that is part of the current UE configuration in VarMeasConfig:
 2> remove the entry with the matching measObjectId from the measObjectList within the VarMeasConfig;
2> remove all measId associated with this measObjectId from the measIdList within the VarMeasConfig, if any;

2> if a measId is removed from the measIdList:

3> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

3> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE: The UE does not consider the message as erroneous if the measObjectIdToRemoveList includes any measObjectId value that is not part of the current UE configuration.

5.5.2.5 Measurement object addition/ modification

The UE shall:

1> for each measObjectId included in the received measObjectIdToAddModList:

2> if an entry with the matching measObjectId exists in the measObjectIdList within the VarMeasConfig, for this entry:

3> reconfigure the entry with the value received for this measObject, except for the fields cellsToAddModList, blackCellsToAddModList, whiteCellsToAddModList, altTTT-CellsToAddModList, cellsToRemoveList, blackCellsToRemoveList, whiteCellsToRemoveList, altTTT-CellsToRemoveList, measSubframePatternConfigNeigh, measDS-Config, wlan-ToAddModList, wlan-ToRemoveList, tx-ResourcePoolToRemoveList and tx-ResourcePoolToAddList;

3> if the received measObject includes the cellsToRemoveList:

4> for each cellIndex included in the cellsToRemoveList:

5> remove the entry with the matching cellIndex from the cellsToAddModList;

3> if the received measObject includes the cellsToAddModList:

4> for each cellIndex value included in the cellsToAddModList:

5> if an entry with the matching cellIndex exists in the cellsToAddModList:

6> replace the entry with the value received for this cellIndex;

5> else:

6> add a new entry for the received cellIndex to the cellsToAddModList;

3> if the received measObject includes the blackCellsToRemoveList:

4> for each cellIndex included in the blackCellsToRemoveList:

5> remove the entry with the matching cellIndex from the blackCellsToAddModList;

NOTE 1: For each cellIndex included in the blackCellsToRemoveList that concerns overlapping ranges of cells, a cell is removed from the black list of cells only if all cell indexes containing it are removed.

3> if the received measObject includes the blackCellsToAddModList:

4> for each cellIndex included in the blackCellsToAddModList:

5> if an entry with the matching cellIndex is included in the blackCellsToAddModList:

6> replace the entry with the value received for this cellIndex;

5> else:

6> add a new entry for the received cellIndex to the blackCellsToAddModList;

3> if the received measObject includes the whiteCellsToRemoveList:

4> for each cellIndex included in the whiteCellsToRemoveList:

5> if an entry with the matching cellIndex is included in the whiteCellsToAddModList:

6> replace the entry with the value received for this cellIndex;

5> else:

6> add a new entry for the received cellIndex to the whiteCellsToAddModList;
4> for each cellIndex included in the whiteCellsToRemoveList:
5> remove the entry with the matching cellIndex from the whiteCellsToAddModList;

NOTE 2: For each cellIndex included in the whiteCellsToRemoveList that concerns overlapping ranges of cells, a cell is removed from the white list of cells only if all cell indexes containing it are removed.

3> if the received measObject includes the whiteCellsToAddModList:
4> for each cellIndex included in the whiteCellsToAddModList:
5> if an entry with the matching cellIndex is included in the whiteCellsToAddModList:
6> replace the entry with the value received for this cellIndex;
5> else:
6> add a new entry for the received cellIndex to the whiteCellsToAddModList;

3> if the received measObject includes the altTTT-CellsToRemoveList:
4> for each cellIndex included in the altTTT-CellsToRemoveList:
5> remove the entry with the matching cellIndex from the altTTT-CellsToAddModList;

NOTE 3: For each cellIndex included in the altTTT-CellsToRemoveList that concerns overlapping ranges of cells, a cell is removed from the list of cells only if all cell indexes containing it are removed.

3> if the received measObject includes the altTTT-CellsToAddModList:
4> for each cellIndex value included in the altTTT-CellsToAddModList:
5> if an entry with the matching cellIndex exists in the altTTT-CellsToAddModList:
6> replace the entry with the value received for this cellIndex;
5> else:
6> add a new entry for the received cellIndex to the altTTT-CellsToAddModList;

3> if the received measObject includes measSubframePatternConfigNeigh:
4> set measSubframePatternConfigNeigh within the VarMeasConfig to the value of the received field

3> if the received measObject includes measDS-Config:
4> if measDS-Config is set to setup:
5> if the received measDS-Config includes the measCSI-RS-ToRemoveList:
6> for each measCSI-RS-Id included in the measCSI-RS-ToRemoveList:
7> remove the entry with the matching measCSI-RS-Id from the measCSI-RS-ToAddModList;
5> if the received measDS-Config includes the measCSI-RS-ToAddModList, for each measCSI-RS-Id value included in the measCSI-RS-ToAddModList:
6> if an entry with the matching measCSI-RS-Id exists in the measCSI-RS-ToAddModList:
7> replace the entry with the value received for this measCSI-RS-Id;
6> else:
7> add a new entry for the received measCSI-RS-Id to the measCSI-RS-ToAddModList;
5> set other fields of the measDS-Config within the VarMeasConfig to the value of the received fields;
5> perform the discovery signals measurement timing configuration procedure as specified in 5.5.2.10;
4> else:
5> release the discovery signals measurement configuration;
3> for each measId associated with this measObjectId in the_measIdList within the VarMeasConfig, if any:
4> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;
4> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;
3> if the received measObject includes the wlan-ToRemoveList:
4> for each WLAN-Identifiers included in the wlan-ToRemoveList:
5> remove the entry with the matching WLAN-Identifiers from the wlan-ToAddModList;

NOTE 3a: Matching of WLAN-Identifiers requires that all WLAN identifier fields should be same.

3> if the received measObject includes the wlan-ToAddModList:
4> for each WLAN-Identifiers included in the wlan-ToAddModList:
5> add a new entry for the received WLAN-Identifiers to the wlan-ToAddModList;
3> if the received measObject includes the tx-ResourcePoolToRemoveList:
4> for each transmission resource pool indicated in tx-ResourcePoolToRemoveList:
5> remove the entry with the matching identity of the transmission resource pool from the tx-ResourcePoolToAddList;
3> if the received measObject includes the tx-ResourcePoolToAddList:
4> for each transmission resource pool indicated in tx-ResourcePoolToAddList:
5> add a new entry for the received identity of the transmission resource pool to the tx-ResourcePoolToAddList;
2> else:
3> add a new entry for the received measObject to the measObjectList within VarMeasConfig;

NOTE 4: UE does not need to retain cellForWhichToReportCGI in the measObject after reporting cgi-Info.

5.5.2.6 Reporting configuration removal

The UE shall:
1> for each reportConfigId included in the received reportConfigToRemoveList that is part of the current UE configuration in VarMeasConfig:
2> remove the entry with the matching reportConfigId from the reportConfigList within the VarMeasConfig;
2> remove all measId associated with the reportConfigId from the measIdList within the VarMeasConfig, if any;
2> if a measId is removed from the measIdList:
3> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;
3> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE: The UE does not consider the message as erroneous if the reportConfigToRemoveList includes any reportConfigId value that is not part of the current UE configuration.

5.5.2.7 Reporting configuration addition/ modification

The UE shall:

1> for each reportConfigId included in the received reportConfigToAddModList:
 2> if an entry with the matching reportConfigId exists in the reportConfigList within the VarMeasConfig, for this entry:
 3> reconfigure the entry with the value received for this reportConfig;
 3> for each measId associated with this reportConfigId included in the measIdList within the VarMeasConfig, if any:
 4> remove the measurement reporting entry for this measId from in VarMeasReportList, if included;
 4> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;
 2> else:
 3> add a new entry for the received reportConfig to the reportConfigList within the VarMeasConfig;

5.5.2.8 Quantity configuration

The UE shall:

1> for each RAT for which the received quantityConfig includes parameter(s):
 2> set the corresponding parameter(s) in quantityConfig within VarMeasConfig to the value of the received quantityConfig parameter(s);
1> for each measId included in the measIdList within VarMeasConfig:
 2> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;
 2> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

5.5.2.9 Measurement gap configuration

The UE shall:

1> if measGapConfig is set to setup:
 2> if a measurement gap configuration measGapConfig or measGapConfigPerCC-List is already setup, release the measurement gap configuration;
 2> if the gapOffset in measGapConfig indicates a non-uniform gap pattern:
 3> setup the measurement gap configuration indicated by the measGapConfig in accordance with the received gapOffset, i.e., the first subframe of the first gap of each non-uniform gap pattern occurs at an SFN and subframe meeting the following condition (SFN and subframe of MCG cells):
 \[SFN \mod T = \text{FLOOR}(\text{gapOffset})/10; \]
 \[\text{subframe} = \text{gapOffset} \mod 10; \]
 \[\text{with } T = \text{LMGRP}/10 \text{ as defined in TS 36.133 [16]}; \]
 2> else:
setup the measurement gap configuration indicated by the `measGapConfig` in accordance with the received `gapOffset`, i.e., the first subframe of each gap occurs at an SFN and subframe meeting the following condition (SFN and subframe of MCG cells):

\[
\text{SFN mod } T = \text{FLOOR}(\text{gapOffset}/10);
\]

\[
\text{subframe} = \text{gapOffset} \text{ mod } 10;
\]

with \(T = \text{MGRP}/10 \) as defined in TS 36.133 [16];

NOTE 1: The UE applies a single gap, which timing is relative to the MCG cells, even when configured with DC.

else if `measGapConfig` is set to `release`:

release the measurement gap configuration `measGapConfig`;

if `measGapConfigPerCC-List` is set to `setup`:

if a measurement gap configuration `measGapConfig` is already setup, release `measGapConfig`;

if `measGapConfigTo RemoveList` is included:

for each `ServCellIndex` included in the `measGapConfigTo RemoveList`:

release `measGapConfigCC` for the serving cell indicated by `servCellId`;

if `measGapConfigToAddModList` is included:

for each `ServCellIndex` included in the `measGapConfigToAddModList`:

store `measGapConfigCC` for the serving cell indicated by `servCellId`;

for each serving cell with stored `measGapConfigCC` indicating a non-uniform gap pattern, setup the measurement gap configuration indicated by the `measGapConfigCC` in accordance with the received `gapOffset`, i.e., the first subframe of each non-uniform gap pattern occurs at an SFN and subframe meeting the following condition (SFN and subframe of MCG cells):

\[
\text{SFN mod } T = \text{FLOOR}(\text{gapOffset}/10);
\]

\[
\text{subframe} = \text{gapOffset} \text{ mod } 10;
\]

with \(T = \text{LMGRP}/10 \) as defined in TS 36.133 [16];

for each serving cell with stored `measGapConfigCC` not indicating a non-uniform gap pattern, setup the measurement gap configuration indicated by the `measGapConfigCC` in accordance with the received `gapOffset`, i.e., the first subframe of each gap occurs at an SFN and subframe meeting the following condition (SFN and subframe of MCG cells):

\[
\text{SFN mod } T = \text{FLOOR}(\text{gapOffset}/10);
\]

\[
\text{subframe} = \text{gapOffset} \text{ mod } 10;
\]

with \(T = \text{MGRP}/10 \) as defined in TS 36.133 [16];

NOTE 2: The UE applies gap timing relative to the MCG cells, even when configured with DC.

else (`measGapConfigPerCC-List` is set to `release`):

release the measurement gap configuration `measGapConfigPerCC-List`;

NOTE 3: When a SCell is released, the UE is not required to apply a per CC measurement gap configuration associated to the SCell.
5.5.2.10 Discovery signals measurement timing configuration

The UE shall setup the discovery signals measurement timing configuration (DMTC) in accordance with the received \texttt{dmtc-PeriodOffset}, i.e., the first subframe of each DMTC occasion occurs at an SFN and subframe of the PCell meeting the following condition:

\[
\text{SFN mod } T = \text{FLOOR}(\text{dmtc-Offset}/10);
\]

\[
\text{subframe} = \text{dmtc-Offset} \mod 10;
\]

with \(T = \text{dmtc-Periodicity}/10; \)

On the concerned frequency, the UE shall not consider discovery signals transmission in subframes outside the DMTC occasion for measurements including RRM measurements.

5.5.2.11 RSSI measurement timing configuration

The UE shall setup the RSSI measurement timing configuration (RMTC) in accordance with the received \texttt{rmtc-Period}, \texttt{rmtc-SubframeOffset} if configured otherwise determined by the UE randomly, i.e. the first symbol of each RMTC occasion occurs at first symbol of an SFN and subframe of the PCell meeting the following condition:

\[
\text{SFN mod } T = \text{FLOOR}(\text{rmtc-SubframeOffset}/10);
\]

\[
\text{subframe} = \text{rmtc-SubframeOffset} \mod 10;
\]

with \(T = \text{rmtc-Period}/10; \)

On the concerned frequency, the UE shall not consider RSSI measurements outside the configured RMTC occasion which lasts for \texttt{measDuration} for RSSI and channel occupancy measurements.

5.5.2.12 Measurement gap sharing configuration

The UE shall:

1> if \texttt{measGapSharingConfig} is set to \texttt{setup}:

2> if a measurement gap sharing configuration is already setup, release the measurement gap sharing configuration;

2> setup the measurement gap sharing configuration indicated by the \texttt{measGapSharingConfig} in accordance with the received \texttt{measGapSharing Scheme} as defined in TS 36.133 [16];

1> else:

2> release the measurement gap sharing configuration;

5.5.3 Performing measurements

5.5.3.1 General

For all measurements, except for UE Rx–Tx time difference measurements, RSSI, UL PDCP Packet Delay per QCI measurement, channel occupancy measurements, CBR measurement, and except for WLAN measurements of Band, Carrier Info, Available Admission Capacity, Backhaul Bandwidth, Channel Utilization, and Station Count, the UE applies the layer 3 filtering as specified in 5.5.3.2, before using the measured results for evaluation of reporting criteria or for measurement reporting.

The UE shall:

1> whenever the UE has a \texttt{measConfig}, perform RSRP and RSRQ measurements for each serving cell as follows:

2> for the PCell, apply the time domain measurement resource restriction in accordance with \texttt{measSubframePatternPCell}, if configured;

2> if the UE supports CRS based discovery signals measurement:
for each SCell in deactivated state, apply the discovery signals measurement timing configuration in accordance with measDS-Config, if configured within the measObject corresponding to the frequency of the SCell;

if the UE has a measConfig with rs-sinr-Config configured, perform RS-SINR (as indicated in the associated reportConfig) measurements as follows:

perform the corresponding measurements on the frequency indicated in the associated measObject using available idle periods or using autonomous gaps as necessary;

for each measId included in the measIdList within VarMeasConfig:

if the purpose for the associated reportConfig is set to reportCGI:

if si-RequestForHO is configured for the associated reportConfig:

perform the corresponding measurements on the frequency and RAT indicated in the associated measObject using autonomous gaps as necessary;

else:

perform the corresponding measurements on the frequency and RAT indicated in the associated measObject using available idle periods or using autonomous gaps as necessary;

NOTE 1: If autonomous gaps are used to perform measurements, the UE is allowed to temporarily abort communication with all serving cell(s), i.e. create autonomous gaps to perform the corresponding measurements within the limits specified in TS 36.133 [16]. Otherwise, the UE only supports the measurements with the purpose set to reportCGI only if E-UTRAN has provided sufficient idle periods.

try to acquire the global cell identity of the cell indicated by the cellForWhichToReportCGI in the associated measObject by acquiring the relevant system information from the concerned cell;

if an entry in the cellAccessRelatedInfoList includes the selected PLMN, acquire the relevant system information from the concerned cell;

if the cell indicated by the cellForWhichToReportCGI included in the associated measObject is an E-UTRAN cell:

try to acquire the CSG identity, if the CSG identity is broadcast in the concerned cell;

try to acquire the trackingAreaCode in the concerned cell;

try to acquire the list of additional PLMN Identities, as included in the plmn-IdentityList, if multiple PLMN identities are broadcast in the concerned cell;

if cellAccessRelatedInfoList is included, use trackingAreaCode and plmn-IdentityList from the entry of cellAccessRelatedInfoList containing the selected PLMN;

if the includeMultiBandInfo is configured:

try to acquire the freqBandIndicator in the SystemInformationBlockType1 of the concerned cell;

try to acquire the list of additional frequency band indicators, as included in the multiBandInfoList, if multiple frequency band indicators are included in the SystemInformationBlockType1 of the concerned cell;

try to acquire the freqBandIndicatorPriority, if the freqBandIndicatorPriority is included in the SystemInformationBlockType1 of the concerned cell;

NOTE 2: The 'primary' PLMN is part of the global cell identity.

if the cell indicated by the cellForWhichToReportCGI included in the associated measObject is a UTRAN cell:

try to acquire the LAC, the RAC and the list of additional PLMN Identities, if multiple PLMN identities are broadcast in the concerned cell;
4> try to acquire the CSG identity, if the CSG identity is broadcast in the concerned cell;

3> if the cell indicated by the `cellForWhichToReportCGI` included in the associated `measObject` is a GERAN cell:

4> try to acquire the RAC in the concerned cell;

3> if the cell indicated by the `cellForWhichToReportCGI` included in the associated `measObject` is a CDMA2000 cell and the `cdma2000-Type` included in the `measObject` is `typeHRPD`:

4> try to acquire the Sector ID in the concerned cell;

3> if the cell indicated by the `cellForWhichToReportCGI` included in the associated `measObject` is a CDMA2000 cell and the `cdma2000-Type` included in the `measObject` is `type1XRTT`:

4> try to acquire the BASE ID, SID and NID in the concerned cell;

2> if the `ul-DelayConfig` is configured for the associated `reportConfig`:

3> ignore the `measObject`;

3> configure the PDCP layer to perform UL PDCP Packet Delay per QCI measurement;

2> else:

3> if a measurement gap configuration is setup; or

3> if the UE does not require measurement gaps to perform the concerned measurements:

4> if `s-Measure` is not configured; or

4> if `s-Measure` is configured and the PCell RSRP, after layer 3 filtering, is lower than this value; or

4> if `measDS-Config` is configured in the associated `measObject`:

5> if the UE supports CSI-RS based discovery signals measurement; and

5> if the `eventId` in the associated `reportConfig` is set to `eventC1` or `eventC2`, or if `reportStrongestCSI-RSs` is included in the associated `reportConfig`:

6> perform the corresponding measurements of CSI-RS resources on the frequency indicated in the concerned `measObject`, applying the discovery signals measurement timing configuration in accordance with `measDS-Config` in the concerned `measObject`;

6> if `reportCRS-Meas` is included in the associated `reportConfig`, perform the corresponding measurements of neighbouring cells on the frequencies indicated in the concerned `measObject` as follows:

7> for neighbouring cells on the primary frequency, apply the time domain measurement resource restriction in accordance with `measSubframePatternConfigNeigh`, if configured in the concerned `measObject`;

7> apply the discovery signals measurement timing configuration in accordance with `measDS-Config` in the concerned `measObject`;

5> else:

6> perform the corresponding measurements of neighbouring cells on the frequencies and RATs indicated in the concerned `measObject` as follows:

7> for neighbouring cells on the primary frequency, apply the time domain measurement resource restriction in accordance with `measSubframePatternConfigNeigh`, if configured in the concerned `measObject`;

7> if the UE supports CRS based discovery signals measurement, apply the discovery signals measurement timing configuration in accordance with `measDS-Config`, if configured in the concerned `measObject`;
4> if the `ue-RxTxTimeDiffPeriodical` is configured in the associated `reportConfig`:
5> perform the UE Rx–Tx time difference measurements on the PCell;
4> if the `reportSSTD-Meas` is set to `true` in the associated `reportConfig`:
5> perform SSTD measurements between the PCell and the PSCell;
4> if the `measRSSI-ReportConfig` is configured in the associated `reportConfig`:
5> perform the RSSI and channel occupancy measurements on the frequency indicated in the associated `measObject`;

2> perform the evaluation of reporting criteria as specified in 5.5.4;

The UE capable of CBR measurement when configured to transmit non-P2X related V2X sidelink communication shall:

1> if in coverage on the frequency used for V2X sidelink communication transmission as defined in TS 36.304 [4, 11.4]; or
1> if the concerned frequency is included in `v2x-InterFreqInfoList` in `RRCConnectionReconfiguration` or in `v2x-InterFreqInfoList` within `SystemInformationBlockType21`:
2> if the UE is in RRC_IDLE:

3> if the concerned frequency is the camped frequency:
4> perform CBR measurement on the pools in `v2x-CommTxPoolNormalCommon` and `v2x-CommTxPoolExceptional` if included in `SystemInformationBlockType21`;
3> else if `v2x-CommTxPoolNormal` or `v2x-CommTxPoolExceptional` is included in `v2x-InterFreqInfoList` for the concerned frequency within `SystemInformationBlockType21`:
4> perform CBR measurement on pools in `v2x-CommTxPoolNormal` and `v2x-CommTxPoolExceptional` in `v2x-InterFreqInfoList` for the concerned frequency in `SystemInformationBlockType21`;
3> else if the concerned frequency broadcasts `SystemInformationBlockType21`:
4> perform CBR measurement on pools in `v2x-CommTxPoolNormalCommon` and `v2x-CommTxPoolExceptional` if included in `SystemInformationBlockType21` broadcast on the concerned frequency;

2> if the UE is in RRC_CONNECTED:

3> if `tx-ResourcePoolToAddList` is included in `VarMeasConfig`:
4> perform CBR measurements on each resource pool indicated in `tx-ResourcePoolToAddList`;
3> if the concerned frequency is the PCell's frequency:
4> perform CBR measurement on the pools in `v2x-CommTxPoolNormalDedicated` or `v2x-SchedulingPool` if included in `RRCConnectionReconfiguration`, `v2x-CommTxPoolExceptional` if included in `SystemInformationBlockType21` for the concerned frequency and `v2x-CommTxPoolExceptional` if included in `mobilityControlInfoV2X`;
3> else if `v2x-CommTxPoolNormal`, `v2x-SchedulingPool` or `v2x-CommTxPoolExceptional` is included in `v2x-InterFreqInfoList` for the concerned frequency within `RRCConnectionReconfiguration`:
4> perform CBR measurement on pools in `v2x-CommTxPoolNormal`, `v2x-SchedulingPool`, and `v2x-CommTxPoolExceptional` if included in `v2x-InterFreqInfoList` for the concerned frequency in `RRCConnectionReconfiguration`;
3> else if the concerned frequency broadcasts `SystemInformationBlockType21`:
4> perform CBR measurement on pools in `v2x-CommTxPoolNormalCommon` and `v2x-CommTxPoolExceptional` if included in `SystemInformationBlockType21` for the concerned frequency;
5.5.3.2 Layer 3 filtering

The UE shall:

1> for each measurement quantity that the UE performs measurements according to 5.5.3.1:

NOTE 1: This does not include quantities configured solely for UE Rx-Tx time difference, SSTD measurements and RSSI, channel occupancy measurements, WLAN measurements of Band, Carrier Info, Available Admission Capacity, Backhaul Bandwidth, Channel Utilization, and Station Count, CBR measurement, and UL PDCP Packet Delay per QCI measurement i.e. for those types of measurements the UE ignores the triggerQuantity and reportQuantity.

2> filter the measured result, before using for evaluation of reporting criteria or for measurement reporting, by the following formula:

\[F_n = (1 - a) \cdot F_{n-1} + a \cdot M_n \]

where

- \(M_n \) is the latest received measurement result from the physical layer;
- \(F_n \) is the updated filtered measurement result, that is used for evaluation of reporting criteria or for measurement reporting;
- \(F_{n-1} \) is the old filtered measurement result, where \(F_0 \) is set to \(M_1 \) when the first measurement result from the physical layer is received; and
- \(a = 1/2^{k/4} \), where \(k \) is the filterCoefficient for the corresponding measurement quantity received by the quantityConfig;

2> adapt the filter such that the time characteristics of the filter are preserved at different input rates, observing that the filterCoefficient \(k \) assumes a sample rate equal to 200 ms;

NOTE 2: If \(k \) is set to 0, no layer 3 filtering is applicable.

NOTE 3: The filtering is performed in the same domain as used for evaluation of reporting criteria or for measurement reporting, i.e., logarithmic filtering for logarithmic measurements.

NOTE 4: The filter input rate is implementation dependent, to fulfil the performance requirements set in [16]. For further details about the physical layer measurements, see TS 36.133 [16].

5.5.4 Measurement report triggering

5.5.4.1 General

If security has been activated successfully, the UE shall:

1> for each measId included in the measIdList within VarMeasConfig:

2> if the corresponding reportConfig includes a purpose set to reportStrongestCellsForSON:

3> consider any neighbouring cell detected on the associated frequency to be applicable;
else if the corresponding reportConfig includes a purpose set to reportCGI:

3> consider any neighbouring cell detected on the associated frequency/ set of frequencies (GERAN) which has a physical cell identity matching the value of the cellForWhichToReportCGI included in the corresponding measObject within the VarMeasConfig to be applicable;

else if the corresponding reportConfig includes a purpose set to reportLocation:

3> consider only the PCell to be applicable;

else:

3> if the corresponding measObject concerns E-UTRA:

4> if the ue-RxTxTimeDiffPeriodical is configured in the corresponding reportConfig:

5> consider only the PCell to be applicable;

4> else if the reportSSTD-Meas is set to true in the corresponding reportConfig:

5> consider the PSCell to be applicable;

4> else if the eventA1 or eventA2 is configured in the corresponding reportConfig:

5> consider only the serving cell to be applicable;

4> else if eventC1 or eventC2 is configured in the corresponding reportConfig; or if reportStrongestCSI-RSs is included in the corresponding reportConfig:

5> consider a CSI-RS resource on the associated frequency to be applicable when the concerned CSI-RS resource is included in the measCSI-RS-ToAddModList defined within the VarMeasConfig for this measId;

4> else if measRSSI-ReportConfig is configured in the corresponding reportConfig:

5> consider the resource indicated by the rmtc-Config on the associated frequency to be applicable;

4> else if tx-ResourcePoolToAddList is configured in the measObject:

5> consider the transmission resource pools indicated by the tx-ResourcePoolToAddList defined within the VarMeasConfig for this measId to be applicable;

4> else:

5> if useWhiteCellList is set to TRUE:

6> consider any neighbouring cell detected on the associated frequency to be applicable when the concerned cell is included in the whiteCellsToAddModList defined within the VarMeasConfig for this measId;

5> else:

6> consider any neighbouring cell detected on the associated frequency to be applicable when the concerned cell is not included in the blackCellsToAddModList defined within the VarMeasConfig for this measId;

5> for events involving a serving cell on one frequency and neighbours on another frequency, consider the serving cell on the other frequency as a neighbouring cell;

4> if the corresponding reportConfig includes alternativeTimeToTrigger and if the UE supports alternativeTimeToTrigger:

5> use the value of alternativeTimeToTrigger as the time to trigger instead of the value of timeToTrigger in the corresponding reportConfig for cells included in the altTTT-CellsToAddModList of the corresponding measObject;

3> else if the corresponding measObject concerns UTRA or CDMA2000:
4> consider a neighbouring cell on the associated frequency to be applicable when the concerned cell is included in the cellsToAddModList defined within the VarMeasConfig for this measId (i.e. the cell is included in the white-list);

NOTE 0: The UE may also consider a neighbouring cell on the associated UTRA frequency to be applicable when the concerned cell is included in the csg-allowedReportingCells within the VarMeasConfig for this measId, if configured in the corresponding measObjectUTRA (i.e. the cell is included in the range of physical cell identities for which reporting is allowed).

3> else if the corresponding measObject concerns GERAN:

4> consider a neighbouring cell on the associated set of frequencies to be applicable when the concerned cell matches the ncc-Permitted defined within the VarMeasConfig for this measId;

3> else if the corresponding measObject concerns WLAN:

4> consider a WLAN on the associated set of frequencies, as indicated by carrierFreq or on all WLAN frequencies when carrierFreq is not present, to be applicable if the WLAN matches all WLAN identifiers of at least one entry within wlan-Id-List for this measId;

2> if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one or more applicable cells for all measurements after layer 3 filtering taken during timeToTrigger defined for this event within the VarMeasConfig, while the VarMeasReportList does not include a measurement reporting entry for this measId (a first cell triggers the event):

3> include a measurement reporting entry within the VarMeasReportList for this measId;

3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;

3> include the concerned cell(s) in the cellsTriggeredList defined within the VarMeasReportList for this measId;

3> if the UE supports T312 and if useT312 is included for this event and if T310 is running:

4> if T312 is not running:

5> start timer T312 with the value configured in the corresponding measObject;

3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one or more applicable cells not included in the cellsTriggeredList defined within the VarMeasReportList for this measId for all measurements after layer 3 filtering taken during timeToTrigger defined for this event within the VarMeasConfig (a subsequent cell triggers the event):

3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;

3> include the concerned cell(s) in the cellsTriggeredList defined within the VarMeasReportList for this measId;

3> if the UE supports T312 and if useT312 is included for this event and if T310 is running:

4> if T312 is not running:

5> start timer T312 with the value configured in the corresponding measObject;

3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the leaving condition applicable for this event is fulfilled for one or more of the cells included in the cellsTriggeredList defined within the VarMeasReportList for this measId for all measurements after layer 3 filtering taken during timeToTrigger defined within the VarMeasConfig for this event:
3> remove the concerned cell(s) in the cellsTriggeredList defined within the VarMeasReportList for this measId;

3> if the UE supports T312 and if useT312 is included for this event and if T310 is running:
 4> if T312 is not running:
 5> start timer T312 with the value configured in the corresponding measObject;
 3> if reportOnLeave is set to TRUE for the corresponding reporting configuration or if a6-ReportOnLeave is set to TRUE for the corresponding reporting configuration:
 4> initiate the measurement reporting procedure, as specified in 5.5.5;
 3> if the cellsTriggeredList defined within the VarMeasReportList for this measId is empty:
 4> remove the measurement reporting entry within the VarMeasReportList for this measId;
 3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
 3> include the concerned CSI-RS resource(s) in the csi-RS-TriggeredList defined within the VarMeasReportList for this measId;
 3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one or more applicable CSI-RS resources for all measurements after layer 3 filtering taken during timeToTrigger defined for this event within the VarMeasConfig, while the VarMeasReportList does not include an measurement reporting entry for this measId (i.e. a first CSI-RS resource triggers the event):
 3> include a measurement reporting entry within the VarMeasReportList for this measId;
 3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
 3> include the concerned CSI-RS resource(s) in the csi-RS-TriggeredList defined within the VarMeasReportList for this measId;
 3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one or more applicable CSI-RS resources not included in the csi-RS-TriggeredList for all measurements after layer 3 filtering taken during timeToTrigger defined for this event within the VarMeasConfig (i.e. a subsequent CSI-RS resource triggers the event):
 3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
 3> include the concerned CSI-RS resource(s) in the csi-RS-TriggeredList defined within the VarMeasReportList for this measId;
 3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the leaving condition applicable for this event is fulfilled for one or more of the CSI-RS resources included in the csi-RS-TriggeredList defined within the VarMeasReportList for this measId for all measurements after layer 3 filtering taken during timeToTrigger defined within the VarMeasConfig for this event:
 3> remove the concerned CSI-RS resource(s) in the csi-RS-TriggeredList defined within the VarMeasReportList for this measId;
 3> if c1-ReportOnLeave is set to TRUE for the corresponding reporting configuration or if c2-ReportOnLeave is set to TRUE for the corresponding reporting configuration:
 4> initiate the measurement reporting procedure, as specified in 5.5.5;
 3> if the csi-RS-TriggeredList defined within the VarMeasReportList for this measId is empty:
 4> remove the measurement reporting entry within the VarMeasReportList for this measId;
 4> stop the periodical reporting timer for this measId, if running;
2> if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one or more applicable transmission resource pools for all measurements taken during timeToTrigger defined for this event within the VarMeasConfig, while the VarMeasReportList does not include an measurement reporting entry for this measId (a first transmission resource pool triggers the event):

3> include a measurement reporting entry within the VarMeasReportList for this measId;
3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
3> include the concerned transmission resource pool(s) in the poolsTriggeredList defined within the VarMeasReportList for this measId;
3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one or more applicable transmission resource pools not included in the poolsTriggeredList for all measurements taken during timeToTrigger defined for this event within the VarMeasConfig (a subsequent transmission resource pool triggers the event):

3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
3> include the concerned transmission resource pool(s) in the poolsTriggeredList defined within the VarMeasReportList for this measId;
3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the leaving condition applicable for this event is fulfilled for one or more applicable transmission resource pools included in the poolsTriggeredList defined within the VarMeasReportList for this measId for all measurements taken during timeToTrigger defined within the VarMeasConfig for this event:

3> remove the concerned transmission resource pool(s) from the poolsTriggeredList defined within the VarMeasReportList for this measId;
3> if the poolsTriggeredList defined within the VarMeasReportList for this measId is empty:
4> remove the measurement reporting entry within the VarMeasReportList for this measId;
4> stop the periodical reporting timer for this measId, if running;

2> if measRSSI-ReportConfig is included and if a (first) measurement result is available:

3> include a measurement reporting entry within the VarMeasReportList for this measId;
3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
3> initiate the measurement reporting procedure as specified in 5.5.5 immediately when RSSI sample values are reported by the physical layer after the first L1 measurement duration;

2> else if the purpose is included and set to reportStrongestCells, reportStrongestCellsForSON, reportLocation or sidelink and if a (first) measurement result is available:

3> include a measurement reporting entry within the VarMeasReportList for this measId;
3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
3> if the purpose is set to reportStrongestCells and reportStrongestCSI-RSs is not included:
4> if the triggerType is set to periodical and the corresponding reportConfig includes the ul-DelayConfig:
5> initiate the measurement reporting procedure, as specified in 5.5.5, immediately after a first measurement result is provided by lower layers;
4> else if the corresponding measurement object concerns WLAN:
5> initiate the measurement reporting procedure, as specified in 5.5.5, immediately after the quantity to be reported becomes available for the PCell and for the applicable WLAN(s);

4> else if the reportAmount exceeds 1:

5> initiate the measurement reporting procedure, as specified in 5.5.5, immediately after the quantity to be reported becomes available for the PCell;

4> else (i.e. the reportAmount is equal to 1):

5> initiate the measurement reporting procedure, as specified in 5.5.5, immediately after the quantity to be reported becomes available for the PCell and for the strongest cell among the applicable cells, or becomes available for the pair of PCell and the PSCell in case of SSTD measurements;

3> else if the purpose is set to reportLocation:

4> initiate the measurement reporting procedure, as specified in 5.5.5, immediately after both the quantity to be reported for the PCell and the location information become available;

3> else if the purpose is set to sidelink:

4> initiate the measurement reporting procedure as specified in 5.5.5 immediately after both the quantity to be reported for the PCell and the CBR measurement result become available;

3> else:

4> initiate the measurement reporting procedure, as specified in 5.5.5, when it has determined the strongest cells on the associated frequency;

2> upon expiry of the periodical reporting timer for this measId:

3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the purpose is included and set to reportCGI and if the UE acquired the information needed to set all fields ofcgi-Info for the requested cell:

3> include a measurement reporting entry within the VarMeasReportList for this measId;

3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;

3> stop timer T321;

3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> upon expiry of the T321 for this measId:

3> include a measurement reporting entry within the VarMeasReportList for this measId;

3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;

3> initiate the measurement reporting procedure, as specified in 5.5.5;

NOTE 2: The UE does not stop the periodical reporting with triggerType set to event or to periodical while the corresponding measurement is not performed due to the PCell RSRP being equal to or better than s-Measure or due to the measurement gap not being setup.

NOTE 3: If the UE is configured with DRX, the UE may delay the measurement reporting for event triggered and periodical triggered measurements until the Active Time, which is defined in TS 36.321 [6].

5.5.4.2 Event A1 (Serving becomes better than threshold)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition A1-1, as specified below, is fulfilled;

1> consider the leaving condition for this event to be satisfied when condition A1-2, as specified below, is fulfilled;
1> for this measurement, consider the primary or secondary cell that is configured on the frequency indicated in the associated measObjectEUTRA to be the serving cell;

Inequality A1-1 (Entering condition)

\[Ms - Hys > Thresh \]

Inequality A1-2 (Leaving condition)

\[Ms + Hys < Thresh \]

The variables in the formula are defined as follows:

- \(Ms \) is the measurement result of the serving cell, not taking into account any offsets.
- \(Hys \) is the hysteresis parameter for this event (i.e. \(\text{hysteresis} \) as defined within \(\text{reportConfigEUTRA} \) for this event).
- \(Thresh \) is the threshold parameter for this event (i.e. \(a1-\text{Threshold} \) as defined within \(\text{reportConfigEUTRA} \) for this event).

\(Ms \) is expressed in dBm in case of RSRP, or in dB in case of RSRQ and RS-SINR.

\(Hys \) is expressed in dB.

\(Thresh \) is expressed in the same unit as \(Ms \).

5.5.4.3 Event A2 (Serving becomes worse than threshold)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition A2-1, as specified below, is fulfilled;
1> consider the leaving condition for this event to be satisfied when condition A2-2, as specified below, is fulfilled;
1> for this measurement, consider the primary or secondary cell that is configured on the frequency indicated in the associated measObjectEUTRA to be the serving cell;

Inequality A2-1 (Entering condition)

\[Ms + Hys < Thresh \]

Inequality A2-2 (Leaving condition)

\[Ms - Hys > Thresh \]

The variables in the formula are defined as follows:

- \(Ms \) is the measurement result of the serving cell, not taking into account any offsets.
- \(Hys \) is the hysteresis parameter for this event (i.e. \(\text{hysteresis} \) as defined within \(\text{reportConfigEUTRA} \) for this event).
- \(Thresh \) is the threshold parameter for this event (i.e. \(a2-\text{Threshold} \) as defined within \(\text{reportConfigEUTRA} \) for this event).

\(Ms \) is expressed in dBm in case of RSRP, or in dB in case of RSRQ and RS-SINR.

\(Hys \) is expressed in dB.

\(Thresh \) is expressed in the same unit as \(Ms \).

5.5.4.4 Event A3 (Neighbour becomes offset better than PCell/ PSCell)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition A3-1, as specified below, is fulfilled;
1> consider the leaving condition for this event to be satisfied when condition A3-2, as specified below, is fulfilled;
1> if usePCell of the corresponding reportConfig is set to true:
2> use the PCell for Mn, Mp and Ocp;
1> else:
2> use the PCell for Mn, Mp and Ocp;

NOTE The cell(s) that triggers the event is on the frequency indicated in the associated measObject which may be different from the frequency used by the PCell/ PSCell.

Inequality A3-1 (Entering condition)
\[Mn + Ofn + Ocn - Hys > Mp + Ofp + Ocp + Off \]

Inequality A3-2 (Leaving condition)
\[Mn + Ofn + Ocn + Hys < Mp + Ofp + Ocp + Off \]

The variables in the formula are defined as follows:

- \(Mn \) is the measurement result of the neighbouring cell, not taking into account any offsets.
- \(Ofn \) is the frequency specific offset of the frequency of the neighbour cell (i.e. offsetFreq as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell).
- \(Ocn \) is the cell specific offset of the neighbour cell (i.e. cellIndividualOffset as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.
- \(Mp \) is the measurement result of the PCell/ PSCell, not taking into account any offsets.
- \(Ofp \) is the frequency specific offset of the frequency of the PCell/ PSCell (i.e. offsetFreq as defined within measObjectEUTRA corresponding to the frequency of the PCell/ PSCell).
- \(Ocp \) is the cell specific offset of the PCell/ PSCell (i.e. cellIndividualOffset as defined within measObjectEUTRA corresponding to the frequency of the PCell/ PSCell), and is set to zero if not configured for the PCell/ PSCell.
- \(Hys \) is the hysteresis parameter for this event (i.e. hysteresis as defined within reportConfigEUTRA for this event).
- \(Off \) is the offset parameter for this event (i.e. a3-Offset as defined within reportConfigEUTRA for this event).

\(Mn, Mp \) are expressed in dBm in case of RSRP, or in dB in case of RSRQ and RS-SINR.

\(Ofn, Ocn, Ofp, Ocp, Hys, Off \) are expressed in dB.

5.5.4.5 Event A4 (Neighbour becomes better than threshold)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition A4-1, as specified below, is fulfilled;
1> consider the leaving condition for this event to be satisfied when condition A4-2, as specified below, is fulfilled;

Inequality A4-1 (Entering condition)
\[Mn + Ofn + Ocn - Hys > Thr \]

Inequality A4-2 (Leaving condition)
\[Mn + Ofn + Ocn + Hys < Thr \]

The variables in the formula are defined as follows:

- \(Mn \) is the measurement result of the neighbouring cell, not taking into account any offsets.
Ofn is the frequency specific offset of the frequency of the neighbour cell (i.e. offsetFreq as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell).

Ocn is the cell specific offset of the neighbour cell (i.e. cellIndividualOffset as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.

Hys is the hysteresis parameter for this event (i.e. hysteresis as defined within reportConfigEUTRA for this event).

Thresh is the threshold parameter for this event (i.e. a4-Threshold as defined within reportConfigEUTRA for this event).

Mn is expressed in dBm in case of RSRP, or in dB in case of RSRQ and RS-SINR.

Ofn, Ocn, Hys are expressed in dB.

Thresh is expressed in the same unit as Mn.

5.5.4.6 Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better than threshold2)

The UE shall:

1> consider the entering condition for this event to be satisfied when both condition A5-1 and condition A5-2, as specified below, are fulfilled;

1> consider the leaving condition for this event to be satisfied when condition A5-3 or condition A5-4, i.e. at least one of the two, as specified below, is fulfilled;

1> if usePSCell of the corresponding reportConfig is set to true:

2> use the PSCell for Mp;

1> else:

2> use the PCell for Mp;

NOTE: The cell(s) that triggers the event is on the frequency indicated in the associated measObject which may be different from the frequency used by the PCell/ PSCell.

Inequality A5-1 (Entering condition 1)

\[Mp + Hys < Thresh1 \]

Inequality A5-2 (Entering condition 2)

\[Mn + Ofn + Ocn - Hys > Thresh2 \]

Inequality A5-3 (Leaving condition 1)

\[Mp - Hys > Thresh1 \]

Inequality A5-4 (Leaving condition 2)

\[Mn + Ofn + Ocn + Hys < Thresh2 \]

The variables in the formula are defined as follows:

Mp is the measurement result of the PCell/ PSCell, not taking into account any offsets.

Mn is the measurement result of the neighbouring cell, not taking into account any offsets.

Ofn is the frequency specific offset of the frequency of the neighbour cell (i.e. offsetFreq as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell).

Ocn is the cell specific offset of the neighbour cell (i.e. cellIndividualOffset as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.
Hys is the hysteresis parameter for this event (i.e. *hysteresis* as defined within *reportConfigEUTRA* for this event).

Thresh1 is the threshold parameter for this event (i.e. *a5-Threshold1* as defined within *reportConfigEUTRA* for this event).

Thresh2 is the threshold parameter for this event (i.e. *a5-Threshold2* as defined within *reportConfigEUTRA* for this event).

Mn, Mp are expressed in dBm in case of RSRP, or in dB in case of RSRQ and RS-SINR.

Ofn, Ocn, Hys are expressed in dB.

Thresh1 is expressed in the same unit as **Mn**.

Thresh2 is expressed in the same unit as **Mp**.

5.5.4.6a Event A6 (Neighbour becomes offset better than SCell)

The UE shall:

1. consider the entering condition for this event to be satisfied when condition A6-1, as specified below, is fulfilled;
2. consider the leaving condition for this event to be satisfied when condition A6-2, as specified below, is fulfilled;
3. for this measurement, consider the (secondary) cell that is configured on the frequency indicated in the associated *measObjectEUTRA* to be the serving cell;

NOTE: The neighbour(s) is on the same frequency as the SCell i.e. both are on the frequency indicated in the associated *measObject*.

Inequality A6-1 (Entering condition)

\[
Mn + Ocn - Hys > Ms + Ocs + Off
\]

Inequality A6-2 (Leaving condition)

\[
Mn + Ocn + Hys < Ms + Ocs + Off
\]

The variables in the formula are defined as follows:

- **Mn** is the measurement result of the neighbouring cell, not taking into account any offsets.
- **Ocn** is the cell specific offset of the neighbour cell (i.e. *cellIndividualOffset* as defined within *measObjectEUTRA* corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.
- **Ms** is the measurement result of the serving cell, not taking into account any offsets.
- **Ocs** is the cell specific offset of the serving cell (i.e. *cellIndividualOffset* as defined within *measObjectEUTRA* corresponding to the serving frequency), and is set to zero if not configured for the serving cell.
- **Hys** is the hysteresis parameter for this event (i.e. *hysteresis* as defined within *reportConfigEUTRA* for this event).
- **Off** is the offset parameter for this event (i.e. *a6-Offset* as defined within *reportConfigEUTRA* for this event).
- **Mn, Ms** are expressed in dBm in case of RSRP, or in dB in case of RSRQ and RS-SINR.
- **Ocn, Ocs, Hys, Off** are expressed in dB.

5.5.4.7 Event B1 (Inter RAT neighbour becomes better than threshold)

The UE shall:

1. for UTRA and CDMA2000, only trigger the event for cells included in the corresponding measurement object;
2. consider the entering condition for this event to be satisfied when condition B1-1, as specified below, is fulfilled;
3. consider the leaving condition for this event to be satisfied when condition B1-2, as specified below, is fulfilled;
Inequality B1-1 (Entering condition)

\[Mn + Ofn - Hys > Thresh \]

Inequality B1-2 (Leaving condition)

\[Mn + Ofn + Hys < Thresh \]

The variables in the formula are defined as follows:

- \(Mn \) is the measurement result of the inter-RAT neighbour cell, not taking into account any offsets. For CDMA 2000 measurement result, \(\text{pilotStrength} \) is divided by -2.

- \(Ofn \) is the frequency specific offset of the frequency of the inter-RAT neighbour cell (i.e. \(\text{offsetFreq} \) as defined within the \text{measObject} corresponding to the frequency of the neighbour inter-RAT cell).

- \(Hys \) is the hysteresis parameter for this event (i.e. \(\text{hysteresis} \) as defined within \text{reportConfigInterRAT} for this event).

- \(Thresh \) is the threshold parameter for this event (i.e. \(b1\text{-Threshold} \) as defined within \text{reportConfigInterRAT} for this event). For CDMA2000, \(b1\text{-Threshold} \) is divided by -2.

- \(Mn \) is expressed in dBm or in dB, depending on the measurement quantity of the inter-RAT neighbour cell.

- \(Ofn, Hys \) are expressed in dB.

- \(Thresh \) is expressed in the same unit as \(Mn \).

5.5.4.8 Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2)

The UE shall:

1. for UTRA and CDMA2000, only trigger the event for cells included in the corresponding measurement object;

1. consider the entering condition for this event to be satisfied when both condition B2-1 and condition B2-2, as specified below, are fulfilled;

1. consider the leaving condition for this event to be satisfied when condition B2-3 or condition B2-4, i.e. at least one of the two, as specified below, is fulfilled;

Inequality B2-1 (Entering condition 1)

\[Mp + Hys < Thresh \]

Inequality B2-2 (Entering condition 2)

\[Mn + Ofn - Hys > Thresh2 \]

Inequality B2-3 (Leaving condition 1)

\[Mp - Hys > Thresh \]

Inequality B2-4 (Leaving condition 2)

\[Mn + Ofn + Hys < Thresh2 \]

The variables in the formula are defined as follows:

- \(Mp \) is the measurement result of the PCell, not taking into account any offsets.

- \(Mn \) is the measurement result of the inter-RAT neighbour cell, not taking into account any offsets. For CDMA2000 measurement result, \(\text{pilotStrength} \) is divided by -2.

- \(Ofn \) is the frequency specific offset of the frequency of the inter-RAT neighbour cell (i.e. \(\text{offsetFreq} \) as defined within the \text{measObject} corresponding to the frequency of the inter-RAT neighbour cell).
Hys is the hysteresis parameter for this event (i.e. *hysteresis* as defined within *reportConfigInterRAT* for this event).

Thresh1 is the threshold parameter for this event (i.e. *b2-Threshold1* as defined within *reportConfigInterRAT* for this event).

Thresh2 is the threshold parameter for this event (i.e. *b2-Threshold2* as defined within *reportConfigInterRAT* for this event). For CDMA2000, *b2-Threshold2* is divided by -2.

Mp is expressed in dBm in case of RSRP, or in dB in case of RSRQ.

Mn is expressed in dBm or dB, depending on the measurement quantity of the inter-RAT neighbour cell.

Ofn, Hys are expressed in dB.

Thresh1 is expressed in the same unit as **Mp**.

Thresh2 is expressed in the same unit as **Mn**.

5.5.4.9 Event C1 (CSI-RS resource becomes better than threshold)

The UE shall:

1. consider the entering condition for this event to be satisfied when condition C1-1, as specified below, is fulfilled;
2. consider the leaving condition for this event to be satisfied when condition C1-2, as specified below, is fulfilled;

Inequality C1-1 (Entering condition)

\[M_{cr} + O_{cr} - Hys > Thresh \]

Inequality C1-2 (Leaving condition)

\[M_{cr} + O_{cr} + Hys < Thresh \]

The variables in the formula are defined as follows:

- **Mcr** is the measurement result of the CSI-RS resource, not taking into account any offsets.
- **Ocr** is the CSI-RS specific offset (i.e. *csi-RS-IndividualOffset* as defined within *measObjectEUTRA* corresponding to the frequency of the CSI-RS resource), and set to zero if not configured for the CSI-RS resource.
- **Hys** is the hysteresis parameter for this event (i.e. *hysteresis* as defined within *reportConfigEUTRA* for this event).
- **Thresh** is the threshold parameter for this event (i.e. *c1-Threshold* as defined within *reportConfigEUTRA* for this event).

Mcr, Thresh are expressed in dBm.

Ocr, Hys are expressed in dB.

5.5.4.10 Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource)

The UE shall:

1. consider the entering condition for this event to be satisfied when condition C2-1, as specified below, is fulfilled;
2. consider the leaving condition for this event to be satisfied when condition C2-2, as specified below, is fulfilled;

NOTE: The CSI-RS resource(s) that triggers the event is on the same frequency as the reference CSI-RS resource, i.e. both are on the frequency indicated in the associated *measObject*.

Inequality C2-1 (Entering condition)

\[M_{cr} + O_{cr} - Hys > M_{ref} + O_{ref} + Off \]
Inequality C2-2 (Leaving condition)

$$Mcr + Ocr + Hys < Mref + Oref + Off$$

The variables in the formula are defined as follows:

- **Mcr** is the measurement result of the CSI-RS resource, not taking into account any offsets.
- **Ocr** is the CSI-RS specific offset of the CSI-RS resource (i.e. $csi\text{-}RS\text{-}IndividualOffset$ as defined within $measObjectEUTRA$ corresponding to the frequency of the CSI-RS resource), and set to zero if not configured for the CSI-RS resource.
- **Mref** is the measurement result of the reference CSI-RS resource (i.e. $c2\text{-}RefCSI\text{-}RS$ as defined within $reportConfigEUTRA$ for this event), not taking into account any offsets.
- **Oref** is the CSI-RS specific offset of the reference CSI-RS resource (i.e. $csi\text{-}RS\text{-}IndividualOffset$ as defined within $measObjectEUTRA$ corresponding to the frequency of the reference CSI-RS resource), and is set to zero if not configured for the reference CSI-RS resource.
- **Hys** is the hysteresis parameter for this event (i.e. $hysteresis$ as defined within $reportConfigEUTRA$ for this event).
- **Off** is the offset parameter for this event (i.e. $c2\text{-}Offset$ as defined within $reportConfigEUTRA$ for this event).

- Mcr, $Mref$ are expressed in dBm.
- Ocr, $Oref$, Hys, Off are expressed in dB.

5.5.4.11 Event W1 (WLAN becomes better than a threshold)

The UE shall:

1. Consider the entering condition for this event to be satisfied when $wlan\text{-}MobilitySet$ within $VarWLAN\text{-}MobilityConfig$ does not contain any entries and condition W1-1, as specified below, is fulfilled;

2. Consider the leaving condition for this event to be satisfied when condition W1-2, as specified below, is fulfilled;

Inequality W1-1 (Entering condition)

$$Mn - Hys > Thresh$$

Inequality W1-2 (Leaving condition)

$$Mn + Hys < Thresh$$

The variables in the formula are defined as follows:

- **Mn** is the measurement result of WLAN(s) configured in the measurement object, not taking into account any offsets.
- **Hys** is the hysteresis parameter for this event.
- **Thresh** is the threshold parameter for this event (i.e. $w1\text{-}Threshold$ as defined within $reportConfigInterRAT$ for this event).

- Mn is expressed in dBm.
- Hys is expressed in dB.
- **Thresh** is expressed in the same unit as Mn.

5.5.4.12 Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLAN outside WLAN mobility set becomes better than threshold2)

The UE shall:
1> consider the entering condition for this event to be satisfied when both conditions W2-1 and W2-2 as specified below are fulfilled;

1> consider the leaving condition for this event to be satisfied when condition W2-3 or condition W2-4, i.e. at least one of the two, as specified below is fulfilled;

Inequality W2-1 (Entering condition 1)
\[M_s + Hys < \text{Thresh1} \]

Inequality W2-2 (Entering condition 2)
\[M_n - Hys > \text{Thresh2} \]

Inequality W2-3 (Leaving condition 1)
\[M_s - Hys > \text{Thresh} \]

Inequality W2-4 (Leaving condition 2)
\[M_n + Hys < \text{Thresh2} \]

The variables in the formula are defined as follows:

- **Ms** is the measurement result of WLAN(s) which matches all WLAN identifiers of at least one entry within wlan-MobilitySet in VarWLAN-MobilityConfig, not taking into account any offsets.
- **Mn** is the measurement result of WLAN(s) configured in the measurement object which does not match all WLAN identifiers of any entry within wlan-MobilitySet in VarWLAN-MobilityConfig, not taking into account any offsets.
- **Hys** is the hysteresis parameter for this event.
- **Thresh1** is the threshold parameter for this event (i.e. w2-Threshold1 as defined within reportConfigInterRAT for this event).
- **Thresh2** is the threshold parameter for this event (i.e. w2-Threshold2 as defined within reportConfigInterRAT for this event).
- **Mn, Ms** are expressed in dBm.
- **Hys** is expressed in dB.
- **Thresh1** is expressed in the same unit as **Ms**.
- **Thresh2** is expressed in the same unit as **Mn**.

5.5.4.13 Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition W3-1, as specified below, is fulfilled;

1> consider the leaving condition for this event to be satisfied when condition W3-2, as specified below, is fulfilled;

Inequality W3-1 (Entering condition)
\[M_s + Hys < \text{Thresh} \]

Inequality W3-2 (Leaving condition)
\[M_s - Hys > \text{Thresh} \]

The variables in the formula are defined as follows:
Ms is the measurement result of WLAN(s) which matches all WLAN identifiers of at least one entry within wlan-MobilitySet in VarWLAN-MobilityConfig, not taking into account any offsets.

Hys is the hysteresis parameter for this event.

Thresh is the threshold parameter for this event (i.e. w3-Threshold as defined within reportConfigInterRAT for this event).

Ms is expressed in dBm.

Hys is expressed in dB.

Thresh is expressed in the same unit as Ms.

5.5.4.14 Event V1 (The channel busy ratio is above a threshold)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition V1-1, as specified below, is fulfilled;

1> consider the leaving condition for this event to be satisfied when condition V1-2, as specified below, is fulfilled;

Inequality V1-1 (Entering condition)

Ms > Thresh

Inequality V1-2 (Leaving condition)

Ms < Thresh

The variables in the formula are defined as follows:

Ms is the measurement result of channel busy ratio of the transmission resource pool, not taking into account any offsets.

Thresh is the threshold parameter for this event (i.e. v1-Threshold as defined within ReportConfigEUTRA).

Ms is expressed in decimal from 0 to 1 in steps of 0.01.

Thresh is expressed in the same unit as Ms.

5.5.4.15 Event V2 (The channel busy ratio is below a threshold)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition V2-1, as specified below, is fulfilled;

1> consider the leaving condition for this event to be satisfied when condition V2-2, as specified below, is fulfilled;

Inequality V2-1 (Entering condition)

Ms < Thresh

Inequality V2-2 (Leaving condition)

Ms > Thresh

The variables in the formula are defined as follows:

Ms is the measurement result of channel busy ratio of the transmission resource pool, not taking into account any offsets.

Thresh is the threshold parameter for this event (i.e. v2-Threshold as defined within ReportConfigEUTRA).

Ms is expressed in decimal from 0 to 1 in steps of 0.01.

Thresh is expressed in the same unit as Ms.
5.5.5 Measurement reporting

The purpose of this procedure is to transfer measurement results from the UE to E-UTRAN. The UE shall initiate this procedure only after successful security activation.

For the \texttt{measId} for which the measurement reporting procedure was triggered, the UE shall set the \texttt{measResults} within the \texttt{MeasurementReport} message as follows:

1> set the \texttt{measId} to the measurement identity that triggered the measurement reporting;

1> set the \texttt{measResultPCell} to include the quantities of the PCell;

1> set the \texttt{measResultServFreqList} to include for each SCell that is configured, if any, within \texttt{measResultSCell} the quantities of the concerned SCell, if available according to performance requirements in [16], except if \texttt{purpose} for the \texttt{reportConfig} associated with the \texttt{measId} that triggered the measurement reporting is set to \texttt{reportLocation};

1> if the \texttt{reportConfig} associated with the \texttt{measId} that triggered the measurement reporting includes \texttt{reportAddNeighMeas}:

2> for each serving frequency for which \texttt{measObjectId} is referenced in the \texttt{measIdList}, other than the frequency corresponding with the \texttt{measId} that triggered the measurement reporting:

3> set the \texttt{measResultServFreqList} to include within \texttt{measResultBestNeighCell} the \texttt{physCellId} and the quantities of the best non-serving cell, based on RSRP, on the concerned serving frequency;

1> if there is at least one applicable neighbouring cell to report:

2> set the \texttt{measResultNeighCells} to include the best neighbouring cells up to \texttt{maxReportCells} in accordance with the following:

3> if the \texttt{triggerType} is set to \texttt{event}:

4> include the cells included in the \texttt{cellsTriggeredList} as defined within the \texttt{VarMeasReportList} for this \texttt{measId};

3> else:

4> include the applicable cells for which the new measurement results became available since the last periodical reporting or since the measurement was initiated or reset;

NOTE 1: The reliability of the report (i.e. the certainty it contains the strongest cells on the concerned frequency) depends on the measurement configuration i.e. the \texttt{reportInterval}. The related performance requirements are specified in TS 36.133 [16].

3> for each cell that is included in the \texttt{measResultNeighCells}, include the \texttt{physCellId};

3> if the \texttt{triggerType} is set to \texttt{event}; or the \texttt{purpose} is set to \texttt{reportStrongestCells} or to \texttt{reportStrongestCellsForSON}:

4> for each included cell, include the layer 3 filtered measured results in accordance with the \texttt{reportConfig} for this \texttt{measId}, ordered as follows:

5> if the \texttt{measObject} associated with this \texttt{measId} concerns E-UTRA:
6> set the measResult to include the quantity(ies) indicated in the reportQuantity within the concerned reportConfig in order of decreasing triggerQuantity, i.e. the best cell is included first;

5> if the measObject associated with this measId concerns UTRA FDD and if ReportConfigInterRAT includes the reportQuantityUTRA-FDD:

6> set the measResult to include the quantities indicated by the reportQuantityUTRA-FDD in order of decreasing measQuantityUTRA-FDD within the quantityConfig, i.e. the best cell is included first;

5> if the measObject associated with this measId concerns UTRA FDD and if ReportConfigInterRAT does not include the reportQuantityUTRA-FDD; or

5> if the measObject associated with this measId concerns UTRA TDD, GERAN or CDMA2000:

6> set the measResult to the quantity as configured for the concerned RAT within the quantityConfig in order of either decreasing quantity for UTRA and GERAN or increasing quantity for CDMA2000 pilotStrength, i.e. the best cell is included first;

3> else if the purpose is set to reportCGI:

4> if the mandatory present fields of the cgi-Info for the cell indicated by the cellForWhichToReportCGI in the associated measObject have been obtained:

5> if the includeMultiBandInfo is configured:

6> include the freqBandIndicator;

6> if the cell broadcasts the multiBandInfoList, include the multiBandInfoList;

6> if the cell broadcasts the freqBandIndicatorPriority, include the freqBandIndicatorPriority;

5> if the cell broadcasts a CSG identity:

6> include the csg-Identity;

6> include the csg-MemberStatus and set it to member if the cell is a CSG member cell;

5> if the si-RequestForHO is configured within the reportConfig associated with this measId:

6> include the cgi-Info containing all the fields other than the plmn-IdentityList that have been successfully acquired;

6> include, within the cgi-Info, the field plmn-IdentityList in accordance with the following:

7> if the cell is a CSG member cell, determine the subset of the PLMN identities, starting from the second entry of PLMN identities in the broadcast information, that meet the following conditions:

a) equal to the RPLMN or an EPLMN; and

b) the CSG whitelist of the UE includes an entry comprising of the concerned PLMN identity and the CSG identity broadcast by the cell;

7> if the subset of PLMN identities determined according to the previous includes at least one PLMN identity, include the plmn-IdentityList and set it to include this subset of the PLMN identities;

7> if the cell is a CSG member cell, include the primaryPLMN-Suitable if the primary PLMN meets conditions a) and b) specified above;

7> if the cell does not broadcast csg-Identity and the UE is capable of reporting the plmn-IdentityList from cells not broadcasting csg-Identity:

8> include in the plmn-IdentityList the list of identities starting from the second entry of PLMN identities in the broadcast information;
else:

6> include the cgi-Info containing all the fields that have been successfully acquired and in accordace with the following:

7> include in the plmn-IdentityList the list of identities starting from the second entry of PLMN Identities in the broadcast information:

1> for the cells included according to the previous (i.e. covering the PCell, the SCells, the best non-serving cells on serving frequencies as well as neighbouring EUTRA cells) include results according to the extended RSRQ if corresponding results are available according to the associated performance requirements defined in 36.133 [16];

1> if there is at least one applicable CSI-RS resource to report:

2> set the measResultCSI-RS-List to include the best CSI-RS resources up to maxReportCells in accordance with the following:

3> if the triggerType is set to event:

4> include the CSI-RS resources included in the csi-RS-TriggeredList as defined within the VarMeasReportList for this measId;

3> else:

4> include the applicable CSI-RS resources for which the new measurement results became available since the last periodical reporting or since the measurement was initiated or reset;

NOTE 2: The reliability of the report (i.e. the certainty it contains the strongest CSI-RS resources on the concerned frequency) depends on the measurement configuration i.e. the reportInterval. The related performance requirements are specified in TS 36.133 [16].

3> for each CSI-RS resource that is included in the measResultCSI-RS-List:

4> include the measCSI-RS-Id;

4> include the layer 3 filtered measured results in accordance with the reportConfig for this measId, ordered as follow:

5> set the csi-RSRP-Result to include the quantity indicated in the reportQuantity within the concerned reportConfig in order of decreasing triggerQuantityCSI-RS, i.e. the best CSI-RS resource is included first;

4> if reportCRS-Meas is included within the associated reportConfig, and the cell indicated by physCellId of this CSI-RS resource is not a serving cell:

5> set the measResultNeighCells to include the cell indicated by physCellId of this CSI-RS resource, and include the physCellId;

5> set the rsrpResult to include the RSRP of the concerned cell, if available according to performance requirements in [16];

5> set the rsrqResult to include the RSRQ of the concerned cell, if available according to performance requirements in [16];

1> if the ue-RxTxTimeDiffPeriodical is configured within the corresponding reportConfig for this measId;

2> set the ue-RxTxTimeDiffResult to the measurement result provided by lower layers;

2> set the currentSFN;

1> if the measRSSI-ReportConfig is configured within the corresponding reportConfig for this measId:

2> set the rssi-Result to the average of sample value(s) provided by lower layers in the reportInterval;

2> set the channelOccupancy to the rounded percentage of sample values which are beyond to the channelOccupancyThreshold within all the sample values in the reportInterval;
1> if uplink PDCP delay results are available:
 2> set the ul-PDCP-DelayResultList to include the uplink PDCP delay results available;
1> if the includeLocationInfo is configured in the corresponding reportConfig for this measId or if purpose for the
 reportConfig associated with the measId that triggered the measurement reporting is set to reportLocation; and
 detailed location information that has not been reported is available, set the content of the locationInfo as
 follows:
 2> include the locationCoordinates;
 2> if available, include the gnss-TOD-msec, except if purpose for the reportConfig associated with the measId
 that triggered the measurement reporting is set to reportLocation;
1> if the reportSSTD-Meas is set to true within the corresponding reportConfig for this measId:
 2> set the measResultSSTD to the measurement results provided by lower layers;
1> if there is at least one applicable transmission resource pool to report:
 2> set the measResultListCBR to include the CBR measurement results in accordance with the following:
 3> if the triggerType is set to event:
 4> include the transmission resource pools included in the poolsTriggeredList as defined within the
 VarMeasReportList for this measId;
 3> else:
 4> include the applicable transmission resource pools for which the new measurement results became
 available since the last periodical reporting or since the measurement was initiated or reset;
 3> for each transmission resource pool to be reported:
 4> set the poolIdentity to the poolReportId of this transmission resource pool;
 4> if adjacencyPSCCH-PSSCH is set to TRUE for this transmission resource pool:
 5> set the cbr-PSSCH to the CBR measurement result on PSSCH and PSCCH of this transmission
 resource pool provided by lower layers;
 4> else:
 5> set the cbr-PSSCH to the CBR measurement result on PSSCH of this transmission resource pool
 provided by lower layers if available;
 5> set the cbr-PSCCH to the CBR measurement result on PSCCH of this transmission resource pool
 provided by lower layers if available;
1> increment the numberOfReportsSent as defined within the VarMeasReportList for this measId by 1;
1> stop the periodical reporting timer, if running;
1> if the numberOfReportsSent as defined within the VarMeasReportList for this measId is less than the
 reportAmount as defined within the corresponding reportConfig for this measId:
 2> start the periodical reporting timer with the value of reportInterval as defined within the corresponding
 reportConfig for this measId;
1> else:
 2> if the triggerType is set to periodical:
 3> remove the entry within the VarMeasReportList for this measId;
 3> remove this measId from the measIdList within VarMeasConfig;
1> if the measured results are for CDMA2000 HRPD:
2> set the `preRegistrationStatusHRPD` to the UE's CDMA2000 upper layer's HRPD `preRegistrationStatus`;

1> if the measured results are for CDMA2000 1xRTT:

2> set the `preRegistrationStatusHRPD` to `FALSE`;

1> if the measured results are for WLAN:

2> set the `measResultListWLAN` to include the quantities within the `quantityConfigWLAN` for up to `maxReportCells` WLAN(s), determined according to the following:

3> include WLAN the UE is connected to, if any;

3> if `reportAnyWLAN` is set to `TRUE`:

4> consider WLAN with any WLAN identifiers to be applicable for measurement reporting;

3> else:

4> consider only WLANs which do not match all WLAN identifiers of any entry within `wlan-MobilitySet` in `VarWLAN-MobilityConfig` to be applicable for measurement reporting;

3> include applicable WLAN in order of decreasing WLAN RSSI, i.e. the best WLAN is included first;

2> for each included WLAN:

3> set `wlan-Identifiers` to include all WLAN identifiers that can be acquired for the WLAN measured;

3> set `connectedWLAN` to `TRUE` if the UE is connected to the WLAN measured;

3> if `reportQuantityWLAN` exists within the `ReportConfigInterRAT` within the `VarMeasConfig` for this `measId`:

4> if `bandRequestWLAN` is set to `TRUE`:

5> set `bandWLAN` to include WLAN band of the WLAN measured;

4> if `carrierInfoRequestWLAN` is set to `TRUE`:

5> set `carrierInfoWLAN` to include WLAN carrier information of the WLAN measured if it can be acquired;

4> if `availableAdmissionCapacityRequestWLAN` is set to `TRUE`:

5> set the `measResult` to include `availableAdmissionCapacityWLAN` if it can be acquired;

4> if `backhaulDL-BandwidthRequestWLAN` is set to `TRUE`:

5> set the `measResult` to include `backhaulDL-BandwidthWLAN` if it can be acquired;

4> if `backhaulUL-BandwidthRequestWLAN` is set to `TRUE`:

5> set the `measResult` to include `backhaulUL-BandwidthWLAN` if it can be acquired;

4> if `channelUtilizationRequestWLAN` is set to `TRUE`:

5> set the `measResult` to include `channelUtilizationWLAN` if it can be acquired;

4> if `stationCountRequestWLAN` is set to `TRUE`:

5> set the `measResult` to include `stationCountWLAN` if it can be acquired;

1> submit the `MeasurementReport` message to lower layers for transmission, upon which the procedure ends;
5.5.6 Measurement related actions

5.5.6.1 Actions upon handover and re-establishment

E-UTRAN applies the handover procedure as follows:

- when performing the handover procedure, as specified in 5.3.5.4, ensure that a measObjectId corresponding to each handover target serving frequency is configured as a result of the procedures described in this sub-clause and in 5.3.5.4;

- when changing the band while the physical frequency remains unchanged, E-UTRAN releases the measObject corresponding to the source frequency and adds a measObject corresponding to the target frequency (i.e. it does not reconfigure the measObject);

E-UTRAN applies the re-establishment procedure as follows:

- when performing the connection re-establishment procedure, as specified in 5.3.7, ensure that a measObjectId corresponding each target serving frequency is configured as a result of the procedure described in this sub-clause and the subsequent connection reconfiguration procedure immediately following the re-establishment procedure;

- in the first reconfiguration following the re-establishment when changing the band while the physical frequency remains unchanged, E-UTRAN releases the measObject corresponding to the source frequency and adds a measObject corresponding to the target frequency (i.e. it does not reconfigure the measObject);

The UE shall:

1> for each measId included in the_measIdList within VarMeasConfig:

2> if the triggerType is set to periodical:

3> remove this measId from the_measIdList within VarMeasConfig:

1> if the procedure was triggered due to a handover or successful re-establishment and the procedure involves a change of primary frequency, update the measId values in the_measIdList within VarMeasConfig as follows:

2> if a measObjectId value corresponding to the target primary frequency exists in the measObjectList within VarMeasConfig:

3> for each measId value in the_measIdList:

4> if the measId value is linked to the measObjectId value corresponding to the source primary frequency:

5> link this measId value to the measObjectId value corresponding to the target primary frequency;

4> else if the measId value is linked to the measObjectId value corresponding to the target primary frequency:

5> link this measId value to the measObjectId value corresponding to the source primary frequency;

2> else:

3> remove all measId values that are linked to the measObjectId value corresponding to the source primary frequency;

1> remove all measurement reporting entries within VarMeasReportList;

1> stop the periodical reporting timer or timer T321, whichever one is running, as well as associated information (e.g. timeToTrigger) for all measId;

1> release the measurement gaps, if activated;

NOTE: If the UE requires measurement gaps to perform inter-frequency or inter-RAT measurements, the UE resumes the inter-frequency and inter-RAT measurements after the E-UTRAN has setup the measurement gaps.
5.5.6.2 Speed dependant scaling of measurement related parameters

The UE shall adjust the value of the following parameter configured by the E-UTRAN depending on the UE speed: \(timeToTrigger\). The UE shall apply 3 different levels, which are selected as follows:

The UE shall:

1> perform mobility state detection using the mobility state detection as specified in TS 36.304 [4] with the following modifications:

 2> counting handovers instead of cell reselections;

 2> applying the parameter applicable for RRC_CONNECTED as included in \(speedStatePars\) within \(VarMeasConfig\);

1> if high mobility state is detected:

 2> use the \(timeToTrigger\) value multiplied by \(sf-High\) within \(VarMeasConfig\);

1> else if medium mobility state is detected:

 2> use the \(timeToTrigger\) value multiplied by \(sf-Medium\) within \(VarMeasConfig\);

1> else:

 2> no scaling is applied;

5.5.7 Inter-frequency RSTD measurement indication

5.5.7.1 General

The purpose of this procedure is to indicate to the network that the UE is going to start/stop OTDOA inter-frequency RSTD measurements which require measurement gaps as specified in [16, 8.1.2.6]. The procedure is also used to indicate to the network that the UE is going to start/stop OTDOA intra-frequency RSTD measurements which require measurement gaps.

NOTE: It is a network decision to configure the measurement gap.

5.5.7.2 Initiation

The UE shall:

1> if and only if upper layers indicate to start performing inter-frequency RSTD measurements and the UE requires measurement gaps for these measurements while measurement gaps are either not configured or not sufficient:

 2> initiate the procedure to indicate start;

NOTE 1: The UE verifies the measurement gap situation only upon receiving the indication from upper layers. If at this point in time sufficient gaps are available, the UE does not initiate the procedure. Unless it receives a new indication from upper layers, the UE is only allowed to further repeat the procedure in the same PCell once per frequency if the provided measurement gaps are insufficient.
1> if and only if upper layers indicate to stop performing inter-frequency RSTD measurements:
2> initiate the procedure to indicate stop;

NOTE 2: The UE may initiate the procedure to indicate stop even if it did not previously initiate the procedure to indicate start.

5.5.7.3 Actions related to transmission of `InterFreqRSTDMeasurementIndication` message

The UE shall set the contents of `InterFreqRSTDMeasurementIndication` message as follows:

1> if the procedure is initiated to indicate start or stop of inter-frequency RSTD measurements:
2> set the `rstd-InterFreqIndication` as follows:
 3> if the procedure is initiated to indicate start of inter-frequency RSTD measurements:
 4> set the `rstd-InterFreqInfoList` according to the information received from upper layers;
 3> else if the procedure is initiated to indicate stop of inter-frequency RSTD measurements:
 4> set the `rstd-InterFreqIndication` to the value `stop`;
1> else:
2> set the `rstd-InterFreqIndication` as follows:
 3> if the procedure is initiated to indicate start of intra-frequency RSTD measurements:
 4> set the `carrierFreq` in the `rstd-InterFreqInfoList` to the carrier frequency of the serving cell;
 3> else if the procedure is initiated to indicate stop of intra-frequency RSTD measurements:
 4> set the `rstd-InterFreqIndication` to the value `stop`;
1> submit the `InterFreqRSTDMeasurementIndication` message to lower layers for transmission, upon which the procedure ends;

5.6 Other

5.6.0 General

For NB-IoT, only a subset of the procedures described in this sub-clause apply.

Table 5.6.0-1 specifies the procedures that are applicable to NB-IoT. All other procedures are not applicable to NB-IoT; this is not further stated in the corresponding procedures.

Table 5.6.0-1: "Other" Procedures applicable to a NB-IoT UE

<table>
<thead>
<tr>
<th>Sub-clause</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.1</td>
<td>DL information transfer</td>
</tr>
<tr>
<td>5.6.2</td>
<td>UL information transfer</td>
</tr>
<tr>
<td>5.6.3</td>
<td>UE Capability transfer</td>
</tr>
</tbody>
</table>
5.6.1 DL information transfer

5.6.1.1 General

![Diagram of DL information transfer]

The purpose of this procedure is to transfer NAS or (tunnelled) non-3GPP dedicated information from E-UTRAN to a UE in RRC_CONNECTED.

5.6.1.2 Initiation

E-UTRAN initiates the DL information transfer procedure whenever there is a need to transfer NAS or non-3GPP dedicated information. E-UTRAN initiates the DL information transfer procedure by sending the DLInformationTransfer message.

5.6.1.3 Reception of the DLInformationTransfer by the UE

Upon receiving DLInformationTransfer message, the UE shall:

1. if the UE is a NB-IoT UE; or
2. if the dedicatedInfoType is set to dedicatedInfoNAS:
 1. forward the dedicatedInfoNAS to the NAS upper layers.
3. if the dedicatedInfoType is set to dedicatedInfoCDMA2000-1XRTT or to dedicatedInfoCDMA2000-HRPD:
 1. forward the dedicatedInfoCDMA2000 to the CDMA2000 upper layers;

5.6.2 UL information transfer

5.6.2.1 General

![Diagram of UL information transfer]

The purpose of this procedure is to transfer NAS or (tunnelled) non-3GPP dedicated information from the UE to E-UTRAN.

5.6.2.2 Initiation

A UE in RRC_CONNECTED initiates the UL information transfer procedure whenever there is a need to transfer NAS or non-3GPP dedicated information, except at RRC connection establishment or resume in which case the NAS information is piggybacked to the RRCCConnectionSetupComplete or RRCCConnectionResumeComplete message.
correspondingly. The UE initiates the UL information transfer procedure by sending the ULInformationTransfer message. When CDMA2000 information has to be transferred, the UE shall initiate the procedure only if SRB2 is established.

5.6.2.3 Actions related to transmission of ULInformationTransfer message

The UE shall set the contents of the ULInformationTransfer message as follows:

1> if there is a need to transfer NAS information:
 2> if the UE is a NB-IoT UE:
 3> set the dedicatedInfoNAS to include the information received from upper layers;
 2> else, set the dedicatedInfoType to include the dedicatedInfoNAS;
1> if there is a need to transfer CDMA2000 1XRTT information:
 2> set the dedicatedInfoType to include the dedicatedInfoCDMA2000-1XRTT;
1> if there is a need to transfer CDMA2000 HRPD information:
 2> set the dedicatedInfoType to include the dedicatedInfoCDMA2000-HRPD;
1> upon RRC connection establishment, if UE supports the Control Plane CIoT EPS optimisation and UE does not need UL gaps during continuous uplink transmission:
 2> configure lower layers to stop using UL gaps during continuous uplink transmission in FDD for ULInformationTransfer message and subsequent uplink transmission in RRC_CONNECTED except for UL transmissions as specified in TS36.211 [21];
1> submit the ULInformationTransfer message to lower layers for transmission, upon which the procedure ends;

5.6.2.4 Failure to deliver ULInformationTransfer message

The UE shall:

1> if the UE is a NB-IoT UE, AS security is not started and radio link failure occurs before the successful delivery of ULInformationTransfer messages has been confirmed by lower layers; or
1> if mobility (i.e. handover, RRC connection re-establishment) occurs before the successful delivery of ULInformationTransfer messages has been confirmed by lower layers:
 2> inform upper layers about the possible failure to deliver the information contained in the concerned ULInformationTransfer messages;

5.6.3 UE capability transfer

5.6.3.1 General

![Figure 5.6.3.1-1: UE capability transfer](image-url)
The purpose of this procedure is to transfer UE radio access capability information from the UE to E-UTRAN.

If the UE has changed its E-UTRAN radio access capabilities, the UE shall request higher layers to initiate the necessary NAS procedures (see TS 23.401 [41]) that would result in the update of UE radio access capabilities using a new RRC connection.

NOTE: Change of the UE's GERAN UE radio capabilities in RRC_IDLE is supported by use of Tracking Area Update.

5.6.3.2 Initiation

E-UTRAN initiates the procedure to a UE in RRC_CONNECTED when it needs (additional) UE radio access capability information.

5.6.3.3 Reception of the UECapabilityEnquiry by the UE

The UE shall:

1> for NB-IoT, set the contents of UECapabilityInformation message as follows:
 2> include the UE Radio Access Capability Parameters within the ue-Capability-Container;
 2> include ue-RadioPagingInfo;
 2> submit the UECapabilityInformation message to lower layers for transmission, upon which the procedure ends;
1> else, set the contents of UECapabilityInformation message as follows:
 2> if the ue-CapabilityRequest includes eutra:
 3> include the UE-EUTRA-Capability within a ue-CapabilityRAT-Container and with the rat-Type set to eutra;
 3> if the UE supports FDD and TDD:
 4> set all fields of UECapabilityInformation, except field fdd-Add-UE-EUTRA-Capabilities and tdd-Add-UE-EUTRA-Capabilities (including their sub-fields), to include the values applicable for both FDD and TDD (i.e. functionality supported by both modes);
 4> if (some of) the UE capability fields have a different value for FDD and TDD:
 5> if for FDD, the UE supports additional functionality compared to what is indicated by the previous fields of UECapabilityInformation:
 6> include field fdd-Add-UE-EUTRA-Capabilities and set it to include fields reflecting the additional functionality applicable for FDD;
 5> if for TDD, the UE supports additional functionality compared to what is indicated by the previous fields of UECapabilityInformation:
 6> include field tdd-Add-UE-EUTRA-Capabilities and set it to include fields reflecting the additional functionality applicable for TDD;

NOTE 1: The UE includes fields of XDD-Add-UE-EUTRA-Capabilities in accordance with the following:
- The field is included only if one or more of its sub-fields (or bits in the feature group indicators string) has a value that is different compared to the value signalled elsewhere within UE-EUTRA-Capability; (this value signalled elsewhere is also referred to as the Common value, that is supported for both XDD modes)
- For the fields that are included in XDD-Add-UE-EUTRA-Capabilities, the UE sets:
 - the sub-fields (or bits in the feature group indicators string) that are not allowed to be different to the same value as the Common value;
the sub-fields (or bits in the feature group indicators string) that are allowed to be different to a value indicating at least the same functionality as indicated by the Common value;

else (UE supports single xDD mode):

set all fields of UECapabilityInformation, except field fdd-Add-UE-EUTRA-Capabilities and tdd-Add-UE-EUTRA-Capabilities (including their sub-fields), to include the values applicable for the xDD mode supported by the UE;

compile a list of band combinations, candidate for inclusion in the UECapabilityInformation message, comprising of band combinations supported by the UE according to the following priority order (i.e. listed in order of decreasing priority):

include all non-CA bands, regardless of whether UE supports carrier aggregation, only:

- if the UE includes ue-Category-v1020 (i.e. indicating category 6 to 8); or

- if for at least one of the non-CA bands, the UE supports more MIMO layers with TM9 and TM10 than implied by the UE category; or

- if the UE supports TM10 with one or more CSI processes;

if the UECapabilityEnquiry message includes requestedFrequencyBands and UE supports requestedFrequencyBands:

include all 2DL+1UL CA band combinations, only consisting of bands included in requestedFrequencyBands;

include all other CA band combinations, only consisting of bands included in requestedFrequencyBands, and prioritized in the order of requestedFrequencyBands, (i.e. first include remaining band combinations containing the first-listed band, then include remaining band combinations containing the second-listed band, and so on);

else (no requested frequency bands):

include all 2DL+1UL CA band combinations;

include all other CA band combinations;

if UE supports maximumCCsRetrieval and if the UECapabilityEnquiry message includes the requestedMaxCCsDL and the requestedMaxCCsUL (i.e. both UL and DL maximums are given):

remove from the list of candidates the band combinations for which the number of CCs in DL exceeds the value indicated in the requestedMaxCCsDL or for which the number of CCs in UL exceeds the value indicated in the requestedMaxCCsUL;

indicate in requestedCCsUL the same value as received in requestedMaxCCsUL;

indicate in requestedCCsDL the same value as received in requestedMaxCCsDL;

else if UE supports maximumCCsRetrieval and if the UECapabilityEnquiry message includes the requestedMaxCCsDL (i.e. only DL maximum limit is given):

remove from the list of candidates the band combinations for which the number of CCs in DL exceeds the value indicated in the requestedMaxCCsDL;

indicate value in requestedCCsDL the same value as received in requestedMaxCCsDL;

else if UE supports maximumCCsRetrieval and if the UECapabilityEnquiry message includes the requestedMaxCCsUL (i.e. only UL maximum limit is given):

remove from the list of candidates the band combinations for which the number of CCs in UL exceeds the value indicated in the requestedMaxCCsUL;

indicate in requestedCCsUL the same value as received in requestedMaxCCsUL;
if the UE supports `reducedIntNonContComb` and the `UECapabilityEnquiry` message includes `requestReducedIntNonContComb`:

1. set `reducedIntNonContCombRequested` to true;

2. remove from the list of candidates the intra-band non-contiguous CA band combinations which support is implied by another intra-band non-contiguous CA band combination included in the list of candidates as specified in TS 36.306 [5, 4.3.5.21]:

if the UE supports `requestReducedFormat` and UE supports `skipFallbackCombinations` and `UECapabilityEnquiry` message includes `requestSkipFallbackComb`:

1. set `skipFallbackCombRequested` to true;

2. for each band combination included in the list of candidates (including 2DL+1UL CA band combinations), starting with the ones with the lowest number of DL and UL carriers, that concerns a fallback band combination of another band combination included in the list of candidates as specified in TS 36.306 [5]:

3. remove the band combination from the list of candidates;

4. include `differentFallbackSupported` in the band combination included in the list of candidates whose fallback concerns the removed band combination, if its capabilities differ from the removed band combination;

if the UE supports `requestReducedFormat` and `diffFallbackCombReport`, and `UECapabilityEnquiry` message includes `requestDiffFallbackCombList`:

1. if the UE does not support `skipFallbackCombinations` or `UECapabilityEnquiry` message does not include `requestSkipFallbackComb`:

 1. remove all band combination from the list of candidates;

 2. for each CA band combination indicated in `requestDiffFallbackCombList`:

 1. include the CA band combination, if not already in the list of candidates;

 2. include the fallback combinations for which the supported UE capabilities are different from the capability of the CA band combination;

 1. include CA band combinations indicated in `requestDiffFallbackCombList` into `requestedDiffFallbackCombList`;

3. if the `UECapabilityEnquiry` message includes `requestReducedFormat` and UE supports `requestReducedFormat`:

 1. include in `supportedBandCombinationReduced` as many as possible of the band combinations included in the list of candidates, including the non-CA combinations, determined according to the rules and priority order defined above;

 3. else

 1. if the `UECapabilityEnquiry` message includes `requestedFrequencyBands` and UE supports `requestedFrequencyBands`:

 1. include in `supportedBandCombination` as many as possible of the band combinations included in the list of candidates, including the non-CA combinations and up to 5DL+5UL CA band combinations, determined according to the rules and priority order defined above;

 2. include in `supportedBandCombinationAdd` as many as possible of the remaining band combinations included in the list of candidates, (i.e. the candidates not included in `supportedBandCombination`), up to 5DL+5UL CA band combinations, determined according to the rules and priority order defined above;

 4. else
5> include in supportedBandCombination as many as possible of the band combinations included in the list of candidates, including the non-CA combinations and up to 5DL+5UL CA band combinations, determined according to the rules defined above;

5> if it is not possible to include in supportedBandCombination all the band combinations to be included according to the above, selection of the subset of band combinations to be included is left up to UE implementation;

3> indicate in requestedBands the same bands and in the same order as included in requestedFrequencyBands, if received;

3> if the UE is a category 0, M1 or M2 UE, or supports any UE capability information in ue-RadioPagingInfo, according to TS 36.306 [5];

4> include ue-RadioPagingInfo and set the fields according to TS 36.306 [5];

2> if the ue-CapabilityRequest includes geran-cs and if the UE supports GERAN CS domain:

3> include the UE radio access capabilities for GERAN CS within a ue-CapabilityRAT-Container and with the rat-Type set to geran-cs;

2> if the ue-CapabilityRequest includes geran-ps and if the UE supports GERAN PS domain:

3> include the UE radio access capabilities for GERAN PS within a ue-CapabilityRAT-Container and with the rat-Type set to geran-ps;

2> if the ue-CapabilityRequest includes utra and if the UE supports UTRA:

3> include the UE radio access capabilities for UTRA within a ue-CapabilityRAT-Container and with the rat-Type set to utra;

2> if the ue-CapabilityRequest includes cdma2000-1XRTT and if the UE supports CDMA2000 1xRTT:

3> include the UE radio access capabilities for CDMA2000 within a ue-CapabilityRAT-Container and with the rat-Type set to cdma2000-1XRTT;

1> submit the UECapabilityInformation message to lower layers for transmission, upon which the procedure ends;

5.6.4 CSFB to 1x Parameter transfer

5.6.4.1 General

The purpose of this procedure is to transfer the CDMA2000 1xRTT parameters required to register the UE in the CDMA2000 1xRTT network for CSFB support.
5.6.4.2 Initiation

A UE in RRC_CONNECTED initiates the CSFB to 1x parameter transfer procedure upon request from the CDMA2000 upper layers. The UE initiates the CSFB to 1x parameter transfer procedure by sending the CSFBParametersRequestCDMA2000 message.

5.6.4.3 Actions related to transmission of CSFBParametersRequestCDMA2000 message

The UE shall:

1> submit the CSFBParametersRequestCDMA2000 message to lower layers for transmission using the current configuration;

5.6.4.4 Reception of the CSFBParametersResponseCDMA2000 message

Upon reception of the CSFBParametersResponseCDMA2000 message, the UE shall:

1> forward the rand and the mobilityParameters to the CDMA2000 1xRTT upper layers;

5.6.5 UE Information

5.6.5.1 General

![UE Information Procedure Diagram](image)

Figure 5.6.5.1-1: UE information procedure

The UE information procedure is used by E-UTRAN to request the UE to report information.

5.6.5.2 Initiation

E-UTRAN initiates the procedure by sending the UEInformationRequest message. E-UTRAN should initiate this procedure only after successful security activation.

5.6.5.3 Reception of the UEInformationRequest message

Upon receiving the UEInformationRequest message, the UE shall, only after successful security activation:

1> if rach-ReportReq is set to true, set the contents of the rach-Report in the UEInformationResponse message as follows:

2> set the numberOfPreamblesSent to indicate the number of preambles sent by MAC for the last successfully completed random access procedure;

2> if contention resolution was not successful as specified in TS 36.321 [6] for at least one of the transmitted preambles for the last successfully completed random access procedure:

3> set the contentionDetected to true;

2> else:
1> if rlf-ReportReq is set to true and the UE has radio link failure information or handover failure information available in VarRLF-Report and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:
2> set timeSinceFailure in VarRLF-Report to the time that elapsed since the last radio link or handover failure in E-UTRA;
2> set the rlf-Report in the UEInformationResponse message to the value of rlf-Report in VarRLF-Report;
2> discard the rlf-Report from VarRLF-Report upon successful delivery of the UEInformationResponse message confirmed by lower layers;

1> if connEstFailReportReq is set to true and the UE has connection establishment failure information in VarConnEstFailReport and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:
2> set timeSinceFailure in VarRLF-Report to the time that elapsed since the last connection establishment failure in E-UTRA;
2> set the connEstFailReport in the UEInformationResponse message to the value of connEstFailReport in VarConnEstFailReport;
2> discard the connEstFailReport from VarConnEstFailReport upon successful delivery of the UEInformationResponse message confirmed by lower layers;

1> if the logMeasReportReq is present and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:
2> if VarLogMeasReport includes one or more logged measurement entries, set the contents of the logMeasReport in the UEInformationResponse message as follows:
3> include the absoluteTimeStamp and set it to the value of absoluteTimeInfo in the VarLogMeasReport;
3> include the traceReference and set it to the value of traceReference in the VarLogMeasReport;
3> include the traceRecordingSessionRef and set it to the value of traceRecordingSessionRef in the VarLogMeasReport;
3> include the tce-Id and set it to the value of tce-Id in the VarLogMeasReport;
3> include the logMeasInfoList and set it to include one or more entries from VarLogMeasReport starting from the entries logged first;
3> if the VarLogMeasReport includes one or more additional logged measurement entries that are not included in the logMeasInfoList within the UEInformationResponse message:
4> include the logMeasAvailable;
1> else:

1> if mobilityHistoryReportReq is set to true:
2> include the mobilityHistoryReport and set it to include entries from VarMobilityHistoryReport;
2> include in the mobilityHistoryReport an entry for the current cell, possibly after removing the oldest entry if required, and set its fields as follows:
3> set visitedCellId to the global cell identity of the current cell;
3> set field timeSpent to the time spent in the current cell;
1> else:

2> submit the UEInformationResponse message to lower layers for transmission via SRB2;
2> discard the logged measurement entries included in the logMeasInfoList from VarLogMeasReport upon successful delivery of the UEInformationResponse message confirmed by lower layers;
2> submit the \textit{UEInformationResponse} message to lower layers for transmission via SRB1;

5.6.6 Logged Measurement Configuration

5.6.6.1 General

![Diagram](image)

\textit{Figure 5.6.6.1-1: Logged measurement configuration}

The purpose of this procedure is to configure the UE to perform logging of measurement results while in RRC_IDLE and to perform logging of measurement results for MBSFN in both RRC_IDLE and RRC_CONNECTED. The procedure applies to logged measurements capable UEs that are in RRC_CONNECTED.

\textbf{NOTE:} E-UTRAN may retrieve stored logged measurement information by means of the UE information procedure.

5.6.6.2 Initiation

E-UTRAN initiates the logged measurement configuration procedure to UE in RRC_CONNECTED by sending the \textit{LoggedMeasurementConfiguration} message.

5.6.6.3 Reception of the \textit{LoggedMeasurementConfiguration} by the UE

Upon receiving the \textit{LoggedMeasurementConfiguration} message the UE shall:

1> discard the logged measurement configuration as well as the logged measurement information as specified in 5.6.7;

1> store the received \textit{loggingDuration}, \textit{loggingInterval} and \textit{areaConfiguration}, if included, in \textit{VarLogMeasConfig};

1> if the \textit{LoggedMeasurementConfiguration} message includes \textit{plmn-IdentityList}:

2> set \textit{plmn-IdentityList} in \textit{VarLogMeasReport} to include the RPLMN as well as the PLMNs included in \textit{plmn-IdentityList};

1> else:

2> set \textit{plmn-IdentityList} in \textit{VarLogMeasReport} to include the RPLMN;

1> store the received \textit{absoluteTimeInfo}, \textit{traceReference}, \textit{traceRecordingSessionRef} and \textit{tce-Id} in \textit{VarLogMeasReport};

1> store the received \textit{targetMBSFN-AreaList}, if included, in \textit{VarLogMeasConfig};

1> start timer T330 with the timer value set to the \textit{loggingDuration};

5.6.6.4 T330 expiry

Upon expiry of T330 the UE shall:
1> release VarLogMeasConfig;
The UE is allowed to discard stored logged measurements, i.e. to release VarLogMeasReport, 48 hours after T330 expiry.

5.6.7 Release of Logged Measurement Configuration

5.6.7.1 General
The purpose of this procedure is to release the logged measurement configuration as well as the logged measurement information.

5.6.7.2 Initiation
The UE shall initiate the procedure upon receiving a logged measurement configuration in another RAT. The UE shall also initiate the procedure upon power off or detach.

The UE shall:
1> stop timer T330, if running;
1> if stored, discard the logged measurement configuration as well as the logged measurement information, i.e. release the UE variables VarLogMeasConfig and VarLogMeasReport;

5.6.8 Measurements logging

5.6.8.1 General
This procedure specifies the logging of available measurements by a UE in RRC_IDLE that has a logged measurement configuration and the logging of available measurements by a UE in both RRC_IDLE and RRC_CONNECTED if targetMBSFN-AreaList is included in VarLogMeasConfig.

5.6.8.2 Initiation
While T330 is running, the UE shall:
1> if measurement logging is suspended:
2> if during the last logging interval the IDC problems detected by the UE is resolved, resume measurement logging;
1> if not suspended, perform the logging in accordance with the following:
2> if targetMBSFN-AreaList is included in VarLogMeasConfig:
3> if the UE is camping normally on an E-UTRA cell or is connected to E-UTRA; and
3> if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport; and
3> if the PCell (in RRC_CONNECTED) or cell where the UE is camping (in RRC_IDLE) is part of the area indicated by areaConfiguration if configured in VarLogMeasConfig;
4> for MBSFN areas, indicated in targetMBSFN-AreaList, from which the UE is receiving MBMS service:
5> perform MBSFN measurements in accordance with the performance requirements as specified in TS 36.133 [16];

NOTE 1: When configured to perform MBSFN measurement logging by targetMBSFN-AreaList, the UE is not required to receive additional MBSFN subframes, i.e. logging is based on the subframes corresponding to the MBMS services the UE is receiving.
5> perform logging at regular time intervals as defined by the **loggingInterval** in **VarLogMeasConfig**, but only for those intervals for which MBSFN measurement results are available as specified in TS 36.133 [16];

2> *else* if the UE is camping normally on an E-UTRA cell and if the RPLMN is included in **plmn-IdentityList** stored in **VarLogMeasReport** and, if the cell is part of the area indicated by **areaConfiguration** if configured in **VarLogMeasConfig**:

3> perform the logging at regular time intervals, as defined by the **loggingInterval** in **VarLogMeasConfig**;

2> when adding a logged measurement entry in **VarLogMeasReport**, include the fields in accordance with the following:

3> *if* the UE detected IDC problems during the last logging interval:

4> *if* **measResultServCell** in **VarLogMeasReport** is not empty:

5> include **InDeviceCoexDetected**;

5> suspend measurement logging from the next logging interval;

4> *else*:

5> suspend measurement logging;

NOTE 1A: The UE may detect the start of IDC problems as early as Phase 1 as described in 23.4 of TS 36.300 [9].

3> set the **relativeTimeStamp** to indicate the elapsed time since the moment at which the logged measurement configuration was received;

3> if detailed location information became available during the last logging interval, set the content of the **locationInfo** as follows:

4> include the **locationCoordinates**;

3> *if* **targetMBSFN-AreaList** is included in **VarLogMeasConfig**:

4> for each MBSFN area, for which the mandatory measurements result fields became available during the last logging interval:

5> set the **rsrpResultMBSFN**, **rsrqResultMBSFN** to include measurement results that became available during the last logging interval;

5> include the fields **signallingBLER-Result** or **dataBLER-MCH-ResultList** if the concerned BLER results are available,

5> set the **mbsfn-AreaId** and **carrierFrequency** to indicate the MBSFN area in which the UE is receiving MBSFN transmission;

4> *if* in RRC_CONNECTED:

5> set the **servCellIdentity** to indicate global cell identity of the PCell;

5> set the **measResultServCell** to include the layer 3 filtered measured results of the PCell;

5> *if* available, set the **measResultNeighCells** to include the layer 3 filtered measured results of SCell(s) and neighbouring cell(s) measurements that became available during the last logging interval, in order of decreasing RSRP, for at most the following number of cells: 6 intra-frequency and 3 inter-frequency cells per frequency and according to the following:

6> for each cell included, include the optional fields that are available;

5> *if* available, optionally set the **measResultNeighCells** to include the layer 3 filtered measured results of neighbouring cell(s) measurements that became available during the last logging interval, in order of decreasing RSCP(UTRA)/RSSI(GERAN)/PilotStrength(cdma2000), for at most the following number of cells: 3 inter-RAT cells per frequency (UTRA, cdma2000)/set of frequencies (GERAN), and according to the following:
6> for each cell included, include the optional fields that are available;

4> if in RRC_IDLE:

5> set the `servCellIdentity` to indicate global cell identity of the serving cell;

5> set the `measResultServCell` to include the quantities of the serving cell;

5> if available, set the `measResultNeighCells`, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements that became available during the last logging interval for at most the following number of neighbouring cells: 6 intra-frequency and 3 inter-frequency neighbours per frequency and according to the following:

6> for each neighbour cell included, include the optional fields that are available;

5> if available, optionally set the `measResultNeighCells`, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements that became available during the last logging interval, for at most the following number of cells: 3 inter-RAT cells per frequency (UTRA, cdma2000)/set of frequencies (GERAN), and according to the following:

6> for each cell included, include the optional fields that are available;

4> for the cells included according to the previous (i.e. covering previous and current serving cells as well as neighbouring EUTRA cells) include results according to the extended RSRQ if corresponding results are available according to the associated performance requirements defined in TS 36.133 [16];

4> for the cells included according to the previous (i.e. covering previous and current serving cells as well as neighbouring EUTRA cells) include RSRQ type if the result was based on measurements using a wider band or using all OFDM symbols;

NOTE 2: The UE includes the latest results in accordance with the performance requirements as specified in TS 36.133 [16]. E.g. RSRP and RSRQ results are available only if the UE has a sufficient number of results/receives a sufficient number of subframes during the logging interval.

3> else:

4> set the `servCellIdentity` to indicate global cell identity of the cell the UE is camping on;

4> set the `measResultServCell` to include the quantities of the cell the UE is camping on;

4> if available, set the `measResultNeighCells`, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements that became available during the last logging interval for at most the following number of neighbouring cells: 6 intra-frequency and 3 inter-frequency neighbours per frequency as well as 3 inter-RAT neighbours, per frequency/set of frequencies (GERAN) per RAT and according to the following:

5> for each neighbour cell included, include the optional fields that are available;

4> for the cells included according to the previous (i.e. covering previous and current serving cells as well as neighbouring EUTRA cells) include results according to the extended RSRQ if corresponding results are available according to the associated performance requirements defined in TS 36.133 [16];

4> for the cells included according to the previous (i.e. covering previous and current serving cells as well as neighbouring EUTRA cells) include RSRQ type if the result was based on measurements using a wider band or using all OFDM symbols;

NOTE 3: The UE includes the latest results of the available measurements as used for cell reselection evaluation in RRC_IDLE or as used for evaluation of reporting criteria or for measurement reporting according to 5.5.3 in RRC_CONNECTED, which are performed in accordance with the performance requirements as specified in TS 36.133 [16].

2> when the memory reserved for the logged measurement information becomes full, stop timer T330 and perform the same actions as performed upon expiry of T330, as specified in 5.6.6.4;
5.6.9 In-device coexistence indication

5.6.9.1 General

The purpose of this procedure is to inform E-UTRAN about (a change of) the In-Device Coexistence (IDC) problems experienced by the UE in RRC_CONNECTED, as described in TS 36.300 [9], and to provide the E-UTRAN with information in order to resolve them.

5.6.9.2 Initiation

A UE capable of providing IDC indications may initiate the procedure when it is configured to provide IDC indications and upon change of IDC problem information.

Upon initiating the procedure, the UE shall:

1> if configured to provide IDC indications:

2> if the UE did not transmit an InDeviceCoexIndication message since it was configured to provide IDC indications:

3> if on one or more frequencies for which a measObjectEUTRA is configured, the UE is experiencing IDC problems that it cannot solve by itself; or

3> if configured to provide IDC indications for UL CA; and if on one or more supported UL CA combination comprising of carrier frequencies for which a measurement object is configured, the UE is experiencing IDC problems that it cannot solve by itself:

4> initiate transmission of the InDeviceCoexIndication message in accordance with 5.6.9.3;

2> else:

3> if the set of frequencies, for which a measObjectEUTRA is configured and on which the UE is experiencing IDC problems that it cannot solve by itself, is different from the set indicated in the last transmitted InDeviceCoexIndication message; or

3> if for one or more of the frequencies in the previously reported set of frequencies, the interferenceDirection is different from the value indicated in the last transmitted InDeviceCoexIndication message; or

3> if the TDM assistance information is different from the assistance information included in the last transmitted InDeviceCoexIndication message; or

3> if configured to provide IDC indications for UL CA; and if the victimSystemType is different from the value indicated in the last transmitted InDeviceCoexIndication message; or

3> if configured to provide IDC indications for UL CA; and if the set of supported UL CA combinations on which the UE is experiencing IDC problems that it cannot solve by itself and that the UE includes in affectedCarrierFreqCombList according to 5.6.9.3, is different from the set indicated in the last transmitted InDeviceCoexIndication message:
4> initiate transmission of the *InDeviceCoexIndication* message in accordance with 5.6.9.3;

NOTE 1: The term "IDC problems" refers to interference issues applicable across several subframes/slots where not necessarily all the subframes/slots are affected.

NOTE 2: For the frequencies on which a serving cell or serving cells is configured that is activated, IDC problems consist of interference issues that the UE cannot solve by itself, during either active data exchange or upcoming data activity which is expected in up to a few hundred milliseconds. For frequencies on which a SCell or SCells is configured that is deactivated, reporting IDC problems indicates an anticipation that the activation of the SCell or SCells would result in interference issues that the UE would not be able to solve by itself. For a non-serving frequency, reporting IDC problems indicates an anticipation that if the non-serving frequency or frequencies became a serving frequency or serving frequencies then this would result in interference issues that the UE would not be able to solve by itself.

5.6.9.3 Actions related to transmission of *InDeviceCoexIndication* message

The UE shall set the contents of the *InDeviceCoexIndication* message as follows:

1> if there is at least one E-UTRA carrier frequency, for which a measurement object is configured, that is affected by IDC problems:

2> include the field *affectedCarrierFreqList* with an entry for each affected E-UTRA carrier frequency for which a measurement object is configured;

2> for each E-UTRA carrier frequency included in the field *affectedCarrierFreqList*, include *interferenceDirection* and set it accordingly;

2> include Time Domain Multiplexing (TDM) based assistance information, unless *idc-HardwareSharingIndication* is configured and the UE has no Time Domain Multiplexing based assistance information that could be used to resolve the IDC problems:

3> if the UE has DRX related assistance information that could be used to resolve the IDC problems:

4> include *drx-CycleLength*, *drx-Offset* and *drx-ActiveTime*;

3> else (the UE has desired subframe reservation patterns related assistance information that could be used to resolve the IDC problems):

4> include *idc-SubframePatternList*;

3> use the MCG as timing reference if TDM based assistance information regarding the SCG is included;

1> if the UE is configured to provide UL CA information and there is a supported UL CA combination comprising of carrier frequencies for which a measurement object is configured, that is affected by IDC problems:

2> include *victimSystemType* in *ul-CA-AssistanceInfo*;

2> if the UE sets *victimSystemType* to *wlan* or *Bluetooth*:

3> include *affectedCarrierFreqCombList* in *ul-CA-AssistanceInfo* with an entry for each supported UL CA combination comprising of carrier frequencies for which a measurement object is configured, that is affected by IDC problems;

2> else:

3> optionally include *affectedCarrierFreqCombList* in *ul-CA-AssistanceInfo* with an entry for each supported UL CA combination comprising of carrier frequencies for which a measurement object is configured, that is affected by IDC problems;

1> if *idc-HardwareSharingIndication* is configured, and there is at least one E-UTRA carrier frequency, for which a measurement object is configured, the UE is experiencing hardware sharing problems that it cannot solve by itself:

2> include the *hardwareSharingProblem* and set it accordingly;
NOTE 1: When sending an InDeviceCoexIndication message to inform E-UTRAN the IDC problems, the UE includes all assistance information (rather than providing e.g. the changed part(s) of the assistance information).

NOTE 2: Upon not anymore experiencing a particular IDC problem that the UE previously reported, the UE provides an IDC indication with the modified contents of the InDeviceCoexIndication message (e.g. by an empty message).

The UE shall submit the InDeviceCoexIndication message to lower layers for transmission.

5.6.10 UE Assistance Information

5.6.10.1 General

The purpose of this procedure is to inform E-UTRAN of the UE's power saving preference and SPS assistance information, maximum PDSCH/PUSCH bandwidth configuration preference, overheating assistance information, or the UE's delay budget report carrying desired increment/decrement in the Uu air interface delay or connected mode DRX cycle length and for BL UEs or UEs in CE of the RLM event ("early-out-of-sync" or "early-in-sync") and RLM information. Upon configuring the UE to provide power preference indications E-UTRAN may consider that the UE does not prefer a configuration primarily optimised for power saving until the UE explicitly indicates otherwise.

5.6.10.2 Initiation

A UE capable of providing power preference indications in RRC_CONNECTED may initiate the procedure in several cases including upon being configured to provide power preference indications and upon change of power preference. A UE capable of providing SPS assistance information in RRC_CONNECTED may initiate the procedure in several cases including upon being configured to provide SPS assistance information and upon change of SPS assistance information.

A UE capable of providing delay budget report in RRC_CONNECTED may initiate the procedure in several cases, including upon being configured to provide delay budget report and upon change of delay budget preference.

A UE capable of CE mode and providing maximum PDSCH/PUSCH bandwidth preference in RRC_CONNECTED may initiate the procedure upon being configured to provide maximum PDSCH/PUSCH bandwidth preference and/or upon change of maximum PDSCH/PUSCH bandwidth preference.

A UE capable of providing overheating assistance information in RRC_CONNECTED may initiate the procedure if it was configured to do so, upon detecting internal overheating, or upon detecting that it is no longer experiencing an overheating condition.

Upon initiating the procedure, the UE shall:

1> if configured to provide power preference indications:

2> if the UE did not transmit a UEAssistanceInformation message with powerPrefIndication since it was configured to provide power preference indications; or

2> if the current power preference is different from the one indicated in the last transmission of the UEAssistanceInformation message and timer T340 is not running:
3> initiate transmission of the \text{UEAssistanceInformation} message in accordance with 5.6.10.3;

1> if configured to provide maximum PDSCH/PUSCH bandwidth preference:

2> if the UE did not transmit a \text{UEAssistanceInformation} message with \textit{bw-Preference} since it was configured to provide maximum PDSCH/PUSCH bandwidth preference; or

2> if the current maximum PDSCH/PUSCH bandwidth preference is different from the one indicated in the last transmission of the \text{UEAssistanceInformation} message and timer T341 is not running;

3> initiate transmission of the \text{UEAssistanceInformation} message in accordance with 5.6.10.3;

1> if configured to provide SPS assistance information:

2> if the UE did not transmit a \text{UEAssistanceInformation} message with \textit{sps-AssistanceInformation} since it was configured to provide SPS assistance information; or

2> if the current SPS assistance information is different from the one indicated in the last transmission of the \text{UEAssistanceInformation} message:

3> initiate transmission of the \text{UEAssistanceInformation} message in accordance with 5.6.10.3;

1> if configured to report RLM events:

2> if "early-out-of-sync" event has been detected and T343 is not running; or

2> if "early-in-sync" event has been detected and T344 is not running:

3> initiate transmission of the \text{UEAssistanceInformation} message in accordance with 5.6.10.3;

1> if configured to provide delay budget report:

2> if the UE did not transmit a \text{UEAssistanceInformation} message with \textit{delayBudgetReport} since it was configured to provide delay budget report; or

2> if the current delay budget is different from the one indicated in the last transmission of the \text{UEAssistanceInformation} message and timer T342 is not running:

3> initiate transmission of the \text{UEAssistanceInformation} message in accordance with 5.6.10.3;

1> if configured to provide overheating assistance information:

2> if the overheating condition has been detected and T345 is not running; or

2> if the current overheating assistance information is different from the one indicated in the last transmission of the \text{UEAssistanceInformation} message and timer T345 is not running:

3> initiate transmission of the \text{UEAssistanceInformation} message in accordance with 5.6.10.3;

5.6.10.3 Actions related to transmission of \text{UEAssistanceInformation} message

The UE shall set the contents of the \text{UEAssistanceInformation} message for power preference indications:

1> if configured to provide power preference indication and if the UE prefers a configuration primarily optimised for power saving:

2> set \textit{powerPrefIndication} to \textit{lowPowerConsumption};

1> else if configured to provide power preference indication:

2> start or restart timer T340 with the timer value set to the \textit{powerPrefIndicationTimer};

2> set \textit{powerPrefIndication} to \textit{normal};

The UE shall set the contents of the \text{UEAssistanceInformation} message for SPS assistance information:

1> if configured to provide SPS assistance information:
2> if there is any traffic for V2X sidelink communication which needs to report SPS assistance information:
 3> include trafficPatternInfoListSL in the UEAssistanceInformation message;
2> if there is any traffic for uplink communication which needs to report SPS assistance information:
 3> include trafficPatternInfoListUL in the UEAssistanceInformation message;

The UE shall set the contents of the UEAssistanceInformation message for bandwidth preference indications:
1> start timer T341 with the timer value set to the bw-PreferenceIndicationTimer;
1> set bw-Preference to its preferred configuration;

The UE shall set the contents of the UEAssistanceInformation message for delay budget report:
1> if configured to provide delay budget report:
 2> if the UE prefers an adjustment in the connected mode DRX cycle length:
 3> set delayBudgetReport to type1 according to a desired value;
 2> else if the UE prefers coverage enhancement configuration change:
 3> set delayBudgetReport to type2 according to a desired value;
 2> start or restart timer T342 with the timer value set to the delayBudgetReportingProhibitTimer;

The UE shall set the contents of the UEAssistanceInformation message for the RLM report:
1> if T314 has expired:
 2> set rlm-event to earlyOutOfSync;
 2> start timer T343 with the timer value set to the rlmReportTimer;
1> if T315 has expired:
 2> set rlm-event to earlyInSync;
 2> start timer T344 with the timer value set to the rlmReportTimer;
 2> if configured to report rlmReportRep-MPDCCH:
 3> set excessRep-MPDCCH to the value indicated by lower layers;

The UE shall set the contents of the UEAssistanceInformation message for overheating assistance indication:
1> if the UE experiences internal overheating:
 2> if the UE prefers to temporarily reduce its DL category and UL category:
 3> include reducedUE-Category in the OverheatingAssistance IE;
 3> set reducedUE-CategoryDL to the number to which the UE prefers to temporarily reduce its DL category;
 3> set reducedUE-CategoryUL to the number to which the UE prefers to temporarily reduce its UL category;
 2> if the UE prefers to temporarily reduce the number of maximum secondary component carriers:
 3> include reducedMaxCCs in the OverheatingAssistance IE;
 3> set reducedCCsDL to the number of maximum SCells the UE prefers to be temporarily configured in downlink;
 3> set reducedCCsUL to the number of maximum SCells the UE prefers to be temporarily configured in uplink;
 2> start timer T345 with the timer value set to the overheatingIndicationProhibitTimer;
else (if the UE no longer experiences an overheating condition):

2. do not include reducedUE-Category and reducedMaxCCs in OverheatingAssistance IE;

2. start timer T345 with the timer value set to the overheatingIndicationProhibitTimer;

The UE shall submit the UEAssistanceInformation message to lower layers for transmission.

NOTE 1: It is up to UE implementation when and how to trigger SPS assistance information.

NOTE 2: It is up to UE implementation to set the content of trafficPatternInfoListSL and trafficPatternInfoListUL.

NOTE 3: Traffic patterns for different Destination Layer 2 IDs are provided in different entries in trafficPatternInfoListSL.

5.6.11 Mobility history information

5.6.11.1 General

This procedure specifies how the mobility history information is stored by the UE, covering RRC_CONNECTED and RRC_IDLE.

5.6.11.2 Initiation

If the UE supports storage of mobility history information, the UE shall:

1. Upon change of cell, consisting of PCell in RRC_CONNECTED or serving cell in RRC_IDLE, to another E-UTRA or inter-RAT cell or when entering out of service:

2. include an entry in variable VarMobilityHistoryReport possibly after removing the oldest entry, if necessary, according to following:

3. if the global cell identity of the previous PCell/ serving cell is available:

4. include the global cell identity of that cell in the field visitedCellId of the entry;

3. else:

4. include the physical cell identity and carrier frequency of that cell in the field visitedCellId of the entry;

3. set the field timeSpent of the entry as the time spent in the previous PCell/ serving cell;

1. upon entering E-UTRA (in RRC_CONNECTED or RRC_IDLE) while previously out of service and/ or using another RAT:

2. include an entry in variable VarMobilityHistoryReport possibly after removing the oldest entry, if necessary, according to following:

3. set the field timeSpent of the entry as the time spent outside E-UTRA;

5.6.12 RAN-assisted WLAN interworking

5.6.12.1 General

The purpose of this procedure is to facilitate access network selection and traffic steering between E-UTRAN and WLAN.

If required by upper layers (see TS 24.312 [66], the UE shall provide an up-to-date set of the applicable parameters provided by wlan-OffloadConfigCommon or wlan-OffloadConfigDedicated to upper layers, and inform upper layers when no parameters are configured. The parameter set from either wlan-OffloadConfigCommon or wlan-OffloadConfigDedicated is selected as specified in subclauses 5.2.2.24, 5.3.12, 5.6.12.2 and 5.6.12.4.
5.6.12.2 Dedicated WLAN offload configuration

The UE shall:

1> if the received wlan-OffloadInfo is set to release:
 2> release wlan-OffloadConfigDedicated and t350;
 2> if the wlan-OffloadConfigCommon corresponding to the RPLMN is broadcast by the cell:
 3> apply the wlan-OffloadConfigCommon corresponding to the RPLMN included in SystemInformationBlockType17;

1> else:
 2> apply the received wlan-OffloadConfigDedicated;

5.6.12.3 WLAN offload RAN evaluation

The UE shall:

1> if the UE is configured with either wlan-OffloadConfigCommon or wlan-OffloadConfigDedicated; and
1> if the UE is in RRC_IDLE or none of rclwi-Configuration, lwa-Configuration and lwip-Configuration is configured:
 2> provide measurement results required for the evaluation of the network selection and traffic steering rules as defined in TS 24.312 [66] to upper layers;
 2> evaluate the network selection and traffic steering rules as defined in TS 36.304 [4] using WLAN identifiers as indicated in other subclauses (either provided in steerToWLAN included in rclwi-Configuration or in wlan-Id-List included in SystemInformationBlockType17);

5.6.12.4 T350 expiry or stop

The UE shall:

1> if T350 expires or is stopped:
 2> release the wlan-OffloadConfigDedicated and t350;
 2> release rclwi-Configuration if configured;
 2> if the wlan-OffloadConfigCommon corresponding to the RPLMN is broadcast by the cell:
 3> apply the wlan-OffloadConfigCommon and the wlan-Id-List corresponding to the RPLMN included in SystemInformationBlockType17;

5.6.12.5 Cell selection/ re-selection while T350 is running

The UE shall:

1> if, while T350 is running, the UE selects/ reselects a cell which is not the PCell when the wlan-OffloadDedicated was configured:
 2> stop timer T350;
 2> perform the actions as specified in 5.6.12.4;
5.6.13 SCG failure information

5.6.13.1 General

![Diagram showing RRC connection reconfiguration and SCGFailureInformation]

Figure 5.6.13.1-1: SCG failure information

The purpose of this procedure is to inform E-UTRAN about an SCG failure the UE has experienced i.e. SCG radio link failure, SCG change failure.

5.6.13.2 Initiation

A UE initiates the procedure to report SCG failures when SCG transmission is not suspended and when one of the following conditions is met:

1. upon detecting radio link failure for the SCG, in accordance with 5.3.11; or
2. upon SCG change failure, in accordance with 5.3.5.7a; or
3. upon stopping uplink transmission towards the PSCell due to exceeding the maximum uplink transmission timing difference when `powerControlMode` is configured to 1, in accordance with subclause 7.17.2 of TS 36.133 [29].

Upon initiating the procedure, the UE shall:

1. suspend all SCG DRBs and suspend SCG transmission for split DRBs;
2. reset SCG-MAC;
3. stop T307;
4. initiate transmission of the `SCGFailureInformation` message in accordance with 5.6.13.3;

5.6.13.3 Actions related to transmission of `SCGFailureInformation` message

The UE shall set the contents of the `SCGFailureInformation` message as follows:

1. if the UE initiates transmission of the `SCGFailureInformation` message to provide SCG radio link failure information:
 2. include `failureType` and set it to the trigger for detecting SCG radio link failure;
2. else if the UE initiates transmission of the `SCGFailureInformation` message to provide SCG change failure information:
 2. include `failureType` and set it to `scg-ChangeFailure`;
3. else if the UE initiates transmission of the `SCGFailureInformation` message due to exceeding maximum uplink transmission timing difference:
 2. include `failureType` and set it to `maxUL-TimingDiff`;
1> set the `measResultServFreqList` to include for each SCG cell that is configured, if any, within `measResultSCell`
 the quantities of the concerned SCell, if available according to performance requirements in [16];

2> for each SCG serving frequency included in `measResultServFreqList`, include within `measResultBestNeighCell`
 the `physCellId` and the quantities of the best non-serving cell, based on RSRP, on the concerned serving
 frequency;

3> set the `measResultNeighCells` to include the best measured cells on non-serving E-UTRA frequencies, ordered
 such that the best cell is listed first, and based on measurements collected up to the moment the UE detected the
 failure, and set its fields as follows;

2> if the UE was configured to perform measurements for one or more non-serving EUTRA frequencies and
 measurement results are available, include the `measResultListEUTRA`;

2> for each neighbour cell included, include the optional fields that are available;

NOTE 2: The measured quantities are filtered by the L3 filter as configured in the mobility measurement
configuration. The measurements are based on the time domain measurement resource restriction, if
configured. Blacklisted cells are not required to be reported.

The UE shall submit the `SCGFailureInformation` message to lower layers for transmission.

5.6.14 LTE-WLAN Aggregation

5.6.14.1 Introduction

E-UTRAN can configure the UE to connect to a WLAN and configure bearers for LWA (referred to as LWA DRBs).
The UE uses the WLAN parameters received from E-UTRAN in performing WLAN measurements. The UE also
performs WLAN connection management as described in 5.6.15 while LWA is configured.

5.6.14.2 Reception of LWA configuration

Upon reception of LWA configuration, the UE shall:

1> if the received `lwa-Configuration` is set to `release`:

2> release the LWA configuration as described in 5.6.14.3;

1> else:

2> if the received `lwa-Config` includes `lwa-WT-Counter`:

3> determine the S-KWT key based on the `K_{NB}` key and received `lwa-WT-Counter` value, as specified in TS
 33.401 [32];

3> forward the S-KWT key to upper layers to be used as a PMK or PSK for WLAN authentication;

2> if the received `lwa-Config` includes `lwa-MobilityConfig`:

3> if the received `lwa-MobilityConfig` includes `wlan-ToReleaseList`:

4> for each `WLAN-Identifiers` included in `wlan-ToReleaseList`:

5> remove the `WLAN-Identifiers` if already part of the current `wlan-MobilitySet` in `VarWLAN-MobilityConfig`;

3> if the received `lwa-MobilityConfig` includes `wlan-ToAddList`:

4> for each `WLAN-Identifiers` included in `wlan-ToAddList`:

5> add the `WLAN-Identifiers` to the current `wlan-MobilitySet` in `VarWLAN-MobilityConfig`;

3> if the received `lwa-MobilityConfig` includes `associationTimer`:

4> start or restart timer T351 with the timer value set to the `associationTimer`;

NOTE: The measured quantities are filtered by the L3 filter as configured in the mobility measurement
configuration. The measurements are based on the time domain measurement resource restriction, if
configured. Blacklisted cells are not required to be reported.

The UE shall submit the `SCGFailureInformation` message to lower layers for transmission.
if the received lwa-MobilityConfig includes successReportRequested:

4> set successReportRequested in VarWLAN-MobilityConfig to the value of successReportRequested;

3> if the received lwa-MobilityConfig includes wlan-SuspendConfig:

4> set the field(s) in wlan-SuspendConfig within VarWLAN-MobilityConfig to the value(s) of field(s) included in wlan-SuspendConfig;

2> start WLAN Status Monitoring as described in 5.6.15.4;

5.6.14.3 Release of LWA configuration

To release the LWA configuration, the UE shall:

1> for each LWA DRB that is part of the current UE configuration:

2> disable data handling for this DRB at the LWAAP entity;

2> perform PDCP data recovery as specified in TS 36.323 [8];

1> delete any existing values in VarWLAN-MobilityConfig and VarWLAN-Status;

1> stop timer T351, if running;

1> stop WLAN status monitoring and WLAN connection attempts for LWA;

1> indicate the release of LWA configuration, if configured, to upper layers;

5.6.15 WLAN connection management

5.6.15.1 Introduction

WLAN connection management procedures in this section are triggered as specified in other sections where the UE is using a WLAN connection for LWA, RCLWI or LWIP.

The UE stores the current WLAN mobility set, which is a set of one or more WLAN identifier(s) (e.g. BSSID, SSID, HESSID) in wlan-MobilitySet in VarWLAN-MobilityConfig. This WLAN mobility set can be configured and updated by the eNB. A WLAN is considered to be inside the WLAN mobility set if its identifiers match all WLAN identifiers of at least one entry in wlan-MobilitySet and outside the WLAN mobility set otherwise. When the UE receives a new or updated WLAN mobility set, it initiates connection to a WLAN inside the WLAN mobility set, if not already connected to such a WLAN, and starts WLAN status monitoring as described in 5.6.15.4. The UE can perform WLAN mobility within the WLAN mobility set (connect or reconnect to a WLAN inside the WLAN mobility set) without any signalling to E-UTRAN.

The UE reports the WLAN connection status information to E-UTRAN as described in 5.6.15.2. The information in this report is based on the monitoring of WLAN connection as described in 5.6.15.4.

5.6.15.2 WLAN connection status reporting

5.6.15.2.1 General

Figure 5.6.15.2.1-1: WLAN connection status reporting
The purpose of this procedure is to inform E-UTRAN about the status of WLAN connection for LWA, RCLWI, or LWIP.

5.6.15.2.2 Initiation

The UE in RRC_CONNECTED initiates the WLAN status reporting procedure when:

1> it connects successfully to a WLAN inside WLAN mobility set while T351 is running after a WLAN mobility set change; or

1> after a lwa-WT-Counter update or after a lwip-Counter update (if success report is requested by the eNB); or

1> its connection or connection attempts to all WLAN(s) inside WLAN mobility set fails in accordance with WLAN Status Monitoring described in 5.6.15.4; or

1> T351 expires; or

1> its WLAN connection to all WLAN(s) inside WLAN mobility set becomes temporarily unavailable; or

1> its WLAN connection to a WLAN inside the WLAN mobility set is successfully established after its previous WLAN Connection Status Report indicating WLAN temporary suspension;

Upon initiating the procedure, the UE shall:

1> initiate transmission of the WLANConnectionStatusReport message in accordance with 5.6.15.2.3;

5.6.15.2.3 Actions related to transmission of WLANConnectionStatusReport message

The UE shall set the contents of the WLANConnectionStatusReport message as follows:

1> set wlan-status to status in VarWLAN-Status;

1> submit the WLANConnectionStatusReport message to lower layers for transmission, upon which the procedure ends;

5.6.15.3 T351 Expiry (WLAN connection attempt timeout)

Upon T351 expiry, the UE shall:

1> set the status in VarWLAN-Status to failureTimeout;

1> perform WLAN connection status reporting procedure in 5.6.15.2;

1> stop WLAN status monitoring and WLAN connection attempts;

5.6.15.4 WLAN status monitoring

To perform WLAN status monitoring, the UE shall:

1> if UE is not configured with rclwi-Configuration and WLAN connection to a WLAN inside the WLAN mobility set is successfully established or maintained after a WLAN mobility set configuration update, after a lwa-WT-Counter update or after a lwip-Counter update:

2> set the status in VarWLAN-Status to successfulAssociation;

2> stop timer T351, if running;

2> if successReportRequested in VarWLAN-MobilityConfig is set to TRUE:

3> perform WLAN Connection Status Reporting procedure in 5.6.15.2;

1> if WLAN connection or connection attempts to all WLAN(s) inside WLAN mobility set fails:

2> if the failure is due to WLAN radio link issues:
3> set the \textit{status} in \textit{VarWLAN-Status} to \textit{failureWlanRadioLink};

2> else if the failure is due to UE internal problems related to WLAN:
3> set the \textit{status} in \textit{VarWLAN-Status} to \textit{failureWlanUnavailable};

NOTE 1: The UE internal problems related to WLAN include connection to another WLAN based on user preferences or turning off WLAN connection or connection rejection from WLAN or other WLAN problems.

3> remove all WLAN related measurement reporting entries within \textit{VarMeasReportList};

2> stop timer T351, if running;

2> perform WLAN Connection Status Reporting procedure in 5.6.15.2;

2> if the UE is configured with \textit{rclwi-Configuration}:
3> release \textit{rclwi-Configuration} and inform upper layers of a move-traffic-from-WLAN indication (see TS 24.302 [74]);

2> stop WLAN Status Monitoring and WLAN connection attempts;

1> if \textit{wlan-SuspendResumeAllowed} in \textit{wlan-SuspendConfig} within \textit{VarWLAN-MobilityConfig} is set to \textit{TRUE}:

2> if WLAN connection to all WLAN(s) inside WLAN mobility set becomes temporarily unavailable:
3> set the \textit{status} in \textit{VarWLAN-Status} to \textit{suspended};

3> if \textit{wlan-SuspendTriggersStatusReport} in \textit{wlan-SuspendConfig} within \textit{VarWLAN-MobilityConfig} is set to \textit{TRUE}:
4> trigger PDCP Status Report as specified in [8];

3> perform WLAN Connection Status Reporting procedure in 5.6.15.2;

2> if the \textit{status} in \textit{VarWLAN-Status} in the last WLAN Connection Status Report by this UE was \textit{suspended} and WLAN connection to a WLAN inside the WLAN mobility set is successfully established:
3> set the \textit{status} in \textit{VarWLAN-Status} to \textit{resumed};

3> perform WLAN Connection Status Reporting procedure in 5.6.15.2;

5.6.16 RAN controlled LTE-WLAN interworking

5.6.16.1 General

The purpose of this procedure is to perform RAN-controlled LTE-WLAN interworking (RCLWI) i.e. control access network selection and traffic steering between E-UTRAN and WLAN.

5.6.16.2 WLAN traffic steering command

The UE shall:

1> if the received \textit{rclwi-Configuration} is set to \textit{setup}:

2> if the \textit{command} is set to \textit{steerToWLAN}:

3> inform the upper layers of a move-traffic-to-WLAN indication along with the WLAN identifier lists in \textit{steerToWLAN} (see TS 24.302 [74]);

3> store \textit{steerToWLAN} in \textit{wlan-MobilitySet} in \textit{VarWLAN-MobilityConfig};

3> perform the WLAN status monitoring procedure as specified in 5.6.15.4 using \textit{steerToWLAN} as the WLAN mobility set;
2> else:
 3> inform the upper layers of a move-traffic-from-WLAN indication (see TS 24.302 [74]);
 3> clear wlan-MobilitySet in VarWLAN-MobilityConfig;
 3> stop performing the WLAN status monitoring procedure as specified in 5.6.15.4;
 3> delete any existing values in VarWLAN-Status;
1> else (the rclwi-Configuration is released):
 2> clear wlan-MobilitySet in VarWLAN-MobilityConfig;
 2> stop performing the WLAN status monitoring procedure as specified in 5.6.15.4;
 2> delete any existing values in VarWLAN-Status;
 2> inform the upper layers of release of the rclwi-Configuration.

5.6.17 LTE-WLAN aggregation with IPsec tunnel

5.6.17.1 General

The WLAN resources that are used over the LWIP tunnel as described in TS 36.300 [9] established as part of LWIP procedures are referred to as 'LWIP resources'. The purpose of this section is to specify procedures to indicate to higher layers to initiate the establishment/ release of the LWIP tunnel over WLAN and to indicate which DRB(s) shall use the LWIP resources.

5.6.17.2 LWIP reconfiguration

The UE shall:

1> if the received lwip-Configuration is set to release:
 2> release the LWIP configuration, if configured, as described in 5.6.17.3;
1> else:
 2> if lwip-MobilityConfig is included:
 3> if the received lwip-MobilityConfig includes wlan-ToReleaseList:
 4> for each WLAN-Identifiers included in wlan-ToReleaseList:
 5> remove the WLAN-Identifiers if already part of the current wlan-MobilitySet in VarWLAN-MobilityConfig;
 3> if the received lwip-MobilityConfig includes wlan-ToAddList:
 4> for each WLAN-Identifiers included in wlan-ToAddList:
 5> add the WLAN-Identifiers to the current wlan-MobilitySet in VarWLAN-MobilityConfig;
 3> if the received lwip-MobilityConfig includes associationTimer:
 4> start timer T351 with the timer value set according to the value of associationTimer;
 3> if the received lwip-MobilityConfig includes successReportRequested:
 4> set successReportRequested in VarWLAN-MobilityConfig to the value of successReportRequested;
 2> if tunnelConfigLWIP is included:
 3> indicate to higher layers to configure the LWIP tunnel according to the received tunnelConfigLWIP [32];
if lwip-Counter is included:

1> determine the LWIP-PSK based on the K_{eNB} key and received lwip-Counter value, as specified in TS 33.401 [32];

2> forward the LWIP-PSK to upper layers for LWIP tunnel establishment;

start WLAN Status Monitoring as described in 5.6.15.4;

5.6.17.3 LWIP release

The UE shall:

1> delete any existing values in VarWLAN-MobilityConfig and VarWLAN-Status;

2> stop timer T351, if running;

3> release the lwip-Configuration;

4> indicate to higher layers to stop all DRBs from using the LWIP resources;

5> indicate to higher layers to release the LWIP tunnel [32];

6> stop WLAN status monitoring and WLAN connection attempts for LWIP;

5.6.18 Void

5.7 Generic error handling

5.7.1 General

The generic error handling defined in the subsequent sub-clauses applies unless explicitly specified otherwise e.g. within the procedure specific error handling.

The UE shall consider a value as not comprehended when it is set:

- to an extended value that is not defined in the version of the transfer syntax supported by the UE.
- to a spare or reserved value unless the specification defines specific behaviour that the UE shall apply upon receiving the concerned spare/ reserved value.

The UE shall consider a field as not comprehended when it is defined:

- as spare or reserved unless the specification defines specific behaviour that the UE shall apply upon receiving the concerned spare/ reserved field.

5.7.2 ASN.1 violation or encoding error

The UE shall:

1> when receiving an RRC message on the BCCH, BR-BCCH, PCCH, CCCH, MCCH, SC-MCCH or SBCCH for which the abstract syntax is invalid [13]:

2> ignore the message;

NOTE: This section applies in case one or more fields is set to a value, other than a spare, reserved or extended value, not defined in this version of the transfer syntax. E.g. in the case the UE receives value 12 for a field defined as INTEGER (1..11). In cases like this, it may not be possible to reliably detect which field is in the error hence the error handling is at the message level.
5.7.3 Field set to a not comprehended value

The UE shall, when receiving an RRC message on any logical channel:

1. if the message includes a field that has a value that the UE does not comprehend:
 2. if a default value is defined for this field:
 3. treat the message while using the default value defined for this field;
 2. else if the concerned field is optional:
 3. treat the message as if the field were absent and in accordance with the need code for absence of the concerned field;
 2. else:
 3. treat the message as if the field were absent and in accordance with sub-clause 5.7.4;

5.7.4 Mandatory field missing

The UE shall:

1. if the message includes a field that is mandatory to include in the message (e.g. because conditions for mandatory presence are fulfilled) and that field is absent or treated as absent:
 2. if the RRC message was received on DCCH or CCCH:
 3. ignore the message;
 2. else:
 3. if the field concerns a (sub-field of) an entry of a list (i.e. a SEQUENCE OF):
 4. treat the list as if the entry including the missing or not comprehended field was not present;
 3. else if the field concerns a sub-field of another field, referred to as the 'parent' field i.e. the field that is one nesting level up compared to the erroneous field:
 4. consider the 'parent' field to be set to a not comprehended value;
 4. apply the generic error handling to the subsequent 'parent' field(s), until reaching the top nesting level i.e. the message level;
 3. else (field at message level):
 4. ignore the message;

NOTE 1: The error handling defined in these sub-clauses implies that the UE ignores a message with the message type or version set to a not comprehended value.

NOTE 2: The nested error handling for messages received on logical channels other than DCCH and CCCH applies for errors in extensions also, even for errors that can be regarded as invalid E-UTRAN operation e.g. E-UTRAN not observing conditional presence.

The following ASN.1 further clarifies the levels applicable in case of nested error handling for errors in extension fields.

--- /example/ ASN1START
--- Example with extension addition group

ItemInfoList ::= SEQUENCE (SIZE (1..max)) OF ItemInfo

ItemInfo ::= SEQUENCE {
 itemIdentity INTEGER (1..max),
 field1 Field1,
 field2 Field2 OPTIONAL, -- Need ON
}
The UE shall, apply the following principles regarding the levels applicable in case of nested error handling:

- an extension addition group is not regarded as a level on its own. E.g. in the ASN.1 extract in the previous, a error regarding the conditionality of field3 would result in the entire itemInfo entry to be ignored (rather than just the extension addition group containing field3 and field4)

- a traditional nonCriticalExtension is not regarded as a level on its own. E.g. in the ASN.1 extract in the previous, a error regarding the conditionality of field3 would result in the entire BroadcastInfoBlock1 to be ignored (rather than just the non critical extension containing field3 and field4).

5.7.5 Not comprehended field

The UE shall, when receiving an RRC message on any logical channel:

1> if the message includes a field that the UE does not comprehend:

2> treat the rest of the message as if the field was absent;

NOTE: This section does not apply to the case of an extension to the value range of a field. Such cases are addressed instead by the requirements in section 5.7.3.

5.8 MBMS

5.8.1 Introduction

5.8.1.1 General

In general the control information relevant only for UEs supporting MBMS is separated as much as possible from unicast control information. Most of the MBMS control information is provided on a logical channel specific for MBMS common control information: the MCCH. E-UTRA employs one MCCH logical channel per MBSFN area. In case the network configures multiple MBSFN areas, the UE acquires the MBMS control information from the MCCHs that are configured to identify if services it is interested to receive are ongoing. The action applicable when the UE is unable to simultaneously receive MBMS and unicast services is up to UE implementation. In this release of the specification, an MBMS capable UE is only required to support reception of a single MBMS service at a time, and reception of more than one MBMS service (also possibly on more than one MBSFN area) in parallel is left for UE implementation. The MCCH carries the MBSFNAreaConfiguration message, which indicates the MBMS sessions that are ongoing as well as the (corresponding) radio resource configuration. The MCCH may also carry the MBMSCountingRequest message, when E-UTRAN wishes to count the number of UEs in RRC_CONNECTED that are receiving or interested to receive one or more specific MBMS services.
A limited amount of MBMS control information is provided on the BCCH. This primarily concerns the information needed to acquire the MCCH(s). This information is carried by means of a single MBMS specific SystemInformationBlock: SystemInformationBlockType13. An MBSFN area is identified solely by the mbsfn-AreaId in SystemInformationBlockType13. At mobility, the UE considers that the MBSFN area is continuous when the source cell and the target cell broadcast the same value in the mbsfn-AreaId.

5.8.1.2 Scheduling

The MCCH information is transmitted periodically, using a configurable repetition period. Scheduling information is not provided for MCCH i.e. both the time domain scheduling as well as the lower layer configuration are semi-statically configured, as defined within SystemInformationBlockType13.

For MBMS user data, which is carried by the MTCH logical channel, E-UTRAN periodically provides MCH scheduling information (MSI) at lower layers (MAC). This MCH information only concerns the time domain scheduling i.e. the frequency domain scheduling and the lower layer configuration are semi-statically configured. The periodicity of the MSI is configurable and defined by the MCH scheduling period.

5.8.1.3 MCCH information validity and notification of changes

Change of MCCH information only occurs at specific radio frames, i.e. the concept of a modification period is used. Within a modification period, the same MCCH information may be transmitted a number of times, as defined by its scheduling (which is based on a repetition period). The modification period boundaries are defined by SFN values for which SFN mod m = 0, where m is the number of radio frames comprising the modification period. The modification period is configured by means of SystemInformationBlockType13.

When the network changes (some of) the MCCH information, it notifies the UEs about the change during a first modification period. In the next modification period, the network transmits the updated MCCH information. These general principles are illustrated in figure 5.8.1.3-1, in which different colours indicate different MCCH information. Upon receiving a change notification, a UE interested to receive MBMS services acquires the new MCCH information immediately from the start of the next modification period. The UE applies the previously acquired MCCH information until the UE acquires the new MCCH information.

![Figure 5.8.1.3-1: Change of MCCH Information](image)

Indication of an MBMS specific RNTI, the M-RNTI (see TS 36.321 [6]), on PDCCH is used to inform UEs in RRC_IDLE and UEs in RRC_CONNECTED about an MCCH information change. When receiving an MCCH information change notification, the UE knows that the MCCH information will change at the next modification period boundary. The notification on PDCCH indicates which of the MCCHs will change, which is done by means of an 8-bit bitmap. Within this bitmap, the bit at the position indicated by the field notificationIndicator is used to indicate changes for that MBSFN area: if the bit is set to "1", the corresponding MCCH will change. No further details are provided e.g. regarding which MCCH information will change. The MCCH information change notification is used to inform the UE about a change of MCCH information upon session start or about the start of MBMS counting.

The MCCH information change notifications on PDCCH are transmitted periodically and are carried on MBSFN subframes only except on MBMS-dedicated cell or FeMBMS/Unicast-mixed cell where the MCCH information change is provided on non-MBSFN subframes. These MCCH information change notification occasions are common for all MCCHs that are configured, and configurable by parameters included in SystemInformationBlockType13: a repetition coefficient, a radio frame offset and a subframe index. These common notification occasions are based on the MCCH with the shortest modification period.
NOTE 1: E-UTRAN may modify the MBMS configuration information provided on MCCH at the same time as updating the MBMS configuration information carried on BCCH i.e. at a coinciding BCCH and MCCH modification period. Upon detecting that a new MCCH is configured on BCCH, a UE interested to receive one or more MBMS services should acquire the MCCH, unless it knows that the services it is interested in are not provided by the corresponding MBSFN area.

A UE that is receiving an MBMS service via MRB shall acquire the MCCH information from the start of each modification period. A UE interested to receive MBMS from a carrier on which \textit{dl-Bandwidth} included in \textit{MasterInformationBlock} is set to n6 shall acquire the MCCH information at least once every MCCH modification period. A UE that is not receiving an MBMS service via MRB, as well as UEs that are receiving an MBMS service via MRB but potentially interested to receive other services not started yet in another MBSFN area from a carrier on which \textit{dl-Bandwidth} included in \textit{MasterInformationBlock} is other than n6, shall verify that the stored MCCH information remains valid by attempting to find the MCCH information change notification at least \textit{notificationRepetitionCoeff} times during the modification period of the applicable MCCH(s), if no MCCH information change notification is received.

NOTE 2: In case the UE is aware which MCCH(s) E-UTRAN uses for the service(s) it is interested to receive, the UE may only need to monitor change notifications for a subset of the MCCHs that are configured, referred to as the 'applicable MCCH(s)' in the above.

5.8.2 MCCH information acquisition

5.8.2.1 General

The UE applies the MCCH information acquisition procedure to acquire the MBMS control information that is broadcasted by the E-UTRAN. The procedure applies to MBMS capable UEs that are in RRC_IDLE or in RRC_CONNECTED.

5.8.2.2 Initiation

A UE interested to receive MBMS services shall apply the MCCH information acquisition procedure upon entering the corresponding MBSFN area (e.g. upon power on, following UE mobility) and upon receiving a notification that the MCCH information has changed. A UE that is receiving an MBMS service shall apply the MCCH information acquisition procedure to acquire the MCCH, that corresponds with the service that is being received, at the start of each modification period.

Unless explicitly stated otherwise in the procedural specification, the MCCH information acquisition procedure overwrites any stored MCCH information, i.e. delta configuration is not applicable for MCCH information and the UE discontinues using a field if it is absent in MCCH information unless explicitly specified otherwise.

5.8.2.3 MCCH information acquisition by the UE

An MBMS capable UE shall:

1> if the procedure is triggered by an MCCH information change notification:

2> start acquiring the \textit{MBSFNAreaConfiguration} message and the \textit{MBMSCountingRequest} message if present, from the beginning of the modification period following the one in which the change notification was received;
NOTE 1: The UE continues using the previously received MCCH information until the new MCCH information has been acquired.

1> if the UE enters an MBSFN area:

2> acquire the *MBSFNAreaConfiguration* message and the *MBMSCountingRequest* message if present, at the next repetition period;

1> if the UE is receiving an MBMS service:

2> start acquiring the *MBSFNAreaConfiguration* message and the *MBMSCountingRequest* message if present, that both concern the MBSFN area of the service that is being received, from the beginning of each modification period;

5.8.2.4 Actions upon reception of the *MBSFNAreaConfiguration* message

No UE requirements related to the contents of this *MBSFNAreaConfiguration* apply other than those specified elsewhere e.g. within procedures using the concerned system information, the corresponding field descriptions.

5.8.2.5 Actions upon reception of the *MBMSCountingRequest* message

Upon receiving *MBMSCountingRequest* message, the UE shall perform the MBMS Counting procedure as specified in 5.8.4.

5.8.3 MBMS PTM radio bearer configuration

5.8.3.1 General

The MBMS PTM radio bearer configuration procedure is used by the UE to configure RLC, MAC and the physical layer upon starting and/or stopping to receive an MRB. The procedure applies to UEs interested to receive one or more MBMS services.

NOTE: In case the UE is unable to receive an MBMS service due to capability limitations, upper layers may take appropriate action e.g. terminate a lower priority unicast service.

5.8.3.2 Initiation

The UE applies the MRB establishment procedure to start receiving a session of a service it has an interest in. The procedure may be initiated e.g. upon start of the MBMS session, upon (re-)entry of the corresponding MBSFN service area, upon becoming interested in the MBMS service, upon removal of UE capability limitations inhibiting reception of the concerned service.

The UE applies the MRB release procedure to stop receiving a session. The procedure may be initiated e.g. upon stop of the MBMS session, upon leaving the corresponding MBSFN service area, upon losing interest in the MBMS service, when capability limitations start inhibiting reception of the concerned service.

5.8.3.3 MRB establishment

Upon MRB establishment, the UE shall:

1> establish an RLC entity in accordance with the configuration specified in 9.1.1.4;

1> configure an MTCH logical channel in accordance with the received *logicalChannelIdentity*, applicable for the MRB, as included in the *MBSFNAreaConfiguration* message;

1> configure the physical layer in accordance with the *pmch-Config*, applicable for the MRB, as included in the *MBSFNAreaConfiguration* message;

1> inform upper layers about the establishment of the MRB by indicating the corresponding *tmgi* and *sessionId*;
5.8.3.4 MRB release

Upon MRB release, the UE shall:

1> release the RLC entity as well as the related MAC and physical layer configuration;

1> inform upper layers about the release of the MRB by indicating the corresponding tmgi and sessionId;

5.8.4 MBMS Counting Procedure

5.8.4.1 General

![Figure 5.8.4.1-1: MBMS Counting procedure](image)

The MBMS Counting procedure is used by the E-UTRAN to count the number of RRC_CONNECTED mode UEs which are receiving via an MRB or interested to receive via an MRB the specified MBMS services.

The UE determines interest in an MBMS service, that is identified by the TMGI, by interaction with upper layers.

5.8.4.2 Initiation

E-UTRAN initiates the procedure by sending an MBMSCountingRequest message.

5.8.4.3 Reception of the MBMSCountingRequest message by the UE

Upon receiving the MBMSCountingRequest message, the UE in RRC_CONNECTED mode shall:

1> if the SystemInformationBlockType1, that provided the scheduling information for the SystemInformationBlockType13 that included the configuration of the MCCH via which the MBMSCountingRequest message was received, contained the identity of the Registered PLMN; and

1> if the UE is receiving via an MRB or interested to receive via an MRB at least one of the services in the received countingRequestList:

2> if more than one entry is included in the mbsfn-AreaInfoList received in the SystemInformationBlockType13 that included the configuration of the MCCH via which the MBMSCountingRequest message was received:

3> include the mbsfn-AreaIndex in the MBMSCountingResponse message and set it to the index of the entry in the mbsfn-AreaInfoList within the received SystemInformationBlockType13 that corresponds with the MBSFN area used to transfer the received MBMSCountingRequest message;

2> for each MBMS service included in the received countingRequestList:

3> if the UE is receiving via an MRB or interested to receive via an MRB this MBMS service:

4> include an entry in the countingResponseList within the MBMSCountingResponse message with countingResponseService set it to the index of the entry in the countingRequestList within the received
MBMSCountingRequest that corresponds with the MBMS service the UE is receiving or interested to receive;

2> submit the MBMSCountingResponse message to lower layers for transmission upon which the procedure ends;

NOTE 1: UEs that are receiving an MBMS User Service [56] by means of a Unicast Bearer Service [57] (i.e. via a DRB), but are interested to receive the concerned MBMS User Service [56] via an MBMS Bearer Service (i.e. via an MRB), respond to the counting request.

NOTE 2: If ciphering is used at upper layers, the UE does not respond to the counting request if it cannot decipher the MBMS service for which counting is performed (see TS 22.146 [62, 5.3]).

NOTE 3: The UE treats the MBMSCountingRequest messages received in each modification period independently. In the unlikely case E-UTRAN would repeat an MBMSCountingRequest (i.e. including the same services) in a subsequent modification period, the UE responds again. The UE provides at most one MBMSCountingResponse message to multiple transmission attempts of an MBMSCountingRequest messages in a given modification period.

5.8.5 MBMS interest indication

5.8.5.1 General

An MBMS or SC-PTM capable UE in RRC_CONNECTED may initiate the procedure in several cases including upon successful connection establishment, upon entering or leaving the service area, upon session start or stop, upon change of interest, upon change of priority between MBMS reception and unicast reception or upon change to a PCell broadcasting SystemInformationBlockType15.

Upon initiating the procedure, the UE shall:

1> if SystemInformationBlockType15 is broadcast by the PCell:

2> ensure having a valid version of SystemInformationBlockType15 for the PCell;

2> if the UE did not transmit an MBMSInterestIndication message since last entering RRC_CONNECTED state; or

2> if since the last time the UE transmitted an MBMSInterestIndication message, the UE connected to a PCell not broadcasting SystemInformationBlockType15:

3> if the set of MBMS frequencies of interest, determined in accordance with 5.8.5.3, is not empty:

4> initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;
if the set of MBMS frequencies of interest, determined in accordance with 5.8.5.3, has changed since the last transmission of the MBMSInterestIndication message; or

if the prioritisation of reception of all indicated MBMS frequencies compared to reception of any of the established unicast bearers has changed since the last transmission of the MBMSInterestIndication message:

initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;

NOTE: The UE may send an MBMSInterestIndication even when it is able to receive the MBMS services it is interested in i.e. to avoid that the network allocates a configuration inhibiting MBMS reception.

else if SystemInformationBlockType20 is broadcast by the PCell:

if since the last time the UE transmitted an MBMSInterestIndication message, the UE connected to a PCell not broadcasting SystemInformationBlockType20; or

if the set of MBMS services of interest determined in accordance with 5.8.5.3a is different from mbms-Services included in the last transmission of the MBMSInterestIndication message;

initiate the transmission of the MBMSInterestIndication message in accordance with 5.8.5.4.

5.8.5.3 Determine MBMS frequencies of interest

The UE shall:

1> consider a frequency to be part of the MBMS frequencies of interest if the following conditions are met:

2> at least one MBMS session the UE is receiving or interested to receive via an MRB or SC-MRB is ongoing or about to start; and

NOTE 1: The UE may determine whether the session is ongoing from the start and stop time indicated in the User Service Description (USD), see 3GPP TS 36.300 [9] or 3GPP TS 26.346 [57].

2> for at least one of these MBMS sessions SystemInformationBlockType15 acquired from the PCell includes for the concerned frequency one or more MBMS SAIs as indicated in the USD for this session; and

NOTE 2: The UE considers a frequency to be part of the MBMS frequencies of interest even though E-UTRAN may (temporarily) not employ an MRB or SC-MRB for the concerned session. I.e. the UE does not verify if the session is indicated on (SC-)MCCH

NOTE 3: The UE considers the frequencies of interest independently of any synchronization state, e.g. [9, Annex J.1]

2> the UE is capable of simultaneously receiving MRBs and/or is capable of simultaneously receiving SC-MRBs on the set of MBMS frequencies of interest, regardless of whether a serving cell is configured on each of these frequencies or not; and

2> the supportedBandCombination the UE included in UE-EUTRA-Capability contains at least one band combination including the set of MBMS frequencies of interest;

NOTE 4: Indicating a frequency implies that the UE supports SystemInformationBlockType13 or SystemInformationBlockType20 acquisition for the concerned frequency i.e. the indication should be independent of whether a serving cell is configured on that frequency.

NOTE 5: When evaluating which frequencies it can receive simultaneously, the UE does not take into account the serving frequencies that are currently configured i.e. it only considers MBMS frequencies it is interested to receive.
NOTE 6: The set of MBMS frequencies of interest includes at most one frequency for a given physical frequency. The UE only considers a physical frequency to be part of the MBMS frequencies of interest if it supports at least one of the bands indicated for this physical frequency in SystemInformationBlockType1 (for serving frequency) or SystemInformationBlockType15 (for neighbouring frequencies). In this case, E-UTRAN may assume the UE supports MBMS reception on any of the bands supported by the UE (i.e. according to supportedBandCombination).

5.8.5.3a Determine MBMS services of interest

The UE shall:

1. consider a MBMS service to be part of the MBMS services of interest if the following conditions are met:

 2. the UE is SC-PTM capable; and
 3. the UE is receiving or interested to receive this service via an SC-MRB; and
 4. one session of this service is ongoing or about to start; and
 5. one or more MBMS SAIs in the USD for this service is included in SystemInformationBlockType15 acquired from the PCell for a frequency belonging to the set of MBMS frequencies of interest, determined according to 5.8.5.3.

5.8.5.4 Actions related to transmission of MBMSInterestIndication message

The UE shall set the contents of the MBMSInterestIndication message as follows:

1. if the set of MBMS frequencies of interest, determined in accordance with 5.8.5.3, is not empty:

 2. include mbms-FreqList and set it to include the MBMS frequencies of interest sorted by decreasing order of interest, using the EARFCN corresponding with freqBandIndicator included in SystemInformationBlockType1 (for serving frequency), if applicable, and the EARFCN(s) as included in SystemInformationBlockType15 (for neighbouring frequencies);

 NOTE 1: The EARFCN included in mbms-FreqList is merely used to indicate a physical frequency the UE is interested to receive i.e. the UE may not support the band corresponding to the included EARFCN (but it does support at least one of the bands indicated in system information for the concerned physical frequency).

 2. include mbms-Priority if the UE prioritises reception of all indicated MBMS frequencies above reception of any of the unicast bearers;

 3. if SystemInformationBlockType20 is broadcast by the PCell:

 3. include mbms-Services and set it to indicate the set of MBMS services of interest determined in accordance with 5.8.5.3a;

 NOTE 2: If the UE prioritises MBMS reception and unicast data cannot be supported because of congestion on the MBMS carrier(s), E-UTRAN may initiate release of unicast bearers. It is up to E-UTRAN implementation whether all bearers or only GBR bearers are released. E-UTRAN does not initiate re-establishment of the released unicast bearers upon alleviation of the congestion.

The UE shall submit the MBMSInterestIndication message to lower layers for transmission.

5.8a SC-PTM

5.8a.1 Introduction

5.8a.1.1 General

SC-PTM control information is provided on a specific logical channel: the SC-MCCH. The SC-MCCH carries the SCPTMConfiguration message which indicates the MBMS sessions that are ongoing as well as the (corresponding)
information on when each session may be scheduled, i.e. scheduling period, scheduling window and start offset. The SCPTMConfiguration message also provides information about the neighbour cells transmitting the MBMS sessions which are ongoing on the current cell. In this release of the specification, an SC-PTM capable UE is only required to support reception of a single MBMS service at a time, and reception of more than one MBMS service in parallel is left for UE implementation.

A limited amount of SC-PTM control information is provided on the BCCH or BR-BCCH. This primarily concerns the information needed to acquire the SC-MCCH.

NOTE: For BL UEs and UEs in CE, SC-MCCH transmission uses a 1.4 MHz channel bandwidth and a maximum TBS of 936 bits, see TS 36.213 [23]. For NB-IoT UEs, the maximum TBS for SC-MCCH transmission is 680 bits, see TS 36.213 [23].

5.8a.1.2 SC-MCCH scheduling

The SC-MCCH information (i.e. information transmitted in messages sent over SC-MCCH) is transmitted periodically, using a configurable repetition period. SC-MCCH transmissions (and the associated radio resources and MCS) are indicated on PDCCH.

5.8a.1.3 SC-MCCH information validity and notification of changes

Change of SC-MCCH information only occurs at specific radio frames, i.e. the concept of a modification period is used. Within a modification period, the same SC-MCCH information may be transmitted a number of times, as defined by its scheduling (which is based on a repetition period). The modification period boundaries are defined by SFN values for which SFN mod m = 0, where m is the number of radio frames comprising the modification period. The modification period is configured by means of SystemInformationBlockType20 (SystemInformationBlockType20-NB in NB-IoT). If H-SFN is provided in SystemInformationBlockType1-BR, modification period boundaries for BL UEs or UEs in CE are defined by SFN values for which (H-SFN * 1024 + SFN) mod m = 0. The modification period boundaries for NB-IoT UEs are defined by SFN values for which (H-SFN * 1024 + SFN) mod m = 0.

When the network changes (some of) the SC-MCCH information, it notifies the UEs, other than BL UEs, UEs in CE or NB-IoT UEs, about the change in the first subframe which can be used for SC-MCCH transmission in a repetition period. LSB bit in 8-bit bitmap when set to ‘1’ indicates the change in SC-MCCH. Upon receiving a change notification, a UE interested to receive MBMS services transmitted using SC-PTM acquires the new SC-MCCH information starting from the same subframe. The UE applies the previously acquired SC-MCCH information until the UE acquires the new SC-MCCH information.

When the network changes (some of) the SC-MCCH information for start of new MBMS service(s) transmitted using SC-PTM, it notifies BL UEs, UEs in CE or NB-IoT UEs about the change in every PDCCH which schedules the first SC-MCCH in a repetition period in the current modification period. The notification is transmitted with 1 bit. The bit, when set to ‘1’, indicates the start of new MBMS service(s), see TS 36.212 [22, 5.3.3.1.14 & 6.4.3.3]. Upon receiving a change notification, a BL UE, UE in CE or NB-IoT UE interested to receive MBMS services transmitted using SC-PTM acquires the new SC-MCCH information scheduled by the PDCCH. The BL UE, UE in CE or NB-IoT UE applies the previously acquired SC-MCCH information until the UE acquires the new SC-MCCH information.

When the network changes SC-MTCH specific information e.g. start of new MBMS service(s) transmitted using SC-PTM or change of ongoing MBMS service(s) transmitted using SC-PTM, it notifies the BL UEs, UEs in CE or NB-IoT UEs in the PDCCH which schedules the SC-MTCH in the current modification period. The notification is transmitted with a 2 bit bitmap. The LSB in the 2-bit bitmap, when set to ‘1’, indicates the change of the on-going MBMS service and the MSB in the 2-bit bitmap, when set to ‘1’, indicates the start of new MBMS service(s), see TS 36.212 [22, 5.3.3.1.12 & 5.3.3.1.13 & 6.4.3.2]. In the case the network changes an on-going SC-MTCH transmission in the next modification period, it notifies the BL UEs, UEs in CE or NB-IoT UEs in the PDCCH which schedules this SC-MTCH in the current modification period. In the case the network starts new MBMS service(s) transmitted using SC-PTM, the network notifies the UEs which have on-going SC-MTCH in the PDCCH scheduling each of the SC-MTCH. Upon receiving such notification, a BL UE, UE in CE or NB-IoT UE acquires the new SC-MCCH information at the start of the next modification period. The BL UE, UE in CE or NB-IoT UE applies the previously acquired SC-MCCH information until the BL UE, UE in CE or NB-IoT UE acquires the new SC-MCCH information.
5.8a.1.4 Procedures

The SC-PTM capable UE receiving or interested to receive MBMS service(s) via SC-MRB applies SC-PTM procedures described in 5.8a and, except for NB-IoT UE, the MBMS interest indication procedure as specified in 5.8.5.

5.8a.2 SC-MCCH information acquisition

5.8a.2.1 General

The UE applies the SC-MCCH information acquisition procedure to acquire the SC-PTM control information that is broadcast by the E-UTRAN. The procedure applies to SC-PTM capable UEs that are in RRC_IDLE. This procedure also applies to SC-PTM capable UEs that are in RRC_CONNECTED except for BL UEs, UEs in CE or NB-IoT UEs.

5.8a.2.2 Initiation

A UE interested to receive MBMS services via SC-MRB shall apply the SC-MCCH information acquisition procedure upon entering the cell broadcasting SystemInformationBlockType20 (SystemInformationBlockType20-NB in NB-IoT) (e.g. upon power on, following UE mobility) and upon receiving a notification that the SC-MCCH information has changed. A UE, except for BL UE, UE in CE or NB-IoT UE, that is receiving an MBMS service via SC-MRB shall apply the SC-MCCH information acquisition procedure to acquire the SC-MCCH information that corresponds with the service that is being received, at the start of each modification period. The BL UE, UE in CE or NB-IoT UE that is receiving an MBMS service via SC-MRB shall apply the SC-MCCH information acquisition procedure upon receiving a notification that the SC-MCCH information that corresponds with the service that is being received is about to be changed. The BL UE, UE in CE or NB-IoT UE that is receiving an MBMS service via SC-MRB may apply the SC-MCCH information acquisition procedure upon receiving a notification that the SC-MCCH information is about to be changed due to start of a new service.

Unless explicitly stated otherwise in the procedural specification, the SC-MCCH information acquisition procedure overwrites any stored SC-MCCH information, i.e. delta configuration is not applicable for SC-MCCH information and the UE discontinues using a field if it is absent in SC-MCCH information unless explicitly specified otherwise.

5.8a.2.3 SC-MCCH information acquisition by the UE

A SC-PTM capable UE shall:

1> if the procedure is triggered by an SC-MCCH information change notification and the UE has no ongoing MBMS service:

2> except for a BL UE, UE in CE or NB-IoT UE, start acquiring the SCPTMConfiguration message from the subframe in which the change notification was received;

2> for a BL UE, UE in CE or NB-IoT UE, acquire the SCPTMConfiguration message scheduled by the PDCCH in which the change notification was received;

NOTE 1: The UE continues using the previously received SC-MCCH information until the new SC-MCCH information has been acquired.

1> if the UE enters a cell broadcasting SystemInformationBlockType20 (SystemInformationBlockType20-NB in NB-IoT):
2> acquire the \textit{SCPTMConfiguration} message at the next repetition period;

1> if the UE is receiving an MBMS service via an SC-MRB:

2> except for BL UE, UE in CE or NB-IoT UE, start acquiring the \textit{SCPTMConfiguration} message from the beginning of each modification period;

2> a BL UE, UE in CE or NB-IoT UE shall start acquiring the \textit{SCPTMConfiguration} message at the start of the next modification period upon receiving a notification that the SC-MCCH information that corresponds with the service that is being received is about to be changed;

2> a BL UE, UE in CE or NB-IoT UE may start acquiring the \textit{SCPTMConfiguration} message at the start of the next modification period upon receiving a notification that the SC-MCCH information is about to be changed due to start of a new service;

\textbf{5.8a.2.4 Actions upon reception of the \textit{SCPTMConfiguration} message}

No UE requirements related to the contents of this \textit{SCPTMConfiguration} apply other than those specified elsewhere e.g. within procedures using the concerned system information, the corresponding field descriptions.

\textbf{5.8a.3 SC-PTM radio bearer configuration}

\textbf{5.8a.3.1 General}

The SC-PTM radio bearer configuration procedure is used by the UE to configure RLC, MAC and the physical layer upon starting and/or stopping to receive an SC-MRB transmitted on SC-MTCH. The procedure applies to SC-PTM capable UEs that are in RRC_IDLE and to SC-PTM capable UEs that are not BL UEs, UEs in CE or NB-IoT UEs in RRC_CONNECTED, and are interested to receive one or more MBMS services via SC-MRB.

\textbf{NOTE:} In case the UE is unable to receive an MBMS service via an SC-MRB due to capability limitations, upper layers may take appropriate action e.g. terminate a lower priority unicast service.

\textbf{5.8a.3.2 Initiation}

The UE applies the SC-MRB establishment procedure to start receiving a session of a MBMS service it has an interest in. The procedure may be initiated e.g. upon start of the MBMS session, upon entering a cell providing via SC-MRB a MBMS service in which the UE has interest, upon becoming interested in the MBMS service, upon removal of UE capability limitations inhibiting reception of the concerned service.

The UE applies the SC-MRB release procedure to stop receiving a session. The procedure may be initiated e.g. upon stop of the MBMS session, upon leaving the cell where a SC-MRB is established, upon losing interest in the MBMS service, when capability limitations start inhibiting reception of the concerned service.

\textbf{5.8a.3.3 SC-MRB establishment}

Upon SC-MRB establishment, the UE shall:

\textbf{1>} establish an RLC entity in accordance with the configuration specified in 9.1.1.7;

\textbf{1>} configure a SC-MTCH logical channel applicable for the SC-MRB and instruct MAC to receive DL-SCH on the cell where the \textit{SCPTMConfiguration} message was received for the MBMS service for which the SC-MRB is established and using g-RNTI and sc-mtch-SchedulingInfo (if included) in this message for this MBMS service;

\textbf{1>} configure the physical layer in accordance with the \textit{sc-mtch-InfoList}, applicable for the SC-MRB, as included in the \textit{SCPTMConfiguration} message;

\textbf{1>} inform upper layers about the establishment of the SC-MRB by indicating the corresponding tmgi and sessionId;

\textbf{5.8a.3.4 SC-MRB release}

Upon SC-MRB release, the UE shall:
1> release the RLC entity as well as the related MAC and physical layer configuration;
1> inform upper layers about the release of the SC-MRB by indicating the corresponding *tmgi* and *sessionId*;

5.9 RN procedures

5.9.1 RN reconfiguration

5.9.1.1 General

The purpose of this procedure is to configure/reconfigure the RN subframe configuration and/or to update the system information relevant for the RN in RRC_CONNECTED.

5.9.1.2 Initiation

E-UTRAN may initiate the RN reconfiguration procedure to an RN in RRC_CONNECTED when AS security has been activated.

5.9.1.3 Reception of the *RNReconfiguration* by the RN

The RN shall:

1> if the *rn-SystemInfo* is included:

2> if the *systemInformationBlockType1* is included:

3> act upon the received *SystemInformationBlockType1* as specified in 5.2.2.7;

2> if the *SystemInformationBlockType2* is included:

3> act upon the received *SystemInformationBlockType2* as specified in 5.2.2.9;

1> if the *rn-SubframeConfig* is included:

2> reconfigure lower layers in accordance with the received *subframeConfigPatternFDD* or *subframeConfigPatternTDD*;

2> if the *rpdcch-Config* is included:

3> reconfigure lower layers in accordance with the received *rpdcch-Config*;

1> submit the *RNReconfigurationComplete* message to lower layers for transmission, upon which the procedure ends;
5.10 Sidelink

5.10.1 Introduction

The sidelink communication and associated synchronisation resource configuration applies for the frequency at which it was received/acquired. Moreover, for a UE configured with one or more SCells, the sidelink communication and associated synchronisation resource configuration provided by dedicated signalling applies for the PCell/ the primary frequency. The sidelink discovery and associated synchronisation resource configuration applies for the frequency at which it was received/acquired or the indicated frequency in the configuration. For a UE configured with one or more SCells, the sidelink discovery and associated synchronisation resource configuration provided by dedicated signalling applies for the PCell/ the primary frequency / any other indicated frequency.

NOTE 1: Upper layers configure the UE to receive or transmit sidelink communication on a specific frequency, to monitor or transmit non-PS related sidelink discovery announcements on one or more frequencies or to monitor or transmit PS related sidelink discovery announcements on a specific frequency, but only if the UE is authorised to perform these particular ProSe related sidelink activities.

NOTE 2: It is up to UE implementation which actions to take (e.g. termination of unicast services, detach) when it is unable to perform the desired sidelink activities, e.g. due to UE capability limitations.

Sidelink communication consists of one-to-many and one-to-one sidelink communication. One-to-many sidelink communication consists of relay related and non-relay related one-to-many sidelink communication. One-to-one sidelink communication consists of relay related and non-relay related one-to-one sidelink communication. In relay related one-to-one sidelink communication the communicating parties consist of one sidelink relay UE and one sidelink remote UE.

Sidelink discovery consists of public safety related (PS related) and non-PS related sidelink discovery. PS related sidelink discovery consists of relay related and non-relay related PS related sidelink discovery. Upper layers indicate to RRC whether a particular sidelink announcement is PS related or non-PS related.

Upper layers indicate to RRC whether a particular sidelink procedure is V2X related or not.

The specification covers the use of UE to network sidelink relays by specifying the additional requirements that apply for a sidelink relay UE and a sidelink remote UE. I.e. for such UEs the regular sidelink UE requirements equally apply unless explicitly stated otherwise.

5.10.1a Conditions for sidelink communication operation

When it is specified that the UE shall perform sidelink communication operation only if the conditions defined in this section are met, the UE shall perform sidelink communication operation only if:

1> if the UE’s serving cell is suitable (RRC_IDLE or RRC_CONNECTED); and if either the selected cell on the frequency used for sidelink communication operation belongs to the registered or equivalent PLMN as specified in TS 24.334 [69] or the UE is out of coverage on the frequency used for sidelink communication operation as defined in TS 36.304 [4, 11.4]; or

1> if the UE is camped on a serving cell (RRC_IDLE) on which it fulfils the conditions to support sidelink communication in limited service state as specified in TS 23.303 [68, 4.5.6]; and if either the serving cell is on the frequency used for sidelink communication operation or the UE is out of coverage on the frequency used for sidelink communication operation as defined in TS 36.304 [4, 11.4]; or

1> if the UE has no serving cell (RRC_IDLE);

5.10.1b Conditions for PS related sidelink discovery operation

When it is specified that the UE shall perform PS related sidelink discovery operation only if the conditions defined in this section are met, the UE shall perform PS related sidelink discovery operation only if:

1> if the UE’s serving cell is suitable (RRC_IDLE or RRC_CONNECTED); and if either the selected cell on the frequency used for PS related sidelink discovery operation belongs to the registered or other PLMN as specified in TS 24.334 [69] or the UE is out of coverage on the frequency used for PS related sidelink discovery operation as defined in TS 36.304 [4, 11.4]; or
1> if the UE is camped on a serving cell (RRC_IDLE) on which it fulfills the conditions to support sidelink discovery in limited service state as specified in TS 23.303 [68, 4.5.6]; and if either the serving cell is on the frequency used for PS related sidelink discovery operation or the UE is out of coverage on the frequency used for PS related sidelink discovery operation as defined in TS 36.304 [4, 11.4]; or

1> if the UE has no serving cell (RRC_IDLE);

5.10.1c Conditions for non-PS related sidelink discovery operation

When it is specified that the UE shall perform non-PS related sidelink discovery operation only if the conditions defined in this section are met, the UE shall perform non-PS related sidelink discovery operation only if:

1> if the UE's serving cell (RRC_IDLE) or PCell (RRC_CONNECTED) is suitable; and if the selected cell on the frequency used for non-PS related sidelink discovery operation belongs to the registered or other PLMN as specified in TS 24.334 [69].

5.10.1d Conditions for V2X sidelink communication operation

When it is specified that the UE shall perform V2X sidelink communication operation only if the conditions defined in this section are met, the UE shall perform V2X sidelink communication operation only if:

1> if the UE’s serving cell is suitable (RRC_IDLE or RRC_CONNECTED); and if either the selected cell on the frequency used for V2X sidelink communication operation belongs to the registered or equivalent PLMN as specified in TS 24.334 [69] or the UE is out of coverage on the frequency used for V2X sidelink communication operation as defined in TS 36.304 [4, 11.4]; or

1> if the UE’s serving cell (for RRC_IDLE or RRC_CONNECTED) fulfills the conditions to support V2X sidelink communication in limited service state as specified in TS 23.285 [78, 4.4.8]; and if either the serving cell is on the frequency used for V2X sidelink communication operation or the UE is out of coverage on the frequency used for V2X sidelink communication operation as defined in TS 36.304 [4, 11.4]; or

1> if the UE has no serving cell (RRC_IDLE);

5.10.2 Sidelink UE information

5.10.2.1 General

The purpose of this procedure is to inform E-UTRAN that the UE is interested or no longer interested to receive sidelink communication or discovery, to receive V2X sidelink communication, as well as to request assignment or release of transmission resources for sidelink communication or discovery announcements or V2X sidelink communication or sidelink discovery gaps, to report parameters related to sidelink discovery from system information of inter-frequency/PLMN cells and to report the synchronization reference used by the UE for V2X sidelink communication.
5.10.2.2 Initiation

A UE capable of sidelink communication or V2X sidelink communication or sidelink discovery that is in RRC_CONNECTED may initiate the procedure to indicate it is (interested in) receiving sidelink communication or V2X sidelink communication or sidelink discovery in several cases including upon successful connection establishment, upon change of interest, upon change to a PCell broadcasting SystemInformationBlockType18 or SystemInformationBlockType19 or SystemInformationBlockType21 including sl-V2X-ConfigCommon. A UE capable of sidelink communication or V2X sidelink communication or sidelink discovery may initiate the procedure to request assignment of dedicated resources for the concerned sidelink communication transmission or discovery announcements or V2X sidelink communication transmission or to request sidelink discovery gaps for sidelink discovery transmission or sidelink discovery reception and a UE capable of inter-frequency/PLMN sidelink discovery parameter reporting may initiate the procedure to report parameters related to sidelink discovery from system information of inter-frequency/PLMN cells.

NOTE 1: A UE in RRC_IDLE that is configured to transmit sidelink communication / V2X sidelink communication / sidelink discovery announcements, while SystemInformationBlockType18/ SystemInformationBlockType19/ SystemInformationBlockType21 including sl-V2X-ConfigCommon does not include the resources for transmission (in normal conditions), initiates connection establishment in accordance with 5.3.3.1a.

Upon initiating the procedure, the UE shall:

1> if SystemInformationBlockType18 is broadcast by the PCell:

2> ensure having a valid version of SystemInformationBlockType18 for the PCell;

2> if configured by upper layers to receive sidelink communication:

3> if the UE did not transmit a SidelinkUEInformation message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a SidelinkUEInformation message the UE connected to a PCell not broadcasting SystemInformationBlockType18; or

NOTE 2: After handover/re-establishment from a source PCell not broadcasting SystemInformationBlockType18 the UE repeats the same interest information that it provided previously as such a source PCell may not forward the interest information.

3> if the last transmission of the SidelinkUEInformation message did not include commRxInterestedFreq; or if the frequency configured by upper layers to receive sidelink communication on has changed since the last transmission of the SidelinkUEInformation message:

4> initiate transmission of the SidelinkUEInformation message to indicate the sidelink communication reception frequency of interest in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the SidelinkUEInformation message included commRxInterestedFreq:

4> initiate transmission of the SidelinkUEInformation message to indicate it is no longer interested in sidelink communication reception in accordance with 5.10.2.3;

2> if configured by upper layers to transmit non-relay related one-to-many sidelink communication:

3> if the UE did not transmit a SidelinkUEInformation message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a SidelinkUEInformation message the UE connected to a PCell not broadcasting SystemInformationBlockType18; or

3> if the last transmission of the SidelinkUEInformation message did not include commTxResourceReq; or if the information carried by the commTxResourceReq has changed since the last transmission of the SidelinkUEInformation message:

4> initiate transmission of the SidelinkUEInformation message to indicate the non-relay related one-to-many sidelink communication transmission resources required by the UE in accordance with 5.10.2.3;
else:

3> if the last transmission of the SidelinkUEInformation message included commTxResourceReq:

4> initiate transmission of the SidelinkUEInformation message to indicate it no longer requires non-relay related one-to-many sidelink communication transmission resources in accordance with 5.10.2.3;

2> if configured by upper layer to transmit relay related one-to-many sidelink communication:

3> if the UE did not transmit a SidelinkUEInformation message since entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a SidelinkUEInformation message the UE connected to a PCell not broadcasting SystemInformationBlockType18, connected to a PCell not broadcasting SystemInformationBlockType19 or broadcasting SystemInformationBlockType19 not including discConfigRelay; or

3> if the last transmission of SidelinkUEInformation message did not include commTxResourceReqRelay; or if the information carried by the commTxResourceReqRelay has changed since the last transmission of the SidelinkUEInformation message:

4> if the UE is acting as sidelink relay UE:

5> initiate transmission of the SidelinkUEInformation message to indicate the relay related one-to-many sidelink communication transmission resources required by the UE in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the SidelinkUEInformation message included commTxResourceReqRelay:

4> initiate transmission of the SidelinkUEInformation message to indicate it no longer requires relay related one-to-many sidelink communication transmission resources in accordance with 5.10.2.3;

2> if configured by upper layers to transmit non-relay related one-to-one sidelink communication:

3> if the UE did not transmit a SidelinkUEInformation message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a SidelinkUEInformation message the UE connected to a PCell not broadcasting SystemInformationBlockType18 or connected to a PCell broadcasting SystemInformationBlockType18 not including commTxResourceUC-ReqAllowed; or

3> if the last transmission of the SidelinkUEInformation message did not include commTxResourceReqUC; or if the information carried by the commTxResourceReqUC has changed since the last transmission of the SidelinkUEInformation message:

4> if commTxResourceUC-ReqAllowed is included in SystemInformationBlockType18:

5> initiate transmission of the SidelinkUEInformation message to indicate the non-relay related one-to-one sidelink communication transmission resources required by the UE in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the SidelinkUEInformation message included commTxResourceReqUC:

4> initiate transmission of the SidelinkUEInformation message to indicate it no longer requires non-relay related one-to-one sidelink communication transmission resources in accordance with 5.10.2.3;

2> if configured by upper layers to transmit relay related one-to-one sidelink communication:

3> if the UE did not transmit a SidelinkUEInformation message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a SidelinkUEInformation message the UE connected to a PCell not broadcasting SystemInformationBlockType18, connected to a PCell not broadcasting
SystemInformationBlockType19 or broadcasting SystemInformationBlockType19 not including discConfigRelay; or

3> if the last transmission of the SidelinkUEInformation message did not include commTxResourceReqRelayUC, or if the information carried by the commTxResourceReqRelayUC has changed since the last transmission of the SidelinkUEInformation message:

4> if the UE is acting as sidelink relay UE; or

4> if the UE has a selected sidelink relay UE; and if SystemInformationBlockType19 is broadcast by the PCell and includes discConfigRelay; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met;

5> initiate transmission of the SidelinkUEInformation message to indicate the relay related one-to-one sidelink communication transmission resources required by the UE in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the SidelinkUEInformation message included commTxResourceReqRelayUC:

4> initiate transmission of the SidelinkUEInformation message to indicate it no longer requires relay related one-to-one sidelink communication transmission resources in accordance with 5.10.2.3;

1> if SystemInformationBlockType19 is broadcast by the PCell:

2> ensure having a valid version of SystemInformationBlockType19 for the PCell;

2> if configured by upper layers to receive sidelink discovery announcements on a serving frequency or on one or more frequencies included in discInterFreqList, if included in SystemInformationBlockType19 of the PCell:

3> if the UE did not transmit a SidelinkUEInformation message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a SidelinkUEInformation message the UE connected to a PCell not broadcasting SystemInformationBlockType19; or

3> if the last transmission of the SidelinkUEInformation message did not include discRxInterest:

4> initiate transmission of the SidelinkUEInformation message to indicate it is interested in sidelink discovery reception in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the SidelinkUEInformation message included discRxInterest:

4> initiate transmission of the SidelinkUEInformation message to indicate it is no longer interested in sidelink discovery reception in accordance with 5.10.2.3;

2> if the UE is configured by upper layers to transmit non-PS related sidelink discovery announcements on the primary frequency or on one or more frequencies included in discInterFreqList, if included in SystemInformationBlockType19 of the PCell, with discTxResourcesInterFreq included within discResourcesNonPS and not set to noTxOnCarrier:

3> if the UE did not transmit a SidelinkUEInformation message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a SidelinkUEInformation message the UE connected to a PCell not broadcasting SystemInformationBlockType19 or connected to a PCell broadcasting SystemInformationBlockType19 not including discTxResourcesInterFreq within discResourcesNonPS or discTxResourcesInterFreq did not include all frequencies for which the UE will request resources; or

3> if the last transmission of the SidelinkUEInformation message did not include discTxResourceReq; or if the non-PS related sidelink discovery announcement resources required by the UE have changed (i.e. resulting in a change of discTxResourceReq) since the last transmission of the SidelinkUEInformation message:
4> initiate transmission of the `SidelinkUEInformation` message to indicate the non-PS related sidelink discovery announcement resources required by the UE in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the `SidelinkUEInformation` message included `discTxResourceReq`:

4> initiate transmission of the `SidelinkUEInformation` message to indicate it no longer requires non-PS related sidelink discovery announcement resources in accordance with 5.10.2.3;

2> if configured by upper layers to transmit PS related sidelink discovery announcements on the primary frequency or, in case of non-relay PS related sidelink discovery announcements, on a frequency included in `discInterFreqList`, if included in `SystemInformationBlockType19`, with `discTxResourcesInterFreq` included within `discResourcesPS` and not set to `noTxOnCarrier`:

3> if the UE did not transmit a `SidelinkUEInformation` message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a `SidelinkUEInformation` message the UE connected to a PCell not broadcasting `SystemInformationBlockType19`, connected to a PCell broadcasting `SystemInformationBlockType19` not including `discConfigPS`, or in case of non-relay PS related transmission: (connected to a PCell broadcasting `SystemInformationBlockType19` not including `discTxResourcesInterFreq` within `discResourcesPS` or for which `discTxResourcesInterFreq` did not include all frequencies for which the UE will request resources), or in case of relay related PS sidelink discovery announcements: (connected to a PCell broadcasting `SystemInformationBlockType19` not including `discConfigRelay`) sidelink; or

3> if the last transmission of the `SidelinkUEInformation` message did not include `discTxResourceReqPS`; or if the PS related sidelink discovery announcement resources required by the UE have changed (i.e. resulting in a change of `discTxResourceReqPS`) since the last transmission of the `SidelinkUEInformation` message:

4> if configured by upper layers to transmit non-relay PS related sidelink discovery announcements; or

4> if the UE is acting as sidelink relay UE; and if `SystemInformationBlockType19` includes `discConfigRelay`; and if the sidelink relay UE threshold conditions as specified in 5.10.10.4 are met; or

4> if the UE is selecting a sidelink relay UE / has a selected sidelink relay UE; and if `SystemInformationBlockType19` includes `discConfigRelay`; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met:

5> initiate transmission of the `SidelinkUEInformation` message to indicate the PS related sidelink discovery announcement resources required by the UE in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the `SidelinkUEInformation` message included `discTxResourceReqPS`:

4> initiate transmission of the `SidelinkUEInformation` message to indicate it no longer requires PS related sidelink discovery announcement resources in accordance with 5.10.2.3;

2> if configured by upper layers to monitor or transmit sidelink discovery announcements; and if the UE requires sidelink discovery gaps, to perform such actions:

3> if the UE did not transmit a `SidelinkUEInformation` message since last entering RRC_CONNECTED state; or

3> if since the last time the UE transmitted a `SidelinkUEInformation` message the UE connected to a PCell not broadcasting `SystemInformationBlockType19` or connected to a PCell broadcasting `SystemInformationBlockType19` not including `gapRequestsAllowedCommon` while at the same time the UE was not configured with `gapRequestsAllowedDedicated`; or

3> if the last transmission of the `SidelinkUEInformation` message did not include the gaps required to monitor or transmit the sidelink discovery announcements (i.e. UE requiring gaps to monitor discovery announcements while `discRxGapReq` was not included or UE requiring gaps to transmit discovery announcements while `discTxGapReq` was not included); or if the sidelink discovery gaps required by the...
UE have changed (i.e. resulting in a change of `discRxGapReq` or `discTxGapReq`) since the last transmission of the `SidelinkUEInformation` message:

4> if the UE is configured with `gapRequestsAllowedDedicated` set to `true`; or
4> if the UE is not configured with `gapRequestsAllowedDedicated` and `gapRequestsAllowedCommon` is included in `SystemInformationBlockType19`:

5> initiate transmission of the `SidelinkUEInformation` message to indicate the sidelink discovery gaps required by the UE in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the `SidelinkUEInformation` message included `discTxGapReq` or `discRxGapReq`:

4> initiate transmission of the `SidelinkUEInformation` message to indicate it no longer requires sidelink discovery gaps in accordance with 5.10.2.3;

2> if the UE acquired the relevant parameters from the system information of one or more cells on a carrier included in the `discSysInfoToReportConfig` and T370 is running:

3> if the UE has configured lower layers to transmit or monitor the sidelink discovery announcements on those cells:

4> initiate transmission of the `SidelinkUEInformation` message to report the acquired system information parameters and stop T370;

1> if `SystemInformationBlockType21` including `sl-V2X-ConfigCommon` is broadcast by the PCell:

2> ensure having a valid version of `SystemInformationBlockType21` for the PCell;

2> if configured by upper layers to receive V2X sidelink communication on a primary frequency or on one or more frequencies included in `v2x-InterFreqInfoList`, if included in `SystemInformationBlockType21` of the PCell:

3> if the UE did not transmit a `SidelinkUEInformation` message since last entering RRC_CONNECTED state; or
3> if since the last time the UE transmitted a `SidelinkUEInformation` message the UE connected to a PCell not broadcasting `SystemInformationBlockType21` including `sl-V2X-ConfigCommon`; or
3> if the last transmission of the `SidelinkUEInformation` message did not include `v2x-CommRxInterestedFreqList`; or if the frequency(ies) configured by upper layers to receive V2X sidelink communication on has changed since the last transmission of the `SidelinkUEInformation` message:

4> initiate transmission of the `SidelinkUEInformation` message to indicate the V2X sidelink communication reception frequency(ies) of interest in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the `SidelinkUEInformation` message included `v2x-CommRxInterestedFreqList`:

4> initiate transmission of the `SidelinkUEInformation` message to indicate it is no longer interested in V2X sidelink communication reception in accordance with 5.10.2.3;

2> if configured by upper layers to transmit V2X sidelink communication on a primary frequency or on one or more frequencies included in `v2x-InterFreqInfoList`, if included in `SystemInformationBlockType21` of the PCell:

3> if the UE did not transmit a `SidelinkUEInformation` message since last entering RRC_CONNECTED state; or
3> if since the last time the UE transmitted a `SidelinkUEInformation` message the UE connected to a PCell not broadcasting `SystemInformationBlockType21` including `sl-V2X-ConfigCommon`; or
3> if the last transmission of the SidelinkUEInformation message did not include v2x-CommTxResourceReq; or if the information carried by the v2x-CommTxResourceReq has changed since the last transmission of the SidelinkUEInformation message:

4> initiate transmission of the SidelinkUEInformation message to indicate the V2X sidelink communication transmission resources required by the UE in accordance with 5.10.2.3;

2> else:

3> if the last transmission of the SidelinkUEInformation message included v2x-CommTxResourceReq:

4> initiate transmission of the SidelinkUEInformation message to indicate it no longer requires V2X sidelink communication transmission resources in accordance with 5.10.2.3;

5.10.2.3 Actions related to transmission of SidelinkUEInformation message

The UE shall set the contents of the SidelinkUEInformation message as follows:

1> if the UE initiates the procedure to indicate it is (no more) interested to receive sidelink communication or discovery or receive V2X sidelink communication or to request (configuration/release) of sidelink communication or V2X sidelink communication or sidelink discovery transmission resources (i.e. UE includes all concerned information, irrespective of what triggered the procedure):

2> if SystemInformationBlockType18 is broadcast by the PCell:

3> if configured by upper layers to receive sidelink communication:

4> include commRxInterestedFreq and set it to the sidelink communication frequency;

3> if configured by upper layers to transmit non-relay related one-to-many sidelink communication:

4> include commTxResourceReq and set its fields as follows:

5> set carrierFreq to indicate the sidelink communication frequency i.e. the same value as indicated in commRxInterestedFreq if included;

5> set destinationInfoList to include the non-relay related one-to-many sidelink communication transmission destination(s) for which it requests E-UTRAN to assign dedicated resources;

3> if configured by upper layers to transmit non-relay related one-to-one sidelink communication; and

3> if commTxResourceUC-ReqAllowed is included in SystemInformationBlockType18:

4> include commTxResourceReqUC and set its fields as follows:

5> set carrierFreq to indicate the one-to-one sidelink communication frequency i.e. the same value as indicated in commRxInterestedFreq if included;

5> set destinationInfoList to include the non-relay related one-to-one sidelink communication transmission destination(s) for which it requests E-UTRAN to assign dedicated resources;

3> if configured by upper layers to transmit relay related one-to-one sidelink communication; and

3> if SystemInformationBlockType19 is broadcast by the PCell including discConfigRelay; and

3> if the UE is acting as sidelink relay UE; or if the UE has a selected sidelink relay UE; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met:

4> include commTxResourceReqRelayUC and set its fields as follows:

5> set destinationInfoList to include the one-to-one sidelink communication transmission destination(s) for which it requests E-UTRAN to assign dedicated resources;

4> include ue-Type and set it to relayUE if the UE is acting as sidelink relay UE and to remoteUE otherwise;

3> if configured by upper layers to transmit relay related one-to-many sidelink communication; and
if SystemInformationBlockType19 is broadcast by the PCell including discConfigRelay; and

if the UE is acting as sidelink relay UE:

include commTxResourceReqRelay and set its fields as follows:

set destinationInfoList to include the one-to-many sidelink communication transmission destination(s) for which it requests E-UTRAN to assign dedicated resources;

include ue-Type and set it to relayUE;

if SystemInformationBlockType19 is broadcast by the PCell:

if configured by upper layers to receive sidelink discovery announcements on a serving frequency or one or more frequencies included in discInterFreqList, if included in SystemInformationBlockType19:

include discRxInterest;

if the UE is configured by upper layers to transmit non-PS related sidelink discovery announcements:

for each frequency on which the UE is configured to transmit non-PS related sidelink discovery announcements that concerns the primary frequency or that is included in discInterFreqList with discTxResourcesInterFreq included within discResourcesNonPS and not set to noTxOnCarrier:

for the first frequency, include discTxResourceReq and set it to indicate the number of discovery messages for sidelink discovery announcement(s) for which it requests E-UTRAN to assign dedicated resources as well as the concerned frequency, if different from the primary;

for any additional frequency, include discTxResourceReqAddFreq and set it to indicate the number of discovery messages for sidelink discovery announcement(s) for which it requests E-UTRAN to assign dedicated resources as well as the concerned frequency;

if configured by upper layers to transmit PS related sidelink discovery announcements; and

if the frequency on which the UE is configured to transmit PS related sidelink discovery announcements either concerns the primary frequency or, in case of non-relay PS related sidelink discovery announcements, is included in discInterFreqList with discTxResources InterFreq included within discResourcesPS and not set to noTxOnCarrier:

if configured by upper layers to transmit non-relay PS related sidelink discovery announcements and SystemInformationBlockType19 includes discConfigPS; or

if the UE is acting as sidelink relay UE; and if SystemInformationBlockType19 includes discConfigRelay; and if the sidelink relay UE threshold conditions as specified in 5.10.10.4 are met; or

if the UE is selecting a sidelink relay UE / has a selected sidelink relay UE; and if SystemInformationBlockType19 includes discConfigRelay; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met:

include discTxResourceReqPS and set it to indicate the number of discovery messages for PS related sidelink discovery announcement(s) for which it requests E-UTRAN to assign dedicated resources as well as the concerned frequency, if different from the primary;

if SystemInformationBlockType21 is broadcast by the PCell and SystemInformationBlockType21 includes sl-V2X-ConfigCommon:

if configured by upper layers to receive V2X sidelink communication:

include v2x-CommRxInterestedFreqList and set it to the frequency(ies) for V2X sidelink communication reception;

if configured by upper layers to transmit V2X sidelink communication:

if configured by upper layers to transmit P2X related V2X sidelink communication:

include p2x-CommTxType set to true;
4> include v2x-CommTxResourceReq and set its fields as follows for each frequency on which the UE is configured for V2X sidelink communication transmission:

5> set carrierFreqCommTx to indicate the frequency for V2X sidelink communication transmission;

5> set v2x-TypeTxSync to the current synchronization reference type used on the associated carrierFreqCommTx for V2X sidelink communication transmission;

5> set v2x-DestinationInfoList to include the V2X sidelink communication transmission destination(s) for which it requests E-UTRAN to assign dedicated resources;

1> else if the UE initiates the procedure to request sidelink discovery transmission and/or reception gaps:

2> if the UE is configured with gapRequestsAllowedDedicated set to true; or

2> if the UE is not configured with gapRequestsAllowedDedicated and gapRequestsAllowedCommon is included in SystemInformationBlockType19:

3> if the UE requires sidelink discovery gaps to monitor the sidelink discovery announcements the UE is configured to monitor by upper layers:

4> include discRxGapReq and set it to indicate, for each frequency that either concerns the primary frequency or is included in discInterFreqList on which the UE is configured to monitor sidelink discovery announcements and for which it requires sidelink discovery gaps to do so, the gap pattern(s) as well as the concerned frequency, if different from the primary;

3> if the UE requires sidelink discovery gaps to transmit the sidelink discovery announcements the UE is configured to transmit by upper layers:

4> include discTxGapReq and set it to indicate, for each frequency that either concerns the primary or is included in discInterFreqList on which the UE is configured to transmit sidelink discovery announcements and for which it requires sidelink discovery gaps to do so, the gap pattern(s) as well as the concerned frequency, if different from the primary;

1> else if the UE initiates the procedure to report the system information parameters related to sidelink discovery of carriers other than the primary:

2> include discSysInfoReportFreqList and set it to report the system information parameter acquired from the cells on those carriers;

The UE shall submit the SidelinkUEInformation message to lower layers for transmission.

5.10.3 Sidelink communication monitoring

A UE capable of sidelink communication that is configured by upper layers to receive sidelink communication shall:

1> if the conditions for sidelink communication operation as defined in 5.10.1a are met:

2> if in coverage on the frequency used for sidelink communication, as defined in TS 36.304 [4, 11.4]:

3> if the cell chosen for sidelink communication reception broadcasts SystemInformationBlockType18 including commRxPool:

4> configure lower layers to monitor sidelink control information and the corresponding data using the pool of resources indicated by commRxPool;

NOTE 1: If commRxPool includes one or more entries including rxParametersNCell, the UE may only monitor such entries if the associated PSS/SSS or SLSSID is detected. When monitoring such pool(s), the UE applies the timing of the concerned PSS/SSS or SLSSID.

2> else (i.e. out of coverage on the sidelink carrier):

3> configure lower layers to monitor sidelink control information and the corresponding data using the pool of resources that were preconfigured (i.e. preconfigComm in SL-Preconfiguration defined in 9.3);
NOTE 2: The UE may monitor in accordance with the timing of the selected SyncRef UE, or if the UE does not have a selected SyncRef UE, based on the UE's own timing.
5.10.4 Sidelink communication transmission

A UE capable of sidelink communication that is configured by upper layers to transmit non-relay related sidelink communication and has related data to be transmitted or a UE capable of relay related sidelink communication that is configured by upper layers to transmit relay related sidelink communications and satisfies the conditions for relay related sidelink communication specified in this section shall:

1> if the conditions for sidelink communication operation as defined in 5.10.1a are met:

2> if in coverage on the frequency used for sidelink communication, as defined in TS 36.304 [4, 11.4]:

3> if the UE is in RRC_CONNECTED and uses the PCell for sidelink communication:

4> if the UE is configured, by the current PCell/ the PCell in which physical layer problems or radio link failure was detected, with commTxResources set to scheduled:

5> if T310 or T311 is running; and if the PCell at which the UE detected physical layer problems or radio link failure broadcasts SystemInformationBlockType18 including commTxPoolExceptional; or

5> if T301 is running and the cell on which the UE initiated connection re-establishment broadcasts SystemInformationBlockType18 including commTxPoolExceptional:

6> configure lower layers to transmit the sidelink control information and the corresponding data using the pool of resources indicated by the first entry in commTxPoolExceptional;

5> else:

6> configure lower layers to request E-UTRAN to assign transmission resources for sidelink communication;

4> else if the UE is configured with commTxPoolNormalDedicated or commTxPoolNormalDedicatedExt:

5> if priorityList is included for the entries of commTxPoolNormalDedicated or commTxPoolNormalDedicatedExt:

6> configure lower layers to transmit the sidelink control information and the corresponding data using the one or more pools of resources indicated by commTxPoolNormalDedicated or commTxPoolNormalDedicatedExt i.e. indicate all entries of this field to lower layers;

5> else:

6> configure lower layers to transmit the sidelink control information and the corresponding data using the pool of resources indicated by the first entry in commTxPoolNormalDedicated;

3> else (i.e. sidelink communication in RRC_IDLE or on cell other than PCell in RRC_CONNECTED):

4> if the cell chosen for sidelink communication transmission broadcasts SystemInformationBlockType18:

5> if SystemInformationBlockType18 includes commTxPoolNormalCommon:

6> if priorityList is included for the entries of commTxPoolNormalCommon or commTxPoolNormalCommonExt:

7> configure lower layers to transmit the sidelink control information and the corresponding data using the one or more pools of resources indicated by commTxPoolNormalCommon and/or commTxPoolNormalCommonExt i.e. indicate all entries of these fields to lower layers;

6> else:

7> configure lower layers to transmit the sidelink control information and the corresponding data using the pool of resources indicated by the first entry in commTxPoolNormalCommon;
5> else if `SystemInformationBlockType18` includes `commTxPoolExceptional`:

6> from the moment the UE initiates connection establishment until receiving an
`RRCConnectionReconfiguration` including `sl-CommConfig` or until receiving an
`RRCConnectionRelease` or an `RRCConnectionReject`:

7> configure lower layers to transmit the sidelink control information and the
 corresponding data using the pool of resources indicated by the first entry in
 `commTxPoolExceptional`;

2> else (i.e. out of coverage on sidelink carrier):

3> if `priorityList` is included for the entries of `preconfigComm` in `SL-Preconfiguration` defined in 9.3:

4> configure lower layers to transmit the sidelink control information and the corresponding data using
 the one or more pools of resources indicated `preconfigComm` i.e. indicate all entries of this field to
 lower layers and in accordance with the timing of the selected SyncRef UE, or if the UE does not have
 a selected SyncRef UE, based on the UEs own timing;

3> else:

4> configure lower layers to transmit the sidelink control information and the corresponding data using
 the pool of resources that were preconfigured i.e. indicated by the first entry in `preconfigComm in SL-
 Preconfiguration` defined in 9.3 and in accordance with the timing of the selected SyncRef UE, or if
 the UE does not have a selected SyncRef UE, based on the UEs own timing;

The conditions for relay related sidelink communication are as follows:

1> if the transmission concerns sidelink relay communication; and the UE is capable of sidelink relay or sidelink
 remote operation:

2> if the UE is in RRC_IDLE; and if the UE has a selected sidelink relay UE: configure lower layers to transmit
 the sidelink control information and the corresponding data using the resources, as specified previously in
 this section, only if the following condition is met:

3> if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met; and if the UE configured
 lower layers with a pool of resources included in `SystemInformationBlockType18` (i.e.
 `commTxPoolNormalCommon`, `commTxPoolNormalCommonExt` or `commTxPoolExceptional`); and
 `commTxAllowRelayCommon` is included in `SystemInformationBlockType18`;

2> if the UE is in RRC_CONNECTED: configure lower layers to transmit the sidelink control information and
 the corresponding data using the resources, as specified previously in this section, only if the following
 condition is met:

3> if the UE configured lower layers with resources provided by dedicated signalling (i.e.
 `commTxResources`); and the UE is configured with `commTxAllowRelayDedicated` set to true;

5.10.5 Sidelink discovery monitoring

A UE capable of non-PS related sidelink discovery that is configured by upper layers to monitor non-PS related sidelink
discovery announcements shall:

1> for each frequency the UE is configured to monitor non-PS related sidelink discovery announcements on,
 prioritising the frequencies included in `discInterFreqList`, if included in `SystemInformationBlockType19`;

2> if the PCell or the cell the UE is camping on indicates the pool of resources to monitor sidelink discovery
 announcements on by `discRxResourcesInterFreq` in `discResourcesNonPS` within `discInterFreqList` in
 `SystemInformationBlockType19`:

3> configure lower layers to monitor sidelink discovery announcements using the pool of resources indicated
 by `discRxResourcesInterFreq`in `discResourcesNonPS` within `SystemInformationBlockType19`;

2> else if the cell used for sidelink discovery monitoring broadcasts `SystemInformationBlockType19`:
3> configure lower layers to monitor sidelink discovery announcements using the pool of resources indicated by discRxPool in SystemInformationBlockType19;

2> if the UE is configured with discRxGapConfig and requires sidelink discovery gaps to monitor sidelink discovery announcements on the concerned frequency:

3> configure lower layers to monitor the concerned frequency using the sidelink discovery gaps indicated by discRxGapConfig;

2> else:

3> configure lower layers to monitor the concerned frequency without affecting normal operation;

A UE capable of PS related sidelink discovery that is configured by upper layers to monitor PS related sidelink discovery announcements shall:

1> if out of coverage on the frequency, as defined in TS 36.304 [4, 11.4]:

2> configure lower layers to monitor sidelink discovery announcements using the pool of resources that were preconfigured (i.e. indicated by discRxPoolList within preconfigDisc in SL-Preconfiguration defined in 9.3);

1> else if configured by upper layers to monitor non-relay PS related discovery announcements; and if the PCell or the cell the UE is camping on indicates a pool of resources to monitor sidelink discovery announcements on by discRxResourcesInterFreq in discResourcesPS within discInterFreqList in SystemInformationBlockType19:

2> configure lower layers to monitor sidelink discovery announcements using the pool of resources indicated by discRxResourcesInterFreq in discResourcesPS in SystemInformationBlockType19;

1> else if configured by upper layers to monitor PS related sidelink discovery announcements; and if the cell used for sidelink discovery monitoring broadcasts SystemInformationBlockType19:

2> configure lower layers to monitor sidelink discovery announcements using the pool of resources indicated by discRxPoolPS in SystemInformationBlockType19;

1> if the UE is configured with discRxGapConfig and requires sidelink discovery gaps to monitor sidelink discovery announcements on the concerned frequency:

2> configure lower layers to monitor the concerned frequency using the sidelink discovery gaps indicated by discRxGapConfig;

1> else:

2> configure lower layers to monitor the concerned frequency without affecting normal operation;

NOTE 1: The requirement not to affect normal UE operation also applies for the acquisition of sidelink discovery related system and synchronisation information from inter-frequency cells.

NOTE 2: The UE is not required to monitor all pools simultaneously.

NOTE 3: It is up to UE implementation to decide whether a cell is sufficiently good to be used to monitor sidelink discovery announcements.

NOTE 4: If discRxPool, discRxPoolPS or discRxResourcesInterFreq includes one or more entries including rxParameters, the UE may only monitor such entries if the associated SLSSIDs are detected. When monitoring such pool(s) the UE applies the timing of the corresponding SLSS.

5.10.6 Sidelink discovery announcement

A UE capable of non-PS related sidelink discovery that is configured by upper layers to transmit non-PS related sidelink discovery announcements shall, for each frequency the UE is configured to transmit such announcements on:

NOTE: In case the configured resources are insufficient it is up to UE implementation to decide which sidelink discovery announcements to transmit.

1> if the frequency used to transmit sidelink discovery announcements concerns the serving frequency (RRC_IDLE) or primary frequency (RRC_CONNECTED):
2> if the UE's serving cell (RRC_IDLE) or PCell (RRC_CONNECTED) is suitable as defined in TS 36.304 [4]:

3> if the UE is in RRC_CONNECTED (i.e. PCell is used for sidelink discovery announcement):

4> if the UE is configured with discTxResources set to scheduled:

5> configure lower layers to transmit the sidelink discovery announcement using the assigned resources indicated by scheduled in discTxResources;

4> else if the UE is configured with discTxPoolDedicated (i.e. discTxResources set to ue-Selected):

5> select an entry of the list of resource pool entries in discTxPoolDedicated and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

3> else if T300 is not running (i.e. UE in RRC_IDLE, announcing via serving cell):

4> if SystemInformationBlockType19 of the serving cell includes discTxPoolCommon:

5> select an entry of the list of resource pool entries in discTxPoolCommon and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

1> else if, for the frequency used to transmit sidelink discovery announcements on, the UE is configured with dedicated resources (i.e. with discTxResources-r12, if discTxCarrierFreq is included in discTxInterFreqInfo, or with discTxResources within discTxInfoInterFreqListAdd in discTxInterFreqInfo); and the conditions for non-PS related sidelink discovery operation as defined in 5.10.1c are met:

2> if the UE is configured with discTxResources set to scheduled:

3> configure lower layers to transmit the sidelink discovery announcement using the assigned resources indicated by scheduled in discTxResources;

2> else if the UE is configured with discTxResources set to ue-Selected:

3> select an entry of the list of resource pool entries in ue-Selected and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

1> else if the frequency used to transmit sidelink discovery announcements on is included in discInterFreqList within SystemInformationBlockType19 of the serving cell/ PCell, and discTxResourcesInterFreq within discResourcesNonPS in the corresponding entry of discInterFreqList is set to discTxPoolCommon (i.e. serving cell/ PCell broadcasts pool of resources) and the conditions for non-PS related sidelink discovery operation as defined in 5.10.1c are met; or

1> else if discTxPoolCommon is included in SystemInformationBlockType19 acquired from cell selected on the sidelink discovery announcement frequency; and the conditions for non-PS related sidelink discovery operation as defined in 5.10.1c are met:

2> select an entry of the list of resource pool entries in discTxPoolCommon and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

1> if the UE is configured with discTxGapConfig and requires sidelink discovery gaps to transmit sidelink discovery announcements on the concerned frequency:

2> configure lower layers to transmit on the concerned frequency using the sidelink discovery gaps indicated by discTxGapConfig;

1> else:

2> configure lower layers to transmit on the concerned frequency without affecting normal operation;

A UE capable of PS related sidelink discovery that is configured by upper layers to transmit PS related sidelink discovery announcements shall:

1> if out of coverage on the frequency used to transmit PS related sidelink discovery announcements as defined in TS 36.304 [4, 11.4] and the conditions for PS-related sidelink discovery operation as defined in 5.10.1b are met:

2> if configured by upper layers to transmit non-relay PS related sidelink discovery announcements; or
2> if the UE is selecting a sidelink relay UE/ has a selected sidelink relay UE:

3> configure lower layers to transmit sidelink discovery announcements using the pool of resources that were preconfigured and in accordance with the following;

4> randomly select, using a uniform distribution, an entry of preconfigDisc in SL-Preconfiguration defined in 9.3;

4> using the timing of the selected SyncRef UE, or if the UE does not have a selected SyncRef UE, based on the UEs own timing;

1> else if the frequency used to transmit sidelink discovery announcements concerns the serving frequency (RRC_IDLE) or primary frequency (RRC_CONNECTED) and the conditions for PS related sidelink discovery operation as defined in 5.10.1b are met:

2> if configured by upper layers to transmit non-relay PS related sidelink discovery announcements; or

2> if the UE is acting as sidelink relay UE; and if the UE is in RRC_IDLE; and if the sidelink relay UE threshold conditions as specified in 5.10.10.4 are met; or

2> if the UE is acting as sidelink relay UE; and if the UE is in RRC_CONNECTED; or

2> if the UE is selecting a sidelink relay UE / has a selected sidelink relay UE; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met:

3> if the UE is configured with discTxPoolPS-Dedicated; or

3> if the UE is in RRC_IDLE; and if discTxPoolPS-Common is included in SystemInformationBlockType19:

4> select an entry of the list of resource pool entries and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

3> else if the UE is configured with discTxResourcesPS set to scheduled:

4> configure lower layers to transmit the sidelink discovery announcement using the assigned resources indicated by scheduled in discTxResourcesPS;

1> else if, for the frequency used to transmit sidelink discovery announcements on, the UE is configured with dedicated resources (i.e. with discTxResourcesPS in discTxInterFreqInfo within sl-DiscConfig); and the conditions for PS related sidelink discovery operation as defined in 5.10.1b are met:

2> if configured by upper layers to transmit non-relay PS related sidelink discovery announcements:

3> if the UE is configured with discTxResourcesPS set to scheduled:

4> configure lower layers to transmit the sidelink discovery announcement using the assigned resources indicated by scheduled in discTxResourcesPS;

3> else if the UE is configured with discTxResourcesPS set to ue-Selected:

4> select an entry of the list of resource pool entries in ue-Selected and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

1> else if the frequency used to transmit sidelink discovery announcements on is included in discInterFreqList within SystemInformationBlockType19 of the serving cell/ PCell, while discTxResourcesInterFreq within discResourcesPS in the corresponding entry of discInterFreqList is set to discTxPoolCommon (i.e. serving cell/ PCell broadcasts pool of resources) and the conditions for PS related sidelink discovery operation as defined in 5.10.1b are met:

2> if configured by upper layers to transmit non-relay PS related sidelink discovery announcements:

3> select an entry of the list of resource pool entries in discTxPoolCommon and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

1> else if discTxPoolPS-Common is included in SystemInformationBlockType19 acquired from cell selected on the sidelink discovery announcement frequency; and the conditions for PS related sidelink discovery operation as defined in 5.10.1b are met:
2> if configured by upper layers to transmit non-relay PS related sidelink discovery announcements:

3> select an entry of the list of resource pool entries in discTxPoolPS-Common and configure lower layers to use it to transmit the sidelink discovery announcements as specified in 5.10.6a;

1> if the UE is configured with discTxGapConfig and requires gaps to transmit sidelink discovery announcements on the concerned frequency;

2> configure lower layers to transmit on the concerned frequency using the gaps indicated by discTxGapConfig,

1> else:

2> configure lower layers to transmit on the concerned frequency without affecting normal operation;

5.10.6a Sidelink discovery announcement pool selection

A UE that is configured with a list of resource pool entries for sidelink discovery announcement transmission (i.e. by SL-DiscTxPoolList) shall:

1> if poolSelection is set to rsrpBased:

2> select a pool from the list of pools the UE is configured with for which the RSRP measurement of the reference cell selected as defined in 5.10.6b, after applying the layer 3 filter defined by quantityConfig as specified in 5.5.3.2, is in-between threshLow and threshHigh;

1> else:

2> randomly select, using a uniform distribution, a pool from the list of pools the UE is configured with;

1> configure lower layers to transmit the sidelink discovery announcement using the selected pool of resources;

NOTE 1: When performing resource pool selection based on RSRP, the UE uses the latest results of the available measurements used for cell reselection evaluation in RRC_IDLE/ for measurement report triggering evaluation in RRC_CONNECTED, which are performed in accordance with the performance requirements specified in TS 36.133 [16].

5.10.6b Sidelink discovery announcement reference carrier selection

A UE capable of sidelink discovery that is configured by upper layers to transmit sidelink discovery announcements shall:

1> for each frequency the UE is transmitting sidelink discovery announcements on, select a cell to be used as reference for synchronisation and DL measurements in accordance with the following:

2> if the frequency concerns the primary frequency:

3> use the PCell as reference;

2> else if the frequency concerns a secondary frequency:

3> use the concerned SCell as reference;

2> else if the UE is configured with discTxRefCarrierDedicated for the frequency:

3> use the cell indicated by this field as reference;

2> else if the UE is configured with refCarrierCommon for the frequency:

3> use the serving cell (RRC_IDLE)/ PCell (RRC_CONNECTED) as reference;

2> else:

3> use the DL frequency paired with the one used to transmit sidelink discovery announcements on as reference;
5.10.7 Sidelink synchronisation information transmission

5.10.7.1 General

The purpose of this procedure is to provide synchronisation information to a UE. For sidelink discovery, the synchronisation information concerns a Sidelink Synchronisation Signal (SLSS) and, in case of PS related discovery, also timing information and some additional configuration parameters (i.e. the MasterInformationBlock-SL message), while for sidelink communication or V2X sidelink communication it concerns an SLSS and the MasterInformationBlock-SL or MasterInformationBlock-SL-V2X message. A UE transmits synchronisation information either when E-UTRAN configures it to do so by dedicated signalling (i.e. network based), or when not configured by dedicated signalling (i.e. UE based) and E-UTRAN broadcasts (in coverage) or pre-configures a threshold (out of coverage).

The synchronisation information transmitted by the UE may be derived from information/s signals received from E-UTRAN (in coverage) or received from a UE acting as synchronisation reference for the transmitting UE or received from GNSS. In the remainder, the UE acting as synchronisation reference is referred to as SyncRef UE.
5.10.7.2 Initiation

A UE capable of SLSS transmission shall, when transmitting sidelink discovery announcements in accordance with 5.10.6 and when the following conditions are met:

1> if in coverage on the frequency used for sidelink discovery, as defined in TS 36.304 [4, 11.4];

2> if in RRC_CONNECTED; and if networkControlledSyncTx is configured and set to on; or

2> if networkControlledSyncTx is not configured; and syncTxThresholdIC is included in SystemInformationBlockType19; and the RSRP measurement of the reference cell, selected as defined in 5.10.6b, is below the value of syncTxThresholdIC:

3> if the sidelink discovery announcements are not PS related; or if syncTxPeriodic is not included:

4> transmit SLSS on the frequency used for sidelink discovery in accordance with 5.10.7.3 and TS 36.211 [21];

3> else:

4> transmit SLSS on the frequency used for sidelink discovery in accordance with 5.10.7.3 and TS 36.211 [21];

4> transmit the MasterInformationBlock-SL message on the frequency used for sidelink discovery, in the same subframe as SLSS, and in accordance with 5.10.7.4;

1> else (i.e. out of coverage, PS):

2> if syncTxThresholdOoC is included in the preconfigured sidelink parameters (i.e. SL-Preconfiguration defined in 9.3); and the UE has not selected SyncRef UE or the S-RSRP measurement result of the selected SyncRef UE is below the value of syncTxThresholdOoC:

3> transmit SLSS on the frequency used for sidelink discovery in accordance with 5.10.7.3 and TS 36.211 [21];

3> transmit the MasterInformationBlock-SL message on the frequency used for sidelink discovery, in the same subframe as SLSS, and in accordance with 5.10.7.4;

A UE capable of sidelink communication that is configured by upper layers to transmit sidelink communication shall, irrespective of whether or not it has data to transmit:

1> if the conditions for sidelink communication operation as defined in 5.10.1a are met:

2> if in RRC_CONNECTED; and if networkControlledSyncTx is configured and set to on:

3> transmit SLSS in accordance with 5.10.7.3 and TS 36.211 [21];

3> transmit the MasterInformationBlock-SL message, in the same subframe as SLSS, and in accordance with 5.10.7.4;

A UE shall, when transmitting sidelink communication in accordance with 5.10.4 and when the following conditions are met:

1> if in coverage on the frequency used for sidelink communication, as defined in TS 36.304 [4, 11.4]:

2> if the UE is in RRC_CONNECTED; and networkControlledSyncTx is not configured; and syncTxThresholdIC is included in SystemInformationBlockType18; and the RSRP measurement of the cell chosen for sidelink communication transmission is below the value of syncTxThresholdIC; or

2> if the UE is in RRC_IDLE; and syncTxThresholdIC is included in SystemInformationBlockType18; and the RSRP measurement of the cell chosen for sidelink communication transmission is below the value of syncTxThresholdIC:

3> transmit SLSS in accordance with 5.10.7.3 and TS 36.211 [21];

3> transmit the MasterInformationBlock-SL message, in the same subframe as SLSS, and in accordance with 5.10.7.4;
A UE capable of V2X sidelink communication and SLSS/PSBCH transmission shall, when transmitting non-P2X related V2X sidelink communication in accordance with 5.10.13, and if the conditions for V2X sidelink communication operation as defined in 5.10.1d are met and when the following conditions are met:

1> if in coverage on the frequency used for V2X sidelink communication, as defined in TS 36.304 [4, 11.4]; and has selected GNSS or the cell as synchronization reference as defined in 5.10.13.3; or

1> if out of coverage on the frequency used for V2X sidelink communication, as defined in TS 36.304 [4, 11.4], and the frequency used to transmit V2X sidelink communication is included in \(v2x-\text{InterFreqInfoList} \) in \(\text{RRCConnectionReconfiguration} \) or in \(v2x-\text{InterFreqInfoList} \) within \(\text{SystemInformationBlockType21} \) of the serving cell/ PCell; and has selected GNSS or the cell as synchronization reference as defined in 5.10.13.3:

2> if in \(\text{RRC_CONNECTED} \); and if \(\text{networkControlledSyncTx} \) is configured and set to \(\text{on} \); or

2> if \(\text{networkControlledSyncTx} \) is not configured; and for the concerned frequency \(\text{syncTxThreshIC} \) is configured; and the RSRP measurement of the reference cell, selected as defined in 5.10.13.3, for V2X sidelink communication transmission is below the value of \(\text{syncTxThreshIC} \):

3> transmit SLSS on the frequency used for V2X sidelink communication in accordance with 5.10.7.3 and TS 36.211 [21];

3> transmit the \(\text{MasterInformationBlock_SL_V2X} \) message on the frequency used for V2X sidelink communication, in the same subframe as SLSS, and in accordance with 5.10.7.4;

1> else:

2> for the frequency used for V2X sidelink communication, if \(\text{syncOffsetIndicators} \) is included in \(\text{SL_V2X_Preconfiguration} \):

3> if \(\text{syncTxThreshOoC} \) is included in \(\text{SL_V2X_Preconfiguration} \); and the UE is not directly synchronized to GNSS, and the UE has no selected SyncRef UE or the S-RSRP measurement result of the selected SyncRef UE is below the value of \(\text{syncTxThreshOoC} \); or

3> if the UE selects GNSS as the synchronization reference source:

4> transmit SLSS in accordance with 5.10.7.3 and TS 36.211 [21];

4> transmit the \(\text{MasterInformationBlock_SL_V2X} \) message, in the same subframe as SLSS, and in accordance with 5.10.7.4;

5.10.7.3 Transmission of SLSS

The UE shall select the SLSSID and the subframe in which to transmit SLSS as follows:

1> if triggered by sidelink discovery announcement and in coverage on the frequency used for sidelink discovery, as defined in TS 36.304 [4, 11.4]:

2> select the SLSSID included in the entry of \(\text{discSyncConfig} \) included in the received \(\text{SystemInformationBlockType19} \), that includes \(\text{txParameters} \);

2> use \(\text{syncOffsetIndicator} \) corresponding to the selected SLSSID;

2> for each pool used for the transmission of discovery announcements (each corresponding to the selected SLSSID):
if a subframe indicated by \textit{syncOffsetIndicator} corresponds to the first subframe of the discovery transmission pool;

4> if \textit{discTxGapConfig} is configured and includes the concerned subframe; or the subframe is not used for regular uplink transmission:

5> select the concerned subframe;

3> else

4> if \textit{discTxGapConfig} is configured and includes the concerned subframe; or the subframe is not used for regular uplink transmission:

5> select the subframe indicated by \textit{syncOffsetIndicator} that precedes and which, in time domain, is nearest to the first subframe of the discovery transmission pool;

3> if the sidelink discovery announcements concern PS; and if \textit{syncTxPeriodic} is included:

4> additionally select each subframe that periodically occurs 40 subframes after the selected subframe;

1> if triggered by sidelink communication and in coverage on the frequency used for sidelink communication, as defined in TS 36.304 [4, 11.4]:

2> select the SLSSID included in the entry of \textit{commSyncConfig} that is included in the received \textit{SystemInformationBlockType18} and includes \textit{txParameters};

2> use \textit{syncOffsetIndicator} corresponding to the selected SLSSID;

2> if in RRC_CONNECTED; and if \textit{networkControlledSyncTx} is configured and set to \textit{on}:

3> select the subframe(s) indicated by \textit{syncOffsetIndicator};

2> else (when transmitting communication):

3> select the subframe(s) indicated by \textit{syncOffsetIndicator} within the SC period in which the UE intends to transmit sidelink control information or data;

1> if triggered by V2X sidelink communication and in coverage on the frequency used for V2X sidelink communication, as defined in TS 36.304 [4, 11.4]; or

1> if triggered by V2X sidelink communication, and out of coverage on the frequency used for V2X sidelink communication, and the concerned frequency is included in \textit{v2x-InterFreqInfoList} in \textit{RRCConnectionReconfiguration} or in \textit{v2x-InterFreqInfoList} within \textit{SystemInformationBlockType21} of the serving cell/ PCell;

2> if the UE has selected GNSS as synchronization reference in accordance with 5.10.8.2:

3> select SLSSID 0;

3> use \textit{syncOffsetIndicator} included in the entry of \textit{v2x-SyncConfig} corresponding to the concerned frequency in \textit{v2x-InterFreqInfoList} or within \textit{SystemInformationBlockType21}, that includes \textit{txParameters} and gnss-Sync;

3> select the subframe(s) indicated by \textit{syncOffsetIndicator};

2> if the UE has selected a cell as synchronization reference in accordance with 5.10.8.2:

3> select the SLSSID included in the entry of \textit{v2x-SyncConfig} configured for the concerned frequency in \textit{v2x-InterFreqInfoList} or within \textit{SystemInformationBlockType21}, that includes \textit{txParameters} and does not include gnss-Sync;

3> use \textit{syncOffsetIndicator} corresponding to the selected SLSSID;

3> select the subframe(s) indicated by \textit{syncOffsetIndicator};

1> else if triggered by V2X sidelink communication and the UE has GNSS as the synchronization reference:
select SLSSID 0;

if syncOffsetIndicator3 is configured for the frequency used for V2X sidelink communication in SL-V2X-Preconfiguration:

select the subframe(s) indicated by syncOffsetIndicator3;

else:

select the subframe(s) indicated by syncOffsetIndicator1;

else:

select the synchronisation reference UE (i.e. SyncRef UE) as defined in 5.10.8;

if the UE has a selected SyncRef UE and inCoverage in the MasterInformationBlock-SL or MasterInformationBlock-SL-V2X message received from this UE is set to TRUE; or

if the UE has a selected SyncRef UE and inCoverage in the MasterInformationBlock-SL or MasterInformationBlock-SL-V2X message received from this UE is set to FALSE while the SLSS from this UE is part of the set defined for out of coverage, see TS 36.211 [21]:

select the same SLSSID as the SLSSID of the selected SyncRef UE;

select the subframe in which to transmit the SLSS according to the syncOffsetIndicator1 or syncOffsetIndicator2 included in the preconfigured sidelink parameters (i.e. preconfigSync in SL-Preconfiguration or v2x-CommPreconfigSync in SL-V2X-Preconfiguration defined in 9.3) corresponding to the concerned frequency, such that the subframe timing is different from the SLSS of the selected SyncRef UE;

else if the UE has a selected SyncRef UE and the SLSS from this UE was transmitted on the subframe indicated by syncOffsetIndicator3 that is included in the syncOffsetIndicators in SL-V2X-Preconfiguration, and is corresponding to the frequency used for V2X sidelink communication:

select SLSSID 169;

select the subframe(s) indicated by syncOffsetIndicator2;

else if the UE has a selected SyncRef UE:

select the SLSSID from the set defined for out of coverage having an index that is 168 more than the index of the SLSSID of the selected SyncRef UE, see TS 36.211 [21];

select the subframe in which to transmit the SLSS according to syncOffsetIndicator1 or syncOffsetIndicator2 included in the preconfigured sidelink parameters (i.e. preconfigSync in SL-Preconfiguration or v2x-CommPreconfigSync in SL-V2X-Preconfiguration defined in 9.3), such that the subframe timing is different from the SLSS of the selected SyncRef UE;

else (i.e. no SyncRef UE selected):

if triggered by V2X sidelink communication, randomly select, using a uniform distribution, an SLSSID from the set of sequences defined for out of coverage except SLSSID 168 and 169, see TS 36.211 [21];

else, randomly select, using a uniform distribution, an SLSSID from the set of sequences defined for out of coverage, see TS 36.211 [21];

select the subframe in which to transmit the SLSS according to the syncOffsetIndicator1 or syncOffsetIndicator2 (arbitrary selection between these) included in the preconfigured sidelink parameters (i.e. preconfigSync in SL-Preconfiguration or v2x-CommPreconfigSync in SL-V2X-Preconfiguration defined in 9.3);
5.10.7.4 Transmission of MasterInformationBlock-SL or MasterInformationBlock-SL-V2X message

The UE shall set the contents of the MasterInformationBlock-SL or MasterInformationBlock-SL-V2X message as follows:

1> if in coverage on the frequency used for the sidelink operation that triggered this procedure as defined in TS 36.304 [4, 11.4]:
 2> set inCoverage to TRUE;
 2> set sl-Bandwidth to the value of ul-Bandwidth as included in the received SystemInformationBlockType2 of the cell chosen for the concerned sidelink operation;
 2> if tdd-Config is included in the received SystemInformationBlockType1:
 3> set subframeAssignmentSL to the value representing the same meaning as of subframeAssignment that is included in tdd-Config in the received SystemInformationBlockType1;
 2> else:
 3> set subframeAssignmentSL to none;
 2> if triggered by sidelink communication; and if syncInfoReserved is included in an entry of commSyncConfig from the received SystemInformationBlockType18:
 3> set reserved to the value of syncInfoReserved in the received SystemInformationBlockType18;
 2> if triggered by sidelink discovery; and if syncInfoReserved is included in an entry of discSyncConfig from the received SystemInformationBlockType19:
 3> set reserved to the value of syncInfoReserved in the received SystemInformationBlockType19;
 2> if triggered by V2X sidelink communication; and if syncInfoReserved is included in an entry of v2x-SyncConfig from the received SystemInformationBlockType21:
 3> set reserved to the value of syncInfoReserved in the received SystemInformationBlockType21;
 2> else:
 3> set all bits in reserved to 0;

1> else if out of coverage on the frequency used for V2X sidelink communication as defined in TS 36.304 [4, 11.4]; and the concerned frequency is included in v2x-InterFreqInfoList in RRCConnectionReconfiguration or in v2x-InterFreqInfoList within SystemInformationBlockType21 of the serving cell/ PCell:
 2> set inCoverage to TRUE;
 2> set sl-Bandwidth to the value of the corresponding field included in v2x-InterFreqInfoList;
 2> set subframeAssignmentSL and reserved to the value of the corresponding field included in the preconfigured sidelink parameters (i.e. v2x-CommPreconfigGeneral in SL-V2X-Preconfiguration defined in 9.3);

1> else if out of coverage on the frequency used for V2X sidelink communication as defined in TS 36.304 [4, 11.4]; and the UE selects GNSS timing as the synchronization reference source and syncOffsetIndicator3 is not included in SL-V2X-Preconfiguration:
 2> set inCoverage to TRUE;
 2> set sl-Bandwidth, subframeAssignmentSL and reserved to the value of the corresponding field included in the preconfigured sidelink parameters (i.e. v2x-CommPreconfigGeneral in SL-V2X-Preconfiguration defined in 9.3);

1> else if the UE has a selected SyncRef UE (as defined in 5.10.8):
 2> set inCoverage to FALSE;

2> set sl-Bandwidth, subframeAssignmentSL and reserved to the value of the corresponding field included in the received MasterInformationBlock-SL or MasterInformationBlock-SL-V2X;

1> else:
2> set inCoverage to FALSE;
2> set sl-Bandwidth, subframeAssignmentSL and reserved to the value of the corresponding field included in the preconfigured sidelink parameters (i.e. preconfigGeneral in SL-Preconfiguration or v2x-CommPreconfigGeneral in SL-V2X-Preconfiguration defined in 9.3);
1> set directFrameNumber and directSubframeNumber according to the subframe used to transmit the SLSS, as specified in 5.10.7.3;
1> submit the MasterInformationBlock-SL or MasterInformationBlock-SL-V2X message to lower layers for transmission upon which the procedure ends;

5.10.7.5 Void

5.10.8 Sidelink synchronisation reference

5.10.8.1 General

The purpose of this procedure is to select a synchronisation reference and used a.o. when transmitting sidelink communication, V2X sidelink communication, sidelink discovery or synchronisation information.

5.10.8.2 Selection and reselection of synchronisation reference

The UE shall:

1> if triggered by V2X sidelink communication, and in coverage on the frequency for V2X sidelink communication;

1> if triggered by V2X sidelink communication, and out of coverage on the frequency for V2X sidelink communication, and the frequency used to transmit V2X sidelink communication is included in v2x-InterFreqInfoList in RRCConnectionReconfiguration or in v2x-InterFreqInfoList within SystemInformationBlockType21 of the serving cell/ PCell:

2> if typeTxSync is configured for the concerned frequency and set to enb:
3> select a cell as the synchronization reference source as defined in 5.10.13.3;

2> else if typeTxSync for the concerned frequency is not configured or is set to gnss, and GNSS is reliable in accordance with TS 36.101 [42] and TS 36.133 [16]:
3> select GNSS as the synchronization reference source;

2> else (i.e., there is no GNSS which is reliable in accordance with TS 36.101 [42] and TS 36.133 [16]):
3> search SLSSID=0 on the concerned frequency to detect candidate SLSS, in accordance with TS 36.101 [42] and TS 36.133 [16];
3> when evaluating the detected SLSS, apply layer 3 filtering as specified in 5.5.3.2 using the preconfigured filterCoefficient as defined in 9.3, before using the S-RSRP measurement results;
3> if the S-RSRP of the SyncRef UE identified by the detected SLSS exceeds the minimum requirement defined in TS 36.133 [16]:
4> select the SyncRef UE;
3> else (i.e., no SLSSID=0 detected):
4> select a cell as the synchronization reference source as defined in 5.10.13.3;
else, if triggered by V2X sidelink communication, and out of coverage on the frequency for V2X sidelink communication, and for the frequency used for V2X sidelink communication, if syncPriority in SL-V2X-Preconfiguration is set to gns and GNSS is reliable in accordance with TS 36.101 [42] and TS 36.133 [16]:

2> select GNSS as the synchronization reference source;

else, for the frequency used for sidelink communication, V2X sidelink communication or sidelink discovery, if out of coverage on that frequency as defined in TS 36.304 [4, 11.4]:

2> perform a full search (i.e. covering all subframes and all possible SLSSIDs) to detect candidate SLSS, in accordance with TS 36.133 [16]

2> when evaluating the one or more detected SLSSIDs, apply layer 3 filtering as specified in 5.5.3.2 using the preconfigured filterCoefficient as defined in 9.3, before using the S-RSRP measurement results;

2> if the UE has selected a SyncRef UE:

3> if the S-RSRP of the strongest candidate SyncRef UE exceeds the minimum requirement TS 36.133 [16] by syncRefMinHyst and the strongest candidate SyncRef UE belongs to the same priority group as the current SyncRef UE and the S-RSRP of the strongest candidate SyncRef UE exceeds the S-RSRP of the current SyncRef UE by syncRefDiffHyst; or

3> if the S-RSRP of the candidate SyncRef UE exceeds the minimum requirement TS 36.133 [16] by syncRefMinHyst and the candidate SyncRef UE belongs to a higher priority group than the current SyncRef UE; or

3> if GNSS becomes reliable in accordance with TS 36.101 [42] and TS 36.133 [16], and GNSS belongs to a higher priority group than the current SyncRef UE; or

3> if the S-RSRP of the current SyncRef UE is less than the minimum requirement defined in TS 36.133 [16]:

4> consider no SyncRef UE to be selected;

2> if the UE has selected GNSS as the synchronization reference for V2X sidelink communication:

3> if the S-RSRP of the candidate SyncRef UE exceeds the minimum requirement defined in TS 36.133 [16] by syncRefMinHyst and the candidate SyncRef UE belongs to a higher priority group than GNSS; or

3> if GNSS becomes not reliable in accordance with TS 36.101 [42] and TS 36.133 [16]:

4> consider GNSS not to be selected;

2> if the UE has not selected a SyncRef UE and has not selected GNSS as synchronization reference source:

3> if not concerning V2X sidelink communication, and if the UE detects one or more SLSSIDs for which the S-RSRP exceeds the minimum requirement defined in TS 36.133 [16] by syncRefMinHyst and for which the UE received the corresponding MasterInformationBlock-SL message (candidate SyncRef UEs), select a SyncRef UE according to the following priority group order:

4> UEs of which inCoverage, included in the MasterInformationBlock-SL message received from this UE, is set to TRUE, starting with the UE with the highest S-RSRP result (priority group 1);

4> UEs of which SLSSID is part of the set defined for in coverage, starting with the UE with the highest S-RSRP result (priority group 2);

4> Other UEs, starting with the UE with the highest S-RSRP result (priority group 3);

3> for V2X sidelink communication, if the UE detects one or more SLSSIDs for which the S-RSRP exceeds the minimum requirement defined in TS 36.133 [16] by syncRefMinHyst and for which the UE received the corresponding MasterInformationBlock-SL-V2X message (candidate SyncRef UEs), or if the UE detects GNSS that is reliable in accordance with TS 36.101 [42] and TS 36.133 [16], select a synchronization reference according to the following priority group order:

4> if syncPriority corresponding to the concerned frequency in SL-V2X-Preconfiguration is set to enb:
5> UEs of which SLSSID is part of the set defined for in coverage, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to TRUE, starting with the UE with the highest S-RSRP result (priority group 1);

5> UE of which SLSSID is part of the set defined for in coverage, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to FALSE, starting with the UE with the highest S-RSRP result (priority group 2);

5> GNSS that is reliable in accordance with TS 36.101 [42] and TS 36.133 [16] (priority group 3);

5> UEs of which SLSSID is 0, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to TRUE, or of which SLSSID is 0 and SLSS is transmitted on subframes indicated by syncOffsetIndicator3, starting with the UE with the highest S-RSRP result (priority group 4);

5> UEs of which SLSSID is 0 and is not transmitted on subframes indicated by syncOffsetIndicator3, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to FALSE, starting with the UE with the highest S-RSRP result (priority group 5);

5> UEs of which SLSSID is 169, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to FALSE, starting with the UE with the highest S-RSRP result (priority group 5);

5> Other UEs, starting with the UE with the highest S-RSRP result (priority group 6);

4> if syncPriority corresponding to the concerned frequency in SL-V2X-Preconfiguration is set to gnss:

5> GNSS that is reliable in accordance with TS 36.101 [42] and TS 36.133 [16] (priority group 1);

5> UEs of which SLSSID is part of the set defined for in coverage, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to TRUE, starting with the UE with the highest S-RSRP result (priority group 2);

5> UEs of which SLSSID is 0, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to TRUE, or of which SLSSID is 0 and SLSS is transmitted on subframes indicated by syncOffsetIndicator3, starting with the UE with the highest S-RSRP result (priority group 2);

5> UE of which SLSSID is part of the set defined for in coverage, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to FALSE, starting with the UE with the highest S-RSRP result (priority group 3);

5> UEs of which SLSSID is 0 and is not transmitted on subframes indicated by syncOffsetIndicator3, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to FALSE, starting with the UE with the highest S-RSRP result (priority group 3);

5> UEs of which SLSSID is 169, and inCoverage, included in the MasterInformationBlock-SL-V2X message received from this UE, is set to FALSE, starting with the UE with the highest S-RSRP result (priority group 3);

5> Other UEs, starting with the UE with the highest S-RSRP result (priority group 4);

5.10.9 Sidelink common control information

5.10.9.1 General

The sidelink common control information is carried by a single message, the MasterInformationBlock-SL (MIB-SL) message for sidelink discovery and sidelink communication or the MasterInformationBlock-SL-V2X (MIB-SL-V2X) message for V2X sidelink communication. The MIB-SL or MIB-SL-V2X includes timing information as well as some configuration parameters and is transmitted via SL-BCH.

The MIB-SL for sidelink discovery and sidelink communication uses a fixed schedule with a periodicity of 40 ms without repetitions. In particular, the MIB-SL is scheduled in subframes indicated by syncOffsetIndicator-r12 i.e. for which \((10^*\text{DFN} + \text{subframe number}) \mod 40 = \text{syncOffsetIndicator-r12}\).
The MIB-SL-V2X for V2X sidelink communication uses a fixed schedule with a periodicity of 160 ms without repetitions. In particular, the MIB-SL-V2X is scheduled in subframes indicated by SL-$Offset$-$Indicator$-$Sync$ i.e. for which $(10^*$DFN + subframe number) mod 160 = SL-$Offset$-$Indicator$-$Sync$.

The sidelink common control information may change at any transmission i.e. neither a modification period nor a change notification mechanism is used.

A UE configured to receive or transmit sidelink communication or PS related sidelink discovery shall:

1> if the UE has a selected SyncRef UE, as specified in 5.10.8.2:
2> ensure having a valid version of the $MasterInformationBlock$-SL message of that SyncRefUE;

A UE configured to receive or transmit V2X sidelink communication shall:

1> if the UE has a selected SyncRef UE, as specified in 5.10.8.2:
2> ensure having a valid version of the $MasterInformationBlock$-SL-$V2X$ message of that SyncRefUE;

5.10.9.2 Actions related to reception of $MasterInformationBlock$-SL/ $MasterInformationBlock$-SL-$V2X$ message

Upon receiving $MasterInformationBlock$-SL or $MasterInformationBlock$-SL-$V2X$, the UE shall:

1> apply the values of sl-$Bandwidth$, $subframeAssignmentSL$, $directFrameNumber$ and $directSubframeNumber$ included in the received $MasterInformationBlock$-SL or $MasterInformationBlock$-SL-$V2X$ message;

5.10.10 Sidelink relay UE operation

5.10.10.1 General

This procedure is used by a UE supporting sidelink relay UE operation and involves evaluation of the AS-layer conditions that need to be met in order for upper layers to configure a sidelink relay UE to receive/ transmit relay related PS sidelink discovery/ relay related sidelink communication. The AS-layer conditions merely comprise of being configured with radio resources that can be used for transmission.

A UE that fulfils the criteria specified in 5.10.10.2 and 5.10.10.3 and that is configured by higher layers accordingly is acting as a sidelink relay UE.

5.10.10.2 AS-conditions for relay related sidelink communication transmission by sidelink relay UE

A UE capable of sidelink relay UE operation shall inform upper layers that it is configured with radio resources that can be used for relay related sidelink communication transmission if the following conditions are met:

1> if in RRC$_CONNECTED$; and if the UE is configured with $comm$-Tx-$Resources$; and the UE is configured with $comm$-Tx-$Allow$-$Relay$-$Dedicated$ set to true;

5.10.10.3 AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE

A UE capable of sidelink relay UE operation shall inform upper layers that it is configured with radio resources that can be used for relay PS related sidelink discovery transmission if the following conditions are met:

1> if in RRC$_IDLE$; and if the UE’s serving cell is suitable as defined in TS 36.304 [4]; and if $SystemInformationBlockType19$ includes $disc$-$Config$-PS including $disc$-Tx-$Pool$-PS-$Common$ and $disc$-$Config$-$Relay$; and if the sidelink relay UE threshold conditions as specified in 5.10.10.4 are met;

1> else if in RRC$_CONNECTED$; and if $disc$-Tx-$Resources$-PS is configured;
5.10.10.4 Sidelink relay UE threshold conditions

A UE capable of sidelink relay UE operation shall:

1> if the threshold conditions specified in this section were not met:

2> if neither $threshHigh$ nor $threshLow$ is included in $relayUE-Config$ within $SystemInformationBlockType19$:

3> consider the threshold conditions to be met (entry);

2> else if $threshHigh$ is not included in $relayUE-Config$ within $SystemInformationBlockType19$; or the RSRP measurement of the PCell, or the cell on which the UE camps, is below $threshHigh$ by $hystMax$ (also included within $relayUE-Config$);

2> if $threshLow$ is not included in $relayUE-Config$ within $SystemInformationBlockType19$; or the RSRP measurement of the PCell, or the cell on which the UE camps, is above $threshLow$ by $hystMin$ (also included within $relayUE-Config$):

3> consider the threshold conditions to be met (entry);

1> else:

2> if $threshHigh$ is included in $relayUE-Config$ within $SystemInformationBlockType19$; and the RSRP measurement of the PCell, or the cell on which the UE camps, is above $threshHigh$ (also included within $relayUE-Config$); or

2> if $threshLow$ is included in $relayUE-Config$ within $SystemInformationBlockType19$; and the RSRP measurement of the PCell, or the cell on which the UE camps, is below $threshLow$ (also included within $relayUE-Config$);

3> consider the threshold conditions not to be met (leave);

5.10.11 Sidelink remote UE operation

5.10.11.1 General

This procedure is used by a UE supporting sidelink remote UE operation and involves evaluation of the AS-layer conditions that need to be met in order for upper layers to configure a sidelink remote UE to receive/ transmit relay related sidelink PS discovery/ relay related sidelink communication. The AS-layer conditions merely comprise of being configured with radio resources that can be used for transmission, as well as whether or not having a selected sidelink relay UE.

5.10.11.2 AS-conditions for relay related sidelink communication transmission by sidelink remote UE

A UE capable of sidelink remote UE operation shall inform upper layers whether it is configured with radio resources that can be used for relay related sidelink communication transmission if the following conditions are met:

1> if the UE is out of coverage; and is preconfigured with $SL-Preconfiguration$ including $discTxPoolList$ and $preconfigRelay$;

1> else if in RRC_IDLE; and if the UE's serving cell is suitable as defined in TS 36.304 [4]; and if $SystemInformationBlockType18$ includes $commTxPoolNormalCommon$ and $commTxAllowRelayCommon$; and if $SystemInformationBlockType19$ includes $discConfigRelay$; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met;

1> else if in RRC_CONNECTED; and if the UE is configured with $commTxResources$; and the UE is configured with $commTxAllowRelayDedicated$ set to true;
5.10.11.3 AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE

A UE capable of sidelink remote UE operation shall inform upper layers whether it is configured with radio resources that can be used for relay PS related sidelink discovery transmission if the following conditions are met:

1> if the UE is out of coverage; and is preconfigured with SL-Preconfiguration including discTxPoolList and preconfigRelay;
1> else if in RRC_IDLE; and if the UE’s serving cell is suitable as defined in TS 36.304 [4]; and if SystemInformationBlockType19 includes discConfigPS including discTxPoolPS-Common and discConfigRelay; and if the sidelink remote UE threshold conditions as specified in 5.10.11.5 are met;
1> else if in RRC_CONNECTED; and if discTxResourcesPS is configured;

5.10.11.4 Selection and reselection of sidelink relay UE

A UE capable of sidelink remote UE operation that is configured by upper layers to search for a sidelink relay UE shall:

1> if out of coverage on the frequency used for sidelink communication, as defined in TS 36.304 [4, 11.4]; or
1> if the serving frequency is used for sidelink communication and the RSRP measurement of the cell on which the UE camps (RRC_IDLE)/ the PCell (RRC_CONNECTED) is below threshHigh within remoteUE-Config:
 2> search for candidate sidelink relay UEs, in accordance with TS 36.133 [16]
 2> when evaluating the one or more detected sidelink relay UEs, apply layer 3 filtering as specified in 5.5.3.2 across measurements that concern the same ProSe Relay UE ID and using the filterCoefficient in SystemInformationBlockType19 (in coverage) or the preconfigured filterCoefficient as defined in 9.3(out of coverage), before using the SD-RSRP measurement results;

NOTE 1: The details of the interaction with upper layers are up to UE implementation.

2> if the UE does not have a selected sidelink relay UE:
 3> select a candidate sidelink relay UE which SD-RSRP exceeds q-RxLevMin included in either reselectionInfoIC (in coverage) or reselectionInfoOoC (out of coverage) by minHyst;
2> else if SD-RSRP of the currently selected sidelink relay UE is below q-RxLevMin included in either reselectionInfoIC (in coverage) or reselectionInfoOoC (out of coverage); or if upper layers indicate not to use the currently selected sidelink relay: (i.e. sidelink relay UE reselection):
 3> select a candidate sidelink relay UE which SD-RSRP exceeds q-RxLevMin included in either reselectionInfoIC (in coverage) or reselectionInfoOoC (out of coverage) by minHyst;
2> else if the UE did not detect any candidate sidelink relay UE which SD-RSRP exceeds q-RxLevMin included in either reselectionInfoIC (in coverage) or reselectionInfoOoC (out of coverage) by minHyst:
 3> consider no sidelink relay UE to be selected;

NOTE 2: The UE may perform sidelink relay UE reselection in a manner resulting in selection of the sidelink relay UE, amongst all candidate sidelink relay UEs meeting higher layer criteria, that has the best radio link quality. Further details, including interaction with upper layers, are up to UE implementation.

5.10.11.5 Sidelink remote UE threshold conditions

A UE capable of sidelink remote UE operation shall:

1> if the threshold conditions specified in this section were not met:
 2> if threshHigh is not included in remoteUE-Config within SystemInformationBlockType19; or
 2> if threshHigh is included in remoteUE-Config within SystemInformationBlockType19; and the RSRP measurement of the PCell, or the cell on which the UE camps, is below threshHigh by hystMax (also included within remoteUE-Config):
5.10.12 V2X sidelink communication monitoring

A UE capable of V2X sidelink communication that is configured by upper layers to receive V2X sidelink communication shall:

1> if the conditions for sidelink operation as defined in 5.10.1d are met:

2> if in coverage on the frequency used for V2X sidelink communication, as defined in TS 36.304 [4, 11.4]:

3> if the frequency used to receive V2X sidelink communication is included in v2x-InterFreqInfoList within RRCConnectionReconfiguration or in v2x-InterFreqInfoList within SystemInformationBlockType19 of the serving cell/PCell, and v2x-CommRxPool is included in SL-V2X-InterFreqUE-Config within v2x-UE-ConfigList in the entry of v2x-InterFreqInfoList for the concerned frequency:

4> configure lower layers to monitor sidelink control information and the corresponding data using the pool of resources indicated in v2x-CommRxPool;

3> else:

4> configure lower layers to monitor sidelink control information and the corresponding data using the pool of resources indicated in v2x-CommRxPool;

5> else (i.e. out of coverage on the frequency used for V2X sidelink communication, as defined in TS 36.304 [4, 11.4]):

3> if the frequency used to receive V2X sidelink communication is included in v2x-InterFreqInfoList within RRCConnectionReconfiguration or in v2x-InterFreqInfoList within SystemInformationBlockType21 of the serving cell/PCell, and v2x-CommRxPool is included in SL-V2X-InterFreqUE-Config within v2x-UE-ConfigList in the entry of v2x-InterFreqInfoList for the concerned frequency:

4> configure lower layers to monitor sidelink control information and the corresponding data using the pool of resources indicated in v2x-CommRxPool;

3> else:

4> configure lower layers to monitor sidelink control information and the corresponding data using the pool of resources that were preconfigured (i.e. v2x-CommRxPoolList in SL-V2X-Preconfiguration defined in 9.3);

5.10.13 V2X sidelink communication transmission

5.10.13.1 Transmission of V2X sidelink communication

A UE capable of V2X sidelink communication that is configured by upper layers to transmit V2X sidelink communication and has related data to be transmitted shall:

1> if the conditions for sidelink operation as defined in 5.10.1d are met:
2> if in coverage on the frequency used for V2X sidelink communication as defined in TS 36.304 [4, 11.4]; or

2> if the frequency used to transmit V2X sidelink communication is included in \texttt{v2x-InterFreqInfoList} in \texttt{RRCConnectionReconfiguration} or in \texttt{v2x-InterFreqInfoList} within \texttt{SystemInformationBlockType21};

3> if the UE is in RRC_CONNECTED and uses the PCell or the frequency included in \texttt{v2x-InterFreqInfoList} in \texttt{RRCConnectionReconfiguration} for V2X sidelink communication:

4> if the UE is configured, by the current PCell with \texttt{commTxResources} set to \texttt{scheduled}:

5> if T310 or T311 is running; and if the PCell at which the UE detected physical layer problems or radio link failure broadcasts \texttt{SystemInformationBlockType21} including \texttt{v2x-CommTxPoolExceptional} in \texttt{sl-V2X-ConfigCommon}, or \texttt{v2x-CommTxPoolExceptional} is included in \texttt{v2x-InterFreqInfoList} for the concerned frequency in \texttt{SystemInformationBlockType21} or \texttt{RRCConnectionReconfiguration}; or

5> if T301 is running and the cell on which the UE initiated connection re-establishment broadcasts \texttt{SystemInformationBlockType21} including \texttt{v2x-CommTxPoolExceptional} in \texttt{sl-V2X-ConfigCommon}, or \texttt{v2x-CommTxPoolExceptional} is included in \texttt{v2x-InterFreqInfoList} for the concerned frequency in \texttt{RRCConnectionReconfiguration}; or

5> if T304 is running and the UE is configured with \texttt{v2x-CommTxPoolExceptional} included in \texttt{mobilityControlInfoV2X} in \texttt{RRCConnectionReconfiguration} or in \texttt{v2x-InterFreqInfoList} for the concerned frequency in \texttt{RRCConnectionReconfiguration};

6> configure lower layers to transmit the sidelink control information and the corresponding data based on random selection using the pool of resources indicated by \texttt{v2x-CommTxPoolExceptional} as defined in TS 36.321 [6];

5> else:

6> configure lower layers to request E-UTRAN to assign transmission resources for V2X sidelink communication;

4> else if the UE is configured with \texttt{v2x-CommTxPoolNormalDedicated} or \texttt{v2x-CommTxPoolNormal} or \texttt{p2x-CommTxPoolNormal} in the entry of \texttt{v2x-InterFreqInfoList} for the concerned frequency in \texttt{sl-V2X-ConfigDedicated} in \texttt{RRCConnectionReconfiguration}:

5> if the UE is configured to transmit non-P2X related V2X sidelink communication and a result of sensing on the resources configured in \texttt{v2x-CommTxPoolNormalDedicated} or \texttt{v2x-CommTxPoolNormal} in the entry of \texttt{v2x-InterFreqInfoList} for the concerned frequency in \texttt{RRCConnectionReconfiguration} is not available in accordance with TS 36.213 [23]; or

5> if the UE is configured to transmit P2X related V2X sidelink communication and selects to use partial sensing according to 5.10.13.1a, and a result of partial sensing on the resources configured in \texttt{v2x-CommTxPoolNormalDedicated} or \texttt{p2x-CommTxPoolNormal} in the entry of \texttt{v2x-InterFreqInfoList} for the concerned frequency in \texttt{RRCConnectionReconfiguration} is not available in accordance with TS 36.213 [23];

6> if \texttt{v2x-CommTxPoolExceptional} is included in \texttt{mobilityControlInfoV2X} in \texttt{RRCConnectionReconfiguration} (i.e., handover case); or

6> if \texttt{v2x-CommTxPoolExceptional} is included in the entry of \texttt{v2x-InterFreqInfoList} for the concerned frequency in \texttt{RRCConnectionReconfiguration}; or

6> if the PCell broadcasts \texttt{SystemInformationBlockType21} including \texttt{v2x-CommTxPoolExceptional} in \texttt{sl-V2X-ConfigCommon} or \texttt{v2x-CommTxPoolExceptional} in \texttt{v2x-InterFreqInfoList} for the concerned frequency:

7> configure lower layers to transmit the sidelink control information and the corresponding data based on random selection using the pool of resources indicated by \texttt{v2x-CommTxPoolExceptional} as defined in TS 36.321 [6];

5> else if the UE is configured to transmit P2X related V2X sidelink communication:

6> select a resource pool according to 5.10.13.2;
6> perform P2X related V2X sidelink communication according to 5.10.13.1a;

5> else if the UE is configured to transmit non-P2X related V2X sidelink communication:

6> configure lower layers to transmit the sidelink control information and the corresponding data based on sensing (as defined in TS 36.321 [6] and TS 36.213 [23]) using one of the resource pools indicated by v2x-commTxPoolNormalDedicated or v2x-CommTxPoolNormal in the entry of v2x-InterFreqInfoList for the concerned frequency, which is selected according to 5.10.13.2;

3> else:

4> if the cell chosen for V2X sidelink communication transmission broadcasts SystemInformationBlockType21:

5> if the UE is configured to transmit non-P2X related V2X sidelink communication, and if SystemInformationBlockType21 includes v2x-CommTxPoolNormalCommon or v2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency in sl-V2X-ConfigCommon and a result of sensing on the resources configured in v2x-CommTxPoolNormalCommon or v2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency is available in accordance with TS 36.213 [23]:

6> configure lower layers to transmit the sidelink control information and the corresponding data based on sensing (as defined in TS 36.321 [6] and TS 36.213 [23]) using one of the resource pools indicated by v2x-CommTxPoolNormalCommon or v2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency, which is selected according to 5.10.13.2;

5> else if the UE is configured to transmit P2X related V2X sidelink communication, and if SystemInformationBlockType21 includes p2x-CommTxPoolNormalCommon or p2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency in sl-V2X-ConfigCommon, and if the UE selects to use random selection according to 5.10.13.1a, or selects to use partial sensing according to 5.10.13.1a and a result of partial sensing on the resources configured in p2x-CommTxPoolNormalCommon or p2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency is available in accordance with TS 36.213 [23]:

6> select a resource pool from p2x-CommTxPoolNormalCommon or p2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency according to 5.10.13.2, but ignoring zoneConfig in SystemInformationBlockType21;

6> perform P2X related V2X sidelink communication according to 5.10.13.1a;

5> else if SystemInformationBlockType21 includes v2x-CommTxPoolExceptional in sl-V2X-ConfigCommon or v2x-CommTxPoolExceptional in v2x-InterFreqInfoList for the concerned frequency;

6> from the moment the UE initiates connection establishment until receiving an RRCConnectionReconfiguration including sl-V2X-ConfigDedicated, or until receiving an RRCConnectionRelease or an RRCConnectionReject; or

6> if the UE is in RRC_IDLE and a result of sensing on the resources configured in v2x-CommTxPoolNormalCommon or v2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency in Systeminformationblocktype21 is not available in accordance with TS 36.213 [23]; or

6> if the UE is in RRC_IDLE and UE selects to use partial sensing according to 5.10.13.1a and a result of partial sensing on the resources configured in p2x-CommTxPoolNormalCommon or p2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency in Systeminformationblocktype21 is not available in accordance with TS 36.213 [23]:

7> configure lower layers to transmit the sidelink control information and the corresponding data based on random selection (as defined in TS 36.321 [6]) using the pool of resources indicated in v2x-CommTxPoolExceptional;

2> else:
3> configure lower layers to transmit the sidelink control information and the corresponding data based on sensing (as defined in TS 36.321 [6] and TS 36.213 [23]) using one of the resource pools indicated by v2x-CommTxPoolList in SL-V2X-Preconfiguration in case of non-P2X related V2X sidelink communication, which is selected according to 5.10.13.2, or using one of the resource pools indicated by p2x-CommTxPoolList in SL-V2X-Preconfiguration in case of P2X related V2X sidelink communication, which is selected according to 5.10.13.2, and in accordance with the timing of the selected reference as defined in 5.10.8;

The UE capable of non-P2X related V2X sidelink communication that is configured by upper layers to transmit V2X sidelink communication shall perform sensing on all pools of resources which may be used for transmission of the sidelink control information and the corresponding data. The pools of resources are indicated by SL-V2X-Preconfiguration, v2x-CommTxPoolNormalCommon, v2x-CommTxPoolNormalDedicated in sl-V2X-ConfigDedicated, or v2x-CommTxPoolNormal in v2x-InterFreqInfoList for the concerned frequency, as configured above.

NOTE 1: If there are multiple frequencies for which normal or exceptional pools are configured, it is up to UE implementation which frequency is selected for V2X sidelink communication transmission.

5.10.13.1a Transmission of P2X related V2X sidelink communication

A UE configured to transmit P2X related V2X sidelink communication shall:

1> if partialSensing is included and randomSelection is not included in resourceSelectionConfigP2X of the pool selected; or

1> if both partialSensing and randomSelection are included in resourceSelectionConfigP2X of the pool selected, and the UE selects to use partial sensing:

2> configure lower layers to transmit the sidelink control information and the corresponding data based on partial sensing (as defined in TS 36.321 [6] and TS 36.213 [23]) using the selected resource pool, if the UE supports partial sensing;

1> if partialSensing is not included and randomSelection is included in resourceSelectionConfigP2X of the pool selected.

2> configure lower layers to transmit the sidelink control information and the corresponding data based on random selection (as defined in TS 36.321 [6] and TS 36.213 [23]) using the selected resource pool;

1> if both partialSensing and randomSelection is included in resourceSelectionConfigP2X of the pool selected, and the UE selects to use random selection:

2> configure lower layers to transmit the sidelink control information and the corresponding data based on random selection using the selected resource pool and indicates to lower layers that transmissions of multiple MAC PDUs are allowed (as defined in TS 36.321 [6] and TS 36.213 [23]).

NOTE: If both partialSensing and randomSelection is included in resourceSelectionConfigP2X of the pool selected, the selection between partial sensing and random selection is left to UE implementation.

5.10.13.2 V2X sidelink communication transmission pool selection

For a frequency used for V2X sidelink communication, if zoneConfig is not ignored as specified in 5.10.13.1, the UE configured by upper layers for V2X sidelink communication shall only use the pool which corresponds to geographical coordinates of the UE, if zoneConfig is included in SystemInformationBlockType21 of the serving cell (RRC_IDLE)/PCell (RRC_CONNECTED) or in RRCConnectionReconfiguration for the concerned frequency, and the UE is configured to use resource pools provided by RRC signalling for the concerned frequency; or if zoneConfig is included in SL-V2X-Preconfiguration for the concerned frequency, and the UE is configured to use resource pools in SL-V2X-Preconfiguration for the frequency, according to 5.10.13.1. The UE shall only use the pool which is associated with the synchronization reference source selected in accordance with 5.10.8.2.

1> if the UE is configured to transmit on p2x-CommTxPoolNormalCommon or on p2x-CommTxPoolNormal in v2x-InterFreqInfoList in SystemInformationBlockType21 according to 5.10.13.1; or

1> if the UE is configured to transmit on p2x-CommTxPoolList-r14 in SL-V2X-Preconfiguration according to 5.10.13.1; or
1> if zoneConfig is not included in SystemInformationBlockType21 and the UE is configured to transmit on v2x-CommTxPoolNormalCommon or v2x-CommTxPoolNormalDedicated; or

1> if zoneConfig is included in SystemInformationBlockType21 and the UE is configured to transmit on v2x-CommTxPoolNormalDedicated for P2X related V2X sidelink communication and zoneID is not included in v2x-CommTxPoolNormalDedicated; or

1> if zoneConfig is not included in the entry of v2x-InterFreqInfoList for the concerned frequency and the UE is configured to transmit on v2x-CommTxPoolNormal in v2x-InterFreqInfoList or p2x-CommTxPoolNormal in v2x-InterFreqInfoList in RRCConnectionReconfiguration; or

1> if zoneConfig is not included in SL-V2X-Preconfiguration for the concerned frequency and the UE is configured to transmit on v2x-CommTxPoolList in SL-V2X-Preconfiguration for the concerned frequency:

2> select the first pool associated with the synchronization reference source selected in accordance with 5.10.8.2;

1> if zoneConfig is included in SystemInformationBlockType21 and the UE is configured to transmit on v2x-CommTxPoolNormalCommon or v2x-CommTxPoolNormalDedicated for non-P2X related V2X sidelink communication; or

1> if zoneConfig is included in SystemInformationBlockType21 and the UE is configured to transmit on v2x-CommTxPoolNormalDedicated for P2X related V2X sidelink communication and zoneID is included in v2x-CommTxPoolNormalDedicated; or

1> if zoneConfig is included in the entry of v2x-InterFreqInfoList for the concerned frequency and the UE is configured to transmit on v2x-CommTxPoolNormal in v2x-InterFreqInfoList or p2x-CommTxPoolNormal in v2x-InterFreqInfoList in RRCConnectionReconfiguration; or

1> if zoneConfig is included in SL-V2X-Preconfiguration for the concerned frequency and the UE is configured to transmit on v2x-CommTxPoolList in SL-V2X-Preconfiguration for the concerned frequency:

2> select the pool configured with zoneID equal to the zone identity determined below and associated with the synchronization reference source selected in accordance with 5.10.8.2;

The UE shall determine an identity of the zone (i.e. Zone_id) in which it is located using the following formulae, if zoneConfig is included in SystemInformationBlockType21 or in SL-V2X-Preconfiguration:

\[
\begin{align*}
 x_1 &= \text{Floor} \left(\frac{x}{L} \right) \text{Mod} \; N_x; \\
 y_1 &= \text{Floor} \left(\frac{y}{W} \right) \text{Mod} \; N_y; \\
 \text{Zone}_i &= y_1 \times N_x + x_1.
\end{align*}
\]

The parameters in the formulae are defined as follows:

- **L** is the value of zoneLength included in zoneConfig in SystemInformationBlockType21 or in SL-V2X-Preconfiguration;

- **W** is the value of zoneWidth included in zoneConfig in SystemInformationBlockType21 or in SL-V2X-Preconfiguration;

- **N_x** is the value of zoneIdLongiMod included in zoneConfig in SystemInformationBlockType21 or in SL-V2X-Preconfiguration;

- **N_y** is the value of zoneIdLatiMod included in zoneConfig in SystemInformationBlockType21 or in SL-V2X-Preconfiguration;

- **x** is the geodesic distance in longitude between UE’s current location and geographical coordinates (0, 0) according to WGS84 model [80] and it is expressed in meters;

- **y** is the geodesic distance in latitude between UE’s current location and geographical coordinates (0, 0) according to WGS84 model [80] and it is expressed in meters.

The UE shall select a pool of resources which includes a zoneID equals to the Zone_id calculated according to above mentioned formulae and indicated by v2x-CommTxPoolNormalDedicated, v2x-CommTxPoolNormalCommon, v2x-
CommTxPoolNormal in v2x-InterFreqInfoList or p2x-CommTxPoolNormal in v2x-InterFreqInfoList in RRCConnectionReconfiguration, or v2x-CommTxPoolList according to 5.10.13.1.

NOTE 1: The UE uses its latest geographical coordinates to perform resource pool selection.

NOTE 2: If geographical coordinates are not available and zone specific TX resource pools are configured for the concerned frequency, it is up to UE implementation which resource pool is selected for V2X sidelink communication transmission.

5.10.13.3 V2X sidelink communication transmission reference cell selection

A UE capable of V2X sidelink communication that is configured by upper layers to transmit V2X sidelink communication shall:

1> for each frequency used to transmit V2X sidelink communication, select a cell to be used as reference for synchronisation and DL measurements in accordance with the following:

2> if the frequency concerns the primary frequency:
 3> use the PCell (RRC_CONNECTED) or the serving cell (RRC_IDLE) as reference;

2> else if the frequency concerns a secondary frequency:
 3> use the concerned SCell as reference;

2> else if the UE is in coverage of the concerned frequency:
 3> use the DL frequency paired with the one used to transmit V2X sidelink communication as reference;

2> else (i.e., out of coverage on the concerned frequency):
 3> use the PCell (RRC_CONNECTED) or the serving cell (RRC_IDLE) as reference, if needed;

5.10.14 DFN derivation from GNSS

When the UE selects GNSS as the synchronization reference source, the DFN used for V2X sidelink communication is derived from the current UTC time, by the following formulae:

\[
DFN = \text{Floor} \left(0.1 \times (T_{current} - T_{ref} - \text{offsetDFN}) \right) \mod 1024
\]

\[
\text{SubframeNumber} = \text{Floor} \left((T_{current} - T_{ref} - \text{offsetDFN}) \right) \mod 10
\]

Where:

- \(T_{current} \) is the current UTC time that obtained from GNSS. This value is expressed in milliseconds;
- \(T_{ref} \) is the reference UTC time 00:00:00 on Gregorian calendar date 1 January, 1900 (midnight between Thursday, December 31, 1899 and Friday, January 1, 1900). This value is expressed in milliseconds;
- \(\text{OffsetDFN} \) is the value offsetDFN if configured, otherwise it is zero. This value is expressed in milliseconds.

NOTE: In case of leap second change event, how V2X UE obtains the scheduled time of leap second change to adjust \(T_{current} \) correspondingly is left to UE implementation. How V2X UE handles the sudden discontinuity of DFN is left to UE implementation.
6 Protocol data units, formats and parameters (tabular & ASN.1)

6.1 General

The contents of each RRC message is specified in sub-clause 6.2 using ASN.1 to specify the message syntax and using tables when needed to provide further detailed information about the fields specified in the message syntax. The syntax of the information elements that are defined as stand-alone abstract types is further specified in a similar manner in sub-clause 6.3.

The need for fields to be present in a message or an abstract type, i.e., the ASN.1 fields that are specified as OPTIONAL in the abstract notation (ASN.1), is specified by means of comment text tags attached to the OPTIONAL statement in the abstract syntax. All comment text tags are available for use in the downlink direction only. The meaning of each tag is specified in table 6.1-1.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond conditionTag (Used in downlink only)</td>
<td>Conditionally present</td>
</tr>
<tr>
<td>Need OP (Used in downlink only)</td>
<td>Optionally present</td>
</tr>
<tr>
<td>Need ON (Used in downlink only)</td>
<td>Optionally present, No action</td>
</tr>
<tr>
<td>Need OR (Used in downlink only)</td>
<td>Optionally present, Release</td>
</tr>
</tbody>
</table>

Any field with Need ON in system information shall be interpreted as Need OR.

Need codes may not be specified for a parent extension field/extension group, used in downlink, which includes one or more child extension fields. Upon absence of such a parent extension field/extension group, the UE shall:

- For each individual child extension field, including extensions that are mandatory to include in the optional group, act in accordance with the need code that is defined for the extension;
- Apply this behaviour not only for child extension fields included directly within the optional parent extension field/extension group, but also for extension fields defined at further nesting levels as long as for none of the fields in-between the concerned extension field and the parent extension field a need code is specified;

NOTE 1: The above applies for groups of non-critical extensions using double brackets (referred to as extension groups), as well as non-critical extensions at the end of a message or at the end of a structure contained in a BIT STRING or OCTET STRING (referred to as parent extension fields).
Need codes, conditions and ASN.1 defaults specified for a particular (child) field only apply in case the (parent) field including the particular field is present. This rule does not apply for optional parent extension fields/ extension groups without need codes.

NOTE 2: The previous rule implies that E-UTRAN has to include such a parent extension field to release a child field that is either:
- Optional with need OR, or
- Conditional while the UE releases the child field when absent.

The handling of need codes as specified in the previous is illustrated by means of an example, as shown in the following ASN.1.

```asn1
-- /example/ ASN1START
RRCMessage-r8-IEs ::= SEQUENCE {
  field1         InformationElement1,  OPTIONAL, -- Need ON
  field2         InformationElement2,  OPTIONAL, -- Need ON
  nonCriticalExtension     RRCMessage-v8a0-IEs    OPTIONAL
}
RRCMessage-v8a0-IEs ::= SEQUENCE {
  field3         InformationElement3,  OPTIONAL, -- Need ON
  nonCriticalExtension     RRCMessage-v940-IEs    OPTIONAL
}
RRCMessage-v940-IEs ::= SEQUENCE {
  field4         InformationElement4,  OPTIONAL, -- Need OR
  nonCriticalExtension     SEQUENCE {}      OPTIONAL
}
InformationElement1 ::= SEQUENCE {
  field11        InformationElement11    OPTIONAL, -- Need ON
  field12        InformationElement12    OPTIONAL, -- Need OR
  ...
  [[ field13        InformationElement13   OPTIONAL, -- Need OR
    field14        InformationElement14   OPTIONAL -- Need ON
  ]]
}
InformationElement2 ::= SEQUENCE {
  field21        InformationElement11    OPTIONAL, -- Need OR
  ...
}
-- ASN1STOP
```

The handling of need codes as specified in the previous implies that:
- if `field2` in `RRCMessage-r8-IEs` is absent, the UE does not modify `field21`;
- if `field2` in `RRCMessage-r8-IEs` is present but does not include `field21`, the UE releases `field21`;
- if the extension group containing `field13` is absent, the UE releases `field13` and does not modify `field14`;
- if `nonCriticalExtension` defined by IE `RRCMessage-v8a0-IEs` is absent, the UE does not modify `field3` and releases `field4`;

In the ASN.1 of this specification, the first bit of a bit string refers to the leftmost bit, unless stated otherwise.

6.2 RRC messages

NOTE: The messages included in this section reflect the current status of the discussions. Additional messages may be included at a later stage.
6.2.1 General message structure

- **EUTRA-RRC-Definitions**

This ASN.1 segment is the start of the E-UTRA RRC PDU definitions.

```
-- ASN1START
EUTRA-RRC-Definitions DEFINITIONS AUTOMATIC TAGS ::= BEGIN
-- ASN1STOP
```

- **BCCH-BCH-Message**

The **BCCH-BCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE via BCH on the BCCH logical channel.

```
-- ASN1START
BCCH-BCH-Message ::= SEQUENCE {
  message     BCCH-BCH-MessageType
}
BCCH-BCH-MessageType ::= MasterInformationBlock
-- ASN1STOP
```

- **BCCH-BCH-Message-MBMS**

The **BCCH-BCH-Message-MBMS** class is the set of RRC messages that may be sent from the E-UTRAN to the UE via BCH on the BCCH logical channel in an MBMS-dedicated cell.

```
-- ASN1START
BCCH-BCH-Message-MBMS ::= SEQUENCE {
  message     BCCH-BCH-MessageType-MBMS-r14
}
BCCH-BCH-MessageType-MBMS-r14 ::= MasterInformationBlock-MBMS-r14
-- ASN1STOP
```

- **BCCH-DL-SCH-Message**

The **BCCH-DL-SCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE via DL-SCH on the BCCH logical channel.

```
-- ASN1START
BCCH-DL-SCH-Message ::= SEQUENCE {
  message     BCCH-DL-SCH-MessageType
}
BCCH-DL-SCH-MessageType ::= CHOICE {
  c1      CHOICE {
    systemInformation      SystemInformation,
    systemInformationBlockType1    SystemInformationBlockType1
  },
  messageClassExtension SEQUENCE {}
}
-- ASN1STOP
```
-- **BCCH-DL-SCH-Message-BR**

The **BCCH-DL-SCH-Message-BR** class is the set of RRC messages that may be sent from the E-UTRAN to the UE via DL-SCH on the BR-BCCH logical channel.

```asn1
BCCH-DL-SCH-Message-BR ::= SEQUENCE {
  message     BCCH-DL-SCH-MessageType-BR-r13
}
BCCH-DL-SCH-MessageType-BR-r13 ::= CHOICE {
  c1      CHOICE {
    systemInformation-BR-r13    SystemInformation-BR-r13,
    systemInformationBlockType1-BR-r13  SystemInformationBlockType1-BR-r13
  },
  messageClassExtension SEQUENCE {}
}
```

-- **BCCH-DL-SCH-Message-MBMS**

The **BCCH-DL-SCH-Message-MBMS** class is the set of RRC messages that may be sent from the E-UTRAN to the UE via DL-SCH on the BCCH logical channel in an MBMS-dedicated cell.

```asn1
BCCH-DL-SCH-Message-MBMS ::= SEQUENCE {
  message      BCCH-DL-SCH-MessageType-MBMS-r14
}
BCCH-DL-SCH-MessageType-MBMS-r14 ::= CHOICE {
  c1      CHOICE {
    systemInformation-MBMS-r14      SystemInformation-MBMS-r14,
    systemInformationBlockType1-MBMS-r14    SystemInformationBlockType1-MBMS-r14
  },
  messageClassExtension SEQUENCE {}
}
```

-- **MCCH-Message**

The **MCCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the MCCH logical channel.

```asn1
MCCH-Message ::=  SEQUENCE {
  message     MCCH-MessageType
}
MCCH-MessageType ::= CHOICE {
  c1       CHOICE {
    mbsfnAreaConfiguration-r9  MBSFNAreaConfiguration-r9
  },
  later      CHOICE {
    c2        CHOICE{
      mbmsCountingRequest-r10   MBMSCountingRequest-r10
    },
    messageClassExtension SEQUENCE {}
  }
}
```
-- **PCCH-Message**

The **PCCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the PCCH logical channel.

```asn1
PCCH-Message ::= SEQUENCE {
  message     PCCH-MessageType
}
PCCH-MessageType ::= CHOICE {
  c1      CHOICE {
    paging         Paging,
    messageClassExtension SEQUENCE {},
  },
}
```

-- **DL-CCCH-Message**

The **DL-CCCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the downlink CCCH logical channel.

```asn1
DL-CCCH-Message ::= SEQUENCE {
  message     DL-CCCH-MessageType
}
DL-CCCH-MessageType ::= CHOICE {
  c1      CHOICE {
    rrcConnectionReestablishment   RRCConnectionReestablishment,
    rrcConnectionReestablishmentReject  RRCConnectionReestablishmentReject,
    rrcConnectionReject      RRCConnectionReject,
    rrcConnectionSetup      RRCConnectionSetup,
    messageClassExtension SEQUENCE {},
  },
}
```

-- **DL-DCCH-Message**

The **DL-DCCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE or from the E-UTRAN to the RN on the downlink DCCH logical channel.

```asn1
DL-DCCH-Message ::= SEQUENCE {
  message     DL-DCCH-MessageType
}
DL-DCCH-MessageType ::= CHOICE {
  c1      CHOICE {
    csfbParametersResponseCDMA2000   CSFBParametersResponseCDMA2000,
    dInformationTransfer           DLInformationTransfer,
    handoverFromEUTRAPreparationRequest HandoverFromEUTRAPreparationRequest,
    mobilityFromEUTRAPreparationRequest MobilityFromEUTRAPreparationRequest,
    rrcConnectionReconfiguration   RRCConnectionReconfiguration,
    rrcConnectionRelease            RRCConnectionRelease,
    securityModeCommand            SecurityModeCommand,
    ueCapabilityEnquiry             UECapabilityEnquiry,
    counterCheck                    CounterCheck,
    ueInformationRequest-r9          UEInformationRequest-r9,
    loggedMeasurementConfiguration-r10 LoggedMeasurementConfiguration-r10,
    rnReconfiguration-r10           RNReconfiguration-r10,
    rrcConnectionResume-r13         RRCConnectionResume-r13,
    spare3 NULL, spare2 NULL, spare1 NULL,
  },
}
```
UL-CCCH-Message

The **UL-CCCH-Message** class is the set of RRC messages that may be sent from the UE to the E-UTRAN on the uplink CCCH logical channel.

```
messageClassExtension SEQUENCE {}
}
-- ASN1STOP

UL-CCCH-Message ::= SEQUENCE {
message UL-CCCH-MessageType
}
UL-CCCH-MessageType ::= CHOICE {
c1 CHOICE {
rrcConnectionReestablishmentRequest RRCConnectionReestablishmentRequest,
rrcConnectionRequest RRCConnectionRequest
},
messageClassExtension CHOICE {
c2 CHOICE {
rrcConnectionResumeRequest-r13 RRCConnectionResumeRequest-r13
},
messageClassExtensionFuture-r13 SEQUENCE {}
}
}
-- ASN1STOP

UL-DCCH-Message

The **UL-DCCH-Message** class is the set of RRC messages that may be sent from the UE to the E-UTRAN or from the RN to the E-UTRAN on the uplink DCCH logical channel.

```
messageClassExtension SEQUENCE {}
}
-- ASN1STOP

UL-DCCH-Message ::= SEQUENCE {
message UL-DCCH-MessageType
}
UL-DCCH-MessageType ::= CHOICE {
c1 CHOICE {
 csfbParametersRequestCDMA2000 CSFBParametersRequestCDMA2000,
 measurementReport MeasurementReport,
 rrcConnectionReconfigurationComplete RRCConnectionReconfigurationComplete,
 rrcConnectionReestablishmentComplete RRCConnectionReestablishmentComplete,
 rrcConnectionSetupComplete RRCConnectionSetupComplete,
 securityModeComplete SecurityModeComplete,
 securityModeFailure SecurityModeFailure,
 ueCapabilityInformation UECapabilityInformation,
 ulHandoverPreparationTransfer ULHandoverPreparationTransfer,
 ulInformationTransfer ULInformationTransfer,
 counterCheckResponse CounterCheckResponse,
 ueInformationResponse-r9 UEInformationResponse-r9,
 proximityIndication-r9 ProximityIndication-r9,
 rnReconfigurationComplete-r10 RNReconfigurationComplete-r10,
 mbmsCountingResponse-r10 MBMSCountingResponse-r10,
 interFreqRSTDMeasurementIndication-r10 InterFreqRSTDMeasurementIndication-r10
},
messageClassExtension CHOICE {
c2 CHOICE {
 ueAssistanceInformation-r11 UEAssistanceInformation-r11,
 inDeviceCoexIndication-r11 InDeviceCoexIndication-r11,
 mbmsInterestIndication-r11 MBMSInterestIndication-r11,
 scgFailureInformation-r12 SCGFailureInformation-r12,
 sidelinkUEInformation-r12 SidelinkUEInformation-r12,
 wlanConnectionStatusReport-r13 WLANConnectionStatusReport-r13,
 rrcConnectionResumeComplete-r13 RRCConnectionResumeComplete-r13,
 spare9 NULL, spare8 NULL, spare7 NULL,
 spare6 NULL, spare5 NULL, spare4 NULL,
}
```
SC-MCCH-Message

The SC-MCCH-Message class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the SC-MCCH logical channel.

-- ASN1START

SC-MCCH-Message-r13 ::= SEQUENCE {
  message     SC-MCCH-MessageType-r13
}

SC-MCCH-MessageType-r13 ::= CHOICE {
  c1      CHOICE {
    scptmConfiguration-r13      SCPTMConfiguration-r13
  },
  messageClassExtension CHOICE {
    c2       CHOICE {
      scptmConfiguration-BR-r14    SCPTMConfiguration-BR-r14,
      spare         NULL
    },
    messageClassExtensionFuture-r14 SEQUENCE {}
  }
}

-- ASN1STOP

6.2.2 Message definitions

-- CounterCheck

The CounterCheck message is used by the E-UTRAN to indicate the current COUNT MSB values associated to each DRB and to request the UE to compare these to its COUNT MSB values and to report the comparison results to E-UTRAN.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

CounterCheck message

-- ASN1START

CounterCheck ::=   SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,
  criticalExtensions     CHOICE {
    c1         CHOICE {
      counterCheck-r8      CounterCheck-r8-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }

  CounterCheck-r8-IEs ::= SEQUENCE {
    drb-CountMSB-InfoList    DRB-CountMSB-InfoList,
    nonCriticalExtension    CounterCheck-v8a0-IEs    OPTIONAL
  }
}

-- ASN1STOP
CounterCheck-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension SEQUENCE () OPTIONAL
}

DRB-CountMSB-InfoList ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-CountMSB-Info

DRB-CountMSB-Info ::= SEQUENCE {
  drb-Identity DRB-Identity,
  countMSB-Uplink INTEGER(0..33554431),
  countMSB-Downlink INTEGER(0..33554431)
}

CounterCheck field descriptions

- **count-MSB-Downlink**
  Indicates the value of 25 MSBs from downlink COUNT associated to this DRB.

- **count-MSB-Uplink**
  Indicates the value of 25 MSBs from uplink COUNT associated to this DRB.

- **drb-CountMSB-InfoList**
  Indicates the MSBs of the COUNT values of the DRBs.

---

**CounterCheckResponse**

The `CounterCheckResponse` message is used by the UE to respond to a `CounterCheck` message.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

---

CounterCheckResponse ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    counterCheckResponse-r8 CounterCheckResponse-r8-IEs,
    criticalExtensionsFuture SEQUENCE ()
  }
}

CounterCheckResponse-r8-IEs ::= SEQUENCE {
  drb-CountInfoList DRB-CountInfoList,
  nonCriticalExtension CounterCheckResponse-v8a0-IEs OPTIONAL
}

CounterCheckResponse-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension SEQUENCE () OPTIONAL
}

DRB-CountInfoList ::= SEQUENCE (SIZE (0..maxDRB)) OF DRB-CountInfo

DRB-CountInfo ::= SEQUENCE {
  drb-Identity DRB-Identity,
  count-Uplink INTEGER(0..4294967295),
  count-Downlink INTEGER(0..4294967295)
}

-- ASN1STOP
CounterCheckResponse field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count-Downlink</td>
<td>Indicates the value of downlink COUNT associated to this DRB.</td>
</tr>
<tr>
<td>count-Uplink</td>
<td>Indicates the value of uplink COUNT associated to this DRB.</td>
</tr>
<tr>
<td>drb-CountInfoList</td>
<td>Indicates the COUNT values of the DRBs.</td>
</tr>
</tbody>
</table>

---

**CSFBParametersRequestCDMA2000**

The `CSFBParametersRequestCDMA2000` message is used by the UE to obtain the CDMA2000 1xRTT Parameters from the network. The UE needs these parameters to generate the CDMA2000 1xRTT Registration message used to register with the CDMA2000 1xRTT Network which is required to support CSFB to CDMA2000 1xRTT.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

---

### CSFBParametersRequestCDMA2000 message

```asn1
CSFBParametersRequestCDMA2000 ::= SEQUENCE {
 criticalExtensions CHOICE {
 csfbParametersRequestCDMA2000-r8 CSFBParametersRequestCDMA2000-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}
 }
}

CSFBParametersRequestCDMA2000-r8-IEs ::= SEQUENCE {
 nonCriticalExtension CSFBParametersRequestCDMA2000-v8a0-IEs OPTIONAL
}

CSFBParametersRequestCDMA2000-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
```

---

**CSFBParametersResponseCDMA2000**

The `CSFBParametersResponseCDMA2000` message is used to provide the CDMA2000 1xRTT Parameters to the UE so the UE can register with the CDMA2000 1xRTT Network to support CSFB to CDMA2000 1xRTT.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

---

### CSFBParametersResponseCDMA2000 message

```asn1
CSFBParametersResponseCDMA2000 ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 csfbParametersResponseCDMA2000-r8 CSFBParametersResponseCDMA2000-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}
 }
}
```
CSFBParametersResponseCDMA2000-r8-IEs ::= SEQUENCE {
  rand          RAND-CDMA2000,
  mobilityParameters MobilityParametersCDMA2000,
  nonCriticalExtension CSFBParametersResponseCDMA2000-v8a0-IEs OPTIONAL
}

CSFBParametersResponseCDMA2000-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension   SEQUENCE {} OPTIONAL
}

– DLInformationTransfer

The DLInformationTransfer message is used for the downlink transfer of NAS or non-3GPP dedicated information.

Signalling radio bearer: SRB2 or SRB1 (only if SRB2 not established yet. If SRB2 is suspended, E-UTRAN does not send this message until SRB2 is resumed.)

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

DLInformationTransfer message

DLInformationTransfer ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions       CHOICE {
    c1                     CHOICE {
      DLInformationTransfer-r8 DLInformationTransfer-r8-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}

DLInformationTransfer-r8-IEs ::= SEQUENCE {
  dedicatedInfoType       CHOICE {
    dedicatedInfoNAS       DedicatedInfoNAS,
    dedicatedInfoCDMA2000-1XRTT DedicatedInfoCDMA2000-1XRTT,
    dedicatedInfoCDMA2000-HRPD DedicatedInfoCDMA2000-HRPD
  },
  nonCriticalExtension    DLInformationTransfer-v8a0-IEs OPTIONAL
}

DLInformationTransfer-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension   SEQUENCE {} OPTIONAL
}

– HandoverFromEUTRAPreparationRequest (CDMA2000)

The HandoverFromEUTRAPreparationRequest message is used to trigger the handover preparation procedure with a CDMA2000 RAT. This message is also used to trigger a tunneled preparation procedure with a CDMA2000 1xRTT RAT to obtain traffic channel resources for the enhanced CS fallback to CDMA2000 1xRTT, which may also involve a concurrent preparation for handover to CDMA2000 HRPD. Also, this message is used to trigger the dual Rx/Tx redirection procedure with a CDMA2000 1xRTT RAT.
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

**HandoverFromEUTRAPreparationRequest message**

```asn1
HandoverFromEUTRAPreparationRequest ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE {
 handoverFromEUTRAPreparationRequest-r8
 HandoverFromEUTRAPreparationRequest-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
HandoverFromEUTRAPreparationRequest-r8-IEs ::= SEQUENCE {
 cdma2000-Type CDMA2000-Type,
 rand RAND-CDMA2000 OPTIONAL, -- Cond cdma2000-Type
 mobilityParameters MobilityParametersCDMA2000 OPTIONAL, -- Cond cdma2000-Type
 nonCriticalExtension HandoverFromEUTRAPreparationRequest-v890-IEs OPTIONAL
}
HandoverFromEUTRAPreparationRequest-v890-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension HandoverFromEUTRAPreparationRequest-v920-IEs OPTIONAL
}
HandoverFromEUTRAPreparationRequest-v920-IEs ::= SEQUENCE {
 concurrPrepCDMA2000-HRPD-r9 BOOLEAN OPTIONAL, -- Cond cdma2000-Type
 nonCriticalExtension HandoverFromEUTRAPreparationRequest-v1020-IEs OPTIONAL
}
HandoverFromEUTRAPreparationRequest-v1020-IEs ::= SEQUENCE {
 dualRxTxRedirectIndicator-r10 ENUMERATED {true} OPTIONAL, -- Cond cdma2000-1XRTT
 redirectCarrierCDMA2000-1XRTT-r10 CarrierFreqCDMA2000 OPTIONAL, -- Cond dualRxTxRedirect
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
```

**HandoverFromEUTRAPreparationRequest field descriptions**

**concurrPrepCDMA2000-HRPD**
Value TRUE indicates that upper layers should initiate concurrent preparation for handover to CDMA2000 HRPD in addition to preparation for enhanced CS fallback to CDMA2000 1xRTT.

**dualRxTxRedirectIndicator**
Value TRUE indicates that the second radio of the dual Rx/Tx UE is being redirected to CDMA2000 1xRTT [51].

**redirectCarrierCDMA2000-1XRTT**
Used to indicate the CDMA2000 1xRTT carrier frequency where the UE is being redirected to.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdma2000-1XRTT</td>
<td>The field is optionally present, need ON, if the cdma2000-Type = type1XRTT; otherwise it is not present.</td>
</tr>
<tr>
<td>cdma2000-Type</td>
<td>The field is mandatory present if the cdma2000-Type = type1XRTT; otherwise it is not present.</td>
</tr>
<tr>
<td>dualRxTxRedirect</td>
<td>The field is optionally present, need ON, if dualRxTxRedirectIndicator is present; otherwise it is not present.</td>
</tr>
</tbody>
</table>
The **InDeviceCoexIndication** message is used to inform E-UTRAN about IDC problems which cannot be solved by the UE itself, as well as to provide information that may assist E-UTRAN when resolving these problems.

**Signalling radio bearer:** SRB1  
**RLC-SAP:** AM  
**Logical channel:** DCCH  
**Direction:** UE to E-UTRAN

---

**InDeviceCoexIndication message**

```asn1
InDeviceCoexIndication-r11 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 inDeviceCoexIndication-r11 InDeviceCoexIndication-r11-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

InDeviceCoexIndication-r11-IEs ::= SEQUENCE {
 affectedCarrierFreqList-r11 AffectedCarrierFreqList-r11 OPTIONAL,
 tdm-AssistanceInfo-r11 TDM-AssistanceInfo-r11 OPTIONAL,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension InDeviceCoexIndication-v11d0-IEs OPTIONAL
}

InDeviceCoexIndication-v11d0-IEs ::= SEQUENCE {
 ul-CA-AssistanceInfo-r11 SEQUENCE {
 affectedCarrierFreqCombList-r11 AffectedCarrierFreqCombList-r11 OPTIONAL,
 victimSystemType-r11 VictimSystemType-r11
 } OPTIONAL,
 nonCriticalExtension InDeviceCoexIndication-v1310-IEs OPTIONAL
}

InDeviceCoexIndication-v1310-IEs ::= SEQUENCE {
 affectedCarrierFreqList-v1310 AffectedCarrierFreqList-v1310 OPTIONAL,
 affectedCarrierFreqCombList-r13 AffectedCarrierFreqCombList-r13 OPTIONAL,
 nonCriticalExtension InDeviceCoexIndication-v1360-IEs OPTIONAL
}

InDeviceCoexIndication-v1360-IEs ::= SEQUENCE {
 hardwareSharingProblem-r13 ENUMERATED {true} OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

AffectedCarrierFreqList-r11 ::= SEQUENCE (SIZE (1..maxFreqIDC-r11)) OF AffectedCarrierFreq-r11

AffectedCarrierFreqList-v1310 ::= SEQUENCE (SIZE (1..maxFreqIDC-r11)) OF AffectedCarrierFreq-v1310

AffectedCarrierFreq-r11 ::= SEQUENCE {
 carrierFreq-r11 MeasObjectId,
 interferenceDirection-r11 ENUMERATED {eutra, other, both, spare}
}

AffectedCarrierFreq-v1310 ::= SEQUENCE {
 carrierFreq-v1310 MeasObjectId-v1310
}

AffectedCarrierFreqCombList-r11 ::= SEQUENCE (SIZE (1..maxCombIDC-r11)) OF AffectedCarrierFreqComb-r11

AffectedCarrierFreqCombList-r13 ::= SEQUENCE (SIZE (1..maxCombIDC-r11)) OF AffectedCarrierFreqComb-r13

AffectedCarrierFreqComb-r11 ::= SEQUENCE (SIZE (2..maxServCell-r10)) OF MeasObjectId

AffectedCarrierFreqComb-r13 ::= SEQUENCE (SIZE (2..maxServCell-r13)) OF MeasObjectId
```
TDM-AssistanceInfo-r11 ::= CHOICE {
    drx-AssistanceInfo-r11      SEQUENCE {
        drx-CycleLength-r11      ENUMERATED {sf40, sf64, sf80, sf128, sf160,
                                             sf256, spare2, spare1},
        drx-Offset-r11           INTEGER (0..255) OPTIONAL,
        drx-ActiveTime-r11       ENUMERATED {sf20, sf30, sf40, sf60, sf80,
                                             sf100, spare2, spare1}
    },
    idc-SubframePatternList-r11 IDC-SubframePatternList-r11,
    ...
}

IDC-SubframePatternList-r11 ::= SEQUENCE (SIZE (1..maxSubframePatternIDC-r11)) OF IDC-SubframePattern-r11

IDC-SubframePattern-r11 ::= CHOICE {
    subframePatternFDD-r11     BIT STRING (SIZE (4)),
    subframePatternTDD-r11     CHOICE {
        subframeConfig0-r11     BIT STRING (SIZE (70)),
        subframeConfig1-5-r11    BIT STRING (SIZE (10)),
        subframeConfig6-r11     BIT STRING (SIZE (60))
    },
    ...
}

VictimSystemType-r11 ::= SEQUENCE {
    gps-r11        ENUMERATED {true}    OPTIONAL,
    glonass-r11     ENUMERATED {true}    OPTIONAL,
    bds-r11        ENUMERATED {true}    OPTIONAL,
    galileo-r11     ENUMERATED {true}    OPTIONAL,
    wlan-r11       ENUMERATED {true}    OPTIONAL,
    bluetooth-r11  ENUMERATED {true}    OPTIONAL
}

-- ASN1STOP
InDeviceCoexIndication field descriptions

**AffectedCarrierFreq**
If carrierFreq-v1310 is included, carrierFreq-r11 is ignored by eNB.

**affectedCarrierFreqCombList**
Indicates a list of E-UTRA carrier frequencies that are affected by IDC problems due to Inter-Modulation Distortion and harmonics from E-UTRA when configured with UL CA. affectedCarrierFreqCombList-r13 is used when more than 5 serving cells are configured or affected combinations contain MeasObjectId larger than 32. If affectedCarrierFreqCombList-r13 is included, affectedCarrierFreqCombList-r11 shall not be included.

**affectedCarrierFreqList**
List of E-UTRA carrier frequencies affected by IDC problems. If E-UTRAN includes affectedCarrierFreqList-v1310 it includes the same number of entries, and listed in the same order, as in affectedCarrierFreqList-r11.

**drx-ActiveTime**
Indicates the desired active time that the E-UTRAN is recommended to configure. Value in number of subframes. Value sf20 corresponds to 20 subframes, sf30 corresponds to 30 subframes and so on.

**affectedCarrierFreqCombList**
Indicates whether the UE has hardware sharing problems that the UE cannot solve by itself. The field is present (i.e. value true), if the UE has such hardware sharing problems. Otherwise the field is absent.

**drx-CycleLength**
Indicates the desired DRX cycle length that the E-UTRAN is recommended to configure. Value in number of subframes. Value sf40 corresponds to 40 subframes, sf64 corresponds to 64 subframes and so on.

**drx-Offset**
Indicates the desired DRX starting offset that the E-UTRAN is recommended to configure. The UE shall set the value of drx-Offset smaller than the value of drx-CycleLength. The starting frame and subframe satisfy the relation: [(SFN * 10) + subframe number] modulo (drx-CycleLength) = drx-Offset.

**hardwareSharingProblem**
Indicates whether the UE has hardware sharing problems that the UE cannot solve by itself. The field is present (i.e. value true), if the UE has such hardware sharing problems. Otherwise the field is absent.

**InterFreqRSTDMeasurementIndication**
The InterFreqRSTDMeasurementIndication message is used to indicate that the UE is going to either start or stop OTDOA inter-frequency RSTD measurement which requires measurement gaps as specified in TS 36.133 [16, 8.1.2.6]. The InterFreqRSTDMeasurementIndication message is also used to indicate to the network that the UE is going to start/stop OTDOA intra-frequency RSTD measurements which require measurement gaps.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

**InterFreqRSTDMeasurementIndication message**

```asn1
InterFreqRSTDMeasurementIndication-r10 ::= SEQUENCE {
 criticalExtensions\l\r
 CHOICE {
 c1\l\r
 InterFreqRSTDMeasurementIndication-r10-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 }
}
```
InterFreqRSTDMeasurementIndication field descriptions

carrierFreq
The EARFCN value of the carrier received from upper layers for which the UE needs to perform the inter-frequency RSTD measurements. If the UE includes carrierFreq-v1090, it shall set carrierFreq-r10 to maxEARFCN. In case the UE starts intra-frequency RSTD measurements the carrierFreq indicates the carrier frequency of the serving cell.

measPRS-Offset
Indicates the requested gap offset for performing inter-frequency or intra-frequency RSTD measurements. It is the smallest subframe offset from the beginning of subframe 0 of SFN=0 of the serving cell of the requested gap for measuring PRS positioning occasions in the carrier frequency carrierFreq for which the UE needs to perform the inter-frequency or intra-frequency RSTD measurements. The PRS positioning occasion information is received from upper layers. The value of measPRS-Offset is obtained by mapping the starting subframe of the PRS positioning occasion in the measured cell onto the corresponding subframe in the serving cell and is calculated as the serving cell’s number of subframes from SFN=0 mod 40.

The UE shall take into account any additional time required by the UE to start PRS measurements on the other carrier when it does this mapping for determining the measPRS-Offset.

NOTE: Figure 6.2.2-1 illustrates the measPRS-Offset field.

rstd-InterFreqIndication
Indicates the inter-frequency or intra-frequency RSTD measurement action, i.e. the UE is going to start or stop inter-frequency or intra-frequency RSTD measurement.

Figure 6.2.2-1 (informative): Exemplary calculation of measPRS-Offset field.
The **LoggedMeasurementConfiguration** message is used by E-UTRAN to configure the UE to perform logging of measurement results while in RRC_IDLE or to perform logging of measurement results for MBSFN while in both RRC_IDLE and RRC_CONNECTED. It is used to transfer the logged measurement configuration for network performance optimisation, see TS 37.320 [60].

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

**LoggedMeasurementConfiguration message**

```asn1
LoggedMeasurementConfiguration-r10 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 loggedMeasurementConfiguration-r10 LoggedMeasurementConfiguration-r10-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}}
 }

LoggedMeasurementConfiguration-r10-IEs ::= SEQUENCE {
 traceReference-r10 TraceReference-r10,
 traceRecordingSessionRef-r10 OCTET STRING (SIZE (2)),
 tce-Id-r10 OCTET STRING (SIZE (1)),
 absoluteTimeInfo-r10 AbsoluteTimeInfo-r10,
 areaConfiguration-r10 AreaConfiguration-r10 OPTIONAL, -- Need OR
 loggingDuration-r10 LoggingDuration-r10,
 loggingInterval-r10 LoggingInterval-r10,
 nonCriticalExtension LoggedMeasurementConfiguration-v1080-IEs OPTIONAL
}

LoggedMeasurementConfiguration-v1080-IEs ::= SEQUENCE {
 lateNonCriticalExtension-r10 OCTET STRING OPTIONAL,
 nonCriticalExtension LoggedMeasurementConfiguration-v1130-IEs OPTIONAL
}

LoggedMeasurementConfiguration-v1130-IEs ::= SEQUENCE {
 plmn-IdentityList-r11 PLMN-IdentityList3-r11 OPTIONAL, -- Need OR
 areaConfiguration-v1130 AreaConfiguration-v1130 OPTIONAL, -- Need OR
 nonCriticalExtension LoggedMeasurementConfiguration-v1250-IEs OPTIONAL
}

LoggedMeasurementConfiguration-v1250-IEs ::= SEQUENCE {
 targetMBSFN-AreaList-r12 TargetMBSFN-AreaList-r12 OPTIONAL, -- Need OP
 nonCriticalExtension SEQUENCE () OPTIONAL
}

TargetMBSFN-AreaList-r12 ::= SEQUENCE (SIZE (0..maxMBSFN-Area)) OF TargetMBSFN-Area-r12

TargetMBSFN-Area-r12 ::= SEQUENCE {
 mbsfn-AreaId-r12 MBSFN-AreaId-r12 OPTIONAL, -- Need OR
 carrierFreq-r12 ARFCN-ValueEUTRA-r9,
 ...
}
```

---
LoggedMeasurementConfiguration field descriptions

absoluteTimeInfo
Indicates the absolute time in the current cell.

areaConfiguration
Used to restrict the area in which the UE performs measurement logging to cells broadcasting either one of the included cell identities or one of the included tracking area codes/identities.

plmn-IdentityList
Indicates a set of PLMNs defining when the UE performs measurement logging as well as the associated status indication and information retrieval i.e. the UE performs these actions when the RPLMN is part of this set of PLMNs.

targetMBSFN-AreaList
Used to indicate logging of MBSFN measurements and further restrict the area and frequencies for which the UE performs measurement logging for MBSFN. If both MBSFN area id and carrier frequency are present, a specific MBSFN area is indicated. If only carrier frequency is present, all MBSFN areas on that carrier frequency are indicated. If there is no entry in the list, any MBSFN area is indicated.

tce-Id
Parameter Trace Collection Entity Id: See TS 32.422 [58].

traceRecordingSessionRef
Parameter Trace Recording Session Reference: See TS 32.422 [58]

---

MasterInformationBlock

The MasterInformationBlock includes the system information transmitted on BCH.

Signalling radio bearer: N/A

RLC-SAP: TM

Logical channel: BCCH

Direction: E-UTRAN to UE

---

MasterInformationBlock

```asn1
MasterInformationBlock ::= SEQUENCE {
 dl-Bandwidth ENUMERATED {
 n6, n15, n25, n50, n75, n100},
 phich-Config PHICH-Config,
 systemFrameNumber BIT STRING (SIZE (8)),
 schedulingInfoSIB1-BR-r13 INTEGER (0..31),
 spare BIT STRING (SIZE (5))
}
```

---

MasterInformationBlock field descriptions

**dl-Bandwidth**
Parameter: transmission bandwidth configuration, NRB in downlink, see TS 36.101 [42, table 5.6-1]. n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on.

**phich-Config**
Specifies the PHICH configuration. If the UE is a BL UE or UE in CE, it shall ignore this field.

**schedulingInfoSIB1-BR**
Indicates the index to the tables that define SystemInformationBlockType1-BR scheduling information. The tables are specified in TS 36.213 [23, Table 7.1.6-1 and Table 7.1.7.2.7-1]. Value 0 means that SystemInformationBlockType1-BR is not scheduled.

**systemFrameNumber**
Defines the 8 most significant bits of the SFN. As indicated in TS 36.211 [21, 6.6.1], the 2 least significant bits of the SFN are acquired implicitly in the P-BCH decoding, i.e. timing of 40ms P-BCH TTI indicates 2 least significant bits (within 40ms P-BCH TTI, the first radio frame: 00, the second radio frame: 01, the third radio frame: 10, the last radio frame: 11). One value applies for all serving cells of a Cell Group (i.e. MCG or SCG). The associated functionality is common (i.e. not performed independently for each cell).
MasterInformationBlock-MBMS

The MasterInformationBlock-MBMS includes the system information transmitted on BCH.

Signalling radio bearer: N/A
RLC-SAP: TM
Logical channel: BCCH
Direction: E-UTRAN to UE

---

---

MasterInformationBlock-MBMS

---

MasterInformationBlock-MBMS field descriptions

additonalNonMBSFNSubframes
Configures additional non-MBSFN subframes where SystemInformationBlockType1-MBMS and SystemInformation-MBMS may be transmitted. Value 0, 1, 2, 3 mean zero, one, two, three additional non-MBSFN subframes are configured after each subframe which has PBCH.

dl-Bandwidth-MBMS
Parameter: transmission bandwidth configuration, NRB in downlink, see TS 36.101 [42, table 5.6-1]. n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on.

systemFrameNumber
Defines the 6 most significant bits of the SFN of the MBMS-dedicated cell. As indicated in TS 36.211 [21, 6.6.1], the 4 least significant bits of the SFN are acquired implicitly in the P-BCH decoding, i.e. timing of 160ms P-BCH TTI indicates 4 least significant bits (within 40ms P-BCH TTI, the first radio frame: 00, the fourth radio frame: 01, the eighth radio frame: 10, the last radio frame: 11).

---

MBMSCountingRequest

The MBMSCountingRequest message is used by E-UTRAN to count the UEs that are receiving or interested to receive specific MBMS services.

Signalling radio bearer: N/A
RLC-SAP: UM
Logical channel: MCCH
Direction: E-UTRAN to UE

---

---
-- MBMSCountingResponse

The MBMSCountingResponse message is used by the UE to respond to an MBMSCountingRequest message.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

---

MBMSCountingResponse message

```asn1
MBMSCountingResponse-r10 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 countingResponse-r10 MBMSCountingResponse-r10-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
MBMSCountingResponse-r10-IEs ::= SEQUENCE {
 mbsfn-AreaIndex-r10 INTEGER (0..maxMBSFN-Area-1) OPTIONAL,
 countingResponseList-r10 CountingResponseList-r10 OPTIONAL,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
CountingResponseList-r10 ::= SEQUENCE (SIZE (1..maxServiceCount)) OF CountingResponseInfo-r10
CountingResponseInfo-r10 ::= SEQUENCE {
 countingResponseService-r10 INTEGER (0..maxServiceCount-1),
 ...,
}
```

---

**MBMSCountingResponse field descriptions**

- **countingResponseList**
  List of MBMS services which the UE is receiving or interested to receive. Value 0 for field countingResponseService corresponds to the first entry in countingRequestList within MBMSCountingRequest, value 1 corresponds to the second entry in this list and so on.

- **mbsfn-AreaIndex**
  Index of the entry in field mbsfn-AreaInfoList within SystemInformationBlockType13. Value 0 corresponds to the first entry in mbsfn-AreaInfoList within SystemInformationBlockType13, value 1 corresponds to the second entry in this list and so on.
The **MBMSInterestIndication** message is used to inform E-UTRAN that the UE is receiving/interested to receive or no longer receiving/interested to receive MBMS via an MRB or SC-MRB.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

---

### MBMSInterestIndication message

```plaintext
MBMSInterestIndication-r11 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 interestIndication-r11 MBMSInterestIndication-r11-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

MBMSInterestIndication-r11-IEs ::= SEQUENCE {
 mbms-FreqList-r11 CarrierFreqListMBMS-r11 OPTIONAL,
 mbms-Priority-r11 ENUMERATED {true} OPTIONAL,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension MBMSInterestIndication-v1310-IEs OPTIONAL
}

MBMSInterestIndication-v1310-IEs ::= SEQUENCE {
 mbms-Services-r13 MBMS-ServiceList-r13 OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
```

---

### MBMSInterestIndication field descriptions

**mbms-FreqList**
List of MBMS frequencies on which the UE is receiving or interested to receive MBMS via an MRB or SC-MRB.

**mbms-Priority**
Indicates whether the UE prioritises MBMS reception above unicast reception. The field is present (i.e. value true), if the UE prioritises reception of all listed MBMS frequencies above reception of any of the unicast bearers. Otherwise the field is absent.

---

The **MBSFNAreaConfiguration** message contains the MBMS control information applicable for an MBSFN area. For each MBSFN area included in SystemInformationBlockType13 E-UTRAN configures an MCCH (i.e. the MCCH identifies the MBSFN area) and signals the **MBSFNAreaConfiguration** message.

Signalling radio bearer: N/A

RLC-SAP: UM

Logical channel: MCCH

Direction: E-UTRAN to UE

---

### MBSFNAreaConfiguration message

```plaintext
MBSFNAreaConfiguration-r9 ::= SEQUENCE {
}
```
MBSFNAreaConfiguration field descriptions

**commonSF-Alloc**
Indicates the subframes allocated to the MBSFN area. E-UTRAN always sets this field to cover at least the subframes configured by SystemInformationBlockType13 for this MCCH, regardless of whether any MBMS sessions are ongoing.

**commonSF-AllocPeriod**
Indicates the period during which resources corresponding with field **commonSF-Alloc** are divided between the (P)MCH that are configured for this MBSFN area. The subframe allocation patterns, as defined by **commonSF-Alloc**, repeat continuously during this period. Value rf4 corresponds to 4 radio frames, rf8 corresponds to 8 radio frames and so on. The **commonSF-AllocPeriod** starts in the radio frames for which: SFN mod **commonSF-AllocPeriod** = 0.

**pmch-InfoList**
EUTRAN may include pmch-InfoListExt even if pmch-InfoList does not include maxPMCH-PerMBSFN entries. EUTRAN configures at most maxPMCH-PerMBSFN entries i.e. across pmch-InfoList and pmch-InfoListExt.

---

**MeasurementReport**

The MeasurementReport message is used for the indication of measurement results.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

**MeasurementReport message**

```
-- ASN1START
MeasurementReport ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE{
 measurementReport-r8 MeasurementReport-r8-IEs,
 spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
-- ASN1STOP
```
MobilityFromEUTRACCommand

The MobilityFromEUTRACCommand message is used to command handover or a cell change from E-UTRA to another RAT (3GPP or non-3GPP), or enhanced CS fallback to CDMA2000 1xRTT.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

MobilityFromEUTRACCommand message
MobilityFromEUTRACommand-v960-IEs ::= SEQUENCE {
  bandIndicator          BandIndicatorGERAN OPTIONAL, -- Cond GERAN
  nonCriticalExtension  SEQUENCE {} OPTIONAL
}

Handover ::= SEQUENCE {
  targetRAT-Type        ENUMERATED {
    utra, geran, cdma2000-1XRTT, cdma2000-HRPD, spare4, spare3, spare2, spare1, ...},
  targetRAT-MessageContainer OCTET STRING,
  nas-SecurityParamFromEUTRA OCTET STRING (SIZE (1)) OPTIONAL, -- Cond UTRAN
  systemInformation     SI-OrPSI-GERAN OPTIONAL -- Cond PS HO
}

CellChangeOrder ::= SEQUENCE {
  t304        ENUMERATED {
    ms100, ms200, ms500, ms1000, ms2000, ms4000, ms8000, ms10000-v1310),
    targetRAT-Type      CHOICE {
      geran       SEQUENCE {
        physCellId      PhysCellIdGERAN,
        carrierFreq      CarrierFreqGERAN,
        networkControlOrder    BIT STRING (SIZE (2))  OPTIONAL, -- Need OP
        systemInformation    SI-OrPSI-GERAN OPTIONAL -- Need OP
      },
      ...,
    }
  }
}

SI-OrPSI-GERAN ::= CHOICE {
  si         SystemInfoListGERAN,
  psi         SystemInfoListGERAN
}

E-CSFB-r9 ::= SEQUENCE {
  messageContCDMA2000-1XRTT-r9  OCTET STRING OPTIONAL, -- Need ON
  mobilityCDMA2000-HRPD-r9     ENUMERATED {
    handover, redirection
  } OPTIONAL, -- Need OP
  messageContCDMA2000-HRPD-r9  OCTET STRING OPTIONAL, -- Cond conc HO
  redirectCarrierCDMA2000-HRPD-r9 CarrierFreqCDMA2000 OPTIONAL -- Cond concRedir
}

-- ASN1STOP
**MobilityFromEUTRACOMmand field descriptions**

- **bandIndicator**: Indicates how to interpret the ARFCN of the BCCH carrier.
- **carrierFreq**: Contains the carrier frequency of the target GERAN cell.
- **cs-FallbackIndicator**: Value true indicates that the CS fallback procedure to UTRAN or GERAN is triggered.
- **messageContCDMA2000-1XRTT**: This field contains a message specified in CDMA2000 1xRTT standard that either tells the UE to move to specific 1xRTT target cell(s) or indicates a failure to allocate resources for the enhanced CS fallback to CDMA2000 1xRTT.
- **messageContCDMA2000-HRPD**: This field contains a message specified in CDMA2000 HRPD standard that either tells the UE to move to specific HRPD target cell(s) or indicates a failure to allocate resources for the handover to CDMA2000 HRPD.
- **mobilityCDMA2000-HRPD**: This field indicates whether or not mobility to CDMA2000 HRPD is to be performed by the UE and it also indicates the type of mobility to CDMA2000 HRPD that is to be performed; If this field is not present the UE shall perform only the enhanced CS fallback to CDMA2000 1xRTT.
- **nas-SecurityParamFromEUTRA**: Used to deliver the key synchronisation and Key freshness for the E-UTRAN to UTRAN handovers as specified in TS 33.401. The content of the parameter is defined in TS24.301.
- **networkControlOrder**: Parameter NETWORK_CONTROL_ORDER in TS 44.060 [36].
- **purpose**: Indicate which type of mobility procedure the UE is requested to perform. EUTRAN always applies value e-CSFB in case of enhanced CS fallback to CDMA2000 (e.g. also when that procedure results in handover to CDMA2000 1xRTT only, or handover to CDMA2000 HRPD only or in redirection to CDMA2000 HRPD only).
- **redirectCarrierCDMA2000-HRPD**: The redirectCarrierCDMA2000-HRPD indicates a CDMA2000 carrier frequency and is used to redirect the UE to a HRPD carrier frequency.
- **SystemInfoListGERAN**: If purpose = CellChangeOrder and if the field is not present, the UE has to acquire SI/PSI from the GERAN cell.
- **t304**: Timer T304 as described in section 7.3. Value ms100 corresponds with 100 ms, ms200 corresponds with 200 ms and so on. EUTRAN includes extended value ms10000-v1310 only when UE supports CE.
- **targetRAT-Type**: Indicates the target RAT type.
- **targetRAT-MessageContainer**: The field contains a message specified in another standard, as indicated by the targetRAT-Type, and carries information about the target cell identifier(s) and radio parameters relevant for the target radio access technology. NOTE 1.

A complete message is included, as specified in the other standard.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>conchO</td>
<td>The field is mandatory present if the mobilityCDMA2000-HRPD is set to &quot;handover&quot;; otherwise the field is optional present, need ON.</td>
</tr>
<tr>
<td>concRedir</td>
<td>The field is mandatory present if the mobilityCDMA2000-HRPD is set to &quot;redirection&quot;; otherwise the field is not present.</td>
</tr>
<tr>
<td>GERAN</td>
<td>The field should be present if the purpose is set to &quot;handover&quot; and the targetRAT-Type is set to &quot;geran&quot;; otherwise the field is not present</td>
</tr>
<tr>
<td>PSHO</td>
<td>The field is mandatory present in case of PS handover toward GERAN; otherwise the field is optionally present, but not used by the UE</td>
</tr>
<tr>
<td>UTRAGERAN</td>
<td>The field is mandatory present if the targetRAT-Type is set to &quot;utra&quot; or &quot;geran&quot;; otherwise the field is not present</td>
</tr>
</tbody>
</table>

NOTE 1: The correspondence between the value of the targetRAT-Type, the standard to apply and the message contained within the targetRAT-MessageContainer is shown in the table below:
**targetRAT-Type**	**Standard to apply**	**targetRAT-MessageContainer**
`cdma2000-1XRTT` | C.S0001 or later, C.S0007 or later, C.S0008 or later | HANOVER COMMAND
`cdma2000-1XRTT` | C.S0024 or later | PS HANOVER COMMAND
`geran` | GSM TS 04.18, version 8.5.0 or later, or 3GPP TS 44.018 (clause 9.1.15) | DTM HANOVER COMMAND
`geran` | 3GPP TS 44.060, version 6.13.0 or later (clause 11.2.43) | 
`geran` | 3GPP TS 44.060, version 7.6.0 or later (clause 11.2.46) | 
`utra` | 3GPP TS 25.331 (clause 10.2.16a) | HANOVER TO UTRAN COMMAND

---

**Paging**

The *Paging* message is used for the notification of one or more UEs.

- Signalling radio bearer: N/A
- RLC-SAP: TM
- Logical channel: PCCH
- Direction: E-UTRAN to UE

**Paging message**

```
-- ASN1START
Paging ::= SEQUENCE {
 pagingRecordList PagingRecordList OPTIONAL, -- Need ON
 systemInfoModification ENUMERATED {true} OPTIONAL, -- Need ON
 etws-Indication ENUMERATED {true} OPTIONAL, -- Need ON
 nonCriticalExtension Paging-v890-IEs OPTIONAL
}
Paging-v890-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension Paging-v920-IEs OPTIONAL
}
Paging-v920-IEs ::= SEQUENCE {
 cmas-Indication-r9 ENUMERATED {true} OPTIONAL, -- Need ON
 nonCriticalExtension Paging-v1130-IEs OPTIONAL
}
Paging-v1130-IEs ::= SEQUENCE {
 eab-ParamModification-r11 ENUMERATED {true} OPTIONAL, -- Need ON
 nonCriticalExtension Paging-v1310-IEs OPTIONAL
}
Paging-v1310-IEs ::= SEQUENCE {
 redistributionIndication-r13 ENUMERATED {true} OPTIONAL, -- Need ON
 systemInfoModification-eDRX-r13 ENUMERATED {true} OPTIONAL, -- Need ON
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
PagingRecordList ::= SEQUENCE (SIZE (1..maxPageRec)) OF PagingRecord
PagingRecord ::= SEQUENCE {
 ue-Identity PagingUE-Identity,
 cn-Domain ENUMERATED {ps, cs},
 ...
}
PagingUE-Identity ::= CHOICE {
 s-TMSI S-TMSI,
 imsi IMSI,
 ...
}
-- ASN1END
```
**Paging field descriptions**

- **cmas-Indication**
  If present: indication of a CMAS notification.

- **cn-Domain**
  Indicates the origin of paging.

- **eab-ParamModification**
  If present: indication of an EAB parameters (SIB14) modification.

- **etws-Indication**
  If present: indication of an ETWS primary notification and/or ETWS secondary notification.

- **imsi**
  The International Mobile Subscriber Identity, a globally unique permanent subscriber identity, see TS 23.003 [27]. The first element contains the first IMSI digit, the second element contains the second IMSI digit and so on.

- **redistributionIndication**
  If present: indication to trigger E-UTRAN inter-frequency redistribution procedure as specified in TS 36.304 [4, 5.2.4.10]

- **systemInfoModification**
  If present: indication of a BCCH modification other than SIB10, SIB11, SIB12 and SIB14. This indication does not apply to UEs using eDRX cycle longer than the BCCH modification period.

- **systemInfoModification-eDRX**
  If present: indication of a BCCH modification other than SIB10, SIB11, SIB12 and SIB14. This indication applies only to UEs using eDRX cycle longer than the BCCH modification period.

- **ue-Identity**
  Provides the NAS identity of the UE that is being paged.

---

**ProximityIndication**

The **ProximityIndication** message is used to indicate that the UE is entering or leaving the proximity of one or more CSG member cell(s).

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

**ProximityIndication message**

```asn1
ProximityIndication-r9 ::= SEQUENCE {
criticalExtensions CHOICE {
c1 CHOICE {
proximityIndication-r9 ProximityIndication-r9-IEs,
spare3 NULL, spare2 NULL, spare1 NULL
},
criticalExtensionsFuture SEQUENCE {}
}
}
ProximityIndication-r9-IEs ::= SEQUENCE {
type-r9 ENUMERATED {entering, leaving},
carrierFreq-r9 CHOICE {
eutra-r9 ARFCN-ValueEUTRA,
umtra-r9 ARFCN-ValueUTRA,
...
eutra2-v9e0 ARFCN-ValueEUTRA-v9e0
},
nonCriticalExtension ProximityIndication-v930-IEs OPTIONAL
}
```
ProximityIndication-v930-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension SEQUENCE {} OPTIONAL
}

--- ASN1STOP

**ProximityIndication field descriptions**

**carrierFreq**
Indicates the RAT and frequency of the CSG member cell(s), for which the proximity indication is sent. For E-UTRA and UTRA frequencies, the UE shall set the ARFCN according to a band it previously considered suitable for accessing (one of) the CSG member cell(s), for which the proximity indication is sent.

**type**
Used to indicate whether the UE is entering or leaving the proximity of CSG member cell(s).

---

**RNReconfiguration**

The **RNReconfiguration** is a command to modify the RN subframe configuration and/or to convey changed system information.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to RN

**RNReconfiguration message**

--- ASN1START

RNReconfiguration-r10 ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    c1 CHOICE {
      rnReconfiguration-r10 RNReconfiguration-r10-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}

RNReconfiguration-r10-IEs ::= SEQUENCE {
  rn-SystemInfo-r10 RN-SystemInfo-r10 OPTIONAL, -- Need ON
  rn-SubframeConfig-r10 RN-SubframeConfig-r10 OPTIONAL, -- Need ON
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension SEQUENCE {} OPTIONAL
}

RN-SystemInfo-r10 ::= SEQUENCE {
  systemInformationBlockType1-r10 OCTET STRING (CONTAINING SystemInformationBlockType1) OPTIONAL, -- Need ON
  systemInformationBlockType2-r10 SystemInformationBlockType2 OPTIONAL, -- Need ON
  ...
}

--- ASN1STOP

---

**RNReconfigurationComplete**

The **RNReconfigurationComplete** message is used to confirm the successful completion of an RN reconfiguration.
RNCReconfigurationComplete message

```asn1
RNReconfigurationComplete-r10 ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rnReconfigurationComplete-r10 RNReconfigurationComplete-r10-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
RNReconfigurationComplete-r10-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
```

-- ASN1START

RRCConnectionReconfiguration

The **RRCConnectionReconfiguration** message is the command to modify an RRC connection. It may convey information for measurement configuration, mobility control, radio resource configuration (including RBs, MAC main configuration and physical channel configuration) including any associated dedicated NAS information and security configuration.

**Signalling radio bearer: SRB1**

**RLC-SAP: AM**

**Logical channel: DCCH**

**Direction: E-UTRAN to UE**

RRCConnectionReconfiguration message

```asn1
RRCConnectionReconfiguration ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcConnectionReconfiguration-r8 RRCConnectionReconfiguration-r8-IEs,
 spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
 _measConfig MeasConfig OPTIONAL, -- Need ON
 mobilityControlInfo MobilityControlInfo OPTIONAL, -- Cond HO
 dedicatedInfoNASList SEQUENCE (SIZE(1..maxDRB)) OF
 DedicatedInfoNAS OPTIONAL, -- Cond nonHO
 radioResourceConfigDedicated RadioResourceConfigDedicated OPTIONAL, -- Cond HO-toEUTRA
 securityConfigHO SecurityConfigHO OPTIONAL, -- Cond HO
 nonCriticalExtension RRCConnectionReconfiguration-v890-IEs OPTIONAL
}
```

-- ASN1START
RRCConnectionReconfiguration-v890-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING (CONTAINING RRCConnectionReconfiguration-v8m0-IEs) OPTIONAL,
  nonCriticalExtension RRCConnectionReconfiguration-v920-IEs OPTIONAL }

-- Late non-critical extensions:
RRCConnectionReconfiguration-v8m0-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension RRCConnectionReconfiguration-v10i0-IEs OPTIONAL }

RRCConnectionReconfiguration-v10i0-IEs ::= SEQUENCE {
  -- Following field is only for pre REL-10 late non-critical extensions
  lateNonCriticalExtension OCTET STRING (CONTAINING RRCConnectionReconfiguration-v8m0-IEs) OPTIONAL,
  nonCriticalExtension RRCConnectionReconfiguration-v10l0-IEs OPTIONAL }

RRCConnectionReconfiguration-v10l0-IEs ::= SEQUENCE {
  mobilityControlInfo-v10l0 MobilityControlInfo-v10l0 OPTIONAL,
  sCellToAddModList-v10l0 SCellToAddModList-v10l0 OPTIONAL, -- Need ON
  -- Following field is only for non-critical extensions from REL-10 to REL-11
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension RRCConnectionReconfiguration-v12f0-IEs OPTIONAL }

RRCConnectionReconfiguration-v12f0-IEs ::= SEQUENCE {
  scg-Configuration-v12f0 SCG-Configuration-v12f0 OPTIONAL, -- Cond nonFullConfig
  -- Following field is only for late non-critical extensions from REL-10 to REL-11
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension RRCConnectionReconfiguration-v1370-IEs OPTIONAL }

RRCConnectionReconfiguration-v1370-IEs ::= SEQUENCE {
  -- Following field is only for late non-critical extensions from REL-13 onwards
  nonCriticalExtension SEQUENCE {} OPTIONAL }

-- Regular non-critical extensions:
RRCConnectionReconfiguration-v920-IEs ::= SEQUENCE {
  otherConfig-r9 OtherConfig-r9 OPTIONAL, -- Need ON
  fullConfig-r9 ENUMERATED {true} OPTIONAL, -- Cond HO-Reestab
  nonCriticalExtension RRCConnectionReconfiguration-v1020-IEs OPTIONAL }

RRCConnectionReconfiguration-v1020-IEs ::= SEQUENCE {
  sCellToReleaseList-r10 SCellToReleaseList-r10 OPTIONAL, -- Need ON
  sCellToAddModList-r10 SCellToAddModListExt-v1370 OPTIONAL, -- Need ON
  -- Following field is only for late non-critical extensions from REL-12 onwards
  nonCriticalExtension SEQUENCE {} OPTIONAL }

RRCConnectionReconfiguration-v1130-IEs ::= SEQUENCE {
  systemInformationBlockType1Dedicated-r11 OCTET STRING (CONTAINING SystemInformationBlockType1) OPTIONAL, -- Need ON
  nonCriticalExtension RRCConnectionReconfiguration-v1250-IEs OPTIONAL }

RRCConnectionReconfiguration-v1250-IEs ::= SEQUENCE {
  wlan-OffloadInfo-r12 CHOICE {
    release NULL,
    setup SEQUENCE {
      wlan-OffloadConfigDedicated-r12 WLAN-OffloadConfig-r12,
      t350-r12 ENUMERATED {min5, min10, min20, min30, min60, min120, min180, spare1} OPTIONAL -- Need OR
    } OPTIONAL, -- Need ON
  } OPTIONAL, -- Need ON
  scg-Configuration-r12 SCG-Configuration-r12 OPTIONAL, -- Cond nonFullConfig
  s1-SyncTxControl-r12 SL-SyncTxControl-r12 OPTIONAL, -- Need ON
  s1-DiscConfig-r12 SL-DiscConfig-r12 OPTIONAL, -- Need ON
  s1-CommConfig-r12 SL-CommConfig-r12 OPTIONAL, -- Need ON
  nonCriticalExtension RRCConnectionReconfiguration-v1310-IEs OPTIONAL }

RRCConnectionReconfiguration-v1310-IEs ::= SEQUENCE {
  
}
RRCConnectionReconfiguration-v1430-IEs ::= SEQUENCE {
  sl-V2X-ConfigDedicated-r14 SL-V2X-ConfigDedicated-r14 OPTIONAL, -- Need ON
  sCellToAddModListExt-v1430 SCellToAddModListExt-v1430 OPTIONAL, -- Need ON
  perCC-GapIndicationRequest-r14 ENUMERATED{true} OPTIONAL, -- Need ON
  systemInformationBlockType2Dedicated-r14 OCTET STRING (CONTAINING:
  SystemInformationBlockType2) OPTIONAL, -- Cond nonHO
  nonCriticalExtension SEQUENCE {} OPTIONAL
}

SL-SyncTxControl-r12 ::= SEQUENCE {
  networkControlledSyncTx-r12 ENUMERATED{on, off} OPTIONAL -- Need OP
}
PSCellToAddMod-r12 ::= SEQUENCE {
  sCellIndex-r12 SCellIndex-r10,
  cellIdentification-r12 SEQUENCE {
    physCellId-r12 PhysCellId,
    dl-CarrierFreq-r12 ARFCN-ValueEUTRA-r9
  } OPTIONAL, -- Cond SCellAdd
  radioResourceConfigCommonPSCell-r12 RadioResourceConfigCommonPSCell-r12 OPTIONAL, -- Cond SCellAdd
  radioResourceConfigDedicatedPSCell-r12 RadioResourceConfigDedicatedPSCell-r12 OPTIONAL, -- Cond SCellAdd2
  ...,
  [[ antennaInfoDedicatedPSCell-v1280 AntennaInfoDedicated-v10i0 OPTIONAL -- Need ON ]],
  [[ sCellIndex-r13 SCellIndex-r13 OPTIONAL -- Need ON ]],
  [[ radioResourceConfigDedicatedPSCell-v1370 RadioResourceConfigDedicatedPSCell-v1370
    OPTIONAL -- Need ON ]]}
PSCellToAddMod-v12f0 ::= SEQUENCE {
  radioResourceConfigCommonPSCell-r12 RadioResourceConfigCommonPSCell-v12f0 OPTIONAL
}
PSCellToAddMod-v1440 ::= SEQUENCE {
  radioResourceConfigCommonPSCell-r14 RadioResourceConfigCommonPSCell-v1440 OPTIONAL
}

PowerCoordinationInfo-r12 ::= SEQUENCE {
  p-MeNB-r12 INTEGER (1..16),
  p-SeNB-r12 INTEGER (1..16),
  powerControlMode-r12 INTEGER (1..2)
}

SCellToAddModList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellToAddMod-r10
SCellToAddModList-v1010 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellToAddMod-v1010
SCellToAddModListExt-r13 ::= SEQUENCE (SIZE (1..maxSCell-r13)) OF SCellToAddModExt-r13
SCellToAddModListExt-v1370 ::= SEQUENCE (SIZE (1..maxSCell-r13)) OF SCellToAddModExt-v1370
SCellToAddModListExt-v1430 ::= SEQUENCE (SIZE (1..maxSCell-r13)) OF SCellToAddModExt-v1430
SCellToAddMod-r10 ::= SEQUENCE {
  sCellIndex-r10 SCellIndex-r10,
  cellIdentification-r10 SEQUENCE {
    physCellId-r10 PhysCellId,
    dl-CarrierFreq-r10 ARFCN-ValueEUTRA
  } OPTIONAL, -- Cond SCellAdd
  radioResourceConfigDedicatedSCell-r10 RadioResourceConfigDedicatedSCell-r10 OPTIONAL, -- Cond SCellAdd2
  ...
  [\[ dl-CarrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL -- Cond EARFCN-max

SCellToAddMod-v10l0 ::= SEQUENCE {
  radioResourceConfigCommonSCell-v10l0  RadioResourceConfigCommonSCell-v10l0 OPTIONAL -- Need ON
}

SCellToAddModExt-r13 ::= SEQUENCE {
  sCellIndex-r13      SCellIndex-r13,
  cellIdentification-r13  SEQUENCE {
    physCellId-r13      PhysCellId,
    d1-CarrierFreq-r13     ARFCN-ValueEUTRA-r9
  } OPTIONAL, -- Cond SCellAdd
  antennaInfoDedicatedSCell-r13   AntennaInfoDedicated-v10i0  OPTIONAL -- Need ON
}

SCellToAddModExt-v1370 ::= SEQUENCE {
}

SCellToAddModExt-v1430 ::= SEQUENCE {
  srs-SwitchFromServCellIndex-r14   INTEGER (0.. 31) OPTIONAL, -- Need ON
  ...
}

SCellToReleaseList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellIndex-r10

SCellToReleaseListExt-r13 ::= SEQUENCE (SIZE (1..maxSCell-r13)) OF SCellIndex-r13

SCG-Configuration-r12 ::= CHOICE {
  release        NULL,
  setup        SEQUENCE {
    scg-ConfigPartMCG-r12    SEQUENCE {
      scg-Counter-r12      INTEGER (0.. 65535)   OPTIONAL, -- Need ON
      powerCoordinationInfo-r12   PowerCoordinationInfo-r12 OPTIONAL, -- Need ON
      ...
    } OPTIONAL, -- Need ON
    scg-ConfigPartSCG-r12    SCG-ConfigPartSCG-r12  OPTIONAL -- Need ON
  }
}

SCG-Configuration-v12f0 ::= CHOICE {
  release        NULL,
  setup        SEQUENCE {
    scg-ConfigPartSCG-v12f0  SCG-ConfigPartSCG-v12f0  OPTIONAL -- Need ON
  }
}

SCG-ConfigPartSCG-r12 ::= SEQUENCE {
  radioResourceConfigDedicatedSCG-r12  RadioResourceConfigDedicatedSCG-r12 OPTIONAL, -- Need ON
  sCellToReleaseListSCG-r12  SCellToReleaseList-r10 OPTIONAL, -- Need ON
  pSCellToAddMod-r12     PCellToAddMod-r12   OPTIONAL, -- Need ON
  sCellToAddModListSCG-r12  SCellToAddModList-r10 OPTIONAL, -- Need ON
  mobilityControlInfoSCG-r12  MobilityControlInfoSCG-r12 OPTIONAL, -- Need ON
  ...
}

SCG-ConfigPartSCG-v12f0 ::= SEQUENCE {
  pSCellToAddMod-v12f0    PCellToAddMod-v12f0   OPTIONAL, -- Need ON
  sCellToAddModListSCG-v12f0  SCellToAddModList-v10l0  OPTIONAL -- Need ON
}
SecurityConfigHO ::= SEQUENCE {
    handoverType CHOICE {
        intraLTE SEQUENCE {
            securityAlgorithmConfig SecurityAlgorithmConfig OPTIONAL, -- Cond
            fullConfig
                keyChangeIndicator BOOLEAN,
                nextHopChainingCount NextHopChainingCount
        },
        interRAT SEQUENCE {
            securityAlgorithmConfig SecurityAlgorithmConfig,
            nas-SecurityParamToEUTRA OCTET STRING (SIZE(6))
        }
    }
}

-- ASN1STOP
**RRCConnectionReconfiguration field descriptions**

**dedicatedInfoNASList**
This field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for each PDU in the list.

**fullConfig**
Indicates the full configuration option is applicable for the RRC Connection Reconfiguration message.

**keyChangeIndicator**
true is used only in an intra-cell handover when a K_{ANB} key is derived from a K_{ASME} key taken into use through the latest successful NAS SMC procedure, as described in TS 33.401 [32] for K_{ANB} re-keying. false is used in an intra-LTE handover when the new K_{ANB} key is obtained from the current K_{ANB} key or from the NH as described in TS 33.401 [32].

**lwa-Configuration**
This field is used to provide parameters for LWA configuration. E-UTRAN does not simultaneously configure LWA with DC, LWIP or RCLWI for a UE.

**lwip-Configuration**
This field is used to provide parameters for LWIP configuration. E-UTRAN does not simultaneously configure LWIP with DC, LWA or RCLWI for a UE.

**nas-securityParamToEUTRA**
This field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for this field, although it affects activation of AS- security after inter-RAT handover to E-UTRA. The content is defined in TS 24.301.

**networkControlledSyncTx**
This field indicates whether the UE shall transmit synchronisation information (i.e. become synchronisation source). Value On indicates the UE to transmit synchronisation information while value Off indicates the UE not to transmit such information.

**nextHopChainingCount**
Parameter NCC: See TS 33.401 [32]

**perCC-GapIndicationRequest**
Indicates that UE shall include perCC-GapIndicationList and numFreqEffective in the RRCConnectionReconfigurationComplete message. numFreqEffectiveReduced may also be included if frequencies are configured for reduced measurement performance.

**p-MeNB**
Indicates the guaranteed power for the MeNB, as specified in TS 36.213 [23]. The value N corresponds to N-1 in TS 36.213 [23].

**powerControlMode**
Indicates the power control mode used in DC. Value 1 corresponds to DC power control mode 1 and value 2 indicates DC power control mode 2, as specified in TS 36.213 [23].

**p-SeNB**
Indicates the guaranteed power for the SeNB as specified in TS 36.213 [23, Table 5.1.4.2-1]. The value N corresponds to N-1 in TS 36.213 [23].

**rclwi-Configuration**
WLAN traffic steering command as specified in 5.6.16.2. E-UTRAN does not simultaneously configure RCLWI with DC, LWA or LWIP for a UE.

**sCellIndex**
In case of DC, the SCellIndex is unique within the scope of the UE i.e. an SCG cell can not use the same value as used for an MCG cell. For pCellToAddMod, if sCellIndex-r13 is present the UE shall ignore sCellIndex-r12.

**sCellToAddModList, sCellToAddModListExt**
Indicates the SCG cell to be added or modified. The field is used for SCG cells other than the PSCell (which is added/modified by field pCellToAddMod). Field sCellToAddModList is used to add the first 4 SCells for a UE with sCellIndex-r10 while sCellToAddModListExt is used to add the rest. If E-UTRAN includes sCellToAddModListExt-v1430 it includes the same number of entries, and listed in the same order, as in sCellToAddModListExt-r13. If E-UTRAN includes sCellToAddModListExt-v1000 it includes the same number of entries, and listed in the same order, as in sCellToAddModListExt-r10. If E-UTRAN includes sCellToAddModListExt-v1370 it includes the same number of entries, and listed in the same order, as in sCellToAddModListExt-r13.

**sCellToAddModListSCG, sCellToAddModListSCG-Ext**
Indicates the SCG cell to be added or modified. The field is used for SCG cells other than the PSCell (which is added/modified by field pCellToAddMod). Field sCellToAddModListSCG is used to add the first 4 SCells for a UE with sCellIndex-r10 while sCellToAddModListSCG-Ext is used to add the rest. If E-UTRAN includes sCellToAddModListSCG-v1000 it includes the same number of entries, and listed in the same order, as in sCellToAddModListSCG-r12. If E-UTRAN includes sCellToAddModListSCG-Ext-v1370 it includes the same number of entries, and listed in the same order, as in sCellToAddModListSCG-Ext-r13.

**scg-Counter**
A counter used upon initial configuration of SCG security as well as upon refresh of S-K_{ANB}. E-UTRAN includes the field upon SCG change when one or more SCG DRBs are configured. Otherwise E-UTRAN does not include the field.
### RRCConnectionReconfiguration field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sl-V2X-ConfigDedicated</td>
<td>Indicates sidelink configuration for non-P2X related V2X sidelink communication as well as P2X related V2X sidelink communication.</td>
</tr>
<tr>
<td>srs-SwitchFromServCellIndex</td>
<td>Indicates the serving cell whose UL transmission may be interrupted during SRS transmission on a PUSCH-less cell. During SRS transmission on a PUSCH-less cell, the UE may temporarily suspend the UL transmission on a serving cell with PUSCH in the same CG to allow the PUSCH-less cell to transmit SRS. The PUSCH-less cell is always a TDD cell but the serving cell with PUSCH may be either a FDD or TDD cell.</td>
</tr>
<tr>
<td>systemInformationBlockType1Dedicated</td>
<td>This field is used to transfer SystemInformationBlockType1 or SystemInformationBlockType1-BR to the UE.</td>
</tr>
<tr>
<td>systemInformationBlockType2Dedicated</td>
<td>This field is used to transfer BR version of SystemInformationBlockType2 to BL UEs or UEs in CE.</td>
</tr>
<tr>
<td>t350</td>
<td>Timer T350 as described in section 7.3. Value ( \text{minN} ) corresponds to ( \text{N} ) minutes.</td>
</tr>
</tbody>
</table>

### Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARFCN-max</td>
<td>The field is mandatory present if dl-CarrierFreq-r10 is included and set to maxEARFCN. Otherwise the field is not present.</td>
</tr>
<tr>
<td>fullConfig</td>
<td>This field is mandatory present for handover within E-UTRA when the fullConfig is included; otherwise it is optionally present, Need OP.</td>
</tr>
<tr>
<td>HO</td>
<td>The field is mandatory present in case of handover within E-UTRA or to E-UTRA; otherwise the field is not present.</td>
</tr>
<tr>
<td>HO-Reestab</td>
<td>This field is optionally present, need ON, in case of handover within E-UTRA or upon the first reconfiguration after RRC connection re-establishment; otherwise the field is not present.</td>
</tr>
<tr>
<td>HO-toEUTRA</td>
<td>The field is mandatory present in case of handover to E-UTRA or for reconfigurations when fullConfig is included; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>nonFullConfig</td>
<td>The field is not present when the fullConfig is included or in case of handover to E-UTRA; otherwise it is optional present, need ON.</td>
</tr>
<tr>
<td>nonHO</td>
<td>The field is not present in case of handover within E-UTRA or to E-UTRA; otherwise it is optional present, need ON.</td>
</tr>
<tr>
<td>SCellAdd</td>
<td>The field is mandatory present upon SCell addition; otherwise it is not present.</td>
</tr>
<tr>
<td>SCellAdd2</td>
<td>The field is mandatory present upon SCell addition; otherwise it is optionally present, need ON.</td>
</tr>
</tbody>
</table>

---

**RRCConnectionReconfigurationComplete**

The RRCConnectionReconfigurationComplete message is used to confirm the successful completion of an RRC connection reconfiguration.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: UE to E-UTRAN

**RRCConnectionReconfigurationComplete message**

```asn1
RRCConnectionReconfigurationComplete ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 rrcConnectionReconfigurationComplete-r8
 RRCConnectionReconfigurationComplete-r8-IEs,
 criticalExtensionsFuture SEQUENCE {} } }
RRCConnectionReconfigurationComplete-r8-IEs ::= SEQUENCE {
 nonCriticalExtension RRCConnectionReconfigurationComplete-v8a0-IEs OPTIONAL }
RRCConnectionReconfigurationComplete-v8a0-IEs ::= SEQUENCE {

```
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension RRCConnectionReconfigurationComplete-v1020-IEs OPTIONAL
}

RRCConnectionReconfigurationComplete-v1020-IEs ::= SEQUENCE {
rlf-InfoAvailable-r10 ENUMERATED {true} OPTIONAL,
logMeasAvailable-r10 ENUMERATED {true} OPTIONAL,
nonCriticalExtension RRCConnectionReconfigurationComplete-v1130-IEs OPTIONAL
}

RRCConnectionReconfigurationComplete-v1130-IEs ::= SEQUENCE {
connEstFailInfoAvailable-r11 ENUMERATED {true} OPTIONAL,
nonCriticalExtension RRCConnectionReconfigurationComplete-v1250-IEs OPTIONAL
}

RRCConnectionReconfigurationComplete-v1250-IEs ::= SEQUENCE {
logMeasAvailableMBSFN-r12 ENUMERATED {true} OPTIONAL,
nonCriticalExtension RRCConnectionReconfigurationComplete-v1430-IEs OPTIONAL
}

RRCConnectionReconfigurationComplete-v1430-IEs ::= SEQUENCE {
perCC-GapIndicationList-r14 PerCC-GapIndicationList-r14 OPTIONAL,
numFreqEffective-r14 INTEGER (1..12) OPTIONAL,
numFreqEffectiveReduced-r14 INTEGER (1..12) OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

RRCConnectionReconfigurationComplete field descriptions

numFreqEffective
This field is used to indicate the number of effective frequencies that a UE measures in series according to TS 36.133 [16]. Simultaneous measurement in parallel on multiple frequencies can be equivalent to a single effective frequency. The frequencies configured for reduced measurement performance should not be included.

numFreqEffectiveReduced
This field is used to indicate the number of effective frequencies that a UE measures in series according to TS 36.133 [16] for frequencies configured for reduced measurement performance. Simultaneous measurement in parallel on multiple frequencies can be equivalent to a single effective frequency.

perCC-GapIndicationList
This field is used to indicate per CC measurement gap preference by the UE.

--

RRCConnectionReestabilishment

The RRCConnectionReestabilishment message is used to re-establish SRB1.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: E-UTRAN to UE

RRCConnectionReestabilishment message

-- ASN1START

RRCConnectionReestabilishment ::= SEQUENCE {
    rrc-TransactionIdentifier             RRC-TransactionIdentifier,
criticalExtensionsChoices             CHOICE {
        c1                             CHOICE{
            rrcConnectionReestabilishment-r8  RRCConnectionReestabilishment-r8-IEs,
            spare7 NULL,
            spare6 NULL, spare5 NULL, spare4 NULL,
            spare3 NULL, spare2 NULL, spare1 NULL
        },
criticalExtensionsFuture              SEQUENCE {}
    }
}
-- ASN1START

RRCConnectionReestablishmentComplete ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,
  criticalExtensions     CHOICE {
    rrcConnectionReestablishmentComplete-r8     RRCConnectionReestablishmentComplete-r8-IEs,
    criticalExtensionsFuture   SEQUENCE {}       OPTIONAL
  }
}

RRCConnectionReestablishmentComplete-r8-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  criticalExtensions         RRCConnectionReestablishmentComplete-v920-IEs OPTIONAL
}

RRCConnectionReestablishmentComplete-v920-IEs ::= SEQUENCE {
  rlf-InfoAvailable-r9    ENUMERATED {true}    OPTIONAL,
  nonCriticalExtension    RRCConnectionReestablishmentComplete-v8a0-IEs OPTIONAL
}

RRCConnectionReestablishmentComplete-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  criticalExtensions         RRCConnectionReestablishmentComplete-v1020-IEs OPTIONAL
}

RRCConnectionReestablishmentComplete-v1020-IEs ::= SEQUENCE {
  logMeasAvailable-r10    ENUMERATED {true}    OPTIONAL,
  nonCriticalExtension    RRCConnectionReestablishmentComplete-v1130-IEs OPTIONAL
}

RRCConnectionReestablishmentComplete-v1130-IEs ::= SEQUENCE {
  connEstFailInfoAvailable-r11  ENUMERATED {true}    OPTIONAL,
  nonCriticalExtension    RRCConnectionReestablishmentComplete-v1250-IEs OPTIONAL
}

RRCConnectionReestablishmentComplete-v1250-IEs ::= SEQUENCE {
  logMeasAvailableMBSFN-r12   ENUMERATED {true}    OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}

-- ASN1STOP

---

**RRCConnectionReestablishmentComplete**

The **RRCConnectionReestablishmentComplete** message is used to confirm the successful completion of an RRC connection re-establishment.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

**RRCConnectionReestablishmentComplete message**

---

**RRCConnectionReestablishment-r8-IEs** ::= SEQUENCE {
  radioResourceConfigDedicated RadioResourceConfigDedicated,
  nextHopChainingCount NextHopChainingCount,
  nonCriticalExtension   RRCConnectionReestablishment-v8a0-IEs OPTIONAL
}

**RRCConnectionReestablishment-v8a0-IEs** ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  nonCriticalExtension    RRCConnectionReestablishment-v8a0-IEs OPTIONAL
}

---
**RRCConnectionReestablishmentReject**

The **RRCConnectionReestablishmentReject** message is used to indicate the rejection of an RRC connection reestablishment request.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: E-UTRAN to UE

**RRCConnectionReestablishmentReject message**

```asn1
RRCConnectionReestablishmentReject ::= SEQUENCE {
 criticalExtensions CHOICE {
 rrcConnectionReestablishmentReject-r8 RRCConnectionReestablishmentReject-r8-IEs,
 criticalExtensionsFuture SEQUENCE { }
 }
}
RRCConnectionReestablishmentReject-r8-IEs ::= SEQUENCE {
 nonCriticalExtension RRCConnectionReestablishmentReject-v8a0-IEs OPTIONAL
}
RRCConnectionReestablishmentReject-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE { }
}
```

**RRCConnectionReestablishmentRequest**

The **RRCConnectionReestablishmentRequest** message is used to request the reestablishment of an RRC connection.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: UE to E-UTRAN

**RRCConnectionReestablishmentRequest message**

```asn1
RRCConnectionReestablishmentRequest ::= SEQUENCE {
 criticalExtensions CHOICE {
 rrcConnectionReestablishmentRequest-r8 RRCConnectionReestablishmentRequest-r8-IEs,
 criticalExtensionsFuture SEQUENCE { }
 }
}
RRCConnectionReestablishmentRequest-r8-IEs ::= SEQUENCE {
 ue-Identity ReestabUE-Identity,
 reestablishmentCause ReestablishmentCause,
 spare BIT STRING (SIZE (2))
}```
ReestabUE-Identity ::= SEQUENCE {
 c-RNTI C-RNTI,
 physCellId PhysCellId,
 shortMAC-I ShortMAC-I
}

ReestablishmentCause ::= ENUMERATED {
 reconfigurationFailure, handoverFailure,
 otherFailure, spare1
}

-- ASN1STOP

RRCConnectionReestablishmentRequest field descriptions

- **physCellId**
 The Physical Cell Identity of the PCell the UE was connected to prior to the failure.

- **reestablishmentCause**
 Indicates the failure cause that triggered the re-establishment procedure. eNB is not expected to reject a RRCConnectionReestablishmentRequest due to unknown cause value being used by the UE.

- **ueIdentity**
 UE identity included to retrieve UE context and to facilitate contention resolution by lower layers.

RRCConnectionReject

The RRCConnectionReject message is used to reject the RRC connection establishment.

- Signalling radio bearer: SRB0
- RLC-SAP: TM
- Logical channel: CCCH
- Direction: E-UTRAN to UE

RRCConnectionReject message

```plaintext
-- ASN1START

RRCConnectionReject ::= SEQUENCE {
    criticalExtensions     CHOICE {
        cl                  CHOICE {
            rrcConnectionReject-r8    RRCConnectionReject-r8-IEs,
            spare3 NULL, spare2 NULL, spare1 NULL
        },
        criticalExtensionsFuture   SEQUENCE {}
    }
}

RRCConnectionReject-r8-IEs ::=  SEQUENCE {
    waitTime       INTEGER (1..16),
    nonCriticalExtension    RRCConnectionReject-v8a0-IEs  OPTIONAL
}

RRCConnectionReject-v8a0-IEs ::= SEQUENCE {
    lateNonCriticalExtension   OCTET STRING      OPTIONAL,
    nonCriticalExtension    RRCConnectionReject-v1020-IEs  OPTIONAL
}

RRCConnectionReject-v1020-IEs ::= SEQUENCE {
    extendedWaitTime-r10    INTEGER (1..1800)     OPTIONAL, -- Need ON
    nonCriticalExtension    RRCConnectionReject-v1130-IEs  OPTIONAL
}

RRCConnectionReject-v1130-IEs ::= SEQUENCE {
    deprioritisationReq-r11    SEQUENCE {
        deprioritisationType-r11   ENUMERATED {frequency, e-utra},
        deprioritisationTimer-r11   ENUMERATED {min5, min10, min15, min30}
    }                  OPTIONAL, -- Need ON
    nonCriticalExtension    RRCConnectionReject-v1320-IEs  OPTIONAL
}

-- ASN1STOP
```
RRCConnectionReject v1320-IEs ::= SEQUENCE {
 rrc-SuspendIndication-r13 ENUMERATED {true} OPTIONAL, -- Need ON
 nonCriticalExtension SEQUENCE {} OPTIONAL
} -- ASN1STOP

RRCConnectionReject field descriptions

- **deprioritisationReq**
 Indicates whether the current frequency or RAT is to be de-prioritised. The UE shall be able to store a deprivatisation request for up to 8 frequencies (applicable when receiving another frequency specific deprivatisation request before T325 expiry).

- **deprivatisationTimer**
 Indicates the period for which either the current carrier frequency or E-UTRA is deprivatised. Value minN corresponds to N minutes.

- **extendedWaitTime**
 Value in seconds for the wait time for Delay Tolerant access requests.

- **rrc-SuspendIndication**
 If present, this field indicates that the UE should remain suspended and not release its stored context.

- **waitTime**
 Wait time value in seconds.

RRCConnectionRelease

The **RRCConnectionRelease** message is used to command the release of an RRC connection.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

RRCConnectionRelease message

RRCConnectionRelease ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE {
 rrcConnectionRelease-r8 RRCConnectionRelease-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

RRCConnectionRelease-r8-IEs ::= SEQUENCE {
 releaseCause ReleaseCause,
 redirectedCarrierInfo RedirectedCarrierInfo OPTIONAL, -- Need ON
 idleModeMobilityControlInfo IdleModeMobilityControlInfo OPTIONAL, -- Need OP
 nonCriticalExtension RRCConnectionRelease-v890-IEs OPTIONAL
}

RRCConnectionRelease-v890-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING (CONTAINING RRCConnectionRelease-v9e0-IEs) OPTIONAL,
 nonCriticalExtension RRCConnectionRelease-v920-IEs OPTIONAL
}

RRCConnectionRelease-v9e0-IEs ::= SEQUENCE {
 redirectedCarrierInfo-v9e0 RedirectedCarrierInfo-v9e0 OPTIONAL, -- Cond
 _IDLEInfoEUTRA IdleModeMobilityControlInfo-v9e0 OPTIONAL, -- Cond
 nonCriticalExtension RRCConnectionRelease-v920-IEs OPTIONAL
}

Late non critical extensions

RRCConnectionRelease-v9e0-IEs ::= SEQUENCE {
 redirectedCarrierInfo-v9e0 RedirectedCarrierInfo-v9e0 OPTIONAL, -- Cond
 IdleInfoEUTRA IdleModeMobilityControlInfo-v9e0 OPTIONAL, -- Cond
 nonCriticalExtension RRCConnectionRelease-v920-IEs OPTIONAL
}
RRCConnectionRelease-v920-IEs ::= SEQUENCE {
cellInfoList-r9 CHOICE {
geran-r9 CellInfoListGERAN-r9,
utra-FDD-r9 CellInfoListUTRA-FDD-r9,
utra-TDD-r9 CellInfoListUTRA-TDD-r9,
...,
utra-TDD-r10 CellInfoListUTRA-TDD-r10
} OPTIONAL, -- Cond Redirection
nonCriticalExtension RRCConnectionRelease-v1020-IEs OPTIONAL
}
RRCConnectionRelease-v1020-IEs ::= SEQUENCE {
extendedWaitTime-r10 INTEGER (1..1800) OPTIONAL, -- Need ON
nonCriticalExtension RRCConnectionRelease-v1320-IEs OPTIONAL
}
RRCConnectionRelease-v1320-IEs::= SEQUENCE {
resumeIdentity-r13 ResumeIdentity-r13 OPTIONAL, -- Need OR
nonCriticalExtension SEQUENCE {} OPTIONAL
}
ReleaseCause ::= ENUMERATED {loadBalancingTAUrequired,
other, cs-FallbackHighPriority-v1020, rrc-Suspend-v1320}
RedirectedCarrierInfo ::= CHOICE {
eutra ARFCN-ValueEUTRA,
geran CarrierFreqsGERAN,
utra-FDD ARFCN-ValueUTRA,
utra-TDD ARFCN-ValueUTRA,
cdma2000-HRPD CarrierFreqCDMA2000,
cdma2000-1xRTT CarrierFreqCDMA2000,
...,
utra-TDD-r10 CarrierFreqListUTRA-TDD-r10
}
RedirectedCarrierInfo-v9e0 ::= SEQUENCE {
eutra-v9e0 ARFCN-ValueEUTRA-v9e0
}
CarrierFreqListUTRA-TDD-r10 ::= SEQUENCE (SIZE (1..maxFreqUTRA-TDD-r10)) OF ARFCN-ValueUTRA
IdleModeMobilityControlInfo ::= SEQUENCE {
freqPriorityListEUTRA FreqPriorityListEUTRA OPTIONAL, -- Need ON
freqPriorityListGERAN FreqPriorityListGERAN OPTIONAL, -- Need ON
freqPriorityListUTRA-FDD FreqPriorityListUTRA-FDD OPTIONAL, -- Need ON
freqPriorityListUTRA-TDD FreqPriorityListUTRA-TDD OPTIONAL, -- Need ON
bandClassPriorityListHRPD BandClassPriorityListHRPD OPTIONAL, -- Need ON
bandClassPriorityList1XRTT BandClassPriorityList1XRTT OPTIONAL, -- Need ON
t320 ENUMERATED {
min5, min10, min20, min30, min60, min120, min180,
spare1} OPTIONAL, -- Need OR
...,
}[[freqPriorityListExtEUTRA-r12 FreqPriorityListExtEUTRA-r12 OPTIONAL -- Need ON]]],
}[[freqPriorityListEUTRA-v1310 FreqPriorityListEUTRA-v1310 OPTIONAL, -- Need ON]]
freqPriorityListExtEUTRA-v1310 FreqPriorityListExtEUTRA-v1310 OPTIONAL -- Need ON

}
IdleModeMobilityControlInfo-v9e0 ::= SEQUENCE {
freqPriorityListEUTRA-v9e0 SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityEUTRA-v9e0
}
FreqPriorityListEUTRA ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityEUTRA
FreqPriorityListEUTRA-r12 ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityEUTRA-r12
FreqPriorityListEUTRA-v1310 ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityEUTRA-v1310
FreqPriorityListExtEUTRA-v1310 ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityEUTRA-v1310
FreqPriorityEUTRA ::= SEQUENCE {

carrierFreq ARFCN-ValueEUTRA,
cellReselectionPriority CellReselectionPriority
}

FreqPriorityEUTRA-v9e0 ::= SEQUENCE {
carrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0 OPTIONAL -- Cond EARFCN-max
}

FreqPriorityEUTRA-r12 ::= SEQUENCE {
carrierFreq-r12 ARFCN-ValueEUTRA-r9,
cellReselectionPriority-r12 CellReselectionPriority
}

FreqPriorityEUTRA-v1310 ::= SEQUENCE {
cellReselectionSubPriority-r13 CellReselectionSubPriority-r13 OPTIONAL -- Cond Need ON
}

FreqsPriorityListGERAN ::= SEQUENCE (SIZE (1..maxGNFG)) OF FreqsPriorityGERAN

FreqsPriorityGERAN ::= SEQUENCE {
carrierFreqs CarrierFreqsGERAN,
cellReselectionPriority CellReselectionPriority
}

FreqsPriorityUTRA-FDD ::= SEQUENCE (SIZE (1..maxUTRA-FDD-Carrier)) OF FreqsPriorityUTRA-FDD

FreqsPriorityUTRA-FDD ::= SEQUENCE {
carrierFreq ARFCN-ValueUTRA,
cellReselectionPriority CellReselectionPriority
}

FreqsPriorityUTRA-TDD ::= SEQUENCE (SIZE (1..maxUTRA-TDD-Carrier)) OF FreqsPriorityUTRA-TDD

FreqsPriorityUTRA-TDD ::= SEQUENCE {
carrierFreq ARFCN-ValueUTRA,
cellReselectionPriority CellReselectionPriority
}

BandClassPriorityListHRPD ::= SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandClassPriorityHRPD

BandClassPriorityHRPD ::= SEQUENCE {
bandClass BandclassCDMA2000,
cellReselectionPriority CellReselectionPriority
}

BandClassPriorityList1XRTT ::= SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandClassPriority1XRTT

BandClassPriority1XRTT ::= SEQUENCE {
bandClass BandclassCDMA2000,
cellReselectionPriority CellReselectionPriority
}

CellInfoListGERAN-r9 ::= SEQUENCE (SIZE (1..maxCellInfoGERAN-r9)) OF CellInfoGERAN-r9

CellInfoGERAN-r9 ::= SEQUENCE {
physCellId-r9 PhysCellIdGERAN,
carrierFreq-r9 CarrierFreqGERAN,
systemInformation-r9 SystemInfoListGERAN
}

CellInfoListUTRA-FDD-r9 ::= SEQUENCE (SIZE (1..maxCellInfoUTRA-r9)) OF CellInfoUTRA-FDD-r9

CellInfoUTRA-FDD-r9 ::= SEQUENCE {
physCellId-r9 PhysCellIdUTRA-FDD,
utra-BCCH-Container-r9 OCTET STRING
}

CellInfoListUTRA-TDD-r9 ::= SEQUENCE (SIZE (1..maxCellInfoUTRA-r9)) OF CellInfoUTRA-TDD-r9

CellInfoUTRA-TDD-r9 ::= SEQUENCE {
physCellId-r9 PhysCellIdUTRA-TDD,
utra-BCCH-Container-r9 OCTET STRING
}

CellInfoListUTRA-TDD-r10 ::= SEQUENCE (SIZE (1..maxCellInfoUTRA-r9)) OF CellInfoUTRA-TDD-r10

CellInfoUTRA-TDD-r10 ::= SEQUENCE {
3GPP TS 36.331 version 14.6.2 Release 14

RRCConnectionRelease field descriptions

carrierFreq or bandClass
The carrier frequency (UTRA and E-UTRA) and band class (HRPD and 1xRTT) for which the associated cellReselectionPriority is applied.

carrierFreqs
The list of GERAN carrier frequencies organised into one group of GERAN carrier frequencies.

cellInfoList
Used to provide system information of one or more cells on the redirected inter-RAT carrier frequency. The system information can be used if, upon redirection, the UE selects an inter-RAT cell indicated by the physCellId and carrierFreq (GERAN and UTRA TDD) or by the physCellId (other RATs). The choice shall match the redirectedCarrierInfo. In particular, E-UTRAN only applies value utra-TDD-r10 in case redirectedCarrierInfo is set to utra-TDD-r10.

extendedWaitTime
Value in seconds for the wait time for Delay Tolerant access requests.

freqPriorityListX
Provides a cell reselection priority for each frequency, by means of separate lists for each RAT (including E-UTRA). The UE shall be able to store at least 3 occurrences of FreqsPriorityGERAN. If E-UTRAN includes freqPriorityListEUTRA-v9e0 and/or freqPriorityListEUTRA-v1310 it includes the same number of entries, and listed in the same order, as in freqPriorityListEUTRA (i.e. without suffix). Field freqPriorityListExt includes additional neighbouring inter-frequencies, i.e. extending the size of the inter-frequency carrier list using the general principles specified in 5.1.2. EUTRAN only includes freqPriorityListExtEUTRA if freqPriorityListEUTRA (i.e without suffix) includes maxFreq entries. If E-UTRAN includes freqPriorityListExtEUTRA-v1310 it includes the same number of entries, and listed in the same order, as in freqPriorityListExtEUTRA-r12.

idleModeMobilityControlInfo
Provides dedicated cell reselection priorities. Used for cell reselection as specified in TS 36.304 [4]. For E-UTRA and UTRA frequencies, a UE that supports multi-band cells for the concerned RAT considers the dedicated priorities to be common for all overlapping bands (i.e. regardless of the ARFCN that is used).

redirectedCarrierInfo
The redirectedCarrierInfo indicates a carrier frequency (downlink for FDD) and is used to redirect the UE to an E-UTRA or an inter-RAT carrier frequency, by means of the cell selection upon leaving RRC_CONNECTED as specified in TS 36.304 [4].

releaseCause
The releaseCause is used to indicate the reason for releasing the RRC Connection. The cause value cs-FallbackHighPriority is only applicable when redirectedCarrierInfo is present with the value set to utra-FDD, utra-TDD or utra-TDD-r10. E-UTRAN should not set the releaseCause to loadBalancingTAURequired or to cs-FallbackHighPriority if the extendedWaitTime is present.

systemInformation
Container for system information of the GERAN cell i.e. one or more System Information (SI) messages as defined in TS 44.018 [45, table 9.1.1].

t320
Timer T320 as described in section 7.3. Value minN corresponds to N minutes.

utra-BCCH-Container
Contains System Information Container message as defined in TS 25.331 [19].

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARFCN-max</td>
<td>The field is mandatory present if the corresponding carrierFreq (i.e. without suffix) is set to maxEARFCN. Otherwise the field is not present.</td>
</tr>
<tr>
<td>IdleInfoEUTRA</td>
<td>The field is optionally present, need OP, if the IdleModeMobilityControlInfo (i.e. without suffix) is included and includes freqPriorityListEUTRA; otherwise the field is not present.</td>
</tr>
<tr>
<td>NoRedirect-r8</td>
<td>The field is optionally present, need OP, if the redirectedCarrierInfo (i.e. without suffix) is not included; otherwise the field is not present.</td>
</tr>
<tr>
<td>Redirection</td>
<td>The field is optionally present, need ON, if the redirectedCarrierInfo is included and set to geran, utra-FDD, utra-TDD or utra-TDD-r10; otherwise the field is not present.</td>
</tr>
</tbody>
</table>

RRCConnectionRequest

The RRCConnectionRequest message is used to request the establishment of an RRC connection.
Signalling radio bearer: SRB0
RLC-SAP: TM
Logical channel: CCCH
Direction: UE to E-UTRAN

RRConnectionRequest message

```
RRCConnectionRequest ::= SEQUENCE {
  criticalExtensions  CHOICE {
    rrcConnectionRequest-r8    RRCConnectionRequest-r8-IEs,
    criticalExtensionsFuture  SEQUENCE {}
  }
}
RRCConnectionRequest-r8-IEs ::= SEQUENCE {
  ue-Identity       InitialUE-Identity,
  establishmentCause EstablishmentCause,
  spare        BIT STRING (SIZE (1))
}
InitialUE-Identity ::= CHOICE {
  s-TMSI        S-TMSI,
  randomValue       BIT STRING (SIZE (40))
}
EstablishmentCause ::= ENUMERATED {
  emergency, highPriorityAccess, mt-Access, mo-Signalling,
  mo-Data, delayTolerantAccess-v1020, mo-VoiceCall-v1280,
  spare1}
```

RRConnectionRequest field descriptions

- **establishmentCause**
 Provides the establishment cause for the RRC connection request as provided by the upper layers. W.r.t. the cause value names: highPriorityAccess concerns AC11..AC15, 'mt' stands for 'Mobile Terminating' and 'mo' for 'Mobile Originating'. eNB is not expected to reject a RRCConnectionRequest due to unknown cause value being used by the UE.

- **randomValue**
 Integer value in the range 0 to $2^{40} - 1$.

- **ue-Identity**
 UE identity included to facilitate contention resolution by lower layers.

The **RRCConnectionResume** message is used to resume the suspended RRC connection.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

RRCConnectionResume message

```
RRCConnectionResume-r13 ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,
  criticalExtensions     CHOICE {
    c1         CHOICE {
      rrcConnectionResume-r13    RRCConnectionResume-r13-IEs,
    }
  }
}```

```
{spare3: NULL,
spare2: NULL,
spare1: NULL,
 criticalExtensionsFuture: SEQUENCE {}}

RRCConnectionResume-r13-IEs ::= SEQUENCE {
radioResourceConfigDedicated-r13 RadioResourceConfigDedicated OPTIONAL, -- Need ON
nextHopChainingCount-r13 NextHopChainingCount,
measConfig-r13 MeasConfig OPTIONAL, -- Need ON
antennaInfoDedicatedPCell-r13 AntennaInfoDedicated-v10i0 OPTIONAL, -- Need ON
drb-ContinueROHC-r13 ENUMERATED {true} OPTIONAL, -- Need ON
lateNonCriticalExtension OCTET STRING OPTIONAL,
rrcConnectionResume-v1430-IEs RRCConnectionResume-v1430-IEs OPTIONAL
}

RRCConnectionResume-v1430-IEs ::= SEQUENCE {
otherConfig-r14 OtherConfig-r9 OPTIONAL, -- Need ON
nonCriticalExtension SEQUENCE {} OPTIONAL
}

RRCConnectionResume-r13 ::= SEQUENCE {
rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 rrcConnectionResume-r13 RRCConnectionResume-r13-IEs,
 criticalExtensionsFuture SEQUENCE {}
 }
}

RRCConnectionResume-r13-IEs ::= SEQUENCE {
 selectedPLMN-Identity-r13 INTEGER (1..maxPLMN-r11) OPTIONAL,
dedicatedInfoNAS-r13 DedicatedInfoNAS OPTIONAL,
rlf-InfoAvailable-r13 ENUMERATED {true} OPTIONAL,
logMeasAvailable-r13 ENUMERATED {true} OPTIONAL,
connEstFailInfoAvailable-r13 ENUMERATED {true} OPTIONAL,
mobilityState-r13 ENUMERATED {normal, medium, high, spare} OPTIONAL,
mobilityHistoryAvail-r13 ENUMERATED {true} OPTIONAL,
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

RRCConnectionResume field descriptions

drb-ContinueROHC
This field indicates whether to continue or reset the header compression protocol context for the DRBs configured with
the header compression protocol. Presence of the field indicates that the header compression protocol context
continues while absence indicates that the header compression protocol context is reset.

RRCConnectionResumeComplete

The RRCConnectionResumeComplete message is used to confirm the successful completion of an RRC connection
resumption

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

RRCConnectionResumeComplete message

-- ASN1START

RRCConnectionResumeComplete-r13 ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 rrcConnectionResumeComplete-r13 RRCConnectionResumeComplete-r13-IEs,
 criticalExtensionsFuture SEQUENCE {}
 }
}

RRCConnectionResumeComplete-r13-IEs ::= SEQUENCE {
 selectedPLMN-Identity-r13 INTEGER (1..maxPLMN-r11) OPTIONAL,
dedicatedInfoNAS-r13 DedicatedInfoNAS OPTIONAL,
rlf-InfoAvailable-r13 ENUMERATED {true} OPTIONAL,
logMeasAvailable-r13 ENUMERATED {true} OPTIONAL,
connEstFailInfoAvailable-r13 ENUMERATED {true} OPTIONAL,
mobilityState-r13 ENUMERATED {normal, medium, high, spare} OPTIONAL,
mobilityHistoryAvail-r13 ENUMERATED {true} OPTIONAL,
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP
RRConnectionResumeComplete field descriptions

selectedPLMN-Identity
Index of the PLMN selected by the UE from the plmn-IdentityList fields included in SIB1. 1 if the 1st PLMN is selected from the 1st plmn-IdentityList included in SIB1, 2 if the 2nd PLMN is selected from the same plmn-IdentityList, or when no more PLMN are present within the same plmn-IdentityList, then the PLMN listed 1st in the subsequent plmn-IdentityList within the same SIB1 and so on.

RRConnectionResumeRequest

The RRConnectionResumeRequest message is used to request the resumption of a suspended RRC connection.

Signalling radio bearer: SRB0
RLC-SAP: TM
Logical channel: CCCH
Direction: UE to E-UTRAN

RRConnectionResumeRequest message

-- ASN1START

RRConnectionResumeRequest-r13 ::= SEQUENCE {
 criticalExtensions CHOICE {
 rrcConnectionResumeRequest-r13-IEs, SEQUENCE {
 resumeIdentity-r13 ResumeIdentity-r13,
 truncatedResumeID-r13 BIT STRING (SIZE (24)),
 shortResumeMAC-I-r13 BIT STRING (SIZE (16)),
 resumeCause-r13 ResumeCause,
 },
 criticalExtensionsFuture SEQUENCE {} }

ResumeCause ::= ENUMERATED {
 emergency, highPriorityAccess, mt-Access, mo-Signalling,
 mo-Data, delayTolerantAccess-v1020, mo-VoiceCall-v1280,
 spare1}

-- ASN1STOP

RRConnectionResumeRequest field descriptions

resumeCause
Provides the resume cause for the RRC connection resume request as provided by the upper layers.

resumeIdentity
UE identity to facilitate UE context retrieval at eNB

shortResumeMAC-I
Authentication token to facilitate UE authentication at eNB

-- RRConnectionSetup

The RRConnectionSetup message is used to establish SRB1.
Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: E-UTRAN to UE

RRConnectionSetup message

```asn1
RRConnectionSetup ::= SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier,
    criticalExtensions     CHOICE {
        c1         CHOICE {
            rrcConnectionSetup-r8    RRCConnectionSetup-r8-IEs,
            spare7 NULL,
            spare6 NULL, spare5 NULL, spare4 NULL,
            spare3 NULL, spare2 NULL, spare1 NULL
        },
        criticalExtensionsFuture   SEQUENCE {} }
}
```

RRCConnectionSetupComplete message

The **RRCConnectionSetupComplete** message is used to confirm the successful completion of an RRC connection establishment.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN
RRCConnectionSetupComplete-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension RRCConnectionSetupComplete-v1020-IEs OPTIONAL
}

RRCConnectionSetupComplete-v1020-IEs ::= SEQUENCE {
 gummei-Type-r10 ENUMERATED {native, mapped} OPTIONAL,
 rlf-InfoAvailable-r10 ENUMERATED {true} OPTIONAL,
 logMeasAvailable-r10 ENUMERATED {true} OPTIONAL,
 rn-SubframeConfigReq-r10 ENUMERATED {required, notRequired} OPTIONAL,
 nonCriticalExtension RRCConnectionSetupComplete-v1130-IEs OPTIONAL
}

RRCConnectionSetupComplete-v1130-IEs ::= SEQUENCE {
 connEstFailInfoAvailable-r11 ENUMERATED {true} OPTIONAL,
 nonCriticalExtension RRCConnectionSetupComplete-v1250-IEs OPTIONAL
}

RRCConnectionSetupComplete-v1250-IEs ::= SEQUENCE {
 mobilityState-r12 ENUMERATED {normal, medium, high, spare} OPTIONAL,
 mobilityHistoryAvail-r12 ENUMERATED {true} OPTIONAL,
 logMeasAvailableMBSFN-r12 ENUMERATED {true} OPTIONAL,
 nonCriticalExtension RRCConnectionSetupComplete-v1320-IEs OPTIONAL
}

RRCConnectionSetupComplete-v1320-IEs ::= SEQUENCE {
 ce-ModeB-r13 ENUMERATED {supported} OPTIONAL,
 s-TMSI-r13 S-TMSI OPTIONAL,
 attachWithoutPDN-Connectivity-r13 ENUMERATED {true} OPTIONAL,
 up-ClIoT-EPS-Optimisation-r13 ENUMERATED {true} OPTIONAL,
 cp-ClIoT-EPS-Optimisation-r13 ENUMERATED {true} OPTIONAL,
 nonCriticalExtension RRCConnectionSetupComplete-v1330-IEs OPTIONAL
}

RRCConnectionSetupComplete-v1330-IEs ::= SEQUENCE {
 ue-CE-NeedULGaps-r13 ENUMERATED {true} OPTIONAL,
 nonCriticalExtension RRCConnectionSetupComplete-v1430-IEs OPTIONAL
}

RRCConnectionSetupComplete-v1430-IEs ::= SEQUENCE {
 dcn-ID-r14 INTEGER (0..65535) OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

RegisteredMME ::= SEQUENCE {
 plmn-Identity PLMN-Identity OPTIONAL,
 mmegi BIT STRING (SIZE (16)),
 mmec MMEC
}

-- ASN1STOP
RRCConnectionSetupComplete field descriptions

attachWithoutPDN-Connectivity
This field is used to indicate that the UE performs an Attach without PDN connectivity procedure, as indicated by the upper layers and specified in TS 24.301 [35].

cp-CIoT-EPS-Optimisation
This field is included when the UE supports the Control plane CIoT EPS Optimisation, as indicated by the upper layers, see TS 24.301 [35].

ce-ModeB
Indicates whether the UE supports operation in CE mode B, as specified in TS 36.306 [5].

dcn-ID
The Dedicated Core Network Identity, see TS 23.401 [41].

gummei-Type
This field is used to indicate whether the GUMMEI included is native (assigned by EPC) or mapped (from 2G/3G identifiers).

mmegi
Provides the Group Identity of the registered MME within the PLMN, as provided by upper layers, see TS 23.003 [27].

mobilityState
This field indicates the UE mobility state (as defined in TS 36.304 [4, 5.2.4.3]) just prior to UE going into RRC_CONNECTED state. The UE indicates the value of medium and high when being in Medium-mobility and High-mobility states respectively. Otherwise the UE indicates the value normal.

registeredMME
This field is used to transfer the GUMMEI of the MME where the UE is registered, as provided by upper layers.

rn-SubframeConfigReq
If present, this field indicates that the connection establishment is for an RN and whether a subframe configuration is requested or not.

selectedPLMN-Identity
Index of the PLMN selected by the UE from the plmn-IdentityList fields included in SIB1. 1 if the 1st PLMN is selected from the 1st plmn-IdentityList included in SIB1, 2 if the 2nd PLMN is selected from the same plmn-IdentityList, or when no more PLMN are present within the same plmn-IdentityList, then the PLMN listed 1st in the subsequent plmn-IdentityList within the same SIB1 and so on.

up-CIoT-EPS-Optimisation
This field is included when the UE supports the User plane CIoT EPS Optimisation, as indicated by the upper layers, see TS 24.301 [35].

ue-CE-NeedULGaps
Indicates whether the UE needs uplink gaps during continuous uplink transmission in FDD as specified in TS 36.211 [21] and TS 36.306 [5].

SCGFailureInformation

The **SCGFailureInformation** message is used to provide information regarding failures detected by the UE.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

SCGFailureInformation message

```
-- ASN1START

SCGFailureInformation-r12 ::= SEQUENCE {
  criticalExtensions CHOICE {
    c1 CHOICE {
      scgFailureInformation-r12 SCGFailureInformation-r12-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}

SCGFailureInformation-r12-IEs ::= SEQUENCE {
  failureReportSCG-r12 FailureReportSCG-r12 OPTIONAL,
  nonCriticalExtension SCGFailureInformation-v1310-IEs OPTIONAL
}

-- ASN1END
```
SCGFailureInformation-v1310-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING (CONTAINING SCGFailureInformation-v12d0-IEs) OPTIONAL,
 nonCriticalExtension SEQUENCE () OPTIONAL
}

-- Late non-critical extensions:
SCGFailureInformation-v12d0-IEs ::= SEQUENCE {
 failureReportSCG-v12d0 FailureReportSCG-v12d0 OPTIONAL,
 nonCriticalExtension SEQUENCE () OPTIONAL
}

-- Regular non-critical extensions:
FailureReportSCG-r12 ::= SEQUENCE {
 failureType-r12 ENUMERATED {t313-Expiry, randomAccessProblem, rlc-MaxNumRetx, scg-ChangeFailure },
 measResultServFreqList-r12 MeasResultServFreqList-r10 OPTIONAL,
 measResultNeighCells-r12 MeasResultList2EUTRA-r9 OPTIONAL,
 ...,
 [[failureType-v1290 ENUMERATED {maxUL-TimingDiff-v1290} OPTIONAL]],
 [[measResultServFreqListExt-r13 MeasResultServFreqListExt-r13 OPTIONAL]]
}
FailureReportSCG-v12d0 ::= SEQUENCE {
 measResultNeighCells-v12d0 MeasResultList2EUTRA-v9e0 OPTIONAL
}

-- ASN1STOP

SCPTMConfiguration

The **SCPTMConfiguration** message contains the control information applicable for MBMS services transmitted via SC-MRB.

Signalling radio bearer: N/A

RLC-SAP: UM

Logical channel: SC-MCCH

Direction: E-UTRAN to UE

SCPTMConfiguration message

SCPTMConfiguration-r13 ::= SEQUENCE {
 sc-mtch-InfoList-r13 SC-MTCH-InfoList-r13,
 scptm-NeighbourCellList-r13 SCPTM-NeighbourCellList-r13 OPTIONAL,
 lateNonCriticalExtension SCPTMConfiguration-v1340 OPTIONAL,
 nonCriticalExtension SEQUENCE () OPTIONAL
}

SCPTMConfiguration-v1340 ::= SEQUENCE {
 p-b-r13 INTEGER (0..3) OPTIONAL,
 nonCriticalExtension SEQUENCE () OPTIONAL
}

-- ASN1STOP
SCPTMConfiguration field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sc-mtch-InfoList</td>
<td>Provides the configuration of each SC-MTCH in the current cell.</td>
</tr>
<tr>
<td>scptm-NeighbourCellList</td>
<td>List of neighbour cells providing MBMS services via SC-MRB. When absent, the UE shall assume that MBMS services listed in the SCPTMConfiguration message are not provided via SC-MRB in any neighbour cell.</td>
</tr>
</tbody>
</table>

p-b

Parameter: p_b for the PDSCH scrambled by G-RNTI, see TS 36.213 [23, Table 5.2-1].

SCPTMConfiguration-BR

The SCPTMConfiguration-BR message contains the control information applicable for MBMS services transmitted via SC-MRB for BL UEs or UEs in CE.

Signalling radio bearer: N/A

RLC-SAP: UM

Logical channel: SC-MCCH

Direction: E-UTRAN to UE

SCPTMConfiguration-BR message

```
-- ASN1START

SCPTMConfiguration-BR-r14 ::= SEQUENCE {
  sc-mtch-InfoList-r14   SC-MTCH-InfoList-BR-r14,
  scptm-NeighbourCellList-r14  SCPTM-NeighbourCellList-r13   OPTIONAL, -- Need OP
  p-b-r14       INTEGER (0..3)      OPTIONAL, -- Need OR
  lateNonCriticalExtension  OCTET STRING      OPTIONAL,
  nonCriticalExtension   SEQUENCE {}       OPTIONAL
}

-- ASN1STOP
```

SCPTMConfiguration-BR field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-b</td>
<td>Parameter: p_b for the PDSCH scrambled by G-RNTI, see TS 36.213 [23, Table 5.2-1].</td>
</tr>
<tr>
<td>sc-mtch-InfoList</td>
<td>Provides the configuration of each SC-MTCH in the current cell for BL UEs or UEs in CE.</td>
</tr>
<tr>
<td>scptm-NeighbourCellList</td>
<td>List of neighbour cells providing MBMS services via SC-MRB. When absent, the BL UE or UE in CE shall assume that MBMS services listed in the SCPTMConfiguration-BR message are not provided via SC-MRB in any neighbour cell.</td>
</tr>
</tbody>
</table>

SecurityModeCommand

The SecurityModeCommand message is used to command the activation of AS security.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

SecurityModeCommand message

```
-- ASN1START

SecurityModeCommand ::=    SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier, 
    criticalExtensions          CHOICE {
    }
}

-- ASN1STOP
```
SecurityModeComplete

The SecurityModeComplete message is used to confirm the successful completion of a security mode command.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

SecurityModeComplete message

SecurityModeFailure

The SecurityModeFailure message is used to indicate an unsuccessful completion of a security mode command.
SecurityModeFailure message

--- ASN1START

SecurityModeFailure ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 securityModeFailure-r8 SecurityModeFailure-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}
 }
}

SecurityModeFailure-r8-IEs ::= SEQUENCE {
 nonCriticalExtension SecurityModeFailure-v8a0-IEs OPTIONAL
}

SecurityModeFailure-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
--- ASN1STOP

SidelinkUEInformation

The SidelinkUEInformation message is used for the indication of sidelink information to the eNB.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

SidelinkUEInformation message

--- ASN1START

SidelinkUEInformation-r12 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 sidelinkUEInformation-r12 SidelinkUEInformation-r12-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

SidelinkUEInformation-r12-IEs ::= SEQUENCE {
 commRxInterestedFreq-r12 ARFCN-ValueEUTRA-r9 OPTIONAL,
 commTxResourceReq-r12 SL-CommTxResourceReq-r12 OPTIONAL,
 discRxInterested-r12 ENUMERATED (true) OPTIONAL,
 discTxResourceReq-r12 INTEGER (1..63) OPTIONAL,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SidelinkUEInformation-v1310-IEs OPTIONAL
}

SidelinkUEInformation-v1310-IEs ::= SEQUENCE {
 commTxResourceReqUC-r13 SL-CommTxResourceReq-r12 OPTIONAL,
 commTxResourceInfoReqRelay-r13 SEQUENCE {
 commTxResourceReqRelay-r13 SL-CommTxResourceReq-r12 OPTIONAL,
 commTxResourceReqRelayUC-r13 SL-CommTxResourceReq-r12 OPTIONAL,
 }
}
ue-Type-r13 ENUMERATED {relayUE, remoteUE}
} OPTIONAL,
discTxResourceReq-v1310 SEQUENCE {
carrierFreqDiscTx-r13 INTEGER (1..maxFreq) OPTIONAL,
discTxResourceReqAddFreq-r13 SL-DiscTxResourceReqAddFreqList-r13 OPTIONAL
} OPTIONAL,
discTxResourceReqPS-r13 SL-DiscTxResourceReq-r13 OPTIONAL,
discRxGapReq-r13 SL-GapRequest-r13 OPTIONAL,
discTxGapReq-r13 SL-GapRequest-r13 OPTIONAL,
discSysInfoReportFreqList-r13 SL-DiscSysInfoReportFreqList-r13 OPTIONAL,
nonCriticalExtension SidelinkUEInformation-v1430-IEs OPTIONAL
}

SidelinkUEInformation-v1430-IEs ::= SEQUENCE {
v2x-CommRxInterestedFreqList-r14 SL-V2X-CommFreqList-r14 OPTIONAL,
p2x-CommTxType-r14 ENUMERATED {true} OPTIONAL,
v2x-CommTxResourceReq-r14 SL-V2X-CommTxFreqList-r14 OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

SL-DiscTxResourceReqPerFreqList-r13 ::= SEQUENCE (SIZE (1..maxFreq)) OF SL-DiscTxResourceReq-r13

SL-DiscTxResourceReq-r13 ::= SEQUENCE {
carrierFreqDiscTx-r13 INTEGER (1..maxFreq) OPTIONAL,
discTxResourceReq-r13 INTEGER (1..63)
}

SL-DiscSysInfoReportFreqList-r13 ::= SEQUENCE (SIZE (1..maxFreq)) OF SL-DiscSysInfoReport-r13

SL-V2X-CommFreqList-r14 ::= SEQUENCE (SIZE (1..maxFreqV2X-1-r14)) OF INTEGER (0..maxFreqV2X-1-r14)

SL-V2X-CommTxFreqList-r14 ::= SEQUENCE (SIZE (1..maxFreqV2X-1-r14)) OF SL-V2X-CommTxFreqList-r14

SL-V2X-CommTxFreqList-r14 ::= SEQUENCE (SIZE (1..maxFreqV2X-1-r14)) OF SL-V2X-CommTxFreqList-r14

SL-V2X-CommTxResourceReq-r14 ::= SEQUENCE {
carrierFreqCommTx-r14 INTEGER (0..maxFreqV2X-1-r14) OPTIONAL,
v2x-TypeTxSync-r14 SL-TypeTxSync-r14 OPTIONAL,
v2x-DestinationInfoList-r14 SL-DestinationInfoList-r12 OPTIONAL
}

-- ASN1STOP
SidelinkUEInformation field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>carrierFreqCommTx</td>
<td>Indicates the index of the frequency on which the UE is interested to transmit V2X sidelink communication. The value 1 corresponds to the frequency of first entry in v2x-InterFreqInfoList broadcast in SIB21, the value 2 corresponds to the frequency of second entry in v2x-InterFreqInfoList broadcast in SIB21 and so on. The value 0 corresponds the PCell's frequency.</td>
</tr>
<tr>
<td>carrierFreqDiscTx</td>
<td>Indicates the frequency by the index of the entry in field discInterFreqList within SystemInformationBlockType19. Value 1 corresponds to the first entry in discInterFreqList within SystemInformationBlockType19, value 2 corresponds to the second entry in this list and so on.</td>
</tr>
<tr>
<td>commRxInterestedFreq</td>
<td>Indicates the frequency on which the UE is interested to receive sidelink communication.</td>
</tr>
<tr>
<td>commTxResourceReq</td>
<td>Indicates the frequency on which the UE is interested to transmit non-relay related sidelink communication as well as the one-to-many sidelink communication transmission destination(s) for which the UE requests E-UTRAN to assign dedicated resources. NOTE 1.</td>
</tr>
<tr>
<td>commTxResourceReqRelay</td>
<td>Indicates the relay related one-to-many sidelink communication transmission destination(s) for which the sidelink relay UE requests E-UTRAN to assign dedicated resources.</td>
</tr>
<tr>
<td>commTxResourceReqRelayUC</td>
<td>Indicates the relay related one-to-one sidelink communication transmission destination(s) for which the sidelink relay UE or sidelink remote UE requests E-UTRAN to assign dedicated resources i.e. either contains the unicast destination identity of the sidelink relay UE or of the sidelink remote UE.</td>
</tr>
<tr>
<td>commTxResourceReqRelayUC</td>
<td>Indicates the frequency on which the UE is interested to transmit non-relay related one-to-one sidelink communication as well as the sidelink communication transmission destination(s) for which the UE requests E-UTRAN to assign dedicated resources. NOTE 1.</td>
</tr>
<tr>
<td>destinationInfoList</td>
<td>Indicates the destination(s) for relay or non-relay related one-to-one or one-to-many sidelink communication. For one-to-one sidelink communication the destination is identified by the ProSe UE ID for unicast communication, while for one-to-many the destination it is identified by the ProSe Layer-2 Group ID as specified in TS 23.303 [68].</td>
</tr>
<tr>
<td>discRxInterest</td>
<td>Indicates that the UE is interested to monitor sidelink discovery announcements.</td>
</tr>
<tr>
<td>discSysInfoReportFreqList</td>
<td>Indicates, for one or more frequencies, a list of sidelink discovery related parameters acquired from system information of cells on configured inter-frequency carriers.</td>
</tr>
<tr>
<td>discTxResourceReqAddFreq</td>
<td>Indicates the number of separate discovery message(s) the UE wants to transmit every discovery period. This field concerns the resources the UE requires every discovery period for transmitting sidelink discovery announcement(s).</td>
</tr>
<tr>
<td>discTxResourceReqPS</td>
<td>Indicates, for any frequencies in addition to the one covered by discTxResourceReq, the number of separate discovery message(s) the UE wants to transmit every discovery period. This field concerns the resources the UE requires every discovery period for transmitting sidelink discovery announcement(s).</td>
</tr>
<tr>
<td>p2x-CommTxType</td>
<td>Indicates that the requested transmission resource pool is for P2X related V2X sidelink communication.</td>
</tr>
<tr>
<td>v2xCommRxInterestedFreqList</td>
<td>Indicates the index(es) of the frequency(ies) on which the UE is interested to receive V2X sidelink communication. The value 1 corresponds to the frequency of first entry in v2x-InterFreqInfoList broadcast in SIB21, the value 2 corresponds to the frequency of second entry in v2x-InterFreqInfoList broadcast in SIB21 and so on. The value 0 corresponds the PCell's frequency.</td>
</tr>
<tr>
<td>v2x-DestinationInfoList</td>
<td>Indicates the destination(s) for V2X sidelink communication.</td>
</tr>
<tr>
<td>v2x-TypeTxSync</td>
<td>Indicates the synchronization reference used by the UE.</td>
</tr>
</tbody>
</table>

NOTE 1: When configuring commTxResourceReq, commTxResourceReqUC, commTxResourceReqRelay and commTxResourceReqRelayUC, E-UTRAN configures at most maxSL-Dest-r12 destinations in total (i.e. as included in the four fields together).
The SystemInformation message is used to convey one or more System Information Blocks. All the SIBs included are transmitted with the same periodicity. SystemInformation-BR and SystemInformation-MBMS use the same structure as SystemInformation.

Signalling radio bearer: N/A

RLC-SAP: TM

Logical channels: BCCH and BR-BCCH

Direction: E-UTRAN to UE

SystemInformation

SystemInformation message

-- ASN1START

SystemInformation-BR-r13 ::= SystemInformation

SystemInformation-MBMS-r14 ::= SystemInformation

SystemInformation ::= SEQUENCE {
 criticalExtensions CHOICE {
 systemInformation-r8 SystemInformation-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}
 }
}

SystemInformation-r8-IEs ::= SEQUENCE {
 sib-TypeAndInfo SEQUENCE (SIZE (1..maxSIB)) OF CHOICE {
 sib2 SystemInformationBlockType2,
 sib3 SystemInformationBlockType3,
 sib4 SystemInformationBlockType4,
 sib5 SystemInformationBlockType5,
 sib6 SystemInformationBlockType6,
 sib7 SystemInformationBlockType7,
 sib8 SystemInformationBlockType8,
 sib9 SystemInformationBlockType9,
 sib10 SystemInformationBlockType10,
 sib11 SystemInformationBlockType11,
 ...
 sib12-v920 SystemInformationBlockType12-r9,
 sib13-v920 SystemInformationBlockType13-r9,
 sib14-v1130 SystemInformationBlockType14-r11,
 sib15-v1130 SystemInformationBlockType15-r11,
 sib16-v1130 SystemInformationBlockType16-r11,
 sib17-v1230 SystemInformationBlockType17-r12,
 sib18-v1250 SystemInformationBlockType18-r12,
 sib19-v1250 SystemInformationBlockType19-r12,
 sib20-v1310 SystemInformationBlockType20-r13,
 sib21-v1430 SystemInformationBlockType21-r14
 },
 nonCriticalExtension SystemInformation-v8a0-IEs OPTIONAL
}

SystemInformation-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

SystemInformationBlockType1

SystemInformationBlockType1 contains information relevant when evaluating if a UE is allowed to access a cell and defines the scheduling of other system information. SystemInformationBlockType1-BR uses the same structure as SystemInformationBlockType1.
Signalling radio bearer: N/A

RLC-SAP: TM

Logical channels: BCCH and BR-BCCH

Direction: E-UTRAN to UE

SystemInformationBlockType1 message

-- ASN1START

SystemInformationBlockType1-BR-r13 ::= SystemInformationBlockType1

SystemInformationBlockType1 ::= SEQUENCE {
 cellAccessRelatedInfo SEQUENCE {
 plmn-IdentityList PLMN-IdentityList,
 trackingAreaCode TrackingAreaCode,
 cellIdentity CellIdentity,
 cellBarred ENUMERATED {barred, notBarred},
 intraFreqReselection ENUMERATED {allowed, notAllowed},
 csg-Indication BOOLEAN,
 csg-Identity CSG-Identity OPTIONAL
 },
 cellSelectionInfo SEQUENCE {
 q-RxLevMin Q-RxLevMin,
 q-RxLevMinOffset INTEGER (1..8) OPTIONAL
 },
 p-Max P-Max OPTIONAL,
 freqBandIndicator FreqBandIndicator,
 schedulingInfoList SchedulingInfoList,
 tdd-Config TDD-Config OPTIONAL,
 si-WindowLength ENUMERATED {
 ms1, ms2, ms5, ms10, ms15, ms20,
 ms40},
 systemInfoValueTag INTEGER (0..31),
 nonCriticalExtension SystemInformationBlockType1-v890-IEs OPTIONAL
}

SystemInformationBlockType1-v890-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING (CONTAINING SystemInformationBlockType1-v8h0-IEs) OPTIONAL,
 nonCriticalExtension SystemInformationBlockType1-v920-IEs OPTIONAL
}

-- Late non critical extensions

SystemInformationBlockType1-v8h0-IEs ::= SEQUENCE {
 multiBandInfoList MultiBandInfoList OPTIONAL
}

SystemInformationBlockType1-v920-IEs ::= SEQUENCE {
 ims-EmergencySupport-r9 ENUMERATED {true} OPTIONAL
}

-- Regular non critical extensions

SystemInformationBlockType1-v920-IEs ::= SEQUENCE {
 nonCriticalExtension SystemInformationBlockType1-v1130-IEs OPTIONAL
}

-- ASN1END
SystemInformationBlockType1-v1130-IEs ::= SEQUENCE {
tdd-Config-v1130 TDD-Config-v1130 OPTIONAL, -- Cond TDD-OR
cellSelectionInfo-v1130 CellSelectionInfo-v1130 OPTIONAL, -- Cond WB-RSRQ
nonCriticalExtension SystemInformationBlockType1-v1250-IEs OPTIONAL
}

SystemInformationBlockType1-v1250-IEs ::= SEQUENCE {
cellAccessRelatedInfo-v1250 SEQUENCE {
category0Allowed-r12 ENUMERATED {true} OPTIONAL -- Need OP

cellSelectionInfo-v1250 CellSelectionInfo-v1250 OPTIONAL, -- Cond RSRQ2
freqBandIndicatorPriority-r12 ENUMERATED {true} OPTIONAL, -- Cond mFBI
nonCriticalExtension SystemInformationBlockType1-v1310-IEs OPTIONAL
}

SystemInformationBlockType1-v1310-IEs ::= SEQUENCE {
si-WindowLength-BR-r13 ENUMERATED {ms20, ms40, ms60, ms80, ms120, ms160, ms200, spare},
si-RepetitionPattern-r13 ENUMERATED {everyRF, every2ndRF, every4thRF, every8thRF},
schedulingInfoList-BR-r13 SchedulingInfoList-BR-r13 OPTIONAL, -- Cond SI-BR
fdd-DownlinkOrTddSubtitleBitmapBR-r13 CHOICE {
subframePattern10-r13 BIT STRING (SIZE (10)) OPTIONAL, -- Need OP
subframePattern40-r13 BIT STRING (SIZE (40))
} OPTIONAL, -- Need OP
fdd-UplinkSubtitleBitmapBR-r13 BIT STRING (SIZE (10)) OPTIONAL, -- Need OP
startSymbolBR-r13 INTEGER (1..4),
si-HoppingConfigCommon-r13 ENUMERATED {on,off},
si-ValidityTime-r13 ENUMERATED {true} OPTIONAL, -- Need OP
systemInfoValueTagList-r13 SystemInfoValueTagList-r13 OPTIONAL -- Need OR
nonCriticalExtension SystemInformationBlockType1-v1320-IEs OPTIONAL
}

SystemInformationBlockType1-v1320-IEs ::= SEQUENCE {
freqHoppingParametersDL-r13 SEQUENCE {
mpdcch-pdsch-HoppingNB-r13 ENUMERATED {nb2, nb4} OPTIONAL, -- Need OR
interval-DLHoppingConfigCommonModeA-r13 CHOICE {
interval-FDD-r13 ENUMERATED {int1, int2, int4, int8},
interval-TDD-r13 ENUMERATED {int1, int5, int10, int20}
} OPTIONAL, -- Need OR
}
interval-DLHoppingConfigCommonModeB-r13 CHOICE {
interval-FDD-r13 ENUMERATED {int2, int4, int8, int16},
interval-TDD-r13 ENUMERATED {int5, int10, int20, int40}
} OPTIONAL, -- Need OR
mpdcch-pdsch-HoppingOffset-r13 INTEGER (1..maxAvailNarrowBands-r13) OPTIONAL -- Need OR
} OPTIONAL, -- Cond Hopping
nonCriticalExtension SystemInformationBlockType1-v1350-IEs OPTIONAL
}

SystemInformationBlockType1-v1350-IEs ::= SEQUENCE {
cellSelectionInfoCE1-r13 CellSelectionInfoCE1-r13 OPTIONAL, -- Need OP
nonCriticalExtension SystemInformationBlockType1-v1360-IEs OPTIONAL
}

SystemInformationBlockType1-v1360-IEs ::= SEQUENCE {
cellSelectionInfoCE1-v1360 CellSelectionInfoCE1-v1360 OPTIONAL, -- Cond
QrxlevminCE1 nonCriticalExtension SystemInformationBlockType1-v1430-IEs OPTIONAL
}

SystemInformationBlockType1-v1430-IEs ::= SEQUENCE {
eCallOverIMS-Support-r14 ENUMERATED {true} OPTIONAL, -- Need OR
tdd-Config-v1430 TDD-Config-v1430 OPTIONAL, -- Cond TDD-OR
cellAccessRelatedInfoList-r14 SEQUENCE (SIZE (1..maxPLMN-1-r14)) OF CellAccessRelatedInfo-r14 OPTIONAL, -- Need OR
nonCriticalExtension SystemInformationBlockType1-v1450-IEs OPTIONAL
}
SystemInformationBlockType1-v1450-IEs ::= SEQUENCE {
 tdd-Config-v1450 TDD-Config-v1450 OPTIONAL, -- Cond TDD-OR
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

PLMN-IdentityList ::= SEQUENCE {SIZE (1..maxPLMN-r11)} OF PLMN-IdentityInfo

PLMN-IdentityInfo ::= SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellReservedForOperatorUse ENUMERATED {reserved, notReserved}
}

SchedulingInfoList ::= SEQUENCE {SIZE (1..maxSI-Message)} OF SchedulingInfo

SchedulingInfo ::= SEQUENCE {
 si-Periodicity ENUMERATED {rf8, rf16, rf32, rf64, rf128, rf256, rf512},
 sib-MappingInfo SIB-MappingInfo
}

SchedulingInfoList-BR-r13 ::= SEQUENCE {SIZE (1..maxSI-Message)} OF SchedulingInfo-BR-r13

SchedulingInfo-BR-r13 ::= SEQUENCE {
 si-Narrowband-r13 INTEGER (1..maxAvailNarrowBands-r13),
 si-TBS-r13 ENUMERATED {b152, b208, b256, b328, b408, b504, b600, b712, b808, b936}
}

SIB-MappingInfo ::= SEQUENCE {SIZE (0..maxSIB-1)} OF SIB-Type

SIB-Type ::= ENUMERATED {
 sibType3, sibType4, sibType5, sibType6,
 sibType7, sibType8, sibType9, sibType10,
 sibType11, sibType12-v920, sibType13-v920,
 sibType14-v1130, sibType15-v1130,
 sibType16-v1130, sibType17-v1250, sibType18-v1250,
 ...,
 sibType19-v1250, sibType20-v1310, sibType21-v1430
}

SystemInfoValueTagList-r13 ::= SEQUENCE {SIZE (1..maxSI-Message)} OF SystemInfoValueTagSI-r13

SystemInfoValueTagSI-r13 ::= INTEGER (0..3)

CellSelectionInfo-v920 ::= SEQUENCE {
 q-QualMin-r9 Q-QualMin-r9,
 q-QualMinOffset-r9 INTEGER (1..8) OPTIONAL -- Need OP
}

CellSelectionInfo-v1130 ::= SEQUENCE {
 q-QualMinWB-r11 Q-QualMin-r9
}

CellSelectionInfo-v1250 ::= SEQUENCE {
 q-QualMinRSRQ-OnAllSymbols-r12 Q-QualMin-r9
}

CellAccessRelatedInfo-r14 ::= SEQUENCE {
 plmn-IdentityList-r14 PLMN-IdentityList,
 trackingAreaCode-r14 TrackingAreaCode,
 cellIdentity-r14 CellIdentity
}

-- ASN1STOP
<table>
<thead>
<tr>
<th>SystemInformationBlockSize1 field descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwithReducedAccessRelatedInfo</td>
</tr>
<tr>
<td>Access related information for BL UEs and UEs in CE. NOTE 3.</td>
</tr>
<tr>
<td>category0Allowed</td>
</tr>
<tr>
<td>The presence of this field indicates category 0 UEs are allowed to access the cell.</td>
</tr>
<tr>
<td>cellAccessRelatedInfoList</td>
</tr>
<tr>
<td>This field contains a list allowing signalling of access related information per PLMN. One PLMN can be included in only one entry of this list. NOTE 4.</td>
</tr>
<tr>
<td>cellBarred</td>
</tr>
<tr>
<td>barred means the cell is barred, as defined in TS 36.304 [4].</td>
</tr>
<tr>
<td>cellIdentity</td>
</tr>
<tr>
<td>Indicates the cell identity. NOTE 2.</td>
</tr>
<tr>
<td>cellReservedForOperatorUse</td>
</tr>
<tr>
<td>As defined in TS 36.304 [4].</td>
</tr>
<tr>
<td>cellSelectionInfoCE</td>
</tr>
<tr>
<td>Cell selection information for BL UEs and UEs in CE. If absent, coverage enhancement S criteria is not applicable. NOTE 3.</td>
</tr>
<tr>
<td>cellSelectionInfoCE1</td>
</tr>
<tr>
<td>Cell selection information for BL UEs and UEs in CE supporting CE Mode B. E-UTRAN includes this IE only if cellSelectionInfoCE is present in SystemInformationBlockType1-BR. NOTE 3.</td>
</tr>
<tr>
<td>csg-Identity</td>
</tr>
<tr>
<td>Identity of the Closed Subscriber Group the cell belongs to.</td>
</tr>
<tr>
<td>csg-Indication</td>
</tr>
<tr>
<td>If set to TRUE the UE is only allowed to access the cell if it is a CSG member cell, if selected during manual CSG selection or to obtain limited service, see TS 36.304 [4].</td>
</tr>
<tr>
<td>eCallOverIMS-Support</td>
</tr>
<tr>
<td>Indicates whether the cell supports eCall over IMS services for UEs as defined in TS 23.401 [41]. If absent, eCall over IMS is not supported by the network in the cell. NOTE 2.</td>
</tr>
<tr>
<td>eDRX-Allowed</td>
</tr>
<tr>
<td>The presence of this field indicates if idle mode extended DRX is allowed in the cell. The UE shall stop using extended DRX in idle mode if eDRX-Allowed is not present.</td>
</tr>
<tr>
<td>fdd-DownlinkOrTddSubframeBitmapBR</td>
</tr>
<tr>
<td>The set of valid subframes for FDD downlink or TDD transmissions, see TS 36.213 [23]. If this field is present, SystemInformationBlockType1-BR-r13 is transmitted in RRCConnectionReconfiguration, and if RRCConnectionReconfiguration does not include systemInformationBlockType2Dedicated, UE may assume the valid subframes in fdd-DownlinkOrTddSubframeBitmapBR are not indicated as MBSFN subframes. If this field is not present, the set of valid subframes is the set of non-MBSFN subframes as indicated by mbsfn-SubframeConfigList. If neither this field nor mbsfn-SubframeConfigList is present, all subframes are considered as valid subframes for FDD downlink transmission, all DL subframes according to the uplink-downlink configuration (see TS 36.211 [21]) are considered as valid subframes for TDD DL transmission, and all UL subframes according to the uplink-downlink configuration (see TS 36.211 [21]) are considered as valid subframes for TDD UL transmission. The first/leftmost bit corresponds to the subframe #0 of the radio frame satisfying SFN mod x = 0, where x is the size of the bit string divided by 10. Value 0 in the bitmap indicates that the corresponding subframe is invalid for transmission. Value 1 in the bitmap indicates that the corresponding subframe is valid for transmission.</td>
</tr>
<tr>
<td>fdd-UplinkSubframeBitmapBR</td>
</tr>
<tr>
<td>The set of valid subframes for FDD uplink transmissions for BL UEs, see TS 36.213 [23]. If the field is not present, then UE considers all uplink subframes as valid subframes for FDD uplink transmissions. The first/leftmost bit corresponds to the subframe #0 of the radio frame satisfying SFN mod x = 0, where x is the size of the bit string divided by 10. Value 0 in the bitmap indicates that the corresponding subframe is invalid for transmission. Value 1 in the bitmap indicates that the corresponding subframe is valid for transmission.</td>
</tr>
<tr>
<td>freqBandIndicatorPriority</td>
</tr>
<tr>
<td>If the field is present and supported by the UE, the UE shall prioritize the frequency bands in the multiBandInfoList field in decreasing priority order. Only if the UE does not support any of the frequency band in multiBandInfoList, the UE shall use the value in freqBandIndicator field. Otherwise, the UE applies frequency band according to the rules defined in multiBandInfoList. NOTE 2.</td>
</tr>
<tr>
<td>freqBandInfo</td>
</tr>
<tr>
<td>A list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs, for the frequency band in freqBandIndicator. If E-UTRAN includes freqBandInfo-v1010 it includes the same number of entries, and listed in the same order, as in freqBandInfo-v10.</td>
</tr>
<tr>
<td>freqHoppingParametersDL</td>
</tr>
<tr>
<td>Downlink frequency hopping parameters for BR versions of SI messages, MPDCCH/PDSCH of paging, MPDCCH/PDSCH of RAR/Msg4 and unicast MPDCCH/PDSCH. If not present, the UE is not configured downlink frequency hopping.</td>
</tr>
<tr>
<td>hyperSFN</td>
</tr>
<tr>
<td>Indicates hyper SFN which increments by one when the SFN wraps around.</td>
</tr>
</tbody>
</table>
SystemInformationBlockType1 field descriptions

ims-EmergencySupport
Indicates whether the cell supports IMS emergency bearer services for UEs in limited service mode. If absent, IMS emergency call is not supported by the network in the cell for UEs in limited service mode. NOTE 2.

intraFreqReselection
Used to control cell reselection to intra-frequency cells when the highest ranked cell is barred, or treated as barred by the UE, as specified in TS 36.304 [4], NOTE 2.

multiBandInfoList
A list of additional frequency band indicators, as defined in TS 36.101 [42, table 5.5-1] that the cell belongs to. If the UE supports the frequency band in the freqBandIndicator field it shall apply that frequency band. Otherwise, the UE shall apply the first listed band which it supports in the multiBandInfoList field. If E-UTRAN includes multiBandInfoList-v9e0 it includes the same number of entries, and listed in the same order, as in multiBandInfoList (i.e. without suffix). See Annex D for more descriptions. The UE shall ignore the rule defined in this field description if freqBandIndicatorPriority is present and supported by the UE.

multiBandInfoList-v10j0
A list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs, for the frequency bands in multiBandInfoList (i.e. without suffix) and multiBandInfoList-v9e0. If E-UTRAN includes multiBandInfoList-v10j0, it includes the same number of entries, and listed in the same order, as in multiBandInfoList (i.e. without suffix). If E-UTRAN includes multiBandInfoList-v10j0 it includes the same number of entries, and listed in the same order, as in multiBandInfoList-v9e0.

plmn-IdentityList
List of PLMN identities. The first listed PLMN-Identity is the primary PLMN. NOTE 2.

p-Max
Value applicable for the cell. If absent, the UE applies the maximum power of the default power class for the band the UE is using for transmission, according to TS 36.101 [42]. NOTE 2.

q-QualMin
Parameter “Q_{qualmin}” in TS 36.304 [4]. If cellSelectionInfo-v920 is not present, the UE applies the (default) value of negative infinity for Q_{qualmin}. NOTE 1.

q-QualMinRSRQ-OnAllSymbols
If this field is present and supported by the UE, the UE shall, when performing RSRQ measurements, perform RSRQ measurement on all OFDM symbols in accordance with TS 36.214 [48]. NOTE 1.

q-QualMinOffset
Parameter “Q_{qualminoffset}” in TS 36.304 [4]. Actual value Q_{qualminoffset} = field value [dB]. If cellSelectionInfo-v920 is not present or the field is not present, the UE applies the (default) value of 0 dB for Q_{qualminoffset}. Affects the minimum required quality level in the cell.

q-RxLevMin
If this field is present and supported by the UE, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [16], NOTE 1.

q-RxLevMinOffset
Parameter Q_{rxlevminoffset} in TS 36.304 [4]. Actual value Q_{rxlevminoffset} = field value * 2 [dB]. If absent, the UE applies the (default) value of 0 dB for Q_{rxlevminoffset}. Affects the minimum required Rx level in the cell.

sib-MappingInfo
List of the SIBs mapped to this SystemInformation message. There is no mapping information of SIB2; it is always present in the first SystemInformation message listed in the schedulingInfoList list.

si-HoppingConfigCommon
Frequency hopping activation/deactivation for BR versions of SI messages and MPDCCH/PDSCH of paging.

si-Narrowband
This field indicates the index of a narrowband used to broadcast the SI message towards BL UEs and UEs in CE, see TS 36.211 [21, 6.4.1] and TS 36.213 [23, 7.1.6]. Field values (1..maxAvailNarrowBands-r13) correspond to narrowband indices (0..[maxAvailNarrowBands-r13-1]) as specified in TS 36.211 [21].

si-RepetitionPattern
Indicates the radio frames within the SI window used for SI message transmission. Value everyRF corresponds to every radio frame, value every2ndRF corresponds to every 2 radio frames, and so on. The first transmission of the SI message is transmitted from the first radio frame of the SI window.

si-Periodicity
Periodicity of the SI-message in radio frames, such that r8 denotes 8 radio frames, r16 denotes 16 radio frames, and so on.

si-TBS
This field indicates the transport block size information used to broadcast the SI message towards BL UEs and UEs in CE, see TS 36.213 [23, Table 7.1.7.2.1-1] for a 6 PRB bandwidth and a QPSK modulation.

schedulingInfoList-BR
Indicates additional scheduling information of SI messages for BL UEs and UEs in CE. It includes the same number of entries, and listed in the same order, as in schedulingInfoList (without suffix).

si-ValidityTime
Indicates system information validity timer. If set to TRUE, the timer is set to 3h, otherwise the timer is set to 24h.
SystemInformationBlockType1 field descriptions

si-WindowLength, si-WindowLength-BR
Common SI scheduling window for all SIs. Unit in milliseconds, where ms1 denotes 1 millisecond, ms2 denotes 2 milliseconds and so on. In case si-WindowLength-BR-r13 is present and the UE is a BL UE or a UE in CE, the UE shall use si-WindowLength-BR-r13 and ignore the original field si-WindowLength (without suffix). UEs other than BL UEs or UEs in CE shall ignore the extension field si-WindowLength-BR-r13.

startSymbolBR
For BL UEs and UEs in CE, indicates the OFDM starting symbol for any MPDCCH, PDSCH scheduled on the same cell except the PDSCH carrying SystemInformationBlockType1-BR, see TS 36.213 [23]. Values 1, 2, and 3 are applicable for dl-Bandwidth greater than 10 resource blocks. Values 2, 3, and 4 are applicable otherwise.

systemInfoValueTagList
Indicates SI message specific value tags for BL UEs and UEs in CE. It includes the same number of entries, and listed in the same order, as in schedulingInfoList (without suffix).

systemInfoValueTagSI
SI message specific value tag as specified in subclause 5.2.1.3. Common for all SIBs within the SI message other than MIB, SIB1, SIB10, SIB11, SIB12 and SIB14.

systemInfoValueTag
Common for all SIBs other than MIB, MIB-MBMS, SIB1, SIB1-MBMS, SIB10, SIB11, SIB12 and SIB14. Change of MIB, MIB-MBMS, SIB1 and SIB1-MBMS is detected by acquisition of the corresponding message.

tdd-Config
Specifies the TDD specific physical channel configurations. NOTE 2.

trackingAreaCode
A trackingAreaCode that is common for all the PLMNs listed. NOTE 2. NOTE 5.

NOTE 1: The value the UE applies for parameter "Q qualifier" in TS 36.304 [4] depends on the q-QualMin fields signalled by E-UTRAN and supported by the UE. In case multiple candidate options are available, the UE shall select the highest priority candidate option according to the priority order indicated by the following table (top row is highest priority).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Included</td>
<td>Included</td>
<td>q-QualMinRSRQ-OnAllSymbols – (q-QualMin – q-QualMinWB)</td>
</tr>
<tr>
<td>Included</td>
<td>Not included</td>
<td>q-QualMinRSRQ-OnAllSymbols</td>
</tr>
<tr>
<td>Not included</td>
<td>Included</td>
<td>q-QualMinWB</td>
</tr>
<tr>
<td>Not included</td>
<td>Not included</td>
<td>q-QualMin</td>
</tr>
</tbody>
</table>

NOTE 2: E-UTRAN sets this field to the same value for all instances of SIB1 message that are broadcasted within the same cell.

NOTE 3: E-UTRAN configures this field only in the BR version of SIB1 message.

NOTE 4: E-UTRAN configures at most 6 PLMNs in total (i.e. across all the PLMN lists in SIB1).

NOTE 5: E-UTRAN configures only one value for this parameter per PLMN.
- **SystemInformationBlockType1-MBMS**

SystemInformationBlockType1-MBMS contains information relevant for receiving service from MBMS-dedicated cell and defines the scheduling of other system information.

- Signalling radio bearer: N/A
- RLC-SAP: TM
- Logical channels: BCCH
- Direction: E-UTRAN to UE

SystemInformationBlockType1-MBMS message

```
-- ASN1START
SystemInformationBlockType1-MBMS-r14 ::= SEQUENCE {
    cellAccessRelatedInfo-r14               SEQUENCE {
        plmn-IdentityList-r14     PLMN-IdentityList-MBMS-r14,
        trackingAreaCode-r14      TrackingAreaCode,
        cellIdentity-r14         CellIdentity
    },
    freqBandIndicator-r14                 FreqBandIndicator-r11,
    multiBandInfoList-r14                MultiBandInfoList-r11  OPTIONAL, -- Need OR
    schedulingInfoList-MBMS-r14         SchedulingInfoList-MBMS-r14,
    si-WindowLength-r14                  ENUMERATED {
        ms1, ms2, ms5, ms10, ms15, ms20,ms40, ms80},
    systemInfoValueTag-r14               INTEGER (0..31),
    nonMBSFN-SubframeConfig-r14         NonMBSFN-SubframeConfig-r14  OPTIONAL, --Need OR
    pdsch-ConfigCommon-r14               PDSCH-ConfigCommon,
    systemInformationBlockType3-r14     SystemInformationBlockType3-r9  OPTIONAL, --Need OR
    cellAccessRelatedInfoList-r14       SEQUENCE (SIZE (1..maxPLMN-1-r14)) OF CellAccessRelatedInfo-r14 OPTIONAL, -- Need OR
    nonCriticalExtension     SEQUENCE {}       OPTIONAL
}
PLMN-IdentityList-MBMS-r14 ::= SEQUENCE (SIZE (1..maxPLMN-r11)) OF PLMN-Identity
SchedulingInfoList-MBMS-r14 ::= SEQUENCE (SIZE (1..maxSI-Message)) OF SchedulingInfo-MBMS-r14
SchedulingInfo-MBMS-r14 ::= SEQUENCE {
    si-Periodicity-r14      ENUMERATED {
```
SystemInformationBlockType1-MBMS field descriptions

cellAccessRelatedInfoList
This field contains a list allowing signalling of access related information per PLMN. One PLMN can be included in only one entry of this list. NOTE 2.

cellIdentity
Indicates the cell identity. NOTE 1.

freqBandIndicator
A list of as defined in TS 36.101 [42, table 6.2.4-1] for the frequency band in freqBandIndicator.

multiBandInfoList
A list of additional frequency band indicators, as defined in TS 36.101 [42, table 5.5-1] that the cell belongs to. If the UE supports the frequency band in the freqBandIndicator field it shall apply that frequency band. Otherwise, the UE shall apply the first listed band which it supports in the multiBandInfoList field.

nonMBSFN-SubframeConfig
Defines the non-MBSFN subframes within the radio frame allocation period defined by the radioFrameAllocationPeriod and the radioFrameAllocationOffset.

plmn-IdentityList
List of PLMN identities. The first listed PLMN-Identity is the primary PLMN. NOTE 1.

radioFrameAllocationPeriod, radioFrameAllocationOffset
Radio-frames that contain non-MBSFN subframes occur when equation \(SFN \mod radioFrameAllocationPeriod = radioFrameAllocationOffset \) is satisfied. Value rf4 for radioframeAllocationPeriod denotes 4 radio frames, rf8 detones 8 radion frames, and so on.

schedulingInfoList-MBMS
Indicates additional scheduling information of SI messages on MBMS-dedicated cell.

sib-MappingInfo
List of the SIBs mapped to this SystemInformation message.

si-Periodicity
Periodicity of the SI-message in radio frames, such that rf16 denotes 16 radio frames, rf32 denotes 32 radio frames, and so on.

si-WindowLength
Common SI scheduling window for all SIs. Unit in milliseconds, where ms1 denotes 1 millisecond, ms2 denotes 2 milliseconds and so on.

subframeAllocation
Defines the subframes that are allocated for non-MBSFN within the radio frame allocation period defined by the radioFrameAllocationPeriod and the radioFrameAllocationOffset. "0" denotes that the corresponding subframe is a MBSFN subframe. "1" denotes that the corresponding subframe is a non-MBSFN subframe. If E-UTRAN configures a value other than "0" for additionalNonMBSFNSubframes within MasterInformationBlock-MBMS, subframeAllocation configuration should also indicate subframes pointed out by additionalNonMBSFNSubframes as non-MBSFN subframes.

systemInformationBlockType13
E-UTRAN does not configure this field if schedulingInfoList–MBMS indicates that SystemInformationBlockType13 is present.

systemInfoValueTag
Common for all SIBs other than MIB, SIB1, SIB10, SIB11, SIB12 and SIB14. Change of MIB and SIB1 is detected by acquisition of the corresponding message.

trackingAreaCode
A trackingAreaCode that is common for all the PLMNs listed. NOTE1.

NOTE 1: E-UTRAN sets this field to the same value for all instances of SIB1-MBMS message that are broadcasted within the same cell.
The **UEAssistanceInformation** message is used for the indication of UE assistance information to the eNB.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

UEAssistanceInformation message

```
-- ASN1START

UEAssistanceInformation-r11 ::= SEQUENCE {
    criticalExtensions CHOICE {
        c1 CHOICE {
            ueAssistanceInformation-r11 UEAssistanceInformation-r11-IEs,
            spare3 NULL, spare2 NULL, spare1 NULL
        },
        criticalExtensionsFuture SEQUENCE {}
    }
}

UEAssistanceInformation-r11-IEs ::= SEQUENCE {
    powerPrefIndication-r11 ENUMERATED {normal, lowPowerConsumption} OPTIONAL,
    lateNonCriticalExtension OCTET STRING OPTIONAL,
    nonCriticalExtension UEAssistanceInformation-v1430-IEs OPTIONAL
}

UEAssistanceInformation-v1430-IEs ::= SEQUENCE {
    bw-Preference-r14 BW-Preference-r14 OPTIONAL,
    sps-AssistanceInformation-r14 SEQUENCE {
        trafficPatternInfoListSL-r14 TrafficPatternInfoList-r14 OPTIONAL,
        trafficPatternInfoListUL-r14 TrafficPatternInfoList-r14 OPTIONAL,
    } OPTIONAL,
    rlm-Report-r14 SEQUENCE {
        rlm-Event-r14 ENUMERATED {earlyOutOfSync, earlyInSync},
        excessRep-MPDCCH-r14 ENUMERATED {excessRep1, excessRep2} OPTIONAL
    } OPTIONAL,
    delayBudgetReport-r14 DelayBudgetReport-r14 OPTIONAL,
    nonCriticalExtension UEAssistanceInformation-v1450-IEs OPTIONAL
}

UEAssistanceInformation-v1450-IEs ::= SEQUENCE {
    overheatingAssistance-r14 OverheatingAssistance-r14 OPTIONAL,
    nonCriticalExtension SEQUENCE {} OPTIONAL
}

BW-Preference-r14 ::= SEQUENCE {
    dl-Preference-r14 ENUMERATED {mhz1dot4, mhz5, mhz20} OPTIONAL,
    ul-Preference-r14 ENUMERATED {mhz1dot4, mhz5} OPTIONAL
}

TrafficPatternInfoList-r14 ::= SEQUENCE (SIZE (1..maxTrafficPattern-r14)) OF TrafficPatternInfo-r14

TrafficPatternInfo-r14 ::= SEQUENCE {
    trafficPeriodicity-r14 ENUMERATED {
        sf20, sf50, sf100, sf200, sf300, sf400, sf500,
        sf600, sf700, sf800, sf900, sf1000
    },
    timingOffset-r14 INTEGER (0..10239),
    priorityInfoSL-r14 SL-Priority-r13 OPTIONAL,
    logicalChannelIdentityUL-r14 INTEGER (3..10) OPTIONAL,
    messageSize-r14 BIT STRING (SIZE (6))
}

DelayBudgetReport-r14 ::= CHOICE {
    type1 ENUMERATED {
        msMinus1280, msMinus640, msMinus320, msMinus160,
        msMinus80, msMinus40, msMinus20, ms0, ms20,
        ms40, ms60, ms80, ms160, ms320, ms640, ms1280
    },
    type2 ENUMERATED {
    }

-- ASN1END
```
OverheatingAssistance-r14 ::= SEQUENCE {
 reducedUE-Category
 SEQUENCE {
 reducedUE-CategoryDL INTEGER (0..19),
 reducedUE-CategoryUL INTEGER (0..21)
 } OPTIONAL,
 reducedMaxCCs
 SEQUENCE {
 reducedCCsDL INTEGER (0..31),
 reducedCCsUL INTEGER (0..31)
 } OPTIONAL
}
UEAssistanceInformation field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delayBudgetReport</td>
<td>Indicates the UE-preferred adjustment to connected mode DRX or coverage enhancement configuration.</td>
</tr>
<tr>
<td>dl-Preference</td>
<td>Indicates UE's preference on configuration of maximum PDSCH bandwidth. The value mhz1dot4 corresponds to CE mode usage in 1.4MHz bandwidth, mhz5 corresponds to CE mode usage in 5MHz bandwidth, and mhz20 corresponds to CE mode usage in 20MHz bandwidth or normal coverage.</td>
</tr>
<tr>
<td>excessRep-MPDCCH</td>
<td>Indicates the excess number of repetitions on MPDCCH. Value excessRep1 and excessRep2 indicate the excess number of repetitions defined in TS 36.133 [16].</td>
</tr>
<tr>
<td>logicalChannelIdentityUL</td>
<td>Indicates the logical channel identity associated with the reported traffic pattern in the uplink logical channel.</td>
</tr>
<tr>
<td>messageSize</td>
<td>Indicates the maximum TB size based on the observed traffic pattern. The value refers to the index of TS 36.321 [6, table 6.1.3.1-1].</td>
</tr>
<tr>
<td>powerPrefIndication</td>
<td>Value lowPowerConsumption indicates the UE prefers a configuration that is primarily optimised for power saving. Otherwise the value is set to normal.</td>
</tr>
<tr>
<td>priorityInfoSL</td>
<td>Indicates the traffic priority (i.e., PPPP) associated with the reported traffic pattern for V2X sidelink communication.</td>
</tr>
<tr>
<td>reducedCCsDL</td>
<td>Indicates the UE's preference on reduced configuration corresponding to the maximum number of downlink SCells indicated by the field, to address overheating.</td>
</tr>
<tr>
<td>reducedCCsUL</td>
<td>Indicates the UE's preference on reduced configuration corresponding to the maximum number of uplink SCells indicated by the field, to address overheating.</td>
</tr>
<tr>
<td>reducedUE-CategoryDL, reducedUE-CategoryUL</td>
<td>Indicates that UE prefers a configuration corresponding to the reduced UE category, to address overheating. The reduced UE DL category and reduced UE UL category should be indicated according to supported combinations for UE UL and DL Categories, see TS 36.306 [5, Table 4.1A-6].</td>
</tr>
<tr>
<td>rlm-Event</td>
<td>This field provides the RLM event ("early-out-of-sync" or "early-in-sync").</td>
</tr>
<tr>
<td>rlm-Report</td>
<td>This field provides the RLM report for BL UEs and UEs in CE.</td>
</tr>
<tr>
<td>sps-AssistanceInformation</td>
<td>Indicates the UE assistance information to assist E-UTRAN to configure SPS.</td>
</tr>
<tr>
<td>timingOffset</td>
<td>This field indicates the estimated timing for a packet arrival in a SL/UL logical channel. Specifically, the value indicates the timing offset with respect to subframe#0 of SFN#0 in milliseconds.</td>
</tr>
<tr>
<td>trafficPatternInfoListSL</td>
<td>This field provides the traffic characteristics of sidelink logical channel(s) that are setup for V2X sidelink communication.</td>
</tr>
<tr>
<td>trafficPatternInfoListUL</td>
<td>This field provides the traffic characteristics of uplink logical channel(s).</td>
</tr>
<tr>
<td>trafficPeriodicity</td>
<td>This field indicates the estimated data arrival periodicity in a SL/UL logical channel. Value sf20 corresponds to 20 ms, sf50 corresponds to 50 ms and so on.</td>
</tr>
<tr>
<td>type1</td>
<td>Indicates the preferred amount of increment/decrement to the connected mode DRX cycle length with respect to the current configuration. Value in number of milliseconds. Value ms40 corresponds to 40 milliseconds, msMinus40 corresponds to -40 milliseconds and so on.</td>
</tr>
<tr>
<td>type2</td>
<td>Indicates the preferred amount of increment/decrement to the coverage enhancement configuration with respect to the current configuration so that the Uu air interface delay changes by the indicated amount. Value in number of milliseconds. Value ms24 corresponds to 24 milliseconds, msMinus24 corresponds to -24 milliseconds and so on.</td>
</tr>
<tr>
<td>ul-Preference</td>
<td>Indicates UE's preference on configuration of maximum PUSCH bandwidth. The value mhz1dot4 corresponds to CE mode usage in 1.4MHz bandwidth, and mhz5 corresponds to CE mode usage in 5MHz bandwidth.</td>
</tr>
</tbody>
</table>

UECapabilityEnquiry

The **UECapabilityEnquiry** message is used to request the transfer of UE radio access capabilities for E-UTRA as well as for other RATs.
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

UECapabilityEnquiry message

```asn1
UECapabilityEnquiry ::= SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier,
    criticalExtensions     CHOICE {
        c1         CHOICE {
            ueCapabilityEnquiry-r8    UECapabilityEnquiry-r8-IEs,
            spare3 NULL, spare2 NULL, spare1 NULL
        },
        criticalExtensionsFuture   SEQUENCE {}   
    }
}

UECapabilityEnquiry-r8-IEs ::= SEQUENCE {
    ue-CapabilityRequest    UE-CapabilityRequest,
    nonCriticalExtension    UECapabilityEnquiry-v8a0-IEs  OPTIONAL
}

UECapabilityEnquiry-v8a0-IEs ::= SEQUENCE {
    lateNonCriticalExtension   OCTET STRING      OPTIONAL,
    nonCriticalExtension    UECapabilityEnquiry-v1180-IEs
}

UECapabilityEnquiry-v1180-IEs ::= SEQUENCE {
    requestedFrequencyBands-r11   SEQUENCE (SIZE (1..16)) OF FreqBandIndicator-r11
    OPTIONAL,
    nonCriticalExtension    UECapabilityEnquiry-v1310-IEs
}

UECapabilityEnquiry-v1310-IEs ::= SEQUENCE {
    requestReducedFormat-r13 ENUMERATED {true}     OPTIONAL, -- Need ON
    requestSkipFallbackComb-r13 ENUMERATED {true}     OPTIONAL, -- Need ON
    requestedMaxCCsDL-r13    INTEGER (2..32)     OPTIONAL, -- Need ON
    requestedMaxCCsUL-r13    INTEGER (2..32)     OPTIONAL, -- Need ON
    requestReducedIntNonContComb-r13 ENUMERATED {true}     OPTIONAL, -- Need ON
    nonCriticalExtension    UECapabilityEnquiry-v1430-IEs  OPTIONAL
}

UECapabilityEnquiry-v1430-IEs ::= SEQUENCE {
    requestDiffFallbackCombList-r14  BandCombinationList-r14   OPTIONAL, -- Need ON
    nonCriticalExtension    SEQUENCE {}      OPTIONAL
}

UE-CapabilityRequest ::= SEQUENCE (SIZE (1..maxRAT-Capabilities)) OF RAT-Type
```

-- ASN1STOP
UECapabilityEnquiry field descriptions

requestDiffFallbackCombList
List of CA band combinations for which the UE is requested to provide different capabilities for their fallback band combinations in conjunction with the capabilities supported for the CA band combinations in this list. The UE shall exclude fallback band combinations for which their supported UE capabilities are the same as the CA band combination indicated in this list.

requestReducedFormat
Indicates that the UE if supported is requested to provide supported CA band combinations in the supportedBandCombinationReduced-r13 instead of the supportedBandCombination-r10. The E-UTRAN includes this field if requestSkipFallbackComb or requestDiffFallbackCombList is included in the message.

requestSkipFallbackComb
Indicates that the UE shall explicitly exclude fallback CA band combinations in capability signalling.

ue-CapabilityRequest
List of the RATs for which the UE is requested to transfer the UE radio access capabilities i.e. E-UTRA, UTRA, GERAN-CS, GERAN-PS, CDMA2000.

requestedFrequencyBands
List of frequency bands for which the UE is requested to provide supported CA band combinations and non CA bands.

requestedMaxCCsDL, requestedMaxCCsUL
Indicates the maximum number of CCs for which the UE is requested to provide supported CA band combinations and non-CA bands.

requestReducedIntNonContComb
Indicates that the UE shall explicitly exclude supported intra-band non-contiguous CA band combinations other than included in capability signalling as specified in TS 36.306 [5, 4.3.5.21].

UECapabilityInformation

The **UECapabilityInformation** message is used to transfer of UE radio access capabilities requested by the E-UTRAN.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

UECapabilityInformation message

```asn1
UECapabilityInformation ::= SEQUENCE {
  rrc-TransactionIdentifier  RRC-TransactionIdentifier,
  criticalExtensions     CHOICE {
    c1         CHOICE{
      ueCapabilityInformation-r8   UECapabilityInformation-r8-IEs,
      spare7 NULL,
      spare6 NULL, spare5 NULL, spare4 NULL,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
}

UECapabilityInformation-r8-IEs ::= SEQUENCE {
  ue-CapabilityRAT-ContainerList  UE-CapabilityRAT-ContainerList,
  noncriticalExtension    UECapabilityInformation-v8a0-IEs OPTIONAL
}

UECapabilityInformation-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  noncriticalExtension    SEQUENCE {}       OPTIONAL
}

UECapabilityInformation-v1250-IEs ::= SEQUENCE {
  ue-RadioPagingInfo-r12    UE-RadioPagingInfo-r12    OPTIONAL,
  noncriticalExtension    SEQUENCE {}       OPTIONAL
}
```
UECapabilityInformation field descriptions

ue-RadioPagingInfo
This field contains UE capability information used for paging.

UEInformationRequest

The **UEInformationRequest** is the command used by E-UTRAN to retrieve information from the UE.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

UEInformationRequest message

```asn1
-- ASN1START
UEInformationRequest-r9  ::=    SEQUENCE {
  rrc-TransactionIdentifier  RRC-TransactionIdentifier,
  criticalExtensions    CHOICE {
    c1        CHOICE {
      ueInformationRequest-r9    UEInformationRequest-r9-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
}
UEInformationRequest-r9-IEs ::=  SEQUENCE {
  rach-ReportReq-r9     BOOLEAN,
  rlf-ReportReq-r9     BOOLEAN,
  nonCriticalExtension    UEInformationRequest-v930-IEs  OPTIONAL
}
UEInformationRequest-v930-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  nonCriticalExtension    UEInformationRequest-v1020-IEs  OPTIONAL
}
UEInformationRequest-v1020-IEs ::= SEQUENCE {
  logMeasReportReq-r10    ENUMERATED {true}     OPTIONAL, -- Need ON
  nonCriticalExtension    UEInformationRequest-v1130-IEs  OPTIONAL
}
UEInformationRequest-v1130-IEs ::= SEQUENCE {
  connEstFailReportReq-r11   ENUMERATED {true}     OPTIONAL, -- Need ON
  nonCriticalExtension    UEInformationRequest-v1250-IEs  OPTIONAL
}
UEInformationRequest-v1250-IEs ::= SEQUENCE {
  mobilityHistoryReportReq-r12  ENUMERATED {true}     OPTIONAL, -- Need ON
  nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
-- ASN1STOP
```

UEInformationRequest field descriptions

rach-ReportReq
This field is used to indicate whether the UE shall report information about the random access procedure.

UEInformationResponse

The **UEInformationResponse** message is used by the UE to transfer the information requested by the E-UTRAN.

Signalling radio bearer: SRB1 or SRB2 (when logged measurement information is included)
UEInformationResponse message

```asn1
-- ASN1START
UEInformationResponse-r9 ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,
  criticalExtensions     CHOICE {
    c1           CHOICE {
      UEInformationResponse-r9-IEs,spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture    SEQUENCE {}    OPTIONAL
  }
}
UEInformationResponse-r9-IEs ::=  SEQUENCE {
  rach-Report-r9       SEQUENCE {
    numberOfPreamblesSent-r9    NumberOfPreamblesSent-r11,
    contentionDetected-r9     BOOLEAN
  }                OPTIONAL,
  rlf-Report-r9       RLF-Report-r9   OPTIONAL,
  nonCriticalExtension     UEInformationResponse-v930-IEs    OPTIONAL
}
-- Late non critical extensions
UEInformationResponse-v9e0-IEs ::= SEQUENCE {
  rlf-Report-v9e0      RLF-Report-v9e0     OPTIONAL,
  nonCriticalExtension SEQUENCE {}      OPTIONAL
}
-- Regular non critical extensions
UEInformationResponse-v930-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING (CONTAINING UEInformationResponse-v9e0-IEs)
  OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1020-IEs ::= SEQUENCE {
  logMeasReport-r10    LogMeasReport-r10    OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1130-IEs ::= SEQUENCE {
  connEstFailReport-r11 ConnEstFailReport-r11 OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1250-IEs ::= SEQUENCE {
  mobilityHistoryReport-r12 MobilityHistoryReport-r12 OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
RLF-Report-r9 ::=     SEQUENCE {
  measResultLastServCell-r9    SEQUENCE {
    rsrpResult-r9       RSRP-Range,
    rsrqResult-r9       RSRQ-Range
  },
  measResultNeighCells-r9    SEQUENCE {
    measResultListEUTRA-r9    MeasResultList2EUTRA-r9 OPTIONAL,
    measResultListUTRA-r9    MeasResultList2UTRA-r9 OPTIONAL,
    measResultListGERAN-r9    MeasResultListGERAN OPTIONAL,
    measResultsCDMA2000-r9    MeasResultList2CDMA2000-r9 OPTIONAL
  } OPTIONAL,
  ...
}
UEInformationResponse-r9-IEs ::=  SEQUENCE {
  rach-Report-r9       SEQUENCE {
    numberOfPreamblesSent-r9    NumberOfPreamblesSent-r11,
    contentionDetected-r9     BOOLEAN
  }                OPTIONAL,
  rlf-Report-r9       RLF-Report-r9   OPTIONAL,
  nonCriticalExtension     UEInformationResponse-v930-IEs    OPTIONAL
}
-- Late non critical extensions
UEInformationResponse-v9e0-IEs ::= SEQUENCE {
  rlf-Report-v9e0      RLF-Report-v9e0     OPTIONAL,
  nonCriticalExtension SEQUENCE {}      OPTIONAL
}
-- Regular non critical extensions
UEInformationResponse-v930-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING (CONTAINING UEInformationResponse-v9e0-IEs)
  OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1020-IEs ::= SEQUENCE {
  logMeasReport-r10    LogMeasReport-r10    OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1130-IEs ::= SEQUENCE {
  connEstFailReport-r11 ConnEstFailReport-r11 OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1250-IEs ::= SEQUENCE {
  mobilityHistoryReport-r12 MobilityHistoryReport-r12 OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
RLF-Report-r9 ::=     SEQUENCE {
  measResultLastServCell-r9    SEQUENCE {
    rsrpResult-r9       RSRP-Range,
    rsrqResult-r9       RSRQ-Range
  },
  measResultNeighCells-r9    SEQUENCE {
    measResultListEUTRA-r9    MeasResultList2EUTRA-r9 OPTIONAL,
    measResultListUTRA-r9    MeasResultList2UTRA-r9 OPTIONAL,
    measResultListGERAN-r9    MeasResultListGERAN OPTIONAL,
    measResultsCDMA2000-r9    MeasResultList2CDMA2000-r9 OPTIONAL
  } OPTIONAL,
  ...
}
UEInformationResponse-r9-IEs ::=  SEQUENCE {
  rach-Report-r9       SEQUENCE {
    numberOfPreamblesSent-r9    NumberOfPreamblesSent-r11,
    contentionDetected-r9     BOOLEAN
  }                OPTIONAL,
  rlf-Report-r9       RLF-Report-r9   OPTIONAL,
  nonCriticalExtension     UEInformationResponse-v930-IEs    OPTIONAL
}
-- Late non critical extensions
UEInformationResponse-v9e0-IEs ::= SEQUENCE {
  rlf-Report-v9e0      RLF-Report-v9e0     OPTIONAL,
  nonCriticalExtension SEQUENCE {}      OPTIONAL
}
-- Regular non critical extensions
UEInformationResponse-v930-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING (CONTAINING UEInformationResponse-v9e0-IEs)
  OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1020-IEs ::= SEQUENCE {
  logMeasReport-r10    LogMeasReport-r10    OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1130-IEs ::= SEQUENCE {
  connEstFailReport-r11 ConnEstFailReport-r11 OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
UEInformationResponse-v1250-IEs ::= SEQUENCE {
  mobilityHistoryReport-r12 MobilityHistoryReport-r12 OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
```

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN
 Ruf-Report-v9e0 ::= SEQUENCE {
 measResultListEUTRA-v9e0 MeasResultListEUTRA-v9e0
}
MeasResultListEUTRA-r9 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResultEUTRA-r9
MeasResultListEUTRA-v9e0 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResultEUTRA-v9e0
MeasResultListEUTRA-v1250 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResultEUTRA-v1250
MeasResultEUTRA-r9 ::= SEQUENCE {
 carrierFreq-r9 ARFCN-ValueEUTRA,
 measResultList-r9 MeasResultListEUTRA
}
MeasResultEUTRA-v9e0 ::= SEQUENCE {
 carrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0
}
MeasResultEUTRA-v1250 ::= SEQUENCE {
 rsrq-Type-r12 RSRQ-Type-r12 OPTIONAL
}
MeasResultUTRA-r9 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResultUTRA-r9
MeasResultUTRA-v9e0 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResultUTRA-v9e0
MeasResultUTRA-v1250 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResultUTRA-v1250
MeasResultCDMA2000-r9 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResultCDMA2000-r9
MeasResultCDMA2000-r9 ::= SEQUENCE {
 carrierFreq-r9 CarrierFreqCDMA2000,
 measResultList-r9 MeasResultsCDMA2000
}

LogMeasReport-r10 ::= SEQUENCE {
 absoluteTimeStamp-r10 AbsoluteTimeInfo-r10,
 traceReference-r10 TraceReference-r10,
 traceRecordingSessionRef-r10 OCTET STRING (SIZE (2)),
 tce-Id-r10 OCTET STRING (SIZE (1)),
 logMeasInfoList-r10 LogMeasInfoList-r10,
 logMeasAvailable-r10 ENUMERATED {true} OPTIONAL,
 ...
}

LogMeasInfoList-r10 ::= SEQUENCE (SIZE (1..maxLogMeasReport-r10)) OF LogMeasInfo-r10

LogMeasInfo-r10 ::= SEQUENCE {
 locationInfo-r10 LocationInfo-r10 OPTIONAL,
 relativeTimeStamp-r10 INTEGER (0..7200),
 servCellIdentity-r10 CellGlobalIdEUTRA,
 measResultServCell-r10 SEQUENCE {
 rsrpResult-r10 RSRP-Range,
 rsrqResult-r10 RSRQ-Range
 },
 measResultNeighCells-r10 SEQUENCE {
 measResultListEUTRA-r10 MeasResultList2EUTRA-r9 OPTIONAL,
 measResultListUTRA-r10 MeasResultList2UTRA-r9 OPTIONAL,
 measResultListGERAN-r10 MeasResultList2GERAN-r9 OPTIONAL,
 measResultListCDMA2000-r10 MeasResultList2CDMA2000-r9 OPTIONAL
 } OPTIONAL,
 ...
}

MeasResultListMBSFN-r12 ::= SEQUENCE (SIZE (1..maxMBSFN-Area)) OF MeasResultMBSFN-r12

MeasResultMBSFN-r12 ::= SEQUENCE {
 mbsfn-Area-r12 MBSFN-Area-r12,
 mbsfn-AreaId-r12 MBSFN-AreaId-r12,
 carrierFreq-r12 ARFCN-ValueEUTRA-r9
},
 rsrpResultMBSFN-r12 RSRP-Range,
 rsrqResultMBSFN-r12 MBSFN-RSRQ-Range-r12,
 signallingBLER-Result-r12 BLER-Result-r12 OPTIONAL,
 dataBLER-MCH-ResultList-r12 DataBLER-MCH-ResultList-r12 OPTIONAL,
 ...
}

DataBLER-MCH-ResultList-r12 ::= SEQUENCE (SIZE (1..maxPMCH-PerMBSFN)) OF DataBLER-MCH-Result-r12

DataBLER-MCH-Result-r12 ::= SEQUENCE {
 mch-Index-r12 INTEGER (1..maxPMCH-PerMBSFN),
 dataBLER-Result-r12 BLER-Result-r12
}

BLER-Result-r12 ::= SEQUENCE {
 bler-r12 BLER-Range-r12,
 blocksReceived-r12 OCTET STRING (SIZE (3)),
 n-r12 BIT STRING (SIZE (8)),
 m-r12 BIT STRING (SIZE (8))
}

BLER-Range-r12 ::= INTEGER (0..31)

MeasResultList2GERAN-r10 ::= SEQUENCE (SIZE (1..maxCellListGERAN)) OF MeasResultListGERAN
ConnEstFailReport-r11 ::= SEQUENCE {
 failedCellId-r11 CellGlobalIdEUTRA,
 locationInfo-r11 LocationInfo-r10 OPTIONAL,
 measResultFailedCell-r11 SEQUENCE {
 rsrpResult-r11 RSRP-Range,
 rsrqResult-r11 RSRQ-Range OPTIONAL
 },
 measResultNeighCells-r11 SEQUENCE {
 measResultListEUTRA-r11 MeasResultList2EUTRA-r9 OPTIONAL,
 measResultListUTRA-r11 MeasResultList2UTRA-r9 OPTIONAL,
 measResultListGERAN-r11 MeasResultListGERAN OPTIONAL,
 measResultsCDMA2000-r11 MeasResultList2CDMA2000-r9 OPTIONAL
 } OPTIONAL,
 numberOfPreamblesSent-r11 NumberOfPreamblesSent-r11,
 contentionDetected-r11 BOOLEAN,
 maxTxPowerReached-r11 BOOLEAN,
 timeSinceFailure-r11 TimeSinceFailure-r11,
 measResultListEUTRA-v1130 MeasResultList2EUTRA-v9e0 OPTIONAL,
 ...,
 [[measResultFailedCell-v1250 RSRQ-Range-v1250 OPTIONAL,
 failedCellRSRQ-Type-r12 RSRQ-Type-r12 OPTIONAL,
 measResultListEUTRA-v1250 MeasResultList2EUTRA-v1250 OPTIONAL
]],
 [[measResultFailedCell-v1360 RSRP-Range-v1360 OPTIONAL
]]
}

NumberOfPreamblesSent-r11 ::= INTEGER (1..200)

TimeSinceFailure-r11 ::= INTEGER (0..172800)

MobilityHistoryReport-r12 ::= VisitedCellInfoList-r12

-- ASN1STOP
UEInformationResponse field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Detailed Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>absoluteTimeStamp</td>
<td>Indicates the absolute time when the logged measurement configuration logging is provided, as indicated by E-UTRAN within absoluteTimeInfo.</td>
</tr>
<tr>
<td>bler</td>
<td>Indicates the measured BLER value. The coding of BLER value is defined in TS 36.133 [16].</td>
</tr>
<tr>
<td>blocksReceived</td>
<td>Indicates total number of MCH blocks, which were received by the UE and used for the corresponding BLER calculation, within the measurement period as defined in TS 36.133 [16].</td>
</tr>
<tr>
<td>carrierFreq</td>
<td>In case the UE includes carrierFreq-v9e0 and/or carrierFreq-v1090, the UE shall set the corresponding entry of carrierFreq-r9 and/or carrierFreq-r10 respectively to maxEARFCN. For E-UTRA and UTRA frequencies, the UE sets the ARFCN according to the band used when obtaining the concerned measurement results.</td>
</tr>
<tr>
<td>connectionFailureType</td>
<td>This field is used to indicate whether the connection failure is due to radio link failure or handover failure.</td>
</tr>
<tr>
<td>contentionDetected</td>
<td>This field is used to indicate that contention was detected for at least one of the transmitted preambles, see TS 36.321 [6].</td>
</tr>
<tr>
<td>c-RNTI</td>
<td>This field indicates the C-RNTI used in the PCell upon detecting radio link failure or the C-RNTI used in the source PCell upon handover failure.</td>
</tr>
<tr>
<td>dataBLER-MCH-ResultList</td>
<td>Includes a BLER result per MCH on subframes using dataMCS, with the applicable MCH(s) listed in the same order as in pmch-InfoList within MBSFNAreaConfiguration.</td>
</tr>
<tr>
<td>drb-EstablishedWithQCI-1</td>
<td>This field is used to indicate the radio link failure occurred while a bearer with QCI value equal to 1 was configured, see TS 24.301 [35].</td>
</tr>
<tr>
<td>failedCellId</td>
<td>This field is used to indicate the cell in which connection establishment failed.</td>
</tr>
<tr>
<td>failedPCellId</td>
<td>This field is used to indicate the PCell in which RLF is detected or the target PCell of the failed handover. The UE sets the EARFCN according to the band used for transmission/reception when the failure occurred.</td>
</tr>
<tr>
<td>inDeviceCoexDetected</td>
<td>Indicates that measurement logging is suspended due to IDC problem detection.</td>
</tr>
<tr>
<td>maxTxPower Reached</td>
<td>This field is used to indicate whether or not the maximum power level was used for the last transmitted preamble, see TS 36.321 [6].</td>
</tr>
<tr>
<td>mch-Index</td>
<td>Indicates the MCH by referring to the entry as listed in pmch-InfoList within MBSFNAreaConfiguration.</td>
</tr>
<tr>
<td>measResultFailedCell</td>
<td>This field refers to the last measurement results taken in the cell, where connection establishment failure happened. For BL UEs or UEs in CE, when operating in CE Mode B, measResultFailedCell-v1360 is reported if the measured RSRP is less than -140 dBm.</td>
</tr>
<tr>
<td>measResultLastServCell</td>
<td>This field refers to the last measurement results taken in the PCell, where radio link failure or handover failure happened. For BL UEs or UEs in CE, when operating in CE Mode B, measResultLastServCell-v1360 is reported if the measured RSRP is less than -140 dBm.</td>
</tr>
<tr>
<td>measResultListEUTRA</td>
<td>If measResultListEUTRA-v9e0, measResultListEUTRA-v1090 or measResultListEUTRA-v1130 is included, the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r9, measResultListEUTRA-r10 and/or measResultListEUTRA-r11 respectively.</td>
</tr>
<tr>
<td>measResultListEUTRA-v1250</td>
<td>If included in RLF-Report-r9 the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r9; If included in LogMeasInfo-r10 the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r10; If included in ConnEstFailReport-r11 the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r11;</td>
</tr>
<tr>
<td>measResultServCell</td>
<td>This field refers to the log measurement results taken in the Serving cell. For BL UEs or UEs in CE, when operating in CE Mode B, measResultServCell-v1360 is reported if the measured RSRP is less than -140 dBm.</td>
</tr>
<tr>
<td>mobilityHistoryReport</td>
<td>This field is used to indicate the time of stay in 16 most recently visited E-UTRA cells or of stay out of E-UTRA.</td>
</tr>
<tr>
<td>numberOfPreamblesSent</td>
<td>This field is used to indicate the number of RACH preambles that were transmitted. Corresponds to parameter PREAMBLE_TRANSMISSION_COUNTER in TS 36.321 [6].</td>
</tr>
</tbody>
</table>

AbsoluteTimeStamp

Indicates the absolute time when the logged measurement configuration logging is provided, as indicated by E-UTRAN within absoluteTimeInfo.

bler

Indicates the measured BLER value. The coding of BLER value is defined in TS 36.133 [16].

blocksReceived

Indicates total number of MCH blocks, which were received by the UE and used for the corresponding BLER calculation, within the measurement period as defined in TS 36.133 [16].

carrierFreq

In case the UE includes carrierFreq-v9e0 and/or carrierFreq-v1090, the UE shall set the corresponding entry of carrierFreq-r9 and/or carrierFreq-r10 respectively to maxEARFCN. For E-UTRA and UTRA frequencies, the UE sets the ARFCN according to the band used when obtaining the concerned measurement results.

connectionFailureType

This field is used to indicate whether the connection failure is due to radio link failure or handover failure.

contentionDetected

This field is used to indicate that contention was detected for at least one of the transmitted preambles, see TS 36.321 [6].

c-RNTI

This field indicates the C-RNTI used in the PCell upon detecting radio link failure or the C-RNTI used in the source PCell upon handover failure.

dataBLER-MCH-ResultList

Includes a BLER result per MCH on subframes using dataMCS, with the applicable MCH(s) listed in the same order as in pmch-InfoList within MBSFNAreaConfiguration.

drb-EstablishedWithQCI-1

This field is used to indicate the radio link failure occurred while a bearer with QCI value equal to 1 was configured, see TS 24.301 [35].

failedCellId

This field is used to indicate the cell in which connection establishment failed.

failedPCellId

This field is used to indicate the PCell in which RLF is detected or the target PCell of the failed handover. The UE sets the EARFCN according to the band used for transmission/reception when the failure occurred.

inDeviceCoexDetected

Indicates that measurement logging is suspended due to IDC problem detection.

maxTxPower Reached

This field is used to indicate whether or not the maximum power level was used for the last transmitted preamble, see TS 36.321 [6].

mch-Index

Indicates the MCH by referring to the entry as listed in pmch-InfoList within MBSFNAreaConfiguration.

measResultFailedCell

This field refers to the last measurement results taken in the cell, where connection establishment failure happened. For BL UEs or UEs in CE, when operating in CE Mode B, measResultFailedCell-v1360 is reported if the measured RSRP is less than -140 dBm.

measResultLastServCell

This field refers to the last measurement results taken in the PCell, where radio link failure or handover failure happened. For BL UEs or UEs in CE, when operating in CE Mode B, measResultLastServCell-v1360 is reported if the measured RSRP is less than -140 dBm.

measResultListEUTRA

If measResultListEUTRA-v9e0, measResultListEUTRA-v1090 or measResultListEUTRA-v1130 is included, the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r9, measResultListEUTRA-r10 and/or measResultListEUTRA-r11 respectively.

measResultListEUTRA-v1250

If included in RLF-Report-r9 the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r9; If included in LogMeasInfo-r10 the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r10; If included in ConnEstFailReport-r11 the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r11;

measResultServCell

This field refers to the log measurement results taken in the Serving cell. For BL UEs or UEs in CE, when operating in CE Mode B, measResultServCell-v1360 is reported if the measured RSRP is less than -140 dBm.

mobilityHistoryReport

This field is used to indicate the time of stay in 16 most recently visited E-UTRA cells or of stay out of E-UTRA.

numberOfPreamblesSent

This field is used to indicate the number of RACH preambles that were transmitted. Corresponds to parameter PREAMBLE_TRANSMISSION_COUNTER in TS 36.321 [6].
UEInformationResponse field descriptions

- **previousPCellId**
 This field is used to indicate the source PCell of the last handover (source PCell when the last RRC-Connection-Reconfiguration message including mobilityControlInfo was received).

- **previousUTRA-CellId**
 This field is used to indicate the source UTRA cell of the last successful handover to E-UTRAN, when RLF occurred at the target PCell. The UE sets the ARFCN according to the band used for transmission/reception on the concerned cell.

- **reestablishmentCellId**
 This field is used to indicate the cell in which the re-establishment attempt was made after connection failure.

- **relativeTimeStamp**
 Indicates the time of logging measurement results, measured relative to the absoluteTimeStamp. Value in seconds.

- **rlf-Cause**
 This field is used to indicate the cause of the last radio link failure that was detected. In case of handover failure information reporting (i.e., the connectionFailureType is set to 'hof'), the UE is allowed to set this field to any value.

- **selectedUTRA-CellId**
 This field is used to indicate the UTRA cell that the UE selects after RLF is detected, while T311 is running. The UE sets the ARFCN according to the band selected for transmission/reception on the concerned cell.

- **signallingBLER-Result**
 Includes a BLER result of MBSFN subframes using signallingMCS.

- **tac-FailedPCell**
 This field is used to indicate the Tracking Area Code of the PCell in which RLF is detected.

- **tce-id**
 Parameter Trace Collection Entity Id: See TS 32.422 [58].

- **timeConnFailure**
 This field is used to indicate the time elapsed since the last HO initialization until connection failure. Actual value = field value * 100ms. The maximum value 1023 means 102.3s or longer.

- **timeSinceFailure**
 This field is used to indicate the time that elapsed since the connection (establishment) failure. Value in seconds. The maximum value 172800 means 172800s or longer.

- **traceRecordingSessionRef**
 Parameter Trace Recording Session Reference: See TS 32.422 [58].

ULHandoverPreparationTransfer (CDMA2000)

The **ULHandoverPreparationTransfer** message is used for the uplink transfer of handover related CDMA2000 information when requested by the higher layers.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

ULHandoverPreparationTransfer message

```asn1
ULHandoverPreparationTransfer ::= SEQUENCE {
    criticalExtensions CHOICE {
        c1 CHOICE {
            ulHandoverPreparationTransfer-r8 ULHandoverPreparationTransfer-r8-IEs,
            spare3 NULL, spare2 NULL, spare1 NULL
        },
        criticalExtensionsFuture SEQUENCE {}
    }
}
ULHandoverPreparationTransfer-r8-IEs ::= SEQUENCE {
    cdma2000-Type CDMA2000-Type,
    meid BIT STRING (SIZE (56)) OPTIONAL,
    dedicatedInfo DedicatedInfoCDMA2000,
    nonCriticalExtension ULHandoverPreparationTransfer-v8a0-IEs OPTIONAL
}
ULHandoverPreparationTransfer-v8a0-IEs ::= SEQUENCE {
}
```
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}
-- ASN1STOP

ULHandoverPreparationTransfer field descriptions

meid
The 56 bit mobile identification number provided by the CDMA2000 Upper layers.

– ULInformationTransfer

The ULInformationTransfer message is used for the uplink transfer of NAS or non-3GPP dedicated information.

Signalling radio bearer: SRB2 or SRB1 (only if SRB2 not established yet). If SRB2 is suspended, the UE does not send this message until SRB2 is resumed

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

ULInformationTransfer message

-- ASN1START
ULInformationTransfer ::= SEQUENCE {
criticalExtensions CHOICE {
c1 CHOICE {
ulInformationTransfer-r8 ULInformationTransfer-r8-IEs,
spare3 NULL, spare2 NULL, spare1 NULL
},
criticalExtensionsFuture SEQUENCE {}
}
}
ULInformationTransfer-r8-IEs ::= SEQUENCE {
dedicatedInfoType CHOICE {
dedicatedInfoNAS DedicatedInfoNAS,
dedicatedInfoCDMA2000-1XRTT DedicatedInfoCDMA2000,
dedicatedInfoCDMA2000-HRPD DedicatedInfoCDMA2000
},
nonCriticalExtension ULInformationTransfer-v8a0-IEs OPTIONAL
}
ULInformationTransfer-v8a0-IEs ::= SEQUENCE {
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}
-- ASN1STOP

– WLANConnectionStatusReport

The WLANConnectionStatusReport message is used to inform the successful connection to WLAN or failure of the WLAN connection or connection attempt(s).
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

WLANConnectionStatusReport message

-- ASN1START

WLANConnectionStatusReport-r13 ::= SEQUENCE {
criticalExtensions CHOICE {
c1 CHOICE {
wlanConnectionStatusReport-r13 WLANConnectionStatusReport-r13-IEs,
spare3 NULL, spare2 NULL, spare1 NULL
},
criticalExtensionsFuture SEQUENCE {}
}
}

WLANConnectionStatusReport-r13-IEs ::= SEQUENCE {
wlan-Status-r13 WLAN-Status-r13,
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension WLANConnectionStatusReport-v1430-IEs OPTIONAL
}

WLANConnectionStatusReport-v1430-IEs ::= SEQUENCE {
wlan-Status-v1430 WLAN-Status-v1430,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

WLANConnectionStatusReport field descriptions

wlan-Status
Indicates the connection status to WLAN and the cause of failures. If the wlan-Status-v1430 is included, E-UTRAN ignores the wlan-Status-r13.

6.3 RRC information elements

6.3.1 System information blocks

– SystemInformationBlockType2

The IE SystemInformationBlockType2 contains radio resource configuration information that is common for all UEs.

NOTE: UE timers and constants related to functionality for which parameters are provided in another SIB are included in the corresponding SIB.

SystemInformationBlockType2 information element

-- ASN1START

SystemInformationBlockType2 ::= SEQUENCE {
ac-BarringInfo SEQUENCE {
ac-BarringForEmergency BOOLEAN, -- Need OP
ac-BarringForMO-Signalling AC-BarringConfig OPTIONAL, -- Need OP
ac-BarringForMO-Data AC-BarringConfig OPTIONAL, -- Need OP
}
radioResourceConfigCommon RadioResourceConfigCommonSIB,
ue-TimersAndConstants UE-TimersAndConstants,
freqInfo SEQUENCE {
ul-CarrierFreq ARFCN-ValueEUTRA OPTIONAL, -- Need OP
ul-Bandwidth ENUMERATED (n6, n15, n25, n50, n75, n100) OPTIONAL, -- Need OP
}
}
3GPP TS 36.331 version 14.6.2 Release 14

additionalSpectrumEmission AdditionalSpectrumEmission
}
msbfn-SubframeConfigList MBSFN-SubframeConfigList OPTIONAL, -- Need OR
timeAlignmentTimerCommon TimeAlignmentTimer,
.....
lateNonCriticalExtension OCTET STRING (CONTAINING SystemInformationBlockType2-v8h0-IEs)
OPTIONAL,
[] ssac-BarringForMMTEL-Voice-r9 AC-BarringConfig OPTIONAL, -- Need OP
[],
[] ssac-BarringForMMTEL-Video-r9 AC-BarringConfig OPTIONAL -- Need OP
[],
[] ac-BarringForCSFB-r10 AC-BarringConfig OPTIONAL -- Need OP
[],
[] ac-BarringSkipForMMTELVoice-r12 ENUMERATED {true} OPTIONAL, -- Need OP
ac-BarringSkipForMMTELVideo-r12 ENUMERATED {true} OPTIONAL, -- Need OP
ac-BarringSkipForSMS-r12 ENUMERATED {true} OPTIONAL, -- Need OP
ac-BarringPerPLMN-List-r12 AC-BarringPerPLMN-List-r12 OPTIONAL -- Need OP
[],
[] voiceServiceCauseIndication-r12 ENUMERATED {true} OPTIONAL -- Need OP
[],
[] ac-BarringForCommon-r13 ACDC-BarringForCommon-r13 OPTIONAL, -- Need OP
ac-BarringPerPLMN-List-r13 ACDC-BarringPerPLMN-List-r13 OPTIONAL -- Need OP
[],
[] udT-RestrictingForCommon-r13 UDTRestricting-r13 OPTIONAL, -- Need OR
udT-RestrictingPerPLMN-List-r13 UDTRestrictingPerPLMN-List-r13 OPTIONAL, -- Need OR
cIoT-EPS-OptimisationInfo-r13 CIOT-EPS-OptimisationInfo-r13 OPTIONAL, -- Need OP
useFullResumeID-r13 ENUMERATED {true} OPTIONAL -- Need OP
[],
[] unicastFreqHoppingInd-r13 ENUMERATED {true} OPTIONAL -- Need OP
[],
[] mbsfn-SubframeConfigList-v1430 MBSFN-SubframeConfigList-v1430 OPTIONAL, -- Need OP
videoServiceCauseIndication-r14 ENUMERATED {true} OPTIONAL -- Need OP
]

SystemInformationBlockType2-v8h0-IEs ::= SEQUENCE {
multiBandInfoList SEQUENCE (SIZE (1..maxMultiBands)) OF AdditionalSpectrumEmission OPTIONAL, -- Need OR
nonCriticalExtension SystemInformationBlockType2-v9e0-IEs OPTIONAL
}

SystemInformationBlockType2-v9e0-IEs ::= SEQUENCE {
ul-CarrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0 OPTIONAL, -- Cond ul-FreqMax
nonCriticalExtension SystemInformationBlockType2-v9i0-IEs OPTIONAL
}

SystemInformationBlockType2-v9i0-IEs ::= SEQUENCE {
-- Following field is only for late non-critical extensions for REL-9
lateNonCriticalExtension OCTET STRING OPTIONAL,
-- Following field is only for late non-critical extensions from REL-10
nonCriticalExtension SystemInformationBlockType2-v10l0-IEs OPTIONAL
}

SystemInformationBlockType2-v10l0-IEs ::= SEQUENCE {
freqInfo-v10l0 SEQUENCE {
additionalSpectrumEmission-v10l0 AdditionalSpectrumEmission-v10l0
},
multiBandInfoList-v10l0 SEQUENCE (SIZE (1..maxMultiBands)) OF AdditionalSpectrumEmission-v10l0
nonCriticalExtension SEQUENCE {} OPTIONAL
}

AC-BarringConfig ::= SEQUENCE {
ac-BarringFactor ENUMERATED {
p00, p05, p10, p15, p20, p25, p30, p40,
p50, p60, p70, p75, p80, p85, p90, p95},
ac-BarringTime ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512},
ac-BarringForSpecialAC BIT STRING (SIZE(5))
}

MBSFN-SubframeConfigList ::= SEQUENCE (SIZE (1..maxMBSFN-Allocations)) OF MBSFN-SubframeConfig
MBSFN-SubframeConfigList-v1430 ::= SEQUENCE (SIZE (1..maxMBSFN-Allocations)) OF MBSFN-SubframeConfig-v1430
AC-BarringPerPLMN-r12 ::= SEQUENCE (SIZE (1.. maxPLMN-r11)) OF AC-BarringPerPLMN-r12

AC-BarringPerPLMN-r12 ::= SEQUENCE {
 plmn-IdentityIndex-r12 INTEGER (1..maxPLMN-r11),
 ac-BarringInfo-r12 SEQUENCE {
 ac-BarringForEmergency-r12 BOOLEAN,
 ac-BarringForMO-Signalling-r12 AC-BarringConfig OPTIONAL, -- Need OP
 ac-BarringForMO-Data-r12 AC-BarringConfig OPTIONAL -- Need OP
 } OPTIONAL, -- Need OP
 ac-BarringSkipForMMS-r12 ENUMERATED {true} OPTIONAL, -- Need OP
 ac-BarringSkipForMMTELVoice-r12 ENUMERATED {true} OPTIONAL, -- Need OP
 ssac-BarringForMMTEL-Video-r12 AC-BarringConfig OPTIONAL, -- Need OP
 ac-BarringForCSFB-r12 AC-BarringConfig OPTIONAL, -- Need OP
 ssac-BarringForMMTEL-Voice-r12 AC-BarringConfig OPTIONAL, -- Need OP
 ssac-BarringForMMTEL-Video-r12 AC-BarringConfig OPTIONAL -- Need OP
}

ACDC-BarringForCommon-r13 ::= SEQUENCE {
 acdc-HPLMNonly-r13 BOOLEAN,
 barringPerACDC-CategoryList-r13 BarringPerACDC-CategoryList-r13
}

ACDC-BarringPerPLMN-r13 ::= SEQUENCE (SIZE (1.. maxPLMN-r11)) OF ACDC-BarringPerPLMN-r13

ACDC-BarringPerPLMN-r13 ::= SEQUENCE {
 plmn-IdentityIndex-r13 INTEGER (1..maxPLMN-r11),
 acdc-OnlyForHPLMN-r13 BOOLEAN,
 barringPerACDC-CategoryList-r13 BarringPerACDC-CategoryList-r13
}

BarringPerACDC-CategoryList-r13 ::= SEQUENCE (SIZE (1.. maxACDC-Cat-r13)) OF BarringPerACDC-Category-r13

BarringPerACDC-Category-r13 ::= SEQUENCE {
 acdc-Category-r13 INTEGER (1..maxACDC-Cat-r13),
 acdc-BarringConfig-r13 SEQUENCE {
 ac-BarringFactor-r13 ENUMERATED {
 p00, p05, p10, p15, p20, p25, p30, p40,
 p50, p60, p70, p75, p80, p85, p90, p95},
 ac-BarringTime-r13 ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512} OPTIONAL -- Need OP
 }
}

UDT-Restricting-r13 ::= SEQUENCE {
 udt-Restricting-r13 ENUMERATED {true} OPTIONAL, -- Need OR
 udt-RestrictingTime-r13 ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512} OPTIONAL -- Need OR
}

UDT-RestrictingPerPLMN-r13 ::= SEQUENCE (SIZE (1.. maxPLMN-r11)) OF UDT-RestrictingPerPLMN-r13

UDT-RestrictingPerPLMN-r13 ::= SEQUENCE {
 plmn-IdentityIndex-r13 INTEGER (1..maxPLMN-r11),
 udt-Restricting-r13 UDT-Restricting-r13 OPTIONAL -- Need OR
}

CIOT-EPS-OptimisationInfo-r13 ::= SEQUENCE (SIZE (1.. maxPLMN-r11)) OF CIOT-OptimisationPLMN-r13

CIOT-OptimisationPLMN-r13 ::= SEQUENCE {
 up-CIOT-EPS-Optimisation-r13 ENUMERATED {true} OPTIONAL, -- Need OP
 cp-CIOT-EPS-Optimisation-r13 ENUMERATED {true} OPTIONAL, -- Need OP
 attachWithoutPDN-Connectivity-r13 ENUMERATED {true} OPTIONAL -- Need OP
}

-- ASN1STOP
SystemInformationBlockType2 field descriptions

ac-BarringFactor
If the random number drawn by the UE is lower than this value, access is allowed. Otherwise the access is barred. The values are interpreted in the range \([0,1): p00 = 0, p05 = 0.05, p10 = 0.10, \ldots, p95 = 0.95. Values other than p00 can only be set if all bits of the corresponding ac-BarringForSpecialAC are set to 0.

ac-BarringForCSFB
Access class barring for mobile originating CS fallback.

ac-BarringForEmergency
Access class barring for AC 10.

ac-BarringForMO-Data
Access class barring for mobile originating calls.

ac-BarringForMO-Signalling
Access class barring for mobile originating signalling.

ac-BarringForSpecialAC
Access class barring for AC 11-15. The first/leftmost bit is for AC 11, the second bit is for AC 12, and so on.

ac-BarringTime
Mean access barring time value in seconds.

acdc-BarringConfig
Barring configuration for an ACDC category. If the field is absent, access to the cell is considered as not barred for the ACDC category in accordance with subclause 5.3.3.13.

acdc-Category
Indicates the ACDC category as defined in TS 24.105 [72].

acdc-OnlyForHPLMN
Indicates whether ACDC is applicable for UEs not in their HPLMN for the corresponding PLMN. TRUE indicates that ACDC is applicable only for UEs in their HPLMN for the corresponding PLMN. FALSE indicates that ACDC is applicable for both UEs in their HPLMN and UEs not in their HPLMN for the corresponding PLMN.

additionalSpectrumEmission
The UE requirements related to IE AdditionalSpectrumEmission are defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs. NOTE 1.

attachWithoutPDN-Connectivity
If present, the field indicates that attach without PDN connectivity as specified in TS 24.301 [35] is supported for this PLMN.

barringPerACDC-CategoryList
A list of barring information per ACDC category according to the order defined in TS 22.011 [10]. The first entry in the list corresponds to the highest ACDC category of which applications are the least restricted in access attempts at a cell, the second entry in the list corresponds to the ACDC category of which applications are restricted more than applications of the highest ACDC category in access attempts at a cell, and so on. The last entry in the list corresponds to the lowest ACDC category of which applications are the most restricted in access attempts at a cell.

ciot-EPS-OptimisationInfo
A list of CIoT EPS related parameters. Value 1 indicates parameters for the PLMN listed 1st in the 1st plmn-IdentityList included in SIB1. Value 2 indicates parameters for the the PLMN listed 2nd in the same plmn-IdentityList, or when no more PLMN are present within the same plmn-IdentityList, then the value indicates parameters for PLMN listed 1st in the subsequent plmn-IdentityList within the same SIB1 and so on. NOTE 1.

cp-CIoT-EPS-Optimisation
This field indicates if the UE is allowed to establish the connection with Control plane CIoT EPS Optimisation, see TS 24.301 [35].

mbmsn-SubframeConfigList
Defines the subframes that are reserved for MBSFN in downlink.

multiBandInfoList
A list of AdditionalSpectrumEmission i.e. one for each additional frequency band included in multiBandInfoList in SystemInformationBlockType1, listed in the same order. If E-UTRAN includes multiBandInfoList-v1010 it includes the same number of entries, and listed in the same order, as in multiBandInfoList.

plmn-IdentityIndex
Index of the PLMN across the plmn-IdentityList fields included in SIB1. Value 1 indicates the PLMN listed 1st in the 1st plmn-IdentityList included in SIB1. Value 2 indicates the PLMN listed 2nd in the same plmn-IdentityList, or when no more PLMN are present within the same plmn-IdentityList, then the PLMN listed 1st in the subsequent plmn-IdentityList within the same SIB1 and so on. NOTE 1.

ssac-BarringForMMTEL-Video
Service specific access class barring for MMTEL video originating calls.

ssac-BarringForMMTEL-Voice
Service specific access class barring for MMTEL voice originating calls.
SystemInformationBlockType2 field descriptions

udt-Restricting
Value TRUE indicates that the UE should indicate to the higher layers to restrict unattended data traffic TS 22.101 [77] irrespective of the UE being in RRC_IDLE or RRC_CONNECTED. The UE shall not indicate to the higher layers if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11].

udt-RestrictingTime
If present and when the udt-Restricting changes from TRUE, the UE runs a timer for a period equal to rand * udt-RestrictingTime, where rand is a random number drawn that is uniformly distributed in the range 0 ≤ rand < 1 value in seconds. The timer stops if udt-Restricting changes to TRUE. Upon timer expiry, the UE indicates to the higher layers that the restriction is alleviated.

unicastFreqHoppingInd
This field indicates if the UE is allowed to indicate support of frequency hopping for unicast MPDCCH/PDSCH/PUSCH as described in TS 36.321 [6]. This field is included only in the BR version of SI message carrying SystemInformationBlockType2.

ul-Bandwidth
Parameter: transmission bandwidth configuration, NRB, in uplink, see TS 36.101 [42, table 5.6-1]. Value n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on. If for FDD this parameter is absent, the uplink bandwidth is equal to the downlink bandwidth. For TDD this parameter is absent and it is equal to the downlink bandwidth. NOTE 1.

ul-CarrierFreq
For FDD: If absent, the (default) value determined from the default TX-RX frequency separation defined in TS 36.101 [42, table 5.7-3-1] applies. If parameter is present, it is set to the downlink frequency. For TDD this parameter is absent and it is equal to the downlink frequency. NOTE 1.

up-CIoT-EPS-Optimisation
This field indicates if the UE is allowed to resume the connection with User plane CIoT EPS Optimisation, see TS 24.301 [35].

useFullResumeID
This field indicates if the UE indicates full resume ID of 40 bits in RRCConnectionResumeRequest.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ul-FreqMax</td>
<td>The field is mandatory present if ul-CarrierFreq (i.e. without suffix) is present and set to maxEArFCN. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

NOTE 1: E-UTRAN sets this field to the same value for all instances of SI message that are broadcasted within the same cell.

SystemInformationBlockType3

The IE SystemInformationBlockType3 contains cell re-selection information common for intra-frequency, inter-frequency and/or inter-RAT cell re-selection (i.e. applicable for more than one type of cell re-selection but not necessarily all) as well as intra-frequency cell re-selection information other than neighbouring cell related.

SystemInformationBlockType3 information element

```
-- ASN1START
SystemInformationBlockType3 ::= SEQUENCE {
  cellReselectionInfoCommon SEQUENCE {
    q-Hyst        ENUMERATED {
      dB0, dB1, dB2, dB3, dB4, dB5, dB6, dB8, dB10, dB12, dB14, dB16, dB18, dB20, dB22, dB24},
    speedStateReselectionPars SEQUENCE {
      mobilityStateParameters SEQUENCE {
        q-HystSF
        sf-Medium
        sf-High
      }
    }
  }
}
-- ASN1END
```
cellReselectionServingFreqInfo SEQUENCE {
 s-NonIntraSearch ReselectionThreshold OPTIONAL, -- Need OP
 threshServingLow ReselectionThreshold, cellReselectionPriority
},

intraFreqCellReselectionInfo SEQUENCE {
 q-RxLevMin Q-RxLevMin,
 p-Max P-Max OPTIONAL, -- Need OP
 s-IntraSearch ReselectionThreshold OPTIONAL, -- Need OP
 allowedMeasBandwidth AllowedMeasBandwidth OPTIONAL, -- Need OP
 presenceAntennaPort1 PresenceAntennaPort1, neighCellConfig
 t-ReselectionEUTRA T-Reselection,
t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL -- Need OP
},

lateNonCriticalExtension OCTET STRING (CONTAINING SystemInformationBlockType3-
v10j0-IEs) OPTIONAL,
[[s-IntraSearch-v920 SEQUENCE {
 s-IntraSearchP-r9 ReselectionThreshold,
 s-IntraSearchQ-r9 ReselectionThresholdQ-r9
}]
[[s-NonIntraSearch-v920 SEQUENCE {
 s-NonIntraSearchP-r9 ReselectionThreshold,
 s-NonIntraSearchQ-r9 ReselectionThresholdQ-r9
}]
[q-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OP
 threshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL]
][[q-QualMinWB-r11 Q-QualMin-r9 OPTIONAL -- Cond WB-RSRQ
]][[q-QualMinRSRQ-OnAllSymbols-r12 Q-QualMin-r9 OPTIONAL -- Cond RSRQ
]],

SystemInformationBlockType3-v10j0-IEs ::= SEQUENCE {
 freqBandInfo-r10 NS-PmaxList-r10 OPTIONAL, -- Need OR
 multiBandInfoList-v10j0 MultiBandInfoList-v10j0 OPTIONAL, -- Need OR
 nonCriticalExtension SystemInformationBlockType3-v10j0-IEs OPTIONAL,
},

SystemInformationBlockType3-v10l0-IEs ::= SEQUENCE {
 freqBandInfo-v10l0 NS-PmaxList-v10l0 OPTIONAL, -- Need OR
 multiBandInfoList-v10l0 MultiBandInfoList-v10l0 OPTIONAL, -- Need OR
}
nonCriticalExtension SEQUENCE () OPTIONAL

CellReselectionInfoCommon-v1460 ::= SEQUENCE {
 s-SearchDeltaP-r14 ENUMERATED {dB6, dB9, dB12, dB15}
}

-- ASN1STOP
allowedMeasBandwidth
If absent, the value corresponding to the downlink bandwidth indicated by the dl-Bandwidth included in
MasterInformationBlock applies.

cellSelectionInfoCE
Parameters included in coverage enhancement S criteria for BL UEs and UEs in CE, applicable for intra-frequency
neighbour cells. If absent, coverage enhancement S criteria is not applicable.

cellSelectionInfoCE1
Parameters included in coverage enhancement S criteria for BL UEs and UEs in CE supporting CE Mode B,
applicable for intra-frequency neighbour cells. E-UTRAN includes this IE only if cellSelectionInfoCE1 in SIB3 is present.

cellReselectionInfoCommon
Cell re-selection information common for cells.

cellReselectionServingFreqInfo
Information common for Cell re-selection to inter-frequency and inter-RAT cells.

freqBandInfo
A list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [42, table 6.2.4-1] for UEs
neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs, applicable for the intra-
frequency neighbouring E-UTRA cells if the UE selects the frequency band from freqBandIndicator in
SystemInformationBlockType1. If E-UTRAN includes freqBandInfo-v10l0 it includes the same number of entries, and
listed in the same order, as in freqBandInfo-r10.

intraFreqcellReselectionInfo
Cell re-selection information common for intra-frequency cells.

multiBandInfoList-v10j0
A list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [42, table 6.2.4-1] for UEs
neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs, applicable for the intra-
frequency neighbouring E-UTRA cells if the UE selects the frequency bands in multiBandInfoList (i.e. without suffix) or
multiBandInfoList-v9e0. If E-UTRAN includes multiBandInfoList-v10j0, it includes the same number of entries, and
listed in the same order, as in multiBandInfoList (i.e. without suffix). If E-UTRAN includes multiBandInfoList-v10l0 it
includes the same number of entries, and listed in the same order, as in multiBandInfoList-v10j0.

p-Max
Value applicable for the intra-frequency neighbouring E-UTRA cells. If absent the UE applies the maximum power of
the default power class for the intra-frequency band, according to TS 36.101 [42].

redistrOnPagingOnly
If this field is present and the UE is redistribution capable, the UE shall only wait for the paging message to trigger E-
UTRAN inter-frequency redistribution procedure as specified in 5.2.4.10 of TS 36.304 [4].

q-Hyst
Parameter Q_{hyst} in TS 36.304 [4]. Value in dB. Value dB1 corresponds to 1 dB, dB2 corresponds to 2 dB and so on.

q-HystSF
Parameter “Speed dependent ScalingFactor for Q_{hyst}” in TS 36.304 [4]. The sf-Medium and sf-High concern the
additional hysteresis to be applied, in Medium and High Mobility state respectively, to Q_{hyst} as defined in TS 36.304
[4]. In dB. Value dB-6 corresponds to -6dB, dB-4 corresponds to -4dB and so on.

q-QualMin
Parameter “Qqualmin” in TS 36.304 [4], applicable for intra-frequency neighbour cells. If the field is not present, the UE
applies the (default) value of negative infinity for Qqualmin. NOTE 1.

q-QualMinRSRQ-OnAllSymbols
If this field is present and supported by the UE, the UE shall, when performing RSRQ measurements, perform RSRQ
measurement on all OFDM symbols in accordance with TS 36.214 [48]. NOTE 1.

q-QualMinWB
If this field is present and supported by the UE, the UE shall, when performing RSRQ measurements, use a wider
bandwidth in accordance with TS 36.133 [16]. NOTE 1.

q-RxLevMin
Parameter “Q_{levmin}” in TS 36.304 [4], applicable for intra-frequency neighbour cells.

redistributionFactorCell
If redistributionFactorCell is present, redistributionFactorServing is only applicable for the serving cell otherwise it is
applicable for serving frequency

redistributionFactorServing
Parameter redistributionFactorServing in TS 36.304 [4].

s-IntraSearch
Parameter “S_{IntraSearchP}” in TS 36.304 [4]. If the field s-IntraSearchP is present, the UE applies the value of s-
IntraSearchP instead. Otherwise if neither s-IntraSearch nor s-IntraSearchP is present, the UE applies the (default)
value of infinity for S_{IntraSearchP}.

s-IntraSearchP

s-IntraSearchQ
Parameter “S_{IntraSearchQ}” in TS 36.304 [4]. If the field is not present, the UE applies the (default) value of 0 dB for
S_{IntraSearchQ}.
SystemInformationBlockType3 field descriptions

- **s-NonIntraSearch**
 Parameter "SNonIntraSearch" in TS 36.304 [4]. If the field s-NonIntraSearchP is present, the UE applies the value of s-NonIntraSearchP instead. Otherwise if neither s-NonIntraSearch nor s-NonIntraSearchP is present, the UE applies the (default) value of infinity for SnonIntraSearchP.

- **s-NonIntraSearchP**

- **s-NonIntraSearchQ**
 Parameter "SNonIntraSearchQ" in TS 36.304 [4]. If the field is not present, the UE applies the (default) value of 0 dB for SnonIntraSearchQ.

- **s-SearchDeltaP**
 Parameter "SsearchDeltaP" in TS 36.304 [4]. This parameter is only applicable for UEs supporting relaxed monitoring as specified in TS 36.306 [5]. Value dB6 corresponds to 6 dB, dB9 corresponds to 9 dB and so on.

- **speedStateReselectionPars**
 Speed dependent reselection parameters, see TS 36.304 [4]. If this field is absent, i.e., mobilityStateParameters is also not present, UE behaviour is specified in TS 36.304 [4].

- **T360**
 Parameter "T360" in TS 36.304 [4]. Value min4 corresponds to 4 minutes, value min8 corresponds to 8 minutes, and so on.

- **threshServingLow**
 Parameter "ThreshServing, LowP" in TS 36.304 [4].

- **threshServingLowQ**
 Parameter "ThreshServing, LowQ" in TS 36.304 [4].

- **t-ReselectionEUTRA**
 Parameter "TreselectionEUTRA" in TS 36.304 [4].

- **t-ReselectionEUTRA-SF**
 Parameter "Speed dependent ScalingFactor for TreselectionEUTRA" in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].

NOTE 1: The value the UE applies for parameter "Q qualmin" in TS 36.304 [4] depends on the q-QualMin fields signalled by E-UTRAN and supported by the UE. In case multiple candidate options are available, the UE shall select the highest priority candidate option according to the priority order indicated by the following table (top row is highest priority).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Included</td>
<td>Included</td>
<td>q-QualMinRSRQ-OnAllSymbols (- (q\text{-QualMin} - q\text{-QualMinWB}))</td>
</tr>
<tr>
<td>Included</td>
<td>Not included</td>
<td>q-QualMinRSRQ-OnAllSymbols</td>
</tr>
<tr>
<td>Not included</td>
<td>Included</td>
<td>q-QualMinWB</td>
</tr>
<tr>
<td>Not included</td>
<td>Not included</td>
<td>q-QualMin</td>
</tr>
</tbody>
</table>

Conditional presence

- **QrxlevminCE1**
 The field is optionally present, Need OR, if q-RxLevMinCE1-r13 is set below -140 dBm. Otherwise the field is not present.

- **RSRQ**
 The field is optionally present, Need OR, if threshServingLowQ is present in SIB3; otherwise it is not present.

- **WB-RSRQ**
 The field is optionally present, need OP if the measurement bandwidth indicated by allowedMeasBandwidth is 50 resource blocks or larger; otherwise it is not present.

SystemInformationBlockType4

The IE SystemInformationBlockType4 contains neighbouring cell related information relevant only for intra-frequency cell re-selection. The IE includes cells with specific re-selection parameters as well as blacklisted cells.

SystemInformationBlockType4 information element

```asn1
SystemInformationBlockType4 ::= SEQUENCE {
  intraFreqNeighCellList  IntraFreqNeighCellList  OPTIONAL,  -- Need OR
  intraFreqBlackCellList  IntraFreqBlackCellList  OPTIONAL,  -- Need OR
  csg-PhysCellIdRange     PhysCellIdRange        OPTIONAL,  -- Cond CSG
  ...,
  lateNonCriticalExtension OCTET STRING          OPTIONAL
}
```
IntraFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellIntra)) OF IntraFreqNeighCellInfo

IntraFreqNeighCellInfo ::= SEQUENCE {
 physCellId PhysCellId,
 q-OffsetCell Q-OffsetRange,
 ...
}

IntraFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange

--- ASN1STOP

SystemInformationBlockType4 field descriptions

csg-PhysCellIdRange
Set of physical cell identities reserved for CSG cells on the frequency on which this field was received. The received csg-PhysCellIdRange applies if less than 24 hours has elapsed since it was received and the UE is camped on a cell of the same primary PLMN where this field was received. The 3 hour validity restriction (section 5.2.1.3) does not apply to this field. The UE shall not apply any stored csg-PhysCellIdRange when it is in any cell selection state defined in TS 36.304 [4].

intraFreqBlackCellList
List of blacklisted intra-frequency neighbouring cells.

intraFreqNeighbCellList
List of intra-frequency neighbouring cells with specific cell re-selection parameters.

q-OffsetCell
Parameter "Qoffset,n" in TS 36.304 [4].

--- Conditional presence ---

| CSG | This field is optional, need OP, for non-CSG cells, and mandatory for CSG cells. |

--- SystemInformationBlockType5 ---

The IE SystemInformationBlockType5 contains information relevant only for inter-frequency cell re-selection i.e. information about other E-UTRA frequencies and inter-frequency neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency as well as cell specific re-selection parameters.

SystemInformationBlockType5 information element

--- ASN1START

SystemInformationBlockType5 ::= SEQUENCE {
 interFreqCarrierFreqList InterFreqCarrierFreqList,
 ,
 lateNonCriticalExtension OCTET STRING (CONTAINING SystemInformationBlockType5-v8h0-IEs) OPTIONAL,
 [
 [interFreqCarrierFreqList-v1250 InterFreqCarrierFreqList-v1250 OPTIONAL -- Need OR
 interFreqCarrierFreqListExt-r12 InterFreqCarrierFreqListExt-r12 OPTIONAL -- Need OR
]],
 [
 [interFreqCarrierFreqListExt-v1280 InterFreqCarrierFreqListExt-v1280 OPTIONAL -- Need OR
]],
 [
 [interFreqCarrierFreqList-v1310 InterFreqCarrierFreqList-v1310 OPTIONAL -- Need OR
 interFreqCarrierFreqListExt-v1310 InterFreqCarrierFreqListExt-v1310 OPTIONAL -- Need OR
]],
 [
 [interFreqCarrierFreqList-v1350 InterFreqCarrierFreqList-v1350 OPTIONAL -- Need OR
 interFreqCarrierFreqListExt-v1350 InterFreqCarrierFreqListExt-v1350 OPTIONAL -- Need OR
]],
 [
 [interFreqCarrierFreqListExt-v1360 InterFreqCarrierFreqListExt-v1360 OPTIONAL -- Need OR
]],
 [
 scptm-FreqOffset-r14 INTEGER (1..8) OPTIONAL -- Need OP
]
}

SystemInformationBlockType5-v8h0-IEs ::= SEQUENCE {

--- ASN1STOP
SystemInformationBlockType5-v8h0-IEs ::= SEQUENCE {
 interFreqCarrierFreqList-v8h0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v8h0
 OPTIONAL, -- Need OP
 nonCriticalExtension SystemInformationBlockType5-v9e0-IEs OPTIONAL
}

SystemInformationBlockType5-v9e0-IEs ::= SEQUENCE {
 interFreqCarrierFreqList-v9e0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v9e0
 OPTIONAL, -- Need OR
 nonCriticalExtension SystemInformationBlockType5-v10j0-IEs OPTIONAL
}

SystemInformationBlockType5-v10j0-IEs ::= SEQUENCE {
 interFreqCarrierFreqList-v10j0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v10j0
 OPTIONAL, -- Need OR
 nonCriticalExtension SystemInformationBlockType5-v10l0-IEs OPTIONAL
}

SystemInformationBlockType5-v10l0-IEs ::= SEQUENCE {
 interFreqCarrierFreqList-v10l0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v10l0
 OPTIONAL, -- Need OR
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

InterFreqCarrierFreqList ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo

InterFreqCarrierFreqList-v1250 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v1250

InterFreqCarrierFreqList-v1310 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v1310

InterFreqCarrierFreqList-v1350 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v1350

InterFreqCarrierFreqListExt-r12 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-r12

InterFreqCarrierFreqListExt-v1280 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v1280

InterFreqCarrierFreqListExt-v1310 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v1310

InterFreqCarrierFreqListExt-v1350 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v1350

InterFreqCarrierFreqListExt-v1360 ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v1360

InterFreqCarrierFreqInfo-v8h0 ::= SEQUENCE {
 interFreqCarrierFreqList-v8h0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v8h0
 OPTIONAL, -- Need OP
 nonCriticalExtension SystemInformationBlockType5-v9e0-IEs OPTIONAL
}

InterFreqCarrierFreqInfo-v9e0 ::= SEQUENCE {
 interFreqCarrierFreqList-v9e0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v9e0
 OPTIONAL, -- Need OR
 nonCriticalExtension SystemInformationBlockType5-v10j0-IEs OPTIONAL
}

InterFreqCarrierFreqInfo-v10j0 ::= SEQUENCE {
 interFreqCarrierFreqList-v10j0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v10j0
 OPTIONAL, -- Need OR
 nonCriticalExtension SystemInformationBlockType5-v10l0-IEs OPTIONAL
}

InterFreqCarrierFreqInfo-v10l0 ::= SEQUENCE {
 interFreqCarrierFreqList-v10l0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v10l0
 OPTIONAL, -- Need OR
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
dl-CarrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0 OPTIONAL, -- Cond dl-FreqMax
multiBandInfoList-v9e0 MultiBandInfoList-v9e0 OPTIONAL -- Need OR

InterFreqCarrierFreqInfo-v10j0 ::= SEQUENCE {
 freqBandInfo-r10 NS-PmaxList-r10 OPTIONAL, -- Need OR
 multiBandInfoList-v10j0 MultiBandInfoList-v10j0 OPTIONAL -- Need OR
}

InterFreqCarrierFreqInfo-v10l0 ::= SEQUENCE {
 freqBandInfo-v10l0 NS-PmaxList-r10 OPTIONAL, -- Need OR
 multiBandInfoList-v10l0 MultiBandInfoList-v10l0 OPTIONAL -- Need OR
}

InterFreqCarrierFreqInfo-v1250 ::= SEQUENCE {
 reducedMeasPerformance-r12 ENUMERATED {true} OPTIONAL, -- Need OP
 q-QualMinRSRQ-OnAllSymbols-r12 Q-QualMin-r9 OPTIONAL -- Cond RSRQ2
}

InterFreqCarrierFreqInfo-r12 ::= SEQUENCE {
 dl-CarrierFreq-r12 ARFCN-ValueEUTRA-r9,
 q-RxLevMin-r12 Q-RxLevMin,
 p-Max-r12 P-Max OPTIONAL, -- Need OP
 t-ReselectionEUTRA-r12 T-Reselection, OPTIONAL, -- Need OP
 t-ReselectionEUTRA-SF-r12 SpeedStateScaleFactors OPTIONAL, -- Need OP
 threshX-High-r12 ReselectionThreshold,
 threshX-Low-r12 ReselectionThreshold,
 allowedMeasBandwidth-r12 AllowedMeasBandwidth,
 presenseAntennaPort1-r12 PresenceAntennaPort1,
 cellReselectionPriority-r12 CellReselectionPriority OPTIONAL, -- Need OP
 neighCellConfig-r12 NeighCellConfig,
 q-OffsetFreq-r12 Q-OffsetRange DEFAULT dB0,
 interFreqNeighborCellList-r12 InterFreqNeighborCellList OPTIONAL, -- Need OP
 interFreqBlackCellList-r12 InterFreqBlackCellList OPTIONAL, -- Need OP
 q-QualMin-r12 Q-QualMin-r9 OPTIONAL, -- Need OP
 threshX-Q-r12 ReselectionThresholdQ-r9,
 threshX-LowQ-r12 ReselectionThresholdQ-r9
 q-QualMinWB-r12 Q-QualMin-r9 OPTIONAL, -- Cond WB-RSRQ
 multiBandInfoList-r12 MultiBandInfoList-r11 OPTIONAL, -- Need OP
 reducedMeasPerformance-r12 ENUMERATED {true} OPTIONAL, -- Need OP
 q-QualMinRSRQ-OnAllSymbols-r12 Q-QualMin-r9 OPTIONAL, -- Cond RSRQ2

 ...
}

InterFreqCarrierFreqInfo-v1310 ::= SEQUENCE {
 cellReselectionSubPriority-r13 CellReselectionSubPriority-r13 OPTIONAL, -- Need OP
 redistributionInterFreqInfo-r13 RedistributionInterFreqInfo-r13 OPTIONAL, -- Need OP
 cellSelectionInfoCE-r13 CellSelectionInfoCE-r13 OPTIONAL, -- Need OP
 t-ReselectionEUTRA-CE-r13 T-ReselectionEUTRA-CE-r13 OPTIONAL -- Need OP
}

InterFreqCarrierFreqInfo-v1350 ::= SEQUENCE {
 cellSelectionInfoCE1-r13 CellSelectionInfoCE1-r13 OPTIONAL -- Cond QrxlevminCE1
}

InterFreqCarrierFreqInfo-v1360 ::= SEQUENCE {
 cellSelectionInfoCE1-v1360 CellSelectionInfoCE1-v1360 OPTIONAL -- Cond QrxlevminCE1
}

InterFreqNeighborCellList ::= SEQUENCE (SIZE (1..maxCellInter)) OF InterFreqNeighborCellInfo

InterFreqNeighborCellInfo ::= SEQUENCE {
 physCellId PhysCellId,
 q-OffsetCell Q-OffsetRange
}

InterFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange

RedistributionInterFreqInfo-r13 ::= SEQUENCE {
 redistributionFactor-r13 RedistributionFactor-r13 OPTIONAL, --Need OP
 redistributionNeighborCellList-r13 RedistributionNeighborCellList-r13 OPTIONAL --Need OP
}

RedistributionNeighborCellList-r13 ::= SEQUENCE (SIZE (1..maxCellInter)) OF RedistributionNeighborCell-r13
RedistributionNeighCell-r13 ::= SEQUENCE {
 physCellId-r13 PhysCellId,
 redistributionFactorCell-r13 RedistributionFactor-r13
}

RedistributionFactor-r13 ::= INTEGER(1..10)

-- ASN1STOP
SystemInformationBlockType5 field descriptions

cellSelectionInfoCE
Parameters included in coverage enhancement S criteria for BL UEs and UEs in CE, applicable for inter-frequency neighbour cells. If absent, coverage enhancement S criteria is not applicable.

cellSelectionInfoCE1
Parameters included in coverage enhancement S criteria for BL UEs and UEs in CE supporting CE Mode B. E-UTRAN includes this IE only in an entry of InterFreqCarrierFreqList-v1350 or InterFreqCarrierFreqListExt-v1350 if cellSelectionInfoCE is present in the corresponding entry of InterFreqCarrierFreqList-v1310 or InterFreqCarrierFreqListExt-v1310 is present.

freqBandInfo
A list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs, for the frequency band represented by dl-CarrierFreq for which cell reselection parameters are common. If E-UTRAN includes freqBandInfo-v1010 it includes the same number of entries, and listed in the same order, as in freqBandInfo-r10.

InterFreqCarrierFreqList
List of neighbouring inter-frequencies. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the E-ARFCN used to indicate this. If E-UTRAN includes InterFreqCarrierFreqList-v8h0, InterFreqCarrierFreqList-v9e0, InterFreqCarrierFreqList-v1250 InterFreqCarrierFreqList-v1310 and/or InterFreqCarrierFreqList-v1350, it includes the same number of entries, and listed in the same order, as in InterFreqCarrierFreqList (i.e. without suffix). See Annex D for more descriptions.

InterFreqCarrierFreqListExt
List of additional neighbouring inter-frequencies, i.e. extending the size of the inter-frequency carrier list using the general principles specified in 5.1.2. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the E-ARFCN used to indicate this. EUTRAN may include InterFreqCarrierFreqListExt even if InterFreqCarrierFreqList (i.e. without suffix) does not include maxFreq entries. If E-UTRAN includes InterFreqCarrierFreqListExt-v1310 and/or InterFreqCarrierFreqListExt-v1350, it includes the same number of entries, and listed in the same order, as in InterFreqCarrierFreqListExt-r12.

InterFreqNeighCellList
List of inter-frequency neighbouring cells with specific cell re-selection parameters.

multiBandInfoList
Indicates the list of frequency bands in addition to the band represented by dl-CarrierFreq for which cell reselection parameters are common. E-UTRAN indicates at most maxMultiBands frequency bands (i.e. the total number of entries across both multiBandInfoList and multiBandInfoList-v9e0 is below this limit).

multiBandInfoList-v10j0
A list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs, for the frequency bands in multiBandInfoList (i.e. without suffix) and multiBandInfoList-v9e0. If E-UTRAN includes multiBandInfoList-v10j0, it includes the same number of entries, and listed in the same order, as in multiBandInfoList (i.e. without suffix). If E-UTRAN includes multiBandInfoList-v10j0 it includes the same number of entries, and listed in the same order, as in multiBandInfoList-v10j0.

p-Max
Value applicable for the neighbouring E-UTRA cells on this carrier frequency. If absent the UE applies the maximum power of the default power class for the band of the carrier frequency, according to TS 36.101 [42].

q-OffsetCell
Parameter "QoffsetCell", in TS 36.304 [4].

q-OffsetFreq
Parameter "QoffsetFrequency", in TS 36.304 [4].

q-QualMin
Parameter "Qmin" in TS 36.304 [4]. If the field is not present, the UE applies the (default) value of negative infinity for Qqualmin. NOTE 1.

q-QualMinRSRQ-OnAllSymbols
If this field is present and supported by the UE, the UE shall, when performing RSRQ measurements, perform RSRQ measurement on all OFDM symbols in accordance with TS 36.214 [48]. NOTE 1.

q-QualMinWB
If this field is present and supported by the UE, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [16]. NOTE 1.

redistributionFactorFreq
Parameter redistributionFactorFreq in TS 36.304 [4].

redistributionFactorCell
Parameter redistributionFactorCell in TS 36.304 [4].

reducedMeasPerformance
Value TRUE indicates that the neighbouring inter-frequency is configured for reduced measurement performance, see TS 36.133 [16]. If the field is not included, the neighbouring inter-frequency is configured for normal measurement performance, see TS 36.133 [16].
SystemInformationBlockType5 field descriptions

scptm-FreqOffset
Parameter $Q_{offset_{SCPTM}}$ in TS 36.304 [4]. Actual value $Q_{offset_{SCPTM}} = \text{field value} \times 2$ [dB]. If the field is not present, the UE uses infinite dBs for the SC-PTM frequency offset with cell ranking as specified in TS 36.304 [4].

threshX-High
Parameter "ThreshX, High" in TS 36.304 [4].

threshX-HighQ
Parameter "ThreshX, HighQ" in TS 36.304 [4].

threshX-Low
Parameter "ThreshX, Low" in TS 36.304 [4].

threshX-LowQ
Parameter "ThreshX, LowQ" in TS 36.304 [4].

t-ReselectionEUTRA
Parameter "TreselectionEUTRA" in TS 36.304 [4].

t-ReselectionEUTRA-SF
Parameter "Speed dependent ScalingFactor for TreselectionEUTRA" in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].

NOTE 1: The value the UE applies for parameter "Qqualmin" in TS 36.304 [4] depends on the q-QualMin fields signalled by E-UTRAN and supported by the UE. In case multiple candidate options are available, the UE shall select the highest priority candidate option according to the priority order indicated by the following table (top row is highest priority).

<table>
<thead>
<tr>
<th>q-QualMinRSRQ-OnAllSymbols</th>
<th>q-QualMinWB</th>
<th>Value of parameter "Qqualmin" in TS 36.304 [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included</td>
<td>Included</td>
<td>q-QualMinRSRQ-OnAllSymbols $-$ (q-QualMin $-$ q-QualMinWB)</td>
</tr>
<tr>
<td>Included</td>
<td>Not included</td>
<td>q-QualMinRSRQ-OnAllSymbols</td>
</tr>
<tr>
<td>Not included</td>
<td>Included</td>
<td>q-QualMinWB</td>
</tr>
<tr>
<td>Not included</td>
<td>Not included</td>
<td>q-QualMin</td>
</tr>
</tbody>
</table>

Conditional presence

<table>
<thead>
<tr>
<th>dl-FreqMax</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field is mandatory present if, for the corresponding entry in InterFreqCarrierFreqList (i.e. without suffix), dl-CarrierFreq (i.e. without suffix) is set to maxEARFCN. Otherwise the field is not present.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QrXlevminCE1</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field is optionally present, Need OR, if q-RxLevMinCE1-r13 is set below -140 dBm. Otherwise the field is not present.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RSRQ</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field is mandatory present if $threshServingLowQ$ is present in systemInformationBlockType3; otherwise it is not present.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RSRQ2</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field is mandatory present for all EUTRA carriers listed in SIB5 if q-QualMinRSRQ-OnAllSymbols is present in SIB3; otherwise it is not present and the UE shall delete any existing value for this field.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WB-RSRQ</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field is optionally present, need OP if the measurement bandwidth indicated by allowedMeasBandwidth is 50 resource blocks or larger; otherwise it is not present.</td>
<td></td>
</tr>
</tbody>
</table>

SystemInformationBlockType6

The IE SystemInformationBlockType6 contains information relevant only for inter-RAT cell re-selection i.e. information about UTRA frequencies and UTRA neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency.

SystemInformationBlockType6 information element

```
-- ASN1START
SystemInformationBlockType6 ::= SEQUENCE { carrierFreqListUTRA-FDD CarrierFreqListUTRA-FDD OPTIONAL, -- Need OR carrierFreqListUTRA-TDD CarrierFreqListUTRA-TDD OPTIONAL, -- Need OR t-ReselectionUTRA T-Reselection OPTIONAL, -- Need OR t-ReselectionUTRA-SF SpeedStateScaleFactors OPTIONAL, -- Need OP ... lateNonCriticalExtension OCTET STRING (CONTAINING SystemInformationBlockType6-v8h0-IEs) OPTIONAL, [{ carrierFreqListUTRA-FDD-v1250 SEQUENCE (SIZE (1..maxUTRA-FDD-Carrier)) OF CarrierFreqInfoUTRA-v1250 OPTIONAL, -- Cond UTRA-FDD carrierFreqListUTRA-TDD-v1250 SEQUENCE (SIZE (1..maxUTRA-TDD-Carrier)) OF CarrierFreqInfoUTRA-v1250 OPTIONAL, -- Cond UTRA-TDD ... ]
-- ASN1END
```
CarrierFreqInfoUTRA-v1250 ::= SEQUENCE { carrierFreq ListUTRA-FDD-v8h0 SEQUENCE (SIZE (1..maxUTRA-FDD-Carrier)) OF CarrierFreqInfoUTRA-FDD-v8h0 OPTIONAL, -- Cond UTRA-FDD
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

SystemInformationBlockType6-v8h0-IEs ::= SEQUENCE {
 CarrierFreqInfoUTRA-v1250 ::= SEQUENCE {
 reducedMeasPerformance-r12 ENUMERATED (true) OPTIONAL -- Need OP
 }
 CarrierFreqListUTRA-FDD ::= SEQUENCE (SIZE (1..maxUTRA-FDD-Carrier)) OF CarrierFreqUTRA-FDD
 carrierFreq ::= SEQUENCE {
 carrierFreq ListUTRA-FDD-Ext-r12CarrierFreqListUTRA-FDD-Ext-r12 OPTIONAL, -- Cond UTRA-FDD
 carrierFreqListUTRA-TDD-Ext-r12CarrierFreqListUTRA-TDD-Ext-r12 OPTIONAL -- Cond UTRA-TDD
 SystemInformationBlockType6-v8h0-IEs ::= SEQUENCE {
 CarrierFreqInfoUTRA-v1250 ::= SEQUENCE {
 reducedMeasPerformance-r12 ENUMERATED (true) OPTIONAL -- Need OP
 }
 }
 }
 CarrierFreqListUTRA-FDD-Ext-r12 ::= SEQUENCE (SIZE (1..maxUTRA-FDD-Carrier)) OF CarrierFreqUTRA-FDD-Ext-r12
 CarrierFreqUTRA-FDD-Ext-r12 ::= SEQUENCE {
 carrierFreq-r12 ARFCN-ValueUTRA,
 }
 CarrierFreqListUTRA-TDD-Ext-r12 ::= SEQUENCE (SIZE (1..maxUTRA-TDD-Carrier)) OF CarrierFreqUTRA-TDD-Ext-r12
 CarrierFreqUTRA-TDD-Ext-r12 ::= SEQUENCE {
 carrierFreq-r12 ARFCN-ValueUTRA,
 }
}

CarrierFreqUTRA-FDD ::= SEQUENCE {
 carrierFreq ListUTRA-FDD-Ext-r12CarrierFreqListUTRA-FDD-Ext-r12 OPTIONAL, -- Cond UTRA-FDD
 carrierFreqListUTRA-TDD-Ext-r12CarrierFreqListUTRA-TDD-Ext-r12 OPTIONAL -- Cond UTRA-TDD
}
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellReselectionPriority-r12</td>
<td>CellReselectionPriority optional, -- Need OP</td>
</tr>
<tr>
<td>threshX-High-r12</td>
<td>ReselectionThreshold,</td>
</tr>
<tr>
<td>threshX-Low-r12</td>
<td>ReselectionThreshold,</td>
</tr>
<tr>
<td>q-RxLevMin-r12</td>
<td>INTEGER (-60..-13),</td>
</tr>
<tr>
<td>p-MaxUTRA-r12</td>
<td>INTEGER (-50..33),</td>
</tr>
<tr>
<td>reducedMeasPerformance-r12</td>
<td>ENUMERATED {true}, OPTIONAL, -- Need OP</td>
</tr>
</tbody>
</table>

FreqBandIndicator-UTRA-FDD ::= INTEGER (1..86)

SystemInformationBlockType6 field descriptions

- **carrierFreqListUTRA-FDD**
 - List of carrier frequencies of UTRA FDD. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the ARFCN used to indicate this. If E-UTRAN includes carrierFreqListUTRA-FDD-v8h0 and/or carrierFreqListUTRA-FDD-v1250, it includes the same number of entries, and listed in the same order, as in carrierFreqListUTRA-FDD (i.e. without suffix). See Annex D for more descriptions.

- **carrierFreqListUTRA-FDD-Ext**
 - List of additional carrier frequencies of UTRA FDD. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the ARFCN used to indicate this. EUTRAN may include carrierFreqListUTRA-FDD-Ext even if carrierFreqListUTRA-FDD (i.e without suffix) does not include maxUTRA-FDD-Carrier entries.

- **carrierFreqListUTRA-TDD**
 - List of carrier frequencies of UTRA TDD. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the ARFCN used to indicate this if E-UTRAN includes carrierFreqListUTRA-TDD-v1250, it includes the same number of entries, and listed in the same order, as in carrierFreqListUTRA-TDD (i.e. without suffix).

- **carrierFreqListUTRA-TDD-Ext**
 - List of additional carrier frequencies of UTRA TDD. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the ARFCN used to indicate this. EUTRAN may include carrierFreqListUTRA-TDD-Ext even if carrierFreqListUTRA-TDD (i.e without suffix) does not include maxUTRA-TDD-Carrier entries.

- **multiBandInfoList**
 - Indicates the list of frequency bands in addition to the band represented by carrierFreq in the CarrierFreqUTRA-FDD for which UTRA cell reselection parameters are common.

- **p-MaxUTRA**
 - The maximum allowed transmission power on the (uplink) carrier frequency, see TS 25.304 [40]. In dBm

- **q-QualMin**
 - Parameter ”Qqualmin” in TS 25.304 [40]. Actual value = field value [dB].

- **q-RxLevMin**
 - Parameter ”Qrxlevmin” in TS 25.304 [40]. Actual value = field value * 2+1 [dBm].

- **reducedMeasPerformance**
 - Value TRUE indicates that the UTRA carrier frequency is configured for reduced measurement performance, see TS 36.133 [16]. If the field is not included, the UTRA carrier frequency is configured for normal measurement performance, see TS 36.133 [16].

- **t-ReselectionUTRA**
 - Parameter ”TreselectionUTRAN” in TS 36.304 [4].

- **t-ReselectionUTRA-SF**
 - Parameter ”Speed dependent ScalingFactor for TreselectionUTRAN” in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].

- **threshX-High**
 - Parameter ”Threshx_HighP” in TS 36.304 [4].

- **threshX-HighQ**
 - Parameter ”Threshx_HighQ” in TS 36.304 [4].

- **threshX-Low**
 - Parameter ”Threshx_LowP” in TS 36.304 [4].

- **threshX-LowQ**
 - Parameter ”Threshx_LowQ” in TS 36.304 [4].

Conditional presence

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSRQ</td>
<td>The field is mandatory present if the threshServingLowQ is present in systemInformationBlockType3: otherwise it is not present.</td>
</tr>
<tr>
<td>UTRA-FDD</td>
<td>The field is optionally present, need OR, if the carrierFreqListUTRA-FDD is present. Otherwise it is not present.</td>
</tr>
<tr>
<td>UTRA-TDD</td>
<td>The field is optionally present, need OR, if the carrierFreqListUTRA-TDD is present. Otherwise it is not present.</td>
</tr>
</tbody>
</table>
The IE `SystemInformationBlockType7` contains information relevant only for inter-RAT cell re-selection i.e. information about GERAN frequencies relevant for cell re-selection. The IE includes cell re-selection parameters for each frequency.

SystemInformationBlockType7 Information Element

```asn1
SystemInformationBlockType7 ::= SEQUENCE {
  t-ReselectionGERAN     T-Reselection,
  t-ReselectionGERAN-SF  SpeedStateScaleFactors OPTIONAL, -- Need OR
  carrierFreqsInfoList   CarrierFreqsInfoListGERAN OPTIONAL, -- Need OR
  ...,                  
  lateNonCriticalExtension OCTET STRING OPTIONAL
}
```

- **carrierFreqsInfoList**
 - A list of GERAN carrier frequencies organised into one group of GERAN carrier frequencies.

- **commonInfo**
 - Defines the set of cell reselection parameters for the group of GERAN carrier frequencies.

- **ncc-Permitted**
 - Field encoded as a bit map, where bit N is set to "0" if a BCCH carrier with NCC = N-1 is not permitted for monitoring and set to "1" if the BCCH carrier with NCC = N-1 is permitted for monitoring; N = 1 to 8; bit 1 of the bitmap is the leading bit of the bit string.

- **p-MaxGERAN**
 - Maximum allowed transmission power for GERAN on an uplink carrier frequency, see TS 45.008 [28]. Value in dBm. Applicable for the neighbouring GERAN cells on this carrier frequency. If `pmaxGERAN` is absent, the maximum power according to the UE capability is used.

- **q-RxLevMin**
 - Parameter "Q_{rxlevmin}" in TS 36.304 [4], minimum required RX level in the GSM cell. The actual value of $Q_{rxlevmin}$ in dBm = (field value * 2) – 115.

- **threshX-High**
 - Parameter "ThresholdX, HighP" in TS 36.304 [4].

- **threshX-Low**
 - Parameter "ThresholdX, LowP" in TS 36.304 [4].

- **t-ReselectionGERAN**
 - Parameter "TreselectionGERAN" in TS 36.304 [4].

- **t-ReselectionGERAN-SF**
 - Parameter "Speed dependent ScalingFactor for TreselectionGERAN" in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].
The IE `SystemInformationBlockType8` contains information relevant only for inter-RAT cell re-selection i.e. information about CDMA2000 frequencies and CDMA2000 neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency as well as cell specific re-selection parameters.

-- SystemInformationBlockType8 information element

```asn1
SystemInformationBlockType8 ::= SEQUENCE {
  systemTimeInfo      SystemTimeInfoCDMA2000 OPTIONAL, -- Need OR
  searchWindowSize     INTEGER (0..15) OPTIONAL, -- Need OR
  parametersHRPD     SEQUENCE {
    preRegistrationInfoHRPD    PreRegistrationInfoHRPD OPTIONAL, -- Need OR
    cellReselectionParametersHRPD  CellReselectionParametersCDMA2000 OPTIONAL -- Need OR
  } OPTIONAL, -- Need OR
  parameters1XRTT SEQUENCE {
    cellReselectionParameters1XRTT  CellReselectionParametersCDMA2000 OPTIONAL -- Need OR
  } OPTIONAL, -- Need OR
  ...,
  lateNonCriticalExtension OCTET STRING OPTIONAL, -- Need OR
} OPTIONAL, -- Need OR
```

```asn1
CellReselectionParametersCDMA2000 ::= SEQUENCE {
  bandClassList      BandClassListCDMA2000,
  neighCellList      NeighCellListCDMA2000,
  t-ReselectionCDMA2000   T-Reselection,
  t-ReselectionCDMA2000-SF   SpeedStateScaleFactors OPTIONAL -- Need OR
}
```

```asn1
CellReselectionParametersCDMA2000-r11 ::= SEQUENCE {
  bandClassList      BandClassListCDMA2000,
  neighCellList-r11     SEQUENCE (SIZE (1..16)) OF NeighCellCDMA2000-r11,
  t-ReselectionCDMA2000    T-Reselection,
  t-ReselectionCDMA2000-SF   SpeedStateScaleFactors OPTIONAL -- Need OR
}
```

```asn1
CellReselectionParametersCDMA2000-v920 ::= SEQUENCE {
  neighCellList-v920      NeighCellListCDMA2000-v920
}
```

```asn1
NeighCellListCDMA2000 ::= SEQUENCE (SIZE (1..16)) OF NeighCellCDMA2000
```

```asn1
NeighCellCDMA2000 ::= SEQUENCE {
  bandClass       BandclassCDMA2000,
  neighCellsPerFreqList    NeighCellsPerBandclassListCDMA2000
}
```

```asn1
NeighCellCDMA2000-r11 ::= SEQUENCE {
  bandClass       BandclassCDMA2000,
  neighFreqInfoList-r11    SEQUENCE (SIZE (1..16)) OF NeighCellsPerBandclassCDMA2000-r11
}
```

```asn1
NeighCellsPerBandclassListCDMA2000 ::= SEQUENCE (SIZE (1..16)) OF NeighCellsPerBandclassCDMA2000
```

```asn1
NeighCellsPerBandclassCDMA2000 ::= SEQUENCE {
  arfcn    ARFCN-ValueCDMA2000,
  ...,
}
physCellIdList

}  

NeighCellsPerBandclassCDMA2000-r11 ::= SEQUENCE {
  arfcn        ARFCN-ValueCDMA2000,
  physCellIdList-r11     SEQUENCE (SIZE (1..40)) OF PhysCellIdCDMA2000
}

NeighCellListCDMA2000-v920 ::= SEQUENCE (SIZE (1..16)) OF NeighCellCDMA2000-v920

NeighCellCDMA2000-v920 ::=   SEQUENCE {
  neighCellsPerFreqList-v920   NeighCellsPerBandclassListCDMA2000-v920
}

NeighCellsPerBandclassListCDMA2000-v920 ::= SEQUENCE (SIZE (1..16)) OF NeighCellsPerBandclassCDMA2000-v920

NeighCellsPerBandclassCDMA2000-v920 ::= SEQUENCE {
  physCellIdList-v920     PhysCellIdListCDMA2000-v920
}

PhysCellIdListCDMA2000 ::=   SEQUENCE (SIZE (1..16)) OF PhysCellIdCDMA2000

PhysCellIdListCDMA2000-v920 ::=  SEQUENCE (SIZE (0..24)) OF PhysCellIdCDMA2000

BandClassListCDMA2000 ::=   SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandClassInfoCDMA2000

BandClassInfoCDMA2000 ::= SEQUENCE {
  bandClass       BandclassCDMA2000,
  cellReselectionPriority   CellReselectionPriority OPTIONAL, -- Need OP
  threshX-High      INTEGER (0..63),
  threshX-Low       INTEGER (0..63),
  ...
}

AC-BarringConfig1XRTT-r9 ::= SEQUENCE {
  ac-Barring0to9-r9     INTEGER (0..63),
  ac-Barring10-r9       INTEGER (0..7),
  ac-Barring11-r9       INTEGER (0..7),
  ac-Barring12-r9       INTEGER (0..7),
  ac-Barring13-r9       INTEGER (0..7),
  ac-Barring14-r9       INTEGER (0..7),
  ac-Barring15-r9       INTEGER (0..7),
  ac-BarringReg-r9      INTEGER (0..7),
  ac-BarringEmg-r9      INTEGER (0..7)
}

SIB8-PerPLMN-List-r11 ::=   SEQUENCE (SIZE (1..maxPLMN-r11)) OF SIB8-PerPLMN-r11

SIB8-PerPLMN-r11 ::=   SEQUENCE {
  plmn-Identity-r11     INTEGER (1..maxPLMN-r11),
  parametersCDMA2000-r11    CHOICE {
    explicitValue      ParametersCDMA2000-r11,
    defaultValue      NULL
  }
}

ParametersCDMA2000-r11 ::=   SEQUENCE {
  systemTimeInfo-r11     CHOICE {
    explicitValue      SystemTimeInfoCDMA2000,
    defaultValue      NULL
  }
  searchWindowSize-r11    INTEGER (0..15),
  parametersHRPD-r11     SEQUENCE {
    preRegistrationInfoHRPD-r11   PreRegistrationInfoHRPD,
    cellReselectionParametersHRPD-r11 CellReselectionParametersCDMA2000-r11 OPTIONAL -- Need OR
  }
  parameters1XRTT-r11     SEQUENCE {
    csfb-RegistrationParam1XRTT-r11  CSFB-RegistrationParam1XRTT OPTIONAL, -- Need OP
    csfb-RegistrationParam1XRTT-Ext-r11 CSFB-RegistrationParam1XRTT-v920 OPTIONAL, -- Cond
  }
  longCodeState1XRTT-r11    BIT STRING (SIZE (42)) OPTIONAL, -- Cond PerPLMN-LC
  cellReselectionParameters1XRTT-r11 CellReselectionParametersCDMA2000-r11 OPTIONAL, -- Need OR
  ac-BarringConfig1XRTT-r9   AC-BarringConfig1XRTT-r9 OPTIONAL, -- Cond
<table>
<thead>
<tr>
<th>Field Description</th>
<th>Type</th>
<th>Value Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>csfb-SupportForDualRxUEs-r11</td>
<td>BOOLEAN</td>
<td>OPTIONAL, -- Need OR</td>
</tr>
<tr>
<td>csfb-DualRxTxSupport-r11</td>
<td>ENUMERATED</td>
<td>(true)</td>
</tr>
<tr>
<td>PerPLMN</td>
<td>OPTIONAL, -- Need OR</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>-- ASN1STOP</td>
<td></td>
</tr>
</tbody>
</table>

---

**SystemInformationBlockType8 field descriptions**

- **ac-BarringConfig1XRTT**: Contains the access class barring parameters the UE uses to calculate the access class barring factor, see C.S0097 [53].
- **ac-Barring0to9**: Parameter used for calculating the access class barring factor for access overload classes 0 through 9. It is the parameter "PSIST" in C.S0004 [34] for access overload classes 0 through 9.
- **ac-BarringEmg**: Parameter used for calculating the access class barring factor for emergency calls and emergency message transmissions for access overload classes 0 through 9. It is the parameter "PSIST_EMG" in C.S0004 [34].
- **ac-BarringMsg**: Parameter used for modifying the access class barring factor for message transmissions. It is the parameter "MSG_PSIST" in C.S0004 [34].
- **ac-BarringN**: Parameter used for calculating the access class barring factor for access overload class N (N = 10 to 15). It is the parameter "PSIST" in C.S0004 [34] for access overload class N.
- **ac-BarringReg**: Parameter used for modifying the access class barring factor for autonomous registrations. It is the parameter "REG_PSIST" in C.S0004 [34].

- **bandClass**: Identifies the Frequency Band in which the Carrier can be found. Details can be found in C.S0057 [24, Table 1.5].

- **bandClassList**: List of CDMA2000 frequency bands.

- **cellReselectionParameters1XRTT**: Cell reselection parameters applicable only to CDMA2000 1xRTT system.

- **cellReselectionParameters1XRTT-Ext**: Cell reselection parameters applicable for cell reselection to CDMA2000 1XRTT system.

- **cellReselectionParameters1XRTT-v920**: Cell reselection parameters applicable for cell reselection to CDMA2000 1XRTT system. The field is not present if cellReselectionParameters1XRTT is not present; otherwise it is optionally present.

- **cellReselectionParametersHRPD**: Cell reselection parameters applicable for cell reselection to CDMA2000 HRPD system.

- **cellReselectionParametersHRPD-Ext**: Cell reselection parameters applicable for cell reselection to CDMA2000 HRPD system.

- **cellReselectionParametersHRPD-v920**: Cell reselection parameters applicable for cell reselection to CDMA2000 HRPD system. The field is not present if cellReselectionParametersHRPD is not present; otherwise it is optionally present.

- **csfb-DualRxTxSupport**: Value TRUE indicates that the network supports dual Rx/Tx enhanced 1xCSFB, which enables UEs capable of dual Rx/Tx enhanced 1xCSFB to switch off their 1xRTT receiver/transmitter while camped in E-UTRAN [51].

- **csfb-RegistrationParam1XRTT**: Contains the parameters the UE will use to determine if it should perform a CDMA2000 1xRTT Registration/Re-Registration. This field is included if either CSFB or enhanced CS fallback to CDMA2000 1xRTT is supported.

- **csfb-SupportForDualRxUEs**: Value TRUE indicates that the network supports dual Rx CSFB [51].

- **longCodeState1XRTT**: The state of long code generation registers in CDMA2000 1XRTT system as defined in C.S0002 [12, Section 1.3] at \[ \left[ \frac{t}{10} \right] \times 10 + 320 \] ms, where \( t \) equals to the cdma-SystemTime. This field is required for reporting CGI for 1xRTT, SRVCC handover and enhanced CS fallback to CDMA2000 1xRTT operation. Otherwise this field is not needed. This field is excluded when estimating changes in system information, i.e. changes of longCodeState1XRTT should neither result in system information change notifications nor in a modification of systemInfoValueTag in SIB1.
SystemInformationBlockType8 field descriptions

**neighCellList**
List of CDMA2000 neighbouring cells. The total number of neighbouring cells in neighCellList for each RAT (1XRTT or HRPD) is limited to 32.

**neighCellList-v920**
Extended List of CDMA2000 neighbouring cells. The combined total number of CDMA2000 neighbouring cells in both neighCellList and neighCellList-v920 is limited to 32 for HRPD and 40 for 1XRTT.

**neighCellsPerFreqList**
List of carrier frequencies and neighbour cell ids in each frequency within a CDMA2000 Band, see C.S0002 [12] or C.S0024 [26].

**neighCellsPerFreqList-v920**
Extended list of neighbour cell ids, in the same CDMA2000 Frequency Band as the corresponding instance in “NeighCellListCDMA2000”.

**parameters1XRTT**
Parameters applicable for interworking with CDMA2000 1XRTT system.

**parametersCDMA2000**
Provides the corresponding SIB8 parameters for the CDMA2000 network associated with the PLMN indicated in plmn-Identity. A choice is used to indicate whether for this PLMN the parameters are signalled explicitly or set to the (default) values common for all PLMNs i.e. the values not included in sib8-PerPLMN-List.

**parametersHRPD**
Parameters applicable only for interworking with CDMA2000 HRPD systems.

**physCellIdList**
Identifies the list of CDMA2000 cell ids, see C.S0002 [12] or C.S0024 [26].

**physCellIdList-v920**
Extended list of CDMA2000 cell ids, in the same CDMA2000 ARFCN as the corresponding instance in “NeighCellsPerBandclassCDMA2000”.

**plmn-Identity**
Indicates the PLMN associated with this CDMA2000 network. Value 1 indicates the PLMN listed 1st in the 1st plmn-IdentityList included in SIB1, value 2 indicates the PLMN listed 2nd in the same plmn-IdentityList, or when no more PLMN are present within the same plmn_identityList the PLMN listed 1st in the subsequent plmn-IdentityList within the same SIB1 and so on. A PLMN which identity is not indicated in the sib8-PerPLMN-List, does not support inter-working with CDMA2000.

**preRegistrationInfoHRPD**
The CDMA2000 HRPD Pre-Registration Information tells the UE if it should pre-register with the CDMA2000 HRPD network and identifies the Pre-registration zone to the UE.

**searchWindowSize**
The search window size is a CDMA2000 parameter to be used to assist in searching for the neighbouring pilots. For values see C.S0005 [25, Table 2.6.6.2.1-1] and C.S0024 [26, Table 8.7.6.2-4]. This field is required for a UE with rx-ConfigHRPD= single and/or rx-Config1XRTT= single to perform handover, cell re-selection, UE measurement based redirection and enhanced 1xRTT CS fallback from E-UTRAN to CDMA2000 according to this specification and TS 36.304 [4].

**sib8-PerPLMN-List**
This field provides the values for the interworking CDMA2000 networks corresponding, if any, to the UE’s RPLMN.

**systemTimeInfo**
Information on CDMA2000 system time. This field is required for a UE with rx-ConfigHRPD= single and/or rx-Config1XRTT= single to perform handover, cell re-selection, UE measurement based redirection and enhanced 1xRTT CS fallback from E-UTRAN to CDMA2000 according to this specification and TS 36.304 [4]. This field is excluded when estimating changes in system information, i.e. changes of systemTimeInfo should neither result in system information change notifications nor in a modification of systemInfoValueTag in SIB1. For the field included in ParametersCDMA2000, a choice is used to indicate whether for this PLMN the parameters are signalled explicitly or set to the (default) value common for all PLMNs i.e. the value not included in sib8-PerPLMN-List.

**threshX-High**
Parameter “ThreshX, HighP” in TS 36.304 [4]. This specifies the high threshold used in reselection towards this CDMA2000 band class expressed as an unsigned binary number equal to FLOOR (-2 x 10 x log10 Ec/Io) in units of 0.5 dB, as defined in C.S0005 [25].

**threshX-Low**
Parameter “ThreshX, LowP” in TS 36.304 [4]. This specifies the low threshold used in reselection towards this CDMA2000 band class expressed as an unsigned binary number equal to FLOOR (-2 x 10 x log10 Ec/Io) in units of 0.5 dB, as defined in C.S0005 [25].

**t-ReselectionCDMA2000**
Parameter “TreselectionCDMA_HRPD” or “TreselectionCDMA_1XRTT” in TS 36.304 [4].
**SystemInformationBlockType8 field descriptions**

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCL-1XRTT</td>
<td>The field is optional present, need OR, if cellReselectionParameters1XRTT is present; otherwise it is not present.</td>
</tr>
<tr>
<td>NCL-HRPD</td>
<td>The field is optional present, need OR, if cellReselectionParametersHRPD is present; otherwise it is not present.</td>
</tr>
<tr>
<td>PerPLMN-LC</td>
<td>The field is optional present, need OR, when systemTimeInfo is included in SIB8PerPLMN for this CDMA2000 network; otherwise it is not present.</td>
</tr>
<tr>
<td>REG-1XRTT</td>
<td>The field is optional present, need OR, if csfb-RegistrationParam1XRTT is present; otherwise it is not present.</td>
</tr>
<tr>
<td>REG-1XRTT-PerPLMN</td>
<td>The field is optional present, need OR, if csfb-RegistrationParam1XRTT is included in SIB8PerPLMN for this CDMA2000 network; otherwise it is not present.</td>
</tr>
</tbody>
</table>

**SystemInformationBlockType9**

The IE SystemInformationBlockType9 contains a home eNB name (HNB Name).

**SystemInformationBlockType9 information element**

```
SystemInformationBlockType9 ::= SEQUENCE {
 hnb-Name OCTET STRING (SIZE(1..48)) OPTIONAL, -- Need OR
 ...,
 lateNonCriticalExtension OCTET STRING OPTIONAL
}
```

**SystemInformationBlockType9 field descriptions**

|hnb-Name|
---|
Carries the name of the home eNB, coded in UTF-8 with variable number of bytes per character, see TS 22.011 [10].

**SystemInformationBlockType10**

The IE SystemInformationBlockType10 contains an ETWS primary notification.

**SystemInformationBlockType10 information element**

```
SystemInformationBlockType10 ::= SEQUENCE {
 messageIdentifier BIT STRING (SIZE (16)),
 serialNumber BIT STRING (SIZE (16)),
 warningType OCTET STRING (SIZE (2)),
 dummy OCTET STRING (SIZE (50)) OPTIONAL, -- Need OR
 ...,
 lateNonCriticalExtension OCTET STRING OPTIONAL
}
```

**SystemInformationBlockType10 field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
SystemInformationBlockType10 field descriptions

messageIdentifier
Identifies the source and type of ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.44]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.1], while the trailing bit contains bit 0 of the second octet of the same equivalent IE.

serialNumber
Identifies variations of an ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.45]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.2], while the trailing bit contains bit 0 of the second octet of the same equivalent IE.

dummy
This field is not used in the specification. If received it shall be ignored by the UE.

warningType
Identifies the warning type of the ETWS primary notification and provides information on emergency user alert and UE popup. The first octet (which is equivalent to the first octet of the equivalent IE defined in TS 36.413 [39, 9.2.1.50]) contains the first octet of the equivalent IE defined in and encoded according to TS 23.041 [37, 9.3.24], and so on.

SystemInformationBlockType11

The IE SystemInformationBlockType11 contains an ETWS secondary notification.

SystemInformationBlockType11 field descriptions

dataCodingScheme
Identifies the alphabet/coding and the language applied variations of an ETWS notification. The octet (which is equivalent to the octet of the equivalent IE defined in TS 36.413 [39, 9.2.1.52]) contains the octet of the equivalent IE defined in TS 23.041 [37, 9.4.3.2.3] and encoded according to TS 23.038 [38].

messageIdentifier
Identifies the source and type of ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.44]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.1], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

serialNumber
Identifies variations of an ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.45]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.2], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

warningMessageSegment
Carries a segment of the Warning Message Contents IE defined in TS 36.413 [39, 9.2.1.53]. The first octet of the Warning Message Contents IE is equivalent to the first octet of the CB data IE defined in and encoded according to TS 23.041 [37, 9.4.2.2.5] and so on.

warningMessageSegmentNumber
Segment number of the ETWS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, one corresponds to the second segment, and so on.

warningMessageSegmentType
Indicates whether the included ETWS warning message segment is the last segment or not.
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment1</td>
<td>The field is mandatory present in the first segment of SIB11, otherwise it is not present.</td>
</tr>
</tbody>
</table>

SystemInformationBlockType12

The IE SystemInformationBlockType12 contains a CMAS notification.

SystemInformationBlockType12 information element

```
-- ASN1START
SystemInformationBlockType12-r9 ::= SEQUENCE {
 messageIdentifier-r9 BIT STRING (SIZE (16)),
 serialNumber-r9 BIT STRING (SIZE (16)),
 warningMessageSegmentType-r9 ENUMERATED {notLastSegment, lastSegment},
 warningMessageSegmentNumber-r9 INTEGER (0..63),
 warningMessageSegment-r9 OCTET STRING,
 dataCodingScheme-r9 OCTET STRING (SIZE (1)) OPTIONAL, -- Cond Segment1
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 ...
}
-- ASN1STOP
```

SystemInformationBlockType12 field descriptions

- **dataCodingScheme**
  Identifies the alphabet/coding and the language applied variations of a CMAS notification. The octet (which is equivalent to the octet of the equivalent IE defined in TS 36.413 [39, 9.2.1.52]) contains the octet of the equivalent IE defined in TS 23.041 [37, 9.4.3.2.3] and encoded according to TS 23.038 [38].

- **messageIdentifier**
  Identifies the source and type of CMAS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.44]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.1], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

- **serialNumber**
  Identifies variations of a CMAS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.45]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.2], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

- **warningMessageSegment**
  Carries a segment of the Warning Message Contents IE defined in TS 36.413 [39]. The first octet of the Warning Message Contents IE is equivalent to the first octet of the CB data IE defined in and encoded according to TS 23.041 [37, 9.4.2.2.5] and so on.

- **warningMessageSegmentNumber**
  Segment number of the CMAS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, one corresponds to the second segment, and so on.

- **warningMessageSegmentType**
  Indicates whether the included CMAS warning message segment is the last segment or not.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment1</td>
<td>The field is mandatory present in the first segment of SIB12, otherwise it is not present.</td>
</tr>
</tbody>
</table>

SystemInformationBlockType13

The IE SystemInformationBlockType13 contains the information required to acquire the MBMS control information associated with one or more MBSFN areas.

SystemInformationBlockType13 information element

```
-- ASN1START
SystemInformationBlockType13-r9 ::= SEQUENCE {
 mbsfn-AreaInfoList-r9 MBSFN-AreaInfoList-r9,
 notificationConfig-r9 MBMS-NotificationConfig-r9,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 ...
}
```
SystemInformationBlockType13 field descriptions

notificationConfig
Indicates the MBMS notification related configuration parameters. The UE shall ignore this field when dl-Bandwidth included in MasterInformationBlock is set to n6.

SystemInformationBlockType14

The IE SystemInformationBlockType14 contains the EAB parameters.

SystemInformationBlockType14 information element

SystemInformationBlockType14 field descriptions

eab-BarringBitmap
Extended access class barring for AC 0-9. The first/ leftmost bit is for AC 0, the second bit is for AC 1, and so on.

eab-Category
Indicates the category of UEs for which EAB applies. Value a corresponds to all UEs, value b corresponds to the UEs that are neither in their HPLMN nor in a PLMN that is equivalent to it, and value c corresponds to the UEs that are neither in the PLMN listed as most preferred PLMN of the country where the UEs are roaming in the operator-defined PLMN selector list on the USIM, nor in their HPLMN nor in a PLMN that is equivalent to their HPLMN, see TS 22.011 [10].

eab-Common
The EAB parameters applicable for all PLMN(s).

eab-PerPLMN-List
The EAB parameters per PLMN, listed in the same order as the PLMN(s) listed across the plmn-IdentityList fields in SystemInformationBlockType1.

SystemInformationBlockType15

The IE SystemInformationBlockType15 contains the MBMS Service Area Identities (SAI) of the current and/or neighbouring carrier frequencies.

SystemInformationBlockType15 information element
lateNonCriticalExtension  OCTET STRING  OPTIONAL,
...  [[  mbms-SAI-InterFreqList-v1140  MBMS-SAI-InterFreqList-v1140  OPTIONAL  -- Cond
InterFreq  ]],[[  mbms-IntraFreqCarrierType-r14  MBMS-CarrierType-r14  OPTIONAL,  -- Need OR
mbms-InterFreqCarrierTypeList-r14
MBMS-InterFreqCarrierTypeList-r14  OPTIONAL  -- Need OR
]
]
MBMS-SAI-List-r11 ::=  SEQUENCE (SIZE (1..maxSAI-MBMS-r11)) OF MBMS-SAI-r11
MBMS-SAI-r11 ::=  INTEGER (0..65535)
MBMS-SAI-InterFreqList-r11 ::=  SEQUENCE (SIZE (1..maxFreq)) OF MBMS-SAI-InterFreq-r11
MBMS-SAI-InterFreqList-v1140 ::=  SEQUENCE (SIZE (1..maxFreq)) OF MBMS-SAI-InterFreq-v1140
MBMS-SAI-InterFreq-r11 ::=  SEQUENCE {
dl-CarrierFreq-r11      ARFCN-ValueEUTRA-r9,
mbms-SAI-List-r11      MBMS-SAI-List-r11
}
MBMS-SAI-InterFreq-v1140 ::=  SEQUENCE {
multiBandInfoList-r11    MultiBandInfoList-r11   OPTIONAL -- Need OR
}
MBMS-InterFreqCarrierTypeList-r14 ::= SEQUENCE (SIZE (1..maxFreq)) OF MBMS-CarrierType-r14
MBMS-CarrierType-r14 ::=  SEQUENCE {
carrierType-r14       ENUMERATED {mbms, fembmsMixed, fembmsDedicated},
frameOffset-r14       INTEGER (0..3)     OPTIONAL -- Need OR
}
-- ASN1STOP

SystemInformationBlockType15 field descriptions

carrierType
Indicates whether the carrier is pre-Rel-14 MBMS carrier (mbms) or FeMBMS/Unicast mixed carrier (fembmsMixed) or MBMS-dedicated carrier (fembmsDedicated).

frameOffset
For MBMS-dedicated carrier, the frameOffset gives the radio frame which contains PBCH by SFN mod 4 = frameOffset.

mbms-InterFreqCarrierTypeList
Indicates whether this is an FeMBMS carrier. The field is included only if mbms-SAI-InterFreqList-r11 is present. The number of entries is the same in both fields and carrier type relates to the frequency indicated in mbms-SAI-InterFreqList-r11 in the corresponding entry index.

mbms-IntraFreqCarrierType
Contains indication whether the carrier is pre-Rel-14 MBMS carrier, FeMBMS/Unicast mixed carrier or MBMS-dedicated carrier.

mbms-SAI-InterFreqList
Contains a list of neighboring frequencies including additional bands, if any, that provide MBMS services and the corresponding MBMS SAIs.

mbms-SAI-IntraFreq
Contains the list of MBMS SAIs for the current frequency. A duplicate MBMS SAI indicates that this and all following SAIs are not offered by this cell but only by neighbour cells on the current frequency. For MBMS service continuity, the UE shall use all MBMS SAIs listed in mbms-SAI-IntraFreq to derive the MBMS frequencies of interest.

mbms-SAI-List
Contains a list of MBMS SAIs for a specific frequency.

multiBandInfoList
A list of additional frequency bands applicable for the cells participating in the MBSFN transmission.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>InterFreq</td>
<td>The field is optionally present, need OR, if the mbms-SAI-InterFreqList-r11 is present. Otherwise it is not present.</td>
</tr>
</tbody>
</table>
-- SystemInformationBlockType16

The IE SystemInformationBlockType16 contains information related to GPS time and Coordinated Universal Time (UTC). The UE may use the parameters provided in this system information block to obtain the UTC, the GPS and the local time.

NOTE: The UE may use the time information for numerous purposes, possibly involving upper layers e.g. to assist GPS initialisation, to synchronise the UE clock (a.o. to determine MBMS session start/stop).

SystemInformationBlockType16 information element

-- ASN1START

SystemInformationBlockType16-r11 ::= SEQUENCE {
  timeInfo-r11       SEQUENCE {
    timeInfoUTC-r11      INTEGER (0..549755813887),
    dayLightSavingTime-r11    BIT STRING (SIZE (2))  OPTIONAL, -- Need OR
    leapSeconds-r11      INTEGER (-127..128)   OPTIONAL, -- Need OR
    localTimeOffset-r11     INTEGER (-63..64)   OPTIONAL -- Need OR
  }                 OPTIONAL, -- Need OR
  lateNonCriticalExtension   OCTET STRING    OPTIONAL,
  ...
}

-- ASN1STOP

SystemInformationBlockType16 field descriptions

dayLightSavingTime
It indicates if and how daylight saving time (DST) is applied to obtain the local time. The semantics is the same as the semantics of the Daylight Saving Time IE in TS 24.301 [35] and TS 24.008 [49]. The first/leftmost bit of the bit string contains the b2 of octet 3, i.e. the value part of the Daylight Saving Time IE, and the second bit of the bit string contains b1 of octet 3.

leapSeconds
Number of leap seconds offset between GPS Time and UTC. UTC and GPS time are related i.e. GPS time = UTC time + leapSeconds = UTC time.

localTimeOffset
Offset between UTC and local time in units of 15 minutes. Actual value = field value * 15 minutes. Local time of the day is calculated as UTC time + localTimeOffset.

timeInfoUTC
Coordinated Universal Time corresponding to the SFN boundary at or immediately after the ending boundary of the SI-window in which SystemInformationBlockType16 is transmitted. The field counts the number of UTC seconds in 10 ms units since 00:00:00 on Gregorian calendar date 1 January, 1900 (midnight between Sunday, December 31, 1899 and Monday, January 1, 1900). NOTE 1.

NOTE 1: The UE may use this field together with the leapSeconds field to obtain GPS time as follows: GPS Time (in seconds) = timeInfoUTC (in seconds) - 2,524,953,600 (seconds) + leapSeconds, where 2,524,953,600 is the number of seconds between 00:00:00 on Gregorian calendar date 1 January, 1900 and 00:00:00 on Gregorian calendar date 6 January, 1980 (start of GPS time).

-- SystemInformationBlockType17

The IE SystemInformationBlockType17 contains information relevant for traffic steering between E-UTRAN and WLAN.

SystemInformationBlockType17 information element

-- ASN1START

SystemInformationBlockType17-r12 ::= SEQUENCE {
  wlan-OffloadInfoPerPLMN-List-r12  SEQUENCE (SIZE (1..maxPLMN-r11)) OF
    WLAN-OffloadInfoPerPLMN-r12   OPTIONAL, -- Need OR
  lateNonCriticalExtension   OCTET STRING    OPTIONAL,
  ...
}

-- ASN1STOP
WLAN-OffloadInfoPerPLMN-r12 ::= SEQUENCE {
    wlan-OffloadConfigCommon-r12 WLAN-OffloadConfig-r12 OPTIONAL, -- Need OR
    wlan-Id-List-r12 WLAN-Id-List-r12 OPTIONAL, -- Need OR
    ...
}

WLAN-Id-List-r12 ::= SEQUENCE (SIZE (1..maxWLAN-Id-r12)) OF WLAN-Identifiers-r12

WLAN-Identifiers-r12 ::= SEQUENCE {
    ssid-r12 OCTET STRING (SIZE (1..32)) OPTIONAL, -- Need OR
    bssid-r12 OCTET STRING (SIZE (6)) OPTIONAL, -- Need OR
    hessid-r12 OCTET STRING (SIZE (6)) OPTIONAL, -- Need OR
    ...
}

<table>
<thead>
<tr>
<th><strong>SystemInformationBlockType17 field descriptions</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>bssid</strong></td>
</tr>
<tr>
<td><strong>hessid</strong></td>
</tr>
<tr>
<td><strong>ssid</strong></td>
</tr>
</tbody>
</table>

**wlan-OffloadInfoPerPLMN-List**
The WLAN offload configuration per PLMN includes the same number of entries, listed in the same order as the PLMN(s) listed across the `plmn-IdentityList` fields in `SystemInformationBlockType1`.

---

**SystemInformationBlockType18**
The IE `SystemInformationBlockType18` indicates E-UTRAN supports the sidelink UE information procedure and may contain sidelink communication related resource configuration information.

<table>
<thead>
<tr>
<th><strong>SystemInformationBlockType18 information element</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>-- ASN1START</td>
</tr>
</tbody>
</table>

SystemInformationBlockType18-r12 ::= SEQUENCE {
    commConfig-r12 SEQUENCE {
        commRxPool-r12 SL-CommRxPoolList-r12,
        commTxPoolNormalCommon-r12 SL-CommTxPoolList-r12 OPTIONAL, -- Need OR
        commTxPoolExceptional-r12 SL-CommTxPoolList-r12 OPTIONAL, -- Need OR
        commSyncConfig-r12 SL-SyncConfigList-r12 OPTIONAL -- Need OR
    } OPTIONAL, -- Need OR
    lateNonCriticalExtension OCTET STRING OPTIONAL,
    ...
} [[
    commTxPoolNormalCommonExt-r13 SL-CommTxPoolListExt-r13 OPTIONAL, -- Need OR
    commTxResourceUC-ReqAllowed-r13 ENUMERATED {true} OPTIONAL, -- Need OR
    commTxAllowRelayCommon-r13 ENUMERATED {true} OPTIONAL -- Need OR
    ]]

-- ASN1STOP
**SystemInformationBlockType18 field descriptions**

- **commRxPool**: Indicates the resources by which the UE is allowed to receive sidelink communication while in RRC_IDLE and while in RRC_CONNECTED.

- **commSyncConfig**: Indicates the configuration by which the UE is allowed to receive and transmit synchronisation information. E-UTRAN configures `commSyncConfig` including `txParameters` when configuring UEs by dedicated signalling to transmit synchronisation information.

- **commTxAllowRelayCommon**: Indicates whether the UE is allowed to transmit relay related sidelink communication data using the transmission pools included in `SystemInformationBlockType18` i.e. either via `commTxPoolNormalCommon`, `commTxPoolNormalCommonExt` or via `commTxPoolExceptional`.

- **commTxPoolExceptional**: Indicates the resources by which the UE is allowed to transmit sidelink communication in exceptional conditions, as specified in 5.10.4.

- **commTxPoolNormalCommon**: Indicates the resources by which the UE is allowed to transmit sidelink communication while in RRC_IDLE or when in RRC_CONNECTED while transmitting sidelink via a frequency other than the primary.

- **commTxPoolNormalCommonExt**: Indicates transmission resource pool(s) in addition to the pool(s) indicated by field `commTxPoolNormalCommon`, by which the UE is allowed to transmit sidelink communication while in RRC_IDLE or when in RRC_CONNECTED while transmitting sidelink via a frequency other than the primary. E-UTRAN configures `commTxPoolNormalCommonExt` only when it configures `commTxPoolNormalCommon`.

- **commTxResourceUC-ReqAllowed**: Indicates whether the UE is allowed to request transmission pools for non-relay related one-to-one sidelink communication.

---

**SystemInformationBlockType19**

The IE `SystemInformationBlockType19` indicates E-UTRAN supports the sidelink UE information procedure and may contain sidelink discovery related resource configuration information.

**SystemInformationBlockType19 information element**

```asn1
-- ASN1START
SystemInformationBlockType19-r12 ::= SEQUENCE {
 discConfig-r12 SEQUENCE {
 discRxPool-r12 SL-DiscRxPoolList-r12,
 discTxPoolCommon-r12 SL-DiscTxPoolList-r12 OPTIONAL, -- Need OR
 discTxPowerInfo-r12 SL-DiscTxPowerInfoList-r12 OPTIONAL, -- Cond Tx
 discSyncConfig-r12 SL-SyncConfigList-r12 OPTIONAL -- Need OR
 }, OPTIONAL, -- Need OR
 discInterFreqList-r12 SL-CarrierFreqInfoList-r12 OPTIONAL, -- Need OR
 lateNonCriticalExtension OCTET STRING OPTIONAL, ...

[[
 discConfig-v1310 SEQUENCE {
 discInterFreqList-v1310 SL-CarrierFreqInfoList-v1310 OPTIONAL, -- Need OR
 gapRequestsAllowedCommon ENUMERATED {true} OPTIONAL -- Need OR
 },

 discConfigRelay-r13 SEQUENCE {
 relayUE-Config-r13 SL-DiscConfigRelayUE-r13,
 remoteUE-Config-r13 SL-DiscConfigRemoteUE-r13
 },

 discConfigPS-r13 SEQUENCE {
 discRxPoolPS-r13 SL-DiscRxPoolList-r12,
 discTxPoolPS-Common-r13 SL-DiscTxPoolList-r12 OPTIONAL -- Need OR
 },
}

]}

SL-CarrierFreqInfoList-r12 ::= SEQUENCE {SIZE (1..maxFreq)} OF SL-CarrierFreqInfo-r12
SL-CarrierFreqInfoList-v1310 ::= SEQUENCE {SIZE (1..maxFreq)} OF SL-CarrierFreqInfo-v1310
SL-CarrierFreqInfo-r12 ::= SEQUENCE {
 carrierFreq-r12 ARFCN-ValueEUTRA-r9,
 plmn-IdentityList-r12 PLMN-IdentityList4-r12 OPTIONAL -- Need OP
}
SL-DiscConfigRelayUE-r13 ::= SEQUENCE {
-- ASN1END
```
threshHigh-r13 RSRP-RangeSL4-r13 OPTIONAL, -- Need OR
threshLow-r13 RSRP-RangeSL4-r13 OPTIONAL, -- Need OR
hystMax-r13 ENUMERATED {dB0, dB3, dB6, dB9, dB12, dBinf} OPTIONAL, -- Cond
ThreshHigh
hystMin-r13 ENUMERATED {dB0, dB3, dB6, dB9, dB12} OPTIONAL -- Cond ThreshLow

SL-DiscConfigRemoteUE-r13 ::= SEQUENCE {
  threshHigh-r13 RSRP-RangeSL4-r13 OPTIONAL, -- Need OR
  hystMax-r13 ENUMERATED {dB0, dB3, dB6, dB9, dB12, dBinf} OPTIONAL, -- Cond ThreshHigh
  reselectionInfoIC-r13 ReselectionInfoRelay-r13
}

ReselectionInfoRelay-r13 ::= SEQUENCE {
  q-RxLevMin-r13 Q-RxLevMin,
  -- Note that the mapping of invidual values may be different for PC5, but the granularity/
  -- number of values is same as for Uu
  filterCoefficient-r13 FilterCoefficient,
  minHyst-r13 ENUMERATED {dB0, dB3, dB6, dB9, dB12, dBinf} OPTIONAL -- Cond ThreshLow
}

SL-CarrierFreqInfo-v1310 ::= SEQUENCE {
  discResourcesNonPS-r13 SL-ResourcesInterFreq-r13 OPTIONAL, -- Need OR
  discResourcesPS-r13 SL-ResourcesInterFreq-r13 OPTIONAL, -- Need OR
  discConfigOther-r13 SL-DiscConfigOtherInterFreq-r13 OPTIONAL, -- Need OR
  ...
}

PLMN-IdentityList4-r12 ::= SEQUENCE (SIZE (1..maxPLMN-r11)) OF PLMN-IdentityInfo2-r12

PLMN-IdentityInfo2-r12 ::= CHOICE {
  plmn-index-r12 INTEGER (1..maxPLMN-r11),
  plmnIdentity-r12 PLMN-Identity
}

SL-DiscTxResourcesInterFreq-r13 ::= CHOICE {
  acquireSI-FromCarrier-r13 NULL,
  discTxPoolCommon-r13 SL-DiscTxPoolList-r12,
  requestDedicated-r13 NULL,
  noTxOnCarrier-r13 NULL
}

SL-DiscConfigOtherInterFreq-r13 ::= SEQUENCE {
  txPowerInfo-r13 SL-DiscTxPowerInfoList-r12 OPTIONAL, -- Cond Tx
  refCarrierCommon-r13 ENUMERATED {pCell} OPTIONAL, -- Need OR
  discSyncConfig-r13 SL-SyncConfigListNFreq-r13 OPTIONAL, -- Need OR
  discCellSelectionInfo-r13 CellSelectionInfoNFreq-r13 OPTIONAL -- Need OR
}

SL-ResourcesInterFreq-r13 ::= SEQUENCE {
  discRxResourcesInterFreq-r13 SL-DiscRxPoolList-r12 OPTIONAL, -- Need OR
  discTxResourcesInterFreq-r13 SL-DiscTxResourcesInterFreq-r13 OPTIONAL -- Need OR
}

-- ASN1STOP
**SystemInformationBlockType19 field descriptions**

**discCellSelectionInfo**
Parameters that may be used by the UE to select/ reselect a cell on the concerned non serving frequency. If absent, the UE acquires the information from the target cell on the concerned frequency. See TS 36.304 [4, 11.4].

**discInterFreqList**
Indicates the neighbouring frequencies on which sidelink discovery announcement is supported. May also provide further information i.e. reception resource pool and/or transmission resource pool, or an indication how resources could be obtained.

**discRxPool**
Indicates the resources by which the UE is allowed to receive non-PS related sidelink discovery announcements while in RRC_IDLE and while in RRC_CONNECTED.

**discRxPoolPS**
Indicates the resources by which the UE is allowed to receive PS related sidelink discovery announcements while in RRC_IDLE and while in RRC_CONNECTED.

**discRxResourcesInterFreq**
Indicates the resource pool configuration for receiving discovery announcements on a carrier frequency.

**discSyncConfig**
Indicates the configuration by which the UE is allowed to receive and transmit synchronisation information. E-UTRAN configures `discSyncConfig` including `txParameters` when configuring UEs by dedicated signalling to transmit synchronisation information.

**discTxPoolCommon**
Indicates the resources by which the UE is allowed to transmit non-PS related sidelink discovery announcements while in RRC_IDLE.

**discTxPoolPS-Common**
Indicates the resources by which the UE is allowed to transmit PS related sidelink discovery announcements while in RRC_IDLE.

**discTxResourcesInterFreq**
For the concerned frequency, either provides the UE with a pool of sidelink discovery announcement transmission resources the UE is allowed to use while in RRC_IDLE, or indicates whether such transmission is allowed, and if so how the UE may obtain the required resources. Value `noTxOnCarrier` indicates that the UE is not allowed to transmit sidelink discovery announcements on the concerned frequency. Value `acquireSI-FromCarrier` indicates that the required resources are to be obtained by autonomously acquiring SIB19 and other relevant SIBs from the concerned frequency. Value `requestDedicated` indicates, that for the concerned carrier, the required sidelink discovery resources are to be obtained by means of a dedicated resource request using the `SidelinkUEInformation` message.

**plmn-IdentityList**
List of PLMN identities for the neighbouring frequency indicated by `carrierFreq`. Absence of the field indicates the same PLMN identities as listed across the `plmn-IdentityList` fields (without suffix) in `SystemInformationBlockType1`.

**plmn-Index**
Index of the corresponding entry across the `plmn-IdentityList` fields (without suffix) within `SystemInformationBlockType1`.

**refCarrierCommon**
Indicates if the PCell (RRC_CONNECTED)/ serving cell (RRC_IDLE) is to be used as reference for DL measurements and synchronization, instead of the DL frequency paired with the one used to transmit sidelink discovery announcements on, see TS 36.213 [23, 14.3.1].

**reselectionInfoIC**
Includes the parameters used by the UE when selecting/ reselecting a sidelink relay UE.

**SL-CarrierFreqInfoList-v1310**
If included, the UE shall include the same number of entries, and listed in the same order, as in `SL-CarrierFreqInfoList-r12`.

**threshHigh, threshLow (relayUE)**
Indicates when a sidelink remote UE or sidelink relay UE that is in network coverage may use the broadcast PS related sidelink discovery Tx resource pool, if broadcast, or request Tx resources by dedicated signalling otherwise. For remote UEs, this parameter is used similarly for relay related sidelink communication.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ThreshHigh</strong></td>
<td>The field is mandatory present if <code>threshHigh</code> is included in the corresponding IE. Otherwise the field is not present and UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td><strong>ThreshLow</strong></td>
<td>The field is mandatory present if <code>threshLow</code> is included. Otherwise the field is not present UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td><strong>Tx</strong></td>
<td>The field is mandatory present if <code>discTxPoolCommon</code> is included. Otherwise the field is optional present, need OR.</td>
</tr>
</tbody>
</table>
The IE SystemInformationBlockType20 contains the information required to acquire the control information associated transmission of MBMS using SC-PTM.

**SystemInformationBlockType20 information element**

-- ASN1START

SystemInformationBlockType20-r13 ::= SEQUENCE {
  sc-mcch-RepetitionPeriod-r13  ENUMERATED {rf2, rf4, rf8, rf16, rf32, rf64, rf128, rf256},
  sc-mcch-Offset-r13        INTEGER (0..10),
  sc-mcch-FirstSubframe-r13 INTEGER (0..9),
  sc-mcch-duration-r13      INTEGER (2..9) OPTIONAL,
  sc-mcch-ModificationPeriod-r13 ENUMERATED {rf2, rf4, rf8, rf16, rf32, rf64, rf128, rf256,
                                               rf512, rf1024, r2048, r4096, rf8192, rf16384, rf32768,
                                               rf65536},
  lateNonCriticalExtension   OCTET STRING OPTIONAL,
...,
  [ br-BCCH-Config-r14    SEQUENCE {
    sc-mcch-RepetitionPeriod-v1430  ENUMERATED {rf1},
    sc-mcch-ModificationPeriod-v1430 ENUMERATED {rf1},
    mpdcch-Narrowband-SC-MCCH-r14  INTEGER (1..maxAvailNarrowBands-r13),
    mpdcch-NumRepetition-SC-MCCH-r14 ENUMERATED {r1, r2, r4, r8, r16,
                                                   r32, r64, r128, r256},
    mpdcch-StartSF-SC-MCCH-r14     CHOICE {
      fdd-r14        ENUMERATED {v1, v1dot5, v2, v2dot5, v4,
                                 v5, v8, v10},
      tdd-r14        ENUMERATED {v1, v2, v4, v5, v8, v10, v20} }
   } ,
   mpdcch-FDSCCH-HoppingConfig-SC-MCCH-r14 ENUMERATED {off, ce-ModeA, ce-ModeB},
   sc-mcch-CarrierFreq-r14       ARFCN-ValueEUTRA-r9,
   sc-mcch-Offset-BR-r14         INTEGER (0..10),
   sc-mcch-RepeatPeriod-BR-r14  INTEGER (0..10),
   sc-mcch-ModificationPeriod-BR-r14 ENUMERATED {rf32, rf128, rf512, rf1024,
                                                   rf2048, r4096, rf8192, rf16384},
  } topic OR,
  sc-mcch-SchedulingInfo-r14   SC-MCCH-SchedulingInfo-r14 OPTIONAL, -- Need OP
  pdsch-maxNumRepetitionCModeA-SC-MTCCH-r14
    ENUMERATED { r16, r32 } OPTIONAL, -- Need OP
  pdsch-maxNumRepetitionCModeB-SC-MTCCH-r14
    ENUMERATED {
      r192, r256, r384, r512, r768, r1024,
      r1536, r2048} OPTIONAL -- Need OR
  ],
  SC-MCCH-SchedulingInfo-r14 ::= SEQUENCE {
    onDurationTimerSCPTM-r14       ENUMERATED {psf10, psf20, psf100, psf300,
                                             psf500, psf1000, psf2000, psf1600},
    drx-InactivityTimerSCPTM-r14   ENUMERATED {psf0, psf1, psf2, psf4, psf8, psf16,
                                             psf32, psf64, psf128, psf256, psf512,
                                             psf1024, psf2048, psf4096, psf8192, psf16384},
    schedulingPeriodStartOffsetSCPTM-r14 CHOICE {
      sf10         INTEGER (0..9),
      sf20         INTEGER (0..19),
      sf32         INTEGER (0..31),
      sf40         INTEGER (0..39),
      sf64         INTEGER (0..63),
      sf80         INTEGER (0..79),
      sf128        INTEGER (0..127),
      sf160        INTEGER (0..159),
      sf256        INTEGER (0..255),
      sf320        INTEGER (0..319),
      sf512        INTEGER (0..511),
      sf640        INTEGER (0..639),
      sf1024       INTEGER (0..1023),
      sf2048       INTEGER (0..2047),
      sf4096       INTEGER (0..4095),
      sf8192       INTEGER (0..8191) }
} -- ASN1END
## SystemInformationBlockType20 field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>br-BCCH-Config-r14</code></td>
<td>The field is present if <code>SystemInformationBlockType20</code> is sent on BR-BCCH. Otherwise the field is absent.</td>
</tr>
<tr>
<td><code>d rx-InactivityTimerSCPTM</code></td>
<td>Timer for listening to SC-MCCH scheduling in TS 36.321 [6]. Value in number of MPDCCH sub-frames. Value psf0 corresponds to 0 MPDCCH sub-frame, psf1 corresponds to 1 MPDCCH sub-frame and so on.</td>
</tr>
<tr>
<td><code>mpdcch-Narrowband-SC-MCCH</code></td>
<td>Narrowband for MPDCCH for SC-MCCH, see TS 36.213 [23].</td>
</tr>
<tr>
<td><code>mpdcch-NumRepetitions-SC-MCCH</code></td>
<td>The maximum number of MPDCCH repetitions the UE needs to monitor for SC-MCCH, see TS 36.213 [23].</td>
</tr>
<tr>
<td><code>mpdcch-StartSF-SC-MCCH</code></td>
<td>Configuration of the starting subframes of the MPDCCH search space for SC-MCCH, see TS 36.213 [23].</td>
</tr>
<tr>
<td><code>mpdcch-PDSCH-HoppingConfig-SC-MCCH</code></td>
<td>Frequency hopping configuration for MPDCCH/PDSCH for SC-MCCH, see TS 36.213 [23].</td>
</tr>
<tr>
<td><code>onDurationTimerSCPTM</code></td>
<td>Indicates the duration in subframes during which SC-MCCH may be scheduled in MPDCCH sub-frames, see TS 36.321 [6].</td>
</tr>
<tr>
<td><code>pdsch-maxNumRepetitionCEmodeA-SC-MTCH</code></td>
<td>Maximum value to indicate the set of PDSCH repetition numbers for SC-MTCH to UEs in CE mode A, see TS 36.213 [23].</td>
</tr>
<tr>
<td><code>pdsch-maxNumRepetitionCEmodeB-SC-MTCH</code></td>
<td>Maximum value to indicate the set of PDSCH repetition numbers for SC-MTCH CE to UEs in mode B, see TS 36.213 [23].</td>
</tr>
<tr>
<td><code>schedulingPeriodStartOffsetSCPTM</code></td>
<td>Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. The value of SCPTM-SchedulingOffset is in number of sub-frames.</td>
</tr>
<tr>
<td><code>sc-mcch-CarrierFreq</code></td>
<td>Downlink carrier used for all multicast SC-MCCH transmissions.</td>
</tr>
<tr>
<td><code>sc-mcch-duration</code></td>
<td>Indicates, starting from the subframe indicated by <code>sc-mcch-FirstSubframe</code>, the duration in subframes during which SC-MCCH may be scheduled in PDCCH sub-frames, see TS 36.321 [6]. Absence of this IE means that SC-MCCH is only scheduled in the subframe indicated by <code>sc-mcch-FirstSubframe</code>.</td>
</tr>
<tr>
<td><code>sc-mcch-ModificationPeriod</code></td>
<td>Defines periodically appearing boundaries, i.e. radio frames for which SFN mod <code>sc-mcch-ModificationPeriod</code> = 0. The contents of different transmissions of SC-MCCH information can only be different if there is at least one such boundary in-between them. Value rf2 corresponds to 2 radio frames, value rf4 corresponds to 4 radio frames and so on. In case <code>sc-mcch-ModificationPeriod-v1430</code> is configured, the UE shall ignore the configuration of <code>sc-mcch-ModificationPeriod-r13</code>.</td>
</tr>
<tr>
<td><code>sc-mcch-ModificationPeriod-BR</code></td>
<td>Defines periodically appearing boundaries for BL UE or UE in CE, i.e. radio frames for which (H-SFN*1024 + SFN) mod <code>sc-mcch-ModificationPeriod-BR</code> = 0 if hyperSFN is present in <code>SystemInformationBlockType1-BR</code> or radio frames for which SFN mod <code>sc-mcchModificationPeriod-BR</code> = 0 otherwise. The contents of different transmissions of SC-MCCH information can only be different if there is at least one such boundary in-between them. Value rf32 corresponds to 32 radio frames, value rf128 corresponds to 128 radio frames and so on.</td>
</tr>
<tr>
<td><code>sc-mcch-FirstSubframe</code></td>
<td>Indicates the first subframe in which SC-MCCH is scheduled.</td>
</tr>
<tr>
<td><code>sc-mcch-Offset</code></td>
<td>Indicates, together with the <code>sc-mcch-RepetitionPeriod</code>, the radio frames in which SC-MCCH is scheduled i.e. SC-MCCH is scheduled in radio frames for which: SFN mod <code>sc-mcch-RepetitionPeriod</code> = <code>sc-mcch-Offset</code>.</td>
</tr>
<tr>
<td><code>sc-mcch-RepetitionPeriod</code></td>
<td>Indicates, together with the <code>sc-mcch-RepetitionPeriod-BR</code>, the boundary of the SC-MCCH repetition period for BL UE or UE in CE: (H-SFN*1024 + SFN) mod <code>sc-mcch-RepetitionPeriod-BR</code> = <code>sc-mcch-Offset-BR</code> if hyperSFN is present in <code>SystemInformationBlockType1-BR</code> or radio frames for which (SFN mod <code>sc-mcch-Offset-BR</code>) = <code>sc-mcch-RepetitionPeriod-BR</code> otherwise. The interval between transmissions of SC-MCCH information for BL UE or UE in CE, in radio frames. Value rf2 corresponds to 2 radio frames, rf4 corresponds to 4 radio frames and so on. In case <code>sc-mcch-RepetitionPeriod-v1430</code> is configured, the UE shall ignore the configuration of <code>sc-mcch-RepetitionPeriod-r13</code>.</td>
</tr>
<tr>
<td><code>sc-mcch-RepetitionPeriod-BR</code></td>
<td>Defines the interval between transmissions of SC-MCCH information for BL UE or UE in CE, in radio frames. Value rf32 corresponds to 32 radio frames, rf128 corresponds to 128 radio frames and so on.</td>
</tr>
<tr>
<td><code>sc-mcch-SchedulingInfo</code></td>
<td>DRX information for the SC-MCCH. If this field is absent, DRX is not used for SC-MCCH reception.</td>
</tr>
</tbody>
</table>
– SystemInformationBlockType21

The IE SystemInformationBlockType21 contains V2X sidelink communication configuration.

**SystemInformationBlockType21** information element

```
-- ASN1START
SystemInformationBlockType21-r14 ::= SEQUENCE {
 sl-V2X-ConfigCommon-r14 SL-V2X-ConfigCommon-r14 OPTIONAL, -- Need OR
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 ...
}

SL-V2X-ConfigCommon-r14 ::= SEQUENCE {
 v2x-CommRxPool-r14 SL-CommRxPoolListV2X-r14 OPTIONAL, -- Need OR
 v2x-CommTxP0olNormalCommon-r14 SL-CommTxPoolListV2X-r14 OPTIONAL, -- Need OR
 v2x-CommTxP0olNormalCommon-r14 SL-CommTxPoolListV2X-r14 OPTIONAL, -- Need OR
 v2x-SyncConfig-r14 SL-SyncConfigListV2X-r14 OPTIONAL, -- Need OR
 v2x-InterFreqInfoList-r14 SL-InterFreqInfoListV2X-r14 OPTIONAL, -- Need OR
 v2x-ResourceSelectionConfig-r14 SL-CommTxPoolSensingConfig-r14 OPTIONAL, -- Need OR
 zoneConfig-r14 SL-ZoneConfig-r14 OPTIONAL, -- Need OR
 typeTxSync-r14 SL-TypeTxSync-r14 OPTIONAL, -- Need OR
 thresSL-TxPrioritization-r14 SL-Priority-r13 OPTIONAL, -- Need OR
 anchorCarrierFreqList-r14 SL-AnchorCarrierFreqList-V2X-r14 OPTIONAL, -- Need OR
 offsetDFN-r14 INTEGER (0..1000) OPTIONAL, -- Need OR
 cbr-CommonTxConfigList-r14 SL-CBR-CommonTxConfigList-r14 OPTIONAL -- Need OR
}

-- ASN1STOP
```
SystemInformationBlockType21 field descriptions

anchorCarrierFreqList
Indicates carrier frequencies which may include inter-carrier resource configuration for V2X sidelink communication.

cbr-CommonTxConfigList
Indicates the common list of CBR ranges and the list of PSSCH transmissions parameter configurations available to configure congestion control to the UE for V2X sidelink communication.

offsetDFN
Indicates the timing offset for the UE to determine DFN timing when GNSS is used for timing reference for the PCell. Value 0 corresponds to 0 milliseconds, value 1 corresponds to 0.001 milliseconds, value 2 corresponds to 0.002 milliseconds, and so on.

p2x-CommTxPoolNormalCommon
Indicates the resources by which the UE is allowed to transmit P2X related V2X sidelink communication. zoneID is not configured in the pools in this field.

thresSL-TxPrioritization
Indicates the threshold used to determine whether SL V2X transmission is prioritized over uplink transmission if they overlap in time (see TS 36.321 [6]). This value shall overwrite thresSL-TxPrioritization configured in SL-V2X-Preconfiguration if any.

typeTxSync
Indicates the prioritized synchronization type (i.e. eNB or GNSS) for performing V2X sidelink communication on the carrier frequency on which this field is broadcast.

v2x-CommRxPool
Indicates the resources by which the UE is allowed to receive V2X sidelink communication while in RRC_IDLE and in RRC_CONNECTED.

v2x-CommTxPoolExceptional
Indicates the resources by which the UE is allowed to transmit V2X sidelink communication in exceptional conditions, as specified in 5.10.13.

v2x-CommTxPoolNormalCommon
Indicates the resources by which the UE is allowed to transmit non-P2X related V2X sidelink communication when in RRC_IDLE or when in RRC_CONNECTED while transmitting V2X sidelink communication via a frequency other than the primary. E-UTRAN configures one resource pool per zone.

v2x-InterFreqInfoList
Indicates synchronization and resource allocation configurations of neighboring frequencies for V2X sidelink communication.

v2x-ResourceSelectionConfig
Indicates V2X sidelink communication configurations used for UE autonomous resource selection.

v2x-SyncConfig
Indicates the configuration by which the UE is allowed to receive and transmit synchronisation information for V2X sidelink communication. E-UTRAN configures v2x-SyncConfig including txParameters when configuring UEs to transmit synchronisation information.

zoneConfig
Indicates zone configurations used for V2X sidelink communication in 5.10.13.2.

6.3.2 Radio resource control information elements

– AntennaInfo

The IE AntennaInfoCommon and the AntennaInfoDedicated are used to specify the common and the UE specific antenna configuration respectively.

AntennaInfo information elements

-- ASN1START
AntennaInfoCommon ::= SEQUENCE {
  antennaPortsCount ENUMERATED {an1, an2, an4, spare1}
}

AntennaInfoDedicated ::= SEQUENCE {
  transmissionMode ENUMERATED {
    tm1, tm2, tm3, tm4, tm5, tm6,
    tm7, tm8-v920,
  }
  codebookSubsetRestriction CHOICE {
    n2TxAntenna-tm3 BIT STRING (SIZE (2)),
    n4TxAntenna-tm3 BIT STRING (SIZE (4)),
    n2TxAntenna-tm4 BIT STRING (SIZE (6)),
    n4TxAntenna-tm4 BIT STRING (SIZE (64)),
    n2TxAntenna-tm5 BIT STRING (SIZE (4)),
  }
}
AntennaInfoDedicated-v920 ::= SEQUENCE {
  codebookSubsetRestriction-v920 CHOICE {
    n2TxAntenna-tm8-r9 BIT STRING (SIZE (6)),
    n4TxAntenna-tm8-r9 BIT STRING (SIZE (32))
  } OPTIONAL -- Cond TM8
}

AntennaInfoDedicated-r10 ::= SEQUENCE {
  transmissionMode-r10 ENUMERATED {
    tm1, tm2, tm3, tm4, tm5, tm6, tm7, tm8-v920, tm9-v1020, tm10-v1130, spare6, spare5, spare4, spare3, spare2, spare1,
  }
  codebookSubsetRestriction-r10 BIT STRING OPTIONAL, -- Cond TMX
  ue-TransmitAntennaSelection CHOICE{
    release NULL,
    setup ENUMERATED {closedLoop, openLoop}
  }
}

AntennaInfoDedicated-v10i0 ::= SEQUENCE {
  maxLayersMIMO-r10 ENUMERATED {twoLayers, fourLayers, eightLayers} OPTIONAL
}

AntennaInfoDedicated-v1250 ::= SEQUENCE {
  alternativeCodebookEnabledFor4TX-r12 BOOLEAN
}

AntennaInfoDedicated-v1430 ::= SEQUENCE {
  ce-UE-TxAntennaSelection-config-r14 ENUMERATED {on} OPTIONAL -- Need OR
}

-- ASN1STOP
AntennaInfo field descriptions

**alternativeCodebookEnabledFor4TX**
Indicates whether code book in TS 36.213 [23] Table 7.2.4-0A to Table 7.2.4-0D is being used for deriving CSI feedback and reporting. E-UTRAN only configures the field if the UE is configured with a) tm8 with 4 CRS ports, tm9 or tm10 with 4 CSI-RS ports and b) PMI/RI reporting.

**antennaPortsCount**
Parameter represents the number of cell specific antenna ports where an1 corresponds to 1, an2 to 2 antenna ports etc. see TS 36.211 [21, 6.2.1].

**ce-ue-TxAntennaSelection-config**
Configuration of UL closed-loop transmit antenna selection for non-BL UE in CE Mode A, see TS 36.212 [22].

**codebookSubsetRestriction**
Parameter: codebookSubsetRestriction, see TS 36.213 [23, 7.2] and TS 36.211 [21, 6.3.4.2.3]. The number of bits in the codebookSubsetRestriction for applicable transmission modes is defined in TS 36.213 [23, Table 7.2-1b]. If the UE is configured with transmissionMode tm8, E-UTRAN configures the field codebookSubsetRestriction if PMI/RI reporting is configured. If the UE is configured with transmissionMode tm9, E-UTRAN configures the field codebookSubsetRestriction if PMI/RI reporting is configured and if the number of CSI-RS ports is greater than 1. E-UTRAN does not configure the field codebookSubsetRestriction in other cases where the UE is configured with transmissionMode tm8 or tm9. Furthermore, E-UTRAN does not configure the field codebookSubsetRestriction if the UE is configured with eMIMO-Type unless it is set to beamformed, alternativeCodebookEnabledBeamformed is set to FALSE and csi-RS-ConfigNZPIdListExt is not configured.

**maxLayersMIMO**
Indicates the maximum number of layers for spatial multiplexing used to determine the rank indication bit width and Kc determination of the soft buffer size for the corresponding serving cell according to TS 36.212 [22]. EUTRAN configures this field only when transmissionMode is set to tm3, tm4, tm9 or tm10 for the corresponding serving cell. When configuring the field for a serving cell which transmissionMode is set to tm3 or tm4, EUTRAN only configures value fourLayers: For a serving cell which transmissionMode is set to tm9 or tm10, EUTRAN only configures the field if intraBandContiguousCC-InfoList is indicated for the band and the band combination of the corresponding serving cell or the UE supports maxLayersMIMO-Indication.

**transmissionMode**
Points to one of Transmission modes defined in TS 36.213 [23, 7.1] where tm1 refers to transmission mode 1, tm2 to transmission mode 2 etc.

**ue-TransmitAntennaSelection**
For value setup, the field indicates whether UE transmit antenna selection control is closed-loop or open-loop as described in TS 36.213 [23, 8.7].

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TM</strong></td>
<td>The field is mandatory present if the transmissionMode is set to tm3, tm4, tm5 or tm6. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td><strong>TM8</strong></td>
<td>The field is optional present, need OR, if AntennaInfoDedicated is included and transmissionMode is set to tm8. If AntennaInfoDedicated is included and transmissionMode is set to a value other than tm8, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
<tr>
<td><strong>TMX</strong></td>
<td>The field is mandatory present if the transmissionMode-r10 is set to tm3, tm4, tm5 or tm6. The field is optionally present, need OR, if the transmissionMode-r10 is set to tm8 or tm9. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

---

**AntennaInfoUL**

The IE AntennaInfoUL is used to specify the UL antenna configuration.

**AntennaInfoUL information elements**

```asn1
-- ASN1START
AntennaInfoUL-r10 ::= SEQUENCE {
 transmissionModeUL-r10 : ENUMERATED {tm1, tm2, spare6, spare5, spare4, spare3, spare2, spare1} OPTIONAL, -- Need OR
 fourAntennaPortActivated-r10 : ENUMERATED {setup} OPTIONAL -- Need OR
}
-- ASN1STOP
```
## Antenna Info UL field descriptions

**fourAntennaPortActivated**
Parameter indicates if four antenna ports are used. See TS 36.213 [23, 8.2]. E-UTRAN optionally configures `fourAntennaPortActivated` only if `transmissionModeUL` is set to `tm2`.

**transmissionModeUL**
Points to one of UL Transmission modes defined in TS 36.213 [23, 8.0] where `tm1` refers to transmission mode 1, `tm2` to transmission mode 2 etc.

---

### CQI-ReportAperiodic

The IE `CQI-ReportAperiodic` is used to specify the aperiodic CQI reporting configuration.

#### CQI-ReportAperiodic information elements

```asn
-- ASN1START

CQI-ReportAperiodic-r10 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-ReportModeAperiodic-r10 CQI-ReportModeAperiodic,
 aperiodicCSI-Trigger-r10 SEQUENCE {
 trigger1-r10 BIT STRING (SIZE (8)),
 trigger2-r10 BIT STRING (SIZE (8))
 } OPTIONAL -- Need OR
 }
}

CQI-ReportAperiodic-v1250 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 aperiodicCSI-Trigger-v1250 SEQUENCE {
 trigger-SubframeSetIndicator-r12 ENUMERATED {s1, s2},
 trigger1-SubframeSetIndicator-r12 BIT STRING (SIZE (8)),
 trigger2-SubframeSetIndicator-r12 BIT STRING (SIZE (8))
 }
 }
}

CQI-ReportAperiodic-v1310 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 aperiodicCSI-Trigger-v1310 SEQUENCE {
 trigger1-r13 BIT STRING (SIZE (32)),
 trigger2-r13 BIT STRING (SIZE (32)),
 trigger3-r13 BIT STRING (SIZE (32)),
 trigger4-r13 BIT STRING (SIZE (32)),
 trigger5-r13 BIT STRING (SIZE (32)),
 trigger6-r13 BIT STRING (SIZE (32))
 } OPTIONAL, -- Need ON
 aperiodicCSI-Trigger2-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 trigger1-SubframeSetIndicator-r13 BIT STRING (SIZE (32)),
 trigger2-SubframeSetIndicator-r13 BIT STRING (SIZE (32)),
 trigger3-SubframeSetIndicator-r13 BIT STRING (SIZE (32)),
 trigger4-SubframeSetIndicator-r13 BIT STRING (SIZE (32)),
 trigger5-SubframeSetIndicator-r13 BIT STRING (SIZE (32)),
 trigger6-SubframeSetIndicator-r13 BIT STRING (SIZE (32))
 } OPTIONAL -- Need ON
 }
 }
}

CQI-ReportAperiodicProc-r11 ::= SEQUENCE {
 cqi-ReportModeAperiodic-r11 CQI-ReportModeAperiodic,
 trigger001-r11 BOOLEAN,
 trigger10-r11 BOOLEAN,
 trigger11-r11 BOOLEAN
}

CQI-ReportAperiodicProc-v1310 ::= SEQUENCE {
 trigger001-r13 BOOLEAN,
 trigger010-r13 BOOLEAN,
 trigger011-r13 BOOLEAN,
}

-- ASN1END
```
trigger100-r13  BOOLEAN,
trigger101-r13  BOOLEAN,
trigger110-r13  BOOLEAN,
trigger111-r13  BOOLEAN
}

CQI-ReportAperiodicHybrid-r14 ::= SEQUENCE {
  triggers-r14  CHOICE {
    oneBit-r14  SEQUENCE {
      trigger1-Indicator-r14  BIT STRING (SIZE (8))
    },
    twoBit-r14  SEQUENCE {
      trigger01-Indicator-r14  BIT STRING (SIZE (8)),
      trigger10-Indicator-r14  BIT STRING (SIZE (8)),
      trigger11-Indicator-r14  BIT STRING (SIZE (8))
    },
    threeBit-r14  SEQUENCE {
      trigger001-Indicator-r14  BIT STRING (SIZE (32)),
      trigger010-Indicator-r14  BIT STRING (SIZE (32)),
      trigger011-Indicator-r14  BIT STRING (SIZE (32)),
      trigger100-Indicator-r14  BIT STRING (SIZE (32)),
      trigger101-Indicator-r14  BIT STRING (SIZE (32)),
      trigger110-Indicator-r14  BIT STRING (SIZE (32)),
      trigger111-Indicator-r14  BIT STRING (SIZE (32))
    }
  }
}

CQI-ReportModeAperiodic ::= ENumerated {
  rm12, rm20, rm22, rm30, rm31,
  rm32-v1250, rm10-v1310, rm11-v1310
}
CQI-ReportAperiodic field descriptions

aperiodicCSI-Trigger
Indicates for which serving cell(s) the aperiodic CSI report is triggered when one or more SCells are configured.  
trigger1 corresponds to the CSI request field set to 010, trigger2 corresponds to the CSI request field set to 11 or 011,  
trigger3 corresponds to the CSI request field set 100, see TS 36.213 [23, table 7.2.1-1A], and so on. The leftmost bit, bit 0  
in the bit string corresponds to the cell with ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with  
ServCellIndex=1 etc. Each bit has either value 0 (means no aperiodic CSI report is triggered) or value 1 (means the  
aperiodic CSI report is triggered). At most 5 bits can be set to value 1 in the bit string in aperiodicCSI-Trigger-r10 and  
in aperiodicCSI-Trigger-v1250 and at most 32 bits can be set to value 1 in the bit string in aperiodicCSI-Trigger-v1310.  
E-UTRAN configures value 1 only for cells configured with transmissionMode set in range tm1 to tm9. One value  
applies for all serving cells configured with transmissionMode set in range tm1 to tm9 (the associated functionality is  
common i.e. not performed independently for each cell).

trigger01-IndicatorN, trigger10-IndicatorN, trigger11-IndicatorN
Indicates for which eMIMO-Type the aperiodic CSI report is triggered (the corresponding CSI process, CSI subframe  
set)-pair(s) and/or a serving cell) as applicable, See TS 36.213 [23, table 7.2.1-1D, 7.2.1-1E].

trigger001-IndicatorN.. trigger111-IndicatorN
Indicates for which eMIMO-Type the aperiodic CSI report is triggered (the corresponding CSI process, CSI subframe  
set)-pair(s) and/or a serving cell) as applicable, See TS 36.213 [23, table 7.2.1-1A, 7.2.1-1B, and 7.2.1-1C].

trigger01
Indicates whether or not reporting for this CSI-process or reporting for this CSI-process corresponding to a CSI  
subframe set is triggered by CSI request field set to 01, for a CSI request applicable for the serving cell on the same  
frequency as the CSI process, see TS 36.213 [23, table 7.2.1-1D and 7.2.1-1E].

trigger10, trigger11
Indicates whether or not reporting for this CSI-process or reporting for this CSI-process corresponding to a CSI  
subframe set is triggered by CSI request field set to 10 or 11, see TS 36.213 [23, table 7.2.1-1B]. EUTRAN configures  
at most 5 CSI processes, across all serving frequencies within each CG, to be triggered by a CSI request field set to  
value 10. The same restriction applies for value 11. In case E-UTRAN simultaneously triggers CSI requests for more  
than 5 CSI processes some limitations apply, see TS 36.213 [23].

trigger001
Indicates whether or not reporting for this CSI-process or reporting for this CSI-process corresponding to a CSI  
subframe set is triggered by CSI request field set to 001, for a CSI request applicable for the serving cell on the same  
frequency as the CSI process, see TS 36.213 [23, table 7.2.1-1D and 7.2.1-1E].

trigger010, trigger011, trigger100, trigger101, Trigger110, Trigger111
Indicates whether or not reporting for this CSI-process or reporting for this CSI-process corresponding to a CSI  
subframe set is triggered by CSI request field set to 010, 011, 100, 101, 110 or 111, see TS 36.213 [23, table 7.2.1-1D  
and 7.2.1-1E].

trigger-SubframeSetIndicator
For a serving cell configured with csi-MeasSubframeSets-r12, indicates for which CSI subframe set the aperiodic CSI  
report is triggered for the serving cell if the aperiodic CSI is triggered by the CSI request field 01 or 001, see TS  
36.213 [23, table 7.2.1-1C or table 7.2.1.-1E]. Value s1 corresponds to CSI subframe set 1 and value s2 corresponds  
to CSI subframe set 2.

trigger1-SubframeSetIndicator
If signalled in the aperiodicCSI-Trigger-v1250, indicates for which CSI subframe set the aperiodic CSI report is  
triggered when aperiodic CSI is triggered by the CSI request field 10, see TS 36.213 [23, table 7.2.1-1C] or by the CSI  
request field 010, see TS 36.213 [23, table 7.2.1-1E].The leftmost bit, bit 0 in the bit string corresponds to the cell with  
ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0  
(means aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is  
triggered for CSI subframe set 2).

trigger2-SubframeSetIndicator
If signalled in the aperiodicCSI-Trigger-v1250, indicates for which CSI subframe set the aperiodic CSI report is  
triggered when aperiodic CSI is triggered by the CSI request field 11, see TS 36.213 [23, table 7.2.1-1C] or by the CSI  
request field 011, see TS 36.213 [23, table 7.2.1-1E].The leftmost bit, bit 0 in the bit string corresponds to the cell with  
ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0  
(means aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is  
triggered for CSI subframe set 2).

trigger3-SubframeSetIndicator
Indicates for which CSI subframe set the aperiodic CSI report is triggered when aperiodic CSI is triggered by the CSI  
request field 100, see TS 36.213 [23, table 7.2.1-1E].The leftmost bit, bit 0 in the bit string corresponds to the cell with  
ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0  
(means that aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is  
triggered for CSI subframe set 2).

trigger4-SubframeSetIndicator
Indicates for which CSI subframe set the aperiodic CSI report is triggered when aperiodic CSI is triggered by the CSI  
request field 101, see TS 36.213 [23, table 7.2.1-1E].The leftmost bit, bit 0 in the bit string corresponds to the cell with  
ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0  
(means that aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is  
triggered for CSI subframe set 2).
**CQI-ReportAperiodic field descriptions**

**trigger5-SubframeSetIndicator**
Indicates for which CSI subframe set the aperiodic CSI report is triggered when aperiodic CSI is triggered by the CSI request field 110, see TS 36.213 [23, table 7.2.1-1E]. The leftmost bit, bit 0 in the bit string corresponds to the cell with ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0 (means that aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is triggered for CSI subframe set 2).

**trigger6-SubframeSetIndicator**
Indicates for which CSI subframe set the aperiodic CSI report is triggered when aperiodic CSI is triggered by the CSI request field 111, see TS 36.213 [23, table 7.2.1-1E]. The leftmost bit, bit 0 in the bit string corresponds to the cell with ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0 (means that aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is triggered for CSI subframe set 2).

---

**CQI-ReportBoth**

The IE CQI-ReportBoth is used to specify the CQI reporting configuration common to both periodic and aperiodic configurations.

**CQI-ReportBoth** information elements

```asn1
-- ASN1START
CQI-ReportBoth-r11 ::= SEQUENCE {
 csi-IM-ConfigToReleaseList-r11 CSI-IM-ConfigToReleaseList-r11 OPTIONAL, -- Need ON
 csi-IM-ConfigToAddModList-r11 CSI-IM-ConfigToAddModList-r11 OPTIONAL, -- Need ON
 csi-ProcessToReleaseList-r11 CSI-ProcessToReleaseList-r11 OPTIONAL, -- Need ON
 csi-ProcessToAddModList-r11 CSI-ProcessToAddModList-r11 OPTIONAL -- Need ON
}
CQI-ReportBoth-v1250 ::= SEQUENCE {
 csi-IM-ConfigToReleaseListExt-r12 CSI-IM-ConfigId-v1250 OPTIONAL, -- Need ON
 csi-IM-ConfigToAddModListExt-r12 CSI-IM-ConfigExt-r12 OPTIONAL -- Need ON
}
CQI-ReportBoth-v1310 ::= SEQUENCE {
 csi-IM-ConfigToReleaseListExt-r13 CSI-IM-ConfigToReleaseListExt-r13 OPTIONAL, -- Need ON
 csi-IM-ConfigToAddModListExt-r13 CSI-IM-ConfigToAddModListExt-r13 OPTIONAL -- Need ON
}
CSI-IM-ConfigToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-IM-r11)) OF CSI-IM-ConfigId-r11
CSI-IM-ConfigToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-IM-r11)) OF CSI-IM-Config-r11
CSI-ProcessToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-Proc-r11)) OF CSI-ProcessId-r11
CSI-ProcessToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-Proc-r11)) OF CSI-Process-r11
CQI-ReportBothProc-r11 ::= SEQUENCE {
 ri-Ref-CSI-ProcessId-r11 CSI-ProcessId-r11 OPTIONAL, -- Need OR
 pm-i-R1-Report-r11 ENUMERATED {setup} OPTIONAL -- Need OR
}
-- ASN1STOP
```
CQI-ReportBoth field descriptions

**csi-IM-ConfigToAddModList**
For a serving frequency E-UTRAN configures one or more CSI-IM-Config only when transmission mode 10 is configured for the serving cell on this carrier frequency.

**csi-ProcessToAddModList**
For a serving frequency E-UTRAN configures one or more CSI-Process only when transmission mode 10 is configured for the serving cell on this carrier frequency.

**cqi-ReportModeAperiodic**
Parameter: reporting mode. Value rm12 corresponds to Mode 1-2, rm20 corresponds to Mode 2-0, rm22 corresponds to Mode 2-2 etc. PUSCH reporting modes are described in TS 36.213 [23, 7.2.1]. The UE shall ignore cqi-ReportModeAperiodic-r10 when transmission mode 10 is configured for the serving cell on this carrier frequency. The UE shall ignore cqi-ReportModeAperiodic-r10 configured for the PCell/SCell when the transmission bandwidth of the PCell/SCell in downlink is 6 resource blocks.

**pmi-RI-Report**
See TS 36.213 [23, 7.2]. The presence of this field means PMI/RI reporting is configured; otherwise the PMI/RI reporting is not configured. EUTRAN configures this field only when transmissionMode is set to tm8, tm9 or tm10. The UE shall ignore pmi-RI-Report-r9/ pmi-RI-Report-r10 when transmission mode 10 is configured for the serving cell on this carrier frequency.

**ri-Ref-CSI-ProcessId**
CSI process whose RI value the UE inherits when reporting RI, in the same subframe, for CSI reporting. E-UTRAN ensures that the CSI process that inherits the RI value is configured in accordance with the conditions specified in TS 36.213 [23, 7.2.1, 7.2.2].

**CQI-ReportConfig**
The IE CQI-ReportConfig is used to specify the CQI reporting configuration.

---

CQI-ReportConfig information elements

```
-- ASN1START
CQI-ReportConfig ::= SEQUENCE {
cqi-ReportModeAperiodic CQI-ReportModeAperiodic OPTIONAL, -- Need OR
nomPDSCH-RS-EPRE-Offset INTEGER (-1..6),
cqi-ReportPeriodic CQI-ReportPeriodic OPTIONAL -- Need ON
}

CQI-ReportConfig-v920 ::= SEQUENCE {
cqi-Mask-r9 ENUMERATED {setup} OPTIONAL, -- Cond cqi-Setup
pmi-RI-Report-r9 ENUMERATED {setup} OPTIONAL -- Cond PMIRI
}

CQI-ReportConfig-r10 ::= SEQUENCE {
cqi-ReportAperiodic-r10 CQI-ReportAperiodic-r10 OPTIONAL, -- Need ON
nomPDSCH-RS-EPRE-Offset INTEGER (-1..6),
pmi-RI-Report-r9 ENUMERATED {setup} OPTIONAL, -- Cond
PMIRIPCell
 csi-SubframePatternConfig-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 csi-MeasSubframeSet1-r10 MeasSubframePattern-r10,
 csi-MeasSubframeSet2-r10 MeasSubframePattern-r10
 }
 }
OPTIONAL -- Need ON
}

CQI-ReportConfig-v1130 ::= SEQUENCE {
cqi-ReportPeriodic-v1130 CQI-ReportPeriodic-v1130,
cqi-ReportBoth-r11 CQI-ReportBoth-r11
}

CQI-ReportConfig-v1250 ::= SEQUENCE {
cqi-SubframePatternConfig-r12 CHOICE {
 release NULL,
 setup SEQUENCE {
 csi-MeasSubframeSets-r12 BIT STRING (SIZE (10))
 }
 }
OPTIONAL -- Need ON
cqi-ReportBoth-v1250 CQI-ReportBoth-v1250 OPTIONAL, -- Need ON
cqi-ReportAperiodic-v1250 CQI-ReportAperiodic-v1250 OPTIONAL, -- Need ON
altCQI-Table-r12 ENUMERATED {
```
### CQI-ReportConfig field descriptions

**altCQI-Table**

Indicates the applicability of the alternative CQI table (i.e. Table 7.2.3-2 in TS 36.213 [23]) for both aperiodic and periodic CSI reporting for the concerned serving cell. Value *allSubframes* means the alternative CQI table applies to all the subframes and CSI processes, if configured, and value *csi-SubframeSet1* means the alternative CQI table applies to CSI subframe set 1, and value *csi-SubframeSet2* means the alternative CQI table applies to CSI subframe set 2. EUTRAN sets the value to *csi-SubframeSet1* or *csi-SubframeSet2* only if *transmissionMode* is set in range tm1 to tm9 and *csi-SubframePatternConfig-r10* is configured for the concerned serving cell and different CQI tables apply to the two CSI subframe sets; otherwise EUTRAN sets the value to *allSubframes*. If this field is not present, the UE shall use Table 7.2.3-1 in TS 36.213 [23] for all subframes and CSI processes, if configured.

**cqi-Mask**

Limits CQI/PMI/PTI/RI reports to the on-duration period of the DRX cycle, see TS 36.321 [6]. One value applies for all CSI processes and all serving cells (the associated functionality is common i.e. not performed independently for each cell).

**cqi-ReportAperiodic**

E-UTRAN does not configure *cqi-ReportAperiodic* when transmission mode 10 is configured for all serving cells. E-UTRAN configures *cqi-ReportAperiodic-v1250* only if *cqi-ReportAperiodic-r10* and *csi-MeasSubframeSets-r12* are configured. E-UTRAN configures *cqi-ReportAperiodic-v1310* only if *cqi-ReportAperiodic-r10* is configured.

**cqi-ReportModeAperiodic**

Parameter: *reporting mode*. Value rm12 corresponds to Mode 1-2, rm20 corresponds to Mode 2-0, rm22 corresponds to Mode 2-2 etc. PUSCH reporting modes are described in TS 36.213 [23, 7.2.1]. The UE shall ignore *cqi-ReportModeAperiodic-r10* when transmission mode 10 is configured for the serving cell on this carrier frequency. The UE shall ignore *cqi-ReportModeAperiodic-r10* configured for the PCell/ PSCell when the transmission bandwidth of the PCell/PSCell in downlink is 6 resource blocks.

**csi-MeasSubframeSets**

Indicates the two CSI subframe sets. Value 0 means the subframe belongs to CSI subframe set 1 and value 1 means the subframe belongs to CSI subframe set 2. CSI subframe set 1 refers to *CCSI,0* in TS 36.213 [23, 7.2] and CSI subframe set 2 refers to *CCSI,1* in TS 36.213 [23, 7.2]. EUTRAN does not configure *csi-MeasSubframeSet1-r10* and *csi-MeasSubframeSet2-r10* if either *csi-MeasSubframeSets-r12* for PCell or *eimtA/MainConfigPCell-r12* is configured.

**nomPDSCH-RS-EPRE-Offset**

Parameter: \( \Delta_{\text{offset}} \) see TS 36.213 [23, 7.2.3]. Actual value = field value * 2 [dB].

**pmi-RI-Report**

See TS 36.213 [23, 7.2]. The presence of this field means PMI/RI reporting is configured; otherwise the PMI/RI reporting is not configured. EUTRAN configures this field only when *transmissionMode* is set to tm8, tm9 or tm10. The UE shall ignore *pmi-RI-Report-r9l* / *pmi-RI-Report-r10* when transmission mode 10 is configured for the serving cell on this carrier frequency.
### Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cqi-Setup</td>
<td>This field is not present for an Scell except for the PSCell, while it is conditionally present for the PCell and the PSCell according to the following. The field is optional present, need OR, if the cqi-ReportPeriodic in the cqi-ReportConfig is set to setup. If the field cqi-ReportPeriodic is present and set to release, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

| PMIRI                | The field is optional present, need OR, if cqi-ReportPeriodic is included and set to setup, or cqi-ReportModeAperiodic is included. If the field cqi-ReportPeriodic is present and set to release and cqi-ReportModeAperiodic is absent, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present. |

| PMIRiPCell           | The field is optional present, need OR, if cqi-ReportPeriodic is included in the CQI-ReportConfig-r10 and set to setup. If the field cqi-ReportPeriodic is present in the CQI-ReportConfig-r10 and set to release and cqi-ReportAperiodic is included in the CQI-ReportConfig-r10 and set to release, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present. |

| PMIRiSCell           | The field is optional present, need OR, if cqi-ReportPeriodicSCell is included and set to setup, or cqi-ReportModeAperiodic-r10 is included in the CQI-ReportConfigSCell. If the field cqi-ReportPeriodicSCell is present and set to release and cqi-ReportModeAperiodic-r10 is absent in the CQI-ReportConfigSCell, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present. |

---

### CQI-ReportPeriodic

The IE CQI-ReportPeriodic is used to specify the periodic CQI reporting configuration elements.

#### CQI-ReportPeriodic information elements

```asn1
-- ASN1START

CQI-ReportPeriodic ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-PUCCH-ResourceIndex INTEGER (0..1185),
 cqi-pmi-ConfigIndex INTEGER (0..1023),
 cqi-FormatIndicatorPeriodic CHOICE {
 widebandCQI NULL,
 subbandCQI SEQUENCE {
 k INTEGER (1..4)
 }
 },
 ri-ConfigIndex INTEGER (0..1023) OPTIONAL, -- Need OR
 simultaneousAckNackAndCQI BOOLEAN
 }
}

CQI-ReportPeriodic-r10 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-PUCCH-ResourceIndex-r10 INTEGER (0..1184),
 cqi-PUCCH-ResourceIndexP1-r10 INTEGER (0..1184) OPTIONAL, -- Need OR
 cqi-pmi-ConfigIndex INTEGER (0..1023),
 cqi-FormatIndicatorPeriodic-r10 CHOICE {
 widebandCQI-r10 SEQUENCE {
 csi-ReportMode-r10 ENUMERATED {submode1, submode2} OPTIONAL -- Need OR
 },
 subbandCQI-r10 SEQUENCE {
 k INTEGER (1..4),
 periodicityFactor-r10 ENUMERATED {n2, n4}
 }
 },
 ri-ConfigIndex INTEGER (0..1023) OPTIONAL, -- Need OR
 simultaneousAckNackAndCQI BOOLEAN,
 cqi-Mask-r9 ENUMERATED {setup} OPTIONAL, -- Need OR
 csi-ConfigIndex-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-pmi-ConfigIndex2-r10 INTEGER (0..1023),
 ri-ConfigIndex2-r10 INTEGER (0..1023) OPTIONAL -- Need OR
 }
 }
 }
}
```
```
CQI-ReportPeriodic-v1130 ::= SEQUENCE {
 simultaneousAckNackAndCQI-Format3-r11 ENUMERATED {setup} OPTIONAL, -- Need OR
 cqi-ReportPeriodicProcExtToReleaseList-r11 CQI-ReportPeriodicProcExtToReleaseList-r11 OPTIONAL, -- Need ON
 cqi-ReportPeriodicProcExtToAddModList-r11 CQI-ReportPeriodicProcExtToAddModList-r11 OPTIONAL -- Need ON
}

CQI-ReportPeriodic-v1310 ::= SEQUENCE {
 cri-ReportConfig-r13 CRI-ReportConfig-r13 OPTIONAL, -- Need OR
 simultaneousAckNackAndCQI-Format4-Format5-r13 ENUMERATED {setup} OPTIONAL -- Need OR
}

CQI-ReportPeriodic-v1320 ::= SEQUENCE {
 periodicityFactorWB-r13 ENUMERATED {n2, n4} OPTIONAL -- Need OR
}

CQI-ReportPeriodicProcExtToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCQI-ProcExt-r11)) OF CQI-ReportPeriodicProcExt-r11

CQI-ReportPeriodicProcExtToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCQI-ProcExt-r11)) OF CQI-ReportPeriodicProcExtId-r11

CQI-ReportPeriodicProcExt-r11 ::= SEQUENCE {
 cqi-ReportPeriodicProcExtId-r11 CQI-ReportPeriodicProcExtId-r11,
 cqi-FormatIndicatorPeriodic-r11 CHOICE {
 widebandCQI-r11 SEQUENCE {
 csi-ReportMode-r11 ENUMERATED {submode1, submode2} OPTIONAL -- Need OR
 },
 subbandCQI-r11 SEQUENCE {
 k INTEGER (1..4),
 periodicityFactor-r11 ENUMERATED {n2, n4}
 }
 },
 ri-ConfigIndex-r11 INTEGER (0..1023) OPTIONAL, -- Need OR
 csi-ConfigIndex-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-pmi-ConfigIndex2-r11 INTEGER (0..1023),
 ri-ConfigIndex2-r11 INTEGER (0..1023) OPTIONAL -- Need OR
 }
 }
}

CRI-ReportConfig-r13 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-ConfigIndex-r13 CRI-ConfigIndex-r13,
 cqi-ConfigIndex2-r13 CRI-ConfigIndex2-r13 OPTIONAL -- Need OR
 }
}

CRI-ConfigIndex-r13 ::= INTEGER (0..1023)

-- ASN1STOP
CQI-ReportPeriodic field descriptions

cqi-FormatIndicatorPeriodic
Parameter: PUCCH CQI Feedback Type, see TS 36.213 [23, table 7.2.2-1]. Depending on transmissionMode, reporting mode is implicitly given from the table.

cqi-Mask
Limits CQI/PMI/PTI/RI reports to the on-duration period of the DRX cycle, see TS 36.321 [6]. One value applies for all CSI processes and all serving cells (the associated functionality is common i.e. not performed independently for each cell).

cqi-pmi-ConfigIndex
Parameter: CQI/PMI Periodicity and Offset Configuration Index ICQI/PMI, see TS 36.213 [23, tables 7.2.2-1A and 7.2.2-1C]. If subframe patterns for CSI (CQI/PMI/PTI/RI) reporting are configured (i.e. csi-SubframePatternConfig is configured), the parameter applies to the subframe pattern corresponding to csi-MeasSubframeSet1 or corresponding to the CSI subframe set 1 indicated by csi-MeasSubframeSets-r12.

cqi-pmi-ConfigIndex2
Parameter: CQI/PMI Periodicity and Offset Configuration Index ICQI/PMI, see TS 36.213 [23, tables 7.2.2-1A and 7.2.2-1C]. The parameter applies to the subframe pattern corresponding to csi-MeasSubframeSet2 or corresponding to the CSI subframe set 2 indicated by csi-MeasSubframeSets-r12.

cqi-PUCCH-ResourceIndex, cqi-PUCCH-ResourceIndexP1
Parameter n\(_{(2,p)}\)_PUCCH for antenna port P0 and for antenna port P1 respectively, see TS 36.213 [23, 7.2]. E-UTRAN does not apply value 1185. One value applies for all CSI processes.

cqi-ReportAperiodic
E-UTRAN does not configure CQI-ReportAperiodic when transmission mode 10 is configured for all serving cells. E-UTRAN configures cqi-ReportAperiodic-v1250 only if cqi-ReportAperiodic-r10 and csi-MeasSubframeSets[r12 are configured. E-UTRAN configures cqi-ReportAperiodic-v1310 only if cqi-ReportAperiodic-r10 is configured.

cqi-ReportModeAperiodic
Parameter: reporting mode. Value rm12 corresponds to Mode 1-2, rm20 corresponds to Mode 2-0, rm22 corresponds to Mode 2-2 etc. PUSCH reporting modes are described in TS 36.213 [23, 7.2.1]. The UE shall ignore cqi-ReportModeAperiodic-r10 when transmission mode 10 is configured for the serving cell on this carrier frequency. The UE shall ignore cqi-ReportModeAperiodic-r10 configured for the PCell/ PSCell when the transmission bandwidth of the PCell/PSCell in downlink is 6 resource blocks.

CQI-ReportPeriodicProcExt
A set of periodic CQI related parameters for which E-UTRAN may configure different values for each CSI process. For a serving frequency E-UTRAN configures one or more CQI-ReportPeriodicProcExt only when transmission mode 10 is configured for the serving cell on this carrier frequency.

cri-ConfigIndex
Parameter: csi-ConfigIndex ICRI see TS 36.213 [23]. The parameter applies to the subframe pattern corresponding to csi-MeasSubframeSet1. EUTRAN configures the field if subframe patterns for CSI (CQI/PMI/PTI/CRI) reporting are configured (i.e. csi-SubframePatternConfig is configured).

cri-ConfigIndex2
Parameter: csi-ConfigIndex ICRI see TS 36.213 [23]. The parameter applies to the subframe pattern corresponding to csi-MeasSubframeSet2 or corresponding to the CSI subframe set 2 indicated by csi-MeasSubframeSets-r12. E-UTRAN configures csi-ConfigIndex2 only if csi-ConfigIndex is configured.

cqi-ReportConfig
E-UTRAN configures the field only if the UE is configured with eMIMO-Type set to "beamformed" and if multiple references to RS configuration using non-zero power transmission are configured (i.e. if csi-RS-ConfigNZPIdListExt is configured).

csi-ConfigIndex
E-UTRAN configures csi-ConfigIndex only for PCell and only if csi-SubframePatternConfig is configured. The UE shall release csi-ConfigIndex if csi-SubframePatternConfig is released.

csi-ProcessToAddModList
For a serving frequency E-UTRAN configures one or more CSI-Process only when transmission mode 10 is configured for the serving cell on this carrier frequency.

csi-ReportMode
Parameter: PUCCH_format1-1_CSI_reporting_mode, see TS 36.213 [23, 7.2.2].

K
Parameter: K, see TS 36.213 [23, 7.2.2].

nomPDSCH-RS-EPRE-Offset
Parameter: Δ\(_{offset}\), see TS 36.213 [23, 7.2.3]. Actual value = field value * 2 [dB].

periodicityFactor, periodicityFactorWB
Parameter: H\(^{-}\), see TS 36.213 [23, 7.2.2]. EUTRAN configures field periodicityFactorWB only when the UE is configured with eMIMO-Type set to nonPrecoded and with cqi-FormatIndicatorPeriodic set to widebandCQI.

ri-ConfigIndex
Parameter: RI_Config Index I\(_{rin}\), see TS 36.213 [23, 7.2.2-1B]. If subframe patterns for CSI (CQI/PMI/PTI/CRI) reporting are configured (i.e. csi-SubframePatternConfig is configured), the parameter applies to the subframe pattern corresponding to csi-MeasSubframeSet1.
CQI-ReportPeriodicProcExtId

The IE CQI-ReportPeriodicProcExtId is used to identify a periodic CQI reporting configuration that E-UTRAN may configure in addition to the configuration specified by the IE CQI-ReportPeriodic-r10. These additional configurations are specified by the IE CQI-ReportPeriodicProcExt-r11. The identity is unique within the scope of a carrier frequency.

CQI-ReportPeriodicProcExtId information elements

```
-- ASN1START
CQI-ReportPeriodicProcExtId-r11 ::= INTEGER (1..maxCQI-ProcExt-r11)
-- ASN1STOP
```

CrossCarrierSchedulingConfig

The IE CrossCarrierSchedulingConfig is used to specify the configuration when the cross carrier scheduling is used in a cell.

CrossCarrierSchedulingConfig information elements

```
-- ASN1START
CrossCarrierSchedulingConfig-r10 ::= SEQUENCE {
  schedulingCellInfo-r10    CHOICE {
    own-r10        SEQUENCE {     -- No cross carrier
      cif-Presence-r10      BOOLEAN
    }
    other-r10        SEQUENCE {     -- Cross carrier
      schedulingCellId-r10    ServCellIndex-r10,
      pdsch-Start-r10      INTEGER (1..4)
    }
  }
}
CrossCarrierSchedulingConfig-r13 ::= SEQUENCE {
  schedulingCellInfo-r13    CHOICE {
    own-r13        SEQUENCE {     -- No cross carrier
      cif-Presence-r13      BOOLEAN
    }
    other-r13       SEQUENCE {     -- Cross carrier scheduling
      schedulingCellId-r13    ServCellIndex-r13,
      pdsch-Start-r13      INTEGER (1..4),
      cif-InSchedulingCell-r13    INTEGER (1..7)
    }
  }
}
```
CrossCarrierSchedulingConfigLAA-UL-r14 ::= SEQUENCE {
 schedulingCellId-r14 ServCellIndex-r13,
 cif-InSchedulingCell-r14 INTEGER (1..7)
} -- ASN1STOP

CrossCarrierSchedulingConfig field descriptions

cif-Presence
The field is used to indicate whether carrier indicator field is present (value TRUE) or not (value FALSE) in PDCCH/EPDCCH DCI formats, see TS 36.212 [22, 5.3.3.1].

cif-InSchedulingCell
The field indicates the CIF value used in the scheduling cell to indicate this cell, see TS 36.212 [22, 5.3.3.1]. In case of carrier indicator field is present, the CIF value is 0.

pdsch-Start
The starting OFDM symbol of PDSCH for the concerned SCell, see TS 36.213 [23, 7.1.6.4]. Values 1, 2, 3 are applicable when dl-Bandwidth for the concerned SCell is greater than 10 resource blocks, values 2, 3, 4 are applicable when dl-Bandwidth for the concerned SCell is less than or equal to 10 resource blocks, see TS 36.211 [21, Table 6.7-1].

schedulingCellId
Indicates which cell signals the downlink allocations and uplink grants, if applicable, for the concerned SCell. In case the UE is configured with DC, the scheduling cell is part of the same cell group (i.e. MCG or SCG) as the scheduled cell. In case the UE is configured with crossCarrierSchedulingConfigLAA-UL, schedulingCellId indicated in crossCarrierSchedulingConfigLAA-UL only indicates which cell signals the uplink grants.

CSI-IM-Config

The IE CSI-IM-Config is the CSI Interference Measurement (IM) configuration that E-UTRAN may configure on a serving frequency, see TS 36.213 [23, 7.2.6].

CSI-IM-Config information elements

CSI-IM-Config-r11 ::= SEQUENCE {
 csi-IM-ConfigId-r11 CSIT-ConfigId-r11,
 resourceConfig-r11 INTEGER (0..31),
 subframeConfig-r11 INTEGER (0..154),
 ...,
 [[interferenceMeasRestriction-r13 BOOLEAN OPTIONAL -- Need ON]]
}

CSI-IM-ConfigExt-r12 ::= SEQUENCE {
 csi-IM-ConfigId-v1250 CSIT-ConfigId-v1250,
 resourceConfig-r12 INTEGER (0..31),
 subframeConfig-r12 INTEGER (0..154),
 ...,
 [[interferenceMeasRestriction-r13 BOOLEAN OPTIONAL, -- Need ON
 csi-IM-ConfigId-v1310 CSIT-ConfigId-v1310 OPTIONAL -- Need ON]]
}

CSI-IM-Config field descriptions

resourceConfig
Parameter: CSI reference signal configuration, see TS 36.213 [23, 7.2.6] and TS 36.211 [21, table 6.10.5.2-1 and 6.10.5.2-2] for 4 REs.

subframeConfig
Parameter: I_{CSI-RS}, see TS 36.213 [23, 7.2.6] and TS 36.211 [21, table 6.10.5.3-1].
CSI-IM-ConfigId

The IE CSI-IM-ConfigId is used to identify a CSI-IM configuration that is configured by the IE CSI-IM-Config. The identity is unique within the scope of a carrier frequency.

CSI-IM-ConfigId information elements

CSI-Process

The IE CSI-Process is the CSI process configuration that E-UTRAN may configure on a serving frequency.

CSI-Process information elements
CSI-Process field descriptions

advancedCodebookEnabled
Value TRUE indicates that the UE should use the advanced code book defined in TS 36.213 [23], EUTRAN does not configure the field when the UE is configured with eMIMO-Type is set to beamformed, when the UE is configured with eMIMO-Hybrid or when the UE is configured with semiOpenLoop.

alternativeCodebookEnabledFor4TXProc
Indicates whether code book in TS 36.213 [23] Table 7.2.4-0A to Table 7.2.4-0D is being used for deriving CSI feedback and reporting for a CSI process. EUTRAN may configure the field only if the number of CSI-RS ports for non-zero power transmission CSI-RS configuration is 4.

cqi-ReportAperiodicProc
If csi-MeasSubframeSets-r12 is configured for the same frequency as the CSI process, cqi-ReportAperiodicProc applies for CSI subframe set 1. If csi-MeasSubframeSet1-r10 or csi-MeasSubframeSet2-r10 are configured for the same frequency as the CSI process, cqi-ReportAperiodicProc applies for CSI subframe set 1 or CSI subframe set 2. Otherwise, cqi-ReportAperiodicProc applies for all subframes. E-UTRAN configures cqi-ReportAperiodicProc-v1310 only if cqi-ReportAperiodicProc-r11 is configured.

cqi-ReportAperiodicProc2

cqi-ReportBothProc
Includes CQI configuration parameters applicable for both aperiodic and periodic CSI reporting, for which CSI process specific values may be configured. E-UTRAN configures the field if and only if cqi-ReportPeriodicProcId is included and/ or if cqi-ReportAperiodicProcId is included.

cqi-ReportPeriodicProcId
Refers to a periodic CQI reporting configuration that is configured for the same frequency as the CSI process. Value 0 refers to the set of parameters defined by the REL-10 CQI reporting configuration fields, while the other values refer to the additional configurations E-UTRAN assigns by CQI-ReportPeriodicProcExt-r11 (and as covered by CQI-ReportPeriodicProcExtId).

csi-IM-ConfigId
Refers to a CSI-IM configuration that is configured for the same frequency as the CSI process. If csi-IM-ConfigId-v1250 or csi-IM-ConfigId-v1310 is configured, the UE only considers this extension (i.e., UE ignores csi-IM-ConfigId-r11 and csi-IM-ConfigId-r12).

csi-IM-ConfigIdList
Refers to one or two CSI-IM configurations that are configured for the same frequency as the CSI process. csi-IM-ConfigIdList can include 2 entries only if csi-MeasSubframeSets-r12 is configured for the same frequency as the CSI process.

csi-RS-ConfigNZPId
Refers to a CSI RS configuration using non-zero power transmission that is configured for the same frequency as the CSI process.

eMIMO-Type
Parameter: eMIMO-Type, see TS 36.213 [23], TS 36.211 [21]. If eMIMO-Type is set to nonPrecoded, the codebooks used for deriving CSI feedback are in TS 36.213 [23], Table 7.2.4-10 to Table 7.2.4-17. Choice values nonPrecoded and beamformed correspond to 'CLASS A' and 'CLASS B' respectively, see TS 36.212 [22] and TS 36.213 [23].

p-C-AndCBSRList
The UE shall ignore p-C-AndCBSRList-r11 if configured with eMIMO-Type unless it is set to beamformed, alternativeCodebookEnabledBeamformed (in CSI-RS-ConfigBeamformed) is set to FALSE and csi-RS-ConfigNZPIdListExt is not configured.

− CSI-ProcessId
The IE CSI-ProcessId is used to identify a CSI process that is configured by the IE CSI-Process. The identity is unique within the scope of a carrier frequency.

CSI-ProcessId information elements

-- ASN1START
CSI-ProcessId-r11 ::= INTEGER (1..maxCSI-Proc-r11)

-- ASN1STOP

− CSI-RS-Config
The IE CSI-RS-Config is used to specify the CSI (Channel-State Information) reference signal configuration.
CSI-RS-Config information elements

-- ASN1START

CSI-RS-Config-r10 ::= SEQUENCE {
 csi-RS-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 antennaPortsCount-r10 ENUMERATED {an1, an2, an4, an8},
 resourceConfig-r10 INTEGER (0..31),
 subframeConfig-r10 INTEGER (0..154),
 p-C-r10 INTEGER (-8..15)
 } OPTIONAL, -- Need ON
 } zeroTxPowerCSI-RS-r10 ZeroTxPowerCSI-RS-Conf-r12 OPTIONAL -- Need ON
}

CSI-RS-Config-v1250 ::= SEQUENCE {
 zeroTxPowerCSI-RS2-r12 ZeroTxPowerCSI-RS-Conf-r12 OPTIONAL, -- Need ON
 ds-ZeroTxPowerCSI-RS-r12 CHOICE {
 release NULL,
 setup SEQUENCE {
 zeroTxPowerCSI-RS-List-r12 SEQUENCE (SIZE (1..maxDS-ZTP-CSI-RS-r12)) OF
 ZeroTxPowerCSI-RS-r12
 } OPTIONAL -- Need ON
 } ZeroTxPowerCSI-RS-r12
}

CSI-RS-Config-v1310 ::= SEQUENCE {
 eMIMO-Type-r13 CSI-RS-ConfigEMIMO-r13 OPTIONAL -- Need ON
}

CSI-RS-Config-v1430 ::= SEQUENCE {
 eMIMO-Type-v1430 CSI-RS-ConfigEMIMO-v1430 OPTIONAL, -- Need ON
 eMIMO-Hybrid-r14 CSI-RS-ConfigEMIMO-Hybrid-r14 OPTIONAL, -- Need ON
 advancedCodebookEnabled-r14 BOOLEAN OPTIONAL -- Need ON
}

ZeroTxPowerCSI-RS-Conf-r12 ::= CHOICE {
 release NULL,
 setup ZeroTxPowerCSI-RS-r12
}

ZeroTxPowerCSI-RS-r12 ::= SEQUENCE {
 zeroTxPowerResourceConfigList-r12 BIT STRING (SIZE (16)),
 zeroTxPowerSubframeConfig-r12 INTEGER (0..154)
}

-- ASN1STOP
CSI-RS-Config field descriptions

advancedCodebookEnabled
Value TRUE indicates that the UE should use the advanced code book defined in TS 36.213 [23], EUTRAN does not configure the field when the UE is configured with eMIMO-Type is set to beamformed, when the UE is configured with eMIMO-Hybrid or when the UE is configured with semiOpenLoop.

antennaPortsCount
Parameter represents the number of antenna ports used for transmission of CSI reference signals where value an1 corresponds to 1 antenna port, an2 to 2 antenna ports and so on, see TS 36.211 [21, 6.10.5].

ds-ZeroTxPowerCSI-RS
Parameter for additional zeroTxPowerCSI-RS for a serving cell, concerning the CSI-RS included in discovery signals.

eMIMO-Type
Parameter: eMIMO-Type, see TS 36.213 [23], TS 36.211 [21]. If eMIMO-Type is set to nonPrecoded, the codebooks used for deriving CSI feedback are in TS 36.213 [23, Table 7.2.4-10 to Table 7.2.4-17]. Choice values nonPrecoded and beamformed correspond to 'CLASS A' and 'CLASS B' respectively, see TS 36.212 [22] and TS 36.213 [23].

p-C
Parameter: P, , see TS 36.213 [23, 7.2.5]. The UE shall ignore p-C-r10 if configured with eMIMO-Type unless it is set to beamformed, alternativeCodebookEnabledBeamformed (in CSI-RS-ConfigBeamformed) is set to FALSE and csi-RS-ConfigNZPIdListExt is not configured.

resourceConfig
Parameter: CSI reference signal configuration, see TS 36.211 [21, table 6.10.5.2-1 and 6.10.5.2-2].

subframeConfig
Parameter: I_CSI-RS, see TS 36.211 [21, table 6.10.5.3-1].

zeroTxPowerCSI-RS
Parameter for additional zeroTxPowerCSI-RS for a serving cell. E-UTRAN configures the field only if csi-MeasSubframeSets-r12 and TM 1 – 9 are configured for the serving cell.

zeroTxPowerResourceConfigList
Parameter: ZeroPowerCSI-RS, see TS 36.213 [23, 7.2.7].

zeroTxPowerConfig
Parameter: I_CSI-RS, see TS 36.211 [21, table 6.10.5.3-1].

CSI-RS-ConfigBeamformed

The IE CSI-RS-ConfigNonPrecoded is used to specify the beamforming configuration of EBF/ FD-MIMO.

CSI-RS-ConfigBeamformed information elements

-- ASNISTART

CSI-RS-ConfigBeamformed-r13 ::= SEQUENCE {
 csi-RS-ConfigNZPIdListExt-r13 SEQUENCE (SIZE (1..7)) OF CSI-RS-ConfigNZPId-r13
 OPTIONAL, -- Need OR
 csi-IM-ConfigIdList-r13 SEQUENCE (SIZE (1..8)) OF CSI-IM-ConfigId-r13
 OPTIONAL, -- Need OR
 p-C-AndCBSR-PerResourceConfigList-r13 SEQUENCE (SIZE (1..8)) OF P-C-AndCBSR-Pair-r13
 OPTIONAL, -- Need OR
 ace-For4Tx-PerResourceConfigList-r13 SEQUENCE (SIZE (1..7)) OF BOOLEAN OPTIONAL, -- Need OR
 alternativeCodebookEnabledBeamformed-r13 ENUMERATED {true} OPTIONAL, -- Need OR
 channelMeasRestriction-r13 ENUMERATED {on} OPTIONAL -- Need OR
}

CSI-RS-ConfigBeamformed-r14 ::= SEQUENCE {
 csi-RS-ConfigNZPIdListExt-r14 SEQUENCE (SIZE (1..7)) OF CSI-RS-ConfigNZPId-r13
 OPTIONAL, -- Need OR
 csi-IM-ConfigIdList-r14 SEQUENCE (SIZE (1..8)) OF CSI-IM-ConfigId-r13
 OPTIONAL, -- Need OR
 p-C-AndCBSR-PerResourceConfigList-r14 SEQUENCE (SIZE (1..8)) OF P-C-AndCBSR-Pair-r13
 OPTIONAL, -- Need OR
 ace-For4Tx-PerResourceConfigList-r14 SEQUENCE (SIZE (1..7)) OF BOOLEAN OPTIONAL, -- Need OR
 alternativeCodebookEnabledBeamformed-r14 ENUMERATED {true} OPTIONAL, -- Need OR
 channelMeasRestriction-r14 ENUMERATED {on} OPTIONAL -- Need OR
 csi-RS-ConfigNZP-ApList-r14 SEQUENCE (SIZE (1..8)) OF CSI-RS-ConfigNZP-r11
 OPTIONAL, -- Need OR
 nzp-ResourceConfigOriginal-v1430 CSI-RS-ConfigNZP-v1430 OPTIONAL, -- Need OR
 csi-RS-NZP-Activation-r14 CSI-RS-ConfigNZP-Activation-r14 OPTIONAL -- Need OR
}

-- ASNIEND
CSI-RS-ConfigBeamformed field descriptions

ace-For4Tx-PerResourceConfigList
The field indicates the alternativeCodeBookEnabledFor4TX-r12 per CSI-RS resource. E-UTRAN configures the field only if csi-RS-ConfigNZPIdListExt is configured.

activatedResources
The number of activated CSI-RS resources, which concerns a subset of the aperiodic CSI-RS resources (for both semi-persistent and aperiodic mode). E-UTRAN configures at most the minimum between nMaxResource as configured by MIMO-UE-ParametersPerTM-r1430 and the number of resources as configured by csi-RS-ConfigNZP-ApList-r14.

alternativeCodebookEnabledBeamformed
The field indicates whether code book in TS 36.213 [23, Table 7.2.4-18 to Table 7.2.4-20] is being used for deriving CSI feedback and reporting for a CSI process. E-UTRAN configures the field only for a process referring to a single RS configuration using non-zero power transmission (i.e a process for which csi-RS-ConfigNZPIdListExt is not configured). Field alternativeCodebookEnabledBeamformed corresponds to parameter alternativeCodebookEnabledCLASSB_K1 in TS 36.212 [22] and TS 36.213 [23].

csi-IM-ConfigIdList
E-UTRAN configures the field csi-IM-ConfigIdList only if the IE is included in CSI-Process is configured (i.e. when TM10 is configured for the serving cell).

CSI-RS-ConfigBeamformed
If csi-RS-ConfigNZPIdListExt-r13 is configured, E-UTRAN configures the same total number of entries for NZP, csi-IM-ConfigIdList-r13 and p-C-AndCBSR-PerResourceConfigList-r13.

csi-RS-ConfigNZP-ApList
The field is used to configure NZP configurations for aperiodic or semi-persistent CSI RS reporting for which MAC controls activation. EUTRAN configures this field only when the UE is configured to use 2, 4 or 8 ports CSI-RS, in which case EUTRAN configures the number of entries to be the same as the number of NZP resource configurations. For all these entries the UE shall ignore field subframeConfig. EUTRAN always configures this field together with csi-RS-NZP-Activation. Furthermore, for a given process, E-UTRAN does not simultaneously configure the periodic NZP configuration(s) and NZP CSI RS configurations for aperiodic or semi-persistent reporting.

csi-RS-ConfigNZP-EMIMO
The field is used to configure NZP configurations additional to the one defined by the original NZP configuration as included in csi-RS-ConfigEMIMO when using 12 and 16 ports CSI-RS.

CSI-RS-ConfigEMIMO
The IE CSI-RS-ConfigEMIMO is used to specify the CSI (Channel-State Information) reference signal configuration for EBF/ FD-MIMO.
CSI-RS-ConfigEMIMO information elements

CSI-RS-ConfigEMIMO-r13 ::= CHOICE {
 release NULL,
 setup CHOICE {
 nonPrecoded-r13 CSI-RS-ConfigNonPrecoded-r13,
 beamformed-r13 CSI-RS-ConfigBeamformed-r13
 }
}

CSI-RS-ConfigEMIMO-v1430 ::= CHOICE {
 release NULL,
 setup CHOICE {
 nonPrecoded-v1430 CSI-RS-ConfigNonPrecoded-v1430,
 beamformed-v1430 CSI-RS-ConfigBeamformed-v1430
 }
}

CSI-RS-ConfigEMIMO2-r14 ::= CHOICE {
 release NULL,
 setup CSI-RS-ConfigBeamformed-r14
}

CSI-RS-ConfigEMIMO-Hybrid-r14 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 periodicityOffsetIndex-r14 INTEGER (0..1023) OPTIONAL, -- Need OR
 eMIMO-Type2-r14 CSI-RS-ConfigEMIMO2-r14 OPTIONAL -- Need ON
 }
}

CSI-RS-ConfigEMIMO field descriptions

periodicityOffsetIndex
This parameter is associated with the first EMIMO configuration of the hybrid eMIMO configuration.

CSI-RS-ConfigNonPrecoded
The IE CSI-RS-ConfigNonPrecoded is used to specify the non-precoded EBF/ FD-MIMO configuration.

CSI-RS-ConfigNonPrecoded-r13 ::= SEQUENCE {
 p-C-AndCBSRList-r13 P-C-AndCBSR-Pair-r13 OPTIONAL, -- Need OR
 codebookConfigN1-r13 ENUMERATED {n1, n2, n3, n4, n8},
 codebookConfigN2-r13 ENUMERATED {n1, n2, n3, n4, n8},
 codebookOverSamplingRateConfig-O1-r13 ENUMERATED {n4, n8} OPTIONAL, -- Need OR
 codebookOverSamplingRateConfig-O2-r13 ENUMERATED {n4, n8} OPTIONAL, -- Need OR
 codebookConfig-r13 INTEGER (1..4),
 csi-IM-ConfigIdList-r13 SEQUENCE (SIZE (1..2)) OF CSI-IM-ConfigId-r13 OPTIONAL, -- Need OR
 csi-RS-ConfigNZP-EMIMO-r13 CSI-RS-ConfigNZP-EMIMO-r13 OPTIONAL -- Need ON
}

CSI-RS-ConfigNonPrecoded-v1430 ::= SEQUENCE {
 csi-RS-ConfigNZP-EMIMO-v1430 CSI-RS-ConfigNZP-EMIMO-v1430 OPTIONAL, -- Need ON
 codebookConfigN1-v1430 ENUMERATED {n5, n6, n7, n10, n12, n14, n16},
 codebookConfigN2-v1430 ENUMERATED {n5, n6, n7 },
 nzp-ResourceConfigTM9-Original-v1430 CSI-RS-Config-NZP-v1430
}

-- ASN1STOP
CSI-RS-ConfigNonPrecoded field descriptions

codebookConfig
Indicates a sub-set of the codebook entry, see TS 36.213 [23].

codebookConfigNx
Indicates the number of antenna ports per polarization in dimension x as used for transmission of CSI reference signals. Value n1 corresponds to 1, value n2 corresponds to 2 and so on, see TS 36.213 [23]. E-UTRAN configures the field in accordance with the restrictions as specified in TS 36.213 [23].

codebookOverSamplingRateConfig-Ox
Indicates the spatial over-sampling rate in dimension x as used for transmission of CSI reference signals. Value n4 corresponds to 4 and value n8 corresponds to 8, see TS 36.213 [23].

csi-IM-ConfigId(List)
E-UTRAN configures the field `csi-IM-ConfigIdList` only if the IE is included in `CSI-RS-Config/CSI-Process` when using 12 and 16 ports CSI-RS.

The field is used to configure NZP configurations additional to the one defined by the original NZP configuration as included in `CSI-RS-Config/CSI-Process` when using 12 and 16 ports CSI-RS.

CSI-RS-ConfigNZP

The IE `CSI-RS-ConfigNZP` is the CSI-RS resource configuration using non-zero power transmission that E-UTRAN may configure on a serving frequency.

CSI-RS-ConfigNZP information elements

```asn1
-- ASN1START

CSI-RS-ConfigNZP-r11 ::= SEQUENCE {
    csi-RS-ConfigNZPId-r11        CSI-RS-ConfigNZPId-r11,
    antennaPortsCount-r11        ENUMERATED {an1, an2, an4, an8},
    resourceConfig-r11           INTEGER (0..31),
    subframeConfig-r11           INTEGER (0..154),
    scramblingIdentity-r11       INTEGER (0..503),
    qcl-CRS-Info-r11             SEQUENCE {
        qcl-ScramblingIdentity-r11 INTEGER (0..503),
        crs-PortsCount-r11         ENUMERATED {n1, n2, n4, spare1},
        mbsfn-SubframeConfigList-r11 CHOICE {
            release              NULL,
            setup                SEQUENCE {
                subframeConfigList       MBSFN-SubframeConfigList
            }
        } OPTIONAL -- Need ON
    },
    ...,
    [[ csi-RS-ConfigNZPId-v1310  CSI-RS-ConfigNZPId-v1310 OPTIONAL -- Need ON
    ]],
    [[ transmissionComb-r14      NZP-TransmissionComb-r14 OPTIONAL, -- Need OR
      frequencyDensity-r14      NZP-FrequencyDensity-r14 OPTIONAL -- Need OR
    ]],
    [[ mbsfn-SubframeConfigList-v1430 CHOICE {
        release              NULL,
        setup                SEQUENCE {
            subframeConfigList-v1430 MBSFN-SubframeConfigList-v1430
        }
    } OPTIONAL -- Need OP
    ]]
}

CSI-RS-ConfigNZP-EMIMO-r13 ::= CHOICE {
    release              NULL,
    setup                SEQUENCE {
        nzp-resourceConfigList-r13 SEQUENCE (SIZE (1..2)) OF NZP-ResourceConfig-r13,
        cdmType-r13              ENUMERATED {cdm2, cdm4} OPTIONAL -- Need OR
    }
}

CSI-RS-ConfigNZP-EMIMO-v1430 ::= SEQUENCE {
    -- All extensions are for Non-Precoded so could be grouped by setup/ release choice
    nzp-resourceConfigListExt-r14 SEQUENCE (SIZE (0..4)) OF NZP-ResourceConfig-r13,
    cdmType-v1430              ENUMERATED (cdm8 ) OPTIONAL -- Need OR
}

NZP-ResourceConfig-r13 ::= SEQUENCE {

-- ASN1END
```
CSI-RS-ConfigNZPId

The IE CSI-RS-ConfigNZPId is used to identify a CSI-RS resource configuration using non-zero transmission power, as configured by the IE CSI-RS-ConfigNZP. The identity is unique within the scope of a carrier frequency.

CSI-RS-ConfigNZPId information elements

-- ASN1START

CSI-RS-ConfigNZPId-r11 ::= INTEGER (1..maxCSI-RS-NZP-r11)
CSI-RS-ConfigNZPId-v1310 ::= INTEGER (minCSI-RS-NZP-r13..maxCSI-RS-NZP-r13)
CSI-RS-ConfigNZPId-r13 ::= INTEGER (1..maxCSI-RS-NZP-r13)

-- ASN1STOP

CSI-RS-ConfigZP

The IE CSI-RS-ConfigZP is the CSI-RS resource configuration, for which UE assumes zero transmission power, that E-UTRAN may configure on a serving frequency.
CSI-RS-ConfigZP information elements

-- ASN1START

CSI-RS-ConfigZP-r11 ::= SEQUENCE {
 csi-RS-ConfigZPId-r11 CSI-RS-ConfigZPId-r11,
 resourceConfigList-r11 BIT STRING (SIZE (16)),
 subframeConfig-r11 INTEGER (0..154),
 ...
}

CSI-RS-ConfigZP-ApList-r14 ::= CHOICE {
 release NULL,
 setup SEQUENCE (SIZE (1.. maxCSI-RS-ZP-r11)) OF CSI-RS-ConfigZP-r11
}

-- ASN1STOP

CSI-RS-ConfigZP field descriptions

CSI-RS-ConfigZP-ApList
Indicates the aperiodic zero power CSI-RS present in a given subframe. See 36.213 [23, Table 7.1.9-2]. First entry in the list corresponds to aperiodic trigger 00, second entry in the list corresponds to aperiodic trigger 01 and so on.

resourceConfigList
Parameter: ZeroPowerCSI-RS, see TS 36.213 [23, 7.2.7].

subframeConfig
Parameter: \(I_{\text{CSI-RS}} \), see TS 36.211 [21, table 6.10.5.3-1].

CSI-RS-ConfigZPId
The IE **CSI-RS-ConfigZPId** is used to identify a CSI-RS resource configuration for which UE assumes zero transmission power, as configured by the IE **CSI-RS-ConfigZP**. The identity is unique within the scope of a carrier frequency.

CSI-RS-ConfigZPId information elements

-- ASN1START

CSI-RS-ConfigZPId-r11 ::= INTEGER (1..maxCSI-RS-ZP-r11)

-- ASN1STOP

DataInactivityTimer
The IE **DataInactivityTimer** is used to control Data inactivity operation. Corresponds to the timer for data inactivity monitoring in TS 36.321 [6]. Value s1 corresponds to 1 second, s2 corresponds to 2 seconds and so on.

DataInactivityTimer information element

-- ASN1START

DataInactivityTimer-r14 ::= ENUMERATED {
 s1, s2, s3, s5, s7, s10, s15, s20, s40, s50, s60,
 s80, s100, s120, s150, s180
}

-- ASN1STOP

DMRS-Config
The IE **DMRS-Config** is the DMRS configuration that E-UTRAN may configure on a serving frequency.

DMRS-Config information elements

-- ASN1START
DMRS-Config-r11 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 scramblingIdentity-r11 INTEGER (0..503),
 scramblingIdentity2-r11 INTEGER (0..503)
 }
}
DMRS-Config-v1310 ::= SEQUENCE {
 dmrstableAlt-r13 ENUMERATED {true} OPTIONAL -- Need OR
}
-- ASN1STOP

DMRS-Config field descriptions

scramblingIdentity, scramblingIdentity2
Parameter: h_{ID}, see TS 36.211 [21, 6.10.3.1].
dmrs-tableAlt
The field indicates whether to use an alternative table for DMRS upon PDSCH transmission, see TS 36.213 [23].

–

DRB-Identity
The IE DRB-Identity is used to identify a DRB used by a UE.

DRB-Identity information elements

-- ASN1START
DRB-Identity ::= INTEGER (1..32)
-- ASN1STOP

–

EPDCCH-Config
The IE EPDCCH-Config specifies the subframes and resource blocks for EPDCCH monitoring that E-UTRAN may configure for a serving cell.

EPDCCH-Config information element

-- ASN1START
EPDCCH-Config-r11 ::= SEQUENCE{
 config-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 subframePatternConfig-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 subframePattern-r11 MeasSubframePattern-r10
 }
 }
 }
 startSymbol-r11 INTEGER (1..4) OPTIONAL, -- Need ON
 setConfigToReleaseList-r11 EPDCCH-SetConfigToReleaseList-r11 OPTIONAL, -- Need ON
 setConfigToAddModList-r11 EPDCCH-SetConfigToAddModList-r11 OPTIONAL -- Need ON
}
}
EPDCCH-SetConfigToAddModList-r11 ::= SEQUENCE (SIZE(1..maxEPDCCH-Set-r11)) OF EPDCCH-SetConfig-r11
EPDCCH-SetConfigToReleaseList-r11 ::= SEQUENCE (SIZE(1..maxEPDCCH-Set-r11)) OF EPDCCH-SetConfigId-r11
EPDCCH-SetConfig-r11 ::= SEQUENCE {
 setConfigId-r11 EPDCCH-SetConfigId-r11,
 transmissionType-r11 ENUMERATED (localised, distributed),
 resourceBlockAssignment-r11 SEQUENCE{
 numberPRB-Pairs-r11 ENUMERATED {n2, n4, n8},
 }
}
resourceBlockAssignment-r11 BIT (SIZE (4..38))
},
dmrs-ScramblingSequenceInt-r11 INTEGER (0..503),
pucch-ResourceStartOffset-r11 INTEGER (0..2047),
re-MappingQCL-ConfigId-r11 PDSCH-RB-MappingQCL-ConfigId-r11 OPTIONAL, -- Need OR...
][[csi-RS-Config2PId2-r12 CHOICE {
 release NULL,
 setup CSI-RS-Config2PId-r11
}]
][[numberPRB-Pairs-v1310 CHOICE {
 release NULL,
 setup ENUMERATED {n6}
}]
mpdcch-config-r13 CHOICE {
 release NULL,
 setup {}
 csi-NumRepetitionCE-r13 ENUMERATED {sf1, sf2, sf4, sf8, sf16, sf32},
 mpdcch-pdsch-HoppingConfig-r13 ENUMERATED {on, off},
 mpdcch-StartSF-UESS-r13 CHOICE {
 fdd-r13 ENUMERATED {v1, v1dot5, v2, v2dot5, v4, v5, v8, v10},
 tdd-r13 ENUMERATED {v1, v2, v4, v5, v8, v10, v20, spare1}
 },
 mpdcch-NumRepetition-r13 ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128, r256},
 mpdcch-Narrowband-r13 INTEGER (1.. maxAvailableNarrowBands-r13)
}]
][
]}
EPDCCH-SetConfigId-r11 ::= INTEGER (0..1)
-- ASN1STOP
ETSI

ETSI TS 136 331 V14.6.2 (2018-04)

3GPP TS 36.331 version 14.6.2 Release 14

382

Table: EPDCCH-Config field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>csi-NumRepetitionCE</td>
<td>Number of subframes for CSI reference resource, see TS 36.213 [23]. Value sf1 corresponds to 1 subframe, sf2 corresponds to 2 subframes and so on.</td>
</tr>
<tr>
<td>csi-RS-ConfigZPlid2</td>
<td>Indicates the rate matching parameters in addition to those indicated by re-MappingQCL-ConfigId. E-UTRAN configures this field only when tm10 is configured.</td>
</tr>
<tr>
<td>dmers-ScramblingSequenceInt</td>
<td>The DMRS scrambling sequence initialization parameter $r^{EPDCCH}{ID,j}$ or $n^{MPDCCH}{ID,j}$ defined in TS 36.211 [21, 6.10.3A.1].</td>
</tr>
<tr>
<td>EPDCCH-SetConfig</td>
<td>Provides EPDCCH configuration set. See TS 36.213 [23, 9.1.4]. E-UTRAN configures at least one EPDCCH-SetConf when EPDCCH-Config is configured. For BL UEs or UEs in CE, EUTRAN does not configure more than one EPDCCH-SetConf.</td>
</tr>
<tr>
<td>mpdcch-Narrowband</td>
<td>Parameter: μ_{NB}, see TS 36.211 [21, 6.8B.5]. Field values $(1..\text{maxAvailNarrowBands-r13})$ correspond to narrowband indices $(0..[\text{maxAvailNarrowBands-r13}-1])$ as specified in TS 36.211 [21].</td>
</tr>
<tr>
<td>mpdcch-NumRepetition</td>
<td>Maximum numbers of repetitions for UE-SS for MPDCCH, see TS 36.211 [21].</td>
</tr>
<tr>
<td>mpdcch-pdsch-HoppingConfig</td>
<td>Frequency hopping activation/deactivation for unicast MPDCCH/PDSCH, see TS 36.211 [21]. E-UTRAN does not configure the value on if $\text{freqHoppingParametersDL}$ is not present in $\text{SystemInformationBlockType1}$.</td>
</tr>
<tr>
<td>mpdcch-StartSF-UESS</td>
<td>Starting subframe configuration for an MPDCCH UE-specific search space, see TS 36.211 [21]. Value v1 corresponds to 1, value v1dot5 corresponds to 1.5, and so on.</td>
</tr>
<tr>
<td>numberPRB-Pairs</td>
<td>Indicates the number of physical resource-block pairs used for the EPDCCH set. Value n2 corresponds to 2 physical resource-block pairs; n4 corresponds to 4 physical resource-block pairs and so on. Value n8 is not supported if dl-Bandwidth is set to 6 resource blocks. EUTRAN configures value up to n6 only for BL UEs or UEs in CE. Value n6 is only applicable to BL UEs or UEs in CE.</td>
</tr>
<tr>
<td>pucch-ResourceStartOffset</td>
<td>PUCCH format 1a, 1b and 3 resource starting offset for the EPDCCH set. See TS 36.213 [23, 10.1].</td>
</tr>
<tr>
<td>re-MappingQCL-Config</td>
<td>Indicates the starting OFDM symbol, the related rate matching parameters and quasi co-location assumption for EPDCCH when the UE is configured with tm10. This field provides the identity of a configured $\text{PDSCH-RE-MappingQCL-Config}$. E-UTRAN configures this field only when tm10 is configured.</td>
</tr>
<tr>
<td>resourceBlockAssignment</td>
<td>Indicates the index to a specific combination of physical resource-block pair for EPDCCH set. See TS 36.213 [23, 9.1.4.4]. The size of resourceBlockAssignment is specified in TS 36.213 [23, 9.1.4.4] and based on numberPRB-Pairs and the signalled value of dl-Bandwidth. If numberPRB-Pairs-v1310 field is present, the total number of physical resource-block pairs is 6 and it is composed of one subset of 2 physical resource-block pairs and another subset of 4 physical resource-block pairs, and the resourceBlockAssignment field defines the subset of 2 physical resource-block pairs.</td>
</tr>
<tr>
<td>setConfigId</td>
<td>Indicates the identity of the EPDCCH configuration set.</td>
</tr>
<tr>
<td>startSymbol</td>
<td>Indicates the OFDM starting symbol for any EPDCCH and PDSCH scheduled by EPDCCH on the same cell, see TS 36.213 [23, 9.1.4.1]. If not present, the UE shall release the configuration and shall derive the starting OFDM symbol of EPDCCH and PDSCH scheduled by EPDCCH from PCFICH. Values 1, 2, and 3 are applicable for dl-Bandwidth greater than 10 resource blocks. Values 2, 3, and 4 are applicable otherwise. E-UTRAN does not configure the field for UEs configured with tm10.</td>
</tr>
<tr>
<td>subframePatternConfig</td>
<td>Configures the subframes which the UE shall monitor the UE-specific search space on EPDCCH, except for pre-defined rules in TS 36.213 [23, 9.1.4]. If the field is not configured when EPDCCH is configured, the UE shall monitor the UE-specific search space on EPDCCH in all subframes except for pre-defined rules in TS 36.213 [23, 9.1.4].</td>
</tr>
<tr>
<td>transmissionType</td>
<td>Indicates whether distributed or localized EPDCCH transmission mode is used as defined in TS 36.211 [21, 6.8A.1].</td>
</tr>
</tbody>
</table>

EIMTA-MainConfig

The IE EIMTA-MainConfig is used to specify the eIMTA-RNTI used for eIMTA and the subframes used for monitoring PDCCH with eIMTA-RNTI. The IE EIMTA-MainConfigServCell is used to specify the eIMTA related parameters applicable for the concerned serving cell.
EIMTA-MainConfig information element

- **EIMTA-MainConfig-r12**: A `CHOICE` that can be `release` or `setup`.
 - **release** is `NULL`.
 - **setup** is a `SEQUENCE`:
 - EIMTA-RNTI-r12 is a `C-RNTI`.
 - EIMTA-CommandPeriodicity-r12 is an `ENUMERATED` with values `sf10`, `sf20`, `sf40`, and `sf80`.
 - EIMTA-CommandSubframeSet-r12 is a `BIT STRING` (SIZE(10)).

- **EIMTA-MainConfigServCell-r12**: Another `CHOICE` that can be `release` or `setup`.
 - **release** is `NULL`.
 - **setup** is a `SEQUENCE`:
 - EIMTA-UL-DL-ConfigIndex-r12 is an `INTEGER` (1..5).
 - EIMTA-HARQ-ReferenceConfig-r12 is an `ENUMERATED` with values `sa2`, `sa4`, and `sa5`.
 - Mbsfn-SubframeConfigList-v1250 is a `CHOICE`:
 - `release` is `NULL`.
 - `setup` is a `SEQUENCE`:
 - subframeConfigList-r12 is an `MBSFN-SubframeConfigList`.

EIMTA-MainConfig field descriptions

- **eimta-CommandPeriodicity**: Configures the periodicity to monitor PDCCH with eIMTA-RNTI, see TS 36.213 [23, 13.1]. Value `sf10` corresponds to 10 subframes, `sf20` corresponds to 20 subframes and so on.

- **eimta-CommandSubframeSet**: Configures the subframe(s) to monitor PDCCH with eIMTA-RNTI within the periodicity configured by `eimta-CommandPeriodicity`. The 10 bits correspond to all subframes in the last radio frame within each periodicity. The left most bit is for subframe 0 and so on. Each bit can be of value 0 or 1. The value of 1 means that the corresponding subframe is configured for monitoring PDCCH with eIMTA-RNTI, and the value of 0 means otherwise. In case of TDD as PCell, only the downlink and the special subframes indicated by the UL/DL configuration in SIB1 can be configured for monitoring PDCCH with eIMTA-RNTI. In case of FDD as PCell, any of the ten subframes can be configured for monitoring PDCCH with eIMTA-RNTI.

- **eimta-HARQ-ReferenceConfig**: Indicates UL/DL configuration used as the DL HARQ reference configuration for this serving cell. Value `sa2` corresponds to Configuration2, `sa4` to Configuration4 etc, as specified in TS 36.211 [21, table 4.2-2]. E-UTRAN configures the same value for all serving cells residing on same frequency band.

- **eimta-UL-DL-ConfigIndex**: Index of `I`, see TS 36.212 [22, 5.3.3.1.4]. E-UTRAN configures the same value for all serving cells residing on same frequency band.

- **mbsfn-SubframeConfigList**: Configure the MBSFN subframes for the UE on this serving cell. An uplink subframe indicated by the DL/UL subframe configuration in SIB1 can be configured as MBSFN subframe.

LogicalChannelConfig

The IE `LogicalChannelConfig` is used to configure the logical channel parameters.

LogicalChannelConfig information element

- **LogicalChannelConfig-r12**: A `SEQUENCE` that can be `ul-SpecificParameters` or `prioritisedBitRate`.
 - **ul-SpecificParameters**: A `SEQUENCE`:
 - priority is an `INTEGER` (1..16).
 - prioritisedBitRate is an `ENUMERATED` with values:
 - `kBps0`, `kBps8`, `kBps16`, `kBps32`, `kBps64`, `kBps128`,
 - `kBps256`, `infinity`, `kBps512-v1020`, `kBps1024-v1020`,
 - `kBps2048-v1020`, `spare5`, `spare4`, `spare3`, `spare2`,
 - `spare1`.

 - **bucketSizeDuration**: An `ENUMERATED` with values:
 - `ms50`, `ms100`, `ms150`, `ms300`, `ms500`, `ms1000`, `spare2`.
LogicalChannelConfig field descriptions

bitRateQueryProhibitTimer
The timer is used for bit rate recommendation query in TS 36.321 [6, 5.x], in seconds. Value s0 means 0s, s0dot4 means 0.4s and so on.

bucketSizeDuration
Bucket Size Duration for logical channel prioritization in TS 36.321 [6]. Value in milliseconds. Value ms50 corresponds to 50 ms, ms100 corresponds to 100 ms and so on.

lao-UL-Allowed
Indicates whether the data of a logical channel is allowed to be transmitted via UL of LAA SCells. Value TRUE indicates that the logical channel is allowed to be sent via UL of LAA SCells. Value FALSE indicates that the logical channel is not allowed to be sent via UL of LAA SCells.

logicalChannelGroup
Mapping of logical channel to logical channel group for BSR reporting in TS 36.321 [6].

logicalChannelSR-Mask
Controlling SR triggering on a logical channel basis when an uplink grant is configured. See TS 36.321 [6].

logicalChannelSR-Prohibit
Value TRUE indicates that the logicalChannelSR-ProhibitTimer is enabled for the logical channel. E-UTRAN only (optionally) configures the field (i.e. indicates value TRUE) if logicalChannelSR-ProhibitTimer is configured. See TS 36.321 [6].

prioritisedBitRate
Prioritized Bit Rate for logical channel prioritization in TS 36.321 [6]. Value in kilobytes/second. Value kBps0 corresponds to 0 kB/second, kBps8 corresponds to 8 kB/second, kBps16 corresponds to 16 kB/second and so on. Infinity is the only applicable value for SRB1 and SRB2.

priority
Logical channel priority in TS 36.321 [6]. Value is an integer.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRmask</td>
<td>The field is optionally present if ul-SpecificParameters is present, need OR; otherwise it is not present.</td>
</tr>
<tr>
<td>UL</td>
<td>The field is mandatory present for UL logical channels; otherwise it is not present.</td>
</tr>
</tbody>
</table>

LWA-Configuration
The IE LWA-Configuration is used to setup/modify/release LTE-WLAN Aggregation.

```asn1
LWA-Configuration-r13 ::= CHOICE {
  release        NULL,
  setup        SEQUENCE {
    lwa-Config-r13    LWA-Config-r13
  }
}
LWA-Config-r13 ::= SEQUENCE {
  lwa-MobilityConfig-r13    WLAN-MobilityConfig-r13 OPTIONAL, -- Need ON
  lwa-WT-Counter-r13        INTEGER (0..65535) OPTIONAL, -- Need ON
  ...,                       -- Cond SRmask
  [[ wt-MAC-Address-r14     OCTET STRING (SIZE (6)) OPTIONAL -- Need ON
  ]]
```
- **LWA-Configuration** field descriptions

 lw-MobilityConfig
 Indicates the parameters used for WLAN mobility.

 lw-WT-Counter
 Indicates the parameter used by UE for WLAN authentication.

 wt-MAC-Address
 Indicates the WT MAC address of the WT handling the LWA operation for the UE. The UE uses this MAC address in uplink transmissions to enable routing of LWA uplink data from the AP to the WT. E-UTRAN configures the field only if `ul-LWA-Config-r14` is configured for at least one LWA bearer.

LWIP-Configuration

The IE **LWIP-Configuration** is used to add, modify or release DRBs that are using LWIP Tunnel.

```asn1
LWIP-Configuration-r13 ::=   CHOICE {
  release        NULL,
  setup        SEQUENCE {
    lwip-Config-r13     LWIP-Config-r13
  }
}
LWIP-Config-r13 ::= SEQUENCE {
  lwip-MobilityConfig-r13   WLAN-MobilityConfig-r13  OPTIONAL, -- Need ON
  tunnelConfigLWIP-r13   TunnelConfigLWIP-r13  OPTIONAL, -- Need ON
  ...
}
```

MAC-MainConfig

The IE **MAC-MainConfig** is used to specify the MAC main configuration for signalling and data radio bearers. All MAC main configuration parameters can be configured independently per Cell Group (i.e. MCG or SCG), unless explicitly specified otherwise.

MAC-MainConfig information element

```asn1
MAC-MainConfig ::=     SEQUENCE {
  ul-SCH-Config      SEQUENCE {
    maxHARQ-Tx       ENUMERATED {
      n1, n2, n3, n4, n5, n6, n7, n8,
      n10, n12, n16, n20, n24, n28,
      spare2, spare1}  OPTIONAL, -- Need ON
    periodicBSR-Timer     PeriodicBSR-Timer-r12 OPTIONAL, -- Need ON
    retxBSR-Timer      RetxBSR-Timer-r12,
    ttiBundling       BOOLEAN
  }                OPTIONAL, -- Need ON
  drx-Config       DRX-Config     OPTIONAL, -- Need ON
  timeAlignmentTimerDedicated   TimeAlignmentTimer,
  phr-Config       CHOICE {
    release        NULL,
    setup        SEQUENCE {
      periodicPHR-Timer    ENUMERATED {sf10, sf20, sf50, sf100, sf200,
                                      sf500, sf1000, infinity},
    }
  }
}
```
prohibitPHR-Timer ENUMERATED {sf0, sf10, sf20, sf50, sf100,
sf200, sf500, sf1000},
dl-PathlossChange ENUMERATED {dB1, dB3, dB6, infinity}
}
}
...

[[sr-ProhibitTimer-r9 INTEGER (0..7) OPTIONAL -- Need ON
]],
[[mac-MainThreadConfig-v1020 SEQUENCE {
 sCellDeactivationTimer-r10 ENUMERATED {rf2, rf4, rf8, rf16, rf32, rf64, rf128,
spare} OPTIONAL, -- Need OP
 extendedBSR-Sizes-r10 ENUMERATED {setup} OPTIONAL, -- Need OR
 extendedPHR-r10 ENUMERATED {setup} OPTIONAL, -- Need OR
} OPTIONAL -- Need ON]]

[[stag-ToReleaseList-r11 STAG-ToReleaseList-r11 OPTIONAL, -- Need ON
 stag-ToAddModList-r11 STAG-ToAddModList-r11 OPTIONAL, -- Need ON
 drx-Config-v1130 DRX-Config-v1130 OPTIONAL -- Need ON
]],
[[e-HARQ-Pattern-r12 BOOLEAN OPTIONAL, -- Need ON
dualConnectivityPHR CHOICE {
 release NULL,
 setup SEQUENCE {
 phr-ModeOtherCG-r12 ENUMERATED {real, virtual}
 }
} OPTIONAL, -- Need ON
logicalChannelSR-Config-r12 CHOICE {
 release NULL,
 setup SEQUENCE {
 logicalChannelSR-ProhibitTimer-r12 ENUMERATED {sf20, sf40, sf64, sf128, sf512,
sf1024, sf2560, spare}
 }
} OPTIONAL -- Need ON]]

[[drx-Config-v1310 DRX-Config-v1310 OPTIONAL, -- Need ON
 extendedPHR2-r13 BOOLEAN OPTIONAL, -- Need ON
 eDRX-Config-CycleStartOffset-r13 CHOICE {
 release NULL,
 setup CHOICE {
 sf5120 INTEGER(0..1),
 sf10240 INTEGER(0..3)
 }
 }
} OPTIONAL -- Need ON]]

[[drx-Config-r13 CHOICE {
 release NULL,
 setup DRX-Config-r13
} OPTIONAL -- Need ON]]

[[skipUplinkTx-r14 CHOICE {
 release NULL,
 setup SEQUENCE {
 skipUplinkTxSPS-r14 ENUMERATED {true} OPTIONAL, -- Need OR
 skipUplinkTxDynamic-r14 ENUMERATED {true} OPTIONAL -- Need OR
 }
} OPTIONAL, -- Need ON
 dataInactivityTimerConfig-r14 CHOICE {
 release NULL,
 setup SEQUENCE {
 dataInactivityTimer-r14 DataInactivityTimer-r14
 }
 }
} OPTIONAL -- Need ON]]

[[rai-Activation-r14 ENUMERATED {true} OPTIONAL -- Need OR
]]

MAC-MainThreadConfigSCell-r11 ::= SEQUENCE {
 stag-IId-r11 STAG-IId-r11 OPTIONAL, -- Need OP
 ...
}

DRX-Config ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 onDurationTimer ENUMERATED {
 onDurationTimer
drx-InactivityTimer ENUMERATED {
 psf1, psf2, psf3, psf4, psf5, psf6, psf8, psf10, psf20, psf30, psf40, psf50, psf60, psf80, psf100, psf200},

drx-RetransmissionTimer ENUMERATED {
 psf1, psf2, psf4, psf6, psf8, psf16, psf24, psf33},

longDRX-CycleStartOffset CHOICE {
 sf10 INTEGER(0..9),
 sf20 INTEGER(0..19),
 sf32 INTEGER(0..31),
 sf40 INTEGER(0..39),
 sf64 INTEGER(0..63),
 sf80 INTEGER(0..79),
 sf120 INTEGER(0..127),
 sf160 INTEGER(0..159),
 sf256 INTEGER(0..255),
 sf320 INTEGER(0..319),
 sf512 INTEGER(0..511),
 sf640 INTEGER(0..639),
 sf1024 INTEGER(0..1023),
 sf1280 INTEGER(0..1279),
 sf2048 INTEGER(0..2047),
 sf2560 INTEGER(0..2559)},

shortDRX CYCLE {
 shortDRX-Cycle ENUMERATED {
 sf2, sf5, sf8, sf10, sf16, sf20, sf32, sf40, sf64, sf80, sf128, sf160,
 sf256, sf320, sf512, sf640},

drxShortCycleTimer INTEGER (1..16)
}

DRX-Config-v1130 ::= SEQUENCE {
 drx-RetransmissionTimer-v1130 ENUMERATED {psf0-v1130} OPTIONAL, --Need OR
 longDRX-CycleStartOffset-v1130 CHOICE {
 sf60-v1130 INTEGER(0..59),
 sf70-v1130 INTEGER(0..69)
 } OPTIONAL, --Need OR
}

DRX-Config-v1310 ::= SEQUENCE {
 drx-RetransmissionTimer-v1310 ENUMERATED {psf40, psf64, psf80, psf96, psf112, psf128, psf160, psf320} OPTIONAL, --Need OR
 onDurationTimer-v1310 ENUMERATED {psf300, psf400, psf500, psf600, psf800, psf1000, psf1200, psf1600} OPTIONAL, --Need OR
 drx-ULRetransmissionTimer-r13 ENUMERATED {psf0, psf1, psf2, psf4, psf6, psf8, psf16, psf24, psf33, psf40, psf64, psf80, psf96, psf112, psf128, psf160, psf320} OPTIONAL, --Need OR
 drx-ULRetransmissionTimer-r13 ENUMERATED {psf0, psf1, psf2, psf4, psf6, psf8, psf16, psf24, psf33, psf40, psf64, psf80, psf96, psf112, psf128, psf160, psf320} OPTIONAL, --Need OR
}

PeriodicBSR-Timer-r12 ::= ENUMERATED {
 sf5, sf10, sf16, sf20, sf32, sf40, sf64, sf80, sf128, sf160, sf320, sf640, sf1280, sf2560, infinity, spare1}

RetxBSR-Timer-r12 ::= ENUMERATED {
 sf320, sf640, sf1280, sf2560, sf5120,
STAG-ToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxSTAG-r11)) OF STAG-Id-r11

STAG-ToAddModList-r11 ::= SEQUENCE (SIZE (1..maxSTAG-r11)) OF STAG-ToAddMod-r11

STAG-ToAddMod-r11 ::= SEQUENCE (stag-Id-r11, timeAlignmentTimerSTAG-r11)

STAG-Id-r11::= INTEGER (1..maxSTAG-r11)

-- ASN1STOP
3GPP TS 36.331 version 14.6.2 Release 14

MAC-MainConfig field descriptions

dl-PathlossChange
DL Pathloss Change and the change of the required power backoff due to power management (as allowed by P-MPRC [42]) for PHR reporting in TS 36.321 [6]. Value in dB. Value dB1 corresponds to 1 dB, dB3 corresponds to 3 dB and so on. The same value applies for each serving cell (although the associated functionality is performed independently for each cell).

drx-Config
Used to configure DRX as specified in TS 36.321 [6]. E-UTRAN configures the values in DRX-Config-v1130 only if the UE indicates support for IDC indication. E-UTRAN configures drx-Config-v1130, drx-Config-v1310 and drx-Config-r13 only if drx-Config (without suffix) is configured. E-UTRAN configures drx-Config-r13 only if UE supports CE or if the UE is configured with uplink of an LAA SCell.

drx-InactivityTimer
Timer for DRX in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf0 corresponds to 0 PDCCH sub-frame and behaviour as specified in 7.3.2 applies, value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on.

drx-RetransmissionTimer
Timer for DRX in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf0 corresponds to 0 PDCCH sub-frame and behaviour as specified in 7.3.2 applies, value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on. In case drx-RetransmissionTimer-v1130 or drx-RetransmissionTimer-v1310 is signalled, the UE shall ignore drx-RetransmissionTimer (i.e. without suffix).

drx-ULRetransmissionTimer
Timer for DRX in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf0 corresponds to 0 PDCCH sub-frame and behaviour as specified in 7.3.2 applies, value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on.

drxShortCycleTimer

dualConnectivityPHR
Indicates if power headroom shall be reported using Dual Connectivity Power Headroom Report MAC Control Element defined in TS 36.321 [6] (value setup). If PHR functionality and dual connectivity are configured, E-UTRAN always configures the value setup for this field and configures phr-Config and dualConnectivityPHR for both CGs.

e-HARQ-Pattern
TRUE indicates that enhanced HARQ pattern for TTI bundling is enabled for FDD. E-UTRAN enables this field only when ttiBundling is set to TRUE.

eDRX-Config-CycleStartOffset
Indicates longDRX-Cycle and drxStartOffset in TS 36.321 [6]. The value of longDRX-Cycle is in number of subframes. The value of drxStartOffset, in number of subframes, is indicated by the value of eDRX-Config-CycleStartOffset multiplied by 2560 plus the offset value configured in longDRX-CycleStartOffset. E-UTRAN only configures value setup when the value in longDRX-CycleStartOffset is sf2560.

extendedBSR-Sizes
If value setup is configured, the BSR index indicates extended BSR size levels as defined in TS 36.321 [6, Table 6.1.3.1-2].

extendedPHR
Indicates if power headroom shall be reported using the Extended Power Headroom Report MAC control element defined in TS 36.321 [6] (value setup). E-UTRAN always configures the value setup if more than one and up to eight Serving Cell(s) with uplink configured and none of the serving cells with uplink configured has a servingCellIndex higher than seven and if PUCCH on SCell is not configured and if dual connectivity is not configured. E-UTRAN configured extendedPHR only if phr-Config is configured. The UE shall release extendedPHR if phr-Config is released.

extendedPHR2
Indicates if power headroom shall be reported using the Extended Power Headroom Report MAC Control Element defined in TS 36.321 [6] (value setup). E-UTRAN always configures the value setup if any of the serving cells with uplink configured has a servingCellIndex higher than seven in case dual connectivity is not configured or if PUCCH SCell (with any number of serving cells with uplink configured) is configured. E-UTRAN configures extendedPHR2 only if phr-Config is configured. The UE shall release extendedPHR2 if phr-Config is released.

logicalChannelSR-ProhibitTimer
Timer used to delay the transmission of an SR for logical channels enabled by logicalChannelSR-Prohibit. Value sf20 corresponds to 20 subframes, sf40 corresponds to 40 subframes, and so on. See TS 36.321 [6].

longDRX-CycleStartOffset
longDRX-Cycle and drxStartOffset in TS 36.321 [6] unless eDRX-Config-CycleStartOffset is configured. The value of longDRX-Cycle is in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. If shortDRX-Cycle is configured, the value of longDRX-Cycle shall be a multiple of the shortDRX-Cycle value. The value of drxStartOffset value is in number of sub-frames. In case longDRX-CycleStartOffset-v1130 is signalled, the UE shall ignore longDRX-CycleStartOffset (i.e. without suffix). In case longDRX-CycleStartOffset-v1310 is signalled, the UE shall ignore longDRX-CycleStartOffset (i.e. without suffix).

maxHARQ-Tx
Maximum number of transmissions for UL HARQ in TS 36.321 [6].

ETSI
MAC-MainConfig field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>onDurationTimer</td>
<td>Timer for DRX in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on. In case onDurationTimer-v1310 is signalled, the UE shall ignore onDurationTimer (i.e. without suffix).</td>
</tr>
<tr>
<td>periodicBSR-Timer</td>
<td>Timer for BSR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on.</td>
</tr>
<tr>
<td>periodicPHR-Timer</td>
<td>Timer for PHR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on.</td>
</tr>
<tr>
<td>phr-ModeOtherCG</td>
<td>Indicates the mode (i.e. real or virtual) used for the PHR of the activated cells that are part of the other Cell Group (i.e. MCG or SCG), when DC is configured.</td>
</tr>
<tr>
<td>prohibitPHR-Timer</td>
<td>Timer for PHR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf0 corresponds to 0 subframes and behaviour as specified in 7.3.2 applies, sf100 corresponds to 100 subframes and so on.</td>
</tr>
<tr>
<td>retxBSR-Timer</td>
<td>Timer for BSR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf640 corresponds to 640 sub-frames, sf1280 corresponds to 1280 sub-frames and so on.</td>
</tr>
<tr>
<td>aCellDeactivationTimer</td>
<td>SCell deactivation timer in TS 36.321 [6]. Value in number of radio frames. Value rf1 corresponds to 4 radio frames, value rf8 corresponds to 8 radio frames and so on. E-UTRAN only configures the field if the UE is configured with one or more SCells other than the PSCell and PUCCH SCell. If the field is absent, the UE shall delete any existing value for this field and assume the value to be set to infinity. The same value applies for each SCell of a Cell Group (i.e. MCG or SCG), although the associated functionality is performed independently for each SCell. Field aCellDeactivationTimer does not apply for the PUCCH SCell.</td>
</tr>
<tr>
<td>shortDRX-Cycle</td>
<td>Short DRX cycle in TS 36.321 [6]. Value in number of sub-frames. Value sf2 corresponds to 2 sub-frames, sf5 corresponds to 5 subframes and so on. In case shortDRX-Cycle-v1130 is signalled, the UE shall ignore shortDRX-Cycle (i.e. without suffix). Short DRX cycle is not configured for UEs in CE.</td>
</tr>
<tr>
<td>skipUplinkTxDynamic</td>
<td>If configured, the UE skips UL transmissions for an uplink grant other than a configured uplink grant if no data is available for transmission in the UE buffer as described in TS 36.321 [6].</td>
</tr>
<tr>
<td>skipUplinkTxSPS</td>
<td>If configured, the UE skips UL transmissions for a configured uplink grant if no data is available for transmission in the UE buffer as described in TS 36.321 [6]. E-UTRAN always configures skipUplinkTxSPS when semiPersistSchedIntervalUL is shorter than sf10.</td>
</tr>
<tr>
<td>sr-ProhibitTimer</td>
<td>Timer for SR transmission on PUCCH in TS 36.321 [6]. Value in number of SR period(s) of shortest SR period of any serving cell with PUCCH. Value 0 means that behaviour as specified in 7.3.2 applies. Value 1 corresponds to one SR period. Value 2 corresponds to 2*SR periods and so on. SR period is defined in TS 36.213 [23, table 10.1.5-1].</td>
</tr>
<tr>
<td>stag-id</td>
<td>Indicates the TAG of an SCell, see TS 36.321 [6]. Uniquely identifies the TAG within the scope of a Cell Group (i.e. MCG or SCG). If the field is not configured for an SCell (e.g. absent in MAC-MainConfigSCell), the SCell is part of the PTAG.</td>
</tr>
<tr>
<td>stag-ToAddModList, stag-ToReleaseList</td>
<td>Used to configure one or more STAGs. E-UTRAN ensures that a STAG contains at least one SCell with configured uplink. If, due to SCell release a reconfiguration would result in an ‘empty’ TAG, E-UTRAN includes release of the concerned TAG.</td>
</tr>
<tr>
<td>timeAlignmentTimerSTAG</td>
<td>Indicates the value of the time alignment timer for an STAG, see TS 36.321 [6].</td>
</tr>
<tr>
<td>ttiBundling</td>
<td>TRUE indicates that TTI bundling TS 36.321 [6] is enabled while FALSE indicates that TTI bundling is disabled. TTI bundling can be enabled for FDD and for TDD for configurations 0, 1 and 6 and additionally for configurations 2 and 3 when symPUSCH-UpPTS-r14 is configured. The functionality is performed independently per Cell Group (i.e. MCG or SCG), but E-UTRAN does not configure TTI bundling for the SCG. For a TDD PCell, E-UTRAN does not simultaneously enable TTI bundling and semi-persistent scheduling in this release of specification. Furthermore, for a Cell Group, E-UTRAN does not simultaneously configure TTI bundling and SCells with configured uplink, and E-UTRAN does not simultaneously configure TTI bundling and eIMTA.</td>
</tr>
</tbody>
</table>
The IE P-C-AndCBSR is used to specify the power control and codebook subset restriction configuration.

P-C-AndCBSR information elements

```asn1
P-C-AndCBSR-r11 ::= SEQUENCE {
  p-C-r11   INTEGER {-8..15},
  codebookSubsetRestriction-r11   BIT STRING
}

P-C-AndCBSR-r13 ::= SEQUENCE {
  p-C-r13   INTEGER {-8..15},
  cbsr-Selection-r13  CHOICE{
    nonPrecoded-r13    SEQUENCE {
      codebookSubsetRestriction1-r13    BIT STRING,
      codebookSubsetRestriction2-r13    BIT STRING
    },
    beamformedK1a-r13   SEQUENCE {
      codebookSubsetRestriction3-r13    BIT STRING
    },
    beamformedKN-r13    SEQUENCE {
      codebookSubsetRestriction-r13    BIT STRING
    }
  }...
}

P-C-AndCBSR-Pair-r13a ::= SEQUENCE (SIZE (1..2)) OF P-C-AndCBSR-r11
P-C-AndCBSR-Pair-r13 ::= SEQUENCE (SIZE (1..2)) OF P-C-AndCBSR-r13
```

P-C-AndCBSR field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbsr-Selection</td>
<td>Indicates which codebook subset restriction parameter(s) are to be used. E-UTRAN applies values <code>nonPrecoded</code> when eMIMO-Type is set to <code>nonPrecoded</code>. E-UTRAN applies value <code>beamformedK1a</code> when eMIMO-Type is set to <code>beamformed</code>, alternativeCodebookEnabledBeamformed is set to <code>TRUE</code> and <code>csi-RS-ConfigNZPIdListExt</code> is not configured. E-UTRAN applies value <code>beamformedKN</code> when <code>csi-RS-ConfigNZPIdListExt</code> is configured. E-UTRAN applies value <code>beamformedKN</code> when eMIMO-Type is set to <code>beamformed</code>, <code>alternativeCodebookEnabledBeamformed</code> is set to <code>FALSE</code> and <code>csi-RS-ConfigNZPIdListExt</code> is not configured. E-UTRAN applies value <code>beamformedKN</code> when eMIMO-Type is set to <code>beamformed</code>, <code>csi-RS-ConfigNZPIdListExt</code> is not configured and <code>alternativeCodebookEnabledBeamformed</code> is set to <code>FALSE</code>.</td>
</tr>
<tr>
<td>codebookSubsetRestriction</td>
<td>Parameter: <code>codebookSubsetRestriction</code>, see TS 36.213 [23] and TS 36.211 [21]. The number of bits in the <code>codebookSubsetRestriction</code> for applicable transmission modes is defined in TS 36.213 [23].</td>
</tr>
<tr>
<td>codebookSubsetRestriction1</td>
<td>Parameter: <code>codebookSubsetRestriction1</code>, see TS 36.213 [23, Table 7.2-1d]. The number of bits in the <code>codebookSubsetRestriction1</code> for applicable transmission modes is defined in TS 36.213 [23].</td>
</tr>
<tr>
<td>codebookSubsetRestriction2</td>
<td>Parameter: <code>codebookSubsetRestriction2</code>, see TS 36.213 [23, Table 7.2-1e]. The number of bits in the <code>codebookSubsetRestriction2</code> for applicable transmission modes is defined in TS 36.213 [23].</td>
</tr>
<tr>
<td>codebookSubsetRestriction3</td>
<td>Parameter: <code>codebookSubsetRestriction3</code>, see TS 36.213 [23, Table 7.2-1f]. The UE shall ignore <code>codebookSubsetRestriction-r11</code> or <code>codebookSubsetRestriction-r10</code> if <code>codebookSubsetRestriction3-r13</code> is configured. The number of bits in the <code>codebookSubsetRestriction3</code> for applicable transmission modes is defined in TS 36.213 [23].</td>
</tr>
<tr>
<td>p-C</td>
<td>Parameter: <code>P_c</code>, see TS 36.213 [23, 7.2.5].</td>
</tr>
</tbody>
</table>

E-UTRAN includes a single entry if the UE is configured with TM9. If the UE is configured with TM10 and E-UTRAN includes 2 entries, this indicates that the subframe patterns configured for CSI (CQI/PMI/PTI/RI/CRI) reporting (i.e. as defined by field `csi-MeasSubframeSet1` and `csi-MeasSubframeSet2`, or as defined by `csi-MeasSubframeSets-r12`) are to be used for this CSI process, while including a single entry indicates that the subframe patterns are not to be used for this CSI process. For a UE configured with TM10, E-UTRAN does not include 2 entries with `csi-MeasSubframeSet1` and `csi-MeasSubframeSet2` for CSI processes concerning a secondary frequency. Furthermore, E-UTRAN includes 2 entries when configuring both `cqi-pmi-ConfigIndex` and `cqi-pmi-ConfigIndex2`. |
The IE *PDCCH-ConfigSCell* specifies PDCCH monitoring parameters that E-UTRAN may configure for a serving cell.

PDCCH-ConfigSCell

The *PDCCH-ConfigSCell* information element

ASN1START

```
PDCCH-ConfigSCell-r13 ::= SEQUENCE {
  skipMonitoringDCI-format0-1a-r13 ENUMERATED {true} OPTIONAL -- Need OR
}

PDCCH-ConfigLAA-r14 ::= SEQUENCE {
  maxNumberOfSchedSubframes-Format0B-r14 ENUMERATED {sf2, sf3, sf4} OPTIONAL, -- Need OR
  maxNumberOfSchedSubframes-Format4B-r14 ENUMERATED {sf2, sf3, sf4} OPTIONAL, -- Need OR
  skipMonitoringDCI-Format0A-r14 ENUMERATED {true} OPTIONAL, -- Need OR
  skipMonitoringDCI-Format4A-r14 ENUMERATED {true} OPTIONAL, -- Need OR
  pdcch-CandidateReductions-Format0A-r14 PDCCH-CandidateReductions-r13 OPTIONAL, -- Need ON
  pdcch-CandidateReductions-Format4B-r14 PDCCH-CandidateReductionsLAA-UL-r14 OPTIONAL, -- Need ON
  pdcch-CandidateReductions-Format4A-r14 PDCCH-CandidateReductionsLAA-UL-r14 OPTIONAL, -- Need ON
  pdcch-CandidateReductions-Format0B-r14 PDCCH-CandidateReductionsLAA-UL-r14 OPTIONAL, -- Need ON
}

PDCCH-CandidateReductionValue-r13 ::= ENUMERATED {n0, n33, n66, n100}

PDCCH-CandidateReductionValue-r14 ::= ENUMERATED {n0, n50, n100, n150}

PDCCH-CandidateReductions-r13 ::= CHOICE {
  release NULL,
  setup SEQUENCE {
    pdcch-candidateReductionAL1-r13 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL2-r13 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL3-r13 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL4-r13 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL5-r13 PDCCH-CandidateReductionValue-r13
  }
}

PDCCH-CandidateReductionsLAA-UL-r14 ::= CHOICE {
  release NULL,
  setup SEQUENCE {
    pdcch-candidateReductionAL1-r14 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL2-r14 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL3-r14 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL4-r14 PDCCH-CandidateReductionValue-r13,
    pdcch-candidateReductionAL5-r14 PDCCH-CandidateReductionValue-r13
  }
}

-- ASN1STOP
```
PDCCH-ConfigSCell field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>maxNumberOfSchedSubframes-Format0B</code></td>
<td>Indicates maximum number of schedulable subframes for DCI format 0B as specified in TS 36.213 [23]. Value sf2 corresponds to 2 subframes, value sf3 corresponds to 3 subframes and so on.</td>
</tr>
<tr>
<td><code>maxNumberOfSchedSubframes-Format4B</code></td>
<td>Indicates maximum number of schedulable subframes for DCI format 4B as specified in TS 36.213 [23]. Value sf2 corresponds to 2 subframes, value sf3 corresponds to 3 subframes and so on.</td>
</tr>
<tr>
<td><code>skipMonitoringDCI-format0-1A</code></td>
<td>Indicates whether the UE is configured to omit monitoring DCI format 0/1A, see TS 36.213 [23, 9.1.1].</td>
</tr>
<tr>
<td><code>skipMonitoringDCI-Format0A</code></td>
<td>Indicates whether the UE is configured to omit monitoring DCI format 0A as specified in TS 36.213 [23].</td>
</tr>
<tr>
<td><code>skipMonitoringDCI-Format4A</code></td>
<td>Indicates whether the UE is configured to omit monitoring DCI format 4A as specified in TS 36.213 [23].</td>
</tr>
<tr>
<td><code>pdcch-candidateReductionALx</code></td>
<td>Indicates reduced (E)PDCCH monitoring requirements on UE specific search space of the x-th aggregation level, see TS 36.213 [23, 9.1.1]. Value n0 corresponds to 0%, value n33 corresponds to 33% and so on.</td>
</tr>
<tr>
<td><code>pdcch-CandidateReductions-Formatx</code></td>
<td>Indicates number of blind detections on UE specific search space for each aggregation layer as specified in TS 36.213 [23]. The field can only be present when the UE is configured with uplink of an LAA SCell. If <code>pdcch-CandidateReductions-Formatx</code> is not configured, <code>pdcch-CandidateReductions-r13</code> applies to the corresponding DCIs (if configured).</td>
</tr>
</tbody>
</table>

PDCP-Config

The IE `PDCP-Config` is used to set the configurable PDCP parameters for data radio bearers.

PDCP-Config information element

```asn1
-- ASN1START

PDCP-Config ::= SEQUENCE {
  discardTimer ENUMERATED {
    ms50, ms100, ms150, ms300, ms500,
    ms750, ms1500, infinity
  } OPTIONAL, -- Cond Setup
  rlcv-AM SEQUENCE { statusReportRequired BOOLEAN OPTIONAL, -- Cond Rlc-AM
    rlcv-UM SEQUENCE { pdcv-SN-Size ENUMERATED {len7bits, len12bits} OPTIONAL, -- Cond Rlc-UM
      headerCompression CHOICE {
        notUsed NULL,
        rohc SEQUENCE {
          maxCID INTEGER (1..16383) DEFAULT 15,
          profiles SEQUENCE {
            profile0x0001 BOOLEAN,     profile0x0002 BOOLEAN,     profile0x0003 BOOLEAN,     profile0x0004 BOOLEAN,     profile0x0006 BOOLEAN,     profile0x0101 BOOLEAN,     profile0x0102 BOOLEAN,     profile0x0103 BOOLEAN,     profile0x0104 BOOLEAN
          },
        }
      }
    }
  }
  rn-IntegrityProtection-r10 ENUMERATED {enabled} OPTIONAL -- Cond RN
  pdcv-SN-Size-v1130 ENUMERATED {len15bits} OPTIONAL -- Cond Rlc-AM2
  ul-DataSplitDRB-ViaSCG-r12 BOOLEAN OPTIONAL, -- Need ON
  t-Reordering-r12 ENUMERATED {ms0, ms20, ms40, ms60, ms80, ms100, ms120, ms140,
    ms160, ms180, ms200, ms220, ms240, ms260, ms280, ms300,
    ms500, ms750, spare14, spare13, spare12, spare11, spare10,
    spare9, spare8, spare7, spare6, spare5, spare4, spare3,
    spare2, spare1} OPTIONAL -- Cond SetupS
-- ASN1END
```
[[ul-DataSplitThreshold-r13
 release
 setup
}]

pdcp-SN-Size-v1310 ENUMERATED {len18bits} OPTIONAL, -- Cond Rlc-AM3

statusFeedback-r13
 release
 setup
 statusPDU-TypeForPolling-r13 ENUMERATED {typel, type2} OPTIONAL, -- Need ON

statusPDU-Periodicity-Type1-r13 ENUMERATED {
 ms5, ms10, ms20, ms30, ms40, ms50, ms60, ms70, ms80, ms90,
 ms100, ms150, ms200, ms300, ms500, ms1000, ms2000, ms5000,
 ms10000, ms20000, ms50000) OPTIONAL, -- Need ON

statusPDU-Periodicity-Type2-r13 ENUMERATED {
 ms5, ms10, ms20, ms30, ms40, ms50, ms60, ms70, ms80, ms90,
 ms100, ms150, ms200, ms300, ms500, ms1000, ms2000, ms5000,
 ms10000, ms20000, ms50000) OPTIONAL, -- Need ON

statusPDU-Periodicity-Offset-r13 ENUMERATED {
 ms1, ms2, ms5, ms10, ms15, ms25, ms50, ms100, ms250, ms500,
 ms2500, ms5000, ms25000) OPTIONAL -- Need ON

}]

[[ul-LWA-Config-r14
 release
 setup
 ul-LWA-DRB-ViaWLAN-r14 BOOLEAN,
 ul-LWA-DataSplitThreshold-r14 ENUMERATED {
 b0, b100, b200, b400, b800, b1600, b3200, b6400,
 b12800, b25600, b51200, b102400, b204800, b409600,
 b819200} OPTIONAL -- Need OR

}]

uplinkOnlyHeaderCompression-r14 CHOICE {
 notUsed-r14 NULL,
 rohc-r14 SEQUENCE {
 maxCID-r14 INTEGER (1..16383) DEFAULT 15,
 profiles-r14 SEQUENCE {
 profile0x0006-r14 BOOLEAN,
 },
 ...
 }
 OPTIONAL -- Need ON

}]

-- ASN1STOP
PDCP-Config field descriptions

discardTimer
Indicates the discard timer value specified in TS 36.323 [8]. Value in milliseconds. Value ms50 means 50 ms, ms100 means 100 ms and so on.

headerCompression
E-UTRAN does not reconfigure header compression for an MCG DRB except for upon handover and upon the first reconfiguration after RRC connection re-establishment. E-UTRAN does not reconfigure header compression for a SCG DRB except for upon SCG change involving PDCP re-establishment. For split and LWA DRBs E-UTRAN configures only `notUsed`. If `headerCompression` is configured, the UE shall apply the configured ROHC profile(s) in both uplink and downlink.

maxCID
Indicates the value of the MAX_CID parameter as specified in TS 36.323 [8]. The total value of MAX_CIDs across all bearers for the UE should be less than or equal to the value of `maxNumberROHC-ContextSessions` parameter as indicated by the UE. E-UTRAN configures the same value for `maxCID` in both `headerCompression` and `uplinkOnlyHeaderCompression`.

pdcp-SN-Size
Indicates the PDCP Sequence Number length in bits. For RLC UM: value `len7bits` means that the 7-bit PDCP SN format is used and `len12bits` means that the 15-bit PDCP SN format is used. For RLC AM: value `len15bits` means that the 15-bit PDCP SN format is used, value `len18bits` means that the 18-bit PDCP SN format is used, otherwise if the field is not included upon setup of the PCDP entity 12-bit PDCP SN format is used, as specified in TS 36.323 [8].

profiles
The profiles used by both compressor and decompressor in both UE and E-UTRAN. The field indicates which of the ROHC profiles specified in TS 36.323 [8] are supported, i.e. value `true` indicates that the profile is supported. Profile 0x0000 shall always be supported when the use of ROHC is configured. If support of two ROHC profile identifiers with the same 8 LSB's is signalled, only the profile corresponding to the highest value shall be applied. E-UTRAN does not configure ROHC while `t-Reordering` is configured (i.e. for split DRBs, for LWA bearers or upon reconfiguration from split or LWA to MCG DRB).

statusFeedback
Indicates whether the UE shall send PDCP Status Report periodically or by E-UTRAN polling as specified in TS 36.323 [8]. E-UTRAN configures this field only for LWA DRB.

statusPDU-TypeForPolling
Indicates the PDCP Control PDU option when it is triggered by E-UTRAN polling. Value `type1` indicates using the legacy PDCP Control PDU for PDCP status reporting and value `type2` indicates using the LWA specific PDCP Control PDU for LWA status reporting as specified in TS 36.323 [8].

statusPDU-Periodicity-Type1
Indicates the value of the PDCP Status reporting periodicity for `type1` Status PDU, as specified in TS 36.323 [8]. Value in milliseconds. Value ms5 means 5 ms, ms10 means 10 ms and so on.

statusPDU-Periodicity-Type2
Indicates the value of the PDCP Status reporting periodicity for `type2` Status PDU, as specified in TS 36.323 [8]. Value in milliseconds. Value ms5 means 5 ms, ms10 means 10 ms and so on.

statusPDU-Periodicity-Offset
Indicates the value of the offset for `type2` Status PDU periodicity, as specified in TS 36.323 [8]. Value in milliseconds. Value ms1 means 1 ms, ms2 means 2 ms and so on.

t-Reordering
Indicates the value of the reordering timer, as specified in TS 36.323 [8]. Value in milliseconds. Value ms0 means 0 ms and behaviour as specified in 7.3.2 applies, ms20 means 20 ms and so on.

rn-IntegrityProtection
Indicates that integrity protection or verification shall be applied for all subsequent packets received and sent by the RN on the DRB.

statusReportRequired
Indicates whether or not the UE shall send a PDCP Status Report upon re-establishment of the PDCP entity and upon PDCP data recovery as specified in TS 36.323 [8].

ul-DataSplitDRB-ViaSCG
Indicates whether the UE shall send PDCP PDUs via SCG as specified in TS 36.323 [8]. E-UTRAN only configures the field (i.e. indicates value `TRUE`) for split DRBs.

ul-DataSplitThreshold
Indicates the threshold value for uplink data split operation specified in TS 36.323 [8]. Value b100 means 100 Bytes, b200 means 200 Bytes and so on. E-UTRAN only configures this field for split DRBs.

ul-LWA-DRB-ViaWLAN
Indicates whether the UE shall send PDCP PDUs via the LWAAP entity as specified in TS 36.323 [8]. E-UTRAN only configures this field (i.e. indicates value `TRUE`) for LWA DRBs.

ul-LWA-DataSplitThreshold
Indicates the threshold value for uplink data split operation as specified in TS 36.323 [8]. Value b0 means 0 Bytes, b100 means 100 Bytes and so on. E-UTRAN only configures this field for LWA DRBs.
PDCP-Config field descriptions

uplinkOnlyHeaderCompression
Indicates the ROHC configuration that the UE shall apply uplink-only ROHC operations, see TS 36.323 [8]. E-UTRAN only configures this field when headerCompression is not configured.
E-UTRAN does not reconfigure header compression for an MCG DRB except for upon handover and upon the first reconfiguration after RRC connection re-establishment. E-UTRAN does not reconfigure header compression for a SCG DRB except for upon SCG change involving PDCP re-establishment. For split and LWA DRBs E-UTRAN configures only notUsed.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rlc-AM</td>
<td>The field is mandatory present upon setup of a PDCP entity for a radio bearer configured with RLC AM. The field is optional, need ON, in case of reconfiguration of a PDCP entity at handover, at the first reconfiguration after RRC re-establishment or at SCG change involving PDCP re-establishment or PDCP data recovery for a radio bearer configured with RLC AM. Otherwise the field is not present.</td>
</tr>
<tr>
<td>Rlc-AM2</td>
<td>The field is optionally present, need OP, upon setup of a PDCP entity for a radio bearer configured with RLC AM. Otherwise the field is not present.</td>
</tr>
<tr>
<td>Rlc-AM3</td>
<td>The field is optionally present, need OP, upon setup of a PDCP entity for a radio bearer configured with RLC AM, if pdcp-SN-Size-v1130 is absent. Otherwise the field is not present.</td>
</tr>
<tr>
<td>Rlc-UM</td>
<td>The field is mandatory present upon setup of a PDCP entity for a radio bearer configured with RLC UM. It is optionally present, Need ON, upon handover within E-UTRA, upon the first reconfiguration after re-establishment and upon SCG change involving PDCP re-establishment. Otherwise the field is not present.</td>
</tr>
<tr>
<td>RN</td>
<td>The field is optionally present when signalled to the RN, need OR. Otherwise the field is not present.</td>
</tr>
<tr>
<td>Setup</td>
<td>The field is mandatory present in case of radio bearer setup. Otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>SetupS</td>
<td>The field is mandatory present in case of setup of or reconfiguration to a split DRB or LWA DRB. The field is optionally present upon reconfiguration of a split DRB or LWA DRB or upon DRB type change from split to MCG DRB or from LWA to LTE only, need ON. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

PDSCH-Config

The IE PDSCH-ConfigCommon and the IE PDSCH-ConfigDedicated are used to specify the common and the UE specific PDSCH configuration respectively.

PDSCH-Config information element

```asn1
-- ASN1START
PDSCH-ConfigCommon ::= SEQUENCE {
    referenceSignalPower      INTEGER (-60..50),
    p-b                         INTEGER (0..3)
}
PDSCH-ConfigCommon-v1310 ::= SEQUENCE {
    pdsch-maxNumRepetitionCEmodeA-r13 ENUMERATED {
        r16, r32 } OPTIONAL, -- Need OR
    pdsch-maxNumRepetitionCEmodeB-r13 ENUMERATED {
        r192, r256, r384, r512, r768, r1024,
        r1536, r2048\} OPTIONAL -- Need OR
}
PDSCH-ConfigDedicated::= SEQUENCE {
    p-a                     ENUMERATED {
        dB-6, dB-4dot77, dB-3, dB-1dot77,
        dB0, dB1, dB2, dB3\}
}
PDSCH-ConfigDedicated-v1130 ::= SEQUENCE {
    dmrs-ConfigPDSCH-r11  DMRS-Config-r11 OPTIONAL, -- Need ON
    qcl-Operation          ENUMERATED {typeA, typeB} OPTIONAL, -- Need OR
    re-MappingQCLConfigToReleaseList-r11 RE-MappingQCLConfigToReleaseList-r11 OPTIONAL, -- Need ON
}
-- ASN1END
```
PDSCH-ConfigDedicated-v1280 ::= SEQUENCE {
 tbsIndexAlt-r12 ENUMERATED {a26, a33} OPTIONAL -- Need OR
}

PDSCH-ConfigDedicated-v1310 ::= SEQUENCE {
 dmrs-ConfigPDSCH-v1310 DMRs-Config-v1310 OPTIONAL -- Need ON
}

PDSCH-ConfigDedicated-v1430 ::= SEQUENCE {
 ce-PDSCH-MaxBandwidth-r14 ENUMERATED {bw5, bw20} OPTIONAL, -- Need OP
 ce-PDSCH-TenProcesses-r14 ENUMERATED {on} OPTIONAL, -- Need OR
 ce-HARQ-AckBundling-r14 ENUMERATED {on} OPTIONAL, -- Need OR
 ce-SchedulingEnhancement-r14 ENUMERATED {range1, range2} OPTIONAL, -- Need OR
 tbsIndexAlt2-r14 ENUMERATED {b33} OPTIONAL -- Need OR
}

PDSCH-ConfigDedicatedSCell-v1430 ::= SEQUENCE {
 tbsIndexAlt2-r14 ENUMERATED {b33} OPTIONAL -- Need OR
}

RE-MappingQCLConfigToAddModList-r11 ::= SEQUENCE {
 SEQUENCE (SIZE (1..maxRE-MapQCL-r11)) OF PDSCH-RE-
 MappingQCL-Config-r11
}

RE-MappingQCLConfigToReleaseList-r11 ::= SEQUENCE {
 SEQUENCE (SIZE (1..maxRE-MapQCL-r11)) OF PDSCH-RE-
 MappingQCL-ConfigId-r11
}

PDSCH-RE-MappingQCL-Config-r11 ::= SEQUENCE {
 pdhch-RE-MappingQCL-ConfigId-r11, -- Need ON
 optionalSetOfFields-r11 SEQUENCE {
 crs-PortsCount-r11 ENUMERATED {n1, n2, n4, spare1},
 crs-FreqShift-r11 INTEGER (0..5),
 mbsfn-SubframeConfigList-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 subframeConfigList MBSFN-SubframeConfigList
 }
 },
 tbsIndex-r11 ENUMERATED {reserved, n1, n2, n3, n4, assigned} OPTIONAL -- Need ON
 }
}

csi-RS-ConfigZPId-r11 CSI-RS-ConfigZPId-r11,
qcl-CSI-RS-ConfigNZPId-r11 CSI-RS-ConfigNZPId-r11 OPTIONAL, -- Need OR
...,
][mbsfn-SubframeConfigList-v1430 CHOICE {
 release NULL,
 setup SEQUENCE {
 subframeConfigList MBSFN-SubframeConfigList-v1430
 }
},
}]

-- ASN1STOP
PDSCH-Config field descriptions

ce-HARQ-AckBundling
Activation of PDSCH HARQ-ACK bundling in half duplex FDD in CE mode A, see TS 36.212 [22] and TS 36.213 [23].

ce-PDSCH-MaxBandwidth
Maximum PDSCH channel bandwidth in CE mode A and B, see TS 36.212 [22] and TS 36.213 [23]. Value bw5 corresponds to 5 MHz, and value bw20 corresponds to 20 MHz. If this field is absent, the UE shall release any existing value and set the maximum PDSCH channel bandwidth in CE mode A and B to 1.4 MHz. Parameter: transmission bandwidth configuration, see TS 36.101 [42, table 5.6-1]. The max bandwidth can be configured to 5MHz for BL UEs and 5MHz or 20MHz for UEs in CE.

ce-PDSCH-TenProcesses
Configuration of 10 (instead of 8) DL HARQ processes in FDD in CE mode A, see TS 36.212 [22] and TS 36.213 [23].

ce-SchedulingEnhancement
Activation of dynamic HARQ-ACK delay for HD-FDD for PDSCH in CE mode A controlled by the DCI, see TS 36.212 [22] and TS 36.213 [23]. Value range1 corresponds to the first range of HARQ-ACK delays, and value range2 corresponds to second range of HARQ-ACK delays.

mbsfn-SubframeConfigList
Indicates the MBSFN configuration for the CSI-RS resources. If optionalSetOfFields is absent, the field is released.

optionalSetOfFields
If absent, the UE releases the configuration provided previously, if any, and applies the values from the serving cell configured on the same frequency.

p-a
Parameter: P_A, see TS 36.213 [23, 5.2]. Value dB-6 corresponds to -6 dB, dB-4.77 corresponds to -4.77 dB etc.

p-b
Parameter: P_B, see TS 36.213 [23, Table 5.2-1].

pdsch-maxNumRepetitionCEmodeA
Maximum value to indicate the set of PDSCH repetition numbers for CE mode A, see TS 36.211 [21] and TS 36.213 [23].

pdsch-maxNumRepetitionCEmodeB
Maximum value to indicate the set of PDSCH repetition numbers for CE mode B, see TS 36.211 [21] and TS 36.213 [23].

pdsch-Start
The starting OFDM symbol of PDSCH for the concerned serving cell, see TS 36.213 [23, 7.1.6.4]. Values 1, 2, 3 are applicable when dl-Bandwidth for the concerned serving cell is greater than 10 resource blocks, values 2, 3, 4 are applicable when dl-Bandwidth for the concerned serving cell is less than or equal to 10 resource blocks, see TS 36.211 [21, Table 6.7-1]. Value $n1$ corresponds to 1, value $n2$ corresponds to 2 and so on.

qcl-CSI-RS-ConfigNZPId
Indicates the CSI-RS resource that is quasi co-located with the PDSCH antenna ports, see TS 36.213 [23, 7.1.9]. E-UTRAN configures this field if and only if the UE is configured with qcl-Operation set to $typeB$.

qcl-Operation
Indicates the quasi co-location behaviour to be used by the UE, type A and type B, as described in TS 36.213 [23, 7.1.10].

referenceSignalPower
Parameter: Reference-signal power, which provides the downlink reference-signal EPRE, see TS 36.213 [23, 5.2]. The actual value in dBm.

re-MappingQCLConfigToAddModList, re-MappingQCLConfigToReleaseList
For a serving frequency E-UTRAN configures at least one $PDSCH-RE-MappingQCL-Config$ when transmission mode 10 is configured for the serving cell on this carrier frequency. Otherwise it does not configure this field.

tbsIndexAlt
Indicates the applicability of the alternative TBS index for the I_{TBS} 26 and 33 (see TS 36.213 [23, Table 7.1.7.2.1-1]) to all subframes scheduled by DCI format 2C or 2D. Value a26 refers to the alternative TBS index I_{TBS} 26A, and value a33 refers to the alternative TBS index I_{TBS} 33A. If this field is not configured, the UE shall use I_{TBS} 26 specified in Table 7.1.7.2.1-1 in TS 36.213 [23] for all subframes instead. If neither this field nor $tbsIndexAlt2$ configures an alternative TBS index for I_{TBS} 33, the UE shall use I_{TBS} 33 specified in Table 7.1.7.2.1-1 in TS 36.213 [23] for all subframes instead.

tbsIndexAlt2
Indicates the applicability of the alternative TBS index for the h_{TBS} 33 (see TS 36.213 [23, Table 7.1.7.2.1-1]) to all subframes. Value b33 refers to the alternative TBS index h_{TBS} 33B. If neither this field nor $tbsIndexAlt2$ configures an alternative TBS index for h_{TBS} 33, the UE shall use h_{TBS} 33 specified in Table 7.1.7.2.1-1 in TS 36.213 [23] for all subframes instead.

PDSCH-RE-MappingQCL-ConfigId
The IE **PDSCH-RE-MappingQCL-ConfigId** is used to identify a set of PDSCH parameters related to resource element mapping and quasi co-location, as configured by the IE **PDSCH-RE-MappingQCL-Config**. The identity is unique within the scope of a carrier frequency.
PDSCH-RE-MappingQCL-ConfigId information elements

PDSCH-RE-MappingQCL-ConfigId-r11 ::= INTEGER (1..maxRE-MapQCL-r11)

PerCC-GapIndicationList

The IE **PerCC-GapIndicationList** is used to specify the UE measurement gap preference.

PerCC-GapIndication information elements

PerCC-GapIndicationList-r14 ::= SEQUENCE (SIZE (1..maxServCell-r13)) OF PerCC-GapIndication-r14

PerCC-GapIndication-r14 ::= SEQUENCE {
 servCellId-r14 ServCellIndex-r13,
 gapIndication-r14 ENUMERATED {gap, ncsg, nogap-noNcsg}
}**

PerCC-GapIndication field descriptions

servCellId

This field identifies the serving cell for which the measurement gap preference is provided.

gapIndication

This field is used to indicate the measurement gap preference per component carrier (serving cell) by the UE both in non-CA and CA configurations. Value **gap** indicates that a measurement gap is needed for the associated **servCellId**, value **nogap-noNcsg** indicates that neither a measurement gap nor a ncsg is needed for the associated **servCellId**, value **ncsg** indicates that ncsg is needed for the associated **servCellId**. The UE shall indicate the per CC measurement gap preference consistently for the same non-CA or CA configuration and measurement configuration during the same RRC connection.

PHICH-Config

The IE **PHICH-Config** is used to specify the PHICH configuration.

PHICH-Config information element

PHICH-Config ::=

SEQUENCE {

 phich-Duration ENUMERATED {normal, extended},
 phich-Resource ENUMERATED {oneSixth, half, one, two}

}**

PHICH-Config field descriptions

phich-Duration

Parameter: **PHICH-Duration**, see TS 36.211 [21, Table 6.9.3-1].

phich-Resource

Parameter: **Ng**, see TS 36.211 [21, 6.9]. Value oneSixth corresponds to 1/6, half corresponds to 1/2 and so on.

PhysicalConfigDedicated

The IE **PhysicalConfigDedicated** is used to specify the UE specific physical channel configuration.

PhysicalConfigDedicated information element

ETSI
PhysicalConfigDedicated ::= SEQUENCE {
 pdsch-ConfigDedicated PDSCH-ConfigDedicated OPTIONAL, -- Need ON
 pucch-ConfigDedicated PUCCH-ConfigDedicated OPTIONAL, -- Need ON
 pusch-ConfigDedicated PUSCH-ConfigDedicated OPTIONAL, -- Need ON
 uplinkPowerControlDedicated UplinkPowerControlDedicated OPTIONAL, -- Need ON
 tpc-PDCCH-ConfigPUCCH TPC-PDCCH-Config OPTIONAL, -- Need ON
 tpc-PDCCH-ConfigPUSCH TPC-PDCCH-Config OPTIONAL, -- Need ON
 cqi-ReportConfig CQI-ReportConfig OPTIONAL, -- Cond CQI-
 r8 soundingRS-UL-ConfigDedicated SoundingRS-UL-ConfigDedicated OPTIONAL, -- Need ON
 antennaInfo CHOICE {
 explicitValue AntennaInfoDedicated, defaultValue NULL
 }
 schedulingRequestConfig SchedulingRequestConfig OPTIONAL, -- Cond AI-r8
...,
[[] cqi-ReportConfig-v920 CQI-ReportConfig-v920 OPTIONAL, -- Cond CQI-
 r8]
[[] antennaInfo-v920 AntennaInfoDedicated-v920 OPTIONAL -- Cond AI-
 r8
],
[[] antennaInfo-r10 CHOICE {
 explicitValue-r10 AntennaInfoDedicated-r10, defaultValue NULL
]
 antennaInfoUL-r10 AntennaInfoUL-r10 OPTIONAL, -- Need ON
 cif-Presence-r10 BOOLEAN OPTIONAL, -- Need ON
 cqi-ReportConfig-r10 CQI-ReportConfig-r10 OPTIONAL, -- Cond CQI-r10
 csi-RS-Config-r10 CSI-RS-Config-r10 OPTIONAL, -- Need ON
 pucch-ConfigDedicated-v1020 PUCCH-ConfigDedicated-v1020 OPTIONAL, -- Need ON
 pusch-ConfigDedicated-v1020 PUSCH-ConfigDedicated-v1020 OPTIONAL, -- Need ON
 schedulingRequestConfig-v1020 SchedulingRequestConfig-v1020 OPTIONAL, -- Need ON
 soundingRS-UL-ConfigDedicated-v1020 SoundingRS-UL-ConfigDedicated-v1020 OPTIONAL, -- Need ON
 soundingRS-UL-ConfigDedicatedAperiodic-r10 SoundingRS-UL-ConfigDedicatedAperiodic-r10 OPTIONAL, -- Need ON
 uplinkPowerControlDedicated-v1020 UplinkPowerControlDedicated-v1020 OPTIONAL, -- Need ON
],
[[] additionalSpectrumEmissionCA-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 additionalSpectrumEmissionPCell-r10 AntennaInfoDedicated-v1250 OPTIONAL -- Cond AI-r10
 eimta-MainConfig-r12 EIMTA-MainConfig-r12 OPTIONAL, -- Need ON
 pucch-ConfigDedicated-v1250 PUCCH-ConfigDedicated-v1250 OPTIONAL, -- Need ON
 cqi-ReportConfigPCell-r12 CQI-ReportConfig-v1250 OPTIONAL, -- Need ON
 uplinkPowerControlDedicated-v1250 UplinkPowerControlDedicated-v1250 OPTIONAL, -- Need ON
 pdsch-ConfigDedicated-v1130 PDSCH-ConfigDedicated-v1130 OPTIONAL, -- Need ON
 }
} OPTIONAL -- Need ON
],
[[] -- DL configuration as well as configuration applicable for DL and UL
 csi-RS-ConfigNZPToReleaseList-r11 CSI-RS-ConfigNZPToReleaseList-r11 OPTIONAL, -- Need ON
 csi-RS-ConfigNZPToAddModList-r11 CSI-RS-ConfigNZPToAddModList-r11 OPTIONAL, -- Need ON
 csi-RS-ConfigZPToReleaseList-r11 CSI-RS-ConfigZPToReleaseList-r11 OPTIONAL, -- Need ON
 csi-RS-ConfigZPToAddModList-r11 CSI-RS-ConfigZPToAddModList-r11 OPTIONAL, -- Need ON
 epdcch-Config-r11 EPDCCH-Config-r11 OPTIONAL, -- Need ON
 pdsch-ConfigDedicated-v1130 PDSCH-ConfigDedicated-v1130 OPTIONAL, -- Need ON
 pdsch-ConfigDedicated-v1280 PDSCH-ConfigDedicated-v1280 OPTIONAL, -- Need ON
 pucch-ConfigDedicated-v1250 PUCCH-ConfigDedicated-v1250 OPTIONAL, -- Need ON
 cqi-ReportConfigPCell-r12 CQI-ReportConfig-v1250 OPTIONAL, -- Need ON
 uplinkPowerControlDedicated-v1250 UplinkPowerControlDedicated-v1250 OPTIONAL, -- Need ON
 pdsch-ConfigDedicated-v1280 PDSCH-ConfigDedicated-v1280 OPTIONAL, -- Need ON
},
[[] antennaInfo-v1250 AntennaInfoDedicated-v1250 OPTIONAL, -- Cond AI-r10
 eimta-MainConfig-r12 EIMTA-MainConfig-r12 OPTIONAL, -- Need ON
 eimta-MainConfigServCell-r12 EIMTA-MainConfigServCell-r12 OPTIONAL, -- Need ON
 pucch-ConfigDedicated-v1250 PUCCH-ConfigDedicated-v1250 OPTIONAL, -- Need ON
 cqi-ReportConfigPCell-r12 CQI-ReportConfig-v1250 OPTIONAL, -- Need ON
 uplinkPowerControlDedicated-v1250 UplinkPowerControlDedicated-v1250 OPTIONAL, -- Need ON
 pdsch-ConfigDedicated-v1250 PDSCH-ConfigDedicated-v1250 OPTIONAL, -- Need ON
 csi-RS-Config-v1250 CSI-RS-Config-v1250 OPTIONAL, -- Need ON
},
[[] pdsch-ConfigDedicated-v1310 PDSCH-ConfigDedicated-v1310 OPTIONAL, -- Need ON
 pucch-ConfigDedicated-r13 PUCCH-ConfigDedicated-r13 OPTIONAL, -- Need ON
]}
pusch-ConfigDedicated-r13 PUSCH-ConfigDedicated-r13 OPTIONAL, -- Need ON
pdcch-CandidateReductions-r13 PDCCH-CandidateReductions-r13 OPTIONAL, -- Need ON
cqi-ReportConfig-v1310 CQI-ReportConfig-v1310 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicated-v1310 SoundingRS-UL-ConfigDedicated-v1310 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicatedUpPTsExt-r13 SoundingRS-UL-ConfigDedicatedUpPTsExt-r13 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicatedAperiodic-v1310 SoundingRS-UL-ConfigDedicatedAperiodic-v1310 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicatedAperiodicUpPTsExt-r13 SoundingRS-UL-ConfigDedicatedAperiodicUpPTsExt-r13 OPTIONAL, -- Need ON
csi-ReportConfig-v1310 CSI-RS-Config-v1310 OPTIONAL, -- Need ON
ce-Mode-r13 CHOICE {
 release NULL,
 setup ENUMERATED {ce-ModeA, ce-ModeB} OPTIONAL, -- Need ON
}
csi-ConfigNZPToAddModListExt-r13 CSI-ConfigNZPToAddModListExt-r13 OPTIONAL, -- Need ON
]

[[cqi-ReportConfig-v1320 CQI-ReportConfig-v1320 OPTIONAL -- Need ON
]]

[[typeA-SRS-TPC-PDCCH-Group-r14 CHOICE {
 release NULL,
 setup SEQUENCE (SIZE (1..32)) OF SRS-TPC-PDCCH-Config-r14
} OPTIONAL, -- Need ON
]]
must-Config-r14 CHOICE{
 release NULL,
 setup SEQUENCE {
 k-max-r14 ENUMERATED {11, 13},
 p-s-must-r14 ENUMERATED {
 dB-6, dB-4.77, dB-3, dB-1.77, dB0, dB1, dB2, dB3} OPTIONAL -- Need ON
 }
}

pusch-EnhancementsConfig-r14 PUSCH-EnhancementsConfig-r14 OPTIONAL, -- Need ON
cqi-ReportConfig-v1430 CQI-ReportConfig-v1430 OPTIONAL, -- Need ON
semiOpenLoop-r14 BOOLEAN OPTIONAL -- Need ON
}

PhysicalConfigDedicated-v1370 ::= SEQUENCE {
pusch-ConfigDedicated-v1370 PUSCH-ConfigDedicated-v1370 OPTIONAL -- Cond PUCCH-Format4or5
}

PhysicalConfigDedicatedSCell-r10 ::= SEQUENCE {
 -- DL configuration as well as configuration applicable for DL and UL
 nonUL-Configuration-r10 SEQUENCE {
 antennaInfo-r10 AntennaInfoDedicated-r10 OPTIONAL, -- Need ON
crossCarrierSchedulingConfig-r10 CrossCarrierSchedulingConfig-r10 OPTIONAL, -- Need ON
csi-Config-r10 CSI-RS-Config-r10 OPTIONAL, -- Need ON
 pdsch-ConfigDedicated-r10 PDSCH-ConfigDedicated OPTIONAL, -- Need ON
}
 -- UL configuration
 ul-Configuration-r10 SEQUENCE {
 antennaInfoUL-r10 AntennaInfoUL-r10 OPTIONAL, -- Need ON
 }
}

ETSI
PUSCH-ConfigDedicatedSCell-r10 OPTIONAL, -- Cond PUSCH-SCell1
uplinkPowerControlDedicatedSCell-r10
UplinkPowerControlDedicatedSCell-r10 OPTIONAL, -- Cond PUSCH-SCell1
cqi-ReportConfigSCell-r10 CQI-ReportConfigSCell-r10 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicated-r10
SoundingRS-UL-ConfigDedicated OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicated-v1020
SoundingRS-UL-ConfigDedicated-v1020 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicatedAperiodic-r10
SoundingRS-UL-ConfigDedicatedAperiodic-r10 OPTIONAL -- Need ON
 OPTIONAL, -- Cond CommonUL
...,
[[-- DL configuration as well as configuration applicable for DL and UL
csi-RS-ConfigNZPToReleaseList-r11
CSI-RS-ConfigNZPToReleaseList-r11 OPTIONAL, -- Need ON
csi-RS-ConfigNZPToAddModList-r11
CSI-RS-ConfigNZPToAddModList-r11 OPTIONAL, -- Need ON
csi-RS-ConfigZPToReleaseList-r11
CSI-RS-ConfigZPToReleaseList-r11 OPTIONAL, -- Need ON
csi-RS-ConfigZPToAddModList-r11
CSI-RS-ConfigZPToAddModList-r11 OPTIONAL, -- Need ON
epdcch-Config-r11
EPDCCH-Config-r11 OPTIONAL, -- Need ON
pdsch-ConfigDedicated-v1130
PDSCH-ConfigDedicated-v1130 OPTIONAL, -- Need ON
-- UL configuration
soundingRS-UL-ConfigDedicated-r11
SoundingRS-UL-ConfigDedicated-r11 OPTIONAL, -- Need ON
cqi-ReportConfig-v1130
CQI-ReportConfig-v1130 OPTIONAL, -- Need ON
pusch-ConfigDedicated-v1130
PUSCH-ConfigDedicated-v1130 OPTIONAL, -- Cond PUSCH-SCell1
uplinkPowerControlDedicatedSCell-v1130
UplinkPowerControlDedicated-v1130 OPTIONAL -- Need ON
],
[[antennaInfo-v1250
AntennaInfoDedicated-v1250 OPTIONAL, -- Need ON
eimta-MainConfigServCell-r12
EIMTA-MainConfigServCell-r12 OPTIONAL, -- Need ON
cqi-ReportConfigSCell-v1250
CQI-ReportConfig-v1250 OPTIONAL, -- Need ON
uplinkPowerControlDedicatedSCell-v1250
UplinkPowerControlDedicated-v1250 OPTIONAL, -- Need ON
csi-RS-Config-v1250
CSI-RS-Config-v1250 OPTIONAL, -- Need ON
],
[[pdsch-ConfigDedicated-v1280
PDSCH-ConfigDedicated-v1280 OPTIONAL, -- Need ON
],
[[pucch-Cell-r13
ENUMERATED {true} OPTIONAL, -- Cond PUCCH-SCell1
pucch-SCell
CHOICE
release NULL,
schedulingRequestConfig-r13
SchedulingRequestConfigSCell-r13 OPTIONAL, -- Need ON
tpc-PDCCH-ConfigPUCCH-SCell-r13
TPC-PDCCH-ConfigSCell-r13 OPTIONAL, -- Need ON
pusch-ConfigDedicated-r13
PUSCH-ConfigDedicated-r13 OPTIONAL, -- Cond PUSCH-SCell1
uplinkPowerControlDedicatedSCell-v1310
UplinkPowerControlDedicated-v1310 OPTIONAL -- Need ON
],
crossCarrierSchedulingConfig-r13
CrossCarrierSchedulingConfig-r13 OPTIONAL, -- Cond Cross-Carrier-Config
pdcch-ConfigSCell-r13
PDCCH-ConfigSCell-r13 OPTIONAL, -- Need ON
cqi-ReportConfig-v1310
CQI-ReportConfig-v1310 OPTIONAL, -- Need ON
pdsch-ConfigDedicated-v1310
PDSCH-ConfigDedicated-v1310 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicated-v1310
SoundingRS-UL-ConfigDedicated-v1310 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicatedUpPtsExt-r13
SoundingRS-UL-ConfigDedicatedUpPtsExt-r13 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicatedAperiodic-v1310
SoundingRS-UL-ConfigDedicatedAperiodic-v1310 OPTIONAL, -- Need ON
soundingRS-UL-ConfigDedicatedAperiodicUpPtsExt-r13
SoundingRS-UL-ConfigDedicatedAperiodicUpPtsExt-r13 OPTIONAL, -- Need ON
csi-RS-Config-v1310
CSI-RS-Config-v1310 OPTIONAL, -- Need ON
laa-SCellConfiguration-r13
LAA-SCellConfiguration-r13 OPTIONAL, -- Need ON
csi-RS-ConfigNZPToAddModListExt-r13
CSI-RS-ConfigNZPToAddModListExt-r13 OPTIONAL, -- Need ON
csi-RS-ConfigNZPToReleaseListExt-r13
CSI-RS-ConfigNZPToReleaseListExt-r13 OPTIONAL -- Need ON
],
[[cqi-ReportConfig-v1320
CQI-ReportConfig-v1320 OPTIONAL -- Need ON
],
PhysicalConfigDedicatedSCell-v1370 ::= SEQUENCE {
pucch-SCell-v1370
 CHOICE{
 release NULL,
 setup SEQUENCE {
pucch-ConfigDedicated-v1370 PUCCH-ConfigDedicated-v1370 OPTIONAL -- Cond PUCCH-Format4or5
 }
 }
}

LAA-SCellConfiguration-v1340 ::= SEQUENCE {
crossCarrierSchedulingConfig-UL-r14
 CHOICE {
 release NULL,
 setup SEQUENCE {
crossCarrierSchedulingConfigLAA-UL-r14 CrossCarrierSchedulingConfigLAA-UL-r14 OPTIONAL -- Cond Cross-Carrier-ConfigUL
 }
 }
}

LBT-Config-r14 ::=
 CHOICE{
 maxEnergyDetectionThreshold-r14 INTEGER(-85..-52),
 energyDetectionThresholdOffset-r14 INTEGER(-13..20)
 }

CSI-RS-ConfigNZPToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-r11)) OF CSI-RS-ConfigNZP-r11

CSI-RS-ConfigNZPToAddModListExt-r13 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-v1310)) OF CSI-RS-ConfigNZPId-r11

CSI-RS-ConfigNZPToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-v11)) OF CSI-RS-ConfigNZPId-r11

CSI-RS-ConfigNZPToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-r11)) OF CSI-RS-ConfigNZP-r11

CSI-RS-ConfigNZPToReleaseListExt-r13 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-v1310)) OF CSI-RS-ConfigNZP-v1310

CSI-RS-ConfigNZPToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-v11)) OF CSI-RS-ConfigNZP-v11
CSI-RS-ConfigNZPToReleaseListExt-r13 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-v1310)) OF CSI-RS-ConfigNZPId-v1310

CSI-RS-ConfigZPToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-ZP-r11)) OF CSI-RS-ConfigZP-r11

CSI-RS-ConfigZPToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-ZP-r11)) OF CSI-RS-ConfigZPId-r11

SoundingRS-AperiodicSet-r14 ::= SEQUENCE{
 srs-CC-SetIndexList-r14
 SEQUENCE (SIZE (1..4)) OF SRS-CC-SetIndex-r14
 OPTIONAL, -- Cond SRS-Trigger-TypeA
 soundingRS-UL-ConfigDedicatedAperiodic-r14
 SoundingRS-UL-ConfigDedicatedAperiodic-r10
}

SoundingRS-AperiodicSetUpPtsExt-r14 ::= SEQUENCE{
 srs-CC-SetIndexList-r14
 SEQUENCE (SIZE (1..4)) OF SRS-CC-SetIndex-r14
 OPTIONAL, -- Cond SRS-Trigger-TypeA
 soundingRS-UL-ConfigDedicatedAperiodicUpPtsExt-r14
 SoundingRS-UL-ConfigDedicatedAperiodicUpPtsExt-r13
}

-- ASN1STOP
PhysicalConfigDedicated field descriptions

absenceOfAnyOtherTechnology
Presence of this field indicates absence on a long term basis (e.g. by level of regulation) of any other technology sharing the carrier; absence of this field indicates the potential presence of any other technology sharing the carrier, as specified in TS 36.213 [23].

additionalSpectrumEmissionPCell
E-UTRAN does not configure this field in this release of the specification.

antennaInfo
A choice is used to indicate whether the antennaInfo is signalled explicitly or set to the default antenna configuration as specified in section 9.2.4.

c-eMode
Indicates the CE mode as specified in TS 36.213 [23].

c-e-psch-pusch-Enhancement-Config
Activation of new numbers of repetitions for PUSCH and modulation restrictions for PDSCH/PUSCH in CE mode A, see TS 36.212 [22] and TS 36.213 [23].

csi-RS-Config
For a serving frequency E-UTRAN does not configure csi-RS-Config (includes zeroTxPowerCSI-RS) when transmission mode 10 is configured for the serving cell on this carrier frequency.

csi-RS-ConfigNZPToAddModList
For a serving frequency E-UTRAN configures one or more csi-RS-ConfigNZP only when transmission mode 9 or 10 is configured for the serving cell on this carrier frequency. For a serving frequency, EUTRAN configures a maximum number of csi-RS-ConfigNZP in accordance with transmission mode (including CSI processes), eMIMO (including class) and associated UE capabilities (e.g. k-Max, n-MaxList).

csi-RS-ConfigZP-ApList
The aperiodic ZP CSI-RS for PDSCH rate matching. The field subframeConfig is applicable to semi-persistent CSI RS reporting. In other cases, the UE shall ignore field subframeConfig.

csi-RS-ConfigZPToAddModList
For a serving frequency E-UTRAN configures one or more csi-RS-ConfigZP only when transmission mode 10 is configured for the serving cell on this carrier frequency.

eimta-MainConfigPCell, eimta-MainConfigSCell
If E-UTRAN configures eimta-MainConfigPCell or eimta-MainConfigSCell for one serving cell in a frequency band, E-UTRAN configures eimta-MainConfigPCell or eimta-MainConfigSCell for all serving cells residing on the frequency band. E-UTRAN configures eimta-MainConfigPCell or eimta-MainConfigSCell only if eimta-MainConfig is configured.

energyDetectionThresholdOffset
Indicates the offset to the default maximum energy detection threshold value. Unit in dB. Value -13 corresponds to -13dB, value -12 corresponds to -12dB, and so on (i.e. in steps of 1dB) as specified in TS 36.213 [23].

epdcch-Config
Indicates the EPDCCH-Config for the cell. E-UTRAN does not configure EPDCCH-Config for an SCell that is configured with value other for schedulingCellInfo in CrossCarrierSchedulingConfig.

k-max
Indicates the maximum number of interfering spatial layers signaled in the assistance information for MUST. Value 1 corresponds to 1 layer, Value 3 corresponds to 3 layers.

laa-SCellSubframeConfig
A bit-map indicating LAA SCell subframe configuration, "1" denotes that the corresponding subframe is allocated as MBSFN subframe. The bitmap is interpreted as follows: Starting from the first/leftmost bit in the bitmap, the allocation applies to subframes #1, #2, #3, #4, #6, #7, #8, and #9.

maxEnergyDetectionThreshold
Indicates the absolute maximum energy detection threshold value. Unit in dBm. Value -85 corresponds to -85 dBm, value -84 corresponds to -84 dBm, and so on (i.e. in steps of 1dBm) as specified in TS 36.213 [23]. If the field is not configured, the UE shall use a default maximum energy detection threshold value as specified in TS 36.213 [23].

p-a-must
Parameter: P_A, see TS 36.213 [23, 5, 2]. Value dB-6 corresponds to -6 dB, dB-4.77 corresponds to -4.77 dB etc.

pdsch-ConfigDedicated-v1130
For a serving frequency E-UTRAN configures pdsch-ConfigDedicated-v1130 only when transmission mode 10 is configured for the serving cell on this carrier frequency.

pdsch-ConfigDedicated-v1280
For a serving frequency E-UTRAN configures pdsch-ConfigDedicated-v1280 only when transmission mode 9 or 10 is configured for the serving cell on this carrier frequency.

pucch-Cell
If present, PUCCH feedback of this SCell is sent on the PUCCH SCell. If absent, PUCCH feedback of this SCell is sent on PCell or PSCell, or if the cell concerns the PUCCH SCell, on the concerned cell. If this field is not modified upon change of PUCCH SCell, the UE shall always send the PUCCH feedback of the concerned SCell using the configured PUCCH SCell.

pucch-ConfigDedicated
E-UTRAN configures pucch-ConfigDedicated-r13 only if pucch-ConfigDedicated (i.e., without suffix) is not configured. UE shall ignore pucch-ConfigDedicated-v1020 when pucch-ConfigDedicated-r13 is configured.
PhysicalConfigDedicated field descriptions

pucch-SCell
If present, the concerned SCell is the PUCCH SCell. E-UTRAN only configures this field upon SCell addition i.e. this field is only released when the SCell is released. The field is not applicable for an LAA SCell in this release.

pusch-ConfigDedicated-r13
E-UTRAN configures `pusch-ConfigDedicated-r13` only if `pusch-ConfigDedicated` is not configured.

pusch-ConfigDedicated-v1250
E-UTRAN configures `pusch-ConfigDedicated-v1250` only if `tpc-SubframeSet` is configured.

pusch-EnhancementsConfig
Indicates that the UE shall transmit in the PUSCH enhancement mode if `pusch-EnhancementsConfig` is set to *setup*, see TS 36.211 [21] and TS 36.213 [23].

semiOpenLoop
Value TRUE indicates that semi-open-loop transmission is used for deriving CSI reporting and corresponding PDSCH transmission (DMRS).

soundingRS-UL-PeriodicConfigDedicatedList
Indicates periodic soundingRS configuration except for the extension sounding symbols of the UpPTs subframe.

soundingRS-UL-PeriodicConfigDedicatedUpPTsExtList
Indicates periodic soundingRS configuration in extension sounding symbols of the UpPTs subframe.

soundingRS-UL-AperiodicConfigDedicatedList
Indicates aperiodic soundingRS configuration except for the extension sounding symbols of the UpPTs subframe.

soundingRS-UL-DedicatedApUpPTsExtList
Indicates aperiodic soundingRS configuration in extension sounding symbols of the UpPTs subframe.

srs-CC-SetIndexList
Indicates the `srs-CC-SetIndex` list which the `soundingRS-UL-ConfigDedicatedAperiodic` and `soundingRS-UL-ConfigDedicatedAperiodicUpPTsExt` belongs to.

subframeStartPosition
Indicates possible starting positions of transmission in the first subframe of the DL transmission burst, see TS 36.211 [21]. Value *s0* means the starting position is subframe boundary, *s07* means the starting position is either subframe boundary or slot boundary.

tpc-PDCCH-ConfigPUCCH
PDCCH configuration for power control of PUCCH using format 3/3A, see TS 36.212 [22].

tpc-PDCCH-ConfigPUSCH
PDCCH configuration for power control of PUSCH using format 3/3A, see TS 36.212 [22].

typeA-SRS-TPC-PDCCH-Group
Indicates Type A trigger configuration for SRS transmission on a PUSCH-less SCell. E-UTRAN configures the UE with either `typeA-SRS-TPC-PDCCH-Group` or `typeB-SRS-TPC-PDCCH-Group`, if any.

uplinkPowerControlDedicated
E-UTRAN configures `uplinkPowerControlDedicated-v1130` only if `uplinkPowerControlDedicated` (without suffix) is configured.

uplinkPowerControlDedicatedSCell
E-UTRAN configures `uplinkPowerControlDedicatedSCell-v1130` only if `uplinkPowerControlDedicatedSCell-r10` is configured for this serving cell.
Conditional presence	**Explanation**
AI-r8 | The field is optionally present, need ON, if `antennaInfoDedicated-r10` is absent. Otherwise the field is not present.
AI-r10 | The field is optionally present, need ON, if `antennaInfoDedicated` is absent. Otherwise the field is not present.
AperiodicSRS | If `soundingRS-UL-ConfigDedicatedAperiodic-r10` is absent, the field is optional, Need ON. Otherwise the field is not present and the UE shall delete any existing value for this field.
AperiodicSRSExt | If `soundingRS-UL-ConfigDedicatedAperiodicUpPTSExt-r13` is absent, the field is optional, Need ON. Otherwise the field is not present and the UE shall delete any existing value for this field.
CommonUL | The field is mandatory present if `ul-Configuration of RadioResourceConfigCommonSCell-r10` is present; otherwise it is optional, need ON.
CQI-r8 | The field is optionally present, need ON, if `cqi-ReportConfig-r10` is absent. Otherwise the field is not present.
CQI-r10 | The field is optionally present, need ON, if `cqi-ReportConfig` is absent. Otherwise the field is not present.
Cross-Carrier-Config | The field is optionally present, need ON, if `crossCarrierSchedulingConfig-r10` is absent. Otherwise the field is not present.
Cross-Carrier-ConfigUL | The field is optionally present, need ON, if `crossCarrierSchedulingConfig-r10` and `crossCarrierSchedulingConfig-r13` are absent or `schedulingCellInfo` is set to ‘own’. Otherwise the field is not present.
PeriodicSRS | If `soundingRS-UL-ConfigDedicated-r10` is absent, the field is optional, Need ON. Otherwise the field is not present and the UE shall delete any existing value for this field.
PeriodicSRSPCell | If `soundingRS-UL-ConfigDedicated` is absent, the field is optional, Need ON. Otherwise the field is not present and the UE shall delete any existing value for this field.
PeriodicSRSExt | If `soundingRS-UL-ConfigDedicatedUpPTSExt-r13` is absent, the field is optional, Need ON. Otherwise the field is not present and the UE shall delete any existing value for this field.
PUCCH-Format4or5 | The field is mandatory present with `pucch-Format-v1370` set to `setup` if `pucch-ConfigDedicated-r13` is configured and `pucch-ConfigDedicated-r13` indicates PUCCH format 4 or PUCCH format 5; otherwise it is not present and the UE shall delete any existing value for this field.
PUCCH-SCell1 | The field is optionally present, need OR, for SCell not configured with `pucch-configDedicated-r13`. Otherwise it is not present.
PUSCH-SCell | The field is optionally present, need ON, if `pusch-ConfigDedicatedSCell-r10` and `pusch-ConfigDedicated-v1130` are absent. Otherwise the field is not present.
PUSCH-SCell1 | The field is optionally present, need ON, for SCell not configured with `pusch-configDedicated-r13`. Otherwise it is not present.
SCellAdd | The field is mandatory present if `cellIdentification` is present; otherwise it is optional, need ON.
SRS-Trigger-TypeA | The field is mandatory present if `typeA-SRS-TPC-PDCCH-Group-r14` is present. Otherwise the field is not present and the UE shall delete any existing value for this field.

NOTE 1: During handover, the UE performs a MAC reset, which involves reverting to the default CQI/ SRS/ SR configuration in accordance with subclause 5.3.13 and TS 36.321 [6, 5.9 & 5.2]. Hence, for these parts of the dedicated radio resource configuration, the default configuration (rather than the configuration used in the source PCell) is used as the basis for the delta signalling that is included in the message used to perform handover.

NOTE 2: Since delta signalling is not supported for the common SCell configuration, E-UTRAN can only add or release the uplink of an SCell by releasing and adding the concerned SCell.

P-Max

The IE `P-Max` is used to limit the UE's uplink transmission power on a carrier frequency and is used to calculate the parameter `Pcompensation` defined in TS 36.304 [4]. Corresponds to parameter `P_{MAX}` or `P_{MAX,2}` in TS 36.101 [42]. The UE transmit power on one serving cell shall not exceed the configured maximum UE output power of the serving cell determined by this value as specified in TS 36.101 [42, 6.2.5 or 6.2.5A] or, when transmitting sidelink discovery announcements within the coverage of the concerned cell, as specified in TS 36.101 [42, 6.2.5D].

P-Max information element

```
P-Max ::= INTEGER (-30..33)
```
PRACH-Config

The IE PRACH-ConfigSIB and IE PRACH-Config are used to specify the PRACH configuration in the system information and in the mobility control information, respectively.

PRACH-Config information elements

PRACH-ConfigSIB ::= SEQUENCE {
 rootSequenceIndex INTEGER (0..837),
 prach-ConfigInfo PRACH-ConfigInfo
}

PRACH-ConfigSIB-v1310 ::= SEQUENCE {
 rsrp-ThresholdsPrachInfoList-r13 RSRP-ThresholdsPrachInfoList-r13,
 mpdcch-startSF-CSS-RA-r13 CHOICE {
 fdd-r13 ENUMERATED {v1, v1dot5, v2, v2dot5, v4, v5, v8, v10},
 tdd-r13 ENUMERATED {v1, v2, v4, v5, v8, v10, v20, spare}
 } OPTIONAL, -- Cond MP,
 prach-HoppingOffset-r13 INTEGER (0..94) OPTIONAL, -- Need OR,
 prach-ParametersListCE-r13 PRACH-ParametersListCE-r13
}

PRACH-Config ::= SEQUENCE {
 rootSequenceIndex INTEGER (0..837),
 prach-ConfigInfo PRACH-ConfigInfo OPTIONAL -- Need ON
}

PRACH-Config-v1310 ::= SEQUENCE {
 rsrp-ThresholdsPrachInfoList-r13 RSRP-ThresholdsPrachInfoList-r13 OPTIONAL, -- Cond MP,
 mpdcch-startSF-CSS-RA-r13 CHOICE {
 fdd-r13 ENUMERATED {v1, v1dot5, v2, v2dot5, v4, v5, v8, v10},
 tdd-r13 ENUMERATED {v1, v2, v4, v5, v8, v10, v20, spare}
 } OPTIONAL, -- Cond MP,
 prach-HoppingOffset-r13 INTEGER (0..94) OPTIONAL, -- Need OR,
 prach-ParametersListCE-r13 PRACH-ParametersListCE-r13 OPTIONAL, -- Cond MP,
 initial-CE-level-r13 INTEGER (0..3) OPTIONAL -- Need OR
}

PRACH-Config-v1430 ::= SEQUENCE {
 rootSequenceIndexHighSpeed-r14 INTEGER (0..837),
 zeroCorrelationZoneConfigHighSpeed-r14 INTEGER (0..12),
 prach-ConfigIndexHighSpeed-r14 INTEGER (0..63),
 prach-FreqOffsetHighSpeed-r14 INTEGER (0..94)
}

PRACH-ConfigSCell-r10 ::= SEQUENCE {
 prach-ConfigIndex-r10 INTEGER (0..63)
}

PRACH-ConfigInfo ::= SEQUENCE {
 prach-ConfigIndex INTEGER (0..63),
 highSpeedFlag BOOLEAN,
 zeroCorrelationZoneConfig INTEGER (0..15),
 prach-FreqOffset INTEGER (0..94)
}

PRACH-ParametersListCE-r13 ::= SEQUENCE {
 SIZE(1..maxCE-Level-r13) OF PRACH-ParametersCE-r13
}

PRACH-ParametersCE-r13 ::= SEQUENCE {
 prach-ConfigIndex-r13 INTEGER (0..63),
 prach-FreqOffset-r13 INTEGER (0..94),
 prach-StartingSubframe-r13 ENUMERATED {sf2, sf4, sf8, sf16, sf32, sf64, sf128, sf256},
 maxNumPreambleAttemptCE-r13 ENUMERATED {n3, n4, n5, n6, n7, n8, n10},
 numRepetitionPerPreambleAttempt-r13 ENUMERATED {n1,n2,n4,n8,n16,n32,n64,n128},
 mpdcch-NarrowbandsToMonitor-r13 SEQUENCE (SIZE(1..2)) OF
}
INTEGER (1..maxAvailNarrowBands-r13),

 mpdcch-NumRepetition-RA-r13 ENUMERATED (r1, r2, r4, r8, r16,
 r32, r64, r128, r256),

 prach-HoppingConfig-r13 ENUMERATED {on, off}

)
PRACH-Config field descriptions

initial-CE-level
Indicates initial PRACH CE level at random access, see TS 36.321 [6]. If not configured, UE selects PRACH CE level based on measured RSRP level, see TS 36.321 [6].

highSpeedFlag
Parameter: High-speed-flag, see TS 36.211 [21, 5.7.2]. TRUE corresponds to Restricted set and FALSE to Unrestricted set.

maxNumPreambleAttemptCE
Maximum number of preamble transmission attempts per CE level. See TS 36.321 [6]. If the field is absent, the UE shall use the default value n3.

mpdcch-NarrowbandsToMonitor
Narrowbands to monitor for MPDCCH for RAR, see TS 36.213 [23, 6.2]. Field values (1..maxAvailNarrowBands-r13) correspond to narrowband indices (0..[maxAvailNarrowBands-r13-1]) as specified in TS 36.211 [21].

mpdcch-NumRepetition-RA
Maximum number of repetitions for MPDCCH common search space (CSS) for RAR, Msg3 and Msg4, see TS 36.211 [21].

mpdcch-startSF-CSS-RA
Starting subframe configuration for MPDCCH common search space (CSS), including RAR, Msg3 retransmission, PDSCH with contention resolution and PDSCH with CCCH MAC SDU, see TS 36.211 [21] and TS 36.213 [23]. Value v1 corresponds to 1, value v1dot5 corresponds to 1.5, and so on.

numRepetitionPerPreambleAttempt
Number of PRACH repetitions per attempt for each CE level, See TS 36.211 [21].

prach-ConfigIndex
Parameter: prach-ConfigurationIndex, see TS 36.211 [21, 5.7.1].

prach-ConfigIndexHighSpeed
Parameter: prach-ConfigurationIndexHighSpeed, see TS 36.211 [21, 5.7.1]. If this field is present, the UE shall ignore prach-ConfigIndex.

prach-FreqOffset
Parameter: prach-FrequencyOffset, see TS 36.211 [21, 5.7.1]. For TDD the value range is dependent on the value of prach-ConfigIndex.

prach-FreqOffsetHighSpeed
Parameter: prach-FrequencyOffsetHighSpeed, see TS 36.211 [21, 5.7.1]. For TDD the value range is dependent on the value of prach-ConfigIndexHighSpeed. If this field is present, the UE shall ignore prach-FreqOffset.

prach-HoppingConfig
Coverage level specific frequency hopping configuration for PRACH.

prach-HoppingOffset
Parameter: PRACH frequency hopping offset, expressed as a number of resource blocks, see TS 36.211 [21, 5.7.1]

prach-ParametersListCE
The first entry in the list is the PRACH parameters of CE level 0, the second entry in the list is the PRACH parameters of CE level 1, and so on.

prach-StartingSubframe
PRACH starting subframe periodicity, expressed in number of subframes available for preamble transmission (PRACH opportunities), see TS 36.211 [21]. Value sf2 corresponds to 2 subframes, sf4 corresponds to 4 subframes and so on. EUTRAN configures the PRACH starting subframe periodicity larger than or equal to the number of PRACH repetitions per attempt for each CE level (numRepetitionPerPreambleAttempt).

If the field is absent, the value is determined implicitly in TS 36.211 [21, 5.7.1].

rootSequenceIndex
Parameter: RACH_ROOT_SEQUENCE, see TS 36.211 [21, 5.7.1].

rootSequenceIndexHighSpeed
The field indicates starting logical root sequence index used to derive the 64 random access preambles based on restricted set type B in high speed scenario, see TS 36.211 [21, 5.7.2]. If this field is present, the UE shall generate random access preambles based on restricted set type B and ignore rootSequenceIndex.

rsrp-ThresholdsPrachInfoList
The criterion for BL UEs and UEs in CE to select PRACH resource set. Up to 3 RSRP threshold values are signalled to determine the CE level for PRACH, see TS 36.213 [23]. The first element corresponds to RSRP threshold 1, the second element corresponds to RSRP threshold 2 and so on, see TS 36.321 [6]. The UE shall ignore this field if only one CE level, i.e. CE level 0, is configured in prach-ParametersListCE. The number of RSRP thresholds present in rsrp-ThresholdsPrachInfoList is equal to the number of CE levels configured in prach-ParametersListCE minus one.

zeroCorrelationZoneConfig
Parameter: Ncs configuration, see TS 36.211 [21, 5.7.2: table 5.7.2-2] for preamble format 0..3 and TS 36.211 [21, 5.7.2: table 5.7.2-3] for preamble format 4.

zeroCorrelationZoneConfigHighSpeed
The field indicates Ncs configuration for the restricted set type B in high speed scenario, see TS 36.211 [21, 5.7.2]. If this field is present, the UE shall generate random access preambles based on restricted set type B and ignore zeroCorrelationZoneConfig.
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>The field is mandatory present.</td>
</tr>
</tbody>
</table>

PresenceAntennaPort1

The IE *PresenceAntennaPort1* is used to indicate whether all the neighbouring cells use Antenna Port 1. When set to *TRUE*, the UE may assume that at least two cell-specific antenna ports are used in all neighbouring cells.

PresenceAntennaPort1 information element

```asn1
PresenceAntennaPort1 ::= BOOLEAN
```

PUCCH-Config

The IE *PUCCH-ConfigCommon* and IE *PUCCH-ConfigDedicated* are used to specify the common and the UE specific PUCCH configuration respectively.

PUCCH-Config information elements

```asn1
PUCCH-Config := SEQUENCE {
    deltaPUCCH-Shift ENUMERATED {ds1, ds2, ds3},
    nRB-CQI INTEGER (0..98),
    nCS-AN INTEGER (0..7),
    n1PUCCH-AN INTEGER (0..2047)
}

PUCCH-ConfigCommon ::= SEQUENCE {
    deltaPUCCH-Shift ENUMERATED {ds1, ds2, ds3},
    nRB-CQI INTEGER (0..98),
    nCS-AN INTEGER (0..7),
    n1PUCCH-AN INTEGER (0..2047),
    n1PUCCH-AN-InfoList-r13 N1PUCCH-AN-InfoList-r13 OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level0-r13 ENUMERATED {n1, n2, n4, n8} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level1-r13 ENUMERATED {n1, n2, n4, n8} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level2-r13 ENUMERATED {n4, n8, n16, n32} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level3-r13 ENUMERATED {n4, n8, n16, n32} OPTIONAL -- Need OR
}

PUCCH-ConfigCommon-v1310 ::= SEQUENCE {
    deltaPUCCH-Shift ENUMERATED {ds1, ds2, ds3},
    nRB-CQI INTEGER (0..98),
    nCS-AN INTEGER (0..7),
    n1PUCCH-AN INTEGER (0..2047),
    n1PUCCH-AN-InfoList-r13 N1PUCCH-AN-InfoList-r13 OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level0-r13 ENUMERATED {n1, n2, n4, n8} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level1-r13 ENUMERATED {n1, n2, n4, n8} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level2-r13 ENUMERATED {n4, n8, n16, n32} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level3-r13 ENUMERATED {n4, n8, n16, n32} OPTIONAL -- Need OR
}

PUCCH-ConfigCommon-v1430 ::= SEQUENCE {
    deltaPUCCH-Shift ENUMERATED {ds1, ds2, ds3},
    nRB-CQI INTEGER (0..98),
    nCS-AN INTEGER (0..7),
    n1PUCCH-AN INTEGER (0..2047),
    n1PUCCH-AN-InfoList-r13 N1PUCCH-AN-InfoList-r13 OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level0-r13 ENUMERATED {n1, n2, n4, n8} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level1-r13 ENUMERATED {n1, n2, n4, n8} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level2-r13 ENUMERATED {n4, n8, n16, n32} OPTIONAL, -- Need OR
    pucch-NumRepetitionCE-Msg4-Level3-r13 ENUMERATED {n4, n8, n16, n32} OPTIONAL -- Need OR
}

PUCCH-ConfigDedicated ::= SEQUENCE {
    ackNackRepetition CHOICE {
        release NULL,
        setup SEQUENCE {
            repetitionFactor ENUMERATED {n2, n4, n6, spare1},
            n1PUCCH-AN-Rep INTEGER (0..2047)
        }
    },
    tdd-AckNackFeedbackMode ENUMERATED { bundling, multiplexing } OPTIONAL -- Cond TDD
}

PUCCH-ConfigDedicated-v1020 ::= SEQUENCE {
    pucch-Format-r10 CHOICE {
        format3-r10 PUCCH-Format3-Conf-r13,
        channelSelection-r10 SEQUENCE {
            n1PUCCH-AN-CS-r10 CHOICE {
                release NULL,
                setup SEQUENCE {
                    n1PUCCH-AN-CS-List-r10 SEQUENCE (SIZE (1..2)) OF N1PUCCH-AN-CS-r10
                }
            }
        }
    }
}
```

etti
n1PUCCH-AN-RepP1-r10 INTEGER (0..2047) OPTIONAL -- Need OR

PUCCH-ConfigDedicated-v1130 ::= SEQUENCE {
 n1PUCCH-AN-CS-v1130 CHOICE {
 release NULL,
 setup SEQUENCE {
 n1PUCCH-AN-CS-ListP1-r11 SEQUENCE (SIZE (2..4)) OF INTEGER (0..2047)
 }
 }
}

nPUCCH-Param-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 nPUCH-Identity-r11 INTEGER (0..503),
 n1PUCCH-AN-r11 INTEGER (0..2047)
 }
}

PUCCH-ConfigDedicated-v1250 ::= SEQUENCE {
 nkaPUCCH-Param-r12 CHOICE {
 release NULL,
 setup SEQUENCE {
 nkaPUCCH-AN-r12 INTEGER (0..2047)
 }
 }
}

PUCCH-ConfigDedicated-r13 ::= SEQUENCE {
 --Release 8
 ackNackRepetition-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 repetitionFactor-r13 ENUMERATED {n2, n4, n6, spare1},
 n1PUCCH-AN-Rep-r13 INTEGER (0..2047)
 }
 },
 tdd-AckNackFeedbackMode-r13 ENUMERATED {bundling, multiplexing} OPTIONAL, -- Cond TDD
 --Release 10
 pucch-Format-r13 CHOICE {
 format3-r13 SEQUENCE {
 n3PUCCH-AN-List-r13 SEQUENCE (SIZE (1..4)) OF INTEGER (0..549) OPTIONAL, -- Need ON
 twoAntennaPortActivatedPUCCH-Format3-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 n3PUCCH-AN-ListP1-r13 SEQUENCE (SIZE (1..4)) OF INTEGER (0..549)
 }
 }
 }
 },
 channelSelection-r13 SEQUENCE {
 n1PUCCH-AN-CS-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 n1PUCCH-AN-CS-List-r13 SEQUENCE (SIZE (1..2)) OF N1PUCCH-AN-CS-r10,
 n1PUCCH-AN-CS-ListP1-r13 SEQUENCE (SIZE (2..4)) OF INTEGER (0..2047)
 }
 }
 }
 format4-r13 SEQUENCE {
 format4-resourceConfiguration-r13 SEQUENCE (SIZE (4)) OF Format4-resource-r13,
 format4-MultiCSI-resourceConfiguration-r13 Format5-resource-r13 OPTIONAL -- Need OR
 },
 format5-r13 SEQUENCE {
 format5-resourceConfiguration-r13 SEQUENCE (SIZE (4)) OF Format5-resource-r13,
 format5-MultiCSI-resourceConfiguration-r13 Format5-resource-r13 OPTIONAL -- Need OR
 }
}

twoAntennaPortActivatedPUCCH-Format1a1b-r13 ENUMERATED {true} OPTIONAL, -- Need OR

 simultaneousPUCCH-PUSCH-r13 ENUMERATED {true} OPTIONAL, -- Need OR
 n1PUCCH-AN-RepP1-r13 INTEGER (0..2047) OPTIONAL, -- Need OR

--Release 11
nPUCCH-Param-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 nPUCH-Identity-r13 INTEGER (0..503),
 n1PUCCH-AN-r13 INTEGER (0..2047)
 }
}
-- Release 12
 nkpUCCH-Param-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 nkpUCCH-AN-r13 INTEGER (0..2047)
 }
 }

-- Release 13
 spatialBundlingPUCCH-r13 BOOLEAN,
 spatialBundlingPUSCH-r13 BOOLEAN,
 harq-TimingTDD-r13 BOOLEAN,
 codebooksizeDetermination-r13 ENUMERATED {dai,cc} OPTIONAL, -- Need OR
 maximumPayloadCoderate-r13 INTEGER (0..7) OPTIONAL, -- Need OR
 pucch-NumRepetitionCE-r13 CHOICE {
 release NULL,
 setup CHOICE {
 modeA SEQUENCE {
 pucch-NumRepetitionCE-format1-r13 ENUMERATED {r1, r2, r4, r8},
 pucch-NumRepetitionCE-format2-r13 ENUMERATED {r1, r2, r4, r8}
 },
 modeB SEQUENCE {
 pucch-NumRepetitionCE-format1-r13 ENUMERATED {r4, r8, r16, r32},
 pucch-NumRepetitionCE-format2-r13 ENUMERATED {r4, r8, r16, r32}
 }
 }
 }

PUCCH-ConfigDedicated-v1370 ::= SEQUENCE {
 pucch-Format-v1370 CHOICE {
 release NULL,
 setup PUCCH-Format3-Conf-r13
 }
}

PUCCH-Format3-Conf-r13 ::= SEQUENCE {
 n3PUCCH-AN-List-r13 SEQUENCE SIZE (1..4) OF INTEGER (0..549) OPTIONAL, -- Need ON
 twoAntennaPortActivatedPUCCH-Format3-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 n3PUCCH-AN-ListP1-r13 SEQUENCE SIZE (1..4) OF INTEGER (0..549)
 }
 }
}

PUCCH-ConfigDedicated-v1430 ::= SEQUENCE {
 pucch-NumRepetitionCE-format1-r14 ENUMERATED {r64,r128} OPTIONAL -- Need OR
}

Format4-resource-r13 ::= SEQUENCE {
 startingPRB-format4-r13 INTEGER (0..109),
 numberOfPRB-format4-r13 INTEGER (0..7)
}

Format5-resource-r13 ::= SEQUENCE {
 startingPRB-format5-r13 INTEGER (0..109),
 cdm-index-format5-r13 INTEGER (0..1)
}

N1PUCCH-AN-CS-r10 ::= SEQUENCE SIZE (1..4) OF INTEGER (0..2047)

N1PUCCH-AN-InfoList-r13 ::= SEQUENCE SIZE(1..maxCE-Level-r13) OF INTEGER (0..2047)
-- ASNISTOP
PUCCH-Config field descriptions

ackNackRepetition
Parameter indicates whether ACK/NACK repetition is configured, see TS 36.213 [23, 10.1].

cdm-index-format5
Parameter $ n_{\text{nc}} $ see TS 36.211 [21, 5.4.2c] for determining PUCCH resource(s) of PUCCH format 5.

codebooksizeDetermination
Parameter indicates whether HARQ codebook size is determined with downlink assignment indicator based solution or number of configured CCs, see TS 36.212 [22, 5.2.2.6, 5.2.3.1 and 5.3.3.1.2] and TS 36.213 [23, 10.1.2.2.3, 10.1.3.2.3.1, 10.1.3.2.3.2 and 10.1.3.2.4].

deltaPUCCH-Shift
Parameter: $ \Delta^{\text{PUCCH}}_\text{shift} $, see TS 36.211 [21, 5.4.1], where $ ds_1 $ corresponds to value 1, $ ds_2 $ corresponds to value 2 etc.

harq-TimingTDD
Parameter indicates for a TDD SCell when aggregated with a TDD PCell of different UL/DL configurations whether deriving the HARQ timing for such a cell is done in the same way as the DL HARQ timing of an FDD SCell with a TDD PCell, see TS 36.213 [23, 10.2].

maximumPayloadCoderate
Maximum payload or code rate for multi P-CSI on each PUCCH resource, see TS 36.213 [23,10.1.1].

n1PUCCH-AN
Parameter: $ N^{(1)}_{\text{PUCCH}} $, see TS 36.213 [23, 10.1].

n1PUCCH-AN-r11 indicates UE-specific PUCCH AN resource offset, see TS 36.213 [23, 10.1].

n1PUCCH-AN-CS-List
Parameter $ n^{(1)}_{\text{PUCCH,0}} $ for antenna port $ p_0 $ for PUCCH format 1b with channel selection, see TS 36.213 [23, 10.1.2.2.1, 10.1.3.2.1].

n1PUCCH-AN-CS-ListP1
Parameter: $ n^{(1)}_{\text{PUCCH,1}}(p_1) $ for antenna port $ p_1 $ for PUCCH format 1b with channel selection, see TS 36.213 [23, 10.1]. E-UTRAN configures this field only when pucch-Format is set to channelSelection.

n1PUCCH-AN-Rep, n1PUCCH-AN-RepP1
Parameter: $ n^{(1)}_{\text{PUCCH,ANRep,0}}(p_0) $ for antenna port $ p_0 $ and for antenna port $ p_1 $ respectively, see TS 36.213 [23, 10.1].

n3PUCCH-AN-List, n3PUCCH-AN-ListP1
Parameter: $ n^{(3)}_{\text{PUCCH,1}}(p_1) $ for antenna port $ p_0 $ and for antenna port $ p_1 $ respectively, see TS 36.213 [23, 10.1].

nCS-An
Parameter: $ N^{(1)}_{\text{CS-An}} $ see TS 36.211 [21, 5.4].

nkaPUCCH-AN
Parameter: $ N^{(k)}_{\text{PUCCH}} $, see TS 36.213 [23, 10.1.3].

nkaPUCCH-AN-r12 indicates PUCCH format 1a/1b starting offset for the subframe set $ K^A $, see TS 36.213 [23, 10.1.3]. E-UTRAN configures nkaPUCCH-AN only if eimta-MainConfig is configured.

nPUCCH-Identity
Parameter: $ n^{(i)}_{\text{PUCCH}} $, see TS 36.211 [21, 5.5.1.5].

nRB-CQI
Parameter: $ N^{(2)}_{\text{RB-CQI}} $ see TS 36.211 [21, 5.4].

numberOfPRB-format4
Parameter $ n^{(i)}_{\text{PUCCH}} $ see TS 36.213 [23, Table 10.1.1-2] for determining PUCCH resource(s) of PUCCH format 4.

n1PUCCH-AN-InfoList
Starting offsets of the PUCCH resource(s) indicated by SIB1-BR. The first entry in the list is the starting offset of the PUCCH resource(s) of CE level 0, the second entry in the list is the starting offset of the PUCCH resource(s) of CE level 1, and so on. If E-UTRAN includes n1PUCCH-AN-InfoList, it includes the same number of entries as in prach-ParametersListCE. See TS 36.213 [23].

pucch-Format
Parameter indicates one of the PUCCH formats for transmission of HARQ-ACK, see TS 36.213 [23, 10.1]. For TDD, if the UE is configured with PCell only, the channelSelection indicates the transmission of HARQ-ACK multiplexing as defined in Tables 10.1.3-3, 10.1.3-6, and 10.1.3-7 in TS 36.213 [23] for PUCCH, and in 7.3 in TS 36.213 [23] for PUSCH. E-UTRAN only configures pucch-Format-v1370 when pucch-Format-r13 is configured and set to format4 or format5.
PUCCH-Config field descriptions

pucch-NumRepetitionCE
Number of PUCCH repetitions for PUCCH format 1/1a and for PUCCH format 2/2a/2b for CE modes A and B, see TS 36.211 [21] and TS 36.213 [23]. The UE shall ignore pucch-NumRepetitionCE-format2-r13, if received, for CE mode B in this release of specification. For UE in CE mode B supporting extended PUCCH repetition, if pucch-NumRepetitionCE-format1-r14 is included then the UE shall ignore pucch-NumRepetitionCE-format1-r13.

pucch-NumRepetitionCE-Msg4-Level0, pucch-NumRepetitionCE-Msg4-Level1, pucch-NumRepetitionCE-Msg4-Level2, pucch-NumRepetitionCE-Msg4-Level3
Number of repetitions for PUCCH carrying HARQ response to PDSCH containing Msg4 for PRACH CE levels 0, 1, 2 and 3, see TS 36.211 [21] and TS 36.213 [23]. Value n1 corresponds to 1 repetition, value n2 corresponds to 2 repetitions, and so on. For BL UEs or non-BL UEs in enhanced coverage supporting extended PUCCH repetition, if pucch-NumRepetitionCE-Msg4-Level3-r14 is included then the UE shall ignore pucch-NumRepetitionCE-Msg4-Level3-r13.

repetitionFactor
Parameter N_{ANrep} see TS 36.213 [23, 10.1] where n2 corresponds to repetition factor 2, n4 to 4.

simultaneousPUCCH-PUSCH
Parameter indicates whether simultaneous PUCCH and PUSCH transmissions is configured, see TS 36.213 [23, 10.1 and 5.1.1]. E-UTRAN configures this field for the PCell, only when the nonContiguousUL-RA-WithinCC-Info is set to supported in the band on which PCell is configured. Likewise, E-UTRAN configures this field for the PSCell, only when the nonContiguousUL-RA-WithinCC-Info is set to supported in the band on which PSCell is configured. Likewise, E-UTRAN configures this field for the PUCCH SCell, only when the nonContiguousUL-RA-WithinCC-Info is set to supported in the band on which PUCCH SCell is configured.

spatialBundlingPUCCH
Parameter indicates whether spatial bundling is enabled or not for PUCCH, see TS 36.212 [22, 5.2.3.1].

spatialBundlingPUSCH
Parameter indicates whether spatial bundling is enabled or not for PUSCH, see TS 36.212 [22, 5.2.2.6].

startingPRB-format4
Parameter $n^{(4)}_{PUCCH}$ see TS 36.211 [21, 5.4.3] for determining PUCCH resource(s) of PUCCH format 4.

startingPRB-format5
Parameter $n^{(5)}_{PUCCH}$ see TS 36.211 [21, 5.4.3] for determining PUCCH resource(s) of PUCCH format 5.

tdd-AckNackFeedbackMode
Parameter indicates one of the TDD ACK/NACK feedback modes used, see TS 36.213 [23, 7.3 and 10.1.3]. The value bundling corresponds to use of ACK/NACK bundling whereas, the value multiplexing corresponds to ACK/NACK multiplexing as defined in Tables 10.1.3-2, 10.1.3-3, and 10.1.3-4 in TS 36.213 [23]. The same value applies to both ACK/NACK feedback modes on PUCCH as well as on PUSCH.

twoAntennaPortActivatedPUCCH-Format1a1b
Indicates whether two antenna ports are configured for PUCCH format 1a/1b for HARQ-ACK, see TS 36.213 [23, 10.1]. The field also applies for PUCCH format 1a/1b transmission when format3 is configured, see TS 36.213 [23, 10.1.2.2.2, 10.1.3.2.2].

twoAntennaPortActivatedPUCCH-Format3
Indicates whether two antenna ports are configured for PUCCH format 3 for HARQ-ACK, see TS 36.213 [23, 10.1].

Conditional presence	Explanation
TDD | The field is mandatory present for TDD if the pucch-Format is not present. If the pucch-Format is present, the field is not present and the UE shall delete any existing value for this field. It is not present for FDD and the UE shall delete any existing value for this field.

PUSCH-Config

The IE PUSCH-ConfigCommon is used to specify the common PUSCH configuration and the reference signal configuration for PUSCH and PUCCH. The IE PUSCH-ConfigDedicated is used to specify the UE specific PUSCH configuration.

PUSCH-Config information element

```asn1
PUSCH-ConfigCommon ::= SEQUENCE {
  pusch-ConfigBasic SEQUENCE {
    n-SB INTEGER (1..4),
    hoppingMode ENUMERATED {interSubFrame, intraAndInterSubFrame},
    pusch-HoppingOffset INTEGER (0..98),
    enable64QAM BOOLEAN
  }
}
```
PUSCH-ConfigCommon-v1270 ::= SEQUENCE {
 enable64QAM-v1270 ENUMERATED {true}
}

PUSCH-ConfigCommon-v1310 ::= SEQUENCE {
 pusch-maxNumRepCCEmodeA-r13 ENUMERATED {
 r8, r16, r32 } OPTIONAL, -- Need OR
 pusch-maxNumRepCCEmodeB-r13 ENUMERATED {
 r192, r256, r384, r512, r768, r1024,
 r1536, r2048 } OPTIONAL, -- Need OR
 pusch-HoppingOffset-v1310 INTEGER {1..maxAvailNarrowBands-r13} OPTIONAL -- Need OR
}

PUSCH-ConfigDedicated ::= SEQUENCE {
 betaOffset-ACK-Index INTEGER {0..15},
 betaOffset-RI-Index INTEGER {0..15},
 betaOffset-CQI-Index INTEGER {0..15}
}

PUSCH-ConfigDedicated-v1020 ::= SEQUENCE {
 betaOffsetMC-r10 SEQUENCE {
 betaOffset-ACK-Index-MC-r10 INTEGER {0..15},
 betaOffset-RI-Index-MC-r10 INTEGER {0..15},
 betaOffset-CQI-Index-MC-r10 INTEGER {0..15} OPTIONAL, -- Need OR
 } OPTIONAL, -- Need OR
 groupHoppingDisabled-r10 ENUMERATED {true} OPTIONAL, -- Need OR
 dmrs-WithoutCCE-Activated-r10 ENUMERATED {true} OPTIONAL -- Need OR
}

PUSCH-ConfigDedicated-v1130 ::= SEQUENCE {
 pusch-DMRS-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 nPUSCH-Identity-r11 INTEGER {0..509},
 nDMRS-CSH-Identity-r11 INTEGER {0..509}
 }
 }
}

PUSCH-ConfigDedicated-v1250 ::= SEQUENCE {
 uciOnPUSCH CHOICE {
 release NULL,
 setup SEQUENCE {
 betaOffset-ACK-Index-SubframeSet2-r12 INTEGER {0..15},
 betaOffset-RI-Index-SubframeSet2-r12 INTEGER {0..15},
 betaOffset-CQI-Index-SubframeSet2-r12 INTEGER {0..15},
 betaOffsetMC-r12 SEQUENCE {
 betaOffset-ACK-Index-MC-SubframeSet2-r12 INTEGER {0..15},
 betaOffset-RI-Index-MC-SubframeSet2-r12 INTEGER {0..15},
 betaOffset-CQI-Index-MC-SubframeSet2-r12 INTEGER {0..15} OPTIONAL -- Need OR
 }
 }
 }
}

PUSCH-ConfigDedicated-r13 ::= SEQUENCE {
 betaOffset-ACK-Index-r13 INTEGER {0..15},
 betaOffset2-ACK-Index-r13 INTEGER {0..15} OPTIONAL, -- Need OR
 betaOffset-CQI-Index-r13 INTEGER {0..15},
 betaOffsetMC-r13 SEQUENCE {
 betaOffset-ACK-Index-MC-r13 INTEGER {0..15},
 betaOffset2-ACK-Index-MC-r13 INTEGER {0..15},
 betaOffset-CQI-Index-MC-r13 INTEGER {0..15} OPTIONAL, -- Need OR
 } OPTIONAL, -- Need OR
 groupHoppingDisabled-r13 ENUMERATED {true} OPTIONAL, -- Need OR
 dmrs-WithoutCCE-Activated-r13 ENUMERATED {true} OPTIONAL, -- Need OR
 pusch-DMRS-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 nPUSCH-Identity-r13 INTEGER {0..509},
 nDMRS-CSH-Identity-r13 INTEGER {0..509}
 }
 }
}
uciOnPUSCH

release

setup

SEQUENCE {
 betaOffset-ACK-Index-SubframeSet2-r13 INTEGER (0..15),
 betaOffset2-ACK-Index-SubframeSet2-r13 INTEGER (0..15) OPTIONAL, -- Need OR
 betaOffset-RI-Index-SubframeSet2-r13 INTEGER (0..15),
 betaOffset-CQI-Index-SubframeSet2-r13 INTEGER (0..15),
}

betaOffsetMC-r12

SEQUENCE {
 betaOffset-ACK-Index-MC-SubframeSet2-r13 INTEGER (0..15),
 betaOffset2-ACK-Index-MC-SubframeSet2-r13 INTEGER (0..15) OPTIONAL, -- Need OR
 betaOffset-RI-Index-MC-SubframeSet2-r13 INTEGER (0..15),
 betaOffset-CQI-Index-MC-SubframeSet2-r13 INTEGER (0..15) OPTIONAL -- Need OR
}

pusch-HoppingConfig-r13

ENUMERATED {on} OPTIONAL -- Need OR

PUSCH-ConfigDedicated-v1430 :=

SEQUENCE {
 ce-PUSCH-NB-MaxTBS-r14 ENUMERATED {on} OPTIONAL, -- Need OR
 ce-PUSCH-MaxBandwidth-r14 ENUMERATED {bw5} OPTIONAL, -- Need OR
 tdd-PUSCH-UpPTS-r14 TDD-PUSCH-UpPTS-r14 OPTIONAL, -- Need ON
 ul-dmrs-IDFDMA-r14 BOOLEAN,
 enable256QAM-r14 Enable256QAM-r14 OPTIONAL -- Need ON
}

PUSCH-ConfigDedicatedSCell-r10 :=

SEQUENCE {
 groupHoppingDisabled-r10 ENUMERATED {true} OPTIONAL, -- Need OR
 dmrs-WithOCC-Activated-r10 ENUMERATED {true} OPTIONAL -- Need OR
}

PUSCH-ConfigDedicatedSCell-v1430 :=

SEQUENCE {
 enable256QAM-r14 Enable256QAM-r14 OPTIONAL -- Need OR
}

TDD-PUSCH-UpPTS-r14 :=

CHOICE {
 release NULL,
 setup

 SEQUENCE {
 symPUSCH-UpPTS-r14 ENUMERATED {sym1, sym2, sym3, sym4, sym5, sym6}
 OPTIONAL, -- Need ON
 dmrs-LessUpPTS-Config-r14 ENUMERATED {true} OPTIONAL -- Need OR
 }
}

Enable256QAM-r14 :=

CHOICE {
 release NULL,
 setup

 CHOICE {
 tpc-SubframeSet-Configured-r14 SEQUENCE {
 subframeSet1-DCI-Format0-r14 BOOLEAN,
 subframeSet1-DCI-Format4-r14 BOOLEAN,
 subframeSet2-DCI-Format0-r14 BOOLEAN,
 subframeSet2-DCI-Format4-r14 BOOLEAN
 },
 tpc-SubframeSet-NotConfigured-r14 SEQUENCE {
 dci-Format0-r14 BOOLEAN,
 dci-Format4-r14 BOOLEAN
 }
 }
}

PUSCH-EnhancementsConfig-r14 :=

CHOICE {
 release NULL,
 setup

 SEQUENCE {
 pusch-HoppingOffsetPUSCH-Enh-r14 INTEGER (1..100) OPTIONAL, -- Need ON
 interval-ULHoppingPUSCH-Enh-r14

 CHOICE {
 interval-FDD-PUSCH-Enh-r14 ENUMERATED {int1, int2, int4, int8},
 interval-TDD-PUSCH-Enh-r14 ENUMERATED {int1, int5, int10, int20}
 }
 } OPTIONAL -- Need ON
}

UL-ReferenceSignalsPUSCH :=

SEQUENCE {
 groupHoppingEnabled BOOLEAN,
 groupAssignmentPUSCH INTEGER (0..29),
 sequenceHoppingEnabled BOOLEAN,
 cyclicShift INTEGER (0..7)
}
PUSCH-Config field descriptions

betaOffset-ACK-Index, betaOffset2-ACK-Index, betaOffset-ACK-Index-MC, betaOffset2-ACK-Index-MC

- **Parameter:** \(\text{I}^{\text{HARQ-ACK offset}}_{\text{set2}}, \text{I}^{\text{HARQ-ACK offset}}_{\text{set2},X}, \text{I}^{\text{HARQ-ACK offset,MC}}_{\text{set2}}, \text{I}^{\text{HARQ-ACK offset,MC,X}}_{\text{set2}} \), for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-1].
- **betaOffset-ACK-Index and betaOffset2-ACK-Index are used for single-codeword and betaOffset-ACK-Index-MC and betaOffset2-ACK-Index-MC are used for multiple-codeword.**
- **If betaOffset2-ACK-Index is configured; betaOffset-ACK-Index is used when up to 22 HARQ-ACK bits are transmitted otherwise betaOffset2-ACK-Index is used.**
- **If betaOffset2-ACK-Index-MC is configured; betaOffset-ACK-Index-MC is used when up to 22 HARQ-ACK bits are transmitted otherwise betaOffset2-ACK-Index-MC is used.**
- **One value applies for all serving cells with an uplink in a cell group (MCG or SCG or the group of cells configured to send PUCCH on the same cell in case PUCCH SCell is configured) and not configured with uplink power control subframe sets.**
- **The same value also applies for subframe set 1 of all serving cells with an uplink in that cell group and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell).**

betaOffset-ACK-Index-SubframeSet2, betaOffset2-ACK-Index-SubframeSet2, betaOffset-ACK-Index-MC-SubframeSet2, betaOffset2-ACK-Index-MC-SubframeSet2

- **Parameter:** \(\text{I}^{\text{HARQ-ACK offset}}_{\text{set2}}, \text{I}^{\text{HARQ-ACK offset,MC}}_{\text{set2},X} \), for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-1].
- **betaOffset-ACK-Index-SubframeSet2 and betaOffset2-ACK-Index-SubframeSet2 are used for single-codeword, betaOffset-ACK-Index-MC-SubframeSet2 and betaOffset2-ACK-Index-MC-SubframeSet2 are used for multiple-codeword.**
- **If betaOffset2-ACK-Index-SubframeSet2 is configured; betaOffset-ACK-Index-SubframeSet2 is used when up to 22 HARQ-ACK bits are transmitted otherwise betaOffset2-ACK-Index-SubframeSet2 is used.**
- **If betaOffset2-ACK-Index-MC-SubframeSet2 is configured; betaOffset-ACK-Index-MC-SubframeSet2 is used when up to 22 HARQ-ACK bits are transmitted otherwise betaOffset2-ACK-Index-MC-SubframeSet2 is used.**
- **One value applies for subframe set 2 of all serving cells with an uplink in a cell group (MCG or SCG or the group of cells configured to send PUCCH on the same cell in case PUCCH SCell is configured) and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell configured with uplink power control subframe sets).**

betaOffset-CQI-Index, betaOffset-CQI-Index-MC

- **Parameter:** \(\text{I}^{\text{CQI offset}}_{\text{set2}}, \text{I}^{\text{CQI offset,MC}}_{\text{set2},X} \), for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-3].
- **One value applies for all serving cells with an uplink in a cell group (MCG or SCG or the group of cells configured to send PUCCH on the same cell in case PUCCH SCell is configured) and not configured with uplink power control subframe sets.**
- **The same value also applies for subframe set 1 of all serving cells with an uplink in that cell group and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell).**

betaOffset-CQI-Index-SubframeSet2, betaOffset-CQI-Index-MC-SubframeSet2

- **Parameter:** \(\text{I}^{\text{CQI offset}}_{\text{set2}}, \text{I}^{\text{CQI offset,MC}}_{\text{set2},X} \), for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-3].
- **One value applies for subframe set 2 of all serving cells with an uplink in a cell group (MCG or SCG or the group of cells configured to send PUCCH on the same cell in case PUCCH SCell is configured) and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell configured with uplink power control subframe sets).**

betaOffset-RI-Index, betaOffset-RI-Index-MC

- **Parameter:** \(\text{I}^{\text{RI offset}}_{\text{set2}}, \text{I}^{\text{RI offset,MC}}_{\text{set2},X} \), for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-2].
- **One value applies for all serving cells with an uplink in a cell group (MCG or SCG or the group of cells configured to send PUCCH on the same cell in case PUCCH SCell is configured) and not configured with uplink power control subframe sets.**
- **The same value also applies for subframe set 1 of all serving cells with an uplink in that cell group and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell).**

betaOffset-RI-Index-SubframeSet2, betaOffset-RI-Index-MC-SubframeSet2

- **Parameter:** \(\text{I}^{\text{RI offset}}_{\text{set2}}, \text{I}^{\text{RI offset,MC}}_{\text{set2},X} \), for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-2].
- **One value applies for subframe set 2 of all serving cells with an uplink in a cell group (MCG or SCG or the group of cells configured to send PUCCH on the same cell in case PUCCH SCell is configured) and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell configured with uplink power control subframe sets).**

ce-PUSCH-MaxBandwidth

- **Maximum PUSCH channel bandwidth in CE mode A, see TS 36.212 [22] and TS 36.213 [23]. Value bw5 corresponds to 5 MHz.**
- **If this field is not configured, the maximum PUSCH channel bandwidth in CE mode A set to 1.4 MHz.**
- **The maximum PUSCH channel bandwidth in CE mode B is 1.4 MHz regardless of the setting of this parameter.**
- **Parameter:** transmission bandwidth configuration, see TS 36.101 [42, table 5.6-1].

ce-PUSCH-NB-MaxTBS

- **Activation of 2984 bits maximum PUSCH TBS in 1.4 MHz in CE mode A, see TS 36.212 [22] and TS 36.213 [23].**

cyclicShift

- **Parameters:** cyclicShift, see TS 36.211 [21, Table 5.5.2.1.1-2].

dmsr-LessUpPTS-Config

- **Indicates the UE not to transmit DMRS for PUSCH in UpPTS, see TS36.211 [21, 5.5.2.1.2].**
PUSCH-Config field descriptions

dmrs-WithOCC-Activated
Parameter: Activate-DMRS-with OCC, see TS 36.211 [21, 5.5.2.1].

enable256QAM
See TS 36.213 [23, 8.6.1]. If enable256QAM is included and if uplink power control subframe sets are configured by tpc-SubframeSet, the field indicates (if set to TRUE) per uplink power control subframe set and DCI format 0 and 4 that 256QAM is allowed for UE UL categories 16 to 20 indicated in ue-CategoryUL-v1430, while FALSE indicates that 256 QAM is not allowed. If enable256QAM is included and if uplink power control subframe sets are not configured by tpc-SubframeSet, the field indicates (if set to TRUE) per uplink power control subframe set and DCI format 0 and 4 that 256QAM is allowed for UE UL categories 16 to 20 indicated in ue-CategoryUL-v1430, while FALSE indicates that 256 QAM is not allowed.

enable64QAM
See TS 36.213 [23, 8.6.1]. If enable64QAM (without suffix) is set to TRUE, it indicates that 64QAM is allowed for UE categories 5 and 8 indicated in ue-Category and UL categories indicated in ue-CategoryUL which support UL 64QAM and can fallback to category 5 or 8, see TS 36.306 [5, Table 4.1A-2 and Table 4.1A-6], while FALSE indicates that 64QAM is not allowed. If enable64QAM-v1270 is set to TRUE, it indicates that 64QAM is allowed for UL categories indicated in ue-CategoryUL which support UL 64QAM but cannot fallback category 5 or 8, see TS 36.306 [5, Table 4.1A-2 and Table 4.1A-6]. E-UTRAN configures enable64QAM-v1270 only when enable64QAM (without suffix) is set to TRUE.

interval-ULHoppingPUSCH-Enh
Number of consecutive absolute subframes over which PUSCH stays at the same PRBs before hopping to other PRBs. For interval-FDD-PUSCH-Enh, int1 corresponds to 1 subframe, int2 corresponds to 2 subframes, and so on. For interval-TDD-PUSCH-Enh, int1 corresponds to 1 subframe, int5 corresponds to 5 subframes, and so on. See TS 36.211 [21, 5.3.4].

groupAssignmentPUSCH
Parameter: ΔSS, see TS 36.211 [21, 5.5.1.3].

groupHoppingDisabled
Parameter: Disable-sequence-group-hopping, see TS 36.211 [21, 5.5.1.3].

groupHoppingEnabled
Parameter: Group-hopping-enabled, see TS 36.211 [21, 5.5.1.3].

hoppingMode
Parameter: Hopping-mode, see TS 36.211 [21, 5.3.4].

nDMRS-CSH-Identity
Parameter: Ncsh_DMRS, see TS 36.211 [21, 5.5.2.1.1].

nPUSCH-Identity
Parameter: nPUSCH, see TS 36.211 [21, 5.5.2.1.1].

n-SB
Parameter: Nsb, see TS 36.211 [21, 5.3.4].

pusch-HoppingConfig
For BL UEs and UEs in CE, frequency hopping activation/deactivation for unicast PUSCH, see TS 36.211 [21]

pusch-hoppingOffset
Except for BL UEs and UEs in CE, parameter: NHO, see TS 36.211 [21, 5.3.4]. For BL UEs and UEs in CE, the pusch-hoppingOffset-v1310 indicates the parameter \(f_{\text{PUSCH}} \), see TS 36.211 [21, 5.3.4]. In case pusch-hoppingOffset-v1310 is signalled, the BL UEs and UEs in CE shall ignore pusch-hoppingOffset (i.e. without suffix).

pusch-HoppingOffsetPUSCH-Enh
Indicates the frequency domain hopping offset between PRBs for PUSCH in frequency hopping, see TS 36.211 [21, 5.3.4]. Value 1 corresponds to 1 PRB, value 2 corresponds to 2 PRBs, and so on.

pusch-maxNumRepetitionCEmodeA
Maximum value to indicate the set of PUSCH repetition numbers for CE mode A, see TS 36.211 [21] and TS 36.213 [23]. E-UTRAN does not configure value r8. If the field is not configured, the UE shall apply the default value as defined in TS 36.213 [23, 8.0].

pusch-maxNumRepetitionCEmodeB
Maximum value to indicate the set of PUSCH repetition numbers for CE mode B, see TS 36.211 [21] and TS 36.213 [23].

sequenceHoppingEnabled
Parameter: Sequence-hopping-enabled, see TS 36.211 [21, 5.5.1.4].

symPUSCH-UpPTS
Indicates the number of data symbols that configured for PUSCH transmission in UpPTS. Values sym2, sym3, sym4, sym5 and sym6 can be used for normal cyclic prefix and values sym1, sym2, sym3, sym4 and sym5 can be used for extended cyclic prefix, see TS 36.213 [23, 8.6.2] and TS 36.211 [21, 5.3.4].

ul-DMRS-IFDMA
Value TRUE indicates that the UE is configured with enhanced UL DMRS.

ul-ReferenceSignalsPUSCH
Used to specify parameters needed for the transmission on PUSCH (or PUCCH).
The IE **RACH-ConfigCommon** is used to specify the generic random access parameters.

RACH-ConfigCommon information element

```asn1
RACH-ConfigCommon ::= SEQUENCE {
    preambleInfo SEQUENCE {
        numberOfOFRA-Preambles ENUMERATED {
            n4, n8, n12, n16, n20, n24, n28,
            n32, n36, n40, n44, n48, n52, n56,
            n60, n64},
    },
    preamblesGroupAConfig SEQUENCE {
        sizeOfRA-PreamblesGroupA ENUMERATED {
            n4, n8, n12, n16, n20, n24, n28,
            n32, n36, n40, n44, n48, n52, n56,
            n60},
        messageSizeGroupA ENUMERATED {b56, b144, b208, b256},
        messagePowerOffsetGroupB ENUMERATED {
            minusinfinity, dB0, dB5, dB8, dB10, dB12,
            dB15, dB18},
    } OPTIONAL -- Need OP,
    powerRampingParameters PowerRampingParameters,
    ra-SupervisionInfo SEQUENCE {
        preambleTransMax PreambleTransMax,
        ra-ResponseWindowSize ENUMERATED {
            sf2, sf3, sf4, sf5, sf6, sf7,
            sf8, sf10},
        mac-ContentionResolutionTimer ENUMERATED {
            sf8, sf16, sf24, sf32, sf40, sf48,
            sf56, sf64},
    },
    maxHARQ-Msg3Tx INTEGER (1..8),
    ...,
    preambleTransMax-CE-r13 PreambleTransMax OPTIONAL, -- Need OR
    rach-CE-LevelInfoList-r13 RACH-CE-LevelInfoList-r13 OPTIONAL -- Need OR
}
```

RACH-ConfigCommon-v1250 ::= SEQUENCE {
 txFailParams-r12 SEQUENCE {
 connEstFailCount-r12 ENUMERATED {n1, n2, n3, n4},
 connEstFailOffsetValidity-r12 ENUMERATED {s30, s60, s120, s240,
 s300, s420, s600, s900},
 connEstFailOffset-r12 INTEGER (0..15) OPTIONAL -- Need OP
 },
}

RACH-ConfigCommonSCell-r11 ::= SEQUENCE {
 powerRampingParameters-r11 PowerRampingParameters,
 ra-SupervisionInfo-r11 SEQUENCE {
 preambleTransMax-r11 PreambleTransMax
 },
 ...,
}

RACH-CE-LevelInfoList-r13 ::= SEQUENCE {
 SIZE (1..maxCE-Level-r13)) OF RACH-CE-LevelInfo-r13
}

RACH-CE-LevelInfo-r13 ::= SEQUENCE {
 preambleMappingInfo-r13 SEQUENCE {
 firstPreamble-r13 INTEGER(0..63),
 lastPreamble-r13 INTEGER(0..63)
 },
 ra-ResponseWindowSize-r13 ENUMERATED {sf20, sf50, sf80, sf120, sf180,
 sf240, sf320, sf400},
 mac-ContentionResolutionTimer-r13 ENUMERATED {sf80, sf100, sf120,
 sf160, sf200, sf240, sf480, sf960},
 rach-HoppingConfig-r13 ENUMERATED {on,off},
 ...}
PowerRampingParameters ::= SEQUENCE {
powerRampingStep ENUMERATED {dB0, dB2, dB4, dB6},
preambleInitialReceivedTargetPower ENUMERATED {
 dBm-120, dBm-118, dBm-116, dBm-114, dBm-112,
 dBm-110, dBm-108, dBm-106, dBm-104, dBm-102,
 dBm-100, dBm-98, dBm-96, dBm-94,
 dBm-92, dBm-90}
}
PreambleTransMax ::= ENUMERATED {
 n3, n4, n5, n6, n7, n8, n10, n20, n50,
 n100, n200}

--- ASN1STOP

RACH-ConfigCommon field descriptions

connEstFailCount
Number of times that the UE detects T300 expiry on the same cell before applying connEstFailOffset.

connEstFailOffset
Parameter “Qoffsettemp” in TS 36.304 [4]. If the field is not present the value of infinity shall be used for “Qoffsettemp”.

connEstFailOffsetValidity
Amount of time that the UE applies connEstFailOffset before removing the offset from evaluation of the cell. Value s30 corresponds to 30 seconds, s60 corresponds to 60 seconds, and so on.

mac-ContentionResolutionTimer
Timer for contention resolution in TS 36.321 [6]. Value in subframes. Value sf8 corresponds to 8 subframes, sf16 corresponds to 16 subframes and so on.

maxHARQ-Msg3Tx
Maximum number of Msg3 HARQ transmissions in TS 36.321 [6], used for contention based random access. Value is an integer.

messagePowerOffsetGroupB
Threshold for preamble selection in TS 36.321 [6]. Value in dB. Value minus infinity corresponds to –infinity. Value dB0 corresponds to 0 dB, dB5 corresponds to 5 dB and so on.

messageSizeGroupA
Threshold for preamble selection in TS 36.321 [6]. Value in bits. Value b56 corresponds to 56 bits, b144 corresponds to 144 bits and so on.

numberOfRA-Preambles
Number of non-dedicated random access preambles in TS 36.321 [6]. Value is an integer. Value n4 corresponds to 4, n8 corresponds to 8 and so on.

powerRampingStep
Power ramping factor in TS 36.321 [6]. Value in dB. Value dB0 corresponds to 0 dB, dB2 corresponds to 2 dB and so on.

preambleInitialReceivedTargetPower
Initial preamble power in TS 36.321 [6]. Value in dBm. Value dBm-120 corresponds to -120 dBm, dBm-118 corresponds to -118 dBm and so on.

preambleMappingInfo
Provides the mapping of preambles to groups for each CE level, as specified in TS 36.321 [6]. When random access preambles group B is used, firstPreamble-r13 is set to 0 and lastPreamble-r13 is set to numberOfRA-Preambles-1.

preamblesGroupAConfig
Provides the configuration for preamble grouping in TS 36.321 [6]. If the field is not signalled, the size of the random access preambles group A [6] is equal to numberOfRA-Preambles.

preambleTransMax, preambleTransMax-CE
Maximum number of preamble transmission in TS 36.321 [6]. Value is an integer. Value n3 corresponds to 3, n4 corresponds to 4 and so on.

rach-CE-LevelInfoList
Provides RACH information each coverage level. The first entry in the list contains RACH information of CE level 0, the second entry in the list contains RACH information of CE level 1, and so on. If E-UTRAN includes rach-CE-LevelInfoList, it includes the same number of entries as in prach-ParametersListCE.

ra-ResponseWindowSize
Duration of the RA response window in TS 36.321 [6]. Value in subframes. Value sf2 corresponds to 2 subframes, sf3 corresponds to 3 subframes and so on. The same value applies for each serving cell (although the associated functionality is performed independently for each cell).

rar-HoppingConfig
Frequency hopping activation/deactivation for RAR/Msg3/Msg4 for a CE level, see TS 36.211 [21].

sizeOfRA-PreamblesGroupA
Size of the random access preambles group A in TS 36.321 [6]. Value is an integer. Value n4 corresponds to 4, n8 corresponds to 8 and so on.
The IE \textit{RACH-ConfigDedicated} is used to specify the dedicated random access parameters.

\textbf{RACH-ConfigDedicated} information element

\begin{verbatim}
RACH-ConfigDedicated ::= SEQUENCE {
 ra-PreambleIndex INTEGER (0..63),
 ra-PRACH-MaskIndex INTEGER (0..15)
}
\end{verbatim}

\textbf{RACH-ConfigDedicated} field descriptions

- \textit{ra-PRACH-MaskIndex}
 Explicitly signalled PRACH Mask Index for RA Resource selection in TS 36.321 [6].

- \textit{ra-PreambleIndex}

\textbf{RadioResourceConfigCommon}

The IE \textit{RadioResourceConfigCommonSIB} and IE \textit{RadioResourceConfigCommon} are used to specify common radio resource configurations in the system information and in the mobility control information, respectively, e.g., the random access parameters and the static physical layer parameters.

\textbf{RadioResourceConfigCommon} information element

\begin{verbatim}
RadioResourceConfigCommonSIB ::= SEQUENCE {
 rach-ConfigCommon RACH-ConfigCommon,
 bcch-Config BCCH-Config,
 pcch-Config PCCH-Config,
 prach-Config PRACH-ConfigSIB,
 pdsch-ConfigCommon PDSCH-ConfigCommon,
 pusch-ConfigCommon PUSCH-ConfigCommon,
 pucch-ConfigCommon PUCCH-ConfigCommon,
 soundingRS-UL-ConfigCommon SoundingRS-UL-ConfigCommon,
 uplinkPowerControlCommon UplinkPowerControlCommon,
 ul-CyclicPrefixLength UL-CyclicPrefixLength,
 ...,
 [[rach-ConfigCommon-v1250 RACH-ConfigCommon-v1250 OPTIONAL -- Need OR
]],
 [[bcch-Config-v1310 BCCH-Config-v1310 OPTIONAL, -- Need OR
]],
 [[pusch-ConfigCommon-v1270 PUSCH-ConfigCommon-v1270 OPTIONAL -- Need OR
]],
 [[highSpeedConfig-r14 HighSpeedConfig-r14 OPTIONAL, -- Need OR
]]
}

RadioResourceConfigCommon ::= SEQUENCE {
 rach-ConfigCommon RACH-ConfigCommon OPTIONAL, -- Need ON
 prach-Config PRACH-Config,
 pdsch-ConfigCommon PDSCH-ConfigCommon,
 pucch-ConfigCommon PUCCH-ConfigCommon,
 phich-Config PHICH-Config,
 pucch-ConfigCommon PUCCH-ConfigCommon,
 soundingRS-UL-ConfigCommon SoundingRS-UL-ConfigCommon OPTIONAL, -- Need ON

RadioResourceConfigCommonPSCell-r12 ::= SEQUENCE {
 basicFields-r12 RadioResourceConfigCommonSCell-r10r0,
pucch-ConfigCommon-r12 PUSCH-ConfigCommon-r120,
rach-ConfigCommon-r12 RACH-ConfigCommon-r120,
 uplinkPowerControlCommonPSCell-r12 UplinkPowerControlCommonPSCell-r120,
 ...,
[[uplinkPowerControlCommonPSCell-v1310
 UplinkPowerControlCommon-v1310 OPTIONAL -- Need ON
]],
[[tdd-Config-v1450 TDD-Config-v1450 OPTIONAL -- Cond TDD3
],
[[tdd-Config-v1450 TDD-Config-v1450 OPTIONAL -- Cond TDD3
]]
}

RadioResourceConfigCommonPSCell-v12f0 ::= SEQUENCE {
 basicFields-v12f0 RadioResourceConfigCommonSCell-v10l0
}

RadioResourceConfigCommonPSCell-v1440 ::= SEQUENCE {
 basicFields-v1440 RadioResourceConfigCommonSCell-v1440
}

RadioResourceConfigCommonSCell-r10 ::= SEQUENCE {
 -- DL configuration as well as configuration applicable for DL and UL
 nonUL-Configuration-r10 SEQUENCE {
 -- 1: Cell characteristics
 dl-Bandwidth-r10 ENUMERATED {n6, n15, n25, n50, n75, n100},
 -- 2: Physical configuration, general
 antennaInfoCommon-r10 AntennaInfoCommon,
mbsfn-SubframeConfigList-r10 MBSFN-SubframeConfigList OPTIONAL, -- Need OR
 -- 3: Physical configuration, control
 phich-Config-r10 PHICH-Config,
 -- 4: Physical configuration, physical channels
 pdsch-ConfigCommon-r10 PDSCH-ConfigCommon,
tdd-Config-r10 TDD-Config OPTIONAL -- Cond
TDDSCell
 },
 -- UL configuration
 ul-Configuration-r10 SEQUENCE {
 ul-FreqInfo-r10 SEQUENCE {
 ul-CarrierFreq-r10 ARFCN-ValueEUTRA OPTIONAL, -- Need OP
 ul-Bandwidth-r10 ENUMERATED {n6, n15, n25, n50, n75, n100} OPTIONAL, -- Need OP
 additionalSpectrumEmissionSCell-r10 AdditionalSpectrumEmission,
 },
p-Max-r10 P-Max OPTIONAL, -- Need OP
 uplinkPowerControlCommonSCell-r10 UplinkPowerControlCommonSCell-r100,
 -- A special version of IE UplinkPowerControlCommon may be introduced
 -- 3: Physical configuration, control
 soundingRS-UL-ConfigCommon-r10 SoundingRS-UL-ConfigCommon,
 ul-CyclicPrefixLength-r10 UL-CyclicPrefixLength,
4: Physical configuration, physical channels

prach-ConfigSCell-r10 PRACH-ConfigSCell-r10 OPTIONAL, -- Cond TDD-OR-NoR11
pusch-ConfigCommon-r10 PUSCH-ConfigCommon

...,

[[ul-CarrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL -- Need OP
]],
[[rach-ConfigCommonSCell-r11 RACH-ConfigCommonSCell-r11 OPTIONAL, -- Cond
 tdd-Config-v1130 TD-Config-v1130 OPTIONAL, -- Cond TDD2
 uplinkPowerControlCommonSCell-v1130
 UplinkPowerControlCommonCell-v1130 OPTIONAL -- Cond UL
]],
[[pusch-ConfigCommon-v1270 PUSCH-ConfigCommon-v1270 OPTIONAL -- Need OR
]],
[[pusch-ConfigCommon-r13 PUSCH-ConfigCommon OPTIONAL, -- Cond UL
 uplinkPowerControlCommonSCell-v1310
 UplinkPowerControlCommonCell-v1310 OPTIONAL -- Cond UL
]],
[[highSpeedConfigSCell-r14 HighSpeedConfigSCell-r14 OPTIONAL, -- Need OR
 prach-Config-v1430 PRACH-Config-v1430 OPTIONAL, -- Cond UL
 ul-Configuration-r14 SEQUENCE {
 ul-FreqInfo-r14 SEQUENCE {
 ul-CarrierFreq-r14 ARFCN-ValueEUTRA-v9 OPTIONAL, -- Need OP
 ul-Bandwidth-r14 ENUMERATED {n6, n15, n25, n50, n75, n100} OPTIONAL, -- Need OP
 additionalSpectrumEmissionSCell-r14 AdditionalSpectrumEmission
 },
 p-Max-r14 P-Max OPTIONAL, -- Need OP
 soundingRS-UL-ConfigCommon-r14 SoundingRS-UL-ConfigCommon,
 ul-CyclicPrefixLength-r14 UL-CyclicPrefixLength,
 prach-ConfigSCell-r14 PRACH-ConfigSCell-r10 OPTIONAL, -- Cond TDD-OR-NoR11
 uplinkPowerControlCommonPUSCH-LessCell-v1430
 UplinkPowerControlCommonCell-v1430 OPTIONAL -- Need OR
 }]
 harq-ReferenceConfig-r14 ENUMERATED {sa2,sa4,sa5} OPTIONAL, -- Need OR
 soundingRS-FlexibleTiming-r14 ENUMERATED {true} OPTIONAL
}],
[[mbsfn-SubframeConfigList-v1430 MBSFN-SubframeConfigList-v1430 OPTIONAL-- Need ON
]]

RadioResourceConfigCommonSCell-v1010 ::= SEQUENCE {
 -- UL configuration
 ul-Configuration-v1010 SEQUENCE {
 additionalSpectrumEmissionSCell-v1010
 }
}

RadioResourceConfigCommonSCell-v1440 ::= SEQUENCE {
 ul-Configuration-v1440 SEQUENCE {
 ul-FreqInfo-v1440 SEQUENCE {
 additionalSpectrumEmissionSCell-v1440
 }
 }
}

BCCH-Config ::= SEQUENCE {
 modificationPeriodCoeff ENUMERATED {n2, n4, n8, n16}
}

BCCH-Config-v1310 ::= SEQUENCE {
 modificationPeriodCoeff-v1310 ENUMERATED {n64}
}

FreqHoppingParameters-r13 ::= SEQUENCE {
 dummy ENUMERATED {nb2, nb4} OPTIONAL,
 dummy2 CHOICE {
 interval-FDD-r13 ENUMERATED {int1, int2, int4, int8},
 interval-TDD-r13 ENUMERATED {int1, int5, int10, int20}
 },
 dummy3 CHOICE {
 interval-FDD-r13 ENUMERATED {int2, int4, int8, int16},
 }
}
interval-TDD-r13 ENUMERATED { int5, int10, int20, int40}
) OPTIONAL,
interval-ULHoppingConfigCommonModeA-r13 CHOICE {
 interval-FDD-r13 ENUMERATED {int1, int2, int4, int8},
 interval-TDD-r13 ENUMERATED {int1, int5, int10, int20}
) OPTIONAL, -- Cond MP-A
interval-ULHoppingConfigCommonModeB-r13 CHOICE {
 interval-FDD-r13 ENUMERATED {int2, int4, int8, int16},
 interval-TDD-r13 ENUMERATED {int5, int10, int20, int40}
) OPTIONAL, -- Cond MP-B
dummy4 INTEGER (1..maxAvailNarrowBands-r13) OPTIONAL
)}
PCCH-Config ::= SEQUENCE {
 defaultPagingCycle ENUMERATED {rf32, rf64, rf128, rf256},
 nB ENUMERATED {fourT, twoT, oneT, halfT, quarterT, oneEightht,
 oneSixteenthT, oneThirtySecondT}
)}
PCCH-Config-v1310 ::= SEQUENCE {
 paging-narrowBands-r13 INTEGER (1..maxAvailNarrowBands-r13),
 mpdcch-NumRepetition-Paging-r13 ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128, r256},
 nB-v1310 ENUMERATED {one64thT, one128thT, one256thT}
 OPTIONAL -- Need OR
)}
UL-CyclicPrefixLength ::= ENUMERATED {len1, len2}
HighSpeedConfig-r14 ::= SEQUENCE {
 highSpeedEnhancedMeasFlag-r14 ENUMERATED {true} OPTIONAL, -- Need OR
 highSpeedEnhancedDemodulationFlag-r14 ENUMERATED {true} OPTIONAL -- Need OR
)}
HighSpeedConfigSCell-r14 ::= SEQUENCE {
 highSpeedEnhancedDemodulationFlag-r14 ENUMERATED {true} OPTIONAL -- Need OR
)}
-- ASN1STOP
RadioResourceConfigCommon field descriptions

additionalSpectrumEmissionSCell
The UE requirements related to `additionalSpectrumEmissionSCell` are defined in TS 36.101 [42]. E-UTRAN configures the same value in `additionalSpectrumEmissionSCell` for all SCell(s) of the same band with UL configured. The `additionalSpectrumEmissionSCell` is applicable for all serving cells (including PCell) of the same band with UL configured.

defaultPagingCycle
Default paging cycle, used to derive ‘T’ in TS 36.304 [4]. Value r32 corresponds to 32 radio frames, r64 corresponds to 64 radio frames and so on.

dummy
This field is not used in the specification. If received it shall be ignored by the UE.

harp-ReferenceConfig
Indicates UL/ DL configuration used as the DL HARQ reference configuration for this serving cell. Value sa2 corresponds to Configuration2, sa4 to Configuration4 etc, as specified in TS 36.211 [21, table 4.2-2]. E-UTRAN configures the same value for all serving cells residing on same frequency band.

highSpeedEnhancedMeasFlag
If the field is present, the UE shall apply the high speed measurement enhancements as specified in TS 36.133 [16].

highSpeedEnhancedDemodulationFlag
If the field is present, the UE shall apply the advanced receiver in SFN scenario as specified in TS 36.101 [6].

interval-DLHoppingConfigCommonModeX
Number of consecutive absolute subframes over which MPDCCH or PDSCH for CE mode X stays at the same narrowband before hopping to another narrowband. For interval-FDD, int1 corresponds to 1 subframe, int2 corresponds to 2 subframes, and so on. For interval-TDD, int1 corresponds to 1 subframe, int5 corresponds to 5 subframes, and so on.

interval-ULHoppingConfigCommonModeX
Number of consecutive absolute subframes over which PUCCH or PUSCH for CE mode X stays at the same narrowband before hopping to another narrowband. For interval-FDD, int1 corresponds to 1 subframe, int2 corresponds to 2 subframes, and so on. For interval-TDD, int1 corresponds to 1 subframe, int5 corresponds to 5 subframes, and so on.

modificationPeriodCoeff
Actual modification period, expressed in number of radio frames= modificationPeriodCoeff * defaultPagingCycle. n2 corresponds to value 2, n4 corresponds to value 4, n8 corresponds to value 8, n16 corresponds to value 16, and n64 corresponds to value 64.

mpdcch-NumRepetition-Paging
Maximum number of repetitions for MPDCCH common search space (CSS) for paging, see TS 36.211 [21].

mpdcch-pdsch-HoppingOffset
Parameter: \(f_{\text{hop}} \), see TS 36.211 [21, 6.4.1].

mpdcch-pdsch-HoppingNB
The number of narrowbands for MPDCCH/PDSCH frequency hopping. Value nb2 corresponds to 2 narrowbands and value nb4 corresponds to 4 narrowbands.

nB
Parameter: nB is used as one of parameters to derive the Paging Frame and Paging Occasion according to TS 36.304 [4]. Value in multiples of ‘T’ as defined in TS 36.304 [4]. A value of fourT corresponds to 4 * T, a value of twoT corresponds to 2 * T and so on. In case \(nB-v1310 \) is signalled, the UE shall ignore \(nB \) (i.e. without suffix). EUTRAN configures \(nB-v1310 \) only in the BR version of SI message.

paging-narrowBands
Number of narrowbands used for paging, see TS 36.304 [4], TS 36.212 [22] and TS 36.213 [23].

p-Max
\(P_{\text{max}} \) to be used in the target cell. If absent the UE applies the maximum power of the default power class for the band used in the target cell, defined according to 36.101 [42].

prach-ConfigSCell
Indicates a PRACH configuration for an SCell. The field is not applicable for an LAA SCell in this release.

rach-ConfigCommonSCell
Indicates a RACH configuration for an SCell. The field is not applicable for an LAA SCell in this release.

soundingRS-FlexibleTiming
Indicates the SRS flexible timing (if configured) for aperiodic SRS triggered by DL grant. If the SRS transmission is collided with ACK/NACK, postpone once to the next configured SRS transmission opportunity.

ul-Bandwidth
Parameter: transmission bandwidth configuration, NRB, in uplink, see TS 36.101 [42, table 5.6-1]. Value n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on. If for FDD this parameter is absent, the uplink bandwidth is equal to the downlink bandwidth. For TDD this parameter is absent and it is equal to the downlink bandwidth.

ul-CarrierFreq
For FDD: If absent, the (default) value determined from the default TX-RX frequency separation defined in TS 36.101 [42, table 5.7.3-1] applies.
For TDD: This parameter is absent and it is equal to the downlink frequency.
RadioResourceConfigCommon field descriptions

additionalSpectrumEmissionSCell
The UE requirements related to `additionalSpectrumEmissionSCell` are defined in TS 36.101 [42]. E-UTRAN configures the same value in `additionalSpectrumEmissionSCell` for all SCell(s) of the same band with UL configured. The `additionalSpectrumEmissionSCell` is applicable for all serving cells (including PCell) of the same band with UL configured.

ul-CyclicPrefixLength
Parameter: Uplink cyclic prefix length see TS 36.211 [21, 5.2.1] where len1 corresponds to normal cyclic prefix and len2 corresponds to extended cyclic prefix.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-A</td>
<td>The field is mandatory present for CE mode A. Otherwise the field is optional. Need OR.</td>
</tr>
<tr>
<td>MP-B</td>
<td>The field is mandatory present for CE mode B. Otherwise the field is optional. Need OR.</td>
</tr>
<tr>
<td>TDD</td>
<td>The field is optional for TDD. Need ON; it is not present for FDD and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>TDD2</td>
<td>If <code>tdd-Config-r10</code> is present, the field is optional, Need OR. Otherwise the field is optional and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>TDD3</td>
<td>If <code>tdd-Config</code> is present, the field is optional, Need OR. Otherwise the field is optional and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>TDD-OR-NoR11</td>
<td>If <code>prach-ConfigSCell-r11</code> is absent, the field is optional for TDD. Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>TDDSCell</td>
<td>This field is mandatory present for TDD; it is not present for FDD and LAA SCell, and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>UL</td>
<td>If the SCell is part of the STAG or concerns the PCell or PUCCH SCell and <code>ul-Configuration</code> is included, the field is optional, Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>ULCell</td>
<td>For the PCell (IE is included in <code>RadioResourceConfigCommonPCell</code>) the field is absent. Otherwise, if the SCell is part of the STAG and if <code>ul-Configuration</code> is included, the field is optional, Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>ULSRS</td>
<td>If <code>ul-Configuration-r10</code> is absent, the field is optional, Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

RadioResourceConfigDedicated
The IE `RadioResourceConfigDedicated` is used to setup/modify/release RBs, to modify the MAC main configuration, to modify the SPS configuration and to modify dedicated physical configuration.

RadioResourceConfigDedicated information element
RadioResourceConfigDedicated-v1370 ::= SEQUENCE {
 physicalConfigDedicated-v1370 PhysicalConfigDedicated-v1370 OPTIONAL -- Need ON
}

RadioResourceConfigDedicatedPSCell-r12 ::= SEQUENCE {
 physicalConfigDedicatedPSCell-r12 PhysicalConfigDedicated-r12 OPTIONAL -- Need ON
 sps-Config-r12 SPS-Config OPTIONAL, -- Need ON
 naics-Info-r12 NAICS-AssistanceInfo-r12 OPTIONAL, -- Need ON
 ...,
 [[neighCellsCRS-InfoPSCell-r13 NeighCellsCRS-Info-r13 OPTIONAL -- Need ON]],
 [[sps-Config-v1430 SPS-Config-v1430 OPTIONAL -- Cond SPS2]]
}

RadioResourceConfigDedicatedPSCell-v1370 ::= SEQUENCE {
 physicalConfigDedicatedPSCell-v1370 PhysicalConfigDedicated-v1370 OPTIONAL -- Need ON
}

RadioResourceConfigDedicatedSCG-r12 ::= SEQUENCE {
 drb-ToAddModListSCG-r12 DRB-ToAddModListSCG-r12 OPTIONAL, -- Need ON
 mac-MainConfigSCG-r12 MAC-MainConfig OPTIONAL, -- Need ON
 rlf-TimersAndConstantsSCG-r12 RLF-TimersAndConstantsSCG-r12 OPTIONAL, -- Need ON
 ...,
 [[mac-MainConfigSCell-r11 MAC-MainConfigSCell-r11 OPTIONAL -- Cond SCellAdd]],
 [[naics-Info-r12 NAICS-AssistanceInfo-r12 OPTIONAL -- Need ON]],
 [[neighCellsCRS-InfoSCell-r13 NeighCellsCRS-Info-r13 OPTIONAL -- Need ON]],
 [[physicalConfigDedicatedSCell-v1370 PhysicalConfigDedicatedSCell-v1370 OPTIONAL -- Need ON]]
}

SRB-ToAddModList ::= SEQUENCE (SIZE (1..2)) OF SRB-ToAddMod

SRB-ToAddMod ::= SEQUENCE {
 srb-Identity INTEGER (1..2),
 rlc-Config CHOICE {
 explicitValue RLC-Config,
 defaultValue NULL } OPTIONAL, -- Cond Setup
 logicalChannelConfig CHOICE {
 explicitValue LogicalChannelConfig,
 defaultValue NULL } OPTIONAL, -- Cond Setup
 ...
}

DRB-ToAddModList ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-ToAddMod

DRB-ToAddModListSCG-r12 ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-ToAddModSCG-r12

DRB-ToAddMod ::= SEQUENCE {
 eps-BearerIdentity INTEGER (0..15) OPTIONAL, -- Cond DRB-Setup
 drb-Identity DRB-Identity,
 pdcp-Config PDCP-Config OPTIONAL, -- Cond PDCP
 rlc-Config RLC-Config OPTIONAL, -- Cond SetupM
 logicalChannelIdentity INTEGER (3..10) OPTIONAL, -- Cond DRB-SetupM
 logicalChannelConfig LogicalChannelConfig OPTIONAL, -- Cond SetupM
 ...
 [[drb-TypeChange-r12 ENUMERATED {toMCG} OPTIONAL, -- Need OP
 rlc-Config-v1250 RLC-Config-v1250 OPTIONAL, -- Need ON]],
 [[rlc-Config-v1310 RLC-Config-v1310 OPTIONAL, -- Need ON
 drb-TypeLWA-r13 BOOLEAN OPTIONAL, -- Need ON]]
}
drb-TypeLWIP-r13 ENUMERATED {lwip, lwip-DL-only, lwip-UL-only, eutran} OPTIONAL -- Need ON

[[
 rlc-Config-v1430 RLC-Config-v1430 OPTIONAL, -- Need ON
 lwip-UL-Aggregation-r14 BOOLEAN OPTIONAL, -- Cond LWIP
 lwip-DL-Aggregation-r14 BOOLEAN OPTIONAL, -- Cond LWIP
 lwa-WLAN-AC-r14 ENUMERATED {ac-bk, ac-be, ac-vi, ac-vo} OPTIONAL -- Cond UL-LWA
]]

DRB-ToAddModSCG-r12 ::= SEQUENCE {
 drb-Identity-r12 DRB-Identity,
 drb-Type-r12 CHOICE {
 split-r12 NULL,
 scg-r12 SEQUENCE {
 eps-BearerIdentity-r12 INTEGER (0..15) OPTIONAL, -- Cond DRB-Setup
 pdcp-Config-r12 PDCP-Config OPTIONAL -- Cond PDCP-S
 } OPTIONAL, -- Cond SetupS2
 rlc-ConfigSCG-r12 RLC-Config OPTIONAL, -- Cond SetupS
 rlc-Config-v1250 RLC-Config-v1250 OPTIONAL, -- Need ON
 logicalChannelIdentitySCG-r12 INTEGER (3..100) OPTIONAL, -- Cond DRB-SetupS
 logicalChannelConfigSCG-r12 LogicalChannelConfig OPTIONAL, -- Cond SetupS
 ...
 [[
 rlc-Config-v1430 RLC-Config-v1430 OPTIONAL -- Need ON
]]]
}

DRB-ToReleaseList ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-Identity

MeasSubframePatternPCell-r10 ::= CHOICE {
 release NULL,
 setup MeasSubframePattern-r10
}

NeighCellsCRS-Info-r11 ::= CHOICE {
 release NULL,
 setup CRS-AssistanceInfoList-r11
}

CRS-AssistanceInfoList-r11 ::= SEQUENCE (SIZE (1..maxCellReport)) OF CRS-AssistanceInfo-r11

CRS-AssistanceInfo-r11 ::= SEQUENCE {
 physCellId-r11 PhysCellId,
 antennaPortsCount-r11 ENUMERATED {an1, an2, an4, spare1},
 mbsfn-SubframeConfigList-r11 MBSFN-SubframeConfigList,
 ...
 [[
 mbsfn-SubframeConfigList-v1430 MBSFN-SubframeConfigList-v1430 OPTIONAL -- Need ON
]]}

NeighCellsCRS-Info-r13 ::= CHOICE {
 release NULL,
 setup CRS-AssistanceInfoList-r13
}

CRS-AssistanceInfoList-r13 ::= SEQUENCE (SIZE (1..maxCellReport)) OF CRS-AssistanceInfo-r13

CRS-AssistanceInfo-r13 ::= SEQUENCE {
 physCellId-r13 PhysCellId,
 antennaPortsCount-r13 ENUMERATED {an1, an2, an4, spare1},
 mbsfn-SubframeConfigList-r13 MBSFN-SubframeConfigList OPTIONAL, -- Need ON
 ...
 [[
 mbsfn-SubframeConfigList-v1430 MBSFN-SubframeConfigList-v1430 OPTIONAL -- Need ON
]]}

NAICS-AssistanceInfo-r12 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 neighCellsToReleaseList-r12 NeighCellsToReleaseList-r12 OPTIONAL, -- Need ON
 neighCellsToAddModList-r12 NeighCellsToAddModList-r12 OPTIONAL, -- Need ON
 servCellp-a-r12 P-a OPTIONAL -- Need ON
 }
}

NeighCellsToReleaseList-r12 ::= SEQUENCE (SIZE (1..maxNeighCell-r12)) OF PhysCellId
NeighCellsToAddModList-r12 ::= SEQUENCE { SIZE (1..maxNeighCell-r12)) OF NeighCellsInfo-r12

NeighCellsInfo-r12 ::= SEQUENCE {
 physCellId-r12 PhysCellId,
 p-b-r12 INTEGER (0..3),
 crs-PortsCount-r12 ENUMERATED {n1, n2, n4, spare},
 mbsfn-SubframeConfig-r12 MBSFN-SubframeConfigList OPTIONAL, -- Need ON
 p-aList-r12 SEQUENCE (SIZE (1..maxP-a-PerNeighCell-r12)) OF P-a,
 transmissionModeList-r12 BIT STRING (SIZE(8)),
 resAllocGranularity-r12 INTEGER (1..4),
 ...
}

P-a ::= ENumerated { dB-6, dB-4dot77, dB-3, dB-1dot77,
 dB0, dB1, dB2, dB3}

-- ASN.1 STOP
RadioResourceConfigDedicated field descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>crs-PortsCount</td>
<td>Parameter represents the number of antenna ports for cell-specific reference signal used by the signaled neighboring cell where n1 corresponds to 1 antenna port, n2 to 2 antenna ports etc. see TS 36.211 [21, 6.10.1].</td>
<td></td>
</tr>
<tr>
<td>drb-Identity</td>
<td>In case of DC, the DRB identity is unique within the scope of the UE i.e. an SCG DRB can not use the same value as used for an MCG or split DRB. For a split DRB the same identity is used for the MCG- and SCG parts of the configuration.</td>
<td></td>
</tr>
<tr>
<td>drb-ToAddModListSCG</td>
<td>When a SCG is configured, E-UTRAN configures at least one SCG or split DRB.</td>
<td></td>
</tr>
<tr>
<td>drb-Type</td>
<td>This field indicates whether the DRB is split or SCG DRB. E-UTRAN does not configure split and SCG DRBs simultaneously for the UE.</td>
<td></td>
</tr>
<tr>
<td>drb-IdentityChange</td>
<td>Indicates that a split/SCG DRB is reconfigured to an MCG DRB (i.e. E-UTRAN only signals the field in case the DRB type changes).</td>
<td></td>
</tr>
<tr>
<td>drb-TypeLWA</td>
<td>Indicates whether a DRB is (re)configured as an LWA DRB or an LWA DRB is reconfigured not to use WLAN resources. NOTE 1</td>
<td></td>
</tr>
<tr>
<td>drb-TypeLWIP</td>
<td>Indicates whether a DRB is (re)configured to use LWIP Tunnel in UL and DL (value lwip), DL only (value lwip-DL-only), UL only (value lwip-UL-only) or not to use LWIP Tunnel (value etran).</td>
<td></td>
</tr>
<tr>
<td>logicalChannelConfig</td>
<td>For SRBs a choice is used to indicate whether the logical channel configuration is signalled explicitly or set to the default logical channel configuration for SRB1 as specified in 9.2.1.1 or for SRB2 as specified in 9.2.1.2.</td>
<td></td>
</tr>
<tr>
<td>lwa-WLAN-AC</td>
<td>For LWA bearers, indicates the corresponding WLAN access category for uplink. AC-BK (value ac-bk) corresponds to Background access category, AC-BE (value ac-be) corresponds to Best Effort access category, AC-VI (value ac-vi) corresponds to Video access category and AC-VO (value ac-vo) corresponds to Voice access category as defined by IEEE 802.11-2012 [67]. If lwa-WLAN-AC is not configured, it is left up to UE to decide which IEEE 802.11 AC value to use when performing transmissions of packets for this DRB over WLAN in the uplink.</td>
<td></td>
</tr>
<tr>
<td>lwip-DL-Aggregation, lwip-UL-Aggregation</td>
<td>Indicates whether LWIP is configured to utilize LWIP aggregation in DL or UL.</td>
<td></td>
</tr>
<tr>
<td>mac-MainConfig</td>
<td>Although the ASN.1 includes a choice that is used to indicate whether the mac-MainConfig is signalled explicitly or set to the default MAC main configuration as specified in 9.2.2, EUTRAN does not apply "defaultValue".</td>
<td></td>
</tr>
<tr>
<td>mbsfn-SubframeConfig</td>
<td>Defines the MBSFN subframe configuration used by the signaled neighboring cell. If absent, UE assumes no MBSFN configuration for the neighboring cell.</td>
<td></td>
</tr>
<tr>
<td>measSubframePatternPCell</td>
<td>Time domain measurement resource restriction pattern for the PCell measurements (RSRP, RSRQ and the radio link monitoring).</td>
<td></td>
</tr>
<tr>
<td>neighCellsCRS-Info, neighCellsCRS-InfoSCell, neighCellsCRS-InfoPCell</td>
<td>This field contains assistance information used by the UE to mitigate interference from CRS while performing RRM/RLM/CSI measurement or data demodulation or DL control channel demodulation. When the received CRS assistance information is for a cell with CRS non-colliding with that of the CRS of the cell to measure, the UE may use the CRS assistance information to mitigate CRS interference RRM/RLM (as specified in TS 36.133 [16]) and for CSI (as specified in TS 36.101 [42]) on the subframes indicated by measSubframePatternPCell, measSubframePatternConfigNeigh, csi-MeasSubframeSet1 if configured, and the CSI subframe set 1 if csi-MeasSubframeSets-r12 is configured. The UE may use CRS assistance information to mitigate CRS interference from the cells in the CRS-AssistanceInfoList for the demodulation purpose or DL control channel demodulation as specified in TS 36.101 [42]. EUTRAN does not configure neighCellsCRS-Info-r11 or neighCellsCRS-Info-r13 if eimta-MainConfigPCell-r12 is configured.</td>
<td></td>
</tr>
<tr>
<td>neighCellsToAddModList</td>
<td>This field contains assistance information used by the UE to cancel and suppress interference of a neighbouring cell. If this field is present for a neighbouring cell, the UE assumes that the transmission parameters listed in the sub-fields are used by the neighbouring cell. If this field is present for a neighbouring cell, the UE assumes the neighbour cell is subframe and SFN synchronized to the serving cell, has the same system bandwidth, UL/DL and special subframe configuration, and cyclic prefix length as the serving cell.</td>
<td></td>
</tr>
<tr>
<td>p-aList</td>
<td>Indicates the restricted subset of power offset for QPSK, 16QAM, and 64QAM PDSCH transmissions for the neighbouring cell by using the parameter P_A, see TS 36.213 [23, 5.2]. Value db-6 corresponds to -6 dB, db-4dot77 corresponds to -4.77 dB etc.</td>
<td></td>
</tr>
</tbody>
</table>
RadioResourceConfigDedicated field descriptions

p-b
Parameter: P_{p-b}, indicates the cell-specific ratio used by the signaled neighboring cell, see TS 36.213 [23, Table 5.2-1].

physicalConfigDedicated
The default dedicated physical configuration is specified in 9.2.4.

resAllocGranularity
Indicates the resource allocation and precoding granularity in PRB pair level of the signaled neighboring cell, see TS 36.213 [23, 7.1.6].

rlc-Config
For SRBs a choice is used to indicate whether the RLC configuration is signalled explicitly or set to the values defined in the default RLC configuration for SRB1 in 9.2.1.1 or for SRB2 in 9.2.1.2. RLC AM is the only applicable RLC mode for SRB1 and SRB2. E-UTRAN does not reconfigure the RLC mode of DRBs except when a full configuration option is used, and may reconfigure the RLC SN field size and the AM RLC LI field size only upon handover within E-UTRA or upon the first reconfiguration after RRC connection re-establishment or upon SCG Change for SCG and split DRBs.

servCellp-a
Indicates the power offset for QPSK C-RNTI based PDSCH transmissions used by the serving cell, see TS 36.213 [23, 5.2]. Value dB-6 corresponds to -6 dB, dB-4.77 corresponds to -4.77 dB etc.

sps-Config
The default SPS configuration is specified in 9.2.3. Except for handover or releasing SPS for MCG, E-UTRAN does not reconfigure sps-Config for MCG when there is a configured downlink assignment or a configured uplink grant for MCG (see TS 36.321 [6]). Except for SCG change or releasing SPS for SCG, E-UTRAN does not reconfigure sps-Config for SCG when there is a configured downlink assignment or a configured uplink grant for SCG (see TS 36.321 [6]).

srb-Identity
Value 1 is applicable for SRB1 only.
Value 2 is applicable for SRB2 only.

transmissionModeList
Indicates a subset of transmission mode 1, 2, 3, 4, 6, 8, 9, 10, for the signaled neighboring cell for which NeighCellsInfo applies. When TM10 is signaled, other signaled transmission parameters in NeighCellsInfo are not applicable to up to 8 layer transmission scheme of TM10. E-UTRAN may indicate TM9 when TM10 with QCL type A and DMRS scrambling with $n_{ID}^{(i)} = \lambda_{Cell_{ID}}^{i}$ in TS 36.211 [21, 6.10.3.1] is used in the signalled neighbour cell and TM9 or TM10 with QCL type A and DMRS scrambling with $n_{ID}^{(i)} = \lambda_{Cell_{ID}}^{i}$ in TS 36.211 [21, 6.10.3.1] is used in the serving cell. UE behaviour with NAICS when TM10 is used is only defined when QCL type A and DMRS scrambling with $n_{ID}^{(i)} = N_{Cell_{ID}}^{i}$ in TS 36.211 [21, 6.10.3.1] is used in the serving cell and all signalled neighbour cells. The first/ leftmost bit is for transmission mode 1, the second bit is for transmission mode 2, and so on.

NOTE 1: It is up to eNB to ensure that the field indicating LWA bearer type is set to FALSE when LWA bearer is no longer used (e.g. during handover or re-establishment where LWA configuration is released).
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL-LWA</td>
<td>The field is optionally present, need ON if <code>ul-LWA-Config-r14</code> is present. Otherwise the field is not present.</td>
</tr>
<tr>
<td>CRSIM</td>
<td>The field is optionally present, need ON, if <code>neighCellsCRS-Info-r11</code> is not present; otherwise it is not present.</td>
</tr>
<tr>
<td>DRB-Setup</td>
<td>The field is mandatory present if the corresponding DRB is being set up; otherwise it is not present.</td>
</tr>
<tr>
<td>DRB-SetupM</td>
<td>The field is mandatory present upon setup of MCG or split DRB; The field is optionally present, Need ON, upon change from SCG to MCG DRB; otherwise it is not present.</td>
</tr>
<tr>
<td>DRB-SetupS</td>
<td>The field is mandatory present upon setup of SCG or split DRB, or upon change from MCG to split DRB; The field is optionally present, Need ON, upon change from MCG to SCG DRB; otherwise it is not present.</td>
</tr>
<tr>
<td>HO-Conn</td>
<td>The field is mandatory present in case of handover to E-UTRA or when the <code>fullConfig</code> is included in the <code>RRCConnectionReconfiguration</code> message or in case of RRC connection establishment (excluding <code>RRCConnectionResume</code>); otherwise the field is optionally present, need ON. Upon connection establishment/ re-establishment only SRB1 is applicable (excluding <code>RRCConnectionResume</code>).</td>
</tr>
<tr>
<td>HO-toEUTRA</td>
<td>The field is mandatory present in case of handover to E-UTRA or when the <code>fullConfig</code> is included in the <code>RRCConnectionReconfiguration</code> message; In case of RRC connection establishment (excluding <code>RRCConnectionResume</code>); and RRC connection re-establishment the field is not present; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>HO-toEUTRA2</td>
<td>The field is mandatory present in case of handover to E-UTRA or when the <code>fullConfig</code> is included in the <code>RRCConnectionReconfiguration</code> message; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>LWIP</td>
<td>The field is optionally present, Need ON, if <code>drbTypeLWIP-r13</code> is not set to eutran; otherwise it is not present and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>PDCP</td>
<td>The field is mandatory present if the corresponding DRB is being setup; the field is optionally present, need ON, upon reconfiguration of the corresponding split DRB or LWA DRB, upon the corresponding DRB type change from split to MCG bearer, upon the corresponding DRB type change from MCG to split bearer or LWA bearer, upon the corresponding DRB type change from LWA to LTE only bearer, upon handover within E-UTRA and upon the first reconfiguration after re-establishment but in all these cases only when <code>fullConfig</code> is not included in the <code>RRCConnectionReconfiguration</code> message; otherwise it is not present.</td>
</tr>
<tr>
<td>PDCP-S</td>
<td>The field is mandatory present if the corresponding DRB is being setup; the field is optionally present, need ON, upon SCG change; otherwise it is not present.</td>
</tr>
<tr>
<td>RLC-Setup</td>
<td>This field is optionally present if the corresponding DRB is being setup, need ON; otherwise it is not present.</td>
</tr>
<tr>
<td>SCellAdd</td>
<td>The field is optionally present, need ON, upon SCell addition; otherwise it is not present.</td>
</tr>
<tr>
<td>Setup</td>
<td>The field is mandatory present if the corresponding SRB/DRB is being setup; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>SetupM</td>
<td>The field is mandatory present upon setup of an MCG or split DRB; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>SetupS</td>
<td>The field is mandatory present upon setup of an SCG or split DRB, as well as upon change from MCG to split DRB; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>SetupS2</td>
<td>The field is mandatory present upon setup of an SCG or split DRB, as well as upon change from MCG to split or SCG DRB. For an SCG DRB the field is optionally present, need ON. Otherwise the field is not present.</td>
</tr>
<tr>
<td>SPS</td>
<td>The field is optionally present, need ON, if sps-Config (without suffix) is not configured; otherwise it is not present.</td>
</tr>
<tr>
<td>SPS2</td>
<td>The field is optionally present, need ON, if sps-Config-r12 is not configured; otherwise it is not present.</td>
</tr>
</tbody>
</table>

RCLWI-Configuration

The IE **RCLWI-Configuration** is used to add, modify or release the RCLWI configuration.

```asn1
RCLWI-Configuration-r13 ::= CHOICE {
  release
  setup
    rclwi-Config-r13
    RCLWI-Config-r13
}
RCLWI-Config-r13 ::= SEQUENCE {

```
-- RLC-Config

The IE RLC-Config is used to specify the RLC configuration of SRBs and DRBs.

RLC-Config information element

--- ASN1START

RLC-Config ::= CHOICE {
 am
 SEQUENCE {
 ul-AM-RLC UL-AM-RLC,
 dl-AM-RLC DL-AM-RLC
 },
 um-Bi-Directional
 SEQUENCE {
 ul-UM-RLC UL-UM-RLC,
 dl-UM-RLC DL-UM-RLC
 },
 um-Uni-Directional-UL
 SEQUENCE {
 ul-UM-RLC UL-UM-RLC
 },
 um-Uni-Directional-DL
 SEQUENCE {
 dl-UM-RLC DL-UM-RLC
 },
...}

RLC-Config-v1250 ::= SEQUENCE {
 ul-extended-RLC-LI-Field-r12 BOOLEAN,
 dl-extended-RLC-LI-Field-r12 BOOLEAN
}

RLC-Config-v1310 ::= SEQUENCE {
 ul-extended-RLC-AM-SN-r13 BOOLEAN,
 dl-extended-RLC-AM-SN-r13 BOOLEAN,
 pollPDU-v1310 PollPDU-v1310 OPTIONAL -- Need OR
}

RLC-Config-v1430 ::= CHOICE {
 release
 NULL,
 setup
 SEQUENCE {
 pollByte-r14 PollByte-r14
 }
}

UL-AM-RLC ::= SEQUENCE {
 t-PollRetransmit T-PollRetransmit,
 pollPDU PollPDU,
 pollByte PollByte,
 maxRetxThreshold ENUMERATED {t1, t2, t3, t4, t6, t8, t16, t32}
}

DL-AM-RLC ::= SEQUENCE {
 t-Reordering T-Reordering,
 t-StatusProhibit T-StatusProhibit
}

UL-UM-RLC ::= SEQUENCE {
 sn-FieldLength SN-FieldLength
}

DL-UM-RLC ::= SEQUENCE {
 sn-FieldLength SN-FieldLength,
 t-Reordering T-Reordering
}
SN-FieldLength ::= ENUMERATED {size5, size10}

T-PollRetransmit ::= ENUMERATED {
 m5, m10, m15, m20, m25, m30, m35,
 m40, m45, m50, m55, m60, m65, m70,
 m75, m80, m85, m90, m95, m100, m105,
 m110, m115, m120, m125, m130, m135,
 m140, m145, m150, m155, m160, m165,
 m170, m175, m180, m185, m190, m195,
 m200, m205, m210, m215, m220, m225,
 m230, m235, m240, m245, m250, m300,
 m350, m400, m450, m500, m800-v1310,
 m1000-v1310, m2000-v1310, m4000-v1310,
 spare5, spare4, spare3, spare2, spare1}

PollPDU ::= ENUMERATED {
 p4, p8, p16, p32, p64, p128, p256, pInfinity}

PollPDU-v1310 ::= ENUMERATED {
 p512, p1024, p2048, p4096, p6144, p8192, p12288, p16384}

PollByte ::= ENUMERATED {
 kB25, kB50, kB75, kB100, kB125, kB250, kB375,
 kB500, kB750, kB1000, kB1250, kB1500, kB2000,
 kB3000, kBInfinity, spare1}

PollByte-r14 ::= ENUMERATED {
 kB1, kB2, kB5, kB8, kB10, kB15, kB3500,
 kB4000, kB5000, kB5000, kB6000, kB6500,
 kB7000, kB7500, kB8000, kB9000, kB10000, kB11000, kB12000,
 kB13000, kB14000, kB15000, kB16000, kB17000, kB18000,
 kB19000, kB20000, kB25000, kB30000, kB35000, kB40000}

T-Reordering ::= ENUMERATED {
 ms0, ms5, ms10, ms15, ms20, ms25, ms30, ms35,
 ms40, ms45, ms50, ms55, ms60, ms65, ms70,
 ms75, ms80, ms85, ms90, ms95, m100, m105,
 m110, m115, m120, m125, m130, m135,
 m140, m145, m150, m155, m160, m165,
 m170, m175, m180, m185, m190, m195,
 m200, m205, m210, m215, m220, m225,
 m230, m235, m240, m245, m250, m300,
 m350, m400, m450, m500, m800-v1310,
 m1000-v1310, m1200-v1310, m1600-v1310, m2000-v1310,
 spare1}

T-StatusProhibit ::= ENUMERATED {
 ms0, ms5, ms10, ms15, ms20, ms25, ms30, ms35,
 ms40, ms45, ms50, ms55, ms60, ms65, ms70,
 ms75, ms80, ms85, ms90, ms95, m100, m105,
 m110, m115, m120, m125, m130, m135,
 m140, m145, m150, m155, m160, m165,
 m170, m175, m180, m185, m190, m195,
 m200, m205, m210, m215, m220, m225,
 m230, m235, m240, m245, m250, m300,
 m350, m400, m450, m500, m800-v1310,
 m1000-v1310, m1200-v1310, m1600-v1310, m2000-v1310,
 spare2,
 spare1}

-- ASN1STOP
RLC-Config field descriptions

dl-extended-RLC-LI-Field, ul-extended-RLC-LI-Field
Indicates the RLC LI field size. Value `TRUE` means that 15 bit LI length shall be used, otherwise 11 bit LI length shall be used; see TS 36.322 [7]. E-UTRAN enables this field only when `RLC-Config` (without suffix) is set to `am`.

maxRetxThreshold
Parameter for RLC AM in TS 36.322 [7]. Value t1 corresponds to 1 retransmission, t2 to 2 retransmissions and so on.

poliByte
Parameter for RLC AM in TS 36.322 [7]. Value kB25 corresponds to 25 kBytes, kB50 to 50 kBytes and so on. kBInfinity corresponds to an infinite amount of kBytes. In case `poliByte-r14` is signalled, the UE shall ignore `poliByte` (i.e. without suffix).

poliPDU
Parameter for RLC AM in TS 36.322 [7]. Value p4 corresponds to 4 PDUs, p8 to 8 PDUs and so on. pInfinity corresponds to an infinite number of PDUs. In case `poliPDU-v1310` is signalled, the UE shall ignore `poliPDU` (i.e. without suffix). E-UTRAN enables `poliPDU-v1310` field only when `RLC-Config` (without suffix) is set to `am`.

sn-FieldLength
Indicates the UM RLC SN field size, see TS 36.322 [7], in bits. Value size5 means 5 bits, size10 means 10 bits.

t-PollRetransmit
Timer for RLC AM in TS 36.322 [7], in milliseconds. Value ms5 means 5ms, ms10 means 10ms and so on. E-UTRAN configures values msX-v1310 (with suffix) only if UE supports CE.

t-Reordering
Timer for reordering in TS 36.322 [7], in milliseconds. Value ms0 means 0ms and behaviour as specified in 7.3.2 applies, ms5 means 5ms and so on.

t-StatusProhibit
Timer for status reporting in TS 36.322 [7], in milliseconds. Value ms0 means 0ms and behaviour as specified in 7.3.2 applies, ms5 means 5ms and so on. E-UTRAN configures values msX-v1310 (with suffix) only if UE supports operation in CE.

ul-extended-RLC-AM-SN, dl-extended-RLC-AM-SN
Indicates whether or not the UE shall use the extended SN and SO length for AM bearer. Value `TRUE` means that 16 bit SN length and 16 bit SO length shall be used, otherwise 10 bit SN length and 15 bit SO length shall be used; see TS 36.322 [7].

RLF-TimersAndConstants

The IE `RLF-TimersAndConstants` contains UE specific timers and constants applicable for UEs in RRC_CONNECTED.

RLF-TimersAndConstants information element

```plaintext
-- ASN1START

RLF-TimersAndConstants-r9 ::= CHOICE {
  release     NULL,
  setup       SEQUENCE {
    t301-r9     ENUMERATED {
      ms100, ms200, ms300, ms400, ms600, ms1000, ms1500,
      ms2000},
    t310-r9     ENUMERATED {
      ms0, ms50, ms100, ms200, ms500, ms1000, ms2000},
    n310-r9     ENUMERATED {
      n1, n2, n3, n4, n6, n8, n10, n20},
    t311-r9     ENUMERATED {
      ms1000, ms3000, ms5000, ms10000, ms15000,
      ms20000, ms30000},
    n311-r9     ENUMERATED {
      n1, n2, n3, n4, n5, n6, n8, n10},
    ...}
  }
}

RLF-TimersAndConstants-r13 ::= CHOICE {
  release     NULL,
  setup       SEQUENCE {
    t301-v1310  ENUMERATED {
      ms2500, ms3000, ms3500, ms4000, ms5000,
      ms6000, ms8000, ms10000},
    ...}
  }
```
RLF-TimersAndConstantsSCG-r12 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 t313-r12 ENUMERATED {
 ms0, ms50, ms100, ms200, ms500, ms1000, ms2000},
 n313-r12 ENUMERATED {
 n1, n2, n3, n4, n6, n8, n10, n20},
 n314-r12 ENUMERATED {
 n1, n2, n3, n4, n5, n6, n8, n10},
 ...
 }
 }
} -- ASN1STOP

RLF-TimersAndConstants field descriptions

n3xy

Constants are described in section 7.4. n1 corresponds with 1, n2 corresponds with 2 and so on.

t3xy

Timers are described in section 7.3. Value ms0 corresponds with 0 ms, ms50 corresponds with 50 ms and so on. E-UTRAN configures RLF-TimersAndConstants-r13 only if UE supports ce-ModeB. UE shall use the extended values t3xy-v1310 and t3xy-v1330, if present, and ignore the values signaled by t3xy-r9.

RN-SubframeConfig

The IE **RN-SubframeConfig** is used to specify the subframe configuration for an RN.

RN-SubframeConfig information element

RN-SubframeConfig field descriptions

demodulationRS
Indicates which reference signals are used for R-PDCCH demodulation according to TS 36.216 [55, 7.4.1]. Value
interleaving corresponds to cross-interleaving and value noInterleaving corresponds to no cross-interleaving according
to TS 36.216 [55, 7.4.2 and 7.4.3].

n1PUCCH-AN-List
Parameter: \(n_p^{(1)} \), see TS 36.216, [55, 7.5.1]. This parameter is only applicable for TDD. Configures PUCCH
HARQ-ACK resources if the RN is configured to use HARQ-ACK channel selection, HARQ-ACK multiplexing or
HARQ-ACK bundling.

n1PUCCH-AN-P0, n1PUCCH-AN-P1
Parameter: \(n_p^{(1)} \), for antenna port P0 and for antenna port P1 respectively, see TS 36.216, [55, 7.5.1] for FDD
and [55, 7.5.2] for TDD.

demodulationRS
Indicates which reference signals are used for R-PDCCH demodulation according to TS 36.216 [55, 7.4.1]. Value
interleaving corresponds to cross-interleaving and value noInterleaving corresponds to no cross-interleaving according
to TS 36.216 [55, 7.4.2 and 7.4.3].

n1PUCCH-AN-List
Parameter: \(n_p^{(1)} \), see TS 36.216, [55, 7.5.1]. This parameter is only applicable for TDD. Configures PUCCH
HARQ-ACK resources if the RN is configured to use HARQ-ACK channel selection, HARQ-ACK multiplexing or
HARQ-ACK bundling.

n1PUCCH-AN-P0, n1PUCCH-AN-P1
Parameter: \(n_p^{(1)} \), for antenna port P0 and for antenna port P1 respectively, see TS 36.216, [55, 7.5.1] for FDD
and [55, 7.5.2] for TDD.

pdsch-Start
Parameter: \(DL-StartSymbol \), see TS 36.216 [55, Table 5.4-1].

resourceAllocationType
Represents the resource allocation used: type 0, type 1 or type 2 according to TS 36.213 [23, 7.1.6]. Value type0
corresponds to type 0, value type1 corresponds to type 1, value type2Localized corresponds to type 2 with localized
virtual resource blocks and type2Distributed corresponds to type 2 with distributed virtual resource blocks.

resourceBlockAssignment
Indicates the resource block assignment bits according to TS 36.213 [23, 7.1.6]. Value type01 corresponds to type 0
and type 1, and the value type2 corresponds to type 2. Value nrb6 corresponds to a downlink system bandwidth
of 6 resource blocks, value nrb15 corresponds to a downlink system bandwidth of 15 resource blocks, and
so on.

subframeConfigPatternFDD
Parameter: \(SubframeConfigurationFDD \), see TS 36.216 [55, Table 5.2-1]. Defines the DL subframe configuration for
eNB-to-RN transmission, i.e. those subframes in which the eNB may indicate downlink assignments for the RN. The
radio frame in which the pattern starts (i.e. the radio frame in which the first bit of the \(subframeConfigPatternFDD \)
corresponds to subframe #0) occurs when SFN mod 4 = 0.

subframeConfigPatternTDD
Parameter: \(SubframeConfigurationTDD \), see TS 36.216 [55, Table 5.2-2]. Defines the DL and UL subframe
configuration for eNB-RN transmission.

-- SchedulingRequestConfig

The IE SchedulingRequestConfig is used to specify the Scheduling Request related parameters

SchedulingRequestConfig information element

-- ASN1START

SchedulingRequestConfig ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 sr-PUCCH-ResourceIndex INTEGER (0..2047),
 sr-ConfigIndex INTEGER (0..157),
 dsr-TransMax ENUMERATED {
 n4, n8, n16, n32, n64, spare3, spare2, spare1
 }
 }
}

SchedulingRequestConfig-v1020 ::= SEQUENCE {
 sr-PUCCH-ResourceIndexP1-r10 INTEGER (0..2047) OPTIONAL -- Need OR
}

-- ASN1STOP
SchedulingRequestConfigSCell-r13 ::=
 CHOICE {
 release NULL,
 setup SEQUENCE {
 sr-PUCCH-ResourceIndex-r13 INTEGER (0..2047),
 sr-PUCCH-ResourceIndexP1-r13 INTEGER (0..2047) OPTIONAL, -- Need OR
 sr-ConfigIndex-r13 INTEGER (0..157),
 dsr-TransMax-r13 ENUMERATED {
 n4, n8, n16, n32, n64, spare3, spare2, spare1}
 }
 }

SchedulingRequestConfig field descriptions

ds-TransMax
Parameter for SR transmission in TS 36.321 [6, 5.4.4]. The value n4 corresponds to 4 transmissions, n8 corresponds to 8 transmissions and so on. EUTRAN configures the same value for all serving cells for which this field is configured.

sr-ConfigIndex
Parameter \(I_{SR} \). See TS 36.213 [23, 10.1]. The values 156 and 157 are not applicable for Release 8.

sr-PUCCH-ResourceIndex, sr-PUCCH-ResourceIndexP1
Parameter: \(n_{PUCCH,SR}^{(1,p)} \) for antenna port 0 and for antenna port 1 respectively, see TS 36.213 [23, 10.1]. E-UTRAN configures sr-PUCCH-ResourceIndexP1 only if sr-PUCCHResourceIndex is configured.

SoundingRS-UL-Config
The IE SoundingRS-UL-Config is used to specify the uplink Sounding RS configuration for periodic and aperiodic sounding.

SoundingRS-UL-Config information element

SoundingRS-UL-ConfigCommon ::=
 CHOICE {
 release NULL,
 setup SEQUENCE {
 srs-BandwidthConfig ENUMERATED {bw0, bw1, bw2, bw3, bw4, bw5, bw6, bw7},
 srs-SubframeConfig ENUMERATED {
 sc0, sc1, sc2, sc3, sc4, sc5, sc6, sc7, sc8, sc9, sc10, sc11, sc12, sc13, sc14, sc15},
 ackNackSRS-SimultaneousTransmission BOOLEAN,
 srs-MaxUpPts ENUMERATED {true} OPTIONAL -- Cond TDD
 }
 }

SoundingRS-UL-ConfigDedicated ::=
 CHOICE {
 release NULL,
 setup SEQUENCE {
 srs-Bandwidth ENUMERATED {bw0, bw1, bw2, bw3},
 srs-HoppingBandwidth ENUMERATED {hbw0, hbw1, hbw2, hbw3},
 freqDomainPosition INTEGER (0..23),
 duration BOOLEAN,
 srs-ConfigIndex INTEGER (0..1023),
 transmissionComb INTEGER (0..1),
 cyclicShift ENUMERATED {cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7}
 }
 }

SoundingRS-UL-ConfigDedicated-v1020 ::= SEQUENCE {
 srs-AntennaPort-r10 SRS-AntennaPort
}

SoundingRS-UL-ConfigDedicated-v1310 ::=
 CHOICE {
 release NULL,
 setup SEQUENCE {
 transmissionComb-v1310 INTEGER (2..3) OPTIONAL, -- Need OR
 cyclicShift-v1310 ENUMERATED {cs8, cs9, cs10, cs11} OPTIONAL, -- Need OR
 transmissionCombNum-r13 ENUMERATED {n2, n4} OPTIONAL -- Need OR
 }
 }
SoundingRS-UL-ConfigDedicatedUpPtsExt-r13 ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 srs-UpPtsAdd-r13 ENUMERATED {sym2, sym4},
 srs-Bandwidth-r13 ENUMERATED {bw0, bw1, bw2, bw3},
 srs-HoppingBandwidth-r13 ENUMERATED {hbw0, hbw1, hbw2, hbw3},
 freqDomainPosition-r13 INTEGER (0..23),
 duration-r13 BOOLEAN,
 srs-ConfigIndex-r13 INTEGER (0..1023),
 transmissionComb-r13 INTEGER (0..3),
 cyclicShift-r13 ENUMERATED {cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, cs8, cs9, cs10, cs11},
 srs-AntennaPort-r13 SRS-AntennaPort,
 transmissionCombNum-r13 ENUMERATED {n2, n4}
 } }

SoundingRS-UL-ConfigDedicatedAperiodic-r10 ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 srs-ConfigIndexAp-r10 INTEGER (0..31),
 srs-ConfigApDCI-Format4-r10 SEQUENCE (SIZE (1..3)) OF SRS-ConfigAp-r10 OPTIONAL,--Need ON
 } }

SoundingRS-UL-ConfigDedicatedAperiodic-v1310 ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 srs-ConfigApDCI-Format4-v1310 SEQUENCE (SIZE (1..3)) OF SRS-ConfigAp-r13 OPTIONAL,--Need ON
 srs-ActivateAp-v1310 CHOICE {
 release NULL,
 setup SEQUENCE {
 srs-ConfigApDCI-Format0-v1310 SRS-ConfigAp-r10,
 srs-ConfigApDCI-Format2b2c-r13 SRS-ConfigAp-r13,
 ...
 } }
 } }

SoundingRS-UL-ConfigDedicatedAperiodicicUpPtsExt-r13 ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 srs-UpPtsAdd-r13 ENUMERATED {sym2, sym4},
 srs-ConfigIndexAp-r10 INTEGER (0..31),
 srs-ConfigApDCI-Format4-r13 SEQUENCE (SIZE (1..3)) OF SRS-ConfigAp-r13 OPTIONAL,--Need ON
 } }

SoundingRS-UL-ConfigDedicatedAperiodic-v1430 ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 srs-SubframeIndication-r14 INTEGER (1..4) OPTIONAL -- Need ON
 } }

SRS-ConfigAp-r10 ::= SEQUENCE {
 srs-AntennaPortAp-r10 SRS-AntennaPort,
SRS-ConfigAp-v1310 ::= SEQUENCE {
 transmissionCombAp-v1310 INTEGER (2..3) OPTIONAL, -- Need OR
 cyclicShiftAp-v1310 ENUMERATED {cs8, cs9, cs10, cs11} OPTIONAL, -- Need OR
 transmissionCombNum-r13 ENUMERATED {n2, n4} OPTIONAL -- Need OR
}

SRS-ConfigAp-r13 ::= SEQUENCE {
 srs-AntennaPortAp-r13 SRS-AntennaPort,
 srs-BandwidthAp-r13 ENUMERATED {bw0, bw1, bw2, bw3},
 freqDomainPositionAp-r13 INTEGER (0..23),
 transmissionCombAp-r13 INTEGER (0..3),
 cyclicShiftAp-r13 ENUMERATED {cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, cs8, cs9, cs10, cs11},
 transmissionCombNum-r13 ENUMERATED {n2, n4}
}

SRS-AntennaPort ::= ENUMERATED {an1, an2, an4, spare1}

-- ASN1STOP
SoundingRS-UL-Config field descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ackNackSRS-SimultaneousTransmission</td>
<td>Parameter: Simultaneous-AN-and-SRS, see TS 36.213 [23, 8.2]. For SCells without PUCCH configured, this field is not applicable and the UE shall ignore the value.</td>
</tr>
<tr>
<td>cyclicShift, cyclicShiftAp</td>
<td>Parameter: (n_{\text{SRS}}) for periodic and aperiodic sounding reference signal transmission respectively except for an LAA SCell. See TS 36.211 [21, 5.5.3.1], where cs0 corresponds to 0 etc.</td>
</tr>
<tr>
<td>duration</td>
<td>Parameter: Duration for periodic sounding reference signal transmission except for an LAA SCell. See TS 36.213 [21, 8.2]. FALSE corresponds to "single" and value TRUE to "indefinite".</td>
</tr>
<tr>
<td>freqDomainPosition, freqDomainPositionAp</td>
<td>Parameter: (n_{\text{SRC}}) for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, 5.5.3.2].</td>
</tr>
<tr>
<td>srs-AntennaPort, srs-AntennaPortAp</td>
<td>Indicates the number of antenna ports used for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, 5.5.3]. UE shall release srs-AntennaPort if SoundingRS-UL-ConfigDedicated is released.</td>
</tr>
<tr>
<td>srs-Bandwidth, srs-BandwidthAp</td>
<td>Parameter: (B_{\text{SRS}}) for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, tables 5.5.3.2-1, 5.5.3.2-2, 5.5.3.2-3 and 5.5.3.2-4]. For LAA SCell only bw0 is applied.</td>
</tr>
<tr>
<td>srs-BandwidthConfig</td>
<td>Parameter: SRS Bandwidth Configuration. See TS 36.211, [21, table 5.5.3.2-1, 5.5.3.2-2, 5.5.3.2-3 and 5.5.3.2-4]. Actual configuration depends on UL bandwidth, bw0 corresponds to value 0, bw1 to value 1 and so on.</td>
</tr>
<tr>
<td>srs-ConfigIndex, srs-ConfigIndexAp</td>
<td>Parameter: (i_{\text{SRC}}) for periodic and aperiodic sounding reference signal transmission respectively except for an LAA SCell. See TS 36.213 [23, table 8.2-1 and table 8.2-2] for periodic and TS 36.213 [23, table 8.2-4 and table 8.2-5] for aperiodic SRS transmission.</td>
</tr>
<tr>
<td>srs-HoppingBandwidth</td>
<td>Parameter: SRS hopping bandwidth (b_{\text{hop}} \in {0,1,2,3}) for periodic sounding reference signal transmission except for an LAA SCell, see TS 36.211 [21, 5.5.3.2] where hw0 corresponds to value 0, hw1 to value 1 and so on.</td>
</tr>
<tr>
<td>srs-MaxUpPts</td>
<td>Parameter: maxUpPts, see TS 36.211 [21, 5.5.3.2]. If this field is present, reconfiguration of (m_{\text{SRS},0}^{\text{max}}) applies for UpPts, otherwise reconfiguration does not apply.</td>
</tr>
<tr>
<td>srs-SubframeConfig</td>
<td>Parameter: SRS SubframeConfiguration except for an LAA SCell. See TS 36.211, [21, table 5.5.3.3-1] applies for FDD whereas TS 36.211 [21, table 5.5.3.3-2] applies for TDD. sc0 corresponds to value 0, sc1 corresponds to value 1 and so on.</td>
</tr>
<tr>
<td>srs-SubframeIndication</td>
<td>Parameter: SRS subframe indication in SRS parameter set configuration for aperiodic sounding reference signal transmission on an LAA SCell configured with uplink, see TS 36.213 [23].</td>
</tr>
<tr>
<td>srs-UpPtsAdd</td>
<td>The field only applies for TDD and frame structure type 3, see TS 36.211 [21]. If E-UTRAN configures both soundingRS-UL-ConfigDedicatedUpPtsExt and soundingRS-UL-ConfigDedicatedAperiodicUpPtsExt srs-UpPtsAdd in both fields is set to the same value. If E-UTRAN configures soundingRS-UL-PeriodicConfigDedicatedUpPtsExtList-r14 with a number of soundingRS-UL-ConfigDedicatedUpPtsExt and/or soundingRS-UL-AperiodicConfigDedicatedList-r14 with a number of soundingRS-UL-ConfigDedicatedAperiodicUpPtsExt, srs-UpPtsAdd in all fields are set to the same value.</td>
</tr>
<tr>
<td>transmissionComb, transmissionCombAp</td>
<td>Parameter: (k_{\text{TC}} \in {0..3}) for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, 5.5.3.2].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>This field is optional present for TDD, need OR; it is not present for FDD and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

SPS-Config

The IE *SPS-Config* is used to specify the semi-persistent scheduling configuration.
SPS-Config information element

-- ASN1START

SPS-Config ::= SEQUENCE {
 semiPersistSchedC-RNTI C-RNTI OPTIONAL, -- Need OR
 sps-ConfigDL SPS-ConfigDL OPTIONAL, -- Need ON
 sps-ConfigUL SPS-ConfigUL OPTIONAL -- Need ON
}

SPS-Config-v1430 ::= SEQUENCE {
 ul-SPS-V-RNTI-r14 C-RNTI OPTIONAL, -- Need OR
 sl-SPS-V-RNTI-r14 C-RNTI OPTIONAL, -- Need OR
 sps-ConfigUL-ToAddModList-r14 SPS-ConfigUL-ToAddModList-r14 OPTIONAL, -- Need ON
 sps-ConfigUL-ToReleaseList-r14 SPS-ConfigUL-ToReleaseList-r14 OPTIONAL, -- Need ON
 sps-ConfigSL-ToAddModList-r14 SPS-ConfigSL-ToAddModList-r14 OPTIONAL, -- Need ON
 sps-ConfigSL-ToReleaseList-r14 SPS-ConfigSL-ToReleaseList-r14 OPTIONAL -- Need ON
}

SPS-ConfigUL-ToAddModList-r14 ::= SEQUENCE (SIZE (1..maxConfigSPS-r14)) OF SPS-ConfigUL

SPS-ConfigUL-ToReleaseList-r14 ::= SEQUENCE (SIZE (1..maxConfigSPS-r14)) OF SPS-ConfigIndex-r14

SPS-ConfigSL-ToAddModList-r14 ::= SEQUENCE (SIZE (1..maxConfigSPS-r14)) OF SPS-ConfigSL-r14

SPS-ConfigSL-ToReleaseList-r14 ::= SEQUENCE (SIZE (1..maxConfigSPS-r14)) OF SPS-ConfigIndex-r14

SPS-ConfigDL ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 semiPersistSchedIntervalDL ENUMERATED {
 sf10, sf20, sf32, sf40, sf64, sf80,
 sf128, sf160, sf320, sf640, spare6,
 spare5, spare4, spare3, spare2,
 spare1},
 numberOfConfSPS-Processes INTEGER (1..8),
 n1PUCCH-AN-PersistentList N1PUCCH-AN-PersistentList,
 ...,
 [twoAntennaPortActivated-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 n1PUCCH-AN-PersistentListP1-r10 N1PUCCH-AN-PersistentList
 } OPTIONAL -- Need ON
 }
]
 }
}

SPS-ConfigUL ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 semiPersistSchedIntervalUL ENUMERATED {
 sf10, sf20, sf32, sf40, sf64, sf80,
 sf128, sf160, sf320, sf640, sf1-v1430,
 sf2-v1430, sf3-v1430, sf4-v1430, sf5-v1430,
 spare1},
 implicitReleaseAfter ENUMERATED {e2, e3, e4, e8},
 p0-Persistent SEQUENCE {
 p0-NominalPUSCH-Persistent INTEGER (-126..24),
 p0-UE-PUSCH-Persistent INTEGER (-8..7)
 } OPTIONAL, -- Need OP
 twoIntervalsConfig ENUMERATED {true} OPTIONAL, -- Cond TDD
 ...,
 [p0-PersistentSubframeSet2-r12 CHOICE {
 release NULL,
 setup SEQUENCE {
 p0-NominalPUSCH-PersistentSubframeSet2-r12 INTEGER (-126..24),
 p0-UE-PUSCH-PersistentSubframeSet2-r12 INTEGER (-8..7)
 }
 } OPTIONAL -- Need ON
],
 [numberOfConfUlSPS-Processes-r13 INTEGER (1..8) OPTIONAL -- Need OR
],
 [fixedRV-NonAdaptive-r14 ENUMERATED {true} OPTIONAL, -- Need OR
 sps-ConfigIndex-r14 SPS-ConfigIndex-r14 OPTIONAL, -- Need OR
 semiPersistSchedIntervalUL-v1430 ENUMERATED {
 sf50, sf100, sf200, sf300, sf400, sf500,
 sf600, sf700, sf800, sf900, sf1000, spare5,
 }
]
 }
}
spare4, spare3, spare2, spare1) OPTIONAL -- Need OR

]}
}

SPS-ConfigSL-r14 ::= SEQUENCE {
 sps-ConfigIndex-r14 SPS-ConfigIndex-r14,
 semiPersistSchedIntervalSL-r14 ENUMERATED {
 sf20, sf50, sf100, sf200, sf300, sf400,
 sf500, sf600, sf700, sf800, sf900, sf1000,
 spare4, spare3, spare2, spare1}
}

SPS-ConfigIndex-r14 ::= INTEGER (1..maxConfigSPS-r14)

N1PUCCH-AN-PersistentList ::= SEQUENCE (SIZE (1..4)) OF INTEGER (0..2047)

-- ASN1STOP
SPS-Config field descriptions

fixedRV-NonAdaptive

If this field is present and `skipUplinkTxSPS` is configured, non-adaptive retransmissions on configured uplink grant uses redundancy version 0, otherwise the redundancy version for each retransmission is updated based on the sequence of redundancy versions as described in TS 36.321 [6].

implicitReleaseAfter

Number of empty transmissions before implicit release, see TS 36.321 [6, 5.10.2]. Value e2 corresponds to 2 transmissions, e3 corresponds to 3 transmissions and so on. If `skipUplinkTxSPS` is configured, the UE shall ignore this field.

n1PUCCH-AN-PersistentList, n1PUCCH-AN-PersistentListP1

List of parameter: $n_{1\text{-PUCCH}}^{\text{AN-Persistent ListP1}}$ for antenna port P0 and for antenna port P1 respectively, see TS 36.213 [23, 10.1]. Field $n_{1\text{-PUCCH}}-\text{AN-PersistentListP1}$ is applicable only if the twoAntennaPortActivatedPUCCH-Format1a1b in PUCCH-ConfigDedicated-v1020 is set to `true`. Otherwise the field is not configured.

numberOfConfSPS-Processes

The number of configured HARQ processes for downlink Semi-Persistent Scheduling, see TS 36.321 [6].

numberOfConfULSPS-Processes

The number of configured HARQ processes for uplink Semi-Persistent Scheduling, see TS 36.321 [6]. E-UTRAN always configures this field for asynchronous UL HARQ. Otherwise it does not configure this field.

p0-NominalPUSCH-Persistent

Parameter: $P_{\text{UL-PUSCH}}^{\text{Nominal_PUSCH}}(0)$, unit dBm step 1. This field is applicable for persistent scheduling, only. If choice setup is used and p0-Persistent is absent, apply the value of p0-NominalPUSCH for p0-NominalPUSCH-Persistent. If uplink power control subframe sets are configured by tpc-SubframeSet, this field applies for uplink power control subframe set 1.

p0-NominalPUSCH-PersistentSubframeSet2

Parameter: $P_{\text{UL-PUSCH}}^{\text{Nominal_PUSCH}}(0)$, unit dBm step 1. This field is applicable for persistent scheduling, only. If p0-PersistentSubframeSet2-r12 is not configured, apply the value of p0-NominalPUSCH-SubframeSet2-r12 for p0-NominalPUSCH-PersistentSubframeSet2. E-UTRAN configures this field only if uplink power control subframe sets are configured by tpc-SubframeSet, in which case this field applies for uplink power control subframe set 2.

p0-UE-PUSCH-Persistent

Parameter: $P_{\text{UL-PUSCH}}^{\text{Nominal_PUSCH}}(0)$, unit dB. This field is applicable for persistent scheduling, only. If choice setup is used and p0-Persistent is absent, apply the value of p0-UE-PUSCH for p0-UE-PUSCH-Persistent. If uplink power control subframe sets are configured by tpc-SubframeSet, this field applies for uplink power control subframe set 1.

p0-UE-PUSCH-PersistentSubframeSet2

Parameter: $P_{\text{UL-PUSCH}}^{\text{Nominal_PUSCH}}(0)$, unit dB. This field is applicable for persistent scheduling, only. If p0-PersistentSubframeSet2-r12 is not configured, apply the value of p0-UE-PUSCH-SubframeSet2 for p0-UE-PUSCH-PersistentSubframeSet2. E-UTRAN configures this field only if uplink power control subframe sets are configured by tpc-SubframeSet, in which case this field applies for uplink power control subframe set 2.

semiPersistSchedC-RNTI

Semi-persistent Scheduling C-RNTI, see TS 36.321 [6].

semiPersistSchedIntervalDL

Semi-persistent scheduling interval in downlink, see TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. For TDD, the UE shall round this parameter down to the nearest integer (of 10 sub-frames), e.g. sf10 corresponds to 10 sub-frames, sf32 corresponds to 30 sub-frames, sf128 corresponds to 120 sub-frames.

semiPersistSchedIntervalSL

Semi-persistent scheduling interval in sidelink, see TS 36.321 [6]. Value in number of sub-frames. Value sf20 corresponds to 20 sub-frames, sf50 corresponds to 50 sub-frames and so on.

semiPersistSchedIntervalUL

Semi-persistent scheduling interval in uplink, see TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. For TDD, when the configured Semi-persistent scheduling interval is greater than or equal to 10 sub-frames, the UE shall round this parameter down to the nearest integer (of 10 sub-frames), e.g. sf10 corresponds to 10 sub-frames, sf32 corresponds to 30 sub-frames, sf128 corresponds to 120 sub-frames. If `semiPersistSchedIntervalUL-v1430` is configured, the UE only considers this extension (and ignores `semiPersistSchedIntervalUL` i.e. without suffix).

sf-SPS-V-RNTI

SL Semi-Persistent Scheduling V-RNTI for V2X sidelink communication, see TS 36.321 [6].

sps-ConfigIndex

Indicates the index of one of multiple SL/UL SPS configurations.

sps-ConfigSL-ToAddModList

Indicates the SL SPS configurations to be added or modified, identified by `sps-ConfigIndex`.

sps-ConfigSL-ToReleaseList

Indicates the SL SPS configurations to be released, identified by `sps-ConfigIndex`.

3GPP TS 36.331 version 14.6.2 Release 14

ETSI

ETSI TS 136 331 V14.6.2 (2018-04)
SPS-Config field descriptions

sps-ConfigUL-ToAddModList
Indicates the UL SPS configurations to be added or modified, identified by `SPS-ConfigIndex`.

sps-ConfigUL-ToReleaseList
Indicates the UL SPS configurations to be released, identified by `SPS-ConfigIndex`.

twIntervalsConfig
Trigger of two-intervals-Semi-Persistent Scheduling in uplink. See TS 36.321 [6, 5.10]. If this field is present and the configured Semi-persistent scheduling interval greater than or equal to 10 sub-frames, two-intervals-SPS is enabled for uplink. Otherwise, two-intervals-SPS is disabled.

ul-SPS-V-RNTI
UL Semi-Persistent Scheduling V-RNTI for UEs capable of multiple uplink SPS configurations and which support V2X communication, see TS 36.321 [6].

Conditional presence

<table>
<thead>
<tr>
<th>TDD</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>This field is optional present for TDD, need OR; it is not present for FDD and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

SRS-TPC-PDCCH-Config

The IE `SRS-TPC-PDCCH-Config` is used to specify the RNTIs and indexes for A-SRS trigger and TPC according to TS 36.212 [22].

SRS-TPC-PDCCH-Config information element

```asn
-- ASN1START
SRS-TPC-PDCCH-Config-r14 ::= CHOICE {
  release NULL,
  setup SEQUENCE {
    srs-TPC-RNTI-r14 BIT STRING (SIZE (16)),
    startingBitOfFormat3B-r14 INTEGER (0..31),
    fieldTypeFormat3B-r14 INTEGER (1..4),
    srs-CC-SetIndexlist-r14 OPTIONAL -- Cond SRS-Trigger-TypeA
      SEQUENCE (SIZE(1..4)) OF SRS-CC-SetIndex-r14
  }
}
SRS-CC-SetIndex-r14 ::= SEQUENCE {
  cc-SetIndex-r14 INTEGER (0..3),
  cc-IndexInOneCC-Set-r14 INTEGER (0..7)
}
-- ASN1STOP
```
SRS-TPC-PDCCH-Config field descriptions

cc-IndexInOneCC-Set
Indicates the CC index in one CC set for Type A associated with the group DCI with SRS request field (optional) and TPC commands for a PUSCH-less SCell

cc-SetIndex
Indicates the CC set index for Type A associated with the group DCI with SRS request field (optional) and TPC commands for a PUSCH-less SCell.

fieldTypeFormat3B
The type of a field within the group DCI with SRS request fields (optional) and TPC commands for a PUSCH-less SCell, which indicates how many bits in the field are for SRS request (0 or 1/2) and how many bits in the field are for TPC (1 or 2). Note that for Type A, there is a common SRS request field for all SCells in the set, but each SCell has its own TPC command bits. See TS 36.212 [22, 5.3.3.1.7A]. EUTRAN configures this field with the same value for all PUSCH-less SCells.

srs-CC-SetIndexlist
Indicates the index of the SRS-TPC-PDCCH-Config for Type A trigger by the group DCI with SRS request field (optional) and TPC commands for a PUSCH-less SCell. Each set may contain at most 8 CCs.

srs-TPC-RNTI
RNTI for SRS trigger and power control using DCI format 3B, see TS 36.212 [22, 5.1.3.1].

startingBitOfFormat3B
The starting bit position of a block within the group DCI with SRS request fields (optional) and TPC commands for a PUSCH-less SCell.

TDD-Config

The IE *TDD-Config* is used to specify the TDD specific physical channel configuration.

TDD-Config information element

```asn1
-- ASN1START
TDD-Config ::= SEQUENCE {
    subframeAssignment ENUMERATED {
        sa0, sa1, sa2, sa3, sa4, sa5, sa6,
    }
    specialSubframePatterns ENUMERATED {
        ssp0, ssp1, ssp2, ssp3, ssp4, ssp5, ssp6, ssp7, ssp8
    }
}
TDD-Config-v1130 ::= SEQUENCE {
    specialSubframePatterns-v1130 ENUMERATED {ssp7, ssp9}
}
TDD-Config-v1430 ::= SEQUENCE {
    specialSubframePatterns-v1430 ENUMERATED {ssp10}
}
TDD-Config-v1450 ::= SEQUENCE {
    specialSubframePatterns-v1450 ENUMERATED {ssp10-CRS-LessDwPTS}
}
TDD-ConfigSL-r12 ::= SEQUENCE {
    subframeAssignmentSL-r12 ENUMERATED {
        none, sa0, sa1, sa2, sa3, sa4, sa5, sa6
    }
}
-- ASN1STOP
```
TDD-Config field descriptions

specialSubframePatterns
Indicates Configuration as in TS 36.211 [21, table 4.2-1] where ssp0 points to Configuration 0, ssp1 to Configuration 1 etc. Value ssp7 points to Configuration 7 for extended cyclic prefix, value ssp9 points to Configuration 9 for normal cyclic prefix and value ssp10 points to Configuration 10 for normal cyclic prefix. Value ssp10-CRS-LessDwPTS corresponds to ssp10 without CRS transmission on the 5th symbol of DwPTS. E-UTRAN signals ssp7 only when setting specialSubframePatterns (without suffix i.e. the version defined in REL-8) to ssp4. E-UTRAN signals value ssp9 only when setting specialSubframePatterns (without suffix) to ssp5. E-UTRAN signals value ssp10 only when setting specialSubframePatterns (without suffix) to ssp0 or ssp5. If specialSubframePatterns-v1130, specialSubframePatterns-v1430, or specialSubframePatterns-v1450 is present, the UE shall ignore specialSubframePatterns (without suffix). If specialSubframePatterns-v1430 or specialSubframePatterns-v1450 is present, the UE shall ignore specialSubframePatterns-v1130. E-UTRAN does not simultaneously configure TDD-Config-v1430 and TDD-Config-v1450.

subframeAssignment
Indicates DL/UL subframe configuration where sa0 points to Configuration 0, sa1 to Configuration 1 etc. as specified in TS 36.211 [21, table 4.2-2]. E-UTRAN configures the same value for serving cells residing on same frequency band.

subframeAssignmentSL
Indicates UL/ DL subframe configuration where sa0 points to Configuration 0, sa1 to Configuration 1 etc. as specified in TS 36.211 [21, table 4.2-2]. The value none means that no TDD specific physical channel configuration is applicable (i.e. the carrier on which MasterInformationBlock-SL is transmitted is an FDD UL carrier or the carrier on which MasterInformationBlock-SL-V2X is transmitted is a carrier for V2X sidelink communication).

TimeAlignmentTimer

The IE TimeAlignmentTimer is used to control how long the UE considers the serving cells belonging to the associated TAG to be uplink time aligned. Corresponds to the Timer for time alignment in TS 36.321 [6]. Value in number of subframes. Value sf500 corresponds to 500 sub-frames, sf750 corresponds to 750 sub-frames and so on.

TimeAlignmentTimer information element

```
-- ASN1START
TimeAlignmentTimer ::= ENUMERATED {
    sf500, sf750, sf1280, sf1920, sf2560, sf5120,
    sf10240, infinity}
-- ASN1STOP
```

TPC-PDCCH-Config

The IE TPC-PDCCH-Config is used to specify the RNTIs and indexes for PUCCH and PUSCH power control according to TS 36.212 [22]. The power control function can either be setup or released with the IE.

TPC-PDCCH-Config information element

```
-- ASN1START
TPC-PDCCH-Config ::= CHOICE {
    release NULL,
    setup SEQUENCE {
        tpc-RNTI BIT STRING (SIZE {16}),
        tpc-index TPC-Index
    }
}

TPC-PDCCH-ConfigSCell-r13 ::= CHOICE {
    release NULL,
    setup SEQUENCE {
        tpc-Index-PUCCH-SCell-r13 TPC-Index
    }
}

TPC-Index ::= CHOICE {
    indexOfFormat3 INTEGER (1..15),
    indexOfFormat3A INTEGER (1..31)
}
-- ASN1STOP
```
TPC-PDCCH-Config field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>indexOfFormat3</td>
<td>Index of N when DCI format 3 is used. See TS 36.212 [22, 5.3.3.1.6].</td>
</tr>
<tr>
<td>IndexOfFormat3A</td>
<td>Index of M when DCI format 3A is used. See TS 36.212 [22, 5.3.3.1.7].</td>
</tr>
<tr>
<td>tpc-Index</td>
<td>Index of N or M, see TS 36.212 [22, 5.3.3.1.6 and 5.3.3.1.7], where N or M is dependent on the used DCI format (i.e. format 3 or 3a).</td>
</tr>
<tr>
<td>tpc-Index-PUCCH-SCell</td>
<td>Index of N or M, see TS 36.212 [22, 5.3.3.1.6 and 5.3.3.1.7], where N or M is dependent on the used DCI format (i.e. format 3 or 3a).</td>
</tr>
<tr>
<td>tpc-RNTI</td>
<td>RNTI for power control using DCI format 3/3A, see TS 36.212 [22].</td>
</tr>
</tbody>
</table>

TunnelConfigLWIP

The IE **TunnelConfigLWIP** is used to setup/release LWIP Tunnel.

```asn1
TunnelConfigLWIP-r13 ::= SEQUENCE {
  ip-Address-r13   IP-Address-r13,
  ike-Identity-r13   IKE-Identity-r13,
  ...,
  [[ lwip-Counter-r13 INTEGER (0..65535)  OPTIONAL  -- Cond LWIP-Setup
       ]]
}
IKE-Identity-r13 ::= SEQUENCE {
  idI-r13     OCTET STRING
}
IP-Address-r13 ::= CHOICE {
  ipv4-r13     BIT STRING (SIZE (32)),
  ipv6-r13     BIT STRING (SIZE (128))
}
```

TunnelConfigLWIP field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-Address</td>
<td>Parameter indicates the LWIP-SeGW IP Address to be used by the UE for initiating LWIP Tunnel establishment [32].</td>
</tr>
<tr>
<td>ike-Identity</td>
<td>Parameter indicates the IKE Identity elements (IDi) to be used in IKE Authentication Procedures [32].</td>
</tr>
<tr>
<td>lwip-Counter</td>
<td>Indicates the parameter used by UE for computing the security keys used in LWIP tunnel establishment, as specified in TS 33.401 [32].</td>
</tr>
</tbody>
</table>

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWIP-Setup</td>
<td>The field is mandatory present upon setup of LWIP tunnel. Otherwise the field is optional, Need ON.</td>
</tr>
</tbody>
</table>

UplinkPowerControl

The IE **UplinkPowerControlCommon** and IE **UplinkPowerControlDedicated** are used to specify parameters for uplink power control in the system information and in the dedicated signalling, respectively.

UplinkPowerControl information elements

```asn1
UplinkPowerControlCommon ::=  SEQUENCE {
```
UplinkPowerControlCommon-v1020 ::= SEQUENCE {
 deltaF-PUCCH-Format3-r10 ENUMERATED {deltaF-1, deltaF0, deltaF1, deltaF2, deltaF3, deltaF4, deltaF5, deltaF6},
 deltaF-PUCCH-Format1bCS-r10 ENUMERATED {deltaF1, deltaF2, spare2, spare1}
}

UplinkPowerControlCommon-v1310 ::= SEQUENCE {
 deltaF-PUCCH-Format4-r13 ENUMERATED {deltaF16, deltaF15, deltaF14, deltaF13, deltaF12, deltaF11, deltaF10, spare1} OPTIONAL, -- Need OR
 deltaF-PUCCH-Format5-13 ENUMERATED { deltaF13, deltaF12, deltaF11, deltaF10, deltaF9, deltaF8, deltaF7, spare1} OPTIONAL -- Need OR
}

UplinkPowerControlCommonPSCell-r12 ::= SEQUENCE {
 -- For uplink power control the additional/missing fields are signalled (compared to SCell)
 deltaF-PUCCH-Format3-r12 ENUMERATED {deltaF-1, deltaF0, deltaF1, deltaF2, deltaF3, deltaF4, deltaF5, deltaF6},
 deltaF-PUCCH-Format1bCS-r12 ENUMERATED {deltaF1, deltaF2, spare2, spare1},
 p0-NominalPUCCH-r12 INTEGER (-127..-96),
 deltaFList-PUCCH-r12 DeltaFList-PUCCH
}

UplinkPowerControlCommonSCell-r10 ::= SEQUENCE {
 p0-NominalPUSCH-r10 INTEGER (-126..24),
 alpha-r10 Alpha-r12
}

UplinkPowerControlCommonSCell-v1130 ::= SEQUENCE {
 deltaPreambleMsg3-r11 INTEGER (-1..6)
}

UplinkPowerControlCommonSCell-v1310 ::= SEQUENCE {
 -- For uplink power control the additional/missing fields are signalled (compared to SCell)
 p0-NominalPUCCH INTEGER (-127..-96),
 deltaFList-PUCCH DeltaFList-PUCCH,
 deltaF-PUCCH-Format3-r12 ENUMERATED {deltaF-1, deltaF0, deltaF1, deltaF2, deltaF3, deltaF4, deltaF5, deltaF6},
 deltaF-PUCCH-Format1bCS-r12 ENUMERATED {deltaF1, deltaF2, spare2, spare1},
 deltaF-PUCCH-Format4-r13 ENUMERATED {deltaF16, deltaF15, deltaF14, deltaF13, deltaF12, deltaF11, deltaF10, deltaF9, deltaF8, deltaF7, spare1} OPTIONAL -- Need OR
 deltaF-PUCCH-Format5-13 ENUMERATED { deltaF13, deltaF12, deltaF11, deltaF10, deltaF9, deltaF8, deltaF7, spare1} OPTIONAL -- Need OR
}

UplinkPowerControlCommonPUSCH-LessCell-v1430 ::= SEQUENCE {
 p0-Nominal-PeriodicSRS-r14 INTEGER (-126..24) OPTIONAL, -- Need OR
 p0-Nominal-AperiodicSRS-r14 INTEGER (-126..24) OPTIONAL, -- Need OR
 alpha-SRS-r14 Alpha-r12 OPTIONAL -- Need OR
}

UplinkPowerControlDedicated ::= SEQUENCE {
 p0-UE-PUSCH INTEGER (-8..7),
 deltaMCS-Enabled ENUMERATED {en0, en1},
 accumulationEnabled BOOLEAN,
 p0-UE-PUCCH INTEGER (-8..7),
 pSRS-Offset INTEGER (0..15),
 filterCoefficient FilterCoefficient DEFAULT fc4
}

UplinkPowerControlDedicated-v1020 ::= SEQUENCE {
 deltaTxDo-OffsetListPUCCH-r10 DeltaTxDo-OffsetListPUCCH-r10 OPTIONAL, -- Need OR
 pSRS-OffsetAp-r10 INTEGER (0..15) OPTIONAL, -- Need OR
}

UplinkPowerControlDedicated-v1130 ::= SEQUENCE {
 pSRS-Offset-v1130 INTEGER (16..31) OPTIONAL, -- Need OR
 pSRS-OffsetAp-v1130 INTEGER (16..31) OPTIONAL, -- Need OR
}
deltaTxD-OffsetListPUCCH-v1130 DeltaTxD-OffsetListPUCCH-v1130 OPTIONAL -- Need OR
}

UplinkPowerControlDedicated-v1250 ::= SEQUENCE {
 set2PowerControlParameter CHOICE {
 release NULL,
 setup SEQUENCE {
 tpc-SubframeSet-r12 BIT STRING (SIZE(10)),
 p0-NominalPUSCH-SubframeSet2-r12 INTEGER {-126..24},
 alpha-SubframeSet2-r12 Alpha-r12,
 p0-UE-PUSCH-SubframeSet2-r12 INTEGER {-8..7}
 }
 }
}

UplinkPUSCH-LessPowerControlDedicated-v1430 ::= SEQUENCE {
 p0-UE-PeriodicSRS-r14 INTEGER (-8..7) OPTIONAL, -- Need OR
 p0-UE-AperiodicSRS-r14 INTEGER (-8..7) OPTIONAL, -- Need OR
 accumulationEnabled-r14 BOOLEAN
}

UplinkPowerControlDedicatedSCell-r10 ::= SEQUENCE {
 p0-UE-PUSCH-r10 INTEGER (-8..7),
 deltaMCS-Enabled-r10 ENUMERATED {en0, en1},
 accumulationEnabled-r10 BOOLEAN,
 pSRS-Offset-r10 INTEGER (0..15),
 pSRS-OffsetAp-r10 INTEGER (0..15) OPTIONAL, -- Need OR
 filterCoefficient-r10 FilterCoefficient DEFAULT fc4,
 pathlossReferenceLinking-r10 ENUMERATED {pCell, sCell}
}

UplinkPowerControlDedicatedSCell-v1310 ::= SEQUENCE {
 --Release 8
 p0-UE-PUCCH INTEGER (-8..7),
 --Release 10
 deltaTxD-OffsetListPUCCH-r10 DeltaTxD-OffsetListPUCCH-r10 OPTIONAL -- Need OR
}

Alpha-r12 ::= ENUMERATED {al0, al04, al05, al06, al07, al08, al09, al1}

DeltaList-PUCCH ::= SEQUENCE {
 deltaF-PUCCH-Format1 ENUMERATED {deltaF-2, deltaF0, deltaF2},
 deltaF-PUCCH-Format1b ENUMERATED {deltaF1, deltaF3, deltaF5},
 deltaF-PUCCH-Format2 ENUMERATED {deltaF-2, deltaF0, deltaF1, deltaF2},
 deltaF-PUCCH-Format2a ENUMERATED {deltaF-2, deltaF0, deltaF2},
 deltaF-PUCCH-Format2b ENUMERATED {deltaF-2, deltaF0, deltaF2}
}

DeltaTxD-OffsetListPUCCH-r10 ::= SEQUENCE {
 deltaTxD-OffsetPUCCH-Format1-r10 ENUMERATED {dB0, dB-2},
 deltaTxD-OffsetPUCCH-Format1b-r10 ENUMERATED {dB0, dB-2},
 deltaTxD-OffsetPUCCH-Format2a-r10 ENUMERATED {dB0, dB-2},
 deltaTxD-OffsetPUCCH-Format3-r10 ENUMERATED {dB0, dB-2},
 ...
}

DeltaTxD-OffsetListPUCCH-v1130 ::= SEQUENCE {
 deltaTxD-OffsetPUCCH-Format1bCS-r11 ENUMERATED {dB0, dB-1}
}

-- ASN1STOP
UplinkPowerControl field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accumulationEnabled</td>
<td>Parameter: Accumulation-enabled, see TS 36.213 [23, 5.1.1.1, 5.1.3.1]. TRUE corresponds to "enabled" whereas FALSE corresponds to "disabled".</td>
</tr>
<tr>
<td>alpha</td>
<td>Parameter: α See TS 36.213 [23, 5.1.1.1] where a0 corresponds to 0, a04 corresponds to value 0.4, a05 to 0.5, a06 to 0.6, a07 to 0.7, a08 to 0.8, a09 to 0.9 and a1 corresponds to 1. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured by tpc-SubframeSet.</td>
</tr>
<tr>
<td>alpha-SRS</td>
<td>Parameter: α_{SRS} See TS 36.213 [23, 5.1.3.1] where a0 corresponds to 0, a04 corresponds to value 0.4, a05 to 0.5, a06 to 0.6, a07 to 0.7, a08 to 0.8, a09 to 0.9 and a1 corresponds to 1. This field applies for SRS power control on a PUSCH-less SCell.</td>
</tr>
<tr>
<td>alpha-SubframeSet2</td>
<td>Parameter: α See TS 36.213 [23, 5.1.1.1] where a0 corresponds to 0, a04 corresponds to value 0.4, a05 to 0.5, a06 to 0.6, a07 to 0.7, a08 to 0.8, a09 to 0.9 and a1 corresponds to 1. This field applies for uplink power control subframe set 2 if uplink power control subframe sets are configured by tpc-SubframeSet.</td>
</tr>
<tr>
<td>deltaF-PUCCH-FormatX</td>
<td>Parameter: $\Delta_{F,PUCCH}$ for the PUCCH formats 1, 1b, 2, 2a, 2b, 3, 4, 5 and 1b with channel selection. See TS 36.213 [23, 5.1.2] where deltaF-2 corresponds to -2 dB, deltaF0 corresponds to 0 dB and so on.</td>
</tr>
<tr>
<td>deltaMCS-Enabled</td>
<td>Parameter: K_s See TS 36.213 [23, 5.1.1.1]. en0 corresponds to value 0 corresponding to state "disabled". en1 corresponds to value 1.25 corresponding to "enabled".</td>
</tr>
<tr>
<td>deltaPreambleMsg3</td>
<td>Parameter: $\Delta_{PREAMBLE_Msg3}$ see TS 36.213 [23, 5.1.1.1]. Actual value = field value * 2 [dB].</td>
</tr>
<tr>
<td>deltaTxD-OffsetPUCCH-FormatX</td>
<td>Parameter: $\Delta_{TxD}(F')$ for the PUCCH formats 1, 1a/1b, 1b with channel selection, 2/2a/2b and 3 when two antenna ports are configured for PUCCH transmission. See TS 36.213 [23, 5.1.2.1] where dB0 corresponds to 0 dB, dB-1 corresponds to -1 dB, dB-2 corresponds to -2 dB. EUTRAN configures the field deltaTxD-OffsetPUCCH-Format1bCS-r11 for the PCell and/or the PSCell only.</td>
</tr>
<tr>
<td>filterCoefficient</td>
<td>Specifies the filtering coefficient for RSRP measurements used to calculate path loss, as specified in TS 36.213 [23, 5.1.1.1]. The same filtering mechanism applies as for quantityConfig described in 5.5.3.2.</td>
</tr>
<tr>
<td>p0-Nominal-AperiodicSRS</td>
<td>Parameter: $P_{O_NOMINAL_SRS,c}(m)$ where $m=1$. See TS 36.213 [23, 5.1.3.1], unit dBm.</td>
</tr>
<tr>
<td>p0-Nominal-PeriodicSRS</td>
<td>Parameter: $P_{O_NOMINAL_SRS,c}(m)$ where $m=0$. See TS 36.213 [23, 5.1.3.1], unit dBm.</td>
</tr>
<tr>
<td>p0-NominalPUCCH</td>
<td>Parameter: $P_{O_NOMINAL_PUCCH}$ See TS 36.213 [23, 5.1.2.1], unit dBm.</td>
</tr>
<tr>
<td>p0-NominalPUSCH</td>
<td>Parameter: $P_{O_NOMINAL_PUSCH}(l)$ See TS 36.213 [23, 5.1.1.1], unit dBm. This field is applicable for non-persistent scheduling only. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured by tpc-SubframeSet.</td>
</tr>
<tr>
<td>p0-NominalPUSCH-SubframeSet2</td>
<td>Parameter: $P_{O_NOMINAL_PUSCH}(l)$. See TS 36.213 [23, 5.1.1.1], unit dBm. This field is applicable for non-persistent scheduling only. This field applies for uplink power control subframe set 2 if uplink power control subframe sets are configured by tpc-SubframeSet.</td>
</tr>
<tr>
<td>p0-UE-AperiodicSRS</td>
<td>Parameter: $P_{O_UE_SRS,c}(m)$ where $m=1$. See TS 36.213 [23, 5.1.3.1], unit dB.</td>
</tr>
<tr>
<td>p0-UE-PeriodicSRS</td>
<td>Parameter: $P_{O_UE_SRS,c}(m)$ where $m=0$. See TS 36.213 [23, 5.1.3.1], unit dB.</td>
</tr>
<tr>
<td>p0-UE-PUCCH</td>
<td>Parameter: $P_{O_UE_PUCCH}$ See TS 36.213 [23, 5.1.2.1]. Unit dB</td>
</tr>
<tr>
<td>p0-UE-PUSCH</td>
<td>Parameter: $P_{O_UE_PUSCH}(l)$ See TS 36.213 [23, 5.1.1.1], unit dB. This field is applicable for non-persistent scheduling only. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured by tpc-SubframeSet.</td>
</tr>
</tbody>
</table>
UplinkPowerControl field descriptions

p0-UE-PUSCH-SubframeSet2
Parameter: \(P_{O,UE-PUSCH} \) \(\) See TS 36.213 [23, 5.1.1.1], unit dB. This field is applicable for non-persistent scheduling, only. This field applies for uplink power control subframe set 2 if uplink power control subframe sets are configured by \(tpc\)-SubframeSet.

pathlossReferenceLinking
Indicates whether the UE shall apply as pathloss reference either the downlink of the PCell or of the SCell that corresponds with this uplink (i.e. according to the cellIdentification within the field \(sCellToAddMod \)). For SCells part of an STAG E-UTRAN sets the value to sCell.

psRS-Offset, psRS-OffsetAp
Parameter: \(P_{SRS,OFFSET} \) \(\) for periodic and aperiodic sounding reference signal transmission respectively. See TS 36.213 [23, 5.1.3.1]. For \(Ks=1.25 \), the actual parameter value is \(P_{SRS-Offset} \) value – 3. For \(Ks=0 \), the actual parameter value is -10.5 + 1.5*\(P_{SRS-Offset} \) value.

If \(pSRS-Offset-v1130 \) is included, the UE ignores \(pSRS-Offset \) (i.e., without suffix). Likewise, if \(pSRS-OffsetAp-v1130 \) is included, the UE ignores \(pSRS-OffsetAp \). For \(Ks=0 \), E-UTRAN does not set values larger than 26.

tpc-SubframeSet
Indicates the uplink subframes (including UpPTS in special subframes) of the uplink power control subframe sets. Value 0 means the subframe belongs to uplink power control subframe set 1, and value 1 means the subframe belongs to uplink power control subframe set 2.

WLAN-Id-List

The IE WLAN-Id-List is used to list WLAN(s) for configuration of WLAN measurements and WLAN mobility set.

```
-- ASN1START
WLAN-Id-List-r13 ::= SEQUENCE (SIZE (1..maxWLAN-Id-r13)) OF WLAN-Identifiers-r12
-- ASN1STOP
```

WLAN-MobilityConfig

The IE WLAN-MobilityConfig is used for configuration of WLAN mobility set and WLAN Status Reporting. E-UTRAN configures at least one WLAN identifier in the WLAN-MobilityConfig.

```
-- ASN1START
WLAN-MobilityConfig-r13 ::= SEQUENCE {
   wlan-ToReleaseList-r13    WLAN-Id-List-r13   OPTIONAL, -- Need ON
   wlan-ToAddList-r13       WLAN-Id-List-r13   OPTIONAL, -- Need ON
   associationTimer-r13     ENUMERATED {s10, s30, s60, s120, s240}   OPTIONAL, -- Need OR
   successReportRequested-r13   ENUMERATED {true}   OPTIONAL, -- Need OR
   ...,
   [[ wlan-SuspendConfig-r14   WLAN-SuspendConfig-r14  OPTIONAL -- Need ON
   ]]}
-- ASN1STOP
```

WLAN-MobilityConfig field descriptions

associationTimer
Indicates the maximum time for connection to WLAN before connection failure reporting is initiated. Value s10 means 10 seconds, value s30 means 30 seconds and so on. E-UTRAN includes associationTimer only upon change in WLAN mobility set, \(lwa\)-WT-Counter or \(lwip\)-Counter.

successReportRequested
Indicates whether the UE shall report successful connection to WLAN. Applicable to LWA and LWIP.

wlan-ToAddList
Indicates the WLAN identifiers to be added to the WLAN mobility set.

wlan-ToReleaseList
Indicates the WLAN identifiers to be removed from the WLAN mobility set.
6.3.3 Security control information elements

– **NextHopChainingCount**

The IE `NextHopChainingCount` is used to update the K_{SRB} key and corresponds to parameter NCC: See TS 33.401 [32, 7.2.8.4].

NextHopChainingCount information element

```
NextHopChainingCount ::= INTEGER (0..7)
```

– **SecurityAlgorithmConfig**

The IE `SecurityAlgorithmConfig` is used to configure AS integrity protection algorithm (SRBs) and AS ciphering algorithm (SRBs and DRBs). For RNs, the IE `SecurityAlgorithmConfig` is also used to configure AS integrity protection algorithm for DRBs between the RN and the E-UTRAN.

SecurityAlgorithmConfig information element

```
SecurityAlgorithmConfig ::= SEQUENCE {
  cipheringAlgorithm  CipheringAlgorithm-r12,
  integrityProtAlgorithm    ENUMERATED {
    eia0-v920, eia1, eia2, eia3-v1130, spare4, spare3,
    spare2, spare1, ...}
}
CipheringAlgorithm-r12 ::= ENUMERATED {
  eea0, eea1, eea2, eea3-v1130, spare4, spare3,
  spare2, spare1, ...}
```

SecurityAlgorithmConfig field descriptions

- `cipheringAlgorithm` Indicates the ciphering algorithm to be used for SRBs and DRBs, as specified in TS 33.401 [32, 5.1.3.2].
- `integrityProtAlgorithm` Indicates the integrity protection algorithm to be used for SRBs, as specified in TS 33.401 [32, 5.1.4.2]. For RNs, also indicates the integrity protection algorithm to be used for integrity protection-enabled DRB(s).

– **ShortMAC-I**

The IE `ShortMAC-I` is used to identify and verify the UE at RRC connection re-establishment. The 16 least significant bits of the MAC-I calculated using the security configuration of the source PCell, as specified in 5.3.7.4.

ShortMAC-I information element

```
ShortMAC-I ::= BIT STRING (SIZE (16))
```
6.3.4 Mobility control information elements

– AdditionalSpectrumEmission

If an extension is signalled using the extended value range (as defined by IE AdditionalSpectrumEmission-v10l0), the corresponding original field, using the value range as defined by IE AdditionalSpectrumEmission i.e. without suffix) shall be set to value 32, if signalled. UE supporting an LTE band assigned NS values larger than 32 as defined in TS 36.101 [42, 6.2.4], needs to support extension signaling (as defined by IE AdditionalSpectrumEmission-v10l0).

AdditionalSpectrumEmission information element

```
-- ASN1START
AdditionalSpectrumEmission ::= INTEGER (1..32)
AdditionalSpectrumEmission-v10l0 ::= INTEGER (33..288)
-- ASN1STOP
```

– ARFCN-ValueCDMA2000

The IE ARFCN-ValueCDMA2000 used to indicate the CDMA2000 carrier frequency within a CDMA2000 band, see C.S0002 [12].

ARFCN-ValueCDMA2000 information element

```
-- ASN1START
ARFCN-ValueCDMA2000 ::= INTEGER (0..2047)
-- ASN1STOP
```

– ARFCN-ValueEUTRA

The IE ARFCN-ValueEUTRA is used to indicate the ARFCN applicable for a downlink, uplink or bi-directional (TDD) E-UTRA carrier frequency, as defined in TS 36.101 [42]. If an extension is signalled using the extended value range (as defined by IE ARFCN-ValueEUTRA-v9e0), the UE shall only consider this extension (and hence ignore the corresponding original field, using the value range as defined by IE ARFCN-ValueEUTRA i.e. without suffix, if signalled). In dedicated signalling, E-UTRAN only provides an EARFCN corresponding to an E-UTRA band supported by the UE.

ARFCN-ValueEUTRA information element

```
-- ASN1START
ARFCN-ValueEUTRA ::= INTEGER (0..maxEARFCN)
ARFCN-ValueEUTRA-v9e0 ::= INTEGER (maxEARFCN-Plus1..maxEARFCN2)
ARFCN-ValueEUTRA-r9 ::= INTEGER (0..maxEARFCN2)
-- ASN1STOP
```

NOTE: For fields using the original value range, as defined by IE ARFCN-ValueEUTRA i.e. without suffix, value maxEARFCN indicates that the E-UTRA carrier frequency is indicated by means of an extension. In such a case, UEs not supporting the extension consider the field to be set to a not supported value.
ARFCN-ValueGERAN

The IE ARFCN-ValueGERAN is used to specify the ARFCN value applicable for a GERAN BCCH carrier frequency, see TS 45.005 [20].

ARFCN-ValueGERAN information element

```asn1
ARFCN-ValueGERAN ::= INTEGER (0..1023)
```

ARFCN-ValueUTRA

The IE ARFCN-ValueUTRA is used to indicate the ARFCN applicable for a downlink (Nd, FDD) or bi-directional (Nt, TDD) UTRA carrier frequency, as defined in TS 25.331 [19].

ARFCN-ValueUTRA information element

```asn1
ARFCN-ValueUTRA ::= INTEGER (0..16383)
```

BandclassCDMA2000

The IE BandclassCDMA2000 is used to define the CDMA2000 band in which the CDMA2000 carrier frequency can be found, as defined in C.S0057 [24, table 1.5-1].

BandclassCDMA2000 information element

```asn1
BandclassCDMA2000 ::= ENUMERATED {
  bc0, bc1, bc2, bc3, bc4, bc5, bc6, bc7, bc8,
  bc9, bc10, bc11, bc12, bc13, bc14, bc15, bc16,
  bc17, bc18-v9a0, bc19-v9a0, bc20-v9a0, bc21-v9a0,
  spare10, spare9, spare8, spare7, spare6, spare5, spare4,
  spare3, spare2, spare1, ...}
```

BandIndicatorGERAN

The IE BandIndicatorGERAN indicates how to interpret an associated GERAN carrier ARFCN, see TS 45.005 [20]. More specifically, the IE indicates the GERAN frequency band in case the ARFCN value can concern either a DCS 1800 or a PCS 1900 carrier frequency. For ARFCN values not associated with one of these bands, the indicator has no meaning.

BandIndicatorGERAN information element

```asn1
BandIndicatorGERAN ::= ENUMERATED {dcs1800, pcs1900}
```

CarrierFreqCDMA2000

The IE CarrierFreqCDMA2000 used to provide the CDMA2000 carrier information.
CarrierFreqCDMA2000 information element

CarrierFreqCDMA2000 ::= SEQUENCE {
 bandClass BandclassCDMA2000,
 arfcn ARFCN-ValueCDMA2000
}

-- ASN1STOP

CarrierFreqGERAN

The IE CarrierFreqGERAN is used to provide an unambiguous carrier frequency description of a GERAN cell.

CarrierFreqGERAN information element

CarrierFreqGERAN ::= SEQUENCE {
 arfcn ARFCN-ValueGERAN,
 bandIndicator BandIndicatorGERAN
}

-- ASN1STOP

CarrierFreqGERAN field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arfcn</td>
<td>GERAN ARFCN of BCCH carrier.</td>
</tr>
<tr>
<td>bandIndicator</td>
<td>Indicates how to interpret the ARFCN of the BCCH carrier.</td>
</tr>
</tbody>
</table>

CarrierFreqsGERAN

The IE CarrierFreqListGERAN is used to provide one or more GERAN ARFCN values, as defined in TS 45.005 [43], which represents a list of GERAN BCCH carrier frequencies.

CarrierFreqsGERAN information element

CarrierFreqsGERAN ::= SEQUENCE {
 startingARFCN ARFCN-ValueGERAN,
 bandIndicator BandIndicatorGERAN,
 followingARFCNs CHOICE {
 explicitListOfARFCNs ExplicitListOfARFCNs,
 equallySpacedARFCNs SEQUENCE {
 arfcn-Spacing INTEGER (1..8),
 numberOfFollowingARFCNs INTEGER (0..31)
 },
 variableBitMapOfARFCNs OCTET STRING (SIZE (1..16))
 }
}

ExplicitListOfARFCNs ::= SEQUENCE (SIZE (0..31)) OF ARFCN-ValueGERAN

-- ASN1STOP
CarrierFreqsGERAN field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arfcn-Spacing</td>
<td>Space, (d), between a set of equally spaced ARFCN values.</td>
</tr>
<tr>
<td>bandIndicator</td>
<td>Indicates how to interpret the ARFCN of the BCCH carrier.</td>
</tr>
<tr>
<td>explicitListOFARFCNs</td>
<td>The remaining ARFCN values in the set are explicitly listed one by one.</td>
</tr>
<tr>
<td>followingARFCNs</td>
<td>Field containing a representation of the remaining ARFCN values in the set.</td>
</tr>
<tr>
<td>numberOfFollowingARFCNs</td>
<td>The number, (n), of the remaining equally spaced ARFCN values in the set.</td>
</tr>
<tr>
<td>startingARFCN</td>
<td>The first ARFCN value, (s), in the set.</td>
</tr>
<tr>
<td>variableBitmapOFARFCNs</td>
<td>Bitmap field representing the remaining ARFCN values in the set.</td>
</tr>
</tbody>
</table>

CarrierFreqListMBMS

The IE \textit{CarrierFreqListMBMS} is used to indicate the E-UTRA ARFCN values of the one or more MBMS frequencies the UE is interested to receive.

\textbf{CarrierFreqListMBMS information element}

```
-- ASN1START
CarrierFreqListMBMS-r11 ::=  SEQUENCE (SIZE (1..maxFreqMBMS-r11)) OF ARFCN-ValueEUTRA-r9
-- ASN1STOP
```

CDMA2000-Type

The IE \textit{CDMA2000-Type} is used to describe the type of CDMA2000 network.

\textbf{CDMA2000-Type information element}

```
-- ASN1START
CDMA2000-Type ::=     ENUMERATED {type1XRTT, typeHRPD}
-- ASN1STOP
```

CellIdentity

The IE \textit{CellIdentity} is used to unambiguously identify a cell within a PLMN.

\textbf{CellIdentity information element}

```
-- ASN1START
CellIdentity ::=     BIT STRING (SIZE (28))
-- ASN1STOP
```

CellIndexList

The IE \textit{CellIndexList} concerns a list of cell indices, which may be used for different purposes.
CellIndexList information element

CellIndexList ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CellIndex
CellIndex ::= INTEGER (1..maxCellMeas)

CellReselectionPriority information element

The IE CellReselectionPriority concerns the absolute priority of the concerned carrier frequency/ set of frequencies (GERAN)/ bandclass (CDMA2000), as used by the cell reselection procedure. Corresponds with parameter "priority" in TS 36.304 [4]. Value 0 means: lowest priority. The UE behaviour for the case the field is absent, if applicable, is specified in TS 36.304 [4].

CellReselectionPriority ::= INTEGER (0..7)

CellSelectionInfoCE information element

The IE CellSelectionInfoCE contains cell selection information for CE. The q-RxLevMinCE corresponds to parameter Q{rxlevmin_CE} in TS 36.304 [4]. The q-QualMinRSRQ-CE corresponds to parameter Q{qualmin_CE} in TS 36.304 [4]. If q-QualMinRSRQ-CE is not present, the UE applies the (default) value of negative infinity for Q{qualmin}.

CellSelectionInfoCE ::= SEQUENCE {
 q-RxLevMinCE-r13 Q-RxLevMin,
 q-QualMinRSRQ-CE-r13 Q-QualMin-r9 OPTIONAL -- Need OR
}

CellSelectionInfoCE1 information element

The IE CellSelectionInfoCE1 contains cell selection information for BL UEs or UEs in CE supporting CE Mode B. The q-RxLevMinCE1 corresponds to parameter Q{rxlevmin_CE1} in TS 36.304 [4]. If delta-RxLevMinCE1 is not included, actual value Q{rxlevmin_CE1} is q-RxLevMinCE1 * 2 [dBm]. If delta-RxLevMinCE1 is included, the actual value Q{rxlevmin_CE1} = (q-RxLevMinCE1 + delta-RxLevMinCE1) * 2 [dBm]. The q-QualMinRSRQ-CE1 corresponds to parameter Q{qualmin_CE1} in TS 36.304 [4]. If q-QualMinRSRQ-CE1 is not present, the UE applies the (default) value of negative infinity for Q{qualmin}.

CellSelectionInfoCE1 ::= SEQUENCE {
 p-RxLevMinCE1-r13 Q-RxLevMin,
 q-QualMinRSRQ-CE1-r13 Q-QualMin-r9 OPTIONAL -- Need OR
 delta-RxLevMinCE1 INTEGER (-8..-1)
}

CellSelectionInfoCE1-v1360 ::= SEQUENCE {
 delta-RxLevMinCE1-v1360 INTEGER (-8..-1)
}
-- **CellReselectionSubPriority**

The IE *CellReselectionSubPriority* indicates a fractional value to be added to the value of cellReselectionPriority to obtain the absolute priority of the concerned carrier frequency for E-UTRA. Value oDot2 corresponds to 0.2, oDot4 corresponds to 0.4 and so on.

CellReselectionSubPriority information element

```-- ASN1START
CellReselectionSubPriority-r13 ::=   ENUMERATED {oDot2, oDot4, oDot6, oDot8}
-- ASN1STOP```

-- **CSFB-RegistrationParam1XRTT**

The IE *CSFB-RegistrationParam1XRTT* is used to indicate whether or not the UE shall perform a CDMA2000 1xRTT pre-registration if the UE does not have a valid / current pre-registration.

```-- ASN1START
CSFB-RegistrationParam1XRTT ::= SEQUENCE {
 sid BIT STRING (SIZE (15)),
 nid BIT STRING (SIZE (16)),
 multipleSID BOOLEAN,
 multipleNID BOOLEAN,
 homeReg BOOLEAN,
 foreignSIDReg BOOLEAN,
 foreignNIDReg BOOLEAN,
 parameterReg BOOLEAN,
 powerUpReg BOOLEAN,
 registrationPeriod BIT STRING (SIZE (7)),
 registrationZone BIT STRING (SIZE (12)),
 totalZone BIT STRING (SIZE (3)),
 zoneTimer BIT STRING (SIZE (3))
}

CSFB-RegistrationParam1XRTT-v920 ::= SEQUENCE {
 powerDownReg-r9 ENUMERATED {true}
}
-- ASN1STOP```
CSFB-RegistrationParam1XRTT field descriptions

- **foreignNIDReg**
The CDMA2000 1xRTT NID roamer registration indicator.

- **foreignSIDReg**
The CDMA2000 1xRTT SID roamer registration indicator.

- **homeReg**
The CDMA2000 1xRTT Home registration indicator.

- **multipleNID**
The CDMA2000 1xRTT Multiple NID storage indicator.

- **multipleSID**
The CDMA2000 1xRTT Multiple SID storage indicator.

- **nid**
Used along with the sid as a pair to control when the UE should Register or Re-Register with the CDMA2000 1xRTT network.

- **parameterReg**
The CDMA2000 1xRTT Parameter-change registration indicator.

- **powerDownReg**
The CDMA2000 1xRTT Power-down registration indicator. If set to TRUE, the UE that has a valid / current CDMA2000 1xRTT pre-registration will perform a CDMA2000 1xRTT power down registration when it is switched off.

- **powerUpReg**
The CDMA2000 1xRTT Power-up registration indicator.

- **registrationPeriod**
The CDMA2000 1xRTT Registration period.

- **registrationZone**
The CDMA2000 1xRTT Registration zone.

- **sid**
Used along with the nid as a pair to control when the UE should Register or Re-Register with the CDMA2000 1xRTT network.

- **totalZone**
The CDMA2000 1xRTT Number of registration zones to be retained.

- **zoneTimer**
The CDMA2000 1xRTT Zone timer length.

CellGlobalIdEUTRA

The IE **CellGlobalIdEUTRA** specifies the Evolved Cell Global Identifier (ECGI), the globally unique identity of a cell in E-UTRA.

CellGlobalIdEUTRA information element

```asn1
CellGlobalIdEUTRA ::= SEQUENCE {
  plmn-Identity        PLMN-Identity,
  cellIdentity         CellIdentity
}
```

CellGlobalIdEUTRA field descriptions

- **cellIdentity**
Identity of the cell within the context of the PLMN.

- **plmn-Identity**
Identifies the PLMN of the cell as given by the first PLMN entry in the **plmn-IdentityList** in **SystemInformationBlockType1**.

CellGlobalIdUTRA

The IE **CellGlobalIdUTRA** specifies the global UTRAN Cell Identifier, the globally unique identity of a cell in UTRA.

CellGlobalIdUTRA information element

```asn1
CellGlobalIdUTRA ::= SEQUENCE {
  plmn-Identity        PLMN-Identity,
  cellIdentity         CellIdentity
}
```
CellGlobalIdUTRA field descriptions

- **cellIdentity**
 UTRA Cell Identifier which is unique within the context of the identified PLMN as defined in TS 25.331 [19].

- **plmn-Identity**
 Identifies the PLMN of the cell as given by the common PLMN broadcast in the MIB, as defined in TS 25.331 [19].

CellGlobalIdGERAN

The IE *CellGlobalIdGERAN* specifies the Cell Global Identification (CGI), the globally unique identity of a cell in GERAN.

CellGlobalIdGERAN information element

CellGlobalIdGERAN field descriptions

- **cellIdentity**
 Cell Identifier which is unique within the context of the GERAN location area as defined in TS 23.003 [27].

- **locationAreaCode**
 A fixed length code identifying the location area within a PLMN as defined in TS 23.003 [27].

- **plmn-Identity**
 Identifies the PLMN of the cell, as defined in TS 23.003 [27].

CellGlobalIdCDMA2000

The IE *CellGlobalIdCDMA2000* specifies the Cell Global Identification (CGI), the globally unique identity of a cell in CDMA2000.

CellGlobalIdCDMA2000 information element

CellGlobalIdCDMA2000 field descriptions

- **cellGlobalId1XRTT**
 Unique identifier for a CDMA2000 1xRTT cell, corresponds to BASEID, SID and NID parameters (in that order) defined in C.S0005 [25].

- **cellGlobalIdHRPD**
 Unique identifier for a CDMA2000 HRPD cell, corresponds to SECTOR ID parameter defined in C.S0024 [26, 14.9].
– **CellSelectionInfoNFreq**

The IE *CellSelectionInfoNFreq* includes the parameters used for cell selection on a neighbouring frequency, see TS 36.304 [4].

CellSelectionInfoNFreq information element

```
CellSelectionInfoNFreq-r13 ::= SEQUENCE {
  q-RxLevMin-r13     Q-RxLevMin,
  q-RxLevMinOffset     INTEGER (1..8)   OPTIONAL, -- Need OP
  q-Hyst-r13       ENUMERATED {
    dB0, dB1, dB2, dB3, dB4, dB5, dB6, dB8, dB10,
    dB12, dB14, dB16, dB18, dB20, dB22, dB24},
  q-RxLevMinReselection-r13   Q-RxLevMin,
  t-ReselectionEUTRA-r13    T-Reselection
}
```

-- ASNI1STOP

– **CSG-Identity**

The IE *CSG-Identity* is used to identify a Closed Subscriber Group.

CSG-Identity information element

```
CSG-Identity ::=     BIT STRING (SIZE (27))
```

-- ASNI1STOP

– **FreqBandIndicator**

The IE *FreqBandIndicator* indicates the E-UTRA operating band as defined in TS 36.101 [42, table 5.5-1]. If an extension is signalled using the extended value range (as defined by IE *FreqBandIndicator-v9e0*), the UE shall only consider this extension (and hence ignore the corresponding original field, using the value range as defined by IE *FreqBandIndicator* i.e. without suffix, if signalled).

FreqBandIndicator information element

```
FreqBandIndicator ::=     INTEGER (1..maxFBI)
FreqBandIndicator-v9e0 ::=    INTEGER (maxFBI-Plus1..maxFBI2)
FreqBandIndicator-r11 ::=    INTEGER (1..maxFBI2)
```

-- ASNI1STOP

NOTE: For fields using the original value range, as defined by IE *FreqBandIndicator* i.e. without suffix, value *maxFBI* indicates that the frequency band is indicated by means of an extension. In such a case, UEs not supporting the extension consider the field to be set to a not supported value.

– **MobilityControlInfo**

The IE *MobilityControlInfo* includes parameters relevant for network controlled mobility to/within E-UTRA.
-- ASN1START

MobilityControlInfo ::= SEQUENCE {
 targetPhysCellId PhysCellId,
 carrierFreq CarrierFreqEUTRA OPTIONAL, -- Cond HO-
toEUTRA2 CarrierBandwidthEUTRA OPTIONAL, -- Cond HO-
toEUTRA2 AdditionalSpectrumEmission OPTIONAL, -- Cond HO-
toEUTRA2 t304 ENUMERATED {
 ms50, ms100, ms150, ms200, ms500, ms1000,
 ms2000},
 radioResourceConfigCommon RadioResourceConfigCommon,
 rach-ConfigDedicated RACH-ConfigDedicated OPTIONAL, -- Need OP
 newUE-Identity C-RNTI,
 rach-ConfigDedicated RACH-ConfigDedicated OPTIONAL, -- Need OP
 additionalSpectrumEmission AdditionalSpectrumEmission OPTIONAL, -- Cond HO-
 drb-ContinueROHC-r11 ENUMERATED {true} OPTIONAL -- Cond HO-
 mobilityControlInfoV2X-r14 MobilityControlInfoV2X-r14 OPTIONAL, -- Need ON
 handoverWithoutWT-Change-r14 ENUMERATED {KeepLWA-Config, sendEndMarker} OPTIONAL, -- Cond HO
 makeBeforeBreak-r14 ENUMERATED {true} OPTIONAL, -- Need OR
 rach-Skip-r14 RACH-Skip-r14 OPTIONAL -- Need OR
 sameSFN-Indication-r14 ENUMERATED {true} OPTIONAL -- Cond HO-
 mib-RepetitionStatus-r14 BOOLEAN OPTIONAL, -- Need OR
 schedulingInfoSIB1-BAR-r14 INTEGER (0..31) OPTIONAL -- Cond HO-
}

MobilityControlInfo-v1010 ::= SEQUENCE {
 AdditionalSpectrumEmission-v1010 OPTIONAL -- Need ON
}

MobilityControlInfoSCG-r12 ::= SEQUENCE {
 t307-r12 ENUMERATED {
 ms50, ms100, ms150, ms200, ms500, ms1000,
 ms2000, spare1},
 ue-IdentitySCG-r12 C-RNTI OPTIONAL, -- Cond SCGEst,
 rach-ConfigDedicated-r12 RACH-ConfigDedicated OPTIONAL, -- Need OP
 cipheringAlgorithmSCG-r12 CipheringAlgorithm-r12 OPTIONAL, -- Need OP
 makeBeforeBreakSCG-r14 ENUMERATED {true} OPTIONAL, -- Need OR
 rach-SkipSCG-r14 RACH-Skip-r14 OPTIONAL -- Need OR
}

MobilityControlInfoV2X-r14 ::= SEQUENCE {
 v2x-CommTxPool1Exceptional-r14 SL-CommResourcePoolV2X-r14 OPTIONAL, -- Need OR
 v2x-CommRxPool1-r14 SL-CommRxPoolListV2X-r14 OPTIONAL, -- Need OR
 v2x-CommSyncConfig-r14 SL-SyncConfigListV2X-r14 OPTIONAL, -- Need OR
 cbr-MobilityTxConfigList-r14 SL-CBR-CommonTxConfigList-r14 OPTIONAL -- Need OR
}

CarrierBandwidthEUTRA ::= SEQUENCE {
 dl-Bandwidth ENUMERATED {
 n6, n15, n25, n50, n75, n100, spare10,
 spare9, spare8, spare7, spare6, spare5,
 spare4, spare3, spare2, spare1},
 ul-Bandwidth ENUMERATED {
 n6, n15, n25, n50, n75, n100, spare10,
 spare9, spare8, spare7, spare6, spare5,
 spare4, spare3, spare2, spare1} OPTIONAL -- Need OP
}

CarrierFreqEUTRA ::= SEQUENCE {
 dl-CarrierFreq ARFCN-ValueEUTRA,
 ul-CarrierFreq ARFCN-ValueEUTRA OPTIONAL -- Cond FDD
}
CarrierFreqEUTRA-v9e0 ::= SEQUENCE {
 dl-CarrierFreq-v9e0 ARFCN-ValueEUTRA-r9,
 ul-CarrierFreq-v9e0 ARFCN-ValueEUTRA-r9 OPTIONAL -- Cond FDD
}

RACH-Skip-r14 ::= SEQUENCE {
 targetTA-r14 CHOICE {
 ta0-r14 NULL,
 mcg-P TAG-r14 NULL,
 scg-P TAG-r14 NULL,
 mcg-STAG-r14 STAG-Id-r11,
 scg-STAG-r14 STAG-Id-r11
 },
 ul-ConfigInfo-r14 SEQUENCE {
 numberOfConfUL-Processes-r14 INTEGER (1..8),
 ul-SchedInterval-r14 ENUMERATED {sf2, sf5, sf10},
 ul-StartSubframe-r14 INTEGER (0..9),
 ul-Grant-r14 BIT STRING (SIZE (16))
 } OPTIONAL -- Need OR
}

-- ASN1STOP
MobilityControlInfo field descriptions

additionalSpectrumEmission
For a UE with no SCells configured for UL in the same band as the PCell, the UE shall apply the value for the PCell instead of the corresponding value from SystemInformationBlockType2 or SystemInformationBlockType1. For a UE with SCell(s) configured for UL in the same band as the PCell, the UE shall, in case all SCells configured for UL in that band are released after handover completion, apply the value for the PCell instead of the corresponding value from SystemInformationBlockType2 or SystemInformationBlockType1. The UE requirements related to IE AdditionalSpectrumEmission are defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs.

carrierBandwidth
Provides the parameters Downlink bandwidth, and Uplink bandwidth, see TS 36.101 [42].

carrierFreq
Provides the EARFCN to be used by the UE in the target cell.

cbr-MobilityTxConfigList
Indicates the list of CBR ranges and the list of PSSCH transmission parameter configurations available to configure congestion control to the UE for V2X sidelink communication during handover.

cipheringAlgorithmSCG
Indicates the ciphering algorithm to be used for SCG DRBs. E-UTRAN includes the field upon SCG change when one or more SCG DRBs are configured. Otherwise E-UTRAN does not include the field.

dl-Bandwidth
Parameter: Downlink bandwidth, see TS 36.101 [42].

drb-ContinueROHC
This field indicates whether to continue or reset, for this handover, the header compression protocol context for the RLC UM bearers configured with the header compression protocol. Presence of the field indicates that the header compression protocol context continues while absence indicates that the header compression protocol context is reset. E-UTRAN includes the field only in case of a handover within the same eNB.

handoverWithoutWT-Change
Indicates whether UE performs handover where LWA configuration is retained with the same WT If sendEndMarker is configured, the LWA end-marker for PDCP key change indication is used as defined in [8]. If value keepLWA-Config is configured, LWA end marker is not used and UE shall only retain the LWA configuration.

makeBeforeBreak
Indicates that the UE shall continue uplink transmission/ downlink reception with the source cell(s) before performing the first transmission through PRACH to the target intra-frequency PCell, or performing initial PUSCH transmission to the target intra-frequency PCell while rach-Skip is configured.

makeBeforeBreakSCG
Indicates that the UE shall continue uplink transmission/ downlink reception with the source cell(s) before performing the first transmission through PRACH to the target intra-frequency PSCell, or performing initial PUSCH transmission to the target intra-frequency PSCell while rach-SkipSCG is configured.

mib-RepetitionStatus
Indicates whether additional MIB repetition is enabled in the target cell or not. Value TRUE indicates additional MIB repetition is enabled in the target cell. Value FALSE indicates additional MIB repetition is not enabled in the target cell. The absence of this field indicates additional MIB repetition may or may not be enabled in the target cell. See 5.2.1.2 and TS 36.211 [21, 6.4.1]. This field is applicable to BL UE or UE in CE.

mobilityControlInfoV2X
Indicates the sidelink configurations of the target cell for V2X sidelink communication during handover.

numberOfConfUL-Processes
The number of configured HARQ processes for preallocated uplink grant, see TS 36.321 [6, 5.20].

rach-ConfigDedicated
The dedicated random access parameters. If absent the UE applies contention based random access as specified in TS 36.321 [6].

rach-Skip
This field indicates whether random access procedure for the target PCell is skipped.

rach-SkipSCG
This field indicates whether random access procedure for the target PSCell is skipped.

sameSFN-Indication
This field indicates that the target cell has the same SFN as the source cell and that the BL UE or UE in CE is not required to acquire MasterInformationBlock in the target PCell during handover to obtain the SFN of the target cell, as specified in section 5.3.5.4.

schedulingInfoSIB1-BR
Indicates the index to the tables that define SystemInformationBlockType1-BR scheduling information. The tables are specified in TS 36.213 [23, Table 7.1.6-1 and Table 7.1.7.2.7-1]. Value 0 means SystemInformationBlockType1-BR is not scheduled. If absent when sameSFN-Indication is present, UE assumes that SystemInformationBlockType1-BR scheduling information in target cell may be different from source cell.

t304
Timer T304 as described in section 7.3. ms50 corresponds with 50 ms, ms100 corresponds with 100 ms and so on. EUTRAN includes extended value ms10000-v1310 only when UE supports CE.
MobilityControlInfo field descriptions

additionalSpectrumEmission

For a UE with no SCells configured for UL in the same band as the PCell, the UE shall apply the value for the PCell instead of the corresponding value from `SystemInformationBlockType2` or `SystemInformationBlockType1`. For a UE with SCell(s) configured for UL in the same band as the PCell, the UE shall, in case all SCells configured for UL in that band are released after handover completion, apply the value for the PCell instead of the corresponding value from `SystemInformationBlockType2` or `SystemInformationBlockType1`. The UE requirements related to IE `AdditionalSpectrumEmission` are defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs.

t307

Timer T307 as described in section 7.3. `ms50` corresponds with 50 ms, `ms100` corresponds with 100 ms and so on.

targetTA

This field refers to the timing adjustment indication, see TS 36.213 [23], indicating the NTA value which the UE shall use for the target PTAG of handover or the target PSTAG of SCG change. `ta0` corresponds to `NTA=0`. `mcg-PTAG` corresponds to the latest NTA value of the PTAG associated with MCG. `scg-PTAG` corresponds to the latest NTA value of the PTAG associated with SCG. `mcg-STAG` corresponds to the latest NTA value of a MCG STAG indicated by the STAG-Id. `scg-STAG` corresponds to the latest NTA value of a SCG STAG indicated by the STAG-Id.

ul-Bandwidth

Parameter: Uplink bandwidth, see TS 36.101 [42, table 5.6-1]. For TDD, the parameter is absent and it is equal to downlink bandwidth. If absent for FDD, apply the same value as applies for the downlink bandwidth.

ul-Grant

Indicates the resources of the target PCell/PSCell to be used for the uplink transmission of PUSCH [23, 8.8].

ul-SchedInterval

Indicates the scheduling interval in uplink, see TS 36.321 [6, 5.20]. Value in number of sub-frames. Value `sf2` corresponds to 2 subframes, `sf5` corresponds to 5 subframes and so on.

ul-StartSubframe

Indicates the subframe in which the UE may initiate the uplink transmission, see TS 36.321 [6, 5.20]. Value 0 corresponds to subframe number 0, 1 corresponds to subframe number 1 and so on. The subframe indicating a valid uplink grant according to the calculation of UL grant configured by `ul-StartSubframe` and `ul-SchedInterval`, see TS 36.321 [6, 5.20], is the same across all radio frames.

v2x-CommRxPool

Indicates reception pools for receiving V2X sidelink communication during handover.

v2x-CommSyncConfig

Indicates synchronization configurations for performing V2X sidelink communication during handover.

v2x-CommTxPoolExceptional

Indicates the transmission resources by which the UE is allowed to transmit V2X sidelink communication during handover.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>The field is mandatory with default value (the default duplex distance defined for the concerned band, as specified in TS 36.101 [42]) in case of "FDD"; otherwise the field is not present.</td>
</tr>
<tr>
<td>HO</td>
<td>This field is optionally present, need OP, in case of handover within E-UTRA when the <code>fullConfig</code> is not included; otherwise the field is not present.</td>
</tr>
<tr>
<td>HO-SFNsynced</td>
<td>This field is optionally present, need OP, in case of source E-UTRA and target E-UTRA cells are SFN synchronised.</td>
</tr>
<tr>
<td>HO-toEUTRA</td>
<td>The field is mandatory present in case of inter-RAT handover to E-UTRA; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>HO-toEUTRA2</td>
<td>The field is absent if <code>carrierFreq-v9e0</code> is present. Otherwise it is mandatory present in case of inter-RAT handover to E-UTRA and optionally present, need ON, in all other cases.</td>
</tr>
<tr>
<td>SCGEst</td>
<td>This field is mandatory present in case of SCG establishment; otherwise the field is optionally present, need ON.</td>
</tr>
</tbody>
</table>

MobilityParametersCDMA2000 (1xRTT)

The `MobilityParametersCDMA2000` contains the parameters provided to the UE for handover and (enhanced) CSFB to 1xRTT support, as defined in C.S0097 [53].

MobilityParametersCDMA2000 information element

```asn1
MobilityParametersCDMA2000 ::= OCTET STRING
```
The IE MobilityStateParameters contains parameters to determine UE mobility state.

MobilityStateParameters information element

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>t-Evaluation</code></td>
<td>The duration for evaluating criteria to enter mobility states. Corresponds to TCRmax in TS 36.304 [4]. Value in seconds, s30 corresponds to 30 s and so on.</td>
</tr>
<tr>
<td><code>t-HystNormal</code></td>
<td>The additional duration for evaluating criteria to enter normal mobility state. Corresponds to TCRmaxHyst in TS 36.304 [4]. Value in seconds, s30 corresponds to 30 s and so on.</td>
</tr>
</tbody>
</table>

MultiBandInfoList information element

NS-PmaxList information element

The IE NS-PmaxList concerns a list of additionalPmax and additionalSpectrumEmission, as defined in TS 36.101 [42, table 6.2.4-1] for UEs neither in CE nor BL UEs and TS 36.101 [42, table 6.2.4E-1] for UEs in CE or BL UEs, for a given frequency band. E-UTRAN does not include the same value of additionalSpectrumEmission in SystemInformationBlockType2 within this list.
PhysCellId

The IE PhysCellId is used to indicate the physical layer identity of the cell, as defined in TS 36.211 [21].

PhysCellId information element

```asn1
PhysCellId ::= INTEGER (0..503)
```

PhysCellIdRange

The IE PhysCellIdRange is used to encode either a single or a range of physical cell identities. The range is encoded by using a start value and by indicating the number of consecutive physical cell identities (including start) in the range. For fields comprising multiple occurrences of PhysCellIdRange, E-UTRAN may configure overlapping ranges of physical cell identities.

PhysCellIdRange information element

```asn1
PhysCellIdRange ::= SEQUENCE {
  start  PhysCellId,
  range  ENUMERATED {
    n4, n8, n12, n16, n24, n32, n48, n64, n84, n96, n128, n168, n252, n504, spare2, spare1} OPTIONAL -- Need OP
}
```

PhysCellIdRange field descriptions

- **range**
 Indicates the number of physical cell identities in the range (including start). Value n4 corresponds with 4, n8 corresponds with 8 and so on. The UE shall apply value 1 in case the field is absent, in which case only the physical cell identity value indicated by start applies.

- **start**
 Indicates the lowest physical cell identity in the range.
PhysCellIdRangeUTRA-FDDList

The IE PhysCellIdRangeUTRA-FDDList is used to encode one or more of PhysCellIdRangeUTRA-FDD. While the IE PhysCellIdRangeUTRA-FDD is used to encode either a single physical layer identity or a range of physical layer identities, i.e. primary scrambling codes. Each range is encoded by using a start value and by indicating the number of consecutive physical cell identities (including start) in the range.

PhysCellIdRangeUTRA-FDDList information element

```
PhysCellIdRangeUTRA-FDDList-r9 ::= SEQUENCE (SIZE (1..maxPhysCellIdRange-r9)) OF PhysCellIdRangeUTRA-FDD-r9
PhysCellIdRangeUTRA-FDD-r9 ::= SEQUENCE {
    start-r9       PhysCellIdUTRA-FDD,
    range-r9       INTEGER (2..512) OPTIONAL -- Need OP
}
```

PhysCellIdRangeUTRA-FDDList field descriptions

```
range
Indicates the number of primary scrambling codes in the range (including start). The UE shall apply value 1 in case the field is absent, in which case only the primary scrambling code value indicated by start applies.
```

```
start
Indicates the lowest primary scrambling code in the range.
```

PhysCellIdCDMA2000

The IE PhysCellIdCDMA2000 identifies the PNOffset that represents the "Physical cell identity" in CDMA2000.

PhysCellIdCDMA2000 information element

```
PhysCellIdCDMA2000 ::= INTEGER (0..maxPNOffset)
```

PhysCellIdGERAN

The IE PhysCellIdGERAN contains the Base Station Identity Code (BSIC).

PhysCellIdGERAN information element

```
PhysCellIdGERAN ::= SEQUENCE {
    networkColourCode     BIT STRING (SIZE (3)),
    baseStationColourCode    BIT STRING (SIZE (3))
}
```

PhysCellIdGERAN field descriptions

```
baseStationColourCode
Base station Colour Code as defined in TS 23.003 [27].
```

```
networkColourCode
Network Colour Code as defined in TS 23.003 [27].
```
PhysCellIdUTRA-FDD

The IE *PhysCellIdUTRA-FDD* is used to indicate the physical layer identity of the cell, i.e. the primary scrambling code, as defined in TS 25.331 [19].

PhysCellIdUTRA-FDD information element

```asn1
PhysCellIdUTRA-FDD ::= INTEGER (0..511)
```

PhysCellIdUTRA-TDD

The IE *PhysCellIdUTRA-TDD* is used to indicate the physical layer identity of the cell, i.e. the cell parameters ID (TDD), as specified in TS 25.331 [19]. Also corresponds to the Initial Cell Parameter Assignment in TS 25.223 [46].

PhysCellIdUTRA-TDD information element

```asn1
PhysCellIdUTRA-TDD ::= INTEGER (0..127)
```

PLMN-Identity

The IE *PLMN-Identity* identifies a Public Land Mobile Network. Further information regarding how to set the IE are specified in TS 23.003 [27].

PLMN-Identity information element

```asn1
PLMN-Identity ::= SEQUENCE {
    mcc         MCC     OPTIONAL,     -- Cond MCC
    mnc         MNC
}
MCC ::= SEQUENCE (SIZE (3)) OF MCC-MNC-Digit
MNC ::= SEQUENCE (SIZE (2..3)) OF MCC-MNC-Digit
MCC-MNC-Digit ::= INTEGER (0..9)
```

PLMN-Identity field descriptions

mcc

The first element contains the first MCC digit, the second element the second MCC digit and so on. If the field is absent, it takes the same value as the mcc of the immediately preceding IE PLMN-Identity. See TS 23.003 [27].

mnc

The first element contains the first MNC digit, the second element the second MNC digit and so on. See TS 23.003 [27].

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC</td>
<td>This IE is mandatory when PLMN-Identity is included in CellGlobalIdEUTRA, in CellGlobalIdUTRA, in CellGlobalIdGERAN or in RegisteredMME. This IE is also mandatory in the first occurrence of the IE PLMN-Identity within the IE PLMN-IdentityList. Otherwise it is optional, need OP.</td>
</tr>
</tbody>
</table>
PLMN-IdentityList3

Includes a list of PLMN identities.

PLMN-IdentityList3 information element

```
-- ASN1START
PLMN-IdentityList3-r11 ::= SEQUENCE (SIZE (1..16)) OF PLMN-Identity
-- ASN1STOP
```

PreRegistrationInfoHRPD

```
-- ASN1START
PreRegistrationInfoHRPD ::= SEQUENCE {
    preRegistrationAllowed BOOLEAN,
    preRegistrationZoneId (PreRegistrationZoneIdHRPD OPTIONAL, -- cond PreRegAllowed)
    secondaryPreRegistrationZoneIdList (SecondaryPreRegistrationZoneIdListHRPD OPTIONAL -- Need OR)
}

SecondaryPreRegistrationZoneIdListHRPD ::= SEQUENCE (SIZE (1..2)) OF PreRegistrationZoneIdHRPD

PreRegistrationZoneIdHRPD ::= INTEGER (0..255)
-- ASN1STOP
```

PreRegistrationInfoHRPD field descriptions

- **preRegistrationAllowed**
 TRUE indicates that a UE shall perform a CDMA2000 HRPD pre-registration if the UE does not have a valid / current pre-registration. FALSE indicates that the UE is not allowed to perform CDMA2000 HRPD pre-registration in the current cell.

- **preRegistrationZoneId**
 ColorCode (see C.S0024 [26], C.S0087 [44]) of the CDMA2000 Reference Cell corresponding to the HRPD sector under the HRPD AN that is configured for this LTE cell. It is used to control when the UE should register or re-register.

- **secondaryPreRegistrationZoneIdList**
 List of SecondaryColorCodes (see C.S0024 [26], C.S0087 [44]) of the CDMA2000 Reference Cell corresponding to the HRPD sector under the HRPD AN that is configured for this LTE cell. They are used to control when the UE should re-register.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreRegAllowed</td>
<td>The field is mandatory in case the preRegistrationAllowed is set to true. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

Q-QualMin

The IE **Q-QualMin** is used to indicate for cell selection/ re-selection the required minimum received RSRQ level in the (E-UTRA) cell. Corresponds to parameter $Q_{qualmin}$ in TS 36.304 [4]. Actual value $Q_{qualmin} = \text{field value [dB]}$.

Q-QualMin information element

```
-- ASN1START
Q-QualMin-r9 ::= INTEGER (-34..-3)
-- ASN1STOP
```

Q-RxLevMin

The IE **Q-RxLevMin** is used to indicate for cell selection/ re-selection the required minimum received RSRP level in the (E-UTRA) cell. Corresponds to parameter $Q_{rxlevmin}$ in TS 36.304 [4]. Actual value $Q_{rxlevmin} = \text{field value} \times 2 \text{ [dBm]}$.
Q-RxLevMin Information Element

- **ASN1START**
- Q-RxLevMin ::= INTEGER (-70..-22)
- **ASN1STOP**

Q-OffsetRange Information Element

The IE **Q-OffsetRange** is used to indicate a cell, CSI-RS resource or frequency specific offset to be applied when evaluating candidates for cell re-selection or when evaluating triggering conditions for measurement reporting. The value in dB. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.

- **ASN1START**
- Q-OffsetRange ::= ENUMERATED {
 dB-24, dB-22, dB-20, dB-18, dB-16, dB-14,
 dB-12, dB-10, dB-8, dB-6, dB-5, dB-4, dB-3,
 dB-2, dB-1, dB0, dB1, dB2, dB3, dB4, dB5,
 dB6, dB8, dB10, dB12, dB14, dB16, dB18,
 dB20, dB22, dB24}
- **ASN1STOP**

Q-OffsetRangeInterRAT Information Element

The IE **Q-OffsetRangeInterRAT** is used to indicate a frequency specific offset to be applied when evaluating triggering conditions for measurement reporting. The value in dB.

- **ASN1START**
- Q-OffsetRangeInterRAT ::= INTEGER (-15..15)
- **ASN1STOP**

ReselectionThreshold Information Element

The IE **ReselectionThreshold** is used to indicate an Rx level threshold for cell reselection. Actual value of threshold = field value * 2 [dB].

- **ASN1START**
- ReselectionThreshold ::= INTEGER (0..31)
- **ASN1STOP**

ReselectionThresholdQ Information Element

The IE **ReselectionThresholdQ** is used to indicate a quality level threshold for cell reselection. Actual value of threshold = field value [dB].

- **ASN1START**
- ReselectionThresholdQ-r9 ::= INTEGER (0..31)
- **ASN1STOP**
-- ASN1STOP

-- SCellIndex

The IE SCellIndex concerns a short identity, used to identify an SCell.

SCellIndex information element

```
-- ASN1START
SCellIndex-r10 ::= INTEGER (1..7)
SCellIndex-r13 ::= INTEGER (1..31)
-- ASN1STOP
```

-- ServCellIndex

The IE ServCellIndex concerns a short identity, used to identify a serving cell (i.e. the PCell or an SCell). Value 0 applies for the PCell, while the SCellIndex that has previously been assigned applies for SCells.

ServCellIndex information element

```
-- ASN1START
ServCellIndex-r10 ::= INTEGER (0..7)
ServCellIndex-r13 ::= INTEGER (0..31)
-- ASN1STOP
```

-- SpeedStateScaleFactors

The IE SpeedStateScaleFactors concerns factors, to be applied when the UE is in medium or high speed state, used for scaling a mobility control related parameter.

SpeedStateScaleFactors information element

```
-- ASN1START
SpeedStateScaleFactors ::= SEQUENCE {
    sf-Medium       ENUMERATED {oDot25, oDot5, oDot75, lDot0},
    sf-High        ENUMERATED {oDot25, oDot5, oDot75, lDot0}
}
-- ASN1STOP
```

SpeedStateScaleFactors field descriptions

- **sf-High**
 The concerned mobility control related parameter is multiplied with this factor if the UE is in High Mobility state as defined in TS 36.304 [4]. Value oDot25 corresponds to 0.25, oDot5 corresponds to 0.5, oDot75 corresponds to 0.75 and so on.

- **sf-Medium**
 The concerned mobility control related parameter is multiplied with this factor if the UE is in Medium Mobility state as defined in TS 36.304 [4]. Value oDot25 corresponds to 0.25, oDot5 corresponds to 0.5, oDot75 corresponds to 0.75 and so on.

-- SystemInfoListGERAN

The IE SystemInfoListGERAN contains system information of a GERAN cell.

SystemInfoListGERAN information element

```
-- ASN1START
```
SystemInfoListGERAN ::= SEQUENCE (SIZE (1..maxGERAN-SI)) OF OCTET STRING (SIZE (1..23))

-- ASN1STOP

SystemInfoListGERAN field descriptions

Each OCTET STRING contains one System Information (SI) message as defined in TS 44.018 [45, table 9.1.1] excluding the L2 Pseudo Length, the RR management Protocol Discriminator and the Skip Indicator or a complete Packet System Information (PSI) message as defined in TS 44.060 [36, table 11.2.1].

SystemTimeInfoCDMA2000

The IE **SystemTimeInfoCDMA2000** informs the UE about the absolute time in the current cell. The UE uses this absolute time knowledge to derive the CDMA2000 Physical cell identity, expressed as PNOffset, of neighbour CDMA2000 cells.

NOTE: The UE needs the CDMA2000 system time with a certain level of accuracy for performing measurements as well as for communicating with the CDMA2000 network (HRPD or 1xRTT).

SystemTimeInfoCDMA2000 information element

-- ASN1START

SystemTimeInfoCDMA2000 ::= SEQUENCE {
 cdma-EUTRA-Synchronisation BOOLEAN,
 cdma-SystemTime CHOICE {
 synchronousSystemTime BIT STRING (SIZE (39)),
 asynchronousSystemTime BIT STRING (SIZE (49))
 }
}

-- ASN1STOP

SystemTimeInfoCDMA2000 field descriptions

asynchronousSystemTime

The CDMA2000 system time corresponding to the SFN boundary at or after the ending boundary of the SI-Window in which **SystemInformationBlockType8** is transmitted. E-UTRAN includes this field if the E-UTRA frame boundary is not aligned to the start of CDMA2000 system time. This field size is 49 bits and the unit is 8 CDMA chips based on 1.2288 Mcps.

cdma-EUTRA-Synchronisation

TRUE indicates that there is no drift in the timing between E-UTRA and CDMA2000. FALSE indicates that the timing between E-UTRA and CDMA2000 can drift. NOTE 1

synchronousSystemTime

CDMA2000 system time corresponding to the SFN boundary at or after the ending boundary of the SI-window in which **SystemInformationBlockType8** is transmitted. E-UTRAN includes this field if the E-UTRA frame boundary is aligned to the start of CDMA2000 system time. This field size is 39 bits and the unit is 10 ms based on a 1.2288 Mcps chip rate.

NOTE 1: The following table shows the recommended combinations of the **cdma-EUTRA-Synchronisation** field and the choice of cdma-SystemTime included by E-UTRAN for FDD and TDD:

<table>
<thead>
<tr>
<th>FDD/TDD</th>
<th>cdma-EUTRA-Synchronisation</th>
<th>synchronousSystemTime</th>
<th>asynchronousSystemTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>FALSE</td>
<td>Not Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>FDD</td>
<td>TRUE</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>TDD</td>
<td>FALSE</td>
<td>Not Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>TDD</td>
<td>TRUE</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
</tbody>
</table>
3GPP TS 36.331 version 14.6.2 Release 14

TrackingAreaCode

The IE *TrackingAreaCode* is used to identify a tracking area within the scope of a PLMN, see TS 24.301 [35].

TrackingAreaCode information element

```asn
TrackingAreaCode ::= BIT STRING (SIZE (16))
```

T-Reselection

The IE *T-Reselection* concerns the cell reselection timer *Treselection*\(_RAT\) for E-UTRA, UTRA, GERAN or CDMA2000. Value in seconds. For value 0, behaviour as specified in 7.3.2 applies.

T-Reselection information element

```asn
T-Reselection ::= INTEGER (0..7)
```

T-ReselectionEUTRA-CE

The IE *T-ReselectionEUTRA-CE* concerns the cell reselection timer *Treselection*\(_EUTRA_{-}CE\) as specified in TS 36.304 [4]. Value in seconds. For value 0, behaviour as specified in 7.3.2 applies.

T-ReselectionEUTRA-CE information element

```asn
T-ReselectionEUTRA-CE-r13 ::= INTEGER (0..15)
```

6.3.5 Measurement information elements

AllowedMeasBandwidth

The IE *AllowedMeasBandwidth* is used to indicate the maximum allowed measurement bandwidth on a carrier frequency as defined by the parameter Transmission Bandwidth Configuration "N\(_R\)B" TS 36.104 [47]. The values mbw6, mbw15, mbw25, mbw50, mbw75, mbw100 indicate 6, 15, 25, 50, 75 and 100 resource blocks respectively.

AllowedMeasBandwidth information element

```asn
AllowedMeasBandwidth ::= ENUMERATED {mbw6, mbw15, mbw25, mbw50, mbw75, mbw100}
```

CSI-RSRP-Range

The IE *CSI-RSRP-Range* specifies the value range used in CSI-RSRP measurements and thresholds. Integer value for CSI-RSRP measurements according to mapping table in TS 36.133 [16].
CSI-RSRP-Range information element

-- ASN1START

CSI-RSRP-Range-r12 ::= INTEGER (0..97)

-- ASN1STOP

– Hysteresis

The IE Hysteresis is a parameter used within the entry and leave condition of an event triggered reporting condition. The actual value is field value * 0.5 dB.

Hysteresis information element

-- ASN1START

Hysteresis ::= INTEGER (0..30)

-- ASN1STOP

– LocationInfo

The IE LocationInfo is used to transfer detailed location information available at the UE to correlate measurements and UE position information.

LocationInfo information element

-- ASN1START

LocationInfo-r10 ::= SEQUENCE {
 locationCoordinates-r10 CHOICE {
 ellipsoid-Point-r10 OCTET STRING,
 ellipsoidPointWithAltitude-r10 OCTET STRING,
 ...
 ellipsoidPointWithUncertaintyCircle-r11 OCTET STRING,
 ellipsoidPointWithUncertaintyEllipse-r11 OCTET STRING,
 ellipsoidArc-r11 OCTET STRING,
 polygon-r11 OCTET STRING
 },
 horizontalVelocity-r10 OCTET STRING OPTIONAL,
 gnss-TOD-msec-r10 OCTET STRING OPTIONAL,
 ...
}

-- ASN1STOP
LocationInfo field descriptions

ellipsoidArc
Parameter EllipsoidArc defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoid-Point
Parameter Ellipsoid-Point defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithAltitude
Parameter EllipsoidPointWithAltitude defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithAltitudeAndUncertaintyEllipsoid
Parameter EllipsoidPointWithAltitudeAndUncertaintyEllipsoid defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithUncertaintyCircle
Parameter EllipsoidPointWithUncertaintyCircle defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithUncertaintyEllipse
Parameter EllipsoidPointWithUncertaintyEllipse defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

gnss-TOD-msec
Parameter Gnss-TOD-msec defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

horizontalVelocity
Parameter HorizontalVelocity defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

polygon
Parameter Polygon defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

MBSFN-RSRQ-Range

The IE MBSFN-RSRQ-Range specifies the value range used in MBSFN RSRQ measurements. Integer value for MBSFN RSRQ measurements according to mapping table in TS 36.133 [16].

MBSFN-RSRQ-Range information element

MeasConfig

The IE MeasConfig specifies measurements to be performed by the UE, and covers intra-frequency, inter-frequency and inter-RAT mobility as well as configuration of measurement gaps.

MeasConfig information element
timeToTrigger-SF SpeedStateScaleFactors
]
 }
 ...
 [[measObjectToAddModList-v9e0 MeasObjectToAddModList-v9e0 OPTIONAL -- Need ON
]],
 [[allowInterruptions-r11 BOOLEAN OPTIONAL -- Need ON
]],
 [[measScaleFactor-r12 CHOICE {
 release NULL
 setup MeasScaleFactor-r12
 } OPTIONAL, -- Need ON
 meaIdToRemoveListExt-r12 MeaIdToRemoveListExt-r12 OPTIONAL, -- Need ON
 meaIdToAddModListExt-r12 MeaIdToAddModListExt-r12 OPTIONAL, -- Need ON
 meaRSRQ-OnAllSymbols-r12 BOOLEAN OPTIONAL -- Need ON
 }],
 [[measObjectToRemoveListExt-r13 MeasObjectToRemoveListExt-r13 OPTIONAL, -- Need ON
 meaIdToAddModList-v1310 MeaIdToAddModList-v1310 OPTIONAL, -- Need ON
 meaIdToAddModListExt-v1310 MeaIdToAddModListExt-v1310 OPTIONAL -- Need ON
 }],
 [[measGapConfigPerCC-List-r14 MeasGapConfigPerCC-List-r14 OPTIONAL, -- Need ON
 meaGapSharingConfig-r14 MeaGapSharingConfig-r14 OPTIONAL -- Need ON
]]
}

MeasIdToRemoveList ::= SEQUENCE (SIZE (1..maxMeasId)) OF MeasId
MeasIdToRemoveListExt-r12 ::= SEQUENCE (SIZE (1..maxMeasId)) OF MeasId-v1250
MeasObjectToRemoveList ::= SEQUENCE (SIZE (1..maxObjectId)) OF MeasObjectId
MeasObjectToRemoveListExt-r13 ::= SEQUENCE (SIZE (1..maxObjectId)) OF MeasObjectId-v1310
ReportConfigToRemoveList ::= SEQUENCE (SIZE (1..maxReportConfigId)) OF ReportConfigId

-- ASN1STOP
MeasConfig field descriptions

allowInterruptions
Value TRUE indicates that the UE is allowed to cause interruptions to serving cells when performing measurements of deactivated SCell carriers for measCycleSCell of less than 640ms, as specified in TS 36.133 [16]. E-UTRAN enables this field only when an SCell is configured.

measGapConfig
Used to setup and release measurement gaps. E-UTRAN includes either measGapConfig or measGapConfigPerCC-List, if any.

measGapConfigPerCC-List
Used to setup and release cell specific measurement gaps. E-UTRAN includes either measGapConfig or measGapConfigPerCC-List, if any.

measGapSharingConfig
Used to setup and release measurement gap sharing for intra- and inter-frequency measurement for BL UEs.

measIdToAddModList
List of measurement identities. Field measIdToAddModListExt includes additional measurement identities i.e. extends the size of the measurement identity list using the general principles specified in 5.1.2. If E-UTRAN includes measIdToAddModList-v1310 it includes the same number of entries, and listed in the same order, as in measIdToAddModList (i.e. without suffix). If E-UTRAN includes measIdToAddModListExt-v1310, it includes the same number of entries, and listed in the same order, as in measIdToAddModListExt-r12.

measIdToRemoveList
List of measurement identities to remove. Field measIdToRemoveListExt includes additional measurement identities i.e. extends the size of the measurement identity list using the general principles specified in 5.1.2.

measObjectToAddModList
If E-UTRAN includes measObjectToAddModList-v9e0 it includes the same number of entries, and listed in the same order, as in measObjectToAddModList (i.e. without suffix). Field measObjectToAddModListExt includes additional measurement object identities i.e. extends the size of the measurement object identity list using the general principles specified in 5.1.2.

measObjectToRemoveList
List of measurement objects to remove. Field measObjectToRemoveListExt includes additional measurement object identities i.e. extends the size of the measurement object identity list using the general principles specified in 5.1.2.

measRSRQ-OnAllSymbols
Value TRUE indicates that the UE shall, when performing RSRQ measurements, perform RSRQ measurement on all OFDM symbols in accordance with TS 36.214 [48]. If widebandRSRQ-Meas is enabled for the frequency in MeasObjectEUTRA, the UE shall, when performing RSRQ measurements, perform RSRQ measurement on all OFDM symbols with wider bandwidth for concerned frequency in accordance with TS 36.214 [48].

measScaleFactor
Even if reducedMeasPerformance is not included in any measObjectEUTRA or measObjectUTRA, E-UTRAN may configure this field. The UE behavior is specified in TS 36.133 [16].

preRegistrationInfoHRPD
The CDMA2000 HRPD Pre-Registration Information tells the UE if it should pre-register with the CDMA2000 HRPD network and identifies the Pre-registration zone to the UE.

reportConfigToRemoveList
List of measurement reporting configurations to remove.

s-Measure
PCell quality threshold controlling whether or not the UE is required to perform measurements of intra-frequency, inter-frequency and inter-RAT neighbouring cells. Value "0" indicates to disable s-Measure.

timeToTrigger-SF
The timeToTrigger in ReportConfigEUTRA and in ReportConfigInterRAT are multiplied with the scaling factor applicable for the UE’s speed state.

MeasDS-Config

The IE MeasDS-Config specifies information applicable for discovery signals measurement.

MeasDS-Config information elements

```
-- ASN1START
MeasDS-Config-r12 ::= CHOICE {
  release       NULL,
  setup        SEQUENCE {
    dmtc-PeriodOffset-r12   CHOICE {
      ms40-r12      INTEGER(0..39),
      ms80-r12      INTEGER(0..79),
      ms160-r12     INTEGER(0..159),
      ...
    },
  },
}
-- ASN1END
```
MeasDS-Config field descriptions

csi-RS-IndividualOffset
CSI-RS individual offset applicable to a specific CSI-RS resource. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.

dmtc-PeriodOffset
Indicates the discovery signals measurement timing configuration (DMTC) periodicity (dmtc-Periodicity) and offset (dmtc-Offset) for this frequency. For DMTC periodicity, value ms40 corresponds to 40ms, ms80 corresponds to 80ms and so on. The value of DMTC offset is in number of subframe(s). The duration of a DMTC occasion is 6ms.

ds-OccasionDuration
Indicates the duration of discovery signal occasion for this frequency. Discovery signal occasion duration is common for all cells transmitting discovery signals on one frequency. If the carrierFreq in the measurement object is on an unlicensed band as specified in [42], the UE shall ignore the field ds-OccasionDuration for the carrier frequency and apply a value 1 instead.

measCSI-RS-ToAddModList
List of CSI-RS resources to add/ modify in the CSI-RS resource list for discovery signals measurement.

measCSI-RS-ToRemoveList
List of CSI-RS resources to remove from the CSI-RS resource list for discovery signals measurement.

physCellId
Indicates the physical cell identity where UE may assume that the CSI-RS and the PSS/SSS/CRS corresponding to the indicated physical cell identity are quasi co-located with respect to average delay and doppler shift.

resourceConfig
Parameter: CSI reference signal configuration, see TS 36.211 [21, table 6.10.5.2-1 and 6.10.5.2-2]. If the carrierFreq in the measurement object is on an unlicensed band as specified in [42], E-UTRAN does not configure the values {0, 4, 5, 9, 10, 11, 18, 19}.

scramblingIdentity
Parameter: Pseudo-random sequence generator parameter, \(n_{ID} \), see TS 36.213 [23, 7.2.5].

subframeOffset
Indicates the subframe offset between SSS of the cell indicated by physCellId and the CSI-RS resource in a discovery signal occasion. The field subframeOffset is set to values 0 if the carrierFreq in the measurement object is on an unlicensed band as specified in [42].

MeasGapConfig

The IE MeasGapConfig specifies the measurement gap configuration and controls setup/ release of measurement gaps.

MeasGapConfig information element

-- ASN1START
MeasGapConfig ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 gapOffset CHOICE {
 gp0 INTEGER (0..39),
 gp1 INTEGER (0..79),
 ...
 gp2-r14 INTEGER (0..39),
 gp3-r14 INTEGER (0..79),
 gp-ncsg0-r14 INTEGER (0..39),
 gp-ncsg1-r14 INTEGER (0..79),
 gp-ncsg2-r14 INTEGER (0..39),
 gp-ncsg3-r14 INTEGER (0..79),
 gp-nonUniform1-r14 INTEGER (0..1279),
 gp-nonUniform2-r14 INTEGER (0..2559),
 gp-nonUniform3-r14 INTEGER (0..5119),
 gp-nonUniform4-r14 INTEGER (0..10239)
 }
 }
}

-- ASN1STOP

MeasGapConfig field descriptions

gapOffset

Value `gapOffset` of `gp0` corresponds to gap offset of Gap Pattern Id "0" with MGRP = 40ms, `gapOffset` of `gp1` corresponds to gap offset of Gap Pattern Id "1" with MGRP = 80ms, `gapOffset` of `gp2` corresponds to gap offset of Gap Pattern Id "2" with MGRP = 40ms and MGL = 3ms, `gapOffset` of `gp3` Gap Pattern Id "3" with MGRP = 80ms and MGL = 3ms, `gapOffset` of `gp-ncsg0` corresponds to gap offset of NCSG Pattern Id "0" with VIRP = 40ms and ML = 4ms, `gapOffset` of `gp-ncsg1` corresponds to gap offset of NCSG Pattern Id "1" with VIRP = 80ms and ML = 4ms, `gapOffset` of `gp-ncsg2` corresponds to gap offset of NCSG Pattern Id "2" with VIRP = 40ms and ML = 3ms, `gapOffset` of `gp-ncsg3` corresponds to gap offset of of NCSG Pattern Id "3" with VIRP = 80ms and ML = 3ms, `gapOffset` of `gp-nonUniform1` corresponds to gap offset of non uniform gap pattern Id "1" with LMGRP = 1280ms, `gapOffset` of `gp-nonUniform2` corresponds to gap offset of non uniform gap pattern Id "2" with LMGRP = 2560ms, `gapOffset` of `gp-nonUniform3` corresponds to gap offset of non uniform gap pattern Id "3" with LMGRP = 5120ms, `gapOffset` of `gp-nonUniform4` corresponds to gap offset of non uniform gap pattern Id "4" with LMGRP = 10240ms. Also used to specify the measurement gap pattern to be applied, as defined in TS 36.133 [16]. For Gap Patterns (including non-uniform gap patterns, but excluding NCSG patterns), E-UTRAN includes the same `gapOffset` value (gap pattern id and gap offset) for all serving cells that are configured with a Gap Pattern. For NCSG Patterns, E-UTRAN includes `gapOffset` value indicating VIRP and gap offset consistent with the Gap Pattern configuration (MGRP and gap offset).

servCellId

Identifies the serving cell for which measurement gap configuration is provided (setup) or deleted (release).

MeasGapConfigPerCC-List

The IE `MeasGapConfigPerCC-List` specifies the measurement gap configuration and controls setup/release of measurement gaps.

MeasGapConfigPerCC-List information element

ETSI
MeasGapConfigPerCC-List field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>measGapConfigToAddModList</td>
<td>List of serving cells and corresponding serving cell specific measurement gap configuration to add /modify.</td>
</tr>
<tr>
<td>measGapConfigToRemoveList</td>
<td>List of serving cells for which measurement gap configuration is removed.</td>
</tr>
</tbody>
</table>

--

MeasGapSharingConfig

The IE `MeasGapSharingConfig` specifies the measurement gap sharing scheme and controls setup/ release of measurement gap sharing.

MeasGapSharingConfig information element

```
-- ASN1START
MeasGapSharingConfig-r14 ::=   CHOICE {
   release        NULL,
   setup        SEQUENCE {
      measGapSharingScheme-r14    ENUMERATED {scheme00, scheme01, scheme10, scheme11}
   }
}
-- ASN1STOP
```

MeasGapSharingConfig field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>measGapSharingScheme</td>
<td>Indicates the measurement gaps sharing scheme for BL UEs in CE mode A and CE mode B, see TS 36.133 [16, Table 8.13.2.1.1.1-2 and Table 8.13.3.1.1.1-3]. Value <code>scheme00</code> corresponds to "00", value <code>scheme01</code> corresponds to "01", and so on.</td>
</tr>
</tbody>
</table>

--

MeasId

The IE `MeasId` is used to identify a measurement configuration, i.e., linking of a measurement object and a reporting configuration.

MeasId information element

```
-- ASN1START
MeasId ::=       INTEGER (1..maxMeasId)
MeasId-v1250 ::=     INTEGER (maxMeasId-Plus1..maxMeasId-r12)
-- ASN1STOP
```

--

MeasIdToAddModList

The IE `MeasIdToAddModList` concerns a list of measurement identities to add or modify, with for each entry the `measId`, the associated `measObjectId` and the associated `reportConfigId`. Field `measIdToAddModListExt` includes additional measurement identities i.e. extends the size of the measurement identity list using the general principles specified in 5.1.2.

MeasIdToAddModList information element

```
-- ASN1START
MeasIdToAddModList ::=    SEQUENCE (SIZE (1..maxMeasId)) OF MeasIdToAddMod
MeasIdToAddModList-v1310 ::=  SEQUENCE (SIZE (1..maxMeasId)) OF MeasIdToAddMod-v1310
-- ASN1STOP
```
MeasIdToAddModList-r12 ::= SEQUENCE { SIZE (1..maxMeasId)} OF MeasIdToAddModExt-r12
MeasIdToAddModList-v1310 ::= SEQUENCE { SIZE (1..maxMeasId)} OF MeasIdToAddMod-v1310

MeasIdToAddMod ::= SEQUENCE {
 measId MeasId,
 measObjectId MeasObjectId,
 reportConfigId ReportConfigId
}

MeasIdToAddModExt-r12 ::= SEQUENCE {
 measId-v1250 MeasId-v1250,
 measObjectId-r12 MeasObjectId,
 reportConfigId-r12 ReportConfigId
}

MeasIdToAddMod-v1310 ::= SEQUENCE {
 measObjectId-v1310 MeasObjectId-v1310 OPTIONAL
}

-- ASN1STOP

MeasIdToAddModList field descriptions

measObjectId
If the measObjectId-v1310 is included, the measObjectId or measObjectId-r12 is ignored by the UE.

-- MeasObjectCDMA2000

The IE MeasObjectCDMA2000 specifies information applicable for inter-RAT CDMA2000 neighbouring cells.

MeasObjectCDMA2000 information element

-- ASN1START

MeasObjectCDMA2000 ::= SEQUENCE {
 cdmA2000-Type CDMA2000-Type,
 carrierFreq CarrierFreqCDMA2000,
 searchWindowSize INTEGER (0..15) OPTIONAL, -- Need ON
 offsetFreq Q-OffsetRangeInterRAT DEFAULT 0,
 cellsToRemoveList CellIndexList OPTIONAL, -- Need ON
 cellsToAddModList CellsToAddModListCDMA2000 OPTIONAL, -- Need ON
 cellForWhichToReportCGI PhysCellIdCDMA2000 OPTIONAL, -- Need ON
 ...
}

CellsToAddModListCDMA2000 ::= SEQUENCE { SIZE (1..maxCellMeas)) OF CellsToAddModCDMA2000

CellsToAddModCDMA2000 ::= SEQUENCE {
 cellIndex INTEGER (1..maxCellMeas),
 physCellId PhysCellIdCDMA2000
}

-- ASN1STOP
MeasObjectCDMA2000 field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>carrierInfo</td>
<td>Identifies CDMA2000 carrier frequency for which this configuration is valid.</td>
</tr>
<tr>
<td>cdma2000-Type</td>
<td>The type of CDMA2000 network: CDMA2000 1xRTT or CDMA2000 HRPD.</td>
</tr>
<tr>
<td>cellIndex</td>
<td>Entry index in the neighbouring cell list.</td>
</tr>
<tr>
<td>cellsToAddModList</td>
<td>List of cells to add/modify in the neighbouring cell list.</td>
</tr>
<tr>
<td>cellsToRemoveList</td>
<td>List of cells to remove from the neighbouring cell list.</td>
</tr>
<tr>
<td>physCellId</td>
<td>CDMA2000 Physical cell identity of a cell in neighbouring cell list expressed as PNOffset.</td>
</tr>
<tr>
<td>searchWindowSize</td>
<td>Provides the search window size to be used by the UE for the neighbouring pilot, see C.S0005 [25].</td>
</tr>
</tbody>
</table>

MeasObjectEUTRA

The IE *MeasObjectEUTRA* specifies information applicable for intra-frequency or inter-frequency E-UTRA cells.

MeasObjectEUTRA information element

```asn1
MeasObjectEUTRA ::= SEQUENCE {  
carrierFreq            ARFCN-ValueEUTRA,  
allowedMeasBandwidth   AllowedMeasBandwidth,  
presenceAntennaPort1   PresenceAntennaPort1,  
neghCellConfig         NeighCellConfig,  
offsetFreq             Q-OffsetRange DEFAULT dB0,  
-- Cell list  
cellsToRemoveList      CellIndexList OPTIONAL, -- Need ON  
cellsToAddModList      CellIndexList OPTIONAL, -- Need ON  
-- Black list  
blackCellsToRemoveList CellIndexList OPTIONAL, -- Need ON  
blackCellsToAddModList CellIndexList OPTIONAL, -- Need ON  
-- For which to report CGI  
cellForWhichToReportCGI PhysCellId OPTIONAL, -- Need ON  
...  
[measCycleSCell-r10    MeasCycleSCell-r10 OPTIONAL, -- Need ON  
measSubframePatternConfigNeigh-r10 MeasSubframePatternConfigNeigh-r10 OPTIONAL  
-- Need ON  
],  
[[widebandRSRQ-Meas-r11 BOOLEAN OPTIONAL -- Cond WB-RSRQ  
]],  
[[altTTT-CellsToRemoveList-r12 CellIndexList OPTIONAL, -- Need ON  
atTTT-CellsToAddModList-r12 AltTTT-CellsToAddModList-r12 OPTIONAL, -- Need ON  
t312-r12 release        NULL,  
superset ENUMERATED {ms0, ms50, ms100, ms200,  
ms300, ms400, ms500, ms1000} OPTIONAL, -- Need ON  
reducedMeasPerformance-r12 BOOLEAN OPTIONAL, -- Need ON  
measDS-Config-r12       MeasDS-Config-r12 OPTIONAL, -- Need ON  
],  
[[whiteCellsToRemoveList-r13 CellIndexList OPTIONAL, -- Need ON  
whiteCellsToAddModList-r13 WhiteCellsToAddModList-r13 OPTIONAL, -- Need ON  
rmtc-Config-r13         RMTC-Config-r13 OPTIONAL, -- Need ON  
carrierFreq-r13         ARFCN-ValueEUTRA-v9e0 OPTIONAL, -- Need ON  
],  
[[tx-ResourcePoolToMeasList-r14 Tx-ResourcePoolMeasList-r14 OPTIONAL, -- Need ON  
tx-ResourcePoolToAddList-r14 Tx-ResourcePoolMeasList-r14 OPTIONAL, -- Need ON  
fembs-MixedCarrier-r14  BOOLEAN OPTIONAL, -- Need ON  
]]  
}
```

MeasObjectEUTRA-v9e0

```asn1
MeasObjectEUTRA-v9e0 ::= SEQUENCE {  
carrierFreq-v9e0            ARFCN-ValueEUTRA-v9e0  
}
```

CellsToAddModList

```asn1
CellsToAddModList ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CellsToAddMod
```
CellsToAddMod ::= SEQUENCE {
 cellIndex INTEGER (1..maxCellMeas),
 physCellId PhysCellId,
 cellIndividualOffset Q-OffsetRange
}

BlackCellsToAddModList ::= SEQUENCE (SIZE (1..maxCellMeas)) OF BlackCellsToAddMod

BlackCellsToAddMod ::= SEQUENCE {
 cellIndex INTEGER (1..maxCellMeas),
 physCellIdRange PhysCellIdRange
}

MeasCycleSCell-r10 ::= ENUMERATED {sf160, sf256, sf320, sf512, sf640, sf1024, sf1280, spare1}

MeasSubframePatternConfigNeigh-r10 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 measSubframePatternNeigh-r10 MeasSubframePattern-r10,
 measSubframeCellList-r10 MeasSubframeCellList-r10 OPTIONAL -- Cond
 }
}

MeasSubframeCellList-r10 ::= SEQUENCE (SIZE (1..maxCellMeas)) OF PhysCellIdRange

AltTTT-CellsToAddModList-r12 ::= SEQUENCE (SIZE (1..maxCellMeas)) OF AltTTT-CellsToAddMod-r12

AltTTT-CellsToAddMod-r12 ::= SEQUENCE {
 cellIndex-r12 INTEGER (1..maxCellMeas),
 physCellIdRange-r12 PhysCellIdRange
}

WhiteCellsToAddModList-r13 ::= SEQUENCE (SIZE (1..maxCellMeas)) OF WhiteCellsToAddMod-r13

WhiteCellsToAddMod-r13 ::= SEQUENCE {
 cellIndex-r13 INTEGER (1..maxCellMeas),
 physCellIdRange-r13 PhysCellIdRange
}

RMTC-Config-r13 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 rmtc-Period-r13 ENUMERATED {ms40, ms80, ms160, ms320, ms640},
 rmtc-SubframeOffset-r13 INTEGER(0..639) OPTIONAL, -- Need ON
 measDuration-r13 ENUMERATED {sym1, sym14, sym28, sym42, sym70},
 }
}

Tx-ResourcePoolMeasList-r14 ::= SEQUENCE (SIZE (1..maxSL-PoolToMeasure-r14)) OF SL-V2X-TxPoolReportIdentity-r14

-- ASN1STOP
MeasObjectEUTRA field descriptions

altTTT-CellsToAddModList
List of cells to add/modify in the cell list for which the alternative time to trigger specified by `alternativeTimeToTrigger` in `reportConfigEUTRA`, if configured, applies.

altTTT-CellsToRemoveList
List of cells to remove from the list of cells for alternative time to trigger.

blackCellsToAddModList
List of cells to add/modify in the black list of cells.

blackCellsToRemoveList
List of cells to remove from the black list of cells.

carrierFreq
Identifies E-UTRA carrier frequency for which this configuration is valid. E-UTRAN does not configure more than one measurement object for the same physical frequency regardless of the E-ARFCN used to indicate this. CarrierFreq-r13 is included only when the extension list `measObjectToAddModListExt-r13` is used. If `carrierFreq-r13` is present, `carrierFreq` (i.e., without suffix) shall be set to value `maxEARFCN`.

cellIndex
Enter index in the cell list. An entry may concern a range of cells, in which case this value applies to the entire range.

celllndividualOffset
Cell individual offset applicable to a specific cell. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.

cellsToAddModList
List of cells to add/modify in the cell list.

cellsToRemoveList
List of cells to remove from the cell list.

fembms-MixedCarrier
If this field is set to `TRUE`, the cells on the carrier frequency indicated by the `measObject` are FeMBMS/Unicast-mixed cells.

measCycleSCell
The parameter is used only when an SCell is configured on the frequency indicated by the `measObject` and is in deactivated state, see TS 36.133 [16, 8.3.3]. E-UTRAN configures the parameter whenever an SCell is configured on the frequency indicated by the `measObject`, but the field may also be signalled when an SCell is not configured. Value `sf160` corresponds to 160 sub-frames, `sf256` corresponds to 256 sub-frames and so on.

measDuration
Number of consecutive symbols for which the Physical Layer reports samples of RSSI, see TS 36.214 [48]. Value `sym1` corresponds to one symbol, `sym14` corresponds to 14 symbols, and so on.

measSubframeCellList
List of cells for which `measSubframePatternNeigh` is applied.

measSubframePatternNeigh
Time domain measurement resource restriction pattern applicable to neighbour cell RSRP and RSRQ measurements on the carrier frequency indicated by `carrierFreq`. For cells in `measSubframeCellList` the UE shall assume that the subframes indicated by `measSubframePatternNeigh` are non-MBSFN subframes, and have the same special subframe configuration as PCell.

offsetFreq
Offset value applicable to the carrier frequency. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.

physCellId
Physical cell identity of a cell in the cell list.

physCellIdRange
Physical cell identity or a range of physical cell identities.

reducedMeasPerformance
If set to `TRUE`, the EUTRA carrier frequency is configured for reduced measurement performance, otherwise it is configured for normal measurement performance, see TS 36.133 [16].

rmtc-Config
Parameters applicable to RSSI and channel occupancy measurement on the carrier frequency indicated by `carrierFreq`.

rmtc-Period
Indicates the RSSI measurement timing configuration (RMTC) periodicity for this frequency. Value `ms40` corresponds to 40 ms periodicity, `ms80` corresponds to 80 ms periodicity and so on, see TS 36.214 [48].

rmtc-SubframeOffset
Indicates the RSSI measurement timing configuration (RMTC) subframe offset for this frequency. The value of `rmtc-SubframeOffset` should be smaller than the value of `rmtc-Period`, see TS 36.214 [48]. For inter-frequency measurements, this field is optional present and if it is not configured, the UE chooses a random value as `rmtc-SubframeOffset` for `measDuration` which shall be selected to be between 0 and the configured `rmtc-Period` with equal probability.
MeasObjectEUTRA field descriptions

t312	The value of timer T312. Value ms0 represents 0 ms, ms50 represents 50 ms and so on.
tx-ResourcePoolToAddList	List of transmission pools identities to be added to the list of pools configured for CBR measurements and for which poolReportId is included in SL-V2X-ConfigDedicated or SystemInformationBlockType21.
tx-ResourcePoolToRemoveList	List of transmission resource pools identities to be removed from the list of pools configured for CBR measurements and for which poolReportId is included in SL-V2X-ConfigDedicated or SystemInformationBlockType21.

widebandRSRQ-Meas

If this field is set to TRUE, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [16].

| whiteCellsToAddModList | List of cells to add/modify in the white list of cells. |
| whiteCellsToRemoveList | List of cells to remove from the white list of cells. |

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>always</td>
<td>The field is mandatory present.</td>
</tr>
<tr>
<td>WB-RSRQ</td>
<td>The field is optionally present, need ON, if the measurement bandwidth indicated by allowedMeasBandwidth is 50 resource blocks or larger; otherwise it is not present and the UE shall delete any existing value for this field, if configured.</td>
</tr>
</tbody>
</table>

MeasObjectGERAN

The IE MeasObjectGERAN specifies information applicable for inter-RAT GERAN neighbouring frequencies.

MeasObjectGERAN information element

-- ASN1START

MeasObjectGERAN ::= SEQUENCE {
 carrierFreqsCarrierFreqsGERAN,
 offsetFreqQ-OffsetRangeInterRAT DEFAULT 0,
 ncc-PermittedBIT STRING(SIZE (8)) DEFAULT '11111111'B,
 cellForWhichToReportCGIPhyCellIdGERAN OPTIONAL, -- Need ON
 ...
}

-- ASN1STOP

MeasObjectGERAN field descriptions

| ncc-Permitted | Field encoded as a bit map, where bit N is set to "0" if a BCCH carrier with NCC = N-1 is not permitted for monitoring and set to "1" if a BCCH carrier with NCC = N-1 is permitted for monitoring; N = 1 to 8; bit 1 of the bitmap is the leading bit of the bit string. |
| carrierFreqs | If E-UTRAN includes cellForWhichToReportCGI, it includes only one GERAN ARFCN value in carrierFreqs. |

MeasObjectId

The IE MeasObjectId used to identify a measurement object configuration.

MeasObjectId information element

-- ASN1START

MeasObjectId ::= INTEGER (1..maxObjectId)

MeasObjectId-v1310 ::= INTEGER (maxObjectId-Plus1-r13..maxObjectId-r13)

MeasObjectId-r13 ::= INTEGER (1..maxObjectId-r13)

-- ASN1STOP
MeasObjectToAddModList

The IE MeasObjectToAddModList concerns a list of measurement objects to add or modify.

MeasObjectToAddModList information element

-- ASN1START
MeasObjectToAddModList ::= SEQUENCE (SIZE (1..maxObjectId)) OF MeasObjectToAddMod

MeasObjectToAddModListExt-r13 ::= SEQUENCE (SIZE (1..maxObjectId)) OF MeasObjectToAddModExt-r13

MeasObjectToAddMod-v9e0 ::= SEQUENCE (SIZE (1..maxObjectId)) OF MeasObjectToAddMod-v9e0

MeasObjectToAddMod ::= SEQUENCE {
 measObjectId MeasObjectId,
 measObject CHOICE {
 measObjectEUTRA MeasObjectEUTRA,
 measObjectUTRA MeasObjectUTRA,
 measObjectGERAN MeasObjectGERAN,
 measObjectCDMA2000 MeasObjectCDMA2000,
 ...
 }
}

MeasObjectToAddModExt-r13 ::= SEQUENCE {
 measObjectId-r13 MeasObjectId-v1310,
 measObject-r13 CHOICE {
 measObjectEUTRA-r13 MeasObjectEUTRA,
 measObjectUTRA-r13 MeasObjectUTRA,
 measObjectGERAN-r13 MeasObjectGERAN,
 measObjectCDMA2000-r13 MeasObjectCDMA2000,
 ...
 }
}

MeasObjectToAddMod-v9e0 ::= SEQUENCE {
 measObjectEUTRA-v9e0 MeasObjectEUTRA-v9e0 OPTIONAL -- Cond eutra
}

-- ASN1STOP

Conditional presence

eutra

The field is optional present, need OR, if for the corresponding entry in MeasObjectToAddModList or MeasObjectToAddModListExt-r13 field measObject is set to measObjectEUTRA and its sub-field carrierFreq is set to maxEARFCN. Otherwise the field is not present and the UE shall delete any existing value for this field.

MeasObjectUTRA

The IE MeasObjectUTRA specifies information applicable for inter-RAT UTRA neighbouring cells.

MeasObjectUTRA information element

-- ASN1START
MeasObjectUTRA ::= SEQUENCE {
 carrierFreq ARFCN-ValueUTRA,
 offsetFreq Q-OffsetRangeInterRAT DEFAULT 0,
 cellsToRemoveList CellIndexList OPTIONAL, -- Need ON
 cellsToAddModList CHOICE {
 cellsToAddModListUTRA-FDD CellsToAddModListUTRA-FDD,
 cellsToAddModListUTRA-TDD CellsToAddModListUTRA-TDD
 }
}

cellForWhichToReportCGI CHOICE {
 utra-FDD PhysCellIdUTRA-FDD,
 utra-TDD PhysCellIdUTRA-TDD
}

-- ASN1STOP
CarrierFreq
Identifies UTRA carrier frequency for which this configuration is valid. E-UTRAN does not configure more than one measurement object for the same physical frequency regardless of the ARFCN used to indicate this.

cellIndex
Entry index in the neighbouring cell list.

cellsToAddModListUTRA-FDD
List of UTRA FDD cells to add/modify in the neighbouring cell list.

cellsToAddModListUTRA-TDD
List of UTRA TDD cells to add/modify in the neighbouring cell list.

cellsToRemoveList
List of cells to remove from the neighbouring cell list.

csg-allowedReportingCells
One or more ranges of physical cell identities for which UTRA-FDD reporting is allowed.

reducedMeasPerformance
If set to TRUE the UTRA carrier frequency is configured for reduced measurement performance, otherwise it is configured for normal measurement performance, see TS 36.133 [16].

MeasObjectWLAN
The IE MeasObjectWLAN specifies information applicable for inter-RAT WLAN measurements. E-UTRAN configures at least one WLAN identifier in the MeasObjectWLAN.
MeasObjectWLAN field descriptions

bandIndicatorListWLAN
Includes the list of WLAN bands. Value band2dot4 indicates the 2.4GHz band, value band5 indicates the 5GHz band and value band60 indicates the 60GHz band.

carrierInfoListWLAN
Includes the list of WLAN carrier information for the measurement object.

wlan-ToAddModList
Includes the list of WLAN identifiers to be added to the measurement configuration.

wlan-ToRemoveList
Includes the list of WLAN identifiers to be removed from the measurement configuration.

MeasResults

The IE *MeasResults* covers measured results for intra-frequency, inter-frequency and inter-RAT mobility.

MeasResults information element

```asn1
MeasResults ::= SEQUENCE {
  measId MeasId,
  measResultPCell SEQUENCE {
    rsrpResult RSRP-Range,
    rsrqResult RSRQ-Range
  },
  measResultNeighCells CHOICE {
    measResultListEUTRA MeasResultListEUTRA,
    measResultListUTRA MeasResultListUTRA,
    measResultListGERAN MeasResultListGERAN,
    measResultsCDMA2000 MeasResultsCDMA2000,
    ... } OPTIONAL,
  ... [[ measResultForECID-r9 MeasResultForECID-r9 OPTIONAL ]],
  ... [
      [ [ locationInfo-r10 LocationInfo-r10 OPTIONAL, 
        measResultServFreqList-r10 MeasResultServFreqList-r10 OPTIONAL ]],
      [ [ measId-v1250 MeasId-v1250 OPTIONAL, 
        measResultPCell-v1250 RSRQ-Range-v1250 OPTIONAL, 
        measResultCSI-RS-List-r12 MeasResultCSI-RS-List-r12 OPTIONAL ]],
      [ [ measResultForRSSI-r13 MeasResultForRSSI-r13 OPTIONAL, 
        measResultServFreqListExt-r13 MeasResultServFreqListExt-r13 OPTIONAL, 
        measResultSSTD-r13 MeasResultSSTD-r13 OPTIONAL, 
        rs-sinr-Result-r13 RS-SINR-Range-r13 OPTIONAL, 
        ul-PDCP-DelayResultList-r13 UL-PDCP-DelayResultList-r13 OPTIONAL, 
        measResultListWLAN-r13 MeasResultListWLAN-r13 OPTIONAL ]],
      [ [ measResultPCell-v1360 RSRP-Range-v1360 OPTIONAL ]],
      [ [ measResultListCBR-r14 MeasResultListCBR-r14 OPTIONAL, 
        measResultListWLAN-r14 MeasResultListWLAN-r14 OPTIONAL ]]]
}
```

MeasResultListEUTRA

```asn1
MeasResultListEUTRA ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultEUTRA
```

```asn1
MeasResultEUTRA ::= SEQUENCE {
  physCellId PhysCellId,
  cgi-Info SEQUENCE {
    cellGlobalId CellGlobalIdEUTRA,
    trackingAreaCode TrackingAreaCode,
    plmn-IdentityList PLMN-IdentityList2 OPTIONAL
  } OPTIONAL,
  measResult SEQUENCE {
    rsrpResult RSRP-Range OPTIONAL,
    rsrqResult RSRQ-Range OPTIONAL,
    ... } [[[ additionalSI-Info-r9 AdditionalSI-Info-r9 OPTIONAL ]]]
}
MeasResultServFreqList-r10 ::= SEQUENCE (SIZE (1..maxServCell-r10)) OF MeasResultServFreq-r10

MeasResultServFreqListExt-r13 ::= SEQUENCE (SIZE (1..maxServCell-r13)) OF MeasResultServFreq-r13

MeasResultServFreq-r10 ::= SEQUENCE {
  servFreqId-r10     ServCellIndex-r10,
  measResultSCell-r10 SEQUENCE {
    rsrpResultSCell-r10     RSRP-Range-r10,
    rsrqResultSCell-r10     RSRQ-Range
  } OPTIONAL,
  measResultBestNeighCell-r10 SEQUENCE {
    physCellId-r10      PhysCellId,
    rsrpResultNCell-r10     RSRP-Range-r13,
    rsrqResultNCell-r10     RSRQ-Range
  } OPTIONAL,
  ...,
  [[ measResultSCell-v1250     RSRQ-Range-v1250 OPTIONAL,
    measResultBestNeighCell-v1250  RSRQ-Range-v1250 OPTIONAL ]],
  [[ measResultSCell-v1310 SEQUENCE {
    rs-sinr-Result-r13     RS-SINR-Range-r13
  } OPTIONAL,
    measResultBestNeighCell-v1310 SEQUENCE {
    rs-sinr-Result-r13     RS-SINR-Range-r13
  } OPTIONAL ]]
} }

MeasResultServFreq-r13 ::= SEQUENCE {
  servFreqId-r13     ServCellIndex-r13,
  measResultSCell-r13 SEQUENCE {
    rsrpResultSCell-r13     RSRP-Range-r13,
    rsrqResultSCell-r13     RSRQ-Range-r13
  } OPTIONAL,
  measResultBestNeighCell-r13 SEQUENCE {
    physCellId-r13      PhysCellId,
    rsrpResultNCell-r13     RSRP-Range-r13,
    rsrqResultNCell-r13     RSRQ-Range-r13
  } OPTIONAL,
  ...,
  [[ measResultBestNeighCell-v1360  SEQUENCE {
    rsrpResultNCell-v1360    RSRP-Range-v1360
  } OPTIONAL ]]
} }

MeasResultCSI-RS-List-r12 ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultCSI-RS-r12

MeasResultCSI-RS-r12 ::= SEQUENCE {
  csi-RSRP-Result-r12    CSI-RSRP-Range-r12,
  ... }

MeasResultListUTRA ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultUTRA

MeasResultUTRA ::= SEQUENCE {
  physCellId       CHOICE {
    fdd      PhysCellIdUTRA-FDD,
    tdd      PhysCellIdUTRA-TDD
  }
}
MeasResultListGERAN ::=  
  SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultGERAN

MeasResultGERAN ::=  
  SEQUENCE {
    carrierFreq       CarrierFreqGERAN,
    physCellId       PhysCellIdGERAN,
    cgi-Info       SEQUENCE {
      cellGlobalId      CellGlobalIdGERAN,
      routingAreaCode      BIT STRING (SIZE (8))   OPTIONAL
    }                  OPTIONAL,
    measResult       SEQUENCE {
      rssi        INTEGER (0..63),
      ...,
    }
  }

MeasResultsCDMA2000 ::=  
  SEQUENCE {
    preRegistrationStatusHRPD   BOOLEAN,
    measResultListCDMA2000    MeasResultListCDMA2000
  }

MeasResultCDMA2000 ::=  
  SEQUENCE {
    physCellId       PhysCellIdCDMA2000,
    cgi-Info       CellGlobalIdCDMA2000    OPTIONAL,
    measResult       SEQUENCE {
      pilotPnPhase      INTEGER (0..32767)    OPTIONAL,
      pilotStrength      INTEGER (0..63),
      ...,
    }
  }

MeasResultListWLAN-r13 ::=  
  SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultWLAN-r13

MeasResultListWLAN-r14 ::=  
  SEQUENCE (SIZE (1..maxWLAN-Id-Report-r14)) OF MeasResultWLAN-r13

MeasResultWLAN-r13 ::=  
  SEQUENCE {
    wlan-Identifiers-r13     WLAN-Identifiers-r12,
    carrierInfoWLAN-r13      WLAN-CarrierInfo-r13 OPTIONAL,
    bandWLAN-r13             WLAN-BandIndicator-r13 OPTIONAL,
    rssilWLAN-r13            WLAN-RSSI-Range-r13,
    availableAdmissionCapacityWLAN-r13   INTEGER (0..31250)  OPTIONAL,
    backhaulDL-BandwidthWLAN-r13   WLAN-backhaulRate-r12 OPTIONAL,
    backhaulUL-BandwidthWLAN-r13   WLAN-backhaulRate-r12 OPTIONAL,
    channelUtilizationWLAN-r13   INTEGER (0..255)  OPTIONAL,
    stationCountWLAN-r13     INTEGER (0..65535)  OPTIONAL,
    connectedWLAN-r13       ENUMERATED {true}  OPTIONAL,
    ...,
  }

MeasResultListCBR-r14 ::=  
  SEQUENCE (SIZE (1..maxCBR-Report-r14)) OF MeasResultCBR-r14

MeasResultCBR-r14 ::=  
  SEQUENCE {
    poolIdentity-r14  SL-V2X-TxPoolReportIdentity-r14,
    cbr-PSSCH-r14    SL-CBR-r14,
    cbr-PSCCH-r14    SL-CBR-r14    OPTIONAL
  }

MeasResultForECID-r9 ::=  
  SEQUENCE {
    ue-RxTxTimeDiffResult-r9    INTEGER (0..4095),
  }
currentSFN-r9 BIT STRING (SIZE (10))

PLMN-IdentityList2 ::= SEQUENCE (SIZE (1..5)) OF PLMN-Identity

AdditionalSI-Info-r9 ::= SEQUENCE {
    csg-MemberStatus-r9 ENUMERATED {member} OPTIONAL,
    csg-Identity-r9 CSG-Identity OPTIONAL
}

MeasResultForRSSI-r13 ::= SEQUENCE {
    rssi-Result-r13 RSSI-Range-r13,
    channelOccupancy-r13 INTEGER (0..100),
    ...
}

UL-PDCP-DelayResultList-r13 ::= SEQUENCE (SIZE (1..maxQCI-r13)) OF UL-PDCP-DelayResult-r13

UL-PDCP-DelayResult-r13 ::= SEQUENCE {
    qci-Id-r13 ENUMERATED {qci1, qci2, qci3, qci4, spare4, spare3, spare2, spare1},
    excessDelay-r13 INTEGER (0..31),
    ...
}
**MeasResults field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>availableAdmissionCapacityWLAN</td>
<td>Indicates the available admission capacity of WLAN as defined in IEEE 802.11-2012 [67].</td>
</tr>
<tr>
<td>backhaulDL-BandwidthWLAN</td>
<td>Indicates the backhaul available downlink bandwidth of WLAN, equal to Downlink Speed times Downlink Load defined in Wi-Fi Alliance Hotspot 2.0 [76].</td>
</tr>
<tr>
<td>backhaulUL-BandwidthWLAN</td>
<td>Indicates the backhaul available uplink bandwidth of WLAN, equal to Uplink Speed times Uplink Load defined in Wi-Fi Alliance Hotspot 2.0 [76].</td>
</tr>
<tr>
<td>bandWLAN</td>
<td>Indicates the WLAN band.</td>
</tr>
<tr>
<td>carrierInfoWLAN</td>
<td>Indicates the WLAN channel information.</td>
</tr>
<tr>
<td>cbr-PSSCH</td>
<td>Indicates the CBR measurement results on the PSSCH of the pool indicated by poolIdentity. If adjacencyPSCCH-PSSCH is set to TRUE for the pool indicated by poolIdentity, this field indicates the CBR measurement of both the PSSCH and PSCCH resources which are measured together.</td>
</tr>
<tr>
<td>cbr-PSCCH</td>
<td>Indicates the CBR measurement results on the PSCCH of the pool indicated by poolIdentity. This field is only included if adjacencyPSCCH-PSSCH is set to FALSE for the pool indicated by poolIdentity.</td>
</tr>
<tr>
<td>channelOccupancy</td>
<td>Indicates the percentage of samples when the RSSI was above the configured channelOccupancyThreshold for the associated reportConfig.</td>
</tr>
<tr>
<td>channelUtilizationWLAN</td>
<td>Indicates WLAN channel utilization as defined in IEEE 802.11-2012 [67].</td>
</tr>
<tr>
<td>connectedWLAN</td>
<td>Indicates whether the UE is connected to the WLAN for which the measurement results are applicable.</td>
</tr>
<tr>
<td>csg-MemberStatus</td>
<td>Indicates whether or not the UE is a member of the CSG of the neighbour cell.</td>
</tr>
<tr>
<td>currentSFN</td>
<td>Indicates the current system frame number when receiving the UE Rx-Tx time difference measurement results from lower layer.</td>
</tr>
<tr>
<td>excessDelay</td>
<td>Indicates excess queueing delay ratio in UL, according to excess delay ratio measurement report mapping table, as defined in TS 36.314 [71, Table 4.2.1.1.1-1].</td>
</tr>
<tr>
<td>locationAreaCode</td>
<td>A fixed length code identifying the location area within a PLMN, as defined in TS 23.003 [27].</td>
</tr>
<tr>
<td>measId</td>
<td>Identifies the measurement identity for which the reporting is being performed. If the measld-v1250 is included, the measld (i.e. without a suffix) is ignored by eNB.</td>
</tr>
<tr>
<td>measResult</td>
<td>Measured result of an E-UTRA cell; Measured result of a UTRA cell; Measured result of a GERAN cell or frequency; Measured result of a CDMA2000 cell; Measured result of a WLAN; Measured result of UE Rx–Tx time difference; Measured result of UE SFN, radio frame and subframe timing difference; or Measured result of RSSI and channel occupancy.</td>
</tr>
<tr>
<td>measResultCSI-RS-List</td>
<td>Measured results of the CSI-RS resources in discovery signals measurement.</td>
</tr>
<tr>
<td>measResultListCDMA2000</td>
<td>List of measured results for the maximum number of reported best cells for a CDMA2000 measurement identity.</td>
</tr>
<tr>
<td>measResultListEUTRA</td>
<td>List of measured results for the maximum number of reported best cells for an E-UTRA measurement identity. For BL UEs or UEs in CE, when operating in CE Mode B, measResult-v1360 is reported if the measured RSRP is less than -140 dBm.</td>
</tr>
<tr>
<td>measResultListGERAN</td>
<td>List of measured results for the maximum number of reported best cells or frequencies for a GERAN measurement identity.</td>
</tr>
<tr>
<td>measResultListUTRA</td>
<td>List of measured results for the maximum number of reported best cells for a UTRA measurement identity.</td>
</tr>
<tr>
<td>measResultListWLAN</td>
<td>List of measured results for the maximum number of reported best WLAN outside the WLAN mobility set and connected WLAN, if any, for a WLAN measurement identity.</td>
</tr>
</tbody>
</table>
### MeasResults field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>measResultPCell</td>
<td>Measured result of the PCell. For BL UEs or UEs in CE, when operating in CE Mode B, <code>measResultPCell-v1360</code> is reported if the measured RSRP is less than -140 dBm.</td>
</tr>
<tr>
<td>measResultsCDMA2000</td>
<td>Contains the CDMA2000 HRPD pre-registration status and the list of CDMA2000 measurements.</td>
</tr>
<tr>
<td>MeasResultServFreqList</td>
<td>Measured results of the serving frequencies: the measurement result of each SCell, if any, and of the best neighbouring cell on each serving frequency. For BL UEs or UEs in CE, when operating in CE Mode B, <code>measResultBestNeighCell-v1360</code> is reported if the measured RSRP is less than -140 dBm.</td>
</tr>
<tr>
<td>pilotPnPhase</td>
<td>Indicates the arrival time of a CDMA2000 pilot, measured relative to the UE's time reference in units of PN chips, see C.S0005 [25]. This information is used in either SRVCC handover or enhanced 1xRTT CS fallback procedure to CDMA2000 1xRTT.</td>
</tr>
<tr>
<td>poolIdentity</td>
<td>The identity of the transmission resource pool which is corresponding to the <code>poolReportId</code> configured in a resource pool for V2X sidelink communication.</td>
</tr>
<tr>
<td>plmn-IdentityList</td>
<td>The list of PLMN Identity read from broadcast information when the multiple PLMN Identities are broadcast.</td>
</tr>
<tr>
<td>preRegistrationStatusHRPD</td>
<td>Set to <code>TRUE</code> if the UE is currently pre-registered with CDMA2000 HRPD. Otherwise set to <code>FALSE</code>. This can be ignored by the eNB for CDMA2000 1xRTT.</td>
</tr>
<tr>
<td>qci-Id</td>
<td>Indicates QCI value for which <code>excessDelay</code> is provided, according to TS 36.314 [71].</td>
</tr>
<tr>
<td>routingAreaCode</td>
<td>The RAC identity read from broadcast information, as defined in TS 23.003 [27].</td>
</tr>
<tr>
<td>rsrpResult</td>
<td>Measured RSRP result of an E-UTRA cell. The <code>rsrpResult</code> is only reported if configured by the eNB.</td>
</tr>
<tr>
<td>rsrqResult</td>
<td>Measured RSRQ result of an E-UTRA cell. The <code>rsrqResult</code> is only reported if configured by the eNB.</td>
</tr>
<tr>
<td>rssi</td>
<td>GERAN Carrier RSSI. RXLEV is mapped to a value between 0 and 63, TS 45.008 [28]. When mapping the RXLEV value to the RSSI bit string, the first/leftmost bit of the bit string contains the most significant bit.</td>
</tr>
<tr>
<td>rssi-Result</td>
<td>Measured RSSI result in dBm.</td>
</tr>
<tr>
<td>rs-sinr-Result</td>
<td>Measured RS-SINR result of an E-UTRA cell. The <code>rs-sinr-Result</code> is only reported if configured by the eNB.</td>
</tr>
<tr>
<td>rssiWLAN</td>
<td>Measured WLAN RSSI result in dBm.</td>
</tr>
<tr>
<td>stationCountWLAN</td>
<td>Indicates the total number stations currently associated with this WLAN as defined in IEEE 802.11-2012 [67].</td>
</tr>
<tr>
<td>ue-RxTxTimeDiffResult</td>
<td>UE Rx-Tx time difference measurement result of the PCell, provided by lower layers. If <code>ue-RxTxTimeDiffPeriodicalTDD-r13</code> is set to <code>TRUE</code>, the measurement mapping is according to EUTRAN TDD UE Rx-Tx time difference report mapping in TS 36.133 [16] and measurement result includes <code>N/Aoffset</code>, else the measurement mapping is according to EUTRAN FDD UE Rx-Tx time difference report mapping in TS 36.133 [16].</td>
</tr>
<tr>
<td>utra-EcN0</td>
<td>According to CPICH_Ec/No in TS 25.133 [29] for FDD. Fourteen spare values. The field is not present for TDD.</td>
</tr>
<tr>
<td>wlan-Identifiers</td>
<td>Indicates the WLAN parameters used for identification of the WLAN for which the measurement results are applicable.</td>
</tr>
</tbody>
</table>

---

**MeasResultSSTD**

The IE `MeasResultSSTD` consists of SFN, radio frame and subframe boundary difference between the PCell and the PSCell as specified in TS 36.214 [48] and TS 36.133 [16].
MeasResultSSTD information element

```asn1
MeasResultSSTD-r13 ::= SEQUENCE {
 sfn-OffsetResult-r13 INTEGER (0..1023),
 frameBoundaryOffsetResult-r13 INTEGER (-5..4),
 subframeBoundaryOffsetResult-r13 INTEGER (0..127)
}
```

MeasResultSSTD field descriptions

- **sfn-OffsetResult**: Indicates the SFN difference between the PCell and the PSCell as an integer value according to TS 36.214 [48].
- **frameBoundaryOffsetResult**: Indicates the frame boundary difference between the PCell and the PSCell as an integer value according to TS 36.214 [48].
- **subframeBoundaryOffsetResult**: Indicates the subframe boundary difference between the PCell and the PSCell as an integer value according to the mapping table in TS 36.133 [16].

---

MeasScaleFactor

The IE **MeasScaleFactor** specifies the factor for scaling the measurement performance requirements in TS 36.133 [16].

```asn1
MeasScaleFactor-r12 ::= ENUMERATED {sf-EUTRA-cf1, sf-EUTRA-cf2}
```

NOTE: If the reducedMeasPerformance is not included in any measObjectEUTRA or measObjectUTRA and the measScaleFactor is included in the measConfig, E-UTRAN can configure any of the values for the measScaleFactor as specified in TS 36.133 [16].

---

QuantityConfig

The IE **QuantityConfig** specifies the measurement quantities and layer 3 filtering coefficients for E-UTRA and inter-RAT measurements.

```asn1
QuantityConfig ::= SEQUENCE {
 quantityConfigEUTRA QuantityConfigEUTRA OPTIONAL, -- Need ON
 quantityConfigUTRA QuantityConfigUTRA OPTIONAL, -- Need ON
 quantityConfigGERAN QuantityConfigGERAN OPTIONAL, -- Need ON
 quantityConfigCDMA2000 QuantityConfigCDMA2000 OPTIONAL, -- Need ON
 ...,
 quantityConfigUTRA-v1020 QuantityConfigUTRA-v1020 OPTIONAL -- Need ON
 quantityConfigUTRA-v1250 QuantityConfigUTRA-v1250 OPTIONAL -- Need ON
 quantityConfigUTRA-v1310 QuantityConfigUTRA-v1310 OPTIONAL, -- Need ON
 quantityConfigWLAN-r13 QuantityConfigWLAN-r13 OPTIONAL -- Need ON
}
```
QuantityConfigEUTRA-v1250 ::= SEQUENCE {
  filterCoefficien\text{tCSI-RSRP-r12}  FilterCoefficient  OPTIONAL  -- Need
}

QuantityConfigEUTRA-v1310 ::= SEQUENCE {
  filterCoefficien\text{tRS-SINR-r13}  FilterCoefficient  DEFAULT fc4
}

QuantityConfigUTRA ::= SEQUENCE {
  measQuantityUTRA-FDD    ENUMERATED {cpich-RSCP, cpich-EcN0},
  filterCoefficien\text{tRS-SINR-r13}  FilterCoefficient  DEFAULT fc4
}

QuantityConfigUTRA-v1020 ::= SEQUENCE {
  filterCoefficien\text{t2-FDD-r10}  FilterCoefficient  DEFAULT fc4
}

QuantityConfigGERAN ::= SEQUENCE {
  measQuantityGERAN     ENUMERATED {rssi},
  filterCoefficien\text{t}  FilterCoefficient  DEFAULT fc2
}

QuantityConfigCDMA2000 ::= SEQUENCE {
  measQuantityCDMA2000    ENUMERATED {pilotStrength, pilotPnPhaseAndPilotStrength}
}

QuantityConfigWLAN-r13 ::= SEQUENCE {
  measQuantityWLAN-r13    ENUMERATED {rssiWLAN},
  filterCoefficien\text{t-r13}  FilterCoefficient  DEFAULT fc4
}

QuantityConfig field descriptions

\textit{filterCoefficien\text{t2-FDD}}
Specifies the filtering coefficient used for the UTRAN FDD measurement quantity, which is not included in \textit{measQuantityUTRA-FDD}, when \textit{reportQuantityUTRA-FDD} is present in \textit{ReportConfigInterRAT}.

\textit{filterCoefficien\text{tCSI-RSRP}}
Specifies the filtering coefficient used for CSI-RSRP.

\textit{filterCoefficien\text{tRSRP}}
Specifies the filtering coefficient used for RSRP.

\textit{filterCoefficien\text{tRSRQ}}
Specifies the filtering coefficient used for RSRQ.

\textit{filterCoefficien\text{tRS-SINR}}
Specifies the filtering coefficient used for RS-SINR.

\textit{measQuantityCDMA2000}
Measurement quantity used for CDMA2000 measurements. \textit{pilotPnPhaseAndPilotStrength} is only applicable for \textit{MeasObjectCDMA2000} of \textit{cdma2000-Type = type1XRTT}.

\textit{measQuantityGERAN}
Measurement quantity used for GERAN measurements.

\textit{measQuantityUTRA}
Measurement quantity used for UTRA measurements.

\textit{measQuantityWLAN}
Measurement quantity used for WLAN measurements.

\textit{quantityConfigCDMA2000}
Specifies quantity configurations for CDMA2000 measurements.

\textit{quantityConfigEUTRA}
Specifies filter configurations for E-UTRA measurements.

\textit{quantityConfigGERAN}
Specifies quantity and filter configurations for GERAN measurements.

\textit{quantityConfigUTRA}
 Specifies quantity and filter configurations for UTRA measurements. Field \textit{quantityConfigUTRA-v1020} is applicable only when \textit{reportQuantityUTRA-FDD} is configured.

\textit{quantityConfigWLAN}
Specifies quantity and filter configurations for WLAN measurements.
The IE `ReportConfigEUTRA` specifies criteria for triggering of an E-UTRA measurement reporting event. The E-UTRA measurement reporting events concerning CRS are labelled AN with N equal to 1, 2 and so on.

- **Event A1:** Serving becomes better than absolute threshold;
- **Event A2:** Serving becomes worse than absolute threshold;
- **Event A3:** Neighbour becomes amount of offset better than PCell/ PSCell;
- **Event A4:** Neighbour becomes better than absolute threshold;
- **Event A5:** PCell/ PSCell becomes worse than absolute threshold AND Neighbour becomes better than another absolute threshold2;
- **Event A6:** Neighbour becomes amount of offset better than SCell.

The E-UTRA measurement reporting events concerning CSI-RS are labelled CN with N equal to 1 and 2.

- **Event C1:** CSI-RS resource becomes better than absolute threshold;
- **Event C2:** CSI-RS resource becomes amount of offset better than reference CSI-RS resource.

The E-UTRA measurement reporting events concerning CBR are labelled VN with N equal to 1 and 2.

- **Event V1:** CBR becomes larger than absolute threshold;
- **Event V2:** CBR becomes smaller than absolute threshold.

---

**ReportConfigEUTRA information element**

```asn1
ReportConfigEUTRA ::= SEQUENCE {
 triggerType CHOICE {
 event SEQUENCE {
 eventId CHOICE {
 eventA1 SEQUENCE {
 a1-Threshold ThresholdEUTRA
 },
 eventA2 SEQUENCE {
 a2-Threshold ThresholdEUTRA
 },
 eventA3 SEQUENCE {
 a3-Offset INTEGER (-30..30),
 reportOnLeave BOOLEAN
 },
 eventA4 SEQUENCE {
 a4-Threshold ThresholdEUTRA
 },
 eventA5 SEQUENCE {
 a5-Threshold1 ThresholdEUTRA,
 a5-Threshold2 ThresholdEUTRA
 },
 ...,
 eventA6-r10 SEQUENCE {
 a6-Offset-r10 INTEGER (-30..30),
 a6-ReportOnLeave-r10 BOOLEAN
 },
 eventC1-r12 SEQUENCE {
 c1-Threshold-r12 ThresholdEUTRA-v1250,
 c1-ReportOnLeave-r12 BOOLEAN
 },
 eventC2-r12 SEQUENCE {
 c2-RefCSI-RS-r12 MeasCSI-RS-Id-r12,
 c2-Offset-r12 INTEGER (-30..30),
 c2-ReportOnLeave-r12 BOOLEAN
 },
 eventV1-r14 SEQUENCE {
 v1-Threshold-r14 SL-CBR-r14
 },
 eventV2-r14 SEQUENCE {

```
v2-Threshold-r14  SL-CBR-r14

},

hysteresis  Hysteresis,

TimeToTrigger

},

periodical  

SEQUENCE {  

ENUMERATED {

reportStrongestCells, reportCGI
}

},

},

triggerQuantity
ENUMERATED {rsrp, rsrq},

reportQuantity
ENUMERATED {sameAsTriggerQuantity, both},

maxReportCells
INTEGER (1..maxCellReport),

reportInterval
ReportInterval,

reportAmount
ENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity},

...,

[[ si-RequestForHO-r9  ENUMERATED {setup}  OPTIONAL, -- Cond reportCGI

ue-RxTxTimeDiffPeriodical-r9  ENUMERATED {setup}  OPTIONAL -- Need OR
]],

[[ includeLocationInfo-r10  ENUMERATED {true}  OPTIONAL, -- Need OR

reportAddNeighMeas-r10  ENUMERATED {setup}  OPTIONAL -- Need OR
]],

[[ alternativeTimeToTrigger-r12  CHOICE {

release  NULL,  

null

TimeToTrigger

}  OPTIONAL, -- Need ON

useT312-r12  BOOLEAN  OPTIONAL, -- Need ON

usePSCell-r12  BOOLEAN  OPTIONAL, -- Need ON

aN-Threshold1-v1250  RSRQ-RangeConfig-r12  OPTIONAL, -- Need ON

a5-Threshold2-v1250  RSRQ-RangeConfig-r12  OPTIONAL, -- Need ON

reportStrongestCSI-RSs-r12  BOOLEAN  OPTIONAL, -- Need ON

reportCRS-Meas-r12  BOOLEAN  OPTIONAL, -- Need ON

triggerQuantityCSI-RS-r12  BOOLEAN  OPTIONAL -- Need ON

}],

[[ reportSSTD-Meas-r13  BOOLEAN  OPTIONAL, -- Need ON

rs-sinr-Config-r13  CHOICE {

release  NULL,  

null

sequence {  

triggerQuantity-v1310  ENUMERATED {sinr}  OPTIONAL, -- Need ON

aN-Threshold1-r13  RS-SINR-Range-r13  OPTIONAL, -- Need ON

a5-Threshold2-r13  RS-SINR-Range-r13  OPTIONAL, -- Need ON

reportQuantity-v1310  ENUMERATED {rsrpANDsinr, rsrqANDsinr, all}  OPTIONAL, -- Need ON

}  OPTIONAL, -- Need ON

useWhiteCellList-r13  BOOLEAN  OPTIONAL, -- Need ON

measRSSI-ReportConfig-r13  MeasRSSI-ReportConfig-r13  OPTIONAL, -- Need ON

includeMultiBandInfo-r13  ENUMERATED {true}  OPTIONAL, -- Cond

reportCGI

ul-DelayConfig-r13  UL-DelayConfig-r13  OPTIONAL -- Need ON

}],

[[ use-RxTxTimeDiffPeriodicalTDD-r13  BOOLEAN  OPTIONAL -- Need ON

]],

[[ purpose-v1430  ENUMERATED {reportLocation, sidelink, spare2, spare1}  OPTIONAL -- Need ON

}  ]

]

{  

RSRQ-RangeConfig-r12 ::=  CHOICE {

release  NULL,  

null

RSRQ-Range-v1250

}  

ThresholdEUTRA ::=  CHOICE{

threshold-RSRP  RSRP-Range,  

threshold-RSRQ  RSRQ-Range

}  

ThresholdEUTRA-v1250 ::=  CSI-RSRP-Range-r12  

MeasRSSI-ReportConfig-r13 ::=  SEQUENCE {

channelOccupancyThreshold-r13  RSRQ-Range-r13  OPTIONAL -- Need OR

}  

-- ASN1STOP
ReportConfigEUTRA field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a3-Offset/ a6-Offset/ c2-Offset</td>
<td>Offset value to be used in EUTRA measurement report triggering condition for event a3/ a6/ c2. The actual value is field value * 0.5 dB.</td>
</tr>
<tr>
<td>alternativeTimeToTrigger</td>
<td>Indicates the time to trigger applicable for cells specified in altTTT-CellsToAddModList of the associated measurement object, if configured.</td>
</tr>
<tr>
<td>aN-ThresholdM/ cN-ThresholdM</td>
<td>Threshold to be used in EUTRA measurement report triggering condition for event number aN/ cN. If multiple thresholds are defined for event number aN/ cN, the thresholds are differentiated by M. E-UTRAN configures aN-ThresholdM1 only for events A1, A2, A4, A5 and a5-Threshold2 only for event A5.</td>
</tr>
<tr>
<td>c1-ReportOnLeave/ c2-ReportOnLeave</td>
<td>Indicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a CSI-RS resource in csi-RS-TriggeredList, as specified in 5.5.4.1.</td>
</tr>
<tr>
<td>c2-RefCSI-RS</td>
<td>Identity of the CSI-RS resource from the measCSI-RS-ToAddModList of the associated measObject, to be used as the reference CSI-RS resource in EUTRA measurement report triggering condition for event c2.</td>
</tr>
<tr>
<td>channelOccupancyThreshold</td>
<td>RSSI threshold which is used for channel occupancy evaluation.</td>
</tr>
<tr>
<td>eventId</td>
<td>Choice of E-UTRA event triggered reporting criteria. EUTRAN may set this field to eventC1 or eventC2 only if measDS-Config is configured in the associated measObject with one or more CSI-RS resources. The eventC1 and eventC2 are not applicable for the eventId if RS-SINR is configured as triggerQuantity or reportQuantity.</td>
</tr>
<tr>
<td>includeMultiBandInfo</td>
<td>If this field is present, the UE shall acquire and include multi band information in the measurement report.</td>
</tr>
<tr>
<td>maxReportCells</td>
<td>Max number of cells, excluding the serving cell, to include in the measurement report concerning CRS, and max number of CSI-RS resources to include in the measurement report concerning CSI-RS.</td>
</tr>
<tr>
<td>measRSSI-ReportConfig</td>
<td>If this field is present, the UE shall perform measurement reporting for RSSI and channel occupancy and ignore the triggerQuantity, reportQuantity and maxReportCells fields. E-UTRAN only sets this field to true when setting triggerType to periodical and purpose to reportStrongestCells.</td>
</tr>
<tr>
<td>reportAmount</td>
<td>Number of measurement reports applicable for triggerType event as well as for triggerType periodical. In case purpose is set to reportCGI or reportSSTD-Meas is set to true, only value 1 applies.</td>
</tr>
<tr>
<td>reportCRS-Meas</td>
<td>Indicating that the UE shall include rsrp, rsrq together with csi-rsrp in the measurement report, if possible.</td>
</tr>
<tr>
<td>reportOnLeave/ a6-ReportOnLeave</td>
<td>Indicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.</td>
</tr>
<tr>
<td>reportQuantity</td>
<td>The quantities to be included in the measurement report. The value both means that both the rsrp and rsrq quantities are to be included in the measurement report. The value rSparNDsinr and rSparNDsinr mean that both rsrp and rs-sinr quantities, and both rsrp and rs-sinr quantities are to be included respectively in the measurement report. The value all means that rsrp, rsrq and rs-sinr are to be included in the measurement report. In case triggerQuantity CSI-RS is included, only value sameAsTriggerQuantity applies. If reportQuantity v1310 is configured, the UE only considers this extension (and ignores reportQuantity i.e. without suffix).</td>
</tr>
<tr>
<td>reportSSTD-Meas</td>
<td>If this field is set to true, the UE shall measure SSTD between the PCell and the PSCell as specified in TS 36.214 [48] and ignore the triggerQuantity, reportQuantity and maxReportCells fields. E-UTRAN only sets this field to true when setting triggerType to periodical and purpose to reportStrongestCells.</td>
</tr>
<tr>
<td>reportStrongestCSI-RSs</td>
<td>Indicates that periodical CSI-RS measurement report is performed. EUTRAN configures value TRUE only if measDS-Config is configured in the associated measObject with one or more CSI-RS resources.</td>
</tr>
<tr>
<td>si-RequestForHO</td>
<td>The field applies to the reportCGI functionality, and when the field is included, the UE is allowed to use autonomous gaps in acquiring system information from the neighbour cell, applies a different value for T321, and includes different fields in the measurement report.</td>
</tr>
<tr>
<td>ThresholdEUTRA</td>
<td>For RSRP: RSRP based threshold for event evaluation. The actual value is field value – 140 dBm. For RSRQ: RSRQ based threshold for event evaluation. The actual value is (field value – 40)/2 dB. For RS-SINR: RS-SINR based threshold for event evaluation. The actual value is (field value – 46)/2 dB. For CSI-RSRP: CSI-RSRP based threshold for event evaluation. The actual value is field value – 140 dBm. EUTRAN configures the same threshold quantity for all the thresholds of an event.</td>
</tr>
<tr>
<td>timeToTrigger</td>
<td>Time during which specific criteria for the event needs to be met in order to trigger a measurement report.</td>
</tr>
</tbody>
</table>
ReportConfigEUTRA field descriptions

triggerQuantity
The quantity used to evaluate the triggering condition for the event concerning CRS. EUTRAN sets the value according to the quantity of the ThresholdEUTRA for this event. The values rsrp, rsrq and sinr correspond to Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) and Reference Signal to Noise and Interference Ratio (RS-SINR), see TS 36.214 [48]. If triggerQuantity-v1310 is configured, the UE only considers this extension (and ignores triggerQuantity i.e. without suffix).

triggerQuantityCSI-RS
The quantity used to evaluate the triggering condition for the event concerning CSI-RS. The value TRUE corresponds to CSI Reference Signal Received Power (CSI-RSRP), see TS 36.214 [48]. E-UTRAN configures value TRUE if and only if the measurement reporting event concerns CSI-RS.

ue-RxTxTimeDiffPeriodical
If this field is present, the UE shall perform UE Rx-Tx time difference measurement reporting and ignore the fields triggerQuantity, reportQuantity and maxReportCells. If the field is present, the only applicable values for the corresponding triggerType and purpose are periodical and reportStrongestCells respectively.

ue-RxTxTimeDiffPeriodicalTDD
If this field is set to TRUE, the UE shall perform UE Rx-Tx time difference measurement reporting according to EUTRAN TDD UE Rx-Tx time difference report mapping in TS 36.133 [16]. If the field is configured, the ue-RxTxTimeDiffPeriodical shall be configured. The field is applicable for TDD only.

usePSCell
If this field is set to TRUE the UE shall use the PSCell instead of the PCell. E-UTRAN configures value TRUE only for events A3 and A5, see 5.5.4.4 and 5.5.4.6.

useT312
If value TRUE is configured, the UE shall use the timer T312 with the value t312 as specified in the corresponding measObject. If the corresponding measObject does not include the timer T312 then the timer T312 is considered as not configured. E-UTRAN configures value TRUE only if triggerType is set to event.

useWhiteCellList
Indicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1. E-UTRAN does not configure the field for events A1, A2, C1 and C2.

ul-DelayConfig
If the field is present, E-UTRAN configures UL PDCP Packet Delay per QCI measurement and the UE shall ignore the fields triggerQuantity and maxReportCells. The applicable values for the corresponding triggerType and reportInterval are periodical and (one of the) ms1024, ms2048, ms5120 or ms10240 respectively. The reportInterval indicates the periodicity for performing and reporting of UL PDCP Delay per QCI measurement as specified in TS 36.314 [71].

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>reportCGI</td>
<td>The field is optional, need OR, in case purpose is included and set to reportCGI; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

ReportConfigId
The IE ReportConfigId is used to identify a measurement reporting configuration.

ReportConfigId information element

```asn1
-- ASN1START
ReportConfigId ::= INTEGER (1..maxReportConfigId)
-- ASN1STOP
```

ReportConfigInterRAT
The IE ReportConfigInterRAT specifies criteria for triggering of an inter-RAT measurement reporting event. The inter-RAT measurement reporting events for UTRAN, GERAN and CDMA2000 are labelled BN with N equal to 1, 2 and so on. The inter-RAT measurement reporting events for WLAN are labelled WN with N equal to 1, 2 and so on.
Event B1: Neighbour becomes better than absolute threshold;  
Event B2: PCell becomes worse than absolute threshold1 AND Neighbour becomes better than another absolute  
threshold2.  
Event W1: WLAN becomes better than a threshold;  
Event W2: All WLAN inside WLAN mobility set become worse than a threshold1 and a WLAN outside WLAN  
mobility set becomes better than a threshold2;  
Event W3: All WLAN inside WLAN mobility set become worse than a threshold.  

The b1 and b2 event thresholds for CDMA2000 are the CDMA2000 pilot detection thresholds are expressed as an  
unsigned binary number equal to \([-2 \times 10 \log_{10} E_c/I_o]\) in units of 0.5dB, see C.S0005 [25] for details.  

**ReportConfigInterRAT information element**

```asn1
ReportConfigInterRAT ::= SEQUENCE {
 triggerType CHOICE {
 event SEQUENCE {
 eventId CHOICE {
 eventB1 SEQUENCE {
 b1-Threshold CHOICE {
 b1-ThresholdUTRA ThresholdUTRA,
 b1-ThresholdGERAN ThresholdGERAN,
 b1-ThresholdCDMA2000 ThresholdCDMA2000
 }
 },
 eventB2 SEQUENCE {
 b2-Threshold1 ThresholdEUTRA,
 b2-Threshold2 CHOICE {
 b2-Threshold2UTRA ThresholdUTRA,
 b2-Threshold2GERAN ThresholdGERAN,
 b2-Threshold2CDMA2000 ThresholdCDMA2000
 }
 }
 },
 eventW1-r13 SEQUENCE {
 w1-Threshold-r13 WLAN-RSSI-Range-r13
 },
 eventW2-r13 SEQUENCE {
 w2-Threshold1-r13 WLAN-RSSI-Range-r13,
 w2-Threshold2-r13 WLAN-RSSI-Range-r13
 },
 eventW3-r13 SEQUENCE {
 w3-Threshold-r13 WLAN-RSSI-Range-r13
 }
 },
 hysteresis Hysteresis,
 timeToTrigger TimeToTrigger
 },
 periodical SEQUENCE {
 purpose ENUMERATED {
 reportStrongestCells,
 reportStrongestCellsForSON,
 reportCGI,
 reportQuantityUTRA-FDD-r10 ENUMERATED {both} OPTIONAL -- Need OR
 }
 },
 maxReportCells INTEGER {1..maxCellReport},
 reportInterval ReportInterval,
 reportAmount ENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity},
 ...
}
```

---

**ReportConfigInterRAT information element**

```asn1
ReportConfigInterRAT ::= SEQUENCE {
 triggerType CHOICE {
 event SEQUENCE {
 eventId CHOICE {
 eventB1 SEQUENCE {
 b1-Threshold CHOICE {
 b1-ThresholdUTRA ThresholdUTRA,
 b1-ThresholdGERAN ThresholdGERAN,
 b1-ThresholdCDMA2000 ThresholdCDMA2000
 }
 },
 eventB2 SEQUENCE {
 b2-Threshold1 ThresholdEUTRA,
 b2-Threshold2 CHOICE {
 b2-Threshold2UTRA ThresholdUTRA,
 b2-Threshold2GERAN ThresholdGERAN,
 b2-Threshold2CDMA2000 ThresholdCDMA2000
 }
 }
 },
 eventW1-r13 SEQUENCE {
 w1-Threshold-r13 WLAN-RSSI-Range-r13
 },
 eventW2-r13 SEQUENCE {
 w2-Threshold1-r13 WLAN-RSSI-Range-r13,
 w2-Threshold2-r13 WLAN-RSSI-Range-r13
 },
 eventW3-r13 SEQUENCE {
 w3-Threshold-r13 WLAN-RSSI-Range-r13
 }
 },
 hysteresis Hysteresis,
 timeToTrigger TimeToTrigger
 },
 periodical SEQUENCE {
 purpose ENUMERATED {
 reportStrongestCells,
 reportStrongestCellsForSON,
 reportCGI,
 reportQuantityUTRA-FDD-r10 ENUMERATED {both} OPTIONAL -- Need OR
 }
 },
 maxReportCells INTEGER {1..maxCellReport},
 reportInterval ReportInterval,
 reportAmount ENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity},
 ...
}
```

---

**ReportConfigInterRAT information element**

```asn1
ReportConfigInterRAT ::= SEQUENCE {
 triggerType CHOICE {
 event SEQUENCE {
 eventId CHOICE {
 eventB1 SEQUENCE {
 b1-Threshold CHOICE {
 b1-ThresholdUTRA ThresholdUTRA,
 b1-ThresholdGERAN ThresholdGERAN,
 b1-ThresholdCDMA2000 ThresholdCDMA2000
 }
 },
 eventB2 SEQUENCE {
 b2-Threshold1 ThresholdEUTRA,
 b2-Threshold2 CHOICE {
 b2-Threshold2UTRA ThresholdUTRA,
 b2-Threshold2GERAN ThresholdGERAN,
 b2-Threshold2CDMA2000 ThresholdCDMA2000
 }
 }
 },
 eventW1-r13 SEQUENCE {
 w1-Threshold-r13 WLAN-RSSI-Range-r13
 },
 eventW2-r13 SEQUENCE {
 w2-Threshold1-r13 WLAN-RSSI-Range-r13,
 w2-Threshold2-r13 WLAN-RSSI-Range-r13
 },
 eventW3-r13 SEQUENCE {
 w3-Threshold-r13 WLAN-RSSI-Range-r13
 }
 },
 hysteresis Hysteresis,
 timeToTrigger TimeToTrigger
 },
 periodical SEQUENCE {
 purpose ENUMERATED {
 reportStrongestCells,
 reportStrongestCellsForSON,
 reportCGI,
 reportQuantityUTRA-FDD-r10 ENUMERATED {both} OPTIONAL -- Need OR
 }
 },
 maxReportCells INTEGER {1..maxCellReport},
 reportInterval ReportInterval,
 reportAmount ENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity},
 ...
}
```
reportQuantityWLAN-r13 ::= ReportQuantityWLAN-r13 OPTIONAL -- Need ON

reportAnyWLAN-r14 ::= BOOLEAN OPTIONAL -- Need ON

ThresholdUTRA ::= 
  CHOICE{
    ultra-RSCP       INTEGER (-5..91),
    ultra-EcN0       INTEGER (0..49)
  }

ThresholdGERAN ::= INTEGER (0..63)

ThresholdCDMA2000 ::= INTEGER (0..63)

ReportQuantityWLAN-r13 ::= 
  SEQUENCE {
    bandRequestWLAN-r13       ENUMERATED {true} OPTIONAL, -- Need OR
    carrierInfoRequestWLAN-r13 ENUMERATED {true} OPTIONAL, -- Need OR
    availableAdmissionCapacityRequestWLAN-r13 ENUMERATED {true} OPTIONAL, -- Need OR
    backhaulDL-BandwidthRequestWLAN-r13 ENUMERATED {true} OPTIONAL, -- Need OR
    backhaulUL-BandwidthRequestWLAN-r13 ENUMERATED {true} OPTIONAL, -- Need OR
    channelUtilizationRequestWLAN-r13 ENUMERATED {true} OPTIONAL, -- Need OR
    stationCountRequestWLAN-r13 ENUMERATED {true} OPTIONAL, -- Need OR
    ...
  }

-- ASN1STOP
**ReportConfigInterRAT field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>availableAdmissionCapacityRequestWLAN</td>
<td>The value true indicates that the UE shall include, if available, WLAN Available Admission Capacity in measurement reports.</td>
</tr>
<tr>
<td>backhaulDL-BandwidthRequestWLAN</td>
<td>The value true indicates that the UE shall include, if available, WLAN Backhaul Downlink Bandwidth in measurement reports.</td>
</tr>
<tr>
<td>backhaulUL-BandwidthRequestWLAN</td>
<td>The value true indicates that the UE shall include, if available, WLAN Backhaul Uplink Bandwidth in measurement reports.</td>
</tr>
<tr>
<td>bandRequestWLAN</td>
<td>The value true indicates that the UE shall include WLAN band in measurement reports.</td>
</tr>
<tr>
<td>bN-ThresholdM</td>
<td>Threshold to be used in inter RAT measurement report triggering condition for event number bN. If multiple thresholds are defined for event number bN, the thresholds are differentiated by M.</td>
</tr>
<tr>
<td>carrierInfoRequestWLAN</td>
<td>The value true indicates that the UE shall include, if available, WLAN Carrier Information in measurement reports.</td>
</tr>
<tr>
<td>channelUtilizationRequest-WLAN</td>
<td>The value true indicates that the UE shall include, if available, WLAN Channel Utilization in measurement reports.</td>
</tr>
<tr>
<td>eventId</td>
<td>Choice of inter-RAT event triggered reporting criteria.</td>
</tr>
<tr>
<td>maxReportCells</td>
<td>Max number of cells, excluding the serving cell, to include in the measurement report. In case purpose is set to reportStrongestCellsForSON only value 1 applies. For inter-RAT WLAN, it is the maximum number of WLANs to include in the measurement report.</td>
</tr>
<tr>
<td>Purpose</td>
<td>reportStrongestCellsForSON applies only in case reportConfig is linked to a measObject set to measObjectUTRA or measObjectCDMA2000.</td>
</tr>
<tr>
<td>reportAmount</td>
<td>Number of measurement reports applicable for triggerType event as well as for triggerType periodical. In case purpose is set to reportCGI or reportStrongestCellsForSON only value 1 applies.</td>
</tr>
<tr>
<td>reportAnyWLAN</td>
<td>Indicates UE to report any WLAN AP meeting the triggering requirements, even if it is not included in the corresponding MeasObjectWLAN.</td>
</tr>
<tr>
<td>reportQuantityUTRA-FDD</td>
<td>The quantities to be included in the UTRA measurement report. The value both means that both the cpich RSCP and cpich Ec/No quantities are to be included in the measurement report.</td>
</tr>
<tr>
<td>si-RequestForHO</td>
<td>The field applies to the reportCGI functionality, and when the field is included, the UE is allowed to use autonomous gaps in acquiring system information from the neighbour cell, applies a different value for T321, and includes different fields in the measurement report.</td>
</tr>
<tr>
<td>stationCountRequestWLAN</td>
<td>The value true indicates that the UE shall include, if available, WLAN Station Count in measurement reports.</td>
</tr>
<tr>
<td>b1-ThresholdGERAN, b2-Threshold2GERAN</td>
<td>The actual value is field value – 110 dBm.</td>
</tr>
<tr>
<td>b1-ThresholdUTRA, b2-Threshold2UTRA</td>
<td>The field applies to the reportCGI functionality, and when the field is included, the UE is allowed to use autonomous gaps in acquiring system information from the neighbour cell, applies a different value for T321, and includes different fields in the measurement report.</td>
</tr>
<tr>
<td>utra-EcN0</td>
<td>corresponds to CPICH_Ec/No in TS 25.133 [29] for FDD, and is not applicable for TDD.</td>
</tr>
<tr>
<td>timeToTrigger</td>
<td>Time during which specific criteria for the event needs to be met in order to trigger a measurement report.</td>
</tr>
<tr>
<td>triggerType</td>
<td>E-UTRAN does not configure the value periodical in case reportConfig is linked to a measObject set to measObjectWLAN.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>reportCGI</td>
<td>The field is optional, need OR, in case purpose is included and set to reportCGI; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

---

**ReportConfigToAddModList**

The IE ReportConfigToAddModList concerns a list of reporting configurations to add or modify.
--- ASN1START

ReportConfigToAddModList ::= SEQUENCE (SIZE (1..maxReportConfigId)) OF ReportConfigToAddMod

ReportConfigToAddMod ::= SEQUENCE {
    reportConfigId      ReportConfigId,
    reportConfig      CHOICE {
        reportConfigEUTRA     ReportConfigEUTRA,
        reportConfigInterRAT    ReportConfigInterRAT
    }
}

--- ASN1STOP

--- ReportInterval

The `ReportInterval` indicates the interval between periodical reports. The `ReportInterval` is applicable if the UE performs periodical reporting (i.e. when `reportAmount` exceeds 1), for `triggerType event` as well as for `triggerType periodical`. Value `ms120` corresponds with 120 ms, `ms240` corresponds with 240 ms and so on, while value `min1` corresponds with 1 min, `min6` corresponds with 6 min and so on.

--- ReportInterval information element

--- ASN1START

ReportInterval ::= ENUMERATED {
    ms120, ms240, ms480, ms640, ms1024, ms2048, ms5120, ms10240, 
    min1, min6, min12, min30, min60, spare3, spare2, spare1
}

--- ASN1STOP

--- RSRP-Range

The IE `RSRP-Range` specifies the value range used in RSRP measurements and thresholds. Integer value for RSRP measurements according to mapping table in TS 36.133 [16]. A given field using `RSRP-Range-v1360` shall only be signalled if the corresponding original field (using `RSRP-Range` i.e. without suffix) is set to value 0.

--- RSRP-Range information element

--- ASN1START

RSRP-Range ::= INTEGER(0..97)
RSRP-Range-v1360 ::= INTEGER(-17..-1)
RSRP-RangeSL-r12 ::= INTEGER(0..13)
RSRP-RangeSL2-r12 ::= INTEGER(0..7)
RSRP-RangeSL3-r12 ::= INTEGER(0..11)
RSRP-RangeSL4-r13 ::= INTEGER(0..49)

--- ASN1STOP
### RSRP-Range field descriptions

**RSRP-Range**
For BL UEs or UEs in CE, when operating in CE Mode B, *RSRP-Range-v1360* (i.e., with suffix) is reported if the measured RSRP is less than -140 dBm.

**RSRP-RangeSL**
Value 0 corresponds to -infinity, value 1 to -115dBm, value 2 to -110dBm, and so on (i.e. in steps of 5dBm) until value 12, which corresponds to -60dBm, while value 13 corresponds to +infinity.

**RSRP-RangeSL2**
Value 0 corresponds to -infinity, value 1 to -110dBm, value 2 to -100dBm, and so on (i.e. in steps of 10dBm) until value 6, which corresponds to -60dBm, while value 7 corresponds to +infinity.

**RSRP-RangeSL3**
Value 0 corresponds to -110dBm, value 1 to -105dBm, value 2 to -100dBm, and so on (i.e. in steps of 5dBm) until value 10, which corresponds to -60dBm, while value 11 corresponds to +infinity.

**RSRP-RangeSL4**
Indicates the range for SD-RSRP. Value 0 corresponds to -130dBm, value 1 to -128dBm, value 2 to -126dBm, and so on (i.e. in steps of 2dBm) until value 48, which corresponds to -34dBm, while value 49 corresponds to +infinity.

### RSRQ-Range
The IE *RSRQ-Range* specifies the value range used in RSRQ measurements and thresholds. Integer value for RSRQ measurements is according to mapping table in TS 36.133 [16]. A given field using *RSRQ-Range-v1250* shall only be signalled if the corresponding original field (using *RSRQ-Range* i.e. without suffix) is set to value 0 or 34. Only a UE indicating support of *extendedRSRQ-LowerRange-r12* or *rsrq-OnAllSymbols-r12* may report *RSRQ-Range-v1250*, and this may be done without explicit configuration from the E-UTRAN. If received, the UE shall use the value indicated by the *RSRQ-Range-v1250* and ignore the value signalled by *RSRQ-Range* (without the suffix). *RSRQ-Range-r13* covers the original range and extended *RSRQ-Range-v1250*. *RSRQ-Range-r13* may be signalled without the corresponding original field and without any requirements for indicated support of *extendedRSRQ-LowerRange-r12* or *rsrq-OnAllSymbols-r12*.

### RSRQ-Range information element

```asn1
RSRQ-Range ::= INTEGER(0..34)
RSRQ-Range-v1250 ::= INTEGER(-30..46)
RSRQ-Range-r13 ::= INTEGER(-30..46)
```

### RSRQ-Type
The IE *RSRQ-Type* specifies the RSRQ value type used in RSRQ measurements, see TS 36.214 [48].

### RSRQ-Type information element

```asn1
RSRQ-Type-r12 ::= SEQUENCE {
 allSymbols-r12 BOOLEAN,
 wideBand-r12 BOOLEAN
}
```

### RSRQ-Type field descriptions

#### allSymbols
Value TRUE indicates use of all OFDM symbols when performing RSRQ measurements.

#### wideBand
Value TRUE indicates use of a wider bandwidth when performing RSRQ measurements.
-- RS-SINR-Range

The IE RS-SINR-Range specifies the value range used in RS-SINR measurements and thresholds. Integer value for RS-SINR measurements is according to mapping table in TS 36.133 [16].

RS-SINR-Range information element

```asn1
RS-SINR-Range-r13 ::= INTEGER(0..127)
```

-- RSSI-Range-r13

The IE RSSI-Range specifies the value range used in RSSI measurements and thresholds. Integer value for RSSI measurements is according to mapping table in TS 36.133 [16].

RSSI-Range information element

```asn1
RSSI-Range-r13 ::= INTEGER(0..76)
```

-- TimeToTrigger

The IE TimeToTrigger specifies the value range used for time to trigger parameter, which concerns the time during which specific criteria for the event needs to be met in order to trigger a measurement report. Value ms0 corresponds to 0 ms and behaviour as specified in 7.3.2 applies, ms40 corresponds to 40 ms, and so on.

TimeToTrigger information element

```asn1
TimeToTrigger ::= ENUMERATED {
 ms0, ms40, ms64, ms80, ms100, ms128, ms160, ms256,
 ms320, ms480, ms512, ms640, ms1024, ms1280, ms2560,
 ms5120}
```

-- UL-DelayConfig

The IE UL-DelayConfig IE specifies the configuration of the UL PDCP Packet Delay per QCI measurement specified in TS36.314 [71].

UL-DelayConfig information element

```asn1
UL-DelayConfig-r13 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 delayThreshold-r13 ENUMERATED {
 ms30, ms40, ms50, ms60, ms70, ms80,
 ms90, ms100, ms150, ms300, ms500, ms750, spare4,
 spare3, spare2, spare1}
 }
}
```

-- ASN1STOP
**UL-DelayConfig field descriptions**

**delayThreshold**
Indicates the delay threshold value used by UE to provide results of UL PDCP Packet Delay per QCI measurement as specified in TS 36.314 [71]. Value in milliseconds. Value ms30 means 30 ms and so on.

---

**WLAN-CarrierInfo**

The IE **WLAN-CarrierInfo** is used to identify the WLAN frequency band information, as specified in Annex E in [67].

**WLAN-CarrierInfo information element**

```asn1
WLAN-CarrierInfo-r13 ::= SEQUENCE {
 operatingClass-r13 INTEGER (0..255) OPTIONAL, -- Need ON
 countryCode-r13 ENUMERATED {unitedStates, europe, japan, global, ...} OPTIONAL, -- Need ON
 channelNumbers-r13 WLAN-ChannelList-r13 OPTIONAL, -- Need ON
 ...
}
WLAN-ChannelList-r13 ::= SEQUENCE (SIZE (1..maxWLAN-Channels-r13)) OF WLAN-Channel-r13
WLAN-Channel-r13 ::= INTEGER(0..255)
```

**WLAN-CarrierInfo field descriptions**

**channelNumbers**
Indicates the WLAN channels as defined in IEEE 802.11-2012 [67]. Value 0 is not used.

**countryCode**
Indicates the country code of WLAN as defined in IEEE 802.11-2012 [67].

**operatingClass**
Indicates the Operating Class of WLAN as defined in IEEE 802.11-2012 [67].

---

**WLAN-RSSI-Range**

The IE **WLAN-RSSI-Range** specifies the value range used in WLAN RSSI measurements and thresholds. Integer value for WLAN RSSI measurements is according to mapping table in TS 36.133 [16]. Value 0 corresponds to -infinity, value 1 to -100dBm, value 2 to -99dBm, and so on (i.e. in steps of 1dBm) until value 140, which corresponds to 39dBm, while value 141 corresponds to +infinity.

**WLAN-RSSI-Range information element**

```asn1
WLAN-RSSI-Range-r13 ::= INTEGER(0..141)
```

---

**WLAN-Status**

The IE **WLAN-Status** indicates the current status of WLAN connection. The values are set as described in Sections 5.6.15.2 and 5.6.15.4.

**WLAN-Status information element**

```asn1
WLAN-Status-r13 ::= ENUMERATED {successfulAssociation, failureWlanRadioLink, failureWlanUnavailable, failureTimeout}
```
WLAN-Status-v1430 ::= ENUMERATED {suspended, resumed}

--- ASN1STOP

-- WLAN-SuspendConfig

The IE WLAN-SuspendConfig is used for configuration of WLAN suspend/resume functionality.

-- ASN1START

WLAN-SuspendConfig-r14 ::= SEQUENCE {
  wlan-SuspendResumeAllowed-r14   BOOLEAN OPTIONAL, -- Need ON
  wlan-SuspendTriggersStatusReport-r14  BOOLEAN OPTIONAL -- Need ON
}

-- ASN1STOP

**WLAN-SuspendConfig field descriptions**

* wlan-SuspendResumeAllowed
  Indicates whether the UE is allowed to use suspend-resume mechanism, i.e., to indicate WLAN being temporarily unavailable and WLAN being available again after temporary unavailability.

* wlan-SuspendTriggersStatusReport
  Indicates whether the UE shall trigger PDCP status report as defined in [8] when WLAN is temporarily unavailable and UE reports this status.

### 6.3.6 Other information elements

-- AbsoluteTimeInfo

The IE AbsoluteTimeInfo indicates an absolute time in a format YY-MM-DD HH:MM:SS and using BCD encoding. The first/ leftmost bit of the bit string contains the most significant bit of the most significant digit of the year and so on.

**AbsoluteTimeInfo information element**

-- ASN1START

AbsoluteTimeInfo-r10 ::= BIT STRING (SIZE (48))

-- ASN1STOP

-- AreaConfiguration

The AreaConfiguration indicates area for which UE is requested to perform measurement logging. If not configured, measurement logging is not restricted to specific cells or tracking areas but applies as long as the RPLMN is contained in plmn-IdentityList stored in VarLogMeasReport.

**AreaConfiguration information element**

-- ASN1START

AreaConfiguration-r10 ::= CHOICE {
  cellGlobalIdList-r10   CellGlobalIdList-r10,
  trackingAreaCodeList-r10  TrackingAreaCodeList-r10
}

AreaConfiguration-v1130 ::= SEQUENCE {
  trackingAreaCodeList-v1130  TrackingAreaCodeList-v1130
}

CellGlobalIdList-r10 ::= SEQUENCE (SIZE (1..32)) OF CellGlobalIdEUTRA

TrackingAreaCodeList-r10 ::= SEQUENCE (SIZE (1..8)) OF TrackingAreaCode

TrackingAreaCodeList-v1130 ::= SEQUENCE {

---
AreaConfiguration field descriptions

plmn-Identity-perTAC-List
Includes the PLMN identity for each of the TA codes included in trackingAreaCodeList. The PLMN identity listed first in plmn-Identity-perTAC-List corresponds with the TA code listed first in trackingAreaCodeList and so on.

– BandCombinationList
The IE BandCombinationList contains a list of CA band combinations.

BandCombinationList information element

-- ASN1START
BandCombinationList-r14 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF BandCombination-r14
BandCombination-r14 ::= SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandIndication-r14
BandIndication-r14 ::= SEQUENCE {
  bandEUTRA-r14     FreqBandIndicator-r11,
  ca-BandwidthClassDL-r14   CA-BandwidthClass-r10,
  ca-BandwidthClassUL-r14   CA-BandwidthClass-r10   OPTIONAL
}
-- ASN1STOP

– C-RNTI
The IE C-RNTI identifies a UE having a RRC connection within a cell.

C-RNTI information element

-- ASN1START
C-RNTI ::=       BIT STRING (SIZE (16))
-- ASN1STOP

– DedicatedInfoCDMA2000
The DedicatedInfoCDMA2000 is used to transfer UE specific CDMA2000 information between the network and the UE. The RRC layer is transparent for this information.

DedicatedInfoCDMA2000 information element

-- ASN1START
DedicatedInfoCDMA2000 ::=       OCTET STRING
-- ASN1STOP

– DedicatedInfoNAS
The IE DedicatedInfoNAS is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for this information.

DedicatedInfoNAS information element

-- ASN1START
DedicatedInfoNAS ::= OCTET STRING

-- ASN1STOP

– FilterCoefficient

The IE FilterCoefficient specifies the measurement filtering coefficient. Value fc0 corresponds to k = 0, fc1 corresponds to k = 1, and so on.

**FilterCoefficient information element**

-- ASN1START

FilterCoefficient ::= ENUMERATED {
    fc0, fc1, fc2, fc3, fc4, fc5,
    fc6, fc7, fc8, fc9, fc11, fc13,
    fc15, fc17, fc19, spare1, ...
}

-- ASN1STOP

– LoggingDuration

The LoggingDuration indicates the duration for which UE is requested to perform measurement logging. Value min10 corresponds to 10 minutes, value min20 corresponds to 20 minutes and so on.

**LoggingDuration information element**

-- ASN1START

LoggingDuration-r10 ::= ENUMERATED {
    min10, min20, min40, min60, min90, min120, spare2, spare1
}

-- ASN1STOP

– LoggingInterval

The LoggingInterval indicates the periodicity for logging measurement results. Value ms1280 corresponds to 1.28s, value ms2560 corresponds to 2.56s and so on.

**LoggingInterval information element**

-- ASN1START

LoggingInterval-r10 ::= ENUMERATED {
    ms1280, ms2560, ms5120, ms10240, ms20480,
    ms30720, ms40960, ms61440
}

-- ASN1STOP

– MeasSubframePattern

The IE MeasSubframePattern is used to specify a subframe pattern. The first/leftmost bit corresponds to the subframe #0 of the radio frame satisfying SFN mod x = 0, where SFN is that of PCell and x is the size of the bit string divided by 10. "1" denotes that the corresponding subframe is used.

**MeasSubframePattern information element**

-- ASN1START

MeasSubframePattern-r10 ::= CHOICE {
    subframePatternFDD-r10 BIT STRING (SIZE (40)),
    subframePatternTDD-r10 CHOICE {
        subframeConfig1-5-r10 BIT STRING (SIZE (20))
    }
}

-- ASN1STOP
subframeConfig0-r10 BIT STRING (SIZE (70)),
subframeConfig6-r10 BIT STRING (SIZE (60)),
...

-- ASN1STOP

— MMEC

The IE MMEC identifies an MME within the scope of an MME Group within a PLMN, see TS 23.003 [27].

MMEC information element

-- ASN1START
MMEC ::= BIT STRING (SIZE (8))
-- ASN1STOP

— NeighCellConfig

The IE NeighCellConfig is used to provide the information related to MBSFN and TDD UL/DL configuration of neighbour cells.

NeighCellConfig information element

-- ASN1START
NeighCellConfig ::= BIT STRING (SIZE (2))
-- ASN1STOP

NeighCellConfig field descriptions

neighCellConfig Provides information related to MBSFN and TDD UL/DL configuration of neighbour cells of this frequency
00: Not all neighbour cells have the same MBSFN subframe allocation as the serving cell on this frequency, if configured, and as the PCell otherwise
10: The MBSFN subframe allocations of all neighbour cells are identical to or subsets of that in the serving cell on this frequency, if configured, and of that in the PCell otherwise
01: No MBSFN subframes are present in all neighbour cells
11: Different UL/DL allocation in neighbouring cells for TDD compared to the serving cell on this frequency, if configured, and compared to the PCell otherwise

For TDD, 00, 10 and 01 are only used for same UL/DL allocation in neighbouring cells compared to the serving cell on this frequency, if configured, and compared to the PCell otherwise.

— OtherConfig

The IE OtherConfig contains configuration related to other configuration

OtherConfig information element

-- ASN1START
OtherConfig-r9 ::= SEQUENCE {
  reportProximityConfig-r9  ReportProximityConfig-r9 OPTIONAL, -- Need ON
  ...
  [
    idc-Config-r11  IDC-Config-r11 OPTIONAL, -- Need ON
    powerPrefIndicationConfig-r11  PowerPrefIndicationConfig-r11 OPTIONAL, -- Need ON
    obtainLocationConfig-r11  ObtainLocationConfig-r11 OPTIONAL -- Need ON
  ],
}
bw-PreferenceIndicationTimer-r14 ENUMERATED {s0, s0dot5, s1, s2, s5, s10, s20, s30, s60, s90, s120, s300, s600, spare3, spare2, spare1} OPTIONAL, -- Need OR
sps-AssistanceInfoReport-r14 BOOLEAN OPTIONAL, -- Need ON
delayBudgetReportingConfig-r14 CHOICE{
  release NULL,
  setup SEQUENCE{
    delayBudgetReportingProhibitTimer-r14 ENUMERATED {s0, s0dot4, s0dot8, s1dot6, s3, s6, s12, s30}
  }
}
rlm-ReportConfig-r14 CHOICE{
  release NULL,
  setup SEQUENCE{
    rlmReportTimer-r14 ENUMERATED {s0, s0dot5, s1, s2, s5, s10, s20, s30, s60, s90, s120, s300, s600, spare3, spare2, spare1},
    rlmpReportRep-MPDCCH-r14 ENUMERATED {setup} OPTIONAL -- Need ON
  }
}
overheatingAssistanceConfig-r14 CHOICE{
  release NULL,
  setup SEQUENCE{
    overheatingIndicationProhibitTimer-r14 ENUMERATED {s0, s0dot5, s1, s2, s5, s10, s20, s30, s60, s90, s120, s300, s600, spare3, spare2, spare1}
  }
}

IDC-Config-r11 ::= SEQUENCE {
  idc-Indication-r11 ENUMERATED {setup} OPTIONAL, -- Need OR
  autonomousDenialParameters-r11 ENUMERATED {setup} OPTIONAL, -- Need OR
  autonomousDenialSubframes-r11 ENUMERATED {n2, n5, n10, n15, n20, n30, spare2, spare1},
  autonomousDenialValidity-r11 ENUMERATED {
    sf200, sf500, sf1000, sf2000, spare4, spare3, spare2, spare1
  }
}

...,

ObtainLocationConfig-r11 ::= SEQUENCE {
  obtainLocation-r11 ENUMERATED {setup} OPTIONAL -- Cond idc-Ind
}

PowerPrefIndicationConfig-r11 ::= CHOICE{
  release NULL,
  setup SEQUENCE{
    powerPrefIndicationTimer-r11 ENUMERATED {s0, s0dot5, s1, s2, s5, s10, s20, s30, s60, s90, s120, s300, s600, spare3, spare2, spare1}
  }
}

ReportProximityConfig-r9 ::= SEQUENCE {
  proximityIndicationEUTRA-r9 ENUMERATED {enabled} OPTIONAL, -- Need OR
  proximityIndicationUTRA-r9 ENUMERATED {enabled} OPTIONAL -- Need OR

-- ASN1STOP
### OtherConfig field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>autonomousDenialSubframes</td>
<td>Indicates the maximum number of the UL subframes for which the UE is allowed to deny any UL transmission. Value n2 corresponds to 2 subframes, n5 to 5 subframes and so on. E-UTRAN does not configure autonomous denial for frequencies on which SCG cells are configured.</td>
</tr>
<tr>
<td>autonomousDenialValidity</td>
<td>Indicates the validity period over which the UL autonomous denial subframes shall be counted. Value st200 corresponds to 200 subframes, st500 corresponds to 500 subframes and so on.</td>
</tr>
<tr>
<td>bw-PreferencedIndicationTimer</td>
<td>Prohibit timer for bandwidth preference indication reporting. Value in seconds. Value s0 means prohibit timer is set to 0 second, value s0dot5 means prohibit timer is set to 0.5 second, value s1 means prohibit timer is set to 1 second and so on.</td>
</tr>
<tr>
<td>delayBudgetReportingProhibitTimer</td>
<td>Prohibit timer for delay budget reporting. Value in seconds. Value s0 means prohibit timer is set to 0 second, value s0dot4 means prohibit timer is set to 0.4 second, and so on.</td>
</tr>
<tr>
<td>idc-HardwareSharingIndication</td>
<td>The field is used to indicate whether the UE is allowed indicate in InDeviceCoexIndication that the cause of the problems are due to hardware sharing, and whether the UE is allowed to omit the TDM assistance information.</td>
</tr>
<tr>
<td>idc-Indication</td>
<td>The field is used to indicate whether the UE is configured to initiate transmission of the InDeviceCoexIndication message to the network.</td>
</tr>
<tr>
<td>idc-Indication-UL-CA</td>
<td>The field is used to indicate whether the UE is configured to provide IDC indications for UL CA using the InDeviceCoexIndication message.</td>
</tr>
<tr>
<td>obtainLocation</td>
<td>Requests the UE to attempt to have detailed location information available using GNSS. E-UTRAN configures the field only if includeLocationInfo is configured for one or more measurements.</td>
</tr>
<tr>
<td>overheatingAssistanceConfig</td>
<td>Configuration for the UE to report assistance information to inform the eNB about UE detected internal overheating.</td>
</tr>
<tr>
<td>overheatingIndicationProhibitTimer</td>
<td>Prohibit timer for overheating assistance information reporting. Value in seconds. Value s0 means prohibit timer is set to 0 seconds, value s0dot5 means prohibit timer is set to 0.5 second, value s1 means prohibit timer is set to 1 second and so on.</td>
</tr>
<tr>
<td>powerPrefIndicationTimer</td>
<td>Prohibit timer for Power Preference Indication reporting. Value in seconds. Value s0 means prohibit timer is set to 0 second, value s0dot5 means prohibit timer is set to 0.5 second, value s1 means prohibit timer is set to 1 second and so on.</td>
</tr>
<tr>
<td>reportProximityConfig</td>
<td>Indicates, for each of the applicable RATs (EUTRA, UTRA), whether or not proximity indication is enabled for CSG member cell(s) of the concerned RAT. Note.</td>
</tr>
<tr>
<td>rlmReportTimer</td>
<td>Prohibit timer for RLM event reporting, i.e. &quot;early-out-of-sync&quot; and &quot;early-in-sync&quot; event reporting, as specified in section 5.6.10. Value in seconds. Value s0 means prohibit timer is set to 0 second, value s0dot5 means prohibit timer is set to 0.5 second, value s1 means prohibit timer is set to 0.5 second, value s1 means prohibit timer is set to 1 second and so on.</td>
</tr>
<tr>
<td>rlmReportRep-MPDCCH</td>
<td>The field is used to indicate whether the UE is configured to report excess repetitions on MPDCCH.</td>
</tr>
<tr>
<td>sps-AssistanceInfoReport</td>
<td>Value TRUE indicates that the UE is allowed to report SPS-AssistanceInformation.</td>
</tr>
</tbody>
</table>

**NOTE:** Enabling/ disabling of proximity indication includes enabling/ disabling of the related functionality e.g. autonomous search in connected mode.

### Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>idc-Ind</td>
<td>The field is optionally present if idc-Indication is present, need OR. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

---

**RAND-CDMA2000 (1xRTT)**

The RAND-CDMA2000 concerns a random value, generated by the eNB, to be passed to the CDMA2000 upper layers.

### RAND-CDMA2000 information element

```asn1
RAND-CDMA2000 ::= BIT STRING (SIZE (32))
```

---

**ANTS**
### RAT-Type

The IE **RAT-Type** is used to indicate the radio access technology (RAT), including E-UTRA, of the requested/transferred UE capabilities.

**RAT-Type information element**

```plaintext
RAT-Type ::= ENUMERATED {
 eutra, utra, geran-cs, geran-ps, cdma2000-1XRTT, spare3, spare2, spare1, ...}
```

### ResumeIdentity

The IE **ResumeIdentity** is used to identify the suspended UE context.

**ResumeIdentity information element**

```plaintext
ResumeIdentity-r13 ::= BIT STRING (SIZE(40))
```

### RRC-TransactionIdentifier

The IE **RRC-TransactionIdentifier** is used, together with the message type, for the identification of an RRC procedure (transaction).

**RRC-TransactionIdentifier information element**

```plaintext
RRC-TransactionIdentifier ::= INTEGER (0..3)
```

### S-TMSI

The IE **S-TMSI** contains an S-Temporary Mobile Subscriber Identity, a temporary UE identity provided by the EPC which uniquely identifies the UE within the tracking area, see TS 23.003 [27].

**S-TMSI information element**

```plaintext
S-TMSI ::= SEQUENCE {
 mmeC MMEC,
 m-TMSI BIT STRING (SIZE (32))
}
```
**S-TMSI field descriptions**

*m-TMSI*

The first/leftmost bit of the bit string contains the most significant bit of the M-TMSI.

---

**TraceReference**

The *TraceReference* contains parameter Trace Reference as defined in TS 32.422 [58].

**TraceReference information element**

```
-- ASN1START
TraceReference-r10 ::= SEQUENCE {
 plmn-Identity-r10 PLMN-Identity,
 traceId-r10 OCTET STRING (SIZE (3))
}
-- ASN1STOP
```

---

**UE-CapabilityRAT-ContainerList**

The IE *UE-CapabilityRAT-ContainerList* contains list of containers, one for each RAT for which UE capabilities are transferred, if any.

**UE-CapabilityRAT-ContainerList information element**

```
-- ASN1START
UE-CapabilityRAT-ContainerList ::=SEQUENCE (SIZE (0..maxRAT-Capabilities)) OF UE-CapabilityRAT-Container
UE-CapabilityRAT-Container ::= SEQUENCE {
 rat-Type RAT-Type,
 ueCapabilityRAT-Container OCTET STRING
}
-- ASN1STOP
```

**UE-CapabilityRAT-ContainerList field descriptions**

*ueCapabilityRAT-Container*

Container for the UE capabilities of the indicated RAT. The encoding is defined in the specification of each RAT:
- For E-UTRA: the encoding of UE capabilities is defined in IE *UE-EUTRA-Capability*.
- For UTRA: the octet string contains the INTER RAT HANDOVER INFO message defined in TS 25.331 [19].
- For GERAN CS: the octet string contains the concatenated string of the Mobile Station Classmark 2 and Mobile Station Classmark 3. The first 5 octets correspond to Mobile Station Classmark 2 and the following octets correspond to Mobile Station Classmark 3. The Mobile Station Classmark 2 is formatted as 'TLV' and is coded in the same way as the *Mobile Station Classmark 2* information element in TS 24.008 [49]. The first octet is the *Mobile station classmark 2 IEI* and its value shall be set to 33H. The second octet is the Length of mobile station classmark 2 and its value shall be set to 3. The octet 3 contains the first octet of the value part of the *Mobile Station Classmark 2* information element, the octet 4 contains the second octet of the value part of the *Mobile Station Classmark 2* information element and so on. For each of these octets, the first/ leftmost/ most significant bit of the octet contains b8 of the corresponding octet of the Mobile Station Classmark 2. The Mobile Station Classmark 3 is formatted as 'V' and is coded in the same way as the value part in the *Mobile station classmark 3* information element in TS 24.008 [49]. The sixth octet of this octet string contains octet 1 of the value part of *Mobile station classmark 3*, the seventh of octet of this octet string contains octet 2 of the value part of *Mobile station classmark 3* and so on. Note.
- For GERAN PS: the encoding of UE capabilities is formatted as 'V' and is coded in the same way as the value part in the *MS Radio Access Capability* information element in TS 24.008 [49].
- For CDMA2000-1XRTT: the octet string contains the A21 Mobile Subscription Information and the encoding of this is defined in A.S0008 [33]. The A21 Mobile Subscription Information contains the supported CDMA2000 1xRTT band class and band sub-class information.
NOTE: The value part is specified by means of CSN.1, which encoding results in a bit string, to which final padding may be appended up to the next octet boundary TS 24.008 [49]. The first/ leftmost bit of the CSN.1 bit string is placed in the first/ leftmost/ most significant bit of the first octet. This continues until the last bit of the CSN.1 bit string, which is placed in the last/ rightmost/ least significant bit of the last octet.

-- **UE-EUTRA-Capability**

The IE **UE-EUTRA-Capability** is used to convey the E-UTRA UE Radio Access Capability Parameters, see TS 36.306 [5], and the Feature Group Indicators for mandatory features (defined in Annexes B.1 and C.1) to the network. The IE **UE-EUTRA-Capability** is transferred in E-UTRA or in another RAT.

NOTE 0: For (UE capability specific) guidelines on the use of keyword OPTIONAL, see Annex A.3.5.

**UE-EUTRA-Capability information element**

```asn1
UE-EUTRA-Capability ::= SEQUENCE {
 accessStratumRelease AccessStratumRelease,
 ue-Category INTEGER (1..5),
 pdcp-Parameters PDCP-Parameters,
 phyLayerParameters PhyLayerParameters,
 rf-Parameters RF-Parameters,
 measParameters MeasParameters,
 featureGroupIndicators BIT STRING (SIZE (32)) OPTIONAL,
 interRAT-Parameters SEQUENCE {
 utraFDD IRAT-ParametersUTRA-FDD OPTIONAL,
 utraTDD128 IRAT-ParametersUTRA-TDD128 OPTIONAL,
 utraTDD384 IRAT-ParametersUTRA-TDD384 OPTIONAL,
 utraTDD768 IRAT-ParametersUTRA-TDD768 OPTIONAL,
 geran IRAT-ParametersGERAN OPTIONAL,
 cdma2000-HRPD IRAT-ParametersCDMA2000-HRPD OPTIONAL,
 cdma2000-1xRTT IRAT-ParametersCDMA2000-1XRTT OPTIONAL,
 },
 nonCriticalExtension UE-EUTRA-Capability-v920-IEs OPTIONAL
}
```

-- Late non critical extensions

```asn1
UE-EUTRA-Capability-v9a0-IEs ::= SEQUENCE {
 featureGroupIndRel9Add-r9 BIT STRING (SIZE (32)) OPTIONAL,
 fdd-Add-UE-EUTRA-Capabilities-r9 UE-EUTRA-CapabilityAddXDD-Mode-r9 OPTIONAL,
 tdd-Add-UE-EUTRA-Capabilities-r9 UE-EUTRA-CapabilityAddXDD-Mode-r9 OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v9c0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v9c0-IEs ::= SEQUENCE {
 interRAT-ParametersUTRA-v9c0 IRAT-ParametersUTRA-v9c0 OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v9d0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v9d0-IEs ::= SEQUENCE {
 phyLayerParameters-v9d0 PhyLayerParameters-v9d0 OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v9e0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v9e0-IEs ::= SEQUENCE {
 rf-Parameters-v9e0 RF-Parameters-v9e0 OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v9h0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v9h0-IEs ::= SEQUENCE {
 interRAT-ParametersUTRA-v9h0 IRAT-ParametersUTRA-v9h0 OPTIONAL,
 -- Following field is only to be used for late REL-9 extensions
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v10c0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v10c0-IEs ::= SEQUENCE {
 otdoa-PositioningCapabilities-r10 OTDOA-PositioningCapabilities-r10 OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v10f0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v10f0-IEs ::= SEQUENCE {
}
```

```asn1
UE-EUTRA-Capability-v10h0-IEs ::= SEQUENCE {
 otdoa-PositioningCapabilities-r10 OTDOA-PositioningCapabilities-r10 OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v10c0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v10c0-IEs ::= SEQUENCE {
 otdoa-PositioningCapabilities-r10 OTDOA-PositioningCapabilities-r10 OPTIONAL,
 nonCriticalExtension UE-EUTRA-Capability-v10f0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v10f0-IEs ::= SEQUENCE {
}
```
rf-Parameters-v10f0 RF-Parameters-v10f0 OPTIONAL,
nonCriticalExtension UE-EUTRA-Capability-v10i0-IEs OPTIONAL
}

UE-EUTRA-Capability-v10l0-IEs ::= SEQUENCE {
  rf-Parameters-v10l0 RF-Parameters-v10l0 OPTIONAL,
  -- Following field is only to be used for late REL-10 extensions
  lateNonCriticalExtension OCTET STRING (CONTAINING UE-EUTRA-Capability-v10l0-IEs)
OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v11d0-IEs OPTIONAL
}

UE-EUTRA-Capability-v10j0-IEs ::= SEQUENCE {
  rf-Parameters-v10j0 RF-Parameters-v10j0 OPTIONAL,
  nonCriticalExtension SEQUENCE () OPTIONAL
}

UE-EUTRA-Capability-v11d0-IEs ::= SEQUENCE {
  rf-Parameters-v11d0 RF-Parameters-v11d0 OPTIONAL,
  otherParameters-v11d0 OtherParameters-v11d0 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v11x0-IEs OPTIONAL
}

UE-EUTRA-Capability-v11x0-IEs ::= SEQUENCE {
  -- Following field is only to be used for late REL-11 extensions
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v12b0-IEs OPTIONAL
}

UE-EUTRA-Capability-v12b0-IEs ::= SEQUENCE {
  rf-Parameters-v12b0 RF-Parameters-v12b0 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v12x0-IEs OPTIONAL
}

UE-EUTRA-Capability-v12x0-IEs ::= SEQUENCE {
  -- Following field is only to be used for late REL-12 extensions
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1370-IEs OPTIONAL
}

UE-EUTRA-Capability-v1370-IEs ::= SEQUENCE {
  ce-Parameters-v1370 CE-Parameters-v1370 OPTIONAL,
  fdd-Add-UE-EUTRA-Capabilities-v1370 UE-EUTRA-CapabilityAddXDD-Mode-v1370 OPTIONAL,
  tdd-Add-UE-EUTRA-Capabilities-v1370 UE-EUTRA-CapabilityAddXDD-Mode-v1370 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1380-IEs OPTIONAL
}

UE-EUTRA-Capability-v1380-IEs ::= SEQUENCE {
  rf-Parameters-v1380 RF-Parameters-v1380 OPTIONAL,
  ce-Parameters-v1380 CE-Parameters-v1380 OPTIONAL,
  fdd-Add-UE-EUTRA-Capabilities-v1380 UE-EUTRA-CapabilityAddXDD-Mode-v1380 OPTIONAL,
  tdd-Add-UE-EUTRA-Capabilities-v1380 UE-EUTRA-CapabilityAddXDD-Mode-v1380 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1390-IEs OPTIONAL
}

UE-EUTRA-Capability-v1390-IEs ::= SEQUENCE {
  rf-Parameters-v1390 RF-Parameters-v1390 OPTIONAL,
  -- Following field is only to be used for late REL-13 extensions
  nonCriticalExtension SEQUENCE () OPTIONAL
}

-- Regular non critical extensions
UE-EUTRA-Capability-v920-IEs ::= SEQUENCE {
  phyLayerParameters-v920 PhyLayerParameters-v920,
  interRAT-ParametersGERAN-v920 IRAT-ParametersGERAN-v920,
  interRAT-ParametersUTRA-v920 IRAT-ParametersUTRA-v920 OPTIONAL,
  interRAT-ParametersCDMA2000-v920 IRAT-ParametersCDMA2000-1XRTT-v920 OPTIONAL,
  deviceType-r9 ENUMERATED (noBenFromBatConsumpOpt) OPTIONAL,
  csg-ProximityIndicationParameters-r9 CSG-ProximityIndicationParameters-r9,
  neighCellSI-AcquisitionParameters-r9 NeighCellSI-AcquisitionParameters-r9,
  son-Parameters-r9 SON-Parameters-r9,
  nonCriticalExtension UE-EUTRA-Capability-v940-IEs OPTIONAL
}

UE-EUTRA-Capability-v940-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING (CONTAINING UE-EUTRA-Capability-v9a0-IEs)
OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1020-IEs OPTIONAL
}
UE-EUTRA-Capability-v1020-IEs ::= SEQUENCE {
  ue-Category-v1020 INTEGER (6..8) OPTIONAL,
  phyLayerParameters-v1020 PhyLayerParameters-v1020 OPTIONAL,
  rf-Parameters-v1020 RF-Parameters-v1020 OPTIONAL,
  measParameters-v1020 MeasParameters-v1020 OPTIONAL,
  featureGroupIndRel10-r10 BIT STRING (SIZE (32)) OPTIONAL,
  interRAT-ParametersCDMA2000-v1020 IRAT-ParametersCDMA2000-v1020 OPTIONAL,
  ue-BasedNetwPerfMeasParameters-r10 UE-BasedNetwPerfMeasParameters-r10 OPTIONAL,
  interRAT-ParametersUTRA-TDD-v1020 IRAT-ParametersUTRA-TDD-v1020 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1060-IEs OPTIONAL
}

UE-EUTRA-Capability-v1060-IEs ::= SEQUENCE {
  fdd-Add-UE-EUTRA-Capabilities-v1060 UE-EUTRA-CapabilityAddXDD-Mode-v1060 OPTIONAL,
  tdd-Add-UE-EUTRA-Capabilities-v1060 UE-EUTRA-CapabilityAddXDD-Mode-v1060 OPTIONAL,
  rf-Parameters-v1060 RF-Parameters-v1060 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1090-IEs OPTIONAL
}

UE-EUTRA-Capability-v1090-IEs ::= SEQUENCE {
  rf-Parameters-v1090 RF-Parameters-v1090 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1130-IEs OPTIONAL
}

UE-EUTRA-Capability-v1130-IEs ::= SEQUENCE {
  pdcp-Parameters-v1130 PDCP-Parameters-v1130,
  phyLayerParameters-v1130 PhyLayerParameters-v1130 OPTIONAL,
  rf-Parameters-v1130 RF-Parameters-v1130,
  measParameters-v1130 MeasParameters-v1130,
  interRAT-ParametersCDMA2000-v1130 IRAT-ParametersCDMA2000-v1130,
  otherParameters-r11 Other-Parameters-r11,
  fdd-Add-UE-EUTRA-Capabilities-v1130 UE-EUTRA-CapabilityAddXDD-Mode-v1130 OPTIONAL,
  tdd-Add-UE-EUTRA-Capabilities-v1130 UE-EUTRA-CapabilityAddXDD-Mode-v1130 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1170-IEs OPTIONAL
}

UE-EUTRA-Capability-v1170-IEs ::= SEQUENCE {
  phyLayerParameters-v1170 PhyLayerParameters-v1170 OPTIONAL,
  ue-Category-v1170 INTEGER (9..10) OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1180-IEs OPTIONAL
}

UE-EUTRA-Capability-v1180-IEs ::= SEQUENCE {
  rf-Parameters-v1180 RF-Parameters-v1180 OPTIONAL,
  mbms-Parameters-r11 MBMS-Parameters-r11 OPTIONAL,
  fdd-Add-UE-EUTRA-Capabilities-v1180 UE-EUTRA-CapabilityAddXDD-Mode-v1180 OPTIONAL,
  tdd-Add-UE-EUTRA-Capabilities-v1180 UE-EUTRA-CapabilityAddXDD-Mode-v1180 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v11a0-IEs OPTIONAL
}

UE-EUTRA-Capability-v11a0-IEs ::= SEQUENCE {
  ue-Category-v11a0 INTEGER (11..12) OPTIONAL,
  measParameters-v11a0 MeasParameters-v11a0 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1250-IEs OPTIONAL
}

UE-EUTRA-Capability-v1250-IEs ::= SEQUENCE {
  phyLayerParameters-v1250 PhyLayerParameters-v1250 OPTIONAL,
  rf-Parameters-v1250 RF-Parameters-v1250 OPTIONAL,
  rlc-Parameters-r12 RLC-Parameters-r12 OPTIONAL,
  ue-BasedNetwPerfMeasParameters-v1250 UE-BasedNetwPerfMeasParameters-v1250 OPTIONAL,
  ue-CategoryDL-r12 INTEGER (0..14) OPTIONAL,
  ue-CategoryUL-r12 INTEGER (0..13) OPTIONAL,
  wlan-IW-Parameters-r12 WLAN-IW-Parameters-r12 OPTIONAL,
  measParameters-v1250 MeasParameters-v1250 OPTIONAL,
  dc-Parameters-r12 DC-Parameters-r12 OPTIONAL,
  mbms-Parameters-v1250 MBMS-Parameters-v1250 OPTIONAL,
  mac-Parameters-r12 MAC-Parameters-r12 OPTIONAL,
  fdd-Add-UE-EUTRA-Capabilities-v1250 UE-EUTRA-CapabilityAddXDD-Mode-v1250 OPTIONAL,
  tdd-Add-UE-EUTRA-Capabilities-v1250 UE-EUTRA-CapabilityAddXDD-Mode-v1250 OPTIONAL,
  sl-Parameters-r12 SL-Parameters-r12 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1260-IEs OPTIONAL
}

UE-EUTRA-Capability-v1260-IEs ::= SEQUENCE {
  ue-CategoryDL-v1260 INTEGER (15..16) OPTIONAL,
nonCriticalExtension  UE-EUTRA-Capability-v1270-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1270-IEs ::= SEQUENCE {
  rf-Parameters-v1270  RF-Parameters-v1270  OPTIONAL,
  nonCriticalExtension  UE-EUTRA-Capability-v1280-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1280-IEs ::= SEQUENCE {
  phyLayerParameters-v1280  PhyLayerParameters-v1280  OPTIONAL,
  nonCriticalExtension  UE-EUTRA-Capability-v1310-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1310-IEs ::= SEQUENCE {
  ue-CategoryDL-v1310  ENUMERATED {n17, m1}  OPTIONAL,
  ue-CategoryUL-v1310  ENUMERATED {n14, m1}  OPTIONAL,
  pdcp-Parameters-v1310  PDCP-Parameters-v1310,
  rlc-Parameters-v1310  RLC-Parameters-v1310,
  mac-Parameters-v1310  MAC-Parameters-v1310,
  phyLayerParameters-v1310  PhyLayerParameters-v1310,
  rf-Parameters-v1310  RF-Parameters-v1310,
  measParameters-v1310  MeasParameters-v1310,
  dc-Parameters-v1310  DC-Parameters-v1310,
  sl-Parameters-v1310  SL-Parameters-v1310,
  scptm-Parameters-r13  SCPTM-Parameters-r13,
  ce-Parameters-r13  CE-Parameters-r13,
  interRAT-ParametersWLAN-r13  IRAT-ParametersWLAN-r13,
  lsaas-Parameters-r13  LSAAS-Parameters-r13,
  lwipa-Parameters-r13  LWIP-A-Parameters-r13,
  wlan-80211-Parameters-v1310  WLAN-80211-Parameters-v1310,
  fdd-Add-UE-EUTRA-Capabilities-v1310  FDD-Add-UE-EUTRA-Capabilities-v1310,
  tdd-Add-UE-EUTRA-Capabilities-v1310  TDD-Add-UE-EUTRA-Capabilities-v1310,
  nonCriticalExtension  UE-EUTRA-Capability-v1320-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1320-IEs ::= SEQUENCE {
  ce-Parameters-v1320  CE-Parameters-v1320,
  phyLayerParameters-v1320  PhyLayerParameters-v1320,
  rf-Parameters-v1320  RF-Parameters-v1320,
  fdd-Add-UE-EUTRA-Capabilities-v1320  FDD-Add-UE-EUTRA-Capabilities-v1320,
  tdd-Add-UE-EUTRA-Capabilities-v1320  TDD-Add-UE-EUTRA-Capabilities-v1320,
  nonCriticalExtension  UE-EUTRA-Capability-v1330-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1330-IEs ::= SEQUENCE {
  ue-CategoryDL-v1330  INTEGER (18..19)  OPTIONAL,
  phyLayerParameters-v1330  PhyLayerParameters-v1330,
  ue-CE-NeedULGaps-r13  ENUMERATED {true}  OPTIONAL,
  nonCriticalExtension  UE-EUTRA-Capability-v1340-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1340-IEs ::= SEQUENCE {
  ue-CategoryUL-v1340  INTEGER (15)  OPTIONAL,
  nonCriticalExtension  UE-EUTRA-Capability-v1350-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1350-IEs ::= SEQUENCE {
  ue-CategoryDL-v1350  ENUMERATED {oneBis}  OPTIONAL,
  ue-CategoryUL-v1350  ENUMERATED {oneBis}  OPTIONAL,
  ce-Parameters-v1350  CE-Parameters-v1350,
  nonCriticalExtension  UE-EUTRA-Capability-v1360-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1360-IEs ::= SEQUENCE {
  other-Parameters-v1360  Other-Parameters-v1360  OPTIONAL,
  nonCriticalExtension  UE-EUTRA-Capability-v1430-IEs  OPTIONAL
}

UE-EUTRA-Capability-v1430-IEs ::= SEQUENCE {
  phyLayerParameters-v1430  PhyLayerParameters-v1430,
  ue-CategoryDL-v1430  ENUMERATED {m2}  OPTIONAL,
  ue-CategoryUL-v1430  ENUMERATED {n16, n17, n18, n19, n20, m2}  OPTIONAL,
  mac-Parameters-v1430  MAC-Parameters-v1430,
  measParameters-v1430  MeasParameters-v1430,
  pdcp-Parameters-v1430  PDCP-Parameters-v1430,
  rlc-Parameters-v1430  RLC-Parameters-v1430,
rf-Parameters-v1430       RF-Parameters-v1430       OPTIONAL,
laa-Parameters-v1430      LAA-Parameters-v1430      OPTIONAL,
lwa-Parameters-v1430      LWA-Parameters-v1430      OPTIONAL,
lwip-Parameters-v1430     LWIP-Parameters-v1430     OPTIONAL,
otherParameters-v1430     Other-Parameters-v1430,  
mmtel-Parameters-r14      MMTEL-Parameters-r14       OPTIONAL,  
mobilityParameters-r14    MobilityParameters-r14       OPTIONAL,  
ce-Parameters-v1430      CE-Parameters-v1430,  
ffdd-Add-UE-EUTRA-Capabilities-v1430  UE-EUTRA-CapabilityAddXDD-Mode-v1430 OPTIONAL,  
tdd-Add-UE-EUTRA-Capabilities-v1430  UE-EUTRA-CapabilityAddXDD-Mode-v1430 OPTIONAL,  
mbms-Parameters-v1430     MBMS-Parameters-v1430     OPTIONAL,
sl-Parameters-v1430       SL-Parameters-v1430       OPTIONAL,
ue-BaseNetwPerfMeasParameters-v1430 UE-BasedNetwPerfMeasParameters-v1430 OPTIONAL,  
highSpeedEnhParameters-r14 HighSpeedEnhParameters-r14 OPTIONAL,  
nonCriticalExtension     UE-EUTRA-Capability-v1440-IEs   OPTIONAL  
}

UE-EUTRA-Capability-v1440-IEs ::= SEQUENCE {  
lwa-Parameters-v1440    LWA-Parameters-v1440,  
mac-Parameters-v1440    MAC-Parameters-v1440,  
nonCriticalExtension    UE-EUTRA-Capability-v1440-IEs   OPTIONAL  
}

UE-EUTRA-Capability-v1450-IEs ::= SEQUENCE {  
phyLayerParameters-v1450 PhyLayerParameters-v1450   OPTIONAL,  
rf-Parameters-v1450     RF-Parameters-v1450     OPTIONAL,  
otherParameters-v1450   Other-Parameters-v1450,  
uu-CategoryDL-v1450    INTEGER (20)    OPTIONAL,  
nonCriticalExtension    UE-EUTRA-Capability-v1450-IEs   OPTIONAL  
}

UE-EUTRA-Capability-v1460-IEs ::= SEQUENCE {  
uu-CategoryDL-v1460    INTEGER (21)    OPTIONAL,  
otherParameters-v1460   Other-Parameters-v1460,  
nonCriticalExtension    UE-EUTRA-Capability-v1460-IEs   OPTIONAL  
}

UE-EUTRA-CapabilityAddXDD-Mode-r9 ::= SEQUENCE {  
phyLayerParameters-r9     PhyLayerParameters      OPTIONAL,  
featureGroupIndicators-r9 BIT STRING (SIZE (32))    OPTIONAL,  
featureGroupIndRel9Add-r9 BIT STRING (SIZE (32))    OPTIONAL,  
interRAT-ParametersGERAN-r9 IRAT-ParametersGERAN    OPTIONAL,  
interRAT-ParametersUTRA-r9 IRAT-ParametersUTRA-v920  OPTIONAL,  
neighCellSI-AcquisitionParameters-r9 NeighCellSI-AcquisitionParameters-r9 OPTIONAL,  
...  
}

UE-EUTRA-CapabilityAddXDD-Mode-v1060 ::= SEQUENCE {  
phyLayerParameters-v1060 PhyLayerParameters-v1060   OPTIONAL,  
featureGroupIndRel10-v1060 BIT STRING (SIZE (32))    OPTIONAL,  
interRAT-ParametersCDMA2000-v1060 IRAT-ParametersCDMA2000-1XRTT-v1020 OPTIONAL,  
interRAT-ParametersUTRA-TDD-v1060 IRAT-ParametersUTRA-TDD-v1020 OPTIONAL,  
...  
[[ 'otdoa-PositioningCapabilities-r10 OTDOA-PositioningCapabilities-r10 OPTIONAL  
]]  
}

UE-EUTRA-CapabilityAddXDD-Mode-v1130 ::= SEQUENCE {  
phyLayerParameters-v1130 PhyLayerParameters-v1130   OPTIONAL,  
measParameters-v1130     MeasParameters-v1130     OPTIONAL,  
otherParameters-r11     Other-Parameters-r11      OPTIONAL,  
...  
}

UE-EUTRA-CapabilityAddXDD-Mode-v1180 ::= SEQUENCE {  
mbms-Parameters-r11     MBMS-Parameters-r11       }  

UE-EUTRA-CapabilityAddXDD-Mode-v1250 ::= SEQUENCE {  
phyLayerParameters-v1250 PhyLayerParameters-v1250   OPTIONAL,  
measParameters-v1250     MeasParameters-v1250     OPTIONAL }  

UE-EUTRA-CapabilityAddXDD-Mode-v1310 ::= SEQUENCE {  
phyLayerParameters-v1310 PhyLayerParameters-v1310   OPTIONAL }  

UE-EUTRA-CapabilityAddXDD-Mode-v1320 ::= SEQUENCE {
  phyLayerParameters-v1320   PhyLayerParameters-v1320   OPTIONAL,
  scptm-Parameters-r13    SCPTM-Parameters-r13    OPTIONAL
}

UE-EUTRA-CapabilityAddXDD-Mode-v1370 ::= SEQUENCE {
  ce-Parameters-v1370     CE-Parameters-v1370     OPTIONAL
}

UE-EUTRA-CapabilityAddXDD-Mode-v1380 ::= SEQUENCE {
  ce-Parameters-v1380     CE-Parameters-v1380     OPTIONAL
}

UE-EUTRA-CapabilityAddXDD-Mode-v1430 ::= SEQUENCE {
  phyLayerParameters-v1430   PhyLayerParameters-v1430   OPTIONAL,
  mmtel-Parameters-r14    MMTEL-Parameters-r14    OPTIONAL
}

AccessStratumRelease ::=   ENUMERATED {
  rel8, rel9, rel10, rel11, rel12, rel13,
  rel14, spare1, ...}

MobilityParameters-r14 ::=   SEQUENCE {
  makeBeforeBreak-r14     ENUMERATED {supported}     OPTIONAL,
  rach-Less-r14      ENUMERATED {supported}     OPTIONAL
}

DC-Parameters-r12 ::=   SEQUENCE {
  drb-TypeSplit-r12      ENUMERATED {supported}   OPTIONAL,
  drb-TypeSCG-r12       ENUMERATED {supported}   OPTIONAL
}

DC-Parameters-v1310 ::=   SEQUENCE {
  pdcp-TransferSplitUL-r13    ENUMERATED {supported}   OPTIONAL,
  ue-SSTD-Meas-r13      ENUMERATED {supported}   OPTIONAL
}

MAC-Parameters-r12 ::=    SEQUENCE {
  logicalChannelSR-ProhibitTimer-r12 ENUMERATED {supported}    OPTIONAL,
  longDRX-Command-r12    ENUMERATED {supported}     OPTIONAL
}

MAC-Parameters-v1310 ::=    SEQUENCE {
  extendedMAC-LengthField-r13  ENUMERATED {supported}    OPTIONAL,
  extendedLongDRX-r13       ENUMERATED {supported}    OPTIONAL
}

MAC-Parameters-v1430 ::=    SEQUENCE {
  shortSPS-IntervalFDD-r14   ENUMERATED {supported}    OPTIONAL,
  shortSPS-IntervalTDD-r14   ENUMERATED {supported}    OPTIONAL,
  skipUplinkDynamic-r14     ENUMERATED {supported}    OPTIONAL,
  skipUplinkSPS-r14         ENUMERATED {supported}    OPTIONAL,
  multipleUplinkSPS-r14     ENUMERATED {supported}    OPTIONAL,
  dataInactMon-r14         ENUMERATED {supported}    OPTIONAL
}

MAC-Parameters-v1440 ::=    SEQUENCE {
  rai-Support-r14     ENUMERATED {supported}   OPTIONAL
}

RLC-Parameters-r12 ::=    SEQUENCE {
  extendedRLC-LI-Field-r12 ENUMERATED {supported}
}

RLC-Parameters-v1310 ::=    SEQUENCE {
  extendedRLC-SN-SO-Field-r13 ENUMERATED {supported}    OPTIONAL
}

RLC-Parameters-v1430 ::=    SEQUENCE {
  extendedPollByte-r14      ENUMERATED {supported}   OPTIONAL
}

PDCP-Parameters ::=    SEQUENCE {
  supportedROHC-Profiles     SEQUENCE {
    profile0x0001      BOOLEAN,
    profile0x0002      BOOLEAN,
    profile0x0003      BOOLEAN,
    profile0x0004      BOOLEAN,
  }
}
profile0x0006 BOOLEAN,  
profile0x0101 BOOLEAN,  
profile0x0102 BOOLEAN,  
profile0x0103 BOOLEAN,  
profile0x0104 BOOLEAN  
},  
maxNumberROHC-ContextSessions ENUMERATED {  
cs2, cs4, cs8, cs12, cs16, cs24, cs32,  
cs48, cs64, cs128, cs256, cs512, cs1024,  
ncs16384, spare2, spare1} DEFAULT cs16,  
}  
PDCP-Parameters-v1130 ::= SEQUENCE {  
  pdcp-SN-Extension-r11 ENUMERATED (supported) OPTIONAL,  
  supportRohcContextContinue-r11 ENUMERATED (supported) OPTIONAL  
}  
PDCP-Parameters-v1310 ::= SEQUENCE {  
  pdcp-SN-Extension-18bits-r13 ENUMERATED (supported) OPTIONAL  
}  
PDCP-Parameters-v1430 ::= SEQUENCE {  
  supportedUplinkOnlyROHC-Profiles-r14 SEQUENCE {  
    profile0x0006-r14 BOOLEAN  
  },  
  maxNumberROHC-ContextSessions-r14 ENUMERATED {  
cs2, cs4, cs8, cs12, cs16, cs24, cs32,  
cs48, cs64, cs128, cs256, cs512, cs1024,  
ncs16384, spare2, spare1} DEFAULT cs16  
}  
PhyLayerParameters ::= SEQUENCE {  
  ue-TxAntennaSelectionSupported BOOLEAN,  
  ue-SpecificRefSigsSupported BOOLEAN  
}  
PhyLayerParameters-v920 ::= SEQUENCE {  
  enhancedDualLayerFDD-r9 ENUMERATED (supported) OPTIONAL,  
  enhancedDualLayerTDD-r9 ENUMERATED (supported) OPTIONAL  
}  
PhyLayerParameters-v9d0 ::= SEQUENCE {  
  tm5-FDD-r9 ENUMERATED (supported) OPTIONAL,  
  tm5-TDD-r9 ENUMERATED (supported) OPTIONAL  
}  
PhyLayerParameters-v1020 ::= SEQUENCE {  
  twoAntennaPortsForPUCCH-r10 ENUMERATED (supported) OPTIONAL,  
  tm9-With-8Tx-FDD-r10 ENUMERATED (supported) OPTIONAL,  
  pmi-Disabling-r10 ENUMERATED (supported) OPTIONAL,  
  crossCarrierScheduling-r10 ENUMERATED (supported) OPTIONAL,  
  simultaneousPUCCH-PUSCH-r10 ENUMERATED (supported) OPTIONAL,  
  multiClusterPUSCH-WithinCC-r10 ENUMERATED (supported) OPTIONAL,  
  nonContiguousUL-RA-WithinCC-List-r10 NonContiguousUL-RA-WithinCC-List-r10 OPTIONAL  
}  
PhyLayerParameters-v1130 ::= SEQUENCE {  
  crs-InterfHandl-r11 ENUMERATED (supported) OPTIONAL,  
  ePDCCH-r11 ENUMERATED (supported) OPTIONAL,  
  multiACK-CSI-Reporting-r11 ENUMERATED (supported) OPTIONAL,  
  ss-CCH-InterfHandl-r11 ENUMERATED (supported) OPTIONAL,  
  tdd-SpecialSubframe-r11 ENUMERATED (supported) OPTIONAL,  
  txDiv-PUCCH1b-ChSelect-r11 ENUMERATED (supported) OPTIONAL,  
  ul-CoMP-r11 ENUMERATED (supported) OPTIONAL  
}  
PhyLayerParameters-v1170 ::= SEQUENCE {  
  interBandTDD-CA-WithDifferentConfig-r11 BIT STRING (SIZE (2)) OPTIONAL  
}  
PhyLayerParameters-v1250 ::= SEQUENCE {  
  e-HARQ-Pattern-TDD-r12 ENUMERATED (supported) OPTIONAL,  
  enhanced-4TxCodebook-r12 ENUMERATED (supported) OPTIONAL,  
  tdd-FDD-CA-PCellDuplex-r12 BIT STRING (SIZE (2)) OPTIONAL,  
  phy-TDD-ReConfig-TDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  phy-TDD-ReConfig-FDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  pusch-FeedbackMode-r12 ENUMERATED (supported) OPTIONAL,  
  e-HARQ-Mode-TDD-r12 ENUMERATED (supported) OPTIONAL,  
  enhanced-4TxCodebook-r12 ENUMERATED (supported) OPTIONAL,  
  tdd-FDD-CA-PCellDuplex-r12 BIT STRING (SIZE (2)) OPTIONAL,  
  phy-TDD-ReConfig-TDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  phy-TDD-ReConfig-FDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  pusch-FeedbackMode-r12 ENUMERATED (supported) OPTIONAL,  
  e-HARQ-Mode-TDD-r12 ENUMERATED (supported) OPTIONAL,  
  enhanced-4TxCodebook-r12 ENUMERATED (supported) OPTIONAL,  
  tdd-FDD-CA-PCellDuplex-r12 BIT STRING (SIZE (2)) OPTIONAL,  
  phy-TDD-ReConfig-TDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  phy-TDD-ReConfig-FDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  pusch-FeedbackMode-r12 ENUMERATED (supported) OPTIONAL,  
  e-HARQ-Mode-TDD-r12 ENUMERATED (supported) OPTIONAL,  
  enhanced-4TxCodebook-r12 ENUMERATED (supported) OPTIONAL,  
  tdd-FDD-CA-PCellDuplex-r12 BIT STRING (SIZE (2)) OPTIONAL,  
  phy-TDD-ReConfig-TDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  phy-TDD-ReConfig-FDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  pusch-FeedbackMode-r12 ENUMERATED (supported) OPTIONAL,  
  e-HARQ-Mode-TDD-r12 ENUMERATED (supported) OPTIONAL,  
  enhanced-4TxCodebook-r12 ENUMERATED (supported) OPTIONAL,  
  tdd-FDD-CA-PCellDuplex-r12 BIT STRING (SIZE (2)) OPTIONAL,  
  phy-TDD-ReConfig-TDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  phy-TDD-ReConfig-FDD-PCell-r12 ENUMERATED (supported) OPTIONAL,  
  pusch-FeedbackMode-r12 ENUMERATED (supported) OPTIONAL,
pusch-SRS-PowerControl-SubframeSet-r12  ENUMERATED {supported} OPTIONAL,
csi-SubframeSet-r12  ENUMERATED {supported} OPTIONAL,
noResourceRestrictionForTTIBundling-r12  ENUMERATED {supported} OPTIONAL,
discoverySignalsInDeactSCell-r12  ENUMERATED {supported} OPTIONAL,
naics-Capability-List-r12  NAICS-Capability-List-r12 OPTIONAL
}

PhyLayerParameters-v1280 := SEQUENCE {
alternativeTBS-Indices-r12  ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters-v3310 := SEQUENCE {
aperiodicCSI-Reporting-r13  BIT STRING {SIZE (2)} OPTIONAL,
codebook-HARQ-r13  BIT STRING {SIZE (2)} OPTIONAL,
crossCarrierScheduling-BS-r13  ENUMERATED {supported} OPTIONAL,
fdd-HARQ-TimingTDD-r13  ENUMERATED {supported} OPTIONAL,
maxNumberUpdatedCSI-Proc-r13  INTEGER {5..32} OPTIONAL,
pucch-Format4-r13  ENUMERATED {supported} OPTIONAL,
pucch-Format5-r13  ENUMERATED {supported} OPTIONAL,
pucch-SCell-r13  ENUMERATED {supported} OPTIONAL,
spatialBundling-HARQ-ACK-r13  ENUMERATED {supported} OPTIONAL,
supportedBlindDecoding-r13  SEQUENCE {
  maxNumberDecoding-r13  INTEGER {1..32} OPTIONAL,
pdch-CandidateReductions-r13  ENUMERATED {supported} OPTIONAL,
skipMonitoringDCI-Format0-1A-r13  ENUMERATED {supported} OPTIONAL
} OPTIONAL,
uci-PUSCH-Ext-r13  ENUMERATED {supported} OPTIONAL,
crs-InterfMitigationTM10-r13  ENUMERATED {supported} OPTIONAL,
pdsch-CollisionHandling-r13  ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters-v3320 := SEQUENCE {
mimo-UE-Parameters-r13  MIMO-UE-Parameters-r13 OPTIONAL
}

PhyLayerParameters-v3330 := SEQUENCE {
  cch-InterfMitigation-RefRecTypeA-r13  ENUMERATED {supported} OPTIONAL,
cch-InterfMitigation-RefRecTypeB-r13  ENUMERATED {supported} OPTIONAL,
cch-InterfMitigation-MaxNumCCs-r13  INTEGER {1.. maxServCell-r13} OPTIONAL,
crs-InterfMitigationTM9-r13  INTEGER {1.. maxServCell-r13} OPTIONAL
}

PhyLayerParameters-v4300 := SEQUENCE {
ce-PUSCH-NB-MaxTBS-r14  ENUMERATED {supported} OPTIONAL,
ce-PDSCH-PUSCH-MaxBandwidth-r14  ENUMERATED {bw5, bw20} OPTIONAL,
ce-HARQ-AckBundling-r14  ENUMERATED {supported} OPTIONAL,
ce-PDSCH-TenProcesses-r14  ENUMERATED {supported} OPTIONAL,
ce-NetuningSymbols-r14  ENUMERATED {n0, n1} OPTIONAL,
ce-PDSCH-PUSCH-Enhancement-r14  ENUMERATED {supported} OPTIONAL,
  ScheduledEnhancement-r14  ENUMERATED {supported} OPTIONAL,
ce-SRS-Enhancement-r14  ENUMERATED {supported} OPTIONAL,
ce-PUCCH-Enhancement-r14  ENUMERATED {supported} OPTIONAL,
ce-ClosedLoopTxAntennaSelection-r14  ENUMERATED {supported} OPTIONAL,
tdd-SpecialSubframe-r14  ENUMERATED {supported} OPTIONAL,
tdd-TTI-Bundling-r14  ENUMERATED {supported} OPTIONAL,
dmrs-LessUpPTS-r14  ENUMERATED {supported} OPTIONAL,
mimo-UE-Parameters-v430  MIMO-UE-Parameters-v1430 OPTIONAL,
  alternativeTBS-Index-r14  ENUMERATED {supported} OPTIONAL,
  feMMS-Unicast-Parameters-r14  FeMMS-Unicast-Parameters-r14 OPTIONAL
}

PhyLayerParameters-v4500 := SEQUENCE {
ce-SRS-EnhancementWithoutComb4-r14  ENUMERATED {supported} OPTIONAL,
crs-LessUpPTS-r14  ENUMERATED {supported} OPTIONAL
}

MIMO-UE-Parameters-r13 := SEQUENCE {
  parametersTM10-r13  MIMO-UE-ParametersPerTM-r13 OPTIONAL,
  srs-EnhancementsTDD-r13  ENUMERATED {supported} OPTIONAL,
  srs-Enhancements-r13  ENUMERATED {supported} OPTIONAL,
tdd-InterfMeasRestriction-r13  ENUMERATED {supported} OPTIONAL
}

MIMO-UE-Parameters-v430 := SEQUENCE {
  parametersTM9-v430  MIMO-UE-ParametersPerTM-v430 OPTIONAL,
  parametersTM10-v430  MIMO-UE-ParametersPerTM-v430 OPTIONAL
}
MIMO-UE-ParametersPerTM-r13 ::= SEQUENCE {
  nonPrecoded-r13           MIMO-NonPrecodedCapabilities-r13 OPTIONAL,
  beamformed-r13            MIMO-UE-BeamformedCapabilities-r13 OPTIONAL,
  channelMeasRestriction-r13 ENUMERATED (supported) OPTIONAL,
  dmrs-Enhancements-r13     ENUMERATED (supported) OPTIONAL,
  csi-RS-EnhancementsTDD-r13 ENUMERATED (supported) OPTIONAL
}

MIMO-UE-ParametersPerTM-v1430 ::= SEQUENCE {
  nzp-CSI-RS-AperiodicInfo-r14 SEQUENCE {
    nMaxProc-r14      INTEGER(5..32),
    nMaxResource-r14  ENUMERATED {ffs1, ffs2, ffs3, ffs4}
  } OPTIONAL,
  nzp-CSI-RS-PeriodicInfo-r14 SEQUENCE {
    nMaxResource-r14  ENUMERATED {ffs1, ffs2, ffs3, ffs4}
  } OPTIONAL,
  nzp-CSI-RS-AperiodicInfo-r14 SEQUENCE {
    nMaxProc-r14      INTEGER(5..32),
    nMaxResource-r14  ENUMERATED {ffs1, ffs2, ffs3, ffs4}
  } OPTIONAL,
  nzp-CSI-RS-PeriodicInfo-r14 SEQUENCE {
    nMaxResource-r14  ENUMERATED {ffs1, ffs2, ffs3, ffs4}
  } OPTIONAL,
  ul-dmrs-Enhancements-r14  ENUMERATED (supported) OPTIONAL,
  densityReductionNP-r14   ENUMERATED (supported) OPTIONAL,
  densityReductionBF-r14   ENUMERATED (supported) OPTIONAL,
  hybridCSI-r14            ENUMERATED (supported) OPTIONAL,
  semiOL-r14               ENUMERATED (supported) OPTIONAL,
  csi-ReportingNP-r14      ENUMERATED (supported) OPTIONAL,
  csi-ReportingAdvanced-r14 ENUMERATED (supported) OPTIONAL
}

MIMO-CA-ParametersPerBoBC-r13 ::= SEQUENCE {
  parametersTM9-r13        MIMO-CA-ParametersPerBoBCPerTM-r13 OPTIONAL,
  parametersTM10-r13       MIMO-CA-ParametersPerBoBCPerTM-r13 OPTIONAL
}

MIMO-CA-ParametersPerBoBC-v1430 ::= SEQUENCE {
  parametersTM9-v1430      MIMO-CA-ParametersPerBoBCPerTM-v1430 OPTIONAL,
  parametersTM10-v1430     MIMO-CA-ParametersPerBoBCPerTM-v1430 OPTIONAL
}

MIMO-CA-ParametersPerBoBCPerTM-r13 ::= SEQUENCE {
  nonPrecoded-r13          MIMO-NonPrecodedCapabilities-r13 OPTIONAL,
  beamformed-r13           MIMO-BeamformedCapabilityList-r13 OPTIONAL,
  dmrs-Enhancements-r13    ENUMERATED (different) OPTIONAL
}

MIMO-CA-ParametersPerBoBCPerTM-v1430 ::= SEQUENCE {
  csi-ReportingNP-r14      ENUMERATED (different) OPTIONAL,
  csi-ReportingAdvanced-r14 ENUMERATED (different) OPTIONAL
}

MIMO-NonPrecodedCapabilities-r13 ::= SEQUENCE {
  config1-r13             ENUMERATED (supported) OPTIONAL,
  config2-r13             ENUMERATED (supported) OPTIONAL,
  config3-r13             ENUMERATED (supported) OPTIONAL,
  config4-r13             ENUMERATED (supported) OPTIONAL
}

MIMO-BeamformedCapabilities-r13 ::= SEQUENCE {
  altCodebook-r13         ENUMERATED [supported] OPTIONAL,
  mimo-BeamformedCapabilities-r13 MIMO-BeamformedCapabilityList-r13
}

MIMO-BeamformedCapabilityList-r13 ::= SEQUENCE (SIZE (1..maxCSI-Proc-r11)) OF MIMO-
BeamformedCapabilities-r13

MIMO-BeamformedCapabilities-r13 ::= SEQUENCE {
  k-Max-r13               INTEGER (1..8),
  n-MaxList-r13           BIT STRING (SIZE (1..7)) OPTIONAL
}

NonContiguousUL-RA-WithinCC-List-r10 ::= SEQUENCE (SIZE (1..maxBands)) OF NonContiguousUL-RA-
WithinCC-r10

NonContiguousUL-RA-WithinCC-r10 ::= SEQUENCE {
  nonContiguousUL-RA-WithinCC-Info-r10 ENUMERATED (supported) OPTIONAL
}

RF-Parameters ::= SEQUENCE {
  supportedBandListEUTRA  SupportedBandListEUTRA
}
RF-Parameters-v9e0 ::= SEQUENCE {
  supportedBandListEUTRA-v9e0     SupportedBandListEUTRA-v9e0     OPTIONAL
}

RF-Parameters-v1020 ::= SEQUENCE {
  supportedBandCombination-v1020 SupportedBandCombination-v1020     OPTIONAL
}

RF-Parameters-v1060 ::= SEQUENCE {
  supportedBandCombinationExt-v1060 SupportedBandCombinationExt-v1060     OPTIONAL
}

RF-Parameters-v1090 ::= SEQUENCE {
  supportedBandCombination-v1090     SupportedBandCombination-v1090     OPTIONAL
}

RF-Parameters-v10f0 ::= SEQUENCE {
  modifiedMPR-Behavior-v10f0     BIT STRING (SIZE (32))     OPTIONAL
}

RF-Parameters-v10i0 ::= SEQUENCE {
  supportedBandCombination-v10i0     SupportedBandCombination-v10i0     OPTIONAL
}

RF-Parameters-v10j0 ::= SEQUENCE {
  multiNS-Pmax-v10j0 SupportedBandCombinationAdd-v10j0     OPTIONAl
}

RF-Parameters-v1130 ::= SEQUENCE {
  supportedBandCombination-v1130     SupportedBandCombination-v1130     OPTIONAL
}

RF-Parameters-v1180 ::= SEQUENCE {
  requestedBands-v1180 SupportedBandCombinationAdd-v1180     OPTIONAL,
  freqBandPriorityAdjustment-v1180 ENUMERATED (supported)     OPTIONAL
}

RF-Parameters-v11d0 ::= SEQUENCE {
  supportedBandCombinationAdd-v11d0 SupportedBandCombinationAdd-v11d0     OPTIONAL
}

RF-Parameters-v1250 ::= SEQUENCE {
  supportedBandListEUTRA-v1250 SupportedBandListEUTRA-v1250     OPTIONAL,
  supportedBandCombinationAdd-v1250 SupportedBandCombinationAdd-v1250     OPTIONAL
}

RF-Parameters-v1270 ::= SEQUENCE {
  supportedBandCombinationAdd-v1270 SupportedBandCombinationAdd-v1270     OPTIONAL
}

RF-Parameters-v1310 ::= SEQUENCE {
  requestedCCsDL-v1310     INTEGER (2..32)       OPTIONAL,
  requestedCCsUL-v1310     INTEGER (2..32)       OPTIONAL
}

RF-Parameters-v1320 ::= SEQUENCE {
  supportedBandListEUTRA-v1320 SupportedBandListEUTRA-v1320     OPTIONAL,
  supportedBandCombinationAdd-v1320 SupportedBandCombinationAdd-v1320     OPTIONAL
}

RF-Parameters-v1380 ::= SEQUENCE {
  supportedBandCombinationReduced-v1380 SupportedBandCombinationReduced-v1380     OPTIONAL
}
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>supportedBandCombination-v1380</td>
<td>SupportedBandCombination-v1380 OPTIONAL,</td>
</tr>
<tr>
<td>supportedBandCombinationAdd-v1380</td>
<td>SupportedBandCombinationAdd-v1380 OPTIONAL,</td>
</tr>
<tr>
<td>supportedBandCombinationReduced-v1380</td>
<td>SupportedBandCombinationReduced-v1380 OPTIONAL,</td>
</tr>
<tr>
<td>RF-Parameters-v1390 ::=</td>
<td>SEQUENCE {</td>
</tr>
<tr>
<td>supportedBandCombination-v1390</td>
<td>SupportedBandCombination-v1390 OPTIONAL,</td>
</tr>
<tr>
<td>supportedBandCombinationAdd-v1390</td>
<td>SupportedBandCombinationAdd-v1390 OPTIONAL,</td>
</tr>
<tr>
<td>supportedBandCombinationReduced-v1390</td>
<td>SupportedBandCombinationReduced-v1390 OPTIONAL,</td>
</tr>
<tr>
<td>RF-Parameters-v12b0 ::=</td>
<td>SEQUENCE {</td>
</tr>
<tr>
<td>maxLayersMIMO-Indication-r12</td>
<td>ENUMERATED {supported} OPTIONAL</td>
</tr>
<tr>
<td>RF-Parameters-v1430 ::=</td>
<td>SEQUENCE {</td>
</tr>
<tr>
<td>supportedBandCombination-v1430</td>
<td>SupportedBandCombination-v1430 OPTIONAL,</td>
</tr>
<tr>
<td>supportedBandCombinationAdd-v1430</td>
<td>SupportedBandCombinationAdd-v1430 OPTIONAL,</td>
</tr>
<tr>
<td>eNB-RequestedParameters-v1430</td>
<td>SEQUENCE {</td>
</tr>
<tr>
<td>requestedDiffFallbackCombList-r14</td>
<td>BandCombinationList-r14 OPTIONAL</td>
</tr>
<tr>
<td>diffFallbackCombReport-r14</td>
<td>ENUMERATED {supported} OPTIONAL</td>
</tr>
<tr>
<td>RF-Parameters-v1450 ::=</td>
<td>SEQUENCE {</td>
</tr>
<tr>
<td>supportedBandCombination-v1450</td>
<td>SupportedBandCombination-v1450 OPTIONAL,</td>
</tr>
<tr>
<td>supportedBandCombinationAdd-v1450</td>
<td>SupportedBandCombinationAdd-v1450 OPTIONAL,</td>
</tr>
<tr>
<td>supportedBandCombinationReduced-v1450</td>
<td>SupportedBandCombinationReduced-v1450 OPTIONAL,</td>
</tr>
<tr>
<td>SupportedBandCombination-r10 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-r10</td>
</tr>
<tr>
<td>SupportedBandCombinationExt-r10 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParametersExt-r10</td>
</tr>
<tr>
<td>SupportedBandCombination-v1090 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1090</td>
</tr>
<tr>
<td>SupportedBandCombination-v1010 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1010</td>
</tr>
<tr>
<td>SupportedBandCombination-v1130 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1130</td>
</tr>
<tr>
<td>SupportedBandCombination-v1250 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1250</td>
</tr>
<tr>
<td>SupportedBandCombination-v1270 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1270</td>
</tr>
<tr>
<td>SupportedBandCombination-v1320 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1320</td>
</tr>
<tr>
<td>SupportedBandCombination-v1380 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1380</td>
</tr>
<tr>
<td>SupportedBandCombination-v1390 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1390</td>
</tr>
<tr>
<td>SupportedBandCombination-v1430 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1430</td>
</tr>
<tr>
<td>SupportedBandCombination-v1450 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1450</td>
</tr>
<tr>
<td>SupportedBandCombinationAdd-r11 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-r11</td>
</tr>
<tr>
<td>SupportedBandCombinationAdd-v11d0 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1010</td>
</tr>
<tr>
<td>SupportedBandCombinationAdd-v1250 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1250</td>
</tr>
<tr>
<td>SupportedBandCombinationAdd-v1270 ::=</td>
<td>SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1270</td>
</tr>
</tbody>
</table>
SupportedBandCombinationAdd-v1320 ::= SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1320

SupportedBandCombinationAdd-v1380 ::= SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1380

SupportedBandCombinationAdd-v1390 ::= SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1390

SupportedBandCombinationAdd-v1430 ::= SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1430

SupportedBandCombinationAdd-v1450 ::= SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-v1450

SupportedBandCombinationReduced-r13 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF BandCombinationParameters-r13

SupportedBandCombinationReduced-v1320 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF BandCombinationParameters-v1320

SupportedBandCombinationReduced-v1380 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF BandCombinationParameters-v1380

SupportedBandCombinationReduced-v1390 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF BandCombinationParameters-v1390

SupportedBandCombinationReduced-v1430 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF BandCombinationParameters-v1430

SupportedBandCombinationReduced-v1450 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF BandCombinationParameters-v1450

BandCombinationParameters-r10 ::= SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-r10

BandCombinationParametersExt-r10 ::= SEQUENCE {
    supportedBandwidthCombinationSet-r10 SupportedBandwidthCombinationSet-r10 OPTIONAL
}

BandCombinationParameters-v1090 ::= SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1090

BandCombinationParameters-v10i0 ::= SEQUENCE {
    bandParameterList-v10i0 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v10i0 OPTIONAL
}

BandCombinationParameters-v1130 ::= SEQUENCE {
    multipleTimingAdvance-r11 ENUMERATED {supported} OPTIONAL,
    simultaneousRx-Tx-r11 ENUMERATED {supported} OPTIONAL,
    bandParameterList-r11 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1130 OPTIONAL,
    ...
}

BandCombinationParameters-r11 ::= SEQUENCE {
    bandParameterList-r11 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-r11,
    supportedBandwidthCombinationSet-r11 SupportedBandwidthCombinationSet-r10 OPTIONAL,
    multipleTimingAdvance-r11 ENUMERATED {supported} OPTIONAL,
    simultaneousRx-Tx-r11 ENUMERATED {supported} OPTIONAL,
    bandInfoEUTRA-r11 BandInfoEUTRA,
    ...
}

BandCombinationParameters-v1250 ::= SEQUENCE {
    dc-Support-r12 SEQUENCE {
        asynchronous-r12 ENUMERATED {supported} OPTIONAL,
        supportedCellGrouping-r12 CHOICE {
            threeEntries-r12 BIT STRING (SIZE(3)),
            fourEntries-r12 BIT STRING (SIZE(7)),
            fiveEntries-r12 BIT STRING (SIZE(15))
        } OPTIONAL,
    } OPTIONAL,
    supportedNAICS-2CRS-AP-r12 BIT STRING (SIZE (1..maxNAICS-Entries-r12)) OPTIONAL,
    commSupportedBandsPerBC-r12 BIT STRING (SIZE (1..maxBands)) OPTIONAL,
}
BandCombinationParameters-v1270 ::= SEQUENCE {
  bandParameterList-v1270 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1270 OPTIONAL
}

BandCombinationParameters-r13 ::= SEQUENCE {
  differentFallbackSupported-r13 ENUMERATED {true} OPTIONAL,
  bandParameterList-r13 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-r13,
  supportedBandwidthCombinationSet-r13 SupportedBandwidthCombinationSet-r10 OPTIONAL,
  multipleTimingAdvance-r13 ENUMERATED {supported} OPTIONAL,
  simultaneousRx-Tx-r13 ENUMERATED {supported} OPTIONAL,
  bandInfoEUTRA-r13 BandInfoEUTRA,
  dc-Support-r13 SEQUENCE {
    asynchronous-r13 ENUMERATED {supported} OPTIONAL,
    supportedCellGrouping-r13 CHOICE {
      threeEntries-r13 BIT STRING (SIZE(3)),
      fourEntries-r13 BIT STRING (SIZE(7)),
      fiveEntries-r13 BIT STRING (SIZE(15))
    }
  },
  supportedNAICS-2CRS-AP-r13 BIT STRING (SIZE (1..maxNAICS-Entries-r12)) OPTIONAL,
  commSupportedBandsPerBC-r13 BIT STRING (SIZE (1..maxBands)) OPTIONAL
}

BandCombinationParameters-v1320 ::= SEQUENCE {
  bandParameterList-v1320 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1320 OPTIONAL,
  additionalRx-Tx-PerformanceReq-r13 ENUMERATED {supported} OPTIONAL
}

BandCombinationParameters-v1380 ::= SEQUENCE {
  bandParameterList-v1380 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1380 OPTIONAL
}

BandCombinationParameters-v1390 ::= SEQUENCE {
  ue-CA-PowerClass-N-r13 ENUMERATED {class2} OPTIONAL
}

BandCombinationParameters-v1430 ::= SEQUENCE {
  bandParameterList-v1430 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1430 OPTIONAL,
  v2x-SupportedTxBandCombListPerBC-r14 BIT STRING (SIZE (1..maxBandComb-r13)) OPTIONAL,
  v2x-SupportedRxBandCombListPerBC-r14 BIT STRING (SIZE (1..maxBandComb-r13)) OPTIONAL
}

BandCombinationParameters-v1450 ::= SEQUENCE {
  bandParameterList-v1450 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1450 OPTIONAL
}

SupportedBandwidthCombinationSet-r10 ::= BIT STRING (SIZE (1..maxBandwidthCombSet-r10))

BandParameters-r10 ::= SEQUENCE {
  bandEUTRA-r10 FreqBandIndicator,
  bandParametersUL-r10 BandParametersUL-r10 OPTIONAL,
  bandParametersDL-r10 BandParametersDL-r10 OPTIONAL
}

BandParameters-v1090 ::= SEQUENCE {
  bandEUTRA-v1090 FreqBandIndicator-v9e0 OPTIONAL,
  ...}

BandParameters-v1010 ::= SEQUENCE {
  bandParametersDL-v1010 SEQUENCE (SIZE (1..maxBandwidthClass-r10)) OF CA-MIMO-ParametersDL-v1010
}

BandParameters-v1130 ::= SEQUENCE {
  supportedCSI-Proc-r11 ENUMERATED {n1, n3, n4}
}
BandParameters-r11 ::= SEQUENCE {
  bandEUTRA-r11 FreqBandIndicator-r11,
  bandParametersUL-r11 BandParametersUL-r10 OPTIONAL,
  bandParametersDL-r11 BandParametersDL-r10 OPTIONAL,
  supportedCSI-Proc-r11 ENUMERATED (n1, n3, n4) OPTIONAL
}

BandParameters-v1270 ::= SEQUENCE {
  bandParametersDL-v1270 SEQUENCE (SIZE (1..maxBandwidthClass-r10)) OF CA-MIMO-ParametersDL-v1270
}

BandParameters-r13 ::= SEQUENCE {
  bandEUTRA-r13 FreqBandIndicator-r11,
  bandParametersUL-r13 BandParametersUL-r13 OPTIONAL,
  bandParametersDL-r13 BandParametersDL-r13 OPTIONAL,
  supportedCSI-Proc-r13 ENUMERATED {n1, n3, n4} OPTIONAL
}

BandParameters-v1320 ::= SEQUENCE {
  bandParametersDL-v1320 MIMO-CA-ParametersPerBoBC-r13
}

BandParameters-v1380 ::= SEQUENCE {
  txAntennaSwitchDL-r13 INTEGER (1..32) OPTIONAL,
  txAntennaSwitchUL-r13 INTEGER (1..32) OPTIONAL
}

BandParameters-v1430 ::= SEQUENCE {
  bandParametersDL-v1430 MIMO-CA-ParametersPerBoBC-v1430 OPTIONAL,
  ul-256QAM-r14 ENUMERATED [supported] OPTIONAL,
  ul-256QAM-perCC-InfoList-r14 SEQUENCE (SIZE (2..maxServCell-r13)) OF UL-256QAM-perCC-Info-r14 OPTIONAL,
  retuningTimeInfoBandList-r14 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF RetuningTimeInfo-r14 OPTIONAL
}

BandParameters-v1450 ::= SEQUENCE {
  must-CapabilityPerBand-r14 MUST-Parameters-r14 OPTIONAL
}

V2X-BandParameters-r14 ::= SEQUENCE {
  v2x-FreqBandEUTRA-r14 FreqBandIndicator-r11,
  bandParametersTxSL-r14 BandParametersTxSL-r14 OPTIONAL,
  bandParametersRxSL-r14 BandParametersRxSL-r14 OPTIONAL
}

BandParametersTxSL-r14 ::= SEQUENCE {
  v2x-BandwidthClassTxSL-r14 V2X-BandwidthClass-r14,
  v2x-eNB-Scheduled-r14 ENUMERATED (supported) OPTIONAL,
  v2x-HighPower-r14 ENUMERATED (supported) OPTIONAL
}

BandParametersRxSL-r14 ::= SEQUENCE {
  v2x-BandwidthClassRxSL-r14 V2X-BandwidthClass-r14,
  v2x-HighReception-r14 ENUMERATED (supported) OPTIONAL
}

V2X-BandwidthClassSL-r14 ::= SEQUENCE (SIZE (1..maxBandwidthClass-r10)) OF V2X-BandwidthClass-r14

UL-256QAM-perCC-Info-r14 ::= SEQUENCE {
  ul-256QAM-perCC-r14 ENUMERATED (supported) OPTIONAL
}

BandParametersUL-r10 ::= SEQUENCE (SIZE (1..maxBandwidthClass-r10)) OF CA-MIMO-ParametersUL-r10

BandParametersUL-r13 ::= CA-MIMO-ParametersUL-r13

CA-MIMO-ParametersUL-r10 ::= SEQUENCE {
  ca-BandwidthClassUL-r10 CA-BandwidthClass-r10,
  supportedMIMO-CapabilityUL-r10 MIMO-CapabilityUL-r10 OPTIONAL
}

BandParametersDL-r10 ::= SEQUENCE (SIZE (1..maxBandwidthClass-r10)) OF CA-MIMO-ParametersDL-r10

BandParametersDL-r13 ::= CA-MIMO-ParametersDL-r13
CA-MIMO-ParametersDL-r10 ::= SEQUENCE {
  ca-BandwidthClassDL-r10  CA-BandwidthClass-r10,
  supportedMIMO-CapabilityDL-r10  MIMO-CapabilityDL-r10  OPTIONAL
}

CA-MIMO-ParametersDL-v1010 ::= SEQUENCE {
  fourLayerTM3-TM4-r10 ENUMERATED {supported}  OPTIONAL
}

CA-MIMO-ParametersDL-v2170 ::= SEQUENCE {
  intraBandContiguousCC-InfoList-r12  SEQUENCE (SIZE (1..maxServCell-r10)) OF 
  IntraBandContiguousCC-Info-r12
}

CA-MIMO-ParametersDL-r13 ::= SEQUENCE {
  ca-BandwidthClassDL-r13  CA-BandwidthClass-r10,
  supportedMIMO-CapabilityDL-r13  MIMO-CapabilityDL-r10  OPTIONAL,
  fourLayerTM3-TM4-r13 ENUMERATED {supported}  OPTIONAL,
  intraBandContiguousCC-InfoList-r13  SEQUENCE (SIZE (1..maxServCell-r13)) OF 
  IntraBandContiguousCC-Info-r12
}

IntraBandContiguousCC-Info-r12 ::= SEQUENCE {
  fourLayerTM3-TM4-perCC-r12 ENUMERATED {supported}  OPTIONAL,
  supportedMIMO-CapabilityDL-r12  MIMO-CapabilityDL-r10  OPTIONAL,
  supportedCSI-Proc-r12 ENUMERATED {n1, n3, n4}  OPTIONAL
}

CA-BandwidthClass-r10 ::= ENUMERATED {a, b, c, d, e, f, ...}

V2X-BandwidthClass-r14 ::= ENUMERATED {a, b, c, d, e, f, ...}

MIMO-CapabilityUL-r10 ::= ENUMERATED {twoLayers, fourLayers}

MIMO-CapabilityDL-r10 ::= ENUMERATED {twoLayers, fourLayers, eightLayers}

MUST-Parameters-r14 ::= SEQUENCE {
  must-TM234-UpTo2Tx-r14 ENUMERATED {supported}  OPTIONAL,
  must-TM89-UpToOneInterferingLayer-r14 ENUMERATED {supported}  OPTIONAL,
  must-TM10-UpToOneInterferingLayer-r14 ENUMERATED {supported}  OPTIONAL,
  must-TM89-UpToThreeInterferingLayers-r14 ENUMERATED {supported}  OPTIONAL,
  must-TM10-UpToThreeInterferingLayers-r14 ENUMERATED {supported}  OPTIONAL
}

SupportedBandListEUTRA ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA

SupportedBandListEUTRA-v9e0 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA-v9e0

SupportedBandListEUTRA-v1250 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA-v1250

SupportedBandListEUTRA-v1310 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA-v1310

SupportedBandListEUTRA-v1320 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA-v1320

SupportedBandEUTRA ::= SEQUENCE {
  bandEUTRA       FreqBandIndicator,
  halfDuplex       BOOLEAN
}

SupportedBandEUTRA-v9e0 ::= SEQUENCE {
  bandEUTRA-v9e0      FreqBandIndicator-v9e0  OPTIONAL
}

SupportedBandEUTRA-v1250 ::= SEQUENCE {
  dl-256QAM-r12 ENUMERATED {supported}  OPTIONAL,
  ul-64QAM-r12 ENUMERATED {supported}  OPTIONAL
}

SupportedBandEUTRA-v1310 ::= SEQUENCE {
  ue-PowerClass-5-r13 ENUMERATED {supported}  OPTIONAL
}

SupportedBandEUTRA-v1320 ::= SEQUENCE {
  intraFreq-CE-NeedForGaps-r13 ENUMERATED {supported}  OPTIONAL,
  ue-PowerClass-N-r13 ENUMERATED {class1, class2, class4}  OPTIONAL
}

MeasParameters ::= SEQUENCE {
  bandListEUTRA  BandListEUTRA
}
MeasParameters-v1020 ::= SEQUENCE {
  bandCombinationListEUTRA-r10  BandCombinationListEUTRA-r10
}

MeasParameters-v1130 ::= SEQUENCE {
  rsrqMeasWideband-r11  ENUMERATED {supported}  OPTIONAL
}

MeasParameters-v11a0 ::= SEQUENCE {
  benefitsFrom Interruption-r11  ENUMERATED {true}  OPTIONAL
}

MeasParameters-v1250 ::= SEQUENCE {
  timerT312-r12  ENUMERATED {supported}  OPTIONAL,
  alternativeTimeToTrigger-r12  ENUMERATED {supported}  OPTIONAL,
  incMonEUTRA-r12  ENUMERATED {supported}  OPTIONAL,
  incMonUTRA-r12  ENUMERATED {supported}  OPTIONAL,
  extendedMaxMeasId-r12  ENUMERATED {supported}  OPTIONAL,
  extendedRSRQ-LowerRange-r12  ENUMERATED {supported}  OPTIONAL,
  rsrq-OnAllSymbols-r12  ENUMERATED {supported}  OPTIONAL,
  csi-RS-DiscoverySignalsMeas-r12  ENUMERATED {supported}  OPTIONAL,
  rssi-AndChannelOccupancyReporting-r12  ENUMERATED {supported}  OPTIONAL
}

MeasParameters-v1310 ::= SEQUENCE {
  rs-SINR-Meas-r13  ENUMERATED {supported}  OPTIONAL,
  whiteCellList-r13  ENUMERATED {supported}  OPTIONAL,
  extendedMaxObj ectId-r13  ENUMERATED {supported}  OPTIONAL,
  ul-PDCP-Delay-r13  ENUMERATED {supported}  OPTIONAL,
  extendedFreqPriorities-r13  ENUMERATED {supported}  OPTIONAL,
  multiBandInfoReport-r13  ENUMERATED {supported}  OPTIONAL,
  nonUniformGap-r14  ENUMERATED {supported}  OPTIONAL
}

BandListEUTRA ::= SEQUENCE {
  $SIZE (1..maxBands)$ OF BandInfoEUTRA
}

BandCombinationListEUTRA-r10 ::= SEQUENCE {
  $SIZE (1..maxBandComb-r10)$ OF BandInfoEUTRA
}

BandInfoEUTRA ::= SEQUENCE {
  interFreqBandList  InterFreqBandList,
  interRAT-BandList  InterRAT-BandList  OPTIONAL
}

InterFreqBandList ::= SEQUENCE {
  $SIZE (1..maxBands)$ OF InterFreqBandInfo
}

InterFreqBandInfo ::= SEQUENCE {
  interFreqNeedForGaps  BOOLEAN
}

InterRAT-BandList ::= SEQUENCE {
  $SIZE (1..maxBands)$ OF InterRAT-BandInfo
}

InterRAT-BandInfo ::= SEQUENCE {
  interRAT-NeedForGaps  BOOLEAN
}

IRAT-ParametersUTRA-FDD ::= SEQUENCE {
  supportedBandListUTRA-FDD  SupportedBandListUTRA-FDD
}

IRAT-ParametersUTRA-v920 ::= SEQUENCE {
  e-RedirectionUTRA-r9  ENUMERATED {supported}
}

IRAT-ParametersUTRA-v9c0 ::= SEQUENCE {
  voiceOverPS-HS-UTRA-FDD-r9  ENUMERATED {supported}  OPTIONAL,
  voiceOverPS-HS-UTRA-TDD128-r9  ENUMERATED {supported}  OPTIONAL,
  srvcc-FromUTRA-FDD-ToUTRA-FDD-r9  ENUMERATED {supported}  OPTIONAL,
  srvcc-FromUTRA-FDD-ToGERAN-r9  ENUMERATED {supported}  OPTIONAL
}
svrcc-FromUTRA-TDD128-ToUTRA-TDD128-r9 ENUMERATED {supported} OPTIONAL,
svrcc-FromUTRA-TDD128-ToGERAN-r9 ENUMERATED {supported} OPTIONAL

IRAT-ParametersUTRA-v9h0 ::= SEQUENCE {
mfbi-UTRA-r9 ENUMERATED {supported}
}

SupportedBandListUTRA-FDD ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-FDD

SupportedBandUTRA-FDD ::= ENUMERATED {
  bandI, bandII, bandIII, bandIV, bandV, bandVI,
  bandVII, bandVIII, bandIX, bandX, bandXI,
  bandXII, bandXIII, bandXIV, bandXV, bandXVI, ..., bandXVII-8a0, bandXVIII-8a0, bandXIX-8a0, bandXX-8a0,
  bandXXI-8a0, bandXXII-8a0, bandXXIII-8a0, bandXXIV-8a0, bandXXV-8a0, bandXXVI-8a0, bandXXVII-8a0, bandXXVIII-8a0,
  bandXXIX-8a0, bandXXX-8a0, bandXXXI-8a0, bandXXXII-8a0,
}

IRAT-ParametersUTRA-TDD128 ::= SEQUENCE {
supportedBandListUTRA-TDD128 SupportedBandListUTRA-TDD128
}

SupportedBandListUTRA-TDD128 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-TDD128

SupportedBandUTRA-TDD128 ::= ENUMERATED {
  a, b, c, d, e, f, g, h, i, j, k, l, m, n,
  o, p, ...
}

IRAT-ParametersUTRA-TDD384 ::= SEQUENCE {
supportedBandListUTRA-TDD384 SupportedBandListUTRA-TDD384
}

SupportedBandListUTRA-TDD384 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-TDD384

SupportedBandUTRA-TDD384 ::= ENUMERATED {
  a, b, c, d, e, f, g, h, i, j, k, l, m, n,
  o, p, ...
}

IRAT-ParametersUTRA-TDD768 ::= SEQUENCE {
supportedBandListUTRA-TDD768 SupportedBandListUTRA-TDD768
}

SupportedBandListUTRA-TDD768 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-TDD768

SupportedBandUTRA-TDD768 ::= ENUMERATED {
  a, b, c, d, e, f, g, h, i, j, k, l, m, n,
  o, p, ...
}

IRAT-ParametersUTRA-TDD-v1020 ::= SEQUENCE {
e-RedirectionUTRA-TDD-r10 ENUMERATED {supported}
}

IRAT-ParametersGERAN ::= SEQUENCE {
supportedBandListGERAN SupportedBandListGERAN,
interRAT-PS-HO-ToGERAN BOOLEAN
}

IRAT-ParametersGERAN-v920 ::= SEQUENCE {
dtm-r9 ENUMERATED {supported} OPTIONAL,
e-RedirectionGERAN-r9 ENUMERATED {supported} OPTIONAL
}

SupportedBandListGERAN ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandGERAN

SupportedBandGERAN ::= ENUMERATED {
  gsm450, gsm480, gsm710, gsm750, gsm810, gsm850,
gsm900P, gsm900E, gsm900R, gsm1800, gsm1900,
  spare5, spare4, spare3, spare2, spare1, ...
}

IRAT-ParametersCDMA2000-HRPD ::= SEQUENCE {
supportedBandListHRPD SupportedBandListHRPD,
tx-ConfigHRPD ENUMERATED {single, dual},
rx-ConfigHRPD ENUMERATED {single, dual}
}

SupportedBandListHRPD ::= SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandclassCDMA2000
IRAT-ParametersCDMA2000-1XRTT ::= SEQUENCE {
  supportedBandList1XRTT SupportedBandList1XRTT,
  tx-Config1XRTT ENUMERATED {single, dual},
  rx-Config1XRTT ENUMERATED {single, dual}
}

IRAT-ParametersCDMA2000-1XRTT-v920 ::= SEQUENCE {
  e-CSFB-1XRTT-r9 ENUMERATED {supported},
  e-CSFB-ConcPS-Mob1XRTT-r9 ENUMERATED {supported} OPTIONAL
}

IRAT-ParametersCDMA2000-1XRTT-v1020 ::= SEQUENCE {
  e-CSFB-dual-1XRTT-r10 ENUMERATED {supported}
}

IRAT-ParametersCDMA2000-v1130 ::= SEQUENCE {
  cdma2000-NW-Sharing-r11 ENUMERATED {supported} OPTIONAL
}

SupportedBandList1XRTT ::= SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandclassCDMA2000

IRAT-ParametersWLAN-r13 ::= SEQUENCE {
  supportedBandListWLAN-r13 SEQUENCE (SIZE (1..maxWLAN-Bands-r13)) OF WLAN-BandIndicator-r13 OPTIONAL
}

CSG-ProximityIndicationParameters-r9 ::= SEQUENCE {
  intraFREQProximityIndication-r9 ENUMERATED {supported} OPTIONAL,
  interFREQProximityIndication-r9 ENUMERATED {supported} OPTIONAL,
  utran-ProximityIndication-r9 ENUMERATED {supported} OPTIONAL
}

NeighCellSI-AcquisitionParameters-r9 ::= SEQUENCE {
  intraFREQSI-AcquisitionForHO-r9 ENUMERATED {supported} OPTIONAL,
  interFREQSI-AcquisitionForHO-r9 ENUMERATED {supported} OPTIONAL,
  utran-SI-AcquisitionForHO-r9 ENUMERATED {supported} OPTIONAL
}

SON-Parameters-r9 ::= SEQUENCE {
  rach-Report-r9 ENUMERATED {supported} OPTIONAL
}

UE-BasedNetwPerfMeasParameters-r10 ::= SEQUENCE {
  loggedMeasurementsIdle-r10 ENUMERATED {supported} OPTIONAL,
  standaloneGNSS-Location-r10 ENUMERATED {supported} OPTIONAL
}

UE-BasedNetwPerfMeasParameters-v1250 ::= SEQUENCE {
  loggedMBSFNMeasurements-r12 ENUMERATED {supported}
}

UE-BasedNetwPerfMeasParameters-v1430 ::= SEQUENCE {
  locationReport-r14 ENUMERATED {supported} OPTIONAL
}

OTDOA-PositioningCapabilities-r10 ::= SEQUENCE {
  otdoa-UE-Assisted-r10 ENUMERATED {supported},
  interFreqRSTD-Measurement-r10 ENUMERATED {supported} OPTIONAL
}

Other-Parameters-r11 ::= SEQUENCE {
  inDeviceCoexInd-r11 ENUMERATED {supported} OPTIONAL,
  powerPrefInd-r11 ENUMERATED {supported} OPTIONAL,
  ue-Rx-TXtimeDiffMeasurements-r11 ENUMERATED {supported} OPTIONAL
}

Other-Parameters-v11d0 ::= SEQUENCE {
  inDeviceCoexInd-UL-CA-r11 ENUMERATED {supported}
}

Other-Parameters-v1360 ::= SEQUENCE {
  inDeviceCoexInd-HardwareSharingInd-r13 ENUMERATED {supported} OPTIONAL
}

Other-Parameters-v1430 ::= SEQUENCE {
  bwPrefInd-r14 ENUMERATED {supported} OPTIONAL,
  rlm-ReportSupport-r14 ENUMERATED {supported} OPTIONAL
}
OtherParameters-v1450 ::= SEQUENCE {
  overheatingInd-r14  ENUMERATED {supported} OPTIONAL
}

Other-Parameters-v1460 ::= SEQUENCE {
  nonCSG-SI-Reporting-r14  ENUMERATED {supported} OPTIONAL
}

MBMS-Parameters-r11 ::= SEQUENCE {
  mbms-SCell-r11  ENUMERATED {supported} OPTIONAL,
  mbms-NonServingCell-r11  ENUMERATED {supported} OPTIONAL
}

MBMS-Parameters-v1250 ::= SEQUENCE {
  mbms-AsyncDC-r12  ENUMERATED {supported} OPTIONAL
}

MBMS-Parameters-v1430 ::= SEQUENCE {
  fembmsDedicatedCell-r14  ENUMERATED {supported} OPTIONAL,
  fembmsMixedCell-r14  ENUMERATED {supported} OPTIONAL,
  subcarrierSpacingMBMS-khz7dot5-r14  ENUMERATED {supported} OPTIONAL,
  subcarrierSpacingMBMS-khz1dot25-r14  ENUMERATED {supported} OPTIONAL
}

FeMBMS-Unicast-Parameters-r14 ::= SEQUENCE {
  unicast-fembmsMixedSCell-r14  ENUMERATED {supported} OPTIONAL,
  emptyUnicastRegion-r14  ENUMERATED {supported} OPTIONAL
}

SCPTM-Parameters-r13 ::= SEQUENCE {
  scptm-ParallelReception-r13  ENUMERATED {supported} OPTIONAL,
  scptm-SCell-r13  ENUMERATED {supported} OPTIONAL,
  scptm-NonServingCell-r13  ENUMERATED {supported} OPTIONAL,
  scptm-AsyncDC-r13  ENUMERATED {supported} OPTIONAL
}

CE-Parameters-r13 ::= SEQUENCE {
  ce-ModeA-r13  ENUMERATED {supported} OPTIONAL,
  ce-ModeB-r13  ENUMERATED {supported} OPTIONAL
}

CE-Parameters-v1320 ::= SEQUENCE {
  intraFreqA3-CE-ModeA-r13  ENUMERATED {supported} OPTIONAL,
  intraFreqA3-CE-ModeB-r13  ENUMERATED {supported} OPTIONAL,
  intraFreqH0-CE-ModeA-r13  ENUMERATED {supported} OPTIONAL,
  intraFreqH0-CE-ModeB-r13  ENUMERATED {supported} OPTIONAL
}

CE-Parameters-v1350 ::= SEQUENCE {
  unicastFrequencyHopping-r13  ENUMERATED {supported} OPTIONAL
}

CE-Parameters-v1370 ::= SEQUENCE {
  tm9-CE-ModeA-r13  ENUMERATED {supported} OPTIONAL,
  tm9-CE-ModeB-r13  ENUMERATED {supported} OPTIONAL
}

CE-Parameters-v1380 ::= SEQUENCE {
  tm6-CE-ModeA-r13  ENUMERATED {supported} OPTIONAL
}

CE-Parameters-v1430 ::= SEQUENCE {
  ce-SwitchWithoutHO-r14  ENUMERATED {supported} OPTIONAL
}

LAA-Parameters-r13 ::= SEQUENCE {
  crossCarrierSchedulingLAA-DL-r13  ENUMERATED {supported} OPTIONAL,
  csi-RS-DRS-RRM-MeasurementsLAA-r13  ENUMERATED {supported} OPTIONAL,
  downlinkLAA-r13  ENUMERATED {supported} OPTIONAL,
  endingDwPTS-r13  ENUMERATED {supported} OPTIONAL,
  secondSlotStartingPosition-r13  ENUMERATED {supported} OPTIONAL,
  tm9-LAA-r13  ENUMERATED {supported} OPTIONAL,
  tm10-LAA-r13  ENUMERATED {supported} OPTIONAL
}

LAA-Parameters-v1430 ::= SEQUENCE {
  crossCarrierSchedulingLAA-UL-r14  ENUMERATED {supported} OPTIONAL,
uplinkLAA-r14 ENUMERATED {supported} OPTIONAL,
twoStepSchedulingTimingInfo-r14 ENUMERATED {nPlus1, nPlus2, nPlus3} OPTIONAL,
uss-BlindDecodingAdjustment-r14 ENUMERATED {supported} OPTIONAL,
uss-BlindDecodingReduction-r14 ENUMERATED {supported} OPTIONAL,
outOfSequenceGrantHandling-r14 ENUMERATED {supported} OPTIONAL,

WLAN-IW-Parameters-r12 ::= SEQUENCE {wlan-IW-RAN-Rules-r12 ENUMERATED {supported} OPTIONAL,wlan-IW-ANDSF-Policies-r12 ENUMERATED {supported} OPTIONAL}

LWA-Parameters-r13 ::= SEQUENCE {lwa-r13 ENUMERATED {supported} OPTIONAL,lwa-SplitBearer-r13 ENUMERATED {supported} OPTIONAL,wlan-MAC-Address-r13 OCTET STRING (SIZE (6)) OPTIONAL,lwa-BufferSize-r13 ENUMERATED {supported} OPTIONAL}

LWA-Parameters-v1430 ::= SEQUENCE {lwa-HO-WithoutWT-Change-r14 ENUMERATED {supported} OPTIONAL,lwa-UL-r14 ENUMERATED {supported} OPTIONAL,wlan-PeriodicMeas-r14 ENUMERATED {supported} OPTIONAL,wlan-ReportAnyWLAN-r14 ENUMERATED {supported} OPTIONAL,wlan-SupportedDataRate-r14 INTEGER (1..2048) OPTIONAL}

LWA-Parameters-v1440 ::= SEQUENCE {lwa-RLC-UM-r14 ENUMERATED {supported} OPTIONAL}

WLAN-IW-Parameters-v1310 ::= SEQUENCE {rclwi-r13 ENUMERATED {supported} OPTIONAL}

LWIP-Parameters-r13 ::= SEQUENCE {lwip-r13 ENUMERATED {supported} OPTIONAL}

LWIP-Parameters-v1430 ::= SEQUENCE {lwip-Aggregation-DL-r14 ENUMERATED {supported} OPTIONAL,lwip-Aggregation-UL-r14 ENUMERATED {supported} OPTIONAL}

NAICS-Capability-List-r12 ::= SEQUENCE (SIZE (1..maxNAICS-Entries-r12)) OF NAICS-Capability-Entry-r12

NAICS-Capability-Entry-r12 ::= SEQUENCE {numberOfNAICS-CapableCC-r12 INTEGER(1..5),numberOfAggregatedPRB-r12 ENUMERATED {n50, n75, n100, n125, n150, n175, n200, n225, n250, n275, n300, n350, n400, n450, n500, spare},...}

SL-Parameters-r12 ::= SEQUENCE {commSimultaneousTx-r12 ENUMERATED {supported} OPTIONAL,commSupportedBands-r12 ENUMERATED {FreqBandIndicatorListEUTRA-r12} OPTIONAL,discSupportedBands-r12 ENUMERATED {SupportedBandInfoList-r12} OPTIONAL,discScheduledResourceAlloc-r12 ENUMERATED {supported} OPTIONAL,disc-UE-SelectedResourceAlloc-r12 ENUMERATED {supported} OPTIONAL,disc-LSLS-r12 ENUMERATED {supported} OPTIONAL,discSupportedProc-r12 ENUMERATED {n50, n400} OPTIONAL}

SL-Parameters-v1310 ::= SEQUENCE {discSysInfoReporting-r13 ENUMERATED {supported} OPTIONAL,commMultipleTx-r13 ENUMERATED {supported} OPTIONAL,discInterFreqTx-r13 ENUMERATED {supported} OPTIONAL,discPeriodicLSLS-r13 ENUMERATED {supported} OPTIONAL}

SL-Parameters-v1430 ::= SEQUENCE {zoneBasedPoolSelection-r14 ENUMERATED {supported} OPTIONAL,ue-AutonomousWithFullSensing-r14 ENUMERATED {supported} OPTIONAL,ue-AutonomousWithPartialSensing-r14 ENUMERATED {supported} OPTIONAL}
sl-CongestionControl-r14 ENUMERATED {supported} OPTIONAL,
v2x-TxWithShortResvInterval-r14 ENUMERATED {supported} OPTIONAL,
v2x-numberTxRxTiming-r14 INTEGER(1..16) OPTIONAL,
v2x-nonAdjacentPSCCH-PSSCH-r14 ENUMERATED {supported} OPTIONAL,
size-TxRx-r14 ENUMERATED {supported} OPTIONAL,
v2x-SupportedBandCombinationList-r14 V2X-SupportedBandCombination-r14 OPTIONAL

V2X-SupportedBandCombination-r14 ::= SEQUENCE (SIZE (1..maxBandComb-r13)) OF V2X-
BandCombinationParameters-r14

V2X-BandCombinationParameters-r14 ::= SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF V2X-
BandParameters-r14

SupportedBandInfoList-r12 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandInfo-r12

SupportedBandInfo-r12 ::= SEQUENCE {
support-r12 ENUMERATED {supported} OPTIONAL
}

FreqBandIndicatorListEUTRA-r12 ::= SEQUENCE (SIZE (1..maxBands)) OF FreqBandIndicator-r11

MMTEL-Parameters-r14 ::= SEQUENCE {
delayBudgetReporting-r14 ENUMERATED {supported} OPTIONAL,
pusch-Enhancements-r14 ENUMERATED {supported} OPTIONAL,
recommendedBitRate-r14 ENUMERATED {supported} OPTIONAL,
recommendedBitRateQuery-r14 ENUMERATED {supported} OPTIONAL
}

RetuningTimeInfo-r14 ::= SEQUENCE {
  retuningInfo SEQUENCE {
    rf-RetuningTimeDL-r14 ENUMERATED {n0, n0dot5, n1, n1dot5, n2, n2dot5, n3,
    n3dot5, n4, n4dot5, n5, n5dot5, n6, n6dot5,
    n7, spare1} OPTIONAL,
    rf-RetuningTimeUL-r14 ENUMERATED {n0, n0dot5, n1, n1dot5, n2, n2dot5, n3,
    n3dot5, n4, n4dot5, n5, n5dot5, n6, n6dot5,
    n7, spare1} OPTIONAL
  }
}

HighSpeedEnhParameters-r14 ::= SEQUENCE {
  measurementEnhancements-r14 ENUMERATED {supported} OPTIONAL,
demodulationEnhancements-r14 ENUMERATED {supported} OPTIONAL,
prach-Enhancements-r14 ENUMERATED {supported} OPTIONAL
}

-- ASN1STOP
<table>
<thead>
<tr>
<th>UE-EUTRA-Capability field descriptions</th>
<th>FDD/ TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>accessStratumRelease</strong>&lt;br&gt;Set to rel14 in this version of the specification. NOTE 7.</td>
<td>-</td>
</tr>
<tr>
<td><strong>additionalRx-Tx-PerformanceReq</strong>&lt;br&gt;Indicates whether the UE supports the additional Rx and Tx performance requirement for a given band combination as specified in TS 36.101 [42].</td>
<td>-</td>
</tr>
<tr>
<td><strong>alternativeTBS-Indices</strong>&lt;br&gt;Indicates whether the UE supports alternative TBS indices $h_{BS}$ 26A and 33B as specified in TS 36.213 [23].</td>
<td>-</td>
</tr>
<tr>
<td><strong>alternativeTBS-Index</strong>&lt;br&gt;Indicates whether the UE supports alternative TBS index $t_{BS}$ 33B as specified in TS 36.213 [23].</td>
<td>-</td>
</tr>
<tr>
<td><strong>alternativeTimeToTrigger</strong>&lt;br&gt;Indicates whether the UE supports alternativeTimeToTrigger.</td>
<td>No</td>
</tr>
<tr>
<td><strong>aperiodicCSI-Reporting</strong>&lt;br&gt;Indicates whether the UE supports aperiodic CSI reporting with 3 bits of the CSI request field size as specified in TS 36.213 [23, 7.2.1] and/or aperiodic CSI reporting mode 1-0 and mode 1-1 as specified in TS 36.213 [23, 7.2.1]. The first bit is set to &quot;1&quot; if the UE supports the aperiodic CSI reporting with 3 bits of the CSI request field size. The second bit is set to &quot;1&quot; if the UE supports the aperiodic CSI reporting mode 1-0 and mode 1-1.</td>
<td>No</td>
</tr>
<tr>
<td><strong>bandCombinationListEUTRA</strong>&lt;br&gt;One entry corresponding to each supported band combination listed in the same order as in supportedBandCombination.</td>
<td>-</td>
</tr>
<tr>
<td><strong>BandCombinationParameters-v1090, BandCombinationParameters-v10i0, BandCombinationParameters-v1270</strong>&lt;br&gt;If included, the UE shall include the same number of entries, and listed in the same order, as in BandCombinationParameters-r10.</td>
<td>-</td>
</tr>
<tr>
<td><strong>BandCombinationParameters-v1130</strong>&lt;br&gt;The field is applicable to each supported CA bandwidth class combination (i.e. CA configuration in TS 36.101 [42, Section 5.6A.1]) indicated in the corresponding band combination. If included, the UE shall include the same number of entries, and listed in the same order, as in BandCombinationParameters-r10.</td>
<td>-</td>
</tr>
<tr>
<td><strong>bandEUTRA</strong>&lt;br&gt;E-UTRA band as defined in TS 36.101 [42]. In case the UE includes bandEUTRA-v9e0 or bandEUTRA-v1090, the UE shall set the corresponding entry of bandEUTRA (i.e. without suffix) or bandEUTRA-r10 respectively to maxFBI.</td>
<td>-</td>
</tr>
<tr>
<td><strong>bandListEUTRA</strong>&lt;br&gt;One entry corresponding to each supported E-UTRA band listed in the same order as in supportedBandListEUTRA.</td>
<td>-</td>
</tr>
<tr>
<td><strong>bandParameterList-v1380</strong>&lt;br&gt;If included, the UE shall include the same number of entries listed in the same order as the band entries in the corresponding band combination.</td>
<td>-</td>
</tr>
<tr>
<td><strong>bandParametersUL, bandParametersDL</strong>&lt;br&gt;Indicates the supported parameters for the band. Each of CA-MIMO-ParametersUL and CA-MIMO-ParametersDL can be included only once for one band in a single band combination entry.</td>
<td>-</td>
</tr>
<tr>
<td><strong>beamformed (in MIMO-CA-ParametersPerBoBCPerTM)</strong>&lt;br&gt;Indicates whether the field indicates for a particular transmission mode, the UE capabilities concerning beamformed EBF/ FD-MIMO operation (class B) applicable for the concerned band combination.</td>
<td>TBD</td>
</tr>
<tr>
<td><strong>beamformed (in MIMO-UE-ParametersPerTM)</strong>&lt;br&gt;Indicates for a particular transmission mode, the UE capabilities concerning beamformed EBF/ FD-MIMO operation (class B) applicable for band combinations for which the concerned capabilities are not signalled.</td>
<td>No</td>
</tr>
<tr>
<td><strong>benefitsFromInterruption</strong>&lt;br&gt;Indicates whether the UE power consumption would benefit from being allowed to cause interruptions to serving cells when performing measurements of deactivated SCell carriers for measCycleSCell of less than 640ms, as specified in TS 36.133 [16].</td>
<td>-</td>
</tr>
<tr>
<td><strong>bwPrefInd</strong>&lt;br&gt;Indicates whether the UE supports maximum PDSCH/PUSCH bandwidth preference indication.</td>
<td>-</td>
</tr>
<tr>
<td><strong>ca-BandwidthClass</strong>&lt;br&gt;The CA bandwidth class supported by the UE as defined in TS 36.101 [42, Table 5.6A-1]. The UE explicitly includes all the supported CA bandwidth class combinations in the band combination signalling. Support for one CA bandwidth class does not implicitly indicate support for another CA bandwidth class.</td>
<td>-</td>
</tr>
</tbody>
</table>
UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/ TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>cch-InterMitigation-RefRecTypeA, cch-InterMitigation-RefRecTypeB, cch-InterMitigation-MaxNumCCs</td>
<td></td>
</tr>
<tr>
<td>The field cch-InterMitigation-RefRecTypeA defines whether the UE supports Type A downlink control channel interference mitigation (CCH-IM) receiver &quot;LMMSE-IRC + CRS-IC&quot; for PDCCH/PCFICH/PHICH/EPDCCH receive processing (Enhanced downlink control channel performance requirements Type A in the TS 36.101 [6]). The field cch-InterMitigation-RefRecTypeB defines whether the UE supports Type B downlink CCH-IM receiver &quot;E-LMMSE-IRC + CRS-IC&quot; for PDCCH/PCFICH/PHICH receive processing in synchronous networks (Enhanced downlink control channel performance requirements Type B in the TS 36.101 [6]). The UE supporting the capability defined by cch-InterMitigation-RefRecTypeB-r13 shall also support the capability defined by cch-InterMitigation-RefRecTypeA-r13.</td>
<td></td>
</tr>
<tr>
<td>If the UE sets one or more of the fields cch-InterMitigation-RefRecTypeA and cch-InterMitigation-RefRecTypeB to &quot;supported&quot;, the UE shall include the parameter cch-InterMitigation-MaxNumCCs to indicate that the UE supports CCH-IM on at least one arbitrary downlink CC for up to cch-InterMitigation-MaxNumCCs downlink CC CA configuration. The UE shall not include the parameter cch-InterMitigation-MaxNumCCs if neither cch-InterMitigation-RefRecTypeA nor cch-InterMitigation-RefRecTypeB is present. The UE may not perform CCH-IM on more than 1 DL CCs. For example, the UE sets &quot;cch-InterMitigation-MaxNumCCs = 3&quot; to indicate that UE supports CCH-IM on at least one DL CC for supported non-CA, 2DL CA and 3DL CA configurations. For CA scenarios, the CCH-IM is guaranteed to be supported on at least one arbitrary component carrier.</td>
<td></td>
</tr>
<tr>
<td>cdma2000-NW-Sharing</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports network sharing for CDMA2000.</td>
<td></td>
</tr>
<tr>
<td>ce-ClosedLoopTxAntennaSelection</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports UL closed-loop Tx antenna selection in CE mode A, as specified in TS 36.212 [22].</td>
<td></td>
</tr>
<tr>
<td>ce-HARQ-AckBundling</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports HARQ-ACK bundling in half duplex FDD in CE mode A, as specified in TS 36.212 [22] and TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>ce-ModeA, ce-ModeB</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports operation in CE mode A and/or B, as specified in TS 36.211 [21] and TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>ceMeasurements</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports intra-frequency RSRQ measurements and inter-frequency RSRP and RSRQ measurements in RRC_CONNECTED, as specified in TS 36.133 [16] and TS 36.304 [4].</td>
<td></td>
</tr>
<tr>
<td>ce-PDSCH-PUSCH-Enhancement</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports new numbers of repetitions for PUSCH and modulation restrictions for PDSCH/PUSCH in CE mode A as specified in TS 36.212 [22] and TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>ce-PDSCH-PUSCH-MaxBandwidth</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates the maximum supported PDSCH/PUSCH channel bandwidth in CE mode A and B, as specified in TS 36.212 [22] and TS 36.213 [23]. Value bw5 corresponds to 5 MHz and value bw20 corresponds to 20 MHz. If the field is absent the maximum PDSCH/PUSCH channel bandwidth in CE mode A and B is 1.4 MHz. If the setting of this parameter is 20 MHz, the maximum supported PUSCH channel bandwidth in CE mode A is 5 MHz. The maximum PUSCH channel bandwidth in CE mode B is 1.4 MHz regardless of the setting of this parameter. Parameter: transmission bandwidth configuration, see TS 36.101 [42, table 5.6-1].</td>
<td></td>
</tr>
<tr>
<td>ce-PDSCH-TenProcesses</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports 10 DL HARQ processes in FDD in CE mode A.</td>
<td></td>
</tr>
<tr>
<td>ec-PUCCH-Enhancement</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports repetition levels 64 and 128 for PUCCH in CE Mode B, as specified in TS 36.211 [21] and in TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>ce-PUSCH-NB-MaxTBS</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports 2984 bits max UL TBS in 1.4 MHz in CE mode A operation, as specified in TS 36.212 [22] and TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>ce-RetuningSymbols</td>
<td>No</td>
</tr>
<tr>
<td>Indicates the number of retuning symbols in CE mode A and B as specified in TS 36.211 [21]. Value n0 corresponds to 0 retuning symbols and value n1 corresponds to 1 retuning symbol. If the field is absent the number of retuning symbols in CE mode A and B is 2.</td>
<td></td>
</tr>
<tr>
<td>ce-SchedulingEnhancement</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports dynamic HARQ-ACK delay for HD-FDD in CE mode A as specified in TS 36.212 [22] and TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>UE-EUTRA-Capability field descriptions</td>
<td>FDD/ TDD diff</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>ce-SRS-Enhancement</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports SRS coverage enhancement in TDD with support of SRS combs 2 and 4 as specified in TS 36.213 [23]. This field can be included only if <strong>ce-SRS-EnhancementWithoutComb4</strong> is not included.</td>
<td></td>
</tr>
<tr>
<td><strong>ce-SRS-EnhancementWithoutComb4</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports SRS coverage enhancement in TDD with support of SRS comb 2 but without support of SRS comb 4 as specified in TS 36.213 [23]. This field can be included only if <strong>ce-SRS-Enhancement</strong> is not included.</td>
<td></td>
</tr>
<tr>
<td><strong>ce-SwitchWithoutHO</strong></td>
<td></td>
</tr>
<tr>
<td>Indicate whether the UE supports switching between normal mode and enhanced coverage mode without handover.</td>
<td></td>
</tr>
<tr>
<td><strong>channelMeasRestriction</strong></td>
<td>TBD</td>
</tr>
<tr>
<td>Indicates for a particular transmission mode whether the UE supports channel measurement restriction.</td>
<td></td>
</tr>
<tr>
<td><strong>codebook-HARQ-ACK</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports determining HARQ ACK codebook size based on the DAI-based solution and/or the number of configured CCs. The first bit is set to “1” if the UE supports the DAI-based codebook size determination. The second bit is set to “1” if the UE supports the codebook determination based on the number of configured CCs.</td>
<td></td>
</tr>
<tr>
<td><strong>commMultipleTx</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports multiple transmissions of sidelink communication to different destinations in one SC period. If <strong>commMultipleTx-r13</strong> is set to supported then the UE support 8 transmitting sidelink processes.</td>
<td></td>
</tr>
<tr>
<td><strong>commSimultaneousTx</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports simultaneous transmission of EUTRA and sidelink communication (on different carriers) in all bands for which the UE indicated sidelink support in a band combination (using <strong>commSupportedBandsPerBC</strong>).</td>
<td></td>
</tr>
<tr>
<td><strong>commSupportedBands</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates the bands on which the UE supports sidelink communication, by an independent list of bands i.e. separate from the list of supported E-UTRA band, as indicated in <strong>supportedBandListEUTRA</strong>.</td>
<td></td>
</tr>
<tr>
<td><strong>commSupportedBandsPerBC</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates, for a particular band combination, the bands on which the UE supports simultaneous reception of EUTRA and sidelink communication. If the UE indicates support simultaneous transmission (using <strong>commSimultaneousTx</strong>), it also indicates, for a particular band combination, the bands on which the UE supports simultaneous transmission of EUTRA and sidelink communication. The first bit refers to the first band included in <strong>commSupportedBands</strong>, with value 1 indicating sidelink is supported.</td>
<td></td>
</tr>
<tr>
<td><strong>configN (in MIMO-CA-ParametersPerBoBCPerTM)</strong></td>
<td></td>
</tr>
<tr>
<td>If signalled, the field indicates for a particular transmission mode whether the UE supports non-precoded EBF/ FD-MIMO (class A) related configuration N for the concerned band combination.</td>
<td></td>
</tr>
<tr>
<td><strong>configN (in MIMO-UE-ParametersPerTM)</strong></td>
<td>TBD</td>
</tr>
<tr>
<td>Indicates for a particular transmission mode whether the UE supports non-precoded EBF/ FD-MIMO (class A) related configuration N for band combinations for which the concerned capabilities are not signalled.</td>
<td></td>
</tr>
<tr>
<td><strong>crossCarrierScheduling</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports cross carrier scheduling beyond 5 DL CCs.</td>
<td></td>
</tr>
<tr>
<td><strong>crossCarrierSchedulingLAA-DL</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports cross-carrier scheduling from a licensed carrier for LAA cell(s) for downlink. This field can be included only if <strong>downlinkLAA</strong> is included.</td>
<td></td>
</tr>
<tr>
<td><strong>crossCarrierSchedulingLAA-UL</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports cross-carrier scheduling from a licensed carrier for LAA cell(s) for uplink. This field can be included only if <strong>uplinkLAA</strong> is included.</td>
<td></td>
</tr>
<tr>
<td><strong>crs-DiscoverySignalsMeas</strong></td>
<td>FFS</td>
</tr>
<tr>
<td>Indicates whether the UE supports CRS based discovery signals measurement, and PDSCH/EPDCCH RE mapping with zero power CSI-RS configured for discovery signals.</td>
<td></td>
</tr>
<tr>
<td><strong>crs-InterfHandl</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports CRS interference handling.</td>
<td></td>
</tr>
<tr>
<td><strong>crs-InterfMitigationTM10</strong></td>
<td></td>
</tr>
<tr>
<td>The field defines whether the UE supports CRS interference mitigation in transmission mode 10. The UE supporting the <strong>crs-InterfMitigationTM10</strong> capability shall also support the <strong>crs-InterfHandl</strong> capability.</td>
<td></td>
</tr>
<tr>
<td>UE-EUTRA-Capability field descriptions</td>
<td>FDD/ TDD diff</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>crs-InterMitigationTM1toTM9</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports CRS interference mitigation (IM) while operating in the following transmission modes (TM): TM 1, TM 2, ..., TM 8 and TM 9. The UE shall not include the field if it does not support CRS IM in TMs 1-9. If the field is present, the UE supports CRS-IM on at least one arbitrary downlink CC for up to crs-InterMitigationTM1toTM9-r13 downlink CC CA configuration. The UE signals crs-InterMitigationTM1toTM9-r13 value to indicate the maximum crs-InterMitigationTM1toTM9-r13 downlink CC CA configuration where UE may apply CRS IM. For example, the UE sets “crs-InterMitigationTM1toTM9-r13 = 3” to indicate that the UE supports CRS-IM on at least one DL CC for supported non-CA, 2DL CA and 3DL CA configurations. The UE supporting the crs-InterMitigationTM1toTM9-r13 capability shall also support the crs-InterHandl-r11 capability.</td>
<td></td>
</tr>
<tr>
<td><strong>crs-LessDwPTS</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports TDD special subframe configuration 10 without CRS transmission on the 5th symbol of DwPTS, i.e. ssp10-CRS-LessDwPTS, as specified in TS 36.211 [17].</td>
<td></td>
</tr>
<tr>
<td><strong>csi-RS-DiscoverySignalsMeas</strong></td>
<td>FFS</td>
</tr>
<tr>
<td>Indicates whether the UE supports CSI-RS based discovery signals measurement. If this field is included, the UE shall also include crs-DiscoverySignalsMeas.</td>
<td></td>
</tr>
<tr>
<td><strong>csi-RS-DRS-RRM-MeasurementsLAA</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports performing RRM measurements on LAA cell(s) based on CSI-RS-based DRS. This field can be included only if downlinkLAA is included.</td>
<td></td>
</tr>
<tr>
<td><strong>csi-RS-EnhancementsTDD</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates for a particular transmission mode whether the UE supports CSI-RS enhancements applicable for TDD.</td>
<td></td>
</tr>
<tr>
<td><strong>csi-SubframeSet</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports REL-12 DL CSI subframe set configuration, REL-12 DL CSI subframe set dependent CSI measurement/feedback, configuration of up to 2 CSI-IM resources for a CSI process with no more than 4 CSI-IM resources for all CSI processes of one frequency if the UE supports tm10, configuration of two ZP-CSI-RS for tm1 to tm9, PDSCH RE mapping with two ZP-CSI-RS configurations, and EPDCCH RE mapping with two ZP-CSI-RS configurations if the UE supports EPDCCH. This field is only applicable for UEs supporting TDD.</td>
<td></td>
</tr>
<tr>
<td><strong>dataInactMon</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports the data inactivity monitoring as specified in TS 36.321 [6].</td>
<td></td>
</tr>
<tr>
<td><strong>dc-Support</strong></td>
<td>-</td>
</tr>
<tr>
<td>Including this field indicates that the UE supports synchronous DC and power control mode 1. Including this field for a band combination entry comprising of single band entry indicates that the UE supports intra-band contiguous DC. Including this field for a band combination entry comprising of two or more band entries, indicates that the UE supports DC for these bands and that the serving cells corresponding to a band entry shall belong to one cell group (i.e. MCG or SCG). Including field asynchronous indicates that the UE supports asynchronous DC and power control mode 2. Including this field for a TDD/FDD band combination indicates that the UE supports TDD/FDD DC for this band combination.</td>
<td></td>
</tr>
<tr>
<td><strong>delayBudgetReporting</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports delay budget reporting.</td>
<td></td>
</tr>
<tr>
<td><strong>demodulationEnhancements</strong></td>
<td>-</td>
</tr>
<tr>
<td>This field defines whether the UE supports advanced receiver in SFN scenario as specified in TS 36.101 [42].</td>
<td></td>
</tr>
<tr>
<td><strong>deviceType</strong></td>
<td>-</td>
</tr>
<tr>
<td>UE may set the value to &quot;noBenFromBalConsumpOpt&quot; when it does not foresee to particularly benefit from NW-based battery consumption optimisation. Absence of this value means that the device does benefit from NW-based battery consumption optimisation.</td>
<td></td>
</tr>
<tr>
<td><strong>diffFallbackCombReport</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates that the UE supports reporting of UE radio access capabilities for the CA band combinations asked by the eNB as well as, if any, reporting of different UE radio access capabilities for their fallback band combination as specified in TS 36.331 [5]. The UE does not report fallback combinations if their UE radio access capabilities are the same as the ones for the CA band combination asked by the eNB.</td>
<td></td>
</tr>
<tr>
<td><strong>differentFallbackSupported</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates that the UE supports different capabilities for at least one fallback case of this band combination.</td>
<td></td>
</tr>
<tr>
<td><strong>discInterFreqTx</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE support sidelink discovery announcements either a) on the primary frequency only or b) on other frequencies also, regardless of the UE configuration (e.g. CA, DC). The UE may set discInterFreqTx to supported when having a separate transmitter or if it can request sidelink discovery transmission gaps.</td>
<td></td>
</tr>
<tr>
<td>UE-EUTRA-Capability field descriptions</td>
<td>FDD/ TDD diff</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>discoverySignalsInDeactSCell</strong></td>
<td>FFS</td>
</tr>
<tr>
<td>Indicates whether the UE supports the behaviour on DL signals and physical channels when SCell is deactivated and discovery signals measurement is configured as specified in TS 36.211 [21, 6.11A]. This field is included only if UE supports carrier aggregation and includes crs-DiscoverySignalsMeas.</td>
<td></td>
</tr>
<tr>
<td><strong>discPeriodicSLSS</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports periodic (i.e. not just one time before sidelink discovery announcement) Sidelink Synchronization Signal (SLSS) transmission and reception for sidelink discovery.</td>
<td></td>
</tr>
<tr>
<td><strong>discScheduledResourceAlloc</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports transmission of discovery announcements based on network scheduled resource allocation.</td>
<td></td>
</tr>
<tr>
<td><strong>disc-UE-SelectedResourceAlloc</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports transmission of discovery announcements based on UE autonomous resource selection.</td>
<td></td>
</tr>
<tr>
<td><strong>disc-SLSS</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports Sidelink Synchronization Signal (SLSS) transmission and reception for sidelink discovery.</td>
<td></td>
</tr>
<tr>
<td><strong>discSupportedBands</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates the bands on which the UE supports sidelink discovery. One entry corresponding to each supported E-UTRA band, listed in the same order as in supportedBandListEUTRA.</td>
<td></td>
</tr>
<tr>
<td><strong>discSupportedProc</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates the number of processes supported by the UE for sidelink discovery.</td>
<td></td>
</tr>
<tr>
<td><strong>discSysInfoReporting</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports reporting of system information for inter-frequency/PLMN sidelink discovery.</td>
<td></td>
</tr>
<tr>
<td><strong>dl-256QAM</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports 256QAM in DL on the band.</td>
<td></td>
</tr>
<tr>
<td><strong>dmrs-Enhancements (in MIMO-CA-ParametersPerBoBCPerTM)</strong></td>
<td>-</td>
</tr>
<tr>
<td>If signalled, the field indicates for a particular transmission mode, that for the concerned band combination the DMRS enhancements are different than the value indicated by field dmrs-Enhancements in MIMO-UE-ParametersPerTM.</td>
<td></td>
</tr>
<tr>
<td><strong>dmrs-Enhancements (in MIMO-UE-ParametersPerTM)</strong></td>
<td>TBD</td>
</tr>
<tr>
<td>Indicates for a particular transmission mode whether the UE supports DMRS enhancements for the indicated transmission mode.</td>
<td></td>
</tr>
<tr>
<td><strong>dmrs-LessUpPTS</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports not to transmit DMRS for PUSCH in UpPTS.</td>
<td></td>
</tr>
<tr>
<td><strong>downlinkLAA</strong></td>
<td>-</td>
</tr>
<tr>
<td>Presence of the field indicates that the UE supports downlink LAA operation including identification of downlink transmissions on LAA cell(s) for full downlink subframes, decoding of common downlink control signalling on LAA cell(s), CSI feedback for LAA cell(s), RRM measurements on LAA cell(s) based on CRS-based DRS.</td>
<td></td>
</tr>
<tr>
<td><strong>drb-TypeSCG</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports SCG bearer.</td>
<td></td>
</tr>
<tr>
<td><strong>drb-TypeSplit</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports split bearer except for PDCP data transfer in UL.</td>
<td></td>
</tr>
<tr>
<td><strong>dtm</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports DTM in GERAN.</td>
<td></td>
</tr>
<tr>
<td><strong>e-CSFB-1XRTT</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced CS fallback to CDMA2000 1xRTT or not.</td>
<td></td>
</tr>
<tr>
<td><strong>e-CSFB-ConCPs-Mob1XRTT</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports concurrent enhanced CS fallback to CDMA2000 1xRTT and PS handover/ redirection to CDMA2000 HRPD.</td>
<td></td>
</tr>
<tr>
<td><strong>e-CSFB-dual-1XRTT</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced CS fallback to CDMA2000 1xRTT for dual Rx/Tx configuration. This bit can only be set to supported if tx-Config1XRTT and rx-Config1XRTT are both set to dual.</td>
<td></td>
</tr>
<tr>
<td><strong>e-HARQ-Pattern-FDD</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced HARQ pattern for TTI bundling operation for FDD.</td>
<td></td>
</tr>
<tr>
<td><strong>emptyUnicastRegion</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports unicast reception in subframes with empty unicast control region as described in TS 36.213 [23] Section 12. This field can be included only if unicast-fembsMixedSCell and crossCarrierScheduling are included.</td>
<td></td>
</tr>
<tr>
<td>Field Description</td>
<td>FDD/TDD diff</td>
</tr>
<tr>
<td>-----------------------------------------------------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>endingDwPTS</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports reception ending with a subframe occupied for a DwPTS-duration as described in TS 36.211 [21] and TS 36.213 [23]. This field can be included only if <code>downlinkLAA</code> is included.</td>
<td></td>
</tr>
<tr>
<td><strong>Enhanced-4TxCodebook</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced 4Tx codebook.</td>
<td></td>
</tr>
<tr>
<td><strong>enhancedDualLayerTDD</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced dual layer (PDSCH transmission mode 8) for TDD or not.</td>
<td></td>
</tr>
<tr>
<td><strong>ePDCCH</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE can receive DCI on UE specific search space on Enhanced PDCCH.</td>
<td></td>
</tr>
<tr>
<td><strong>e-RedirectionUTRA</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced redirection to UTRA TDD to multiple carrier frequencies both with and without using related SIB provided by <code>RRCConnectionRelease</code> or not.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedFreqPriorities</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports extended E-UTRA frequency priorities indicated by <code>cellReselectionSubPriority</code> field.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedLongDRX</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports extended long DRX cycle values of 5.12s and 10.24s in <code>RRC_CONNECTED</code>.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedMAC-LengthField</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports the MAC header with L field of size 16 bits as specified in TS 36.321 [6, 6.2.1].</td>
<td></td>
</tr>
<tr>
<td><strong>extendedMaxMeasId</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports extended number of measurement identities as defined by <code>maxMeasId-r12</code>.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedMaxObjectId</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports extended number of measurement object identities as defined by <code>maxObjectId-r13</code>.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedPollByte</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports extended pollByte values as defined by <code>pollByte-r14</code>.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedRLC-LI-Field</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports 15 bit RLC length indicator.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedRLC-SN-SO-Field</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports 16 bits of RLC sequence number and segmentation offset.</td>
<td></td>
</tr>
<tr>
<td><strong>extendedRSRQ-LowerRange</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports the extended RSRQ lower value range from -34dB to -19.5dB in measurement configuration and reporting as specified in TS 36.133 [16].</td>
<td></td>
</tr>
<tr>
<td><strong>fdd-HARQ-TimingTDD</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether UE supports FDD HARQ timing for TDD SCell when configured with TDD PCell.</td>
<td></td>
</tr>
<tr>
<td><strong>featureGroupIndicators, featureGroupIndRel9Add, featureGroupIndRel10</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>The definitions of the bits in the bit string are described in Annex B.1 (for <code>featureGroupIndicators</code> and <code>featureGroupIndRel9Add</code>) and in Annex C.1 (for <code>featureGroupIndRel10</code>).</td>
<td></td>
</tr>
<tr>
<td><strong>fembsMixedCell</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception with 15 kHz subcarrier spacings via MBSFN from FeMBMS/Unicast mixed cells on a frequency indicated in an MBMSInterestIndication message.</td>
<td></td>
</tr>
<tr>
<td><strong>fembsDedicatedCell</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception with 15 kHz subcarrier spacings via MBSFN from MBMS-dedicated cells on a frequency indicated in an MBMSInterestIndication message.</td>
<td></td>
</tr>
<tr>
<td><strong>fourLayerTM3-TM4</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports 4-layer spatial multiplexing for TM3 and TM4.</td>
<td></td>
</tr>
<tr>
<td><strong>fourLayerTM3-TM4-perCC</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports 4-layer spatial multiplexing for TM3 and TM4 for the component carrier.</td>
<td></td>
</tr>
<tr>
<td><strong>freqBandPriorityAdjustment</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports the prioritization of frequency bands in <code>multiBandInfoList</code> over the band in <code>freqBandIndicatorPriority-r12</code>.</td>
<td></td>
</tr>
<tr>
<td><strong>freqBandRetrieval</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports reception of <code>requestedFrequencyBands</code>.</td>
<td></td>
</tr>
</tbody>
</table>
### UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>halfDuplex</td>
<td>-</td>
</tr>
<tr>
<td>If <code>halfDuplex</code> is set to true, only half duplex operation is supported, otherwise full duplex operation is supported.</td>
<td></td>
</tr>
</tbody>
</table>

| incMonEUTRA                                           | No           |
| Indicates whether the UE supports increased number of E-UTRA carrier monitoring in RRC_IDLE and RRC_CONNECTED, as specified in TS 36.133 [16]. |

| incMonUTRA                                            | No           |
| Indicates whether the UE supports increased number of UTRA carrier monitoring in RRC_IDLE and RRC_CONNECTED, as specified in TS 36.133 [16]. |

| inDeviceCoexInd                                      | Yes          |
| Indicates whether the UE supports in-device coexistence indication as well as autonomous denial functionality. |

| inDeviceCoexInd-HardwareSharingInd                    | -            |
| Indicates whether the UE supports indicating hardware sharing problems when sending the `InDeviceCoexIndication`, as well as omitting the TDM assistance information. A UE that supports hardware sharing indication shall also indicate support of LAA operation. |

| inDeviceCoexInd-UL-CA                                 | -            |
| Indicates whether the UE supports UL CA related in-device coexistence indication. This field can be included only if `inDeviceCoexInd` is included. The UE supports `inDeviceCoexInd-UL-CA` in the same duplexing modes as it supports `inDeviceCoexInd`. |

| interBandTDD-CA-WithDifferentConfig                  | -            |
| Indicates whether the UE supports inter-band TDD carrier aggregation with different UL/DL configuration combinations. The first bit indicates UE supports the configuration combination of SCell DL subframes that are a subset of PCell and PSCell by SIB1 configuration and the configuration combination of SCell DL subframes that are a superset of PCell and PSCell by SIB1 configuration; the second bit indicates UE supports the configuration combination of SCell DL subframes that are neither superset nor subset of PCell and PSCell by SIB1 configuration. This field is included only if UE supports inter-band TDD carrier aggregation. |

| interferenceMeasRestriction                          | TBD          |
| Indicates whether the UE supports interference measurement restriction. |

| interFreqBandList                                     | -            |
| One entry corresponding to each supported E-UTRA band listed in the same order as in `supportedBandListEUTRA`. |

| interFreqNeedForGaps                                  | -            |
| Indicates need for measurement gaps when operating on the E-UTRA band given by the entry in `bandListEUTRA` or on the E-UTRA band combination given by the entry in `bandCombinationListEUTRA` and measuring on the E-UTRA band given by the entry in `interFreqBandList`. |

| interFreqProximityIndication                          | -            |
| Indicates whether the UE supports proximity indication for inter-frequency E-UTRAN CSG member cells. |

| interFreqRSTD-Measurement                             | Yes          |
| Indicates whether the UE supports inter-frequency RSTD measurements for OTDOA positioning [54]. |

| interFreqSI-AcquisitionForHO                           | Yes          |
| Indicates whether the UE supports, upon configuration of si-RequestForHO by the network, acquisition and reporting of relevant information using autonomous gaps by reading the SI from a neighbouring inter-frequency cell. |

| interRAT-BandList                                     | -            |
| One entry corresponding to each supported band of another RAT listed in the same order as in the `interRAT-Parameters`. |

| interRAT-NeedForGaps                                   | -            |
| Indicates need for DL measurement gaps when operating on the E-UTRA band given by the entry in `bandListEUTRA` or on the E-UTRA band combination given by the entry in `bandCombinationListEUTRA` and measuring on the inter-RAT band given by the entry in the `interRAT-BandList`. |

| interRAT-ParametersWLAN                                | -            |
| Indicates whether the UE supports WLAN measurements configured by `MeasObjectWLAN` with corresponding quantity and report configuration in the supported WLAN bands. |

<p>| interRAT-PS-HO-ToGERAN                                 | Yes          |
| Indicates whether the UE supports inter-RAT PS handover to GERAN or not. |</p>
<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>intraBandContiguousCC-InfoList</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates, per serving carrier of which the corresponding bandwidth class includes multiple serving carriers (i.e. bandwidth class B, C, D and so on), the maximum number of supported layers for spatial multiplexing in DL and the maximum number of CSI processes supported. The number of entries is equal to the number of component carriers in the corresponding bandwidth class. The UE shall support the setting indicated in each entry of the list regardless of the order of entries in the list. The UE shall include the field only if it supports 4-layer spatial multiplexing in transmission mode 5 for a subset of component carriers in the corresponding bandwidth class, or if the maximum number of supported layers for at least one component carrier is higher than supportedMIMO-CapabilityDL-r10 in the corresponding bandwidth class, or if the number of CSI processes for at least one component carrier is higher than supportedCSI-Proc-r11 in the corresponding band. This field may also be included for bandwidth class A but in such a case without including any sub-fields in IntraBandContiguousCC-Info-r12 (see NOTE 6).</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreqA3-CE-ModeA</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE when operating in CE Mode A supports eventA3 for intra-frequency neighbouring cells.</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreqA3-CE-ModeB</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE when operating in CE Mode B supports eventA3 for intra-frequency neighbouring cells.</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreq-CE-NeedForGaps</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates need for measurement gaps when operating in CE on the E-UTRA band given by the entry in supportedBandListEUTRA.</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreqHO-CE-ModeA</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE when operating in CE Mode A supports intra-frequency handover.</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreqHO-CE-ModeB</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE when operating in CE Mode B supports intra-frequency handover.</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreqProximityIndication</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports proximity indication for intra-frequency E-UTRAN CSG member cells.</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreqSi-AcquisitionForHO</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports, upon configuration of si-RequestForHO by the network, acquisition and reporting of relevant information using autonomous gaps by reading the SI from a neighbouring intra-frequency cell.</td>
<td></td>
</tr>
<tr>
<td><strong>k-Max (in MIMO-CA-ParametersPerBoBCPerTM)</strong></td>
<td>-</td>
</tr>
<tr>
<td>If signalled, the field indicates for a particular transmission mode the maximum number of NZP CSI RS resource configurations supported within a CSI process applicable for the concerned band combination.</td>
<td></td>
</tr>
<tr>
<td><strong>k-Max (in MIMO-UE-ParametersPerTM)</strong></td>
<td>TBD</td>
</tr>
<tr>
<td>Indicates for a particular transmission mode the maximum number of NZP CSI RS resource configurations supported within a CSI process applicable for band combinations for which the concerned capabilities are not signalled.</td>
<td></td>
</tr>
<tr>
<td><strong>locationReport</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports reporting of its geographical location information to eNB.</td>
<td></td>
</tr>
<tr>
<td><strong>loggedMBSFNMeasurements</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports logged measurements for MBSFN. A UE indicating support for logged measurements for MBSFN shall also indicate support for logged measurements in Idle mode.</td>
<td></td>
</tr>
<tr>
<td><strong>loggedMeasurementsIdle</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports logged measurements in Idle mode.</td>
<td></td>
</tr>
<tr>
<td><strong>logicalChannelSR-ProhibitTimer</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports the logicalChannelSR-ProhibitTimer as defined in TS 36.321 [6].</td>
<td></td>
</tr>
<tr>
<td><strong>longDRX-Command</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports Long DRX Command MAC Control Element.</td>
<td></td>
</tr>
<tr>
<td><strong>lwa</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports LTE-WLAN Aggregation (LWA). The UE which supports LWA shall also indicate support of interRAT-ParametersWLAN-r13.</td>
<td></td>
</tr>
<tr>
<td><strong>lwa-BufferSize</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports the layer 2 buffer sizes for “with support for split bearers” as defined in Table 4.1-3 and 4.1A-3 of TS 36.306 [5] for LWA.</td>
<td></td>
</tr>
<tr>
<td><strong>lwa-HO-WithoutWT-Change</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports handover where LWA configuration is retained without WT change and using LWA end-marker for PDCP key change indication for LWA operation.</td>
<td></td>
</tr>
<tr>
<td><strong>lwa-RLC-UM</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports RLC UM for LWA bearer.</td>
<td></td>
</tr>
<tr>
<td>UE-EUTRA-Capability field descriptions</td>
<td>FDD/ TDD diff</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>lwa-SplitBearer</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports the split LWA bearer (as defined in TS 36.300 [9]).</td>
<td></td>
</tr>
<tr>
<td><strong>lwa-UL</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports UL transmission over WLAN for LWA bearer.</td>
<td></td>
</tr>
<tr>
<td><strong>lwip</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports LTE/WLAN Radio Level Integration with IPsec Tunnel (LWIP). The UE which supports LWIP shall also indicate support of interRAT-ParametersWLAN-r13.</td>
<td></td>
</tr>
<tr>
<td><strong>lwip-Aggregation-DL, lwip-Aggregation-UL</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports aggregation of LTE and WLAN over DL/UL LWIP. The UE that indicates support of LWIP aggregation over DL or UL shall also indicate support of lwip.</td>
<td></td>
</tr>
<tr>
<td><strong>makeBeforeBreak</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports intra-frequency Make-Before-Break handover, and whether the UE which indicates dc-Parameters supports intra-frequency Make-Before-Break SeNB change, as defined in TS 36.300 [9].</td>
<td></td>
</tr>
<tr>
<td><strong>maximumCCsRetrieval</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether UE supports reception of requestedMaxCCsDL and requestedMaxCCsUL.</td>
<td></td>
</tr>
<tr>
<td><strong>maxLayersMIMO-Indication</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports the network configuration of maxLayersMIMO. If the UE supports fourLayerTM3-TM4 or intraBandContiguousCC-InfoList, UE supports the configuration of maxLayersMIMO for these two cases regardless of indicating maxLayersMIMO-Indication.</td>
<td></td>
</tr>
<tr>
<td><strong>maxNumberDecoding</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates the maximum number of blind decodes in UE-specific search space per UE in one subframe for CA with more than 5 CCs as defined in TS 36.213 [23] which is supported by the UE. The number of blind decodes supported by the UE is the field value * 32. Only values 5 to 32 can be used in this version of the specification.</td>
<td></td>
</tr>
<tr>
<td><strong>maxNumberROHC-ContextSessions</strong></td>
<td></td>
</tr>
<tr>
<td>Set to the maximum number of concurrently active ROHC contexts supported by the UE, excluding context sessions that leave all headers uncompressed. cs2 corresponds with 2 (context sessions), cs4 corresponds with 4 and so on. The network ignores this field if the UE supports none of the ROHC profiles in supportedROHC-Profiles. If the UE indicates both maxNumberROHC-ContextSessions and maxNumberROHC-ContextSessions-r14, same value shall be indicated.</td>
<td></td>
</tr>
<tr>
<td><strong>maxNumberUpdatedCSI-Proc</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates the maximum number of CSI processes to be updated across CCs.</td>
<td></td>
</tr>
<tr>
<td><strong>mbms-AsyncnDC</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception via MRB on a frequency indicated in an MBMSInterestIndication message, where (according to supportedBandCombination) the carriers that are or can be configured as serving cells in the MCG and the SCG are not synchronized. If this field is included, the UE shall also include mbms-SCell and mbms-NonServingCell. The field indicates that the UE supports the feature for xDD if mbms-SCell and mbms-NonServingCell are supported for xDD.</td>
<td></td>
</tr>
<tr>
<td><strong>mbms-NonServingCell</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception via MRB on a frequency indicated in an MBMSInterestIndication message, where (according to supportedBandCombination and to network synchronization properties) a serving cell may be additionally configured. If this field is included, the UE shall also include the mbms-SCell field.</td>
<td></td>
</tr>
<tr>
<td><strong>mbms-SCell</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception via MRB on a frequency indicated in an MBMSInterestIndication message, when an SCCell is configured on that frequency (regardless of whether the SCCell is activated or deactivated).</td>
<td></td>
</tr>
<tr>
<td><strong>measurementEnhancements</strong></td>
<td></td>
</tr>
<tr>
<td>This field defines whether UE supports measurement enhancements in high speed scenario as specified in TS 36.133 [16].</td>
<td></td>
</tr>
<tr>
<td><strong>mfbi-UTRA</strong></td>
<td></td>
</tr>
<tr>
<td>It indicates if the UE supports the signalling requirements of multiple radio frequency bands in a UTRA FDD cell, as defined in TS 25.307 [65].</td>
<td></td>
</tr>
<tr>
<td><strong>MIMO-BeamformedCapabilityList</strong></td>
<td></td>
</tr>
<tr>
<td>A list of pairs of (k-Max, n-MaxList) values with the n&lt;sup&gt;th&lt;/sup&gt; entry indicating the values that the UE supports for each CSI process in case n CSI processes would be configured.</td>
<td></td>
</tr>
<tr>
<td><strong>MIMO-CapabilityDL</strong></td>
<td></td>
</tr>
<tr>
<td>The number of supported layers for spatial multiplexing in DL. The field may be absent for category 0 and category 1 UE in which case the number of supported layers is 1.</td>
<td></td>
</tr>
</tbody>
</table>
### UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MIMO-CapabilityUL</strong></td>
<td></td>
</tr>
<tr>
<td>The number of supported layers for spatial multiplexing in UL. Absence of the field means that the number of supported layers is 1.</td>
<td></td>
</tr>
<tr>
<td><strong>MIMO-CA-ParametersPerBoBC</strong></td>
<td></td>
</tr>
<tr>
<td>A set of MIMO parameters provided per band of a band combination. In case a subfield is absent, the concerned capabilities are the same as indicated at the per UE level (i.e. by MIMO-UE-ParametersPerTM).</td>
<td></td>
</tr>
<tr>
<td><strong>modifiedMPR-Behavior</strong></td>
<td></td>
</tr>
<tr>
<td>Field encoded as a bit map, where at least one bit N is set to &quot;1&quot; if UE supports modified MPR/A-MPR behaviour N, see TS 36.101 [42]. All remaining bits of the field are set to &quot;0&quot;. The leading / leftmost bit (bit 0) corresponds to modified MPR/A-MPR behaviour 0, the next bit corresponds to modified MPR/A-MPR behaviour 1 and so on. Absence of this field means that UE does not support any modified MPR/A-MPR behaviour.</td>
<td></td>
</tr>
<tr>
<td><strong>multiACK-CSreporting</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports multi-cell HARQ ACK and periodic CSI reporting and SR on PUCCH format 3.</td>
<td></td>
</tr>
<tr>
<td><strong>multiBandInfoReport</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports the acquisition and reporting of multi band information for reportCGI.</td>
<td></td>
</tr>
<tr>
<td><strong>multiClusterPUSCH-WithinCC</strong></td>
<td>Yes</td>
</tr>
<tr>
<td><strong>multiNS-Pmax</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports the mechanisms defined for cells broadcasting NS-PmaxList.</td>
<td></td>
</tr>
<tr>
<td><strong>multipleTimingAdvance</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports multiple timing advances for each band combination listed in supportedBandCombination. If the band combination comprised of more than one band entry (i.e., inter-band or intra-band non-contiguous band combination), the field indicates that the same or different timing advances on different band entries are supported. If the band combination comprised of one band entry (i.e., intra-band contiguous band combination), the field indicates that the same or different timing advances across component carriers of the band entry are supported.</td>
<td></td>
</tr>
<tr>
<td><strong>multipleUplinkSPS</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports multiple uplink SPS and reporting SPS assistance information. A UE indicating multipleUplinkSPS shall also support V2X communication via Uu, as defined in TS 36.300 [9].</td>
<td></td>
</tr>
<tr>
<td><strong>must-CapabilityPerBand</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates that UE supports MUST as specified in 36.212 [22 5.3.3.1] on the band in the band combination.</td>
<td></td>
</tr>
<tr>
<td><strong>must-TM234-UpTo2Tx-r14</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates that the UE supports MUST operation for TM2/3/4 using up to 2Tx.</td>
<td></td>
</tr>
<tr>
<td><strong>must-TM89-UpToOneInterferingLayer-r14</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates that the UE supports MUST operation for TM8/9 with assistance information for up to 1 interfering layer.</td>
<td></td>
</tr>
<tr>
<td><strong>must-TM89-UpToThreeInterferingLayers-r14</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates that the UE supports MUST operation for TM8/9 with assistance information for up to 3 interfering layers.</td>
<td></td>
</tr>
<tr>
<td><strong>must-TM10-UpToOneInterferingLayer-r14</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates that the UE supports MUST operation for TM10 with assistance information for up to 1 interfering layer.</td>
<td></td>
</tr>
<tr>
<td><strong>must-TM10-UpToThreeInterferingLayers-r14</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates that the UE supports MUST operation for TM10 with assistance information for up to 3 interfering layers.</td>
<td></td>
</tr>
<tr>
<td>UE-EUTRA-Capability field descriptions</td>
<td>FDD/ TDD diff</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>naics-Capability-List</td>
<td></td>
</tr>
<tr>
<td>Indicates that UE supports NAICS, i.e. receiving assistance information from serving cell and using it to cancel or suppress interference of neighbouring cell(s) for at least one band combination. If not present, UE does not support NAICS for any band combination. The field numberOfNAICS-CapableCC indicates the number of component carriers where the NAICS processing is supported and the field numberOfAggregatedPRB indicates the maximum aggregated bandwidth across these of component carriers (expressed as a number of PRBs) with the restriction that NAICS is only supported over the full carrier bandwidth. The UE shall indicate the combination of (numberOfNAICS-CapableCC, numberOfNAICS-CapableCC) for every supported numberOfNAICS-CapableCC, e.g. if a UE supports {x CC, y PRBs} and {x-n CC, y-m PRBs} where n&gt;=1 and m&gt;=0, the UE shall indicate both.</td>
<td></td>
</tr>
<tr>
<td>- For numberOfNAICS-CapableCC = 1, UE signals one value for numberOfAggregatedPRB from the range (50, 75, 100);</td>
<td></td>
</tr>
<tr>
<td>- For numberOfNAICS-CapableCC = 2, UE signals one value for numberOfAggregatedPRB from the range (50, 75, 100, 125, 150, 175, 200);</td>
<td></td>
</tr>
<tr>
<td>- For numberOfNAICS-CapableCC = 3, UE signals one value for numberOfAggregatedPRB from the range (50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300);</td>
<td></td>
</tr>
<tr>
<td>- For numberOfNAICS-CapableCC = 4, UE signals one value for numberOfAggregatedPRB from the range (50, 100, 150, 200, 250, 300, 350, 400);</td>
<td></td>
</tr>
<tr>
<td>- For numberOfNAICS-CapableCC = 5, UE signals one value for numberOfAggregatedPRB from the range (50, 100, 150, 200, 250, 300, 350, 400, 450, 500).</td>
<td></td>
</tr>
<tr>
<td>ncsng</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports measurement NCSG Pattern Id 0, 1, 2 and 3, as specified in TS 36.133 [16]. If this field is included and the UE supports asynchronous DC, the UE shall support NCSG Pattern Id 0, 1, 2 and 3. If this field is included but the UE does not support asynchronous DC, only NCSG Pattern Id 0 and 1 shall be supported.</td>
<td></td>
</tr>
<tr>
<td>n-MaxList (in MIMO-UE-ParametersPerTM)</td>
<td>TBD</td>
</tr>
<tr>
<td>Indicates for a particular transmission mode the maximum number of NZP CSI RS ports supported within a CSI process applicable for band combinations for which the concerned capabilities are not signalled. For k-Max values exceeding 1, the UE shall include the field and signal k-Max minus 1 bits. The first bit indicates n-Max2, with value 0 indicating 8 and value 1 indicating 16. The second bit indicates n-Max3, with value 0 indicating 8 and value 1 indicating 16. The third bit indicates n-Max4, with value 0 indicating 8 and value 1 indicating 32. The fourth bit indicates n-Max5, with value 0 indicating 16 and value 1 indicating 32. The fifth bit indicates n-Max6, with value 0 indicating 16 and value 1 indicating 32. The sixth bit indicates n-Max7, with value 0 indicating 16 and value 1 indicating 32. The seventh bit indicates n-Max8, with value 0 indicating 16 and value 1 indicating 64.</td>
<td></td>
</tr>
<tr>
<td>n-MaxList (in MIMO-CA-ParametersPerBoBCPerTM)</td>
<td>-</td>
</tr>
<tr>
<td>If signalled, the field indicates for a particular transmission mode the maximum number of NZP CSI RS ports supported within a CSI process applicable for band the concerned combination. Further details are as indicated for n-MaxList in MIMO-UE-ParametersPerTM.</td>
<td></td>
</tr>
<tr>
<td>NonContiguousUL-RA-WithinCC-List</td>
<td>No</td>
</tr>
<tr>
<td>One entry corresponding to each supported E-UTRA band listed in the same order as in supportedBandListEUTRA.</td>
<td></td>
</tr>
<tr>
<td>nonPrecoded (in MIMO-UE-ParametersPerTM)</td>
<td>TBD</td>
</tr>
<tr>
<td>Indicates for a particular transmission mode the UE capabilities concerning non-precoded EBF/ FD-MIMO operation (class A) for band combinations for which the concerned capabilities are not signalled.</td>
<td></td>
</tr>
<tr>
<td>nonPrecoded (in MIMO-CA-ParametersPerBoBCPerTM)</td>
<td>-</td>
</tr>
<tr>
<td>If signalled, the field indicates for a particular transmission mode, the UE capabilities concerning non-precoded EBF/ FD-MIMO operation (class A) applicable for the concerned band combination.</td>
<td></td>
</tr>
<tr>
<td><strong>UE-EUTRA-Capability field descriptions</strong></td>
<td><strong>FDD/TDD diff</strong></td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td><strong>nonUniformGap</strong></td>
<td>Indicates whether the UE supports measurement non uniform Pattern Id 1, 2, 3 and 4 as specified in TS 36.133 [16].</td>
</tr>
<tr>
<td><strong>noResourceRestrictionForTTIBundling</strong></td>
<td>Indicate whether the UE supports TTI bundling operation without resource allocation restriction.</td>
</tr>
<tr>
<td><strong>nonCSG-SI-Reporting</strong></td>
<td>Indicates whether UE will report PLMN list from non-CSG cells.</td>
</tr>
<tr>
<td><strong>otdoa-UE-Assisted</strong></td>
<td>Indicates whether the UE supports UE-assisted OTDOA positioning [54].</td>
</tr>
<tr>
<td><strong>outOfSequenceGrantHandling</strong></td>
<td>Indicates whether the UE supports PUSCH transmissions with out of sequence UL grants as defined in TS 36.213 [22]. This field can be included only if uplinkLAA is included.</td>
</tr>
<tr>
<td><strong>overheatingInd</strong></td>
<td>Indicates whether the UE supports overheating assistance information.</td>
</tr>
<tr>
<td><strong>pdcch-CandidateReductions</strong></td>
<td>Indicates whether the UE supports PDCCH candidate reduction on UE specific search space as specified in TS 36.213 [23, 9.1.1].</td>
</tr>
<tr>
<td><strong>pdcp-SN-Extension</strong></td>
<td>Indicates whether the UE supports 15 bit length of PDCP sequence number.</td>
</tr>
<tr>
<td><strong>pdcp-SN-Extension-18bits</strong></td>
<td>Indicates whether the UE supports 18 bit length of PDCP sequence number.</td>
</tr>
<tr>
<td><strong>pdcp-TransferSplitUL</strong></td>
<td>Indicates whether the UE supports PDCP data transfer split in UL for the <em>drb-TypeSplit</em> as specified in TS 36.323 [8].</td>
</tr>
<tr>
<td><strong>pdsch-CollisionHandling</strong></td>
<td>Indicates whether the UE supports PDSCH collision handling as specified in TS 36.213 [23].</td>
</tr>
<tr>
<td><strong>perServingCellMeasurementGap</strong></td>
<td>Indicates whether the UE supports per serving cell measurement gap indication, as specified in TS 36.133 [16].</td>
</tr>
<tr>
<td><strong>phy-TDD-ReConfig-FDD-PCell</strong></td>
<td>Indicates whether the UE supports TDD UL/DL reconfiguration for TDD serving cell(s) via monitoring PDCCH with eIMTA-RNTI on a FDD PCell, and HARQ feedback according to UL and DL HARQ reference configurations. This bit can only be set to supported only if the UE supports FDD PCell and <em>phy-TDD-ReConfig-TDD-PCell</em> is set to supported.</td>
</tr>
<tr>
<td><strong>phy-TDD-ReConfig-TDD-PCell</strong></td>
<td>Indicates whether the UE supports TDD UL/DL reconfiguration for TDD serving cell(s) via monitoring PDCCH with eIMTA-RNTI on a TDD PCell, and HARQ feedback according to UL and DL HARQ reference configurations, and PUCCH format 3.</td>
</tr>
<tr>
<td><strong>pmi-Disabling</strong></td>
<td>Indicates whether the UE supports power preference indication.</td>
</tr>
<tr>
<td><strong>powerPrefInd</strong></td>
<td>Indicates whether the UE supports power preference indication.</td>
</tr>
<tr>
<td><strong>prach-Enhancements</strong></td>
<td>This field defines whether the UE supports random access preambles generated from restricted set type B in high speed scenario as specified in TS 36.211 [21].</td>
</tr>
<tr>
<td><strong>pucch-Format4</strong></td>
<td>Indicates whether the UE supports PUCCH format 4.</td>
</tr>
<tr>
<td><strong>pucch-Format5</strong></td>
<td>Indicates whether the UE supports PUCCH format 5.</td>
</tr>
<tr>
<td><strong>pucch-SCell</strong></td>
<td>Indicates whether the UE supports PUCCH on SCell.</td>
</tr>
<tr>
<td><strong>pusch-Enhancements</strong></td>
<td>Indicates whether the UE supports the PUSCH enhancement mode as specified in TS 36.211 [21] and TS 36.213 [23].</td>
</tr>
<tr>
<td><strong>pusch-FeedbackMode</strong></td>
<td>Indicates whether the UE supports PUSCH feedback mode 3-2.</td>
</tr>
<tr>
<td><strong>pusch-SRS-PowerControl-SubframeSet</strong></td>
<td>Indicates whether the UE supports subframe set dependent UL power control for PUSCH and SRS. This field is only applicable for UEs supporting TDD.</td>
</tr>
<tr>
<td><strong>rach-Less</strong></td>
<td>Indicates whether the UE supports RACH-less handover, and whether the UE which indicates <em>dc-Parameters</em> supports RACH-less SeNB change, as defined in TS 36.300 [9].</td>
</tr>
<tr>
<td><strong>rach-Report</strong></td>
<td>Indicates whether the UE supports delivery of rachReport.</td>
</tr>
</tbody>
</table>
### UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>rai-Support</strong></td>
<td>No</td>
</tr>
<tr>
<td>Defines whether the UE supports release assistance indication (RAI) as specified in TS 36.321 [6] for BL UEs.</td>
<td></td>
</tr>
<tr>
<td><strong>rclwi</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports RCLWI, i.e. reception of rclwi-Configuration. The UE which supports RCLWI shall also indicate support of interRAT-ParametersWLAN-r13. The UE which supports RCLWI and wlan-IW-RAN-Rules shall also support applying WLAN identifiers received in rclwi-Configuration for the access network selection and traffic steering rules when in RRC_IDLE.</td>
<td></td>
</tr>
<tr>
<td><strong>recommendedBitRate</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports the bit rate recommendation message from the eNB to the UE as specified in TS 36.321 [6, 6.1.3.13].</td>
<td></td>
</tr>
<tr>
<td><strong>recommendedBitRateQuery</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports the bit rate recommendation query message from the UE to the eNB as specified in TS 36.321 [6, 6.1.3.13]. If this field is included, the UE shall also include the recommendedBitRate field.</td>
<td></td>
</tr>
<tr>
<td><strong>reducedIntNonContComb</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE receives requestReducedIntNonContComb that requests the UE to exclude supported intra-band non-contiguous CA band combinations other than included in capability signalling as specified in TS 36.306 [5, 4.3.5.21].</td>
<td></td>
</tr>
<tr>
<td><strong>reducedIntNonContCombRequested</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates that the UE excluded supported intra-band non-contiguous CA band combinations other than included in capability signalling as specified in TS 36.306 [5, 4.3.5.21].</td>
<td></td>
</tr>
<tr>
<td><strong>retuningTimeInfoBandList</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates, for a particular pair of bands, the RF retuning time when switching between the band pair to transmit SRS on a PUSCH-less SCell as specified in 36.212 [22] and 36.213 [23]. If included, the UE shall include a number of entries as indicated in the following, and listed in the same order, as in bandParameterList for the concerned band combination: - For the first band, the UE shall include the same number of entries as in bandParameterList i.e. first entry corresponds to first band in bandParameterList and so on, - For the second band, the UE shall include one entry less i.e. first entry corresponds to the second band in bandParameterList and so on - And so on</td>
<td></td>
</tr>
<tr>
<td><strong>requestedBands</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates the frequency bands requested by E-UTRAN.</td>
<td></td>
</tr>
<tr>
<td><strong>requestedCCsDL, requestedCCsUL</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates the maximum number of CCs requested by E-UTRAN.</td>
<td></td>
</tr>
<tr>
<td><strong>requestedDiffFallbackCombList</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates the CA band combinations for which report of different UE capabilities is requested by E-UTRAN.</td>
<td></td>
</tr>
<tr>
<td><strong>rf-RetuningTimeDL</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates the interruption time on DL reception within a band pair during the RF retuning for switching between the band pair to transmit SRS on a PUSCH-less SCell. n0 represents 0 OFDM symbols, n0dot5 represents 0.5 OFDM symbols, n1 represents 1 OFDM symbol and so on. This field is mandatory present if switching between the band pair is supported.</td>
<td></td>
</tr>
<tr>
<td><strong>rf-RetuningTimeUL</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates the interruption time on UL transmission within a band pair during the RF retuning for switching between the band pair to transmit SRS on a PUSCH-less SCell. n0 represents 0 OFDM symbols, n0dot5 represents 0.5 OFDM symbols, n1 represents 1 OFDM symbol and so on. This field is mandatory present if switching between the band pair is supported.</td>
<td></td>
</tr>
<tr>
<td><strong>rlm-ReportSupport</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports RLM event and information reporting.</td>
<td></td>
</tr>
<tr>
<td><strong>rsrqMeasWideband</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE can perform RSRQ measurements with wider bandwidth.</td>
<td></td>
</tr>
<tr>
<td><strong>rsrq-OnAllSymbols</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE can perform RSRQ measurement on all OFDM symbols and also support the extended RSRQ upper value range from -3dB to 2.5dB in measurement configuration and reporting as specified in TS 36.133 [16].</td>
<td></td>
</tr>
<tr>
<td><strong>rs-SINR-Meas</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE can perform RS-SINR measurements in RRC_CONNECTED as specified in TS 36.214 [48].</td>
<td></td>
</tr>
<tr>
<td><strong>rssi-AndChannelOccupancyReporting</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports performing measurements and reporting of RSSI and channel occupancy. This field can be included only if downlinkLAA is included.</td>
<td></td>
</tr>
<tr>
<td><strong>UE-EUTRA-Capability field descriptions</strong></td>
<td><strong>FDD/TDD diff</strong></td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td><strong>scptm-AsyncDC</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception via SC-MRB on a frequency indicated in an MBMSInterestIndication message, where (according to supportedBandCombination) the carriers that are or can be configured as serving cells in the MCG and the SCG are not synchronized. If this field is included, the UE shall also include scptm-SCell and scptm-NonServingCell.</td>
<td></td>
</tr>
<tr>
<td><strong>scptm-NonServingCell</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception via SC-MRB on a frequency indicated in an MBMSInterestIndication message, where (according to supportedBandCombination and to network synchronization properties) a serving cell may be additionally configured. If this field is included, the UE shall also include the scptm-SCell field.</td>
<td></td>
</tr>
<tr>
<td><strong>scptm-Parameters</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Presence of the field indicates that the UE supports SC-PTM reception as specified in TS 36.306 [5].</td>
<td></td>
</tr>
<tr>
<td><strong>scptm-SCell</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports MBMS reception via SC-MRB on a frequency indicated in an MBMSInterestIndication message, when an SCell is configured on that frequency (regardless of whether the SCell is activated or deactivated).</td>
<td></td>
</tr>
<tr>
<td><strong>scptm-ParallelReception</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE in RRC_CONNECTED supports parallel reception in the same subframe of DL-SCH transport blocks transmitted using C-RNTI/Semi-Persistent Scheduling C-RNTI and using SC-RNTI/G-RNTI as specified in TS 36.306 [5].</td>
<td></td>
</tr>
<tr>
<td><strong>secondSlotStartingPosition</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports reception of subframes with second slot starting position as described in TS 36.211 [21] and TS 36.213 [23]. This field can be included only if downlinkLAA is included.</td>
<td></td>
</tr>
<tr>
<td><strong>shortMeasurementGap</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports 3ms measurement gap lengths as specified in TS 36.133 [16].</td>
<td></td>
</tr>
<tr>
<td><strong>shortSPS-IntervalFDD</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports uplink SPS intervals shorter than 10 subframes in FDD mode.</td>
<td></td>
</tr>
<tr>
<td><strong>shortSPS-IntervalTDD</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports uplink SPS intervals shorter than 10 subframes in TDD mode.</td>
<td></td>
</tr>
<tr>
<td><strong>simultaneousPUCCH-PUSCH</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports simultaneous reception and transmission on different bands for each band combination listed in supportedBandCombination. This field is only applicable for inter-band TDD band combinations. A UE indicating support of simultaneousRx-Tx and dc-Support-r12 shall support different UL/DL configurations between PCell and PSCell.</td>
<td></td>
</tr>
<tr>
<td><strong>simultaneousRx-Tx</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports simultaneous reception and transmission on different bands for each band combination listed in supportedBandCombination. This field is only applicable for inter-band TDD band combinations. A UE indicating support of simultaneousRx-Tx and dc-Support-r12 shall support different UL/DL configurations between PCell and PSCell.</td>
<td></td>
</tr>
<tr>
<td><strong>skipFallbackCombinations</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports receiving reception of requestSkipFallbackComb that requests UE to exclude fallback band combinations from capability signalling.</td>
<td></td>
</tr>
<tr>
<td><strong>skipFallbackCombRequested</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether requestSkipFallbackComb is requested by E-UTRAN.</td>
<td></td>
</tr>
<tr>
<td><strong>skipMonitoringDCI-Format0-1A</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether UE supports blind decoding reduction on UE specific search space by not monitoring DCI Format 0 and 1A as specified in TS 36.213 [23, 9.1.1].</td>
<td></td>
</tr>
<tr>
<td><strong>skipUplinkDynamic</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports skipping of UL transmission for an uplink grant indicated on PDCCH if no data is available for transmission as described in TS 36.321 [6].</td>
<td></td>
</tr>
<tr>
<td><strong>skipUplinkSPS</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports skipping of UL transmission for a configured uplink grant if no data is available for transmission as described in TS 36.321 [6].</td>
<td></td>
</tr>
<tr>
<td><strong>sl-CongestionControl</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports Channel Busy Ratio measurement and reporting of Channel Busy Ratio measurement results to eNB for V2X sidelink communication.</td>
<td></td>
</tr>
<tr>
<td><strong>slss-TxRx</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports SLSS/PSBCH transmission and reception in UE autonomous resource selection mode and eNB scheduled mode in a band for V2X sidelink communication.</td>
<td></td>
</tr>
<tr>
<td><strong>spatialBundling-HARQ-ACK</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether UE supports HARQ-ACK spatial bundling on PUCCH or PUSCH as specified in TS 36.213 [23, 7.3.1 and 7.3.2].</td>
<td></td>
</tr>
<tr>
<td>UE-EUTRA-Capability field descriptions</td>
<td>FDD/TDD diff</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>srs-Enhancements</strong></td>
<td>TBD</td>
</tr>
<tr>
<td>Indicates whether the UE supports SRS enhancements.</td>
<td></td>
</tr>
<tr>
<td><strong>srs-EnhancementsTDD</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports TDD specific SRS enhancements.</td>
<td></td>
</tr>
<tr>
<td><strong>srvcc-FromUTRA-FDD-ToGERAN</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA FDD PS HS to GERAN CS.</td>
<td></td>
</tr>
<tr>
<td><strong>srvcc-FromUTRA-FDD-ToUTRA-FDD</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA FDD PS HS to UTRA FDD CS.</td>
<td></td>
</tr>
<tr>
<td><strong>srvcc-FromUTRA-TDD128-ToGERAN</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA TDD 1.28Mcps PS HS to GERAN CS.</td>
<td></td>
</tr>
<tr>
<td><strong>srvcc-FromUTRA-TDD128-ToUTRA-TDD128</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA TDD 1.28Mcps PS HS to UTRA TDD 1.28Mcps CS.</td>
<td></td>
</tr>
<tr>
<td><strong>ss-CCH-InterfHandl</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports synchronisation signal and common channel interference handling.</td>
<td></td>
</tr>
<tr>
<td><strong>standaloneGNSS-Location</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE is equipped with a standalone GNSS receiver that may be used to provide detailed location information in RRC measurement report and logged measurements.</td>
<td></td>
</tr>
<tr>
<td><strong>subcarrierSpacingMBMS-khz7dot5, subcarrierSpacingMBMS-khz1dot25</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates the supported subcarrier spacings for MBSFN subframes in addition to 15 kHz subcarrier spacing. subcarrierSpacingMBMS-khz7dot5 and subcarrierSpacingMBMS-khz1dot25 indicates that the UE supports 1.25 and 7.5 kHz respectively for MBSFN subframes as described in TS36.211 [21, 6.12]. This field is included only if fembmsMixedCell or fembmsDedicatedCell is included.</td>
<td></td>
</tr>
<tr>
<td><strong>supportedBandCombination</strong></td>
<td>-</td>
</tr>
<tr>
<td>Includes the supported CA band combinations, if any, and may include all the supported non-CA bands.</td>
<td></td>
</tr>
<tr>
<td><strong>supportedBandCombinationAdd-r11</strong></td>
<td>-</td>
</tr>
<tr>
<td>Includes additional supported CA band combinations in case maximum number of CA band combinations of supportedBandCombination is exceeded.</td>
<td></td>
</tr>
<tr>
<td><strong>SupportedBandCombinationAdd-v1110, SupportedBandCombinationAdd-v1250, SupportedBandCombinationAdd-v1270, SupportedBandCombinationAdd-v1320, SupportedBandCombinationAdd-v1380, SupportedBandCombinationAdd-v1430, SupportedBandCombinationAdd-v1450</strong></td>
<td>-</td>
</tr>
<tr>
<td>If included, the UE shall include the same number of entries, and listed in the same order, as in SupportedBandCombinationAdd-r11.</td>
<td></td>
</tr>
<tr>
<td><strong>SupportedBandCombinationExt, SupportedBandCombination-v1090, SupportedBandCombination-v1010, SupportedBandCombination-v1130, SupportedBandCombination-v1250, SupportedBandCombination-v1270, SupportedBandCombination-v1320, SupportedBandCombination-v1380, SupportedBandCombination-v1430, SupportedBandCombination-v1450</strong></td>
<td>-</td>
</tr>
<tr>
<td>If included, the UE shall include the same number of entries, and listed in the same order, as in supportedBandCombination-r10.</td>
<td></td>
</tr>
<tr>
<td><strong>supportedBandCombinationReduced</strong></td>
<td>-</td>
</tr>
<tr>
<td>Includes the supported CA band combinations, and may include the fallback CA combinations specified in TS 36.101 [42, 4.3A]. This field also indicates whether the UE supports reception of requestReducedFormat.</td>
<td></td>
</tr>
<tr>
<td><strong>SupportedBandCombinationReduced-v1320, SupportedBandCombinationReduced-v1380, SupportedBandCombinationReduced-v1430, SupportedBandCombinationReduced-v1450</strong></td>
<td>-</td>
</tr>
<tr>
<td>If included, the UE shall include the same number of entries, and listed in the same order, as in supportedBandCombinationReduced-r13.</td>
<td></td>
</tr>
<tr>
<td><strong>SupportedBandGERAN</strong></td>
<td>No</td>
</tr>
<tr>
<td>GERAN band as defined in TS 45.005 [20].</td>
<td></td>
</tr>
<tr>
<td><strong>SupportedBandList1XRTT</strong></td>
<td>-</td>
</tr>
<tr>
<td>One entry corresponding to each supported CDMA2000 1xRTT band class.</td>
<td></td>
</tr>
<tr>
<td><strong>SupportedBandListEUTRA</strong></td>
<td>-</td>
</tr>
<tr>
<td>Includes the supported E-UTRA bands. This field shall include all bands which are indicated in BandCombinationParameters.</td>
<td></td>
</tr>
</tbody>
</table>
### UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupportedBandListEUTRA-v9e0, SupportedBandListEUTRA-v1250, SupportedBandListEUTRA-v1310, SupportedBandListEUTRA-v1320</td>
<td>-</td>
</tr>
<tr>
<td>If included, the UE shall include the same number of entries, and listed in the same order, as in supportedBandListEUTRA (i.e. without suffix).</td>
<td></td>
</tr>
<tr>
<td>SupportedBandListGERAN</td>
<td>No</td>
</tr>
<tr>
<td>SupportedBandListHRPD</td>
<td>-</td>
</tr>
<tr>
<td>One entry corresponding to each supported CDMA2000 HRPD band class.</td>
<td></td>
</tr>
<tr>
<td>supportedBandListWLAN</td>
<td>-</td>
</tr>
<tr>
<td>Indicates the supported WLAN bands by the UE.</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-FDD</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.101 [17].</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-TDD128</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.102 [18].</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-TDD384</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.102 [18].</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-TDD768</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.102 [18].</td>
<td></td>
</tr>
<tr>
<td>supportedBandwidthCombinationSet</td>
<td>-</td>
</tr>
<tr>
<td>The <code>supportedBandwidthCombinationSet</code> indicated for a band combination is applicable to all bandwidth classes indicated by the UE in this band combination.</td>
<td></td>
</tr>
<tr>
<td>Field encoded as a bit map, where bit N is set to &quot;1&quot; if UE support Bandwidth Combination Set N for this band combination, see 36.101 [42]. The leading / leftmost bit (bit 0) corresponds to the Bandwidth Combination Set 0, the next bit to the Bandwidth Combination Set 1 and so on. The UE shall neither include the field for a non-CA band combination, nor for a CA band combination for which the UE only supports Bandwidth Combination Set 0.</td>
<td></td>
</tr>
<tr>
<td>supportedCellGrouping</td>
<td>-</td>
</tr>
<tr>
<td>This field indicates for which mapping of serving cells to cell groups (i.e. MCG or SCG) the UE supports asynchronous DC. This field is only present for a band combination with more than two but less than six band entries where the UE supports asynchronous DC. If this field is not present but asynchronous operation is supported, the UE supports all possible mappings of serving cells to cell groups for the band combination. The bitmap size is selected based on the number of entries in the combinations, i.e., in case of three entries, the bitmap corresponding to <code>threeEntries</code> is selected and so on.</td>
<td></td>
</tr>
<tr>
<td>A bit in the bit string set to 1 indicates that the UE supports asynchronous DC for the cell grouping option represented by the concerned bit position. Each bit position represents a different cell grouping option, as illustrated by a table, see NOTE 5. A cell grouping option is represented by a number of bits, each representing a particular band entry in the band combination with the left-most bit referring to the band listed first in the band combination, etc. Value 0 indicates that the carriers of the corresponding band entry are mapped to a first cell group, while value 1 indicates that the carriers of the corresponding band entry are mapped to a second cell group.</td>
<td></td>
</tr>
<tr>
<td>It is noted that the mapping table does not include entries with all bits set to the same value (0 or 1) as this does not represent a DC scenario (i.e. indicating that the UE supports that all carriers of the corresponding band entry are in one cell group).</td>
<td></td>
</tr>
<tr>
<td>supportedCSI-Proc</td>
<td>-</td>
</tr>
<tr>
<td>Indicates the maximum number of CSI processes supported on a component carrier within a band. Value n1 corresponds to 1 CSI process, value n3 corresponds to 3 CSI processes, and value n4 corresponds to 4 CSI processes. If this field is included, the UE shall include the same number of entries listed in the same order as in <code>BandParameters</code>. If the UE supports at least 1 CSI process on any component carrier, then the UE shall include this field in all bands in all band combinations.</td>
<td></td>
</tr>
<tr>
<td>supportedNAICS-2CRS-AP</td>
<td>-</td>
</tr>
<tr>
<td>If included, the UE supports NAICS for the band combination. The UE shall include a bitmap of the same length, and in the same order, as in <code>naics-Capability-List</code>, to indicate 2 CRS AP NAICS capability of the band combination. The first/ leftmost bit points to the first entry of <code>naics-Capability-List</code>, the second bit points to the second entry of <code>naics-Capability-List</code>, and so on. For band combinations with a single component carrier, UE is only allowed to indicate <code>[(numberOfNAICS-CapableCC, numberOfAggregatedPRB)] = (1, 100)</code> if NAICS is supported.</td>
<td></td>
</tr>
<tr>
<td>supportRohcContextContinue</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports ROHC context continuation operation where the UE does not reset the current ROHC context upon handover.</td>
<td></td>
</tr>
<tr>
<td>supportedROHC-Profiles</td>
<td>-</td>
</tr>
<tr>
<td>Indicates the ROHC profiles that UE supports in both uplink and downlink.</td>
<td></td>
</tr>
<tr>
<td>supportedUplinkOnlyROHC-Profiles</td>
<td>-</td>
</tr>
<tr>
<td>Indicates the ROHC profiles that UE supports in uplink and not in downlink, see TS 36.323 [8].</td>
<td></td>
</tr>
</tbody>
</table>
### UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tdd-SpecialSubframe</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports TDD special subframe defined in TS 36.211 [21]. A UE shall indicate <strong>tdd-SpecialSubframe-r11</strong> if it supports the TDD special subframes ssp7 and ssp9. A UE shall indicate <strong>tdd-SpecialSubframe-r14</strong> if it supports the TDD special subframe ssp10.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tdd-FDD-CA-PCellDuplex</strong></td>
<td>-</td>
</tr>
<tr>
<td>The presence of this field indicates the UE supports TDD/FDD CA in any supported band combination including at least one FDD band with <strong>bandParametersUL</strong> and at least one TDD band with <strong>bandParametersUL</strong>. The first bit is set to &quot;1&quot; if UE supports the TDD PCell. The second bit is set to &quot;1&quot; if UE supports FDD PCell. This field is included only if the UE supports band combination including at least one FDD band with <strong>bandParametersUL</strong> and at least one TDD band with <strong>bandParametersUL</strong>. If this field is included, the UE shall set at least one of the bits as &quot;1&quot;. If this field is included with DC, then it is applicable within a CG, and the presence of this field indicates the capability of the UE to support TDD/FDD CA with at least one FDD band and at least one TDD band in the same CG, with the value indicating the support for TDD/FDD PCell (PSCell).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tdd-TTI-Bundling</strong></td>
<td>No</td>
</tr>
<tr>
<td>The presence of this field indicates whether the UE supporting TDD special subframe configuration 10 also supports TTI bundling for TDD configuration 2 and 3 when PUSCH transmission in UpPTS is configured, see TS 36.213 [23, 8.0]. If this field is present, the <strong>tdd-SpecialSubframe-r14</strong> shall be present.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>timerT312</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports T312.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm5-FDD</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports the PDSCH transmission mode 5 in FDD.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm5-TDD</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports the PDSCH transmission mode 5 in TDD.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm6-CE-ModeA</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports tm6 operation in CE mode A, see TS 36.213 [23, 7.2.3]. This field can be included only if <strong>ce-ModeA</strong> is included.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm9-CE-ModeA</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports tm9 operation in CE mode A, see TS 36.213 [23, 7.2.3]. This field can be included only if <strong>ce-ModeA</strong> is included.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm9-CE-ModeB</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports tm9 operation in CE mode B, see TS 36.213 [23, 7.2.3]. This field can be included only if <strong>ce-ModeB</strong> is included.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm9-LAA</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports tm9 operation on LAA cell(s). This field can be included only if <strong>downlinkLAA</strong> is included.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm9-With-8Tx-FDD</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports for FDD when not operating in CE mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>tm10-LAA</strong></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports tm10 operation on LAA cell(s). This field can be included only if <strong>downlinkLAA</strong> is included.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>twoAntennaPortsForPUCCH</strong></td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports transmit antenna selection for this UL band in the band combination as described in TS 36.213 [23, 8.2 and 8.7]. The field <strong>txAntennaSwitchUL</strong> indicates the entry number of the first-listed band with UL in the band combination that affects this DL. The field <strong>txAntennaSwitchDL</strong> indicates the entry number of the first-listed band with UL in the band combination that switches together with this UL. Value 1 means first entry, value 2 means second entry and so on. All DL and UL that switch together indicate the same entry number.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>txDiv-PUCCH1b-ChSelect</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports transmit diversity for PUCCH format 1b with channel selection.</td>
<td></td>
</tr>
<tr>
<td>Field Description</td>
<td>FDD/TDD diff</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>uci-PUSCH-Ext</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports an extension of UCI delivering more than 22 HARQ-ACK bits on PUSCH as specified in TS 36.212 [22, 5.2.2.6] and TS 36.213 [23, 8.6.3].</td>
<td></td>
</tr>
<tr>
<td>ue-AutonomousWithFullSensing</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports transmitting PSCCH/PSSCH using UE autonomous resource selection mode with full sensing (i.e., continuous channel monitoring) for V2X sidelink communication and the UE supports maximum transmit power associated with Power class 3 V2X UE, see TS 36.101 [42].</td>
<td></td>
</tr>
<tr>
<td>ue-AutonomousWithPartialSensing</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports transmitting PSCCH/PSSCH using UE autonomous resource selection mode with partial sensing (i.e., channel monitoring in a limited set of subframes) for V2X sidelink communication and the UE supports maximum transmit power associated with Power class 3 V2X UE, see TS 36.101 [42].</td>
<td></td>
</tr>
<tr>
<td>ue-Category</td>
<td>-</td>
</tr>
<tr>
<td>UE category as defined in TS 36.306 [5]. Set to values 1 to 12 in this version of the specification.</td>
<td></td>
</tr>
<tr>
<td>ue-CategoryDL</td>
<td>-</td>
</tr>
<tr>
<td>UE DL category as defined in TS 36.306 [5]. Value n17 corresponds to UE category 17, value m1 corresponds to UE category M1, value oneBis corresponds to UE category 1bis, value m2 corresponds to UE category M2. For ASN.1 compatibility, a UE indicating DL category 0, m1 or m2 shall also indicate any of the categories (1..5) in ue-Category (without suffix), which is ignored by the eNB. A UE indicating category oneBis shall also indicate UE category 1 in ue-Category (without suffix), and a UE indicating UE category m2 shall also indicate UE category m1. The field ue-CategoryDL is set to values 0, m1, oneBis, m2, 4, 6, 7, 9 to 16, n17, 18, 19, 20, 21 in this version of the specification.</td>
<td></td>
</tr>
<tr>
<td>ue-CategoryUL</td>
<td>-</td>
</tr>
<tr>
<td>UE UL category as defined in TS 36.306 [5]. Value n14 corresponds to UE category 14, value m1 corresponds to UE category M1, value oneBis corresponds to UE category 1bis. The field ue-CategoryUL is set to values m1, 0, oneBis, 3, 5, 7, 8, 13, n14 or 15 to 20 in this version of the specification. Value n21 corresponds to UE category 21.</td>
<td></td>
</tr>
<tr>
<td>ue-CA-PowerClass-N</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports UE power class N in the E-UTRA band combination, see TS 36.101 [42] and TS 36.307 [78]. If ue-CA-PowerClass-N is not included, UE supports the default UE power class in the E-UTRA band combination, see TS 36.101 [42].</td>
<td></td>
</tr>
<tr>
<td>ue-CE-NeedULGaps</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE needs uplink gaps during continuous uplink transmission in FDD as specified in TS 36.211 [21] and TS 36.306 [5].</td>
<td></td>
</tr>
<tr>
<td>ue-PowerClass-N, ue-PowerClass-5</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports UE power class 1, 2, 4 or 5 in the E-UTRA band, see TS 36.101 [42] and TS 36.307 [79]. UE includes either ue-PowerClass-N or ue-PowerClass-5. If neither ue-PowerClass-N nor ue-PowerClass-5 is included, UE supports the default UE power class in the E-UTRA band, see TS 36.101 [42].</td>
<td></td>
</tr>
<tr>
<td>ue-Rx-TxTimeDiffMeasurements</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports Rx - Tx time difference measurements.</td>
<td></td>
</tr>
<tr>
<td>ue-SpecificRefSigsSupported</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports SSTD measurements between the PCell and the PSCell as specified in TS 36.214 [48] and TS 36.133 [16].</td>
<td></td>
</tr>
<tr>
<td>ue-TxAntennaSelectionSupported</td>
<td>Yes</td>
</tr>
<tr>
<td>TRUE indicates that the UE is capable of supporting UE transmit antenna selection such that all the supported bands are affected by transmit antenna switching, as described in TS 36.213 [23, 8.7], E-UTRAN ignores this field if bandParameterList-v1380 is included.</td>
<td></td>
</tr>
<tr>
<td>ul-CoMP</td>
<td>No</td>
</tr>
<tr>
<td>Indicates whether the UE supports UL Coordinated Multi-Point operation.</td>
<td></td>
</tr>
<tr>
<td>ul-64QAM</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports 64QAM in UL on the band. This field is only present when the field ue-CategoryUL indicates UL UE category that supports UL 64QAM, see TS 36.306 [5, Table 4.1A-2]. If the field is present for one band, the field shall be present for all bands including downlink only bands.</td>
<td></td>
</tr>
<tr>
<td>ul-256QAM</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports 256QAM in UL on the band. This field is only present when the field ue-CategoryUL indicates UL UE category that supports 256QAM in UL, see TS 36.306 [5, Table 4.1A-2]. The UE includes this field only if the field ul-256QAM-perCC-InfoList is not included.</td>
<td></td>
</tr>
</tbody>
</table>
### UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ul-256QAM-perCC-InfoList</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates, per serving carrier of which the corresponding bandwidth class includes multiple serving carriers (i.e. bandwidth class B, C, D and so on), whether the UE supports 256QAM in the band combination. The number of entries is equal to the number of component carriers in the corresponding bandwidth class. The UE shall support the setting indicated in each entry of the list regardless of the order of entries in the list. This field is only present when the field <code>ue CategoryUL</code> indicates UL UE category that supports 256QAM in UL, see TS 36.306 [5, Table 4.1A-2]. The UE includes this field only if the field <code>ul-256QAM</code> is not included.</td>
<td></td>
</tr>
<tr>
<td><strong>ul-PDCP-Delay</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports UL PDCP Packet Delay per QCI measurement as specified in TS 36.314 [71].</td>
<td></td>
</tr>
<tr>
<td><strong>uplinkLAA</strong></td>
<td></td>
</tr>
<tr>
<td>Presence of the field indicates that the UE supports uplink LAA operation.</td>
<td></td>
</tr>
<tr>
<td><strong>uss-BlindDecodingAdjustment</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports blind decoding adjustment on UE specific search space as defined in TS 36.213 [22]. This field can be included only if <code>uplinkLAA</code> is included.</td>
<td></td>
</tr>
<tr>
<td><strong>uss-BlindDecodingReduction</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports blind decoding reduction on UE specific search space by not monitoring DCI format 0A/0B/4A/4B as defined in TS 36.213 [22]. This field can be included only if <code>uplinkLAA</code> is included.</td>
<td></td>
</tr>
<tr>
<td><strong>unicastFrequencyHopping</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports frequency hopping for unicast MPDCCH/PDSCH (configured by <code>mpdcch-pdsch-HoppingConfig</code>) and unicast PUSCH (configured by <code>pusch-HoppingConfig</code>).</td>
<td></td>
</tr>
<tr>
<td><strong>unicast-fembmsMixedSCell</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports unicast reception from FeMBMS/Unicast mixed cell. This field is included only if UE supports carrier aggregation.</td>
<td></td>
</tr>
<tr>
<td><strong>utran-ProximityIndication</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports proximity indication for UTRAN CSG member cells.</td>
<td></td>
</tr>
<tr>
<td><strong>utran-SI-AcquisitionForHO</strong></td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports, upon configuration of <code>si-RequestForHO</code> by the network, acquisition and reporting of relevant information using autonomous gaps by reading the SI from a neighbouring UMTS cell.</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-BandwidthClass</strong></td>
<td></td>
</tr>
<tr>
<td>The bandwidth class for V2X sidelink transmission supported by the UE as defined in TS 36.101 [42, Table 5.6G.1-3]. The UE explicitly includes all the supported bandwidth class combinations for V2X sidelink transmission or reception in the band combination signalling. Support for one bandwidth class does not implicitly indicate support for another bandwidth class.</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-eNB-Scheduled</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports transmitting PSCCH/PSSCH using dynamic scheduling, SPS in ENB scheduled mode for V2X sidelink communication, reporting SPS assistance information and the UE supports maximum transmit power associated with Power class 3 V2X UE, see TS 36.101 [42] in a band.</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-HighPower</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports maximum transmit power associated with Power class 2 V2X UE for V2X sidelink transmission in a band, see TS 36.101 [42].</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-HighReception</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports reception of 20 PSCCH in a subframe and decoding of 136 RBs per subframe counting both PSCCH and PSSCH in a band for V2X sidelink communication.</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-nonAdjacentPSCCH-PSSCH</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports transmission and reception in the configuration of non-adjacent PSCCH and PSSCH for V2X sidelink communication.</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-numberTxRxTiming</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates the number of multiple reference TX/RX timings counted over all the configured sidelink carriers for V2X sidelink communication.</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-SupportedBandCombinationList</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates the supported band combination list on which the UE supports simultaneous transmission and/or reception of V2X sidelink communication.</td>
<td></td>
</tr>
<tr>
<td><strong>v2x-SupportedTxBandCombListPerBC, v2x-SupportedRxBandCombListPerBC</strong></td>
<td></td>
</tr>
<tr>
<td>Indicates, for a particular band combination of EUTRA, the supported band combination list among <code>v2x-SupportedBandCombinationList</code> on which the UE supports simultaneous transmission or reception of EUTRA and V2X sidelink communication respectively. The first bit refers to the first entry of <code>v2x-SupportedBandCombinationList</code>, with value 1 indicating V2X sidelink transmission/reception is supported.</td>
<td></td>
</tr>
<tr>
<td><strong>UE-EUTRA-Capability field descriptions</strong></td>
<td><strong>FDD/TDD diff</strong></td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td><code>v2x-TxWithShortResvInterval</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports 20 ms and 50 ms resource reservation periods for UE autonomous resource selection and eNB scheduled resource allocation for V2X sidelink communication.</td>
<td>-</td>
</tr>
<tr>
<td><code>voiceOverPS-HS-UTRA-FDD</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports IMS voice according to GSMA IR.58 profile in UTRA FDD.</td>
<td>-</td>
</tr>
<tr>
<td><code>voiceOverPS-HS-UTRA-TDD128</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports IMS voice in UTRA TDD 1.28Mcps.</td>
<td>-</td>
</tr>
<tr>
<td><code>whiteCellList</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports EUTRA white cell listing to limit the set of cells applicable for measurements.</td>
<td>-</td>
</tr>
<tr>
<td><code>wlan-IW-RAN-Rules</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports RAN-assisted WLAN interworking based on access network selection and traffic steering rules.</td>
<td>-</td>
</tr>
<tr>
<td><code>wlan-IW-ANDSF-Policies</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports RAN-assisted WLAN interworking based on ANDSF policies.</td>
<td>-</td>
</tr>
<tr>
<td><code>wlan-MAC-Address</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates the WLAN MAC address of this UE.</td>
<td>-</td>
</tr>
<tr>
<td><code>wlan-PeriodicMeas</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports periodic reporting of WLAN measurements.</td>
<td>-</td>
</tr>
<tr>
<td><code>wlan-ReportAnyWLAN</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE supports reporting of WLANs not listed in the <code>measObjectWLAN</code>.</td>
<td>-</td>
</tr>
<tr>
<td><code>wlan-SupportedDataRate</code></td>
<td>-</td>
</tr>
<tr>
<td>Indicates the maximum WLAN data rate supported by the UE over all LWA bearers. Actual value of supported data rate is field value * 10 Mbps (i.e., value 1 corresponds to 10 Mbps, value 2 corresponds to 20 Mbps and so on).</td>
<td>-</td>
</tr>
</tbody>
</table>

**NOTE 1:** The IE `UE-EUTRA-Capability` does not include AS security capability information, since these are the same as the security capabilities that are signalled by NAS. Consequently, AS need not provide "man-in-the-middle" protection for the security capabilities.

**NOTE 2:** The column FDD/TDD diff indicates if the UE is allowed to signal, as part of the additional capabilities for an XDD mode i.e. within `UE-EUTRA-CapabilityAddXDD-Mode-xNM`, a different value compared to the value signalled elsewhere within `UE-EUTRA-Capability` (i.e. the common value, supported for both XDD modes). A '-' is used to indicate that it is not possible to signal different values (used for fields for which the field description is provided for other reasons). Annex E specifies for which TDD and FDD serving cells a UE supporting TDD/FDD CA shall support a capability for which it indicates support within the capability signalling.

**NOTE 3:** The `BandCombinationParameters` for the same band combination can be included more than once.

**NOTE 4:** UE CA and measurement capabilities indicate the combinations of frequencies that can be configured as serving frequencies.

**NOTE 5:** The grouping of the cells to the first and second cell group, as indicated by `supportedCellGrouping`, is shown in the table below. The leading / leftmost bit of `supportedCellGrouping` corresponds to the Bit String Position 1.
NOTE 6: UE includes the intraBandContiguousCC-InfoList-r12 also for bandwidth class A because of the presence conditions in BandCombinationParameters-v1270. For example, if UE supports CA_1A_41D band combination, if UE includes the field intraBandContiguousCC-InfoList-r12 for band 41, the UE includes intraBandContiguousCC-InfoList-r12 also for band 1.

NOTE 7: For a UE that indicates release X in field accessStratumRelease but supports a feature specified in release X+ N (i.e. early UE implementation), the ASN.1 comprehension requirement are specified in Annex F.

--

**UE-RadioPagingInfo**

The **UE-RadioPagingInfo** IE contains UE capability information needed for paging.

---

**UE-RadioPagingInfo** information element

```asn1
UE-RadioPagingInfo-r12 ::= SEQUENCE {
 ue-Category-v1250 INTEGER (0) OPTIONAL,
 ...,
 [\[ue-CategoryDL-v1310 ENUMERATED {ml} OPTIONAL,
 ce-ModeA-r13 ENUMERATED {true} OPTIONAL,
 ce-ModeB-r13 ENUMERATED {true} OPTIONAL
 \]]
}
```

---

**UE-RadioPagingInfo field descriptions**

- **ce-ModeA, ce-ModeB**
  Indicates whether the UE supports operation in CE mode A and/or B, as specified in TS 36.211 [21] and TS 36.213 [23].

- **ue-Category, ue-CategoryDL**
  UE category as defined in TS 36.306 [5]. A category M2 UE shall always include the field ue-CategoryDL-v1310 in this version of the specification.
-- **UE-TimersAndConstants**

The IE **UE-TimersAndConstants** contains timers and constants used by the UE in either RRC_CONNECTED or RRC_IDLE.

### **UE-TimersAndConstants** information element

```
UE-TimersAndConstants ::= SEQUENCE {
 t300 ENUMERATED {
 ms100, ms200, ms300, ms400, ms600, ms1000, ms1500, ms2000},
 t301 ENUMERATED {
 ms100, ms200, ms300, ms400, ms600, ms1000, ms1500, ms2000},
 t310 ENUMERATED {
 ms0, ms50, ms100, ms200, ms500, ms1000, ms2000},
 n310 ENUMERATED {
 n1, n2, n3, n4, n6, n8, n10, n20},
 t311 ENUMERATED {
 ms1000, ms3000, ms5000, ms10000, ms15000, ms20000, ms30000},
 n311 ENUMERATED {
 n1, n2, n3, n4, n5, n6, n8, n10},
 ...,
 [[t300-v1310 ENUMERATED {
 ms2500, ms3000, ms3500, ms4000, ms5000, ms6000, ms8000, ms10000} OPTIONAL, -- Need OR
 t301-v1310 ENUMERATED {
 ms2500, ms3000, ms3500, ms4000, ms5000, ms6000, ms8000, ms10000} OPTIONAL, -- Need OR
]],
 [[t310-v1330 ENUMERATED {ms4000, ms600000} OPTIONAL -- Need OR
]]
}
```

### **UE-TimersAndConstants** field descriptions

**n3xy**

Constants are described in section 7.4. n1 corresponds with 1, n2 corresponds with 2 and so on.

**t3xy**

Timers are described in section 7.3. Value ms0 corresponds with 0 ms, ms50 corresponds with 50 ms and so on. EUTRAN includes an extended value t3xy-v1310 and t3xy-v1330 only in the Bandwidth Reduced (BR) version of the SIB. UEs that support Coverage Enhancement (CE) mode B shall use the extended values t3xy-v1310 and t3xy-v1330, if present, and ignore the value signaled by t3xy (without the suffix).

-- **VisitedCellInfoList**

The IE **VisitedCellInfoList** includes the mobility history information of maximum of 16 most recently visited cells or time spent outside E-UTRA. The most recently visited cell is stored first in the list. The list includes cells visited in RRC_IDLE and RRC_CONNECTED states.

### **VisitedCellInfoList** information element

```
VisitedCellInfoList-r12 ::= SEQUENCE (SIZE (1..maxCellHistory-r12)) OF VisitedCellInfo-r12
VisitedCellInfo-r12 ::= SEQUENCE {
 visitedCellId-r12 CHOICE {
 cellGlobalId-r12 CellGlobalIdEUTRA,
 pci-arfcn-r12 SEQUENCE {
 physCellId-r12 PhysCellId,
 carrierFreq-r12 ARFCN-ValueEUTRA-r9

```


**VisitedCellInfoList field descriptions**

**timeSpent**

This field indicates the duration of stay in the cell or outside E-UTRA approximated to the closest second. If the duration of stay exceeds 4095s, the UE shall set it to 4095s.

---

**WLAN-OffloadConfig**

The IE `WLAN-OffloadConfig` includes information for traffic steering between E-UTRAN and WLAN. The fields are applicable to both RAN-assisted WLAN interworking based on access network selection and traffic steering rules and RAN-assisted WLAN interworking based on ANDSF policies unless stated otherwise in the field description.

---

**WLAN-OffloadConfig** information element

```asn1
WLAN-OffloadConfig-r12 ::= SEQUENCE {
 thresholdRSRP-r12 SEQUENCE {
 thresholdRSRP-Low-r12 RSRP-Range,
 thresholdRSRP-High-r12 RSRP-Range
 } OPTIONAL, -- Need OR
 thresholdRSRQ-r12 SEQUENCE {
 thresholdRSRQ-Low-r12 RSRQ-Range,
 thresholdRSRQ-High-r12 RSRQ-Range
 } OPTIONAL, -- Need OR
 thresholdRSRQ-OnAllSymbolsWithWB-r12 SEQUENCE {
 thresholdRSRQ-OnAllSymbolsWithWB-Low-r12 RSRQ-Range,
 thresholdRSRQ-OnAllSymbolsWithWB-High-r12 RSRQ-Range
 } OPTIONAL, -- Need OR
 thresholdRSRQ-OnAllSymbols-r12 SEQUENCE {
 thresholdRSRQ-OnAllSymbols-Low-r12 RSRQ-Range,
 thresholdRSRQ-OnAllSymbols-High-r12 RSRQ-Range
 } OPTIONAL, -- Need OR
 thresholdRSRQ-WB-r12 SEQUENCE {
 thresholdRSRQ-WB-Low-r12 RSRQ-Range,
 thresholdRSRQ-WB-High-r12 RSRQ-Range
 } OPTIONAL, -- Need OR
 thresholdChannelUtilization-r12 SEQUENCE {
 thresholdChannelUtilization-Low-r12 INTEGER (0..255),
 thresholdChannelUtilization-High-r12 INTEGER (0..255)
 } OPTIONAL, -- Need OR
 thresholdBackhaul-Bandwidth-r12 SEQUENCE {
 thresholdBackhaulDL-Bandwidth-Low-r12 WLAN-backhaulRate-r12,
 thresholdBackhaulUL-Bandwidth-High-r12 WLAN-backhaulRate-r12
 } OPTIONAL, -- Need OR
 thresholdWLAN-RSSI-r12 SEQUENCE {
 thresholdWLAN-RSSI-Low-r12 INTEGER (0..255),
 thresholdWLAN-RSSI-High-r12 INTEGER (0..255)
 } OPTIONAL, -- Need OR
 offloadPreferenceIndicator-r12 BIT STRING (SIZE (16)) OPTIONAL, -- Need OR
 t-SteeringWLAN-r12 T-Reselection OPTIONAL, -- Need OR
 ... } OPTIONAL

WLAN-backhaulRate-r12 ::= ENUMERATED {
 r0, r4, r8, r16, r32, r64, r128, r256, r512,
 r1024, r2048, r4096, r8192, r16384, r32768, r65536, r131072,
 r262144, r524288, r1048576, r2097152, r4194304, r8388608,
 r16777216, r33554432, r67108864, r134217728, r268435456,
 r536870912, r1073741824, r2147483648, r4294967296}

-- ASN1STOP
```
### WLAN-OffloadConfig field descriptions

**offloadPreferenceIndicator**
Indicates the offload preference indicator. Parameter: OPI in TS 24.312 [66]. Only applicable to RAN-assisted WLAN interworking based on ANDSF policies.

**thresholdBackhaulDLBandwidth-High**
Indicates the backhaul available downlink bandwidth threshold used by the UE for traffic steering to WLAN. Parameter: ThreshBackhaulRateDLWLAN, High in TS 36.304 [4]. Value in kilobits/second. Value rN corresponds to N kbps.

**thresholdBackhaulDLBandwidth-Low**
Indicates the backhaul available downlink bandwidth threshold used by the UE for traffic steering to E-UTRAN. Parameter: ThreshBackhaulRateDLWLAN, Low in TS 36.304 [4]. Value in kilobits/second. Value rN corresponds to N kbps.

**thresholdBackhaulULBandwidth-High**
Indicates the backhaul available uplink bandwidth threshold used by the UE for traffic steering to WLAN. Parameter: ThreshBackhaulRateULWLAN, High in TS 36.304 [4]. Value in kilobits/second. Value rN corresponds to N kbps.

**thresholdBackhaulULBandwidth-Low**
Indicates the backhaul available uplink bandwidth threshold used by the UE for traffic steering to E-UTRAN. Parameter: ThreshBackhaulRateULWLAN, Low in TS 36.304 [4]. Value in kilobits/second. Value rN corresponds to N kbps.

**thresholdChannelUtilization-High**
Indicates the WLAN channel utilization (BSS load) threshold used by the UE for traffic steering to E-UTRAN. Parameter: ThreshChUtilWLAN, High in TS 36.304 [4].

**thresholdChannelUtilization-Low**
Indicates the WLAN channel utilization (BSS load) threshold used by the UE for traffic steering to WLAN. Parameter: ThreshChUtilWLAN, Low in TS 36.304 [4].

**thresholdRSRP-High**
Indicates the RSRP threshold (in dBm) used by the UE for traffic steering to E-UTRAN. Parameter: ThreshServingOffloadWLAN, HighP in TS 36.304 [4].

**thresholdRSRP-Low**
Indicates the RSRP threshold (in dBm) used by the UE for traffic steering to WLAN. Parameter: ThreshServingOffloadWLAN, LowP in TS 36.304 [4].

**thresholdRSRQ-High, thresholdRSRQ-OnAllSymbolsHigh, thresholdRSRQ-WB-High, thresholdRSRQ-OnAllSymbolsWithWB-High**
Indicates the RSRQ threshold (in dB) used by the UE for traffic steering to E-UTRAN. Parameter: ThreshServingOffloadWLAN, HighQ in TS 36.304 [4]. The UE shall only apply one of threshold values of thresholdRSRQ-OnAllSymbolsWithWB-High, thresholdRSRQ-OnAllSymbolsHigh, thresholdRSRQ-WB-High and thresholdRSRQ-High as present in wlan-OffloadConfigCommon and forward this to upper layer. **NOTE 1.**

**thresholdRSRQ-Low, thresholdRSRQ-OnAllSymbolsLow, thresholdRSRQ-WB-Low, thresholdRSRQ-OnAllSymbolsWithWB-Low**
Indicates the RSRQ threshold (in dB) used by the UE for traffic steering to WLAN. Parameter: ThreshServingOffloadWLAN, LowQ in TS 36.304 [4]. The UE shall only apply one of threshold values of thresholdRSRQ-OnAllSymbolsWithWB-Low, thresholdRSRQ-OnAllSymbolsLow, thresholdRSRQ-WB-Low and thresholdRSRQ-Low as present in wlan-OffloadConfigCommon and forward this to upper layer. **NOTE 1.**

**thresholdWLAN-RSSI-High**
Indicates the WLAN RSSI threshold used by the UE for traffic steering to WLAN. Parameter: ThreshWLANRSSI, High in TS 36.304 [4]. Value 0 corresponds to -128dBm, 1 corresponds to -127dBm and so on.

**thresholdWLAN-RSSI-Low**
Indicates the WLAN RSSI threshold used by the UE for traffic steering to E-UTRAN. Parameter: ThreshWLANRSSI, Low in TS 36.304 [4]. Value 0 corresponds to -128dBm, 1 corresponds to -127dBm and so on.

**T-SteeringWLAN**
Indicates the timer value during which the rules should be fulfilled before starting traffic steering between E-UTRAN and WLAN. Parameter: TsteeringWLAN in TS 36.304 [4]. Only applicable to RAN-assisted WLAN interworking based on access network selection and traffic steering rules.

**NOTE 1:** Within SIB17, E-UTRAN includes the fields corresponding to same RSRQ types as included in SIB1. E.g. if E-UTRAN includes q-QualMinRSRQ-OnAllSymbols in SIB1 it also includes thresholdRSRQ-OnAllSymbols in SIB17. Within the RRCConnectionReconfiguration message E-UTRAN only includes thresholdRSRQ, setting the value according to the RSRQ type used for E-UTRAN. The UE shall apply the RSRQ fields (RSRQ threshold, high and low) corresponding to one RSRQ type i.e. the same as it applies for E-UTRAN.
6.3.7 MBMS information elements

– **MBMS-NotificationConfig**

The IE *MBMS-NotificationConfig* specifies the MBMS notification related configuration parameters, that are applicable for all MBSFN areas.

**MBMS-NotificationConfig** information element

```asn1
MBMS-NotificationConfig-r9 ::= SEQUENCE {
 notificationRepetitionCoeff-r9 ENUMERATED {n2, n4},
 notificationOffset-r9 INTEGER (0..10),
 notificationSF-Index-r9 INTEGER (1..6)
}

MBMS-NotificationConfig-v1430 ::= SEQUENCE {
 notificationSF-Index-v1430 INTEGER (7..10)
}
```

**MBMS-NotificationConfig** field descriptions

- **notificationOffset**
  Indicates, together with the *notificationRepetitionCoeff*, the radio frames in which the MCCH information change notification is scheduled i.e. the MCCH information change notification is scheduled in radio frames for which: SFN mod notification repetition period = notificationOffset.

- **notificationRepetitionCoeff**
  Actual change notification repetition period common for all MCCHs that are configured is shortest modification period/ notificationRepetitionCoeff. The 'shortest modification period' corresponds with the lowest value of *mcch-ModificationPeriod* of all MCCHs that are configured. Value n2 corresponds to coefficient 2, and so on.

- **notificationSF-Index**
  Indicates the subframe used to transmit MCCH change notifications on PDCCH. FDD: Value 1, 2, 3, 4, 5 and 6 correspond with subframe #1, #2, #3 #6, #7, and #8 respectively. Value 7, 8, 9 and 10 correspond with subframe #0, #4, #5 and #9 respectively. If *notificationSF-Index-v1430* is included, UE ignores *notificationSF-Index-r9*. TDD: Value 1, 2, 3, and 4 correspond with subframe #3, #4, #7, #8, and #9 respectively.

– **MBMS-ServiceList**

The IE *MBMS-ServiceList* provides the list of MBMS services which the UE is receiving or interested to receive.

**MBMS-ServiceList** information element

```asn1
MBMS-ServiceList-r13 ::= SEQUENCE (SIZE (0..maxMBMS-ServiceListPerUE-r13)) OF MBMS-ServiceInfo-r13

MBMS-ServiceInfo-r13 ::= SEQUENCE {
 tmgi-r13 TMGI-r9
}
```

– **MBSFN-AreaId**

The IE *MBSFN-AreaId* identifies an MBSFN area by means of a locally unique value at lower layers i.e. it concerns parameter N^{MBSFN} in TS 36.211 [21, 6.10.2.1].

**MBSFN-AreaId** information element

```asn1
-- ASN1START
```
MBSFN-AreaId-r12 ::= INTEGER (0..255)
-- ASN1STOP

MBSFN-AreaInfoList

The IE MBSFN-AreaInfoList contains the information required to acquire the MBMS control information associated with one or more MBSFN areas.

MBSFN-AreaInfoList information element

MBSFN-AreaInfoList-r9 ::= SEQUENCE (SIZE(1..maxMBSFN-Area)) OF MBSFN-AreaInfo-r9

MBSFN-AreaInfo-r9 ::= SEQUENCE { mbsfn-AreaId-r9, MBSFN-AreaId-r12, non-MBSFNRegionLength ENUMERATED {s1, s2}, notificationIndicator-r9 INTEGER (0..7), mcch-Config-r9 SEQUENCE { mcch-RepetitionPeriod-r9 ENUMERATED {rf32, rf64, rf128, rf256}, mcch-Offset-r9 INTEGER (0..10), mcch-ModificationPeriod-r9 ENUMERATED {rf512, rf1024}, sf-AllocInfo-r9 BIT STRING (SIZE(6)), signallingMCS-r9 ENUMERATED {n2, n7, n13, n19} }, ...
[ mcch-Config-v1430 SEQUENCE { mcch-RepetitionPeriod-v1430 ENUMERATED {rf1, rf2, rf4, rf8, rf16 } OPTIONAL, -- Need OR mcch-ModificationPeriod-v1430 ENUMERATED {rf1, rf2, rf4, rf8, rf16, rf32, rf64, rf128, rf256, spare7} OPTIONAL, -- Need OR } OPTIONAL, -- Need OR subcarrierSpacingMBMS-r14 ENUMERATED {khz-7dot5, khz-1dot25} OPTIONAL -- Need OR ]}

-- ASN1STOP
### MBSFN-AreaInfoList field descriptions

**mcch-ModificationPeriod**
Defines periodically appearing boundaries, i.e. radio frames for which SFN mod mcch-ModificationPeriod = 0. The contents of different transmissions of MCCH information can only be different if there is at least one such boundary in-between them. In case mcch-ModificationPeriod-v1430 is configured, the UE shall ignore the mcch-ModificationPeriod-r9.

**mcch-Offset**
Indicates, together with the mcch-RepetitionPeriod, the radio frames in which MCCH is scheduled i.e. MCCH is scheduled in radio frames for which: SFN mod mcch-RepetitionPeriod = mcch-Offset.

**mcch-RepetitionPeriod**
Defines the interval between transmissions of MCCH information, in radio frames. Value rf32 corresponds to 32 radio frames, rf64 corresponds to 64 radio frames and so on. In case mcch-RepetitionPeriod-v1430 is configured, the UE shall ignore the mcch-RepetitionPeriod-r9.

**non-MBSFNregionLength**
Indicates how many symbols from the beginning of the subframe constitute the non-MBSFN region. This value applies in all subframes of the MBSFN area used for PMCH transmissions as indicated in the MSI. The values s1 and s2 correspond with 1 and 2 symbols, respectively: see TS 36.211 [21, Table 6.7-1].

**notificationIndicator**
Indicates which PDCCH bit is used to notify the UE about change of the MCCH applicable for this MBSFN area. Value 0 corresponds with the least significant bit as defined in TS 36.212 [22, 5.3.3.1] and so on.

**sf-AllocInfo**
Indicates the subframes of the radio frames indicated by the mcch-RepetitionPeriod and the mcch-Offset, that may carry MCCH. Value "1" indicates that the corresponding subframe is allocated. The following mapping applies: FDD: The first/leftmost bit defines the allocation for subframe #1 of the radio frame indicated by mcch-RepetitionPeriod and mcch-Offset, the second bit for #2, the third bit for #3, the fourth bit for #7 and the sixth bit for #8.

TDD: The first/leftmost bit defines the allocation for subframe #3 of the radio frame indicated by mcch-RepetitionPeriod and mcch-Offset, the second bit for #4, third bit for #7, fourth bit for #8, fifth bit for #9. Uplink subframes are not allocated. The last bit is not used.

**signallingMCS**
Indicates the MCS applicable for the subframes indicated by the field sf-AllocInto and for each (P)MCH that is configured for this MBSFN area, for the first subframe allocated to the (P)MCH within each MCH scheduling period (which may contain the MCH scheduling information provided by MAC). Value n2 corresponds with the value 2 for parameter MCS in TS 36.213 [23, Table 7.1.7.1-1], and so on.

**subcarrierSpacingMBMS**
The value indicates subcarrier spacing for MBSFN subframes and khz-7dot5 refers to 7.5kHz subcarrier spacing and khz-1dot25 refers to 1.25 kHz subcarrier spacing as defined in TS36.211 [21, 6.12]. These subframes do not have non-MBSFN region. If subcarrierSpacingMBMS is present, then non-MBSFNregionLength shall be ignored. EUTRAN configures parameter subcarrierSpacingMBMS only when the MBSFN subframes have subcarrier spacing other than 15kHz.

---

**MBSFN-SubframeConfig**
The IE MBSFN-SubframeConfig defines subframes that are reserved for MBSFN in downlink.

---

### MBSFN-SubframeConfig information element

```asn
-- ASN1START

MBSFN-SubframeConfig ::= SEQUENCE {
 radioframeAllocationPeriod ENUMERATED {n1, n2, n4, n8, n16, n32},
 radioframeAllocationOffset INTEGER (0..7),
 subframeAllocation CHOICE {
 oneFrame BIT STRING (SIZE(6)),
 fourFrames BIT STRING (SIZE(24))
 }
}

MBSFN-SubframeConfig-v1430 ::= SEQUENCE {
 subframeAllocation-v1430 CHOICE {
 oneFrame-v1430 BIT STRING (SIZE(2)),
 fourFrames-v1430 BIT STRING (SIZE(8))
 }
}

-- ASN1STOP
```
**MBSFN-SubframeConfig field descriptions**

**fourFrames**
A bit-map indicating MBSFN subframe allocation in four consecutive radio frames, "1" denotes that the corresponding subframe is allocated for MBSFN. The bitmap is interpreted as follows:
FDD: Starting from the first radioframe and from the first/leftmost bit in the bitmap, the allocation applies to subframes #1, #2, #3, #6, #7, and #8 in the sequence of the four radio-frames.
TDD: Starting from the first radioframe and from the first/leftmost bit in the bitmap, the allocation applies to subframes #3, #4, #7, #8, and #9 in the sequence of the four radio-frames. The last four bits are not used. E-UTRAN allocates uplink subframes only if eimta-MainConfig is configured.

**fourFrames-v1430**
A bit-map indicating MBSFN subframe allocation in four consecutive radio frames, "1" denotes that the corresponding subframe is allocated for MBSFN. The bitmap is interpreted as follows:
FDD: Starting from the first radioframe and from the first/leftmost bit in the bitmap, the allocation applies to subframes #4 and #9 in the sequence of the four radio-frames.

**oneFrame**
"1" denotes that the corresponding subframe is allocated for MBSFN. The following mapping applies:
FDD: The first/leftmost bit defines the MBSFN allocation for subframe #1, the second bit for #2, third bit for #3, fourth bit for #6, fifth bit for #7, sixth bit for #8.
TDD: The first/leftmost bit defines the allocation for subframe #3, the second bit for #4, third bit for #7, fourth bit for #8, fifth bit for #9. E-UTRAN allocates uplink subframes only if eimta-MainConfig is configured. The last bit is not used.

**oneFrame-v1430**
"1" denotes that the corresponding subframe is allocated for MBSFN. The following mapping applies:
FDD: The first/leftmost bit defines the MBSFN allocation for subframe #4 and the second bit for #9.

**radioFrameAllocationPeriod, radioFrameAllocationOffset**
Radio-frames that contain MBSFN subframes occur when equation $SFN \mod \text{radioFrameAllocationPeriod} = \text{radioFrameAllocationOffset}$ is satisfied. Value n1 for radioframeAllocationPeriod denotes value 1, n2 denotes value 2, and so on. When fourFrames is used for subframeAllocation, the equation defines the first radio frame referred to in the description below. Values $n1$ and $n2$ are not applicable when fourFrames is used.

**subframeAllocation**
Defines the subframes that are allocated for MBSFN within the radio frame allocation period defined by the radioFrameAllocationPeriod and the radioFrameAllocationOffset.

---

**PMCH-InfoList**

The IE PMCH-InfoList specifies configuration of all PMCHs of an MBSFN area, while IE PMCH-InfoListExt includes additional PMCHs, i.e. extends the PMCH list using the general principles specified in 5.1.2. The information provided for an individual PMCH includes the configuration parameters of the sessions that are carried by the concerned PMCH. For all PMCH that E-UTRAN includes in PMCH-InfoList, the list of ongoing sessions has at least one entry.

**PMCH-InfoList information element**

```asn1
-- ASN1START

PMCH-InfoList-r9 ::= SEQUENCE (SIZE (0..maxPMCH-PerMBSFN)) OF PMCH-Info-r9
PMCH-InfoListExt-r12 ::= SEQUENCE (SIZE (0..maxPMCH-PerMBSFN)) OF PMCH-InfoExt-r12

PMCH-Info-r9 ::= SEQUENCE {
 pmch-Config-r9 PMCH-Config-r9,
 mbms-SessionInfoList-r9 MBMS-SessionInfoList-r9,
 ...
}

PMCH-InfoList-r9 ::= SEQUENCE (SIZE (0..maxPMCH-PerMBSFN)) OF PMCH-Info-r9
MBMS-SessionInfoList-r9 ::= SEQUENCE (SIZE (0..maxSessionPerPMCH)) OF MBMS-SessionInfo-r9

PMCH-InfoExt-r12 ::= SEQUENCE {
 pmch-Config-r12 PMCH-Config-r12,
 mbms-SessionInfoList-r12 MBMS-SessionInfoList-r9,
 ...
}

PMCH-Config-r9 ::= SEQUENCE {
 ...
}

PMCH-Config-r12 ::= SEQUENCE {
 ...
}

-- ASN1END
```
PMCH-InfoList field descriptions

**dataMCS**
Indicates the value for parameter $I_{MCS}$ in TS 36.213 [23], which defines the MCS applicable for the subframes of this (P)MCH as indicated by the field commonSF-Alloc. Value *normal* corresponds to Table 7.1.7.1-1 and value *higherOrder* corresponds to Table 7.1.7.1-1A. The MCS does however neither apply to the subframes that may carry MCCH i.e. the subframes indicated by the field *sf-AllocInfo* within *SystemInformationBlockType13* nor for the first subframe allocated to this (P)MCH within each MCH scheduling period (which may contain the MCH scheduling information provided by MAC).

**mch-SchedulingPeriod**
Indicates the MCH scheduling period i.e. the periodicity used for providing MCH scheduling information at lower layers (MAC) applicable for an MCH. Value *rf8* corresponds to 8 radio frames, *rf16* corresponds to 16 radio frames and so on. The *mch-SchedulingPeriod* starts in the radio frames for which: SFN mod *mch-SchedulingPeriod* = 0. E-UTRAN configures *mch-SchedulingPeriod* of the (P)MCH listed first in *PMCH-InfoList* to be smaller than or equal to *mcch-RepetitionPeriod*. In case *mch-SchedulingPeriod-v1430* is configured, the UE shall ignore *mch-SchedulingPeriod-r12*.

**plmn-Index**
Index of the entry across the *plmn-IdentityList* fields within *SystemInformationBlockType1*.

**sessionId**
Indicates the optional MBMS Session Identity, which together with TMGI identifies a transmission or a possible retransmission of a specific MBMS session: see TS 29.061 [51, Sections 20.5, 17.7.11, 17.7.15]. The field is included whenever upper layers have assigned a session identity i.e. one is available for the MBMS session in E-UTRAN.

**serviceld**
Uniquely identifies the identity of an MBMS service within a PLMN. The field contains octet 3-5 of the IE Temporary Mobile Group Identity (TMGI) as defined in TS 24.008 [49]. The first octet contains the third octet of the TMGI, the second octet contains the fourth octet of the TMGI and so on.

**sf-AllocEnd**
Indicates the last subframe allocated to this (P)MCH within a period identified by field commonSF-AllocPeriod. The subframes allocated to (P)MCH corresponding with the n-th entry in pmch-InfoList are the subsequent subframes starting from either the next subframe after the subframe identified by *sf-AllocEnd* of the (n-1)th listed (P)MCH or, for n=1, the first subframe defined by field commonSF-Alloc, through the subframe identified by *sf-AllocEnd* of the nth listed (P)MCH. Value 0 corresponds with the first subframe defined by field commonSF-Alloc.
6.3.7a  SC-PTM information elements

--  SC-MTCH-InfoList

The IE SC-MTCH-InfoList provides the list of ongoing MBMS sessions transmitted via SC-MRB and for each MBMS session, the associated G-RNTI and scheduling information.

**SC-MTCH-InfoList information element**

```
-- ASN1START
SC-MTCH-InfoList-r13 ::= SEQUENCE {SIZE (0..maxSC-MTCH-r13)} OF SC-MTCH-Info-r13

SC-MTCH-Info-r13 ::= SEQUENCE {
 mbmsSessionInfo-r13 MBMSSessionInfo-r13,
 g-RNTI-r13 BIT STRING(SIZE(16)),
 sc-mtch-schedulingInfo-r13 SC-MTCH-SchedulingInfo-r13 OPTIONAL, -- Need OP
 sc-mtch-neighbourCell-r13 BIT STRING (SIZE(maxNeighCell-SCPTM-r13)) OPTIONAL, -- Need OP
 ...
 [{ p-a-r13 ENUMERATED {dB-6, dB-4dot77, dB-3, dB-1dot77, dB0, dB1, dB2, dB3} OPTIONAL -- Need ON }]
}

MBMSSessionInfo-r13 ::= SEQUENCE {
 tmgi-r13 TMGI-r9,
 sessionId-r13 OCTET STRING (SIZE (1)) OPTIONAL -- Need OR
}

SC-MTCH-SchedulingInfo-r13 ::= SEQUENCE {
 onDurationTimerSCPTM-r13 ENUMERATED {
 psf1, psf2, psf3, psf4, psf5, psf6, psf8, psf10, psf20, psf30, psf40, psf50, psf60, psf80, psf100, psf200},

 drx-InactivityTimerSCPTM-r13 ENUMERATED {
 psf0, psf1, psf2, psf4, psf8, psf10, psf20, psf40, psf80, psf160, ps320, psf640, psf960, psf1280, psf1920, psf2560},

 schedulingPeriodStartOffsetSCPTM-r13 CHOICE {
 sf10 INTEGER (0..9),
 sf20 INTEGER (0..19),
 sf32 INTEGER (0..31),
 sf40 INTEGER (0..39),
 sf64 INTEGER (0..63),
 sf80 INTEGER (0..79),
 sf128 INTEGER (0..127),
 sf160 INTEGER (0..159),
 sf256 INTEGER (0..255),
 sf320 INTEGER (0..319),
 sf512 INTEGER (0..511),
 sf640 INTEGER (0..639),
 sf1024 INTEGER (0..1023),
 sf2048 INTEGER (0..2048),
 sf4096 INTEGER (0..4096),
 sf8192 INTEGER (0..8192)
 },
 ...
}
-- ASN1STOP
```
**SC-MTCH-InfoList field descriptions**

**drx-InactivityTimerSCPTM**
Timer for SC-MTCH in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf0 corresponds to 0 PDCCH sub-frame and behaviour as specified in 7.3.2 applies, psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on.

**g-RNTI**
G-RNTI used to scramble the scheduling and transmission of a SC-MTCH.

**mbmsSessionInfo**
Indicates the ongoing MBMS session in a SC-MTCH.

**onDurationTimerSCPTM**
Timer for SC-MTCH reception in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on.

**p-a**
Parameter: $P_A^*$, for the SC-MTCH per G-RNTI, see TS 36.213 [23, 5.2]. Value dB-6 corresponds to -6 dB, dB-4.77 corresponds to -4.77 dB etc.

**schedulingPeriodStartOffsetSCPTM**
SCPTM-SchedulingCycle and SCPTM-SchedulingOffset in TS 36.321 [6]. The value of SCPTM-SchedulingCycle is in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. The value of SCPTM-SchedulingOffset is in number of sub-frames. The E-UTRAN does not configure a maximum value 2048 for sf2048, 4096 for sf4096 or 8192 for sf8192.

**sc-mtch-neighbourCell**
Indicates neighbour cells which also provide this service on SC-MTCH. The first bit is set to 1 if the service is provided on SC-MTCH in the first cell in scptmNeighbourCellList, otherwise it is set to 0. The second bit is set to 1 if the service is provided on SC-MTCH in the second cell in scptmNeighbourCellList, and so on. If this field is absent, the UE shall assume that this service is not available on SC-MTCH in any neighbour cell.

**sc-mtch-schedulingInfo**
DRX information for the SC-MTCH. If this field is absent, the SC-MTCH may be scheduled in any subframe.

---

**SC-MTCH-InfoList-BR**

The IE SC-MTCH-InfoList-BR provides the list of ongoing MBMS sessions transmitted via SC-MRB and for each MBMS session, the associated G-RNTI and scheduling information.

**SC-MTCH-InfoList-BR information element**

```asn1
SC-MTCH-InfoList-BR-r14 ::= SEQUENCE (SIZE (0..maxSC-MTCH-BR-r14)) OF SC-MTCH-Info-BR-r14
SC-MTCH-Info-BR-r14 ::= SEQUENCE {
 sc-mtch-CarrierFreq-r14 ARFCN-ValueEUTRA-r9,
 mbmsSessionInfo-r14 MBMSSessionInfo-r13,
 g-RNTI-r14 BIT STRING(SIZE(16)),
 sc-mtch-schedulingInfo-r14 SC-MTCH-SchedulingInfo-BR-r14 OPTIONAL, --
 sc-mtch-neighbourCell-r14 BIT STRING (SIZE(maxNeighCell-SCPTM-r13)) OPTIONAL, --
 mpdcch-Narrowband-SC-MTCH-r14 INTEGER (1..maxAvailNarrowBands-r13),
 mpdcch-NumRepetition-SC-MTCH-r14 ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128, r256},
 mpdcch-StartSF-SC-MTCH-r14 CHOICE {
 fdd-r14 ENUMERATED {v1, v1dot5, v2, v2dot5, v4, v5, v8, v10},
 tdd-r14 ENUMERATED {v1, v2, v4, v5, v8, v10, v20},
 },
 mpdcch-PDSCH-HoppingConfig-SC-MTCH-r14 ENUMERATED {on, off},
 mpdcch-PDSCH-CEmodeConfig-SC-MTCH-r14 ENUMERATED {ce-ModeA, ce-ModeB},
 mpdcch-PDSCH-MaxBandwidth-SC-MTCH-r14 ENUMERATED {bw1dot4, bw5},
 mpdcch-Offset-SC-MTCH-r14 ENUMERATED {zero, oneEighth, oneQuarter, threeEighth, oneHalf, fiveEighth, threeQuarter, sevenEighth},
 p-a-r14 ENUMERATED { dB-6, dB-4dot77, dB-3, dB-1dot77, dB0, dB1, dB2, dB3} OPTIONAL, -- Need OR
 ...}
SC-MTCH-SchedulingInfo-BR-r14 ::= SEQUENCE {
...}
```
onDurationTimerSCPTM-r14

<table>
<thead>
<tr>
<th>ENUMERATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>psf300, psf400, psf500, psf600, psf800, psf1000, psf1200, psf1600</td>
</tr>
</tbody>
</table>

drx-InactivityTimerSCPTM-r14

<table>
<thead>
<tr>
<th>ENUMERATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>psf0, psf1, psf2, psf4, psf8, psf16, psf32, psf64, psf128, psf256, psf512, psf1024, psf2048, psf4096, psf8192, psf16384</td>
</tr>
</tbody>
</table>

schedulingPeriodStartOffsetSCPTM-r14

<table>
<thead>
<tr>
<th>CHOICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf10    INTEGER (0..9),</td>
</tr>
<tr>
<td>sf20    INTEGER (0..19),</td>
</tr>
<tr>
<td>sf32    INTEGER (0..31),</td>
</tr>
<tr>
<td>sf40    INTEGER (0..39),</td>
</tr>
<tr>
<td>sf64    INTEGER (0..63),</td>
</tr>
<tr>
<td>sf80    INTEGER (0..79),</td>
</tr>
<tr>
<td>sf128   INTEGER (0..127),</td>
</tr>
<tr>
<td>sf160   INTEGER (0..159),</td>
</tr>
<tr>
<td>sf256   INTEGER (0..255),</td>
</tr>
<tr>
<td>sf320   INTEGER (0..319),</td>
</tr>
<tr>
<td>sf512   INTEGER (0..511),</td>
</tr>
<tr>
<td>sf640   INTEGER (0..639),</td>
</tr>
<tr>
<td>sf1024  INTEGER (0..1023),</td>
</tr>
<tr>
<td>sf2048  INTEGER (0..2047),</td>
</tr>
<tr>
<td>sf4096  INTEGER (0..4095),</td>
</tr>
<tr>
<td>sf8192  INTEGER (0..8191),</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

-- ASNISTOP
**SC-MTCH-InfoList-BR field descriptions**

**drx-InactivityTimerSCPTM**
Timer for SC-MTCH in TS 36.321 [6]. Value in number of MPDCCH sub-frames. Value psf0 corresponds to 0 MPDCCH sub-frame and behaviour as specified in 7.3.2 applies, psf1 corresponds to 1 MPDCCH sub-frame, psf2 corresponds to 2 MPDCCH sub-frames and so on.

**g-RNTI**
G-RNTI used to scramble the scheduling and transmission of a SC-MTCH

**mbmsSessionInfo**
Indicates the ongoing MBMS session in a SC-MTCH.

**mpdcch-Narrowband-SC-MTCH**
Narrowband for MPDCCH for SC-MTCH, see TS 36.213 [23].

**mpdcch-NumRepetitions-SC-MTCH**
The maximum number of MPDCCH repetitions the UE needs to monitor for SC-MTCH, see TS 36.213 [23].

**mpdcch-Offset-SC-MTCH**
Fractional period offset of starting subframes for MPDCCH search space for SC-MTCH, see TS 36.213 [23].

**mpdcch-PDSCH-CEmodeConfig-SC-MTCH**
Coverage enhancement mode configuration for MPDCCH/PDSCH for SC-MTCH, see TS 36.213 [23].

**mpdcch-PDSCH-HoppingConfig-SC-MTCH**
Frequency hopping configuration for MPDCCH/PDSCH for SC-MTCH, see TS 36.213 [23].

**mpdcch-PDSCH-MaxBandwidth-SC-MTCH**
Maximum PDSCH channel bandwidth for SC-MTCH, see TS 36.213 [23]. Value bw1dot4 corresponds to 1.4 MHz channel bandwidth and value bw5 corresponds to 5 MHz channel bandwidth. Corresponding maximum TBS are specified in TS 36.213 [23, 7.1.7.2].

**mpdcch-StartSF-SC-MTCH**
Starting subframes configuration of the MPDCCH search space for SC-MTCH, see TS 36.213 [23].

**onDurationTimerSCPTM**
Timer for SC-MTCH reception in TS 36.321 [6]. Value in number of MPDCCH sub-frames. Value psf300 corresponds to 300 MPDCCH sub-frames, psf400 corresponds to 400 MPDCCH sub-frames and so on.

**schedulingPeriodStartOffsetSCPTM**
SCPTM-SchedulingCycle and SCPTM-SchedulingOffset in TS 36.321 [6]. The value of SCPTM-SchedulingCycle is in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. The value of SCPTM-SchedulingOffset is in number of sub-frames.

**sc-mtch-CarrierFreq**
Downlink carrier used for multicast SC-MTCH transmissions.

**sc-mtch-neighbourCell**
Indicates neighbour cells which also provide this service on SC-MTCH. The first bit is set to 1 if the service is provided on SC-MTCH in the first cell in scptmNeighbourCellList, otherwise it is set to 0. The second bit is set to 1 if the service is provided on SC-MTCH in the second cell in scptmNeighbourCellList, and so on. If this field is absent, the UE shall assume that this service is not available on SC-MTCH in any neighbour cell.

**sc-mtch-schedulingInfo**
DRX information for the SC-MTCH. If this field is absent, DRX is not used for SC-MTCH reception.

**p-a**
Parameter: $P^*_a$ for the SC-MTCH per G-RNTI, see TS 36.213 [23, 5.2]. Value dB-6 corresponds to -6 dB, dB-4dot77 corresponds to -4.77 dB etc.

---

The IE SCPTM-NeighbourCellList indicates a list of neighbour cells where ongoing MBMS sessions provided via SC-MRBM in the current cells are also provided.

---

**SCPTM-NeighbourCellList**

The IE SCPTM-NeighbourCellList indicates a list of neighbour cells where ongoing MBMS sessions provided via SC-MRBM in the current cells are also provided.
6.3.8 Sidelink information elements

- **SL-AnchorCarrierFreqList-V2X**
  The IE **SL-AnchorCarrierFreqList-V2X** specifies the SL V2X anchor frequencies i.e. frequencies that include inter-carrier resource configuration for V2X sidelink communication.

  **SL-AnchorCarrierFreqList-V2X information element**

  ```
 SL-AnchorCarrierFreqList-V2X ::= SEQUENCE (SIZE (1..maxFreqV2X-r14)) OF ARFCN-ValueEUTRA-r9
  ```

- **SL-CBR-CommonTxConfigList**
  The IE **SL-CBR-CommonTxConfigList** indicates the list of PSSCH transmission parameters (such as MCS, sub-channel number, retransmission number, CR limit) in **sl-CBR-PSSCH-TxConfigList**, and the list of CBR ranges in **cbr-RangeCommonConfigList**, to configure congestion control to the UE for V2X sidelink communication.

  **SL-CBR-CommonTxConfigList information element**

  ```
 SL-CBR-CommonTxConfigList ::= SEQUENCE {
 cbr-RangeCommonConfigList-r14 SEQUENCE (SIZE (1..maxSL-V2X-CBRConfig-r14)) OF SL-CBR-Levels-Config-r14,
 sl-CBR-PSSCH-TxConfigList-r14 SEQUENCE (SIZE (1..maxSL-V2X-TxConfig-r14)) OF SL-CBR-PSSCH-TxConfig-r14
 }

 SL-CBR-Levels-Config-r14 ::= SEQUENCE (SIZE (1..maxCBR-Level-r14)) OF SL-CBR-r14

 SL-CBR-PSSCH-TxConfig-r14 ::= SEQUENCE {
 cr-Limit-r14 INTEGER(0..10000),
 tx-Parameters-r14 SL-PSSCH-TxParameters-r14
 }

 SL-CBR-r14 ::= INTEGER(0..100)
  ```
### SL-CBR-CommonTxConfigList field descriptions

#### cbr-RangeCommonConfigList
Indicates the list of CBR ranges. Each entry of the list indicates in SL-CBR-Levels-Config the upper bound of the CBR range for the respective entry. The upper bounds of the CBR ranges are configured in ascending order for consecutive entries of cbr-RangeCommonConfigList. For the first entry of cbr-RangeCommonConfigList the lower bound of the CBR range is 0.

#### cr-Limit
Indicates the maximum limit on the occupancy ratio. Value 0 corresponds to 0, value 1 to 0.0001, value 2 to 0.0002, and so on (i.e. in steps of 0.0001) until value 10000, which corresponds to 1.

#### sl-CBR-PSSCH-TxConfigList
Indicates the list of available PSSCH transmission parameters (such as MCS, sub-channel number, retransmission number and CR limit) configurations.

#### SL-CBR
Value 0 corresponds to 0, value 1 to 0.01, value 2 to 0.02, and so on.

#### tx-Parameters
Indicates PSSCH transmission parameters.

---

### SL-CBR-PPPP-TxConfigList

The IE SL-CBR-PPPP-TxConfigList indicates the mapping between PSSCH transmission parameter (such as MCS, PRB number, retransmission number, CR limit) sets by using the indexes of the configurations provided in sl-CBR-PSSCH-TxConfigList, CBR ranges by an index to the entry of the CBR range configuration in cbr-RangeCommonConfigList, and PPPP ranges. It also indicates the default PSSCH transmission parameters to be used when CBR measurement results are not available.

#### SL-CBR-PPPP-TxConfigList information element

```asn1
SL-CBR-PPPP-TxConfigList-r14 ::= SEQUENCE (SIZE (1..8)) OF SL-PPPP-TxConfigIndex-r14

SL-PPPP-TxConfigIndex-r14 ::= SEQUENCE {
 priorityThreshold-r14 SL-Priority-r13,
 defaultTxConfigIndex-r14 INTEGER(0..maxCBR-Level-1-r14),
 cbr-ConfigIndex-r14 INTEGER(0..maxSL-V2X-CBRConfig-1-r14),
 tx-ConfigIndexList-r14 SEQUENCE (SIZE (1..maxCBR-Level-r14)) OF Tx-ConfigIndex-r14
}

Tx-ConfigIndex-r14 ::= INTEGER(0..maxSL-V2X-TxConfig-1-r14)
```

---

### SL-CBR-PPPP-TxConfigList field descriptions

#### cbr-ConfigIndex
Indicates the CBR ranges to be used by an index to the entry of the CBR range configuration in cbr-RangeCommonConfigList.

#### defaultTxConfigIndex
Indicates the PSSCH transmission parameters to be used by the UEs which do not have available CBR measurement results, by means of an index to the corresponding entry in tx-ConfigIndexList. Value 0 indicates the first entry in tx-ConfigIndexList. The field is ignored if the UE has available CBR measurement results.

#### priorityThreshold
Indicates the upper bound of PPPP range which is associated with the configurations in cbr-ConfigIndex and in tx-ConfigIndexList. The upper bounds of the PPPP ranges are configured in ascending order for consecutive entries of SL-PPPP-TxConfigIndex in SL-CBR-PPPP-TxConfigList. For the first entry of SL-PPPP-TxConfigIndex, the lower bound of the PPPP range is 1.

#### tx-ConfigIndexList
Indicates the list of the PSSCH transmission parameters and CR limit by the indexes to the entries of the configurations in sl-CBR-PSSCH-TxConfigList. Each index in tx-ConfigIndexList sequentially maps to each CBR range indicated by cbr-ConfigIndex.
-- SL-CommConfig

The IE `SL-CommConfig` specifies the dedicated configuration information for sidelink communication. In particular it concerns the transmission resource configuration for sidelink communication on the primary frequency.

**SL-CommConfig information element**

```asn1
-- ASN1START
SL-CommConfig-r12 ::= SEQUENCE {
 commTxResources-r12 CHOICE {
 release NULL,
 setup CHOICE {
 scheduled-r12 SEQUENCE {
 sl-RNTI-r12 C-RNTI,
 mac-MainConfig-r12 MAC-MainConfigSL-r12,
 sc-CommTxConfig-r12 SL-CommResourcePool-r12,
 mcs-r12 INTEGER (0..28) OPTIONAL -- Need OP
 },
 ue-Selected-r12 SEQUENCE {
 -- Pool for normal usage
 commTxPoolNormal1Dedicated-r12 SEQUENCE {
 poolToReleaseList-r12 SL-TxPoolToReleaseList-r12 OPTIONAL, -- Need ON
 poolToAddModList-r12 SL-CommTxPoolToAddModList-r12 OPTIONAL -- Need ON
 }
 }
 },
 } OPTIONAL, -- Need ON
 ...
 [[commTxResources-v1310 CHOICE {
 release NULL,
 setup CHOICE {
 scheduled-v1310 SEQUENCE {
 logicalChGroupInfoList-r13 LogicalChGroupInfoList-r13,
 multipleTx-r13 BOOLEAN
 },
 ue-Selected-v1310 SEQUENCE {
 commTxPoolNormal1DedicatedExt-r13 SEQUENCE {
 poolToReleaseListExt-r13 SL-TxPoolToReleaseListExt-r13 OPTIONAL,
 poolToAddModListExt-r13 SL-CommTxPoolToAddModListExt-r13 OPTIONAL
 }
 }
 },
 } OPTIONAL, -- Need ON
 commTxAllowRelayDedicated-r13 BOOLEAN OPTIONAL -- Need ON
}]
LogicalChGroupInfoList-r13 ::= SEQUENCE (SIZE (1..maxLCG-r13)) OF SL-PriorityList-r13
SL-TxPoolToAddModList-r12 ::= SEQUENCE (SIZE (1..maxSL-TxPool-r12)) OF SL-CommTxPoolToAddMod-r12
SL-TxPoolToAddModListExt-r13 ::= SEQUENCE (SIZE (1..maxSL-TxPool-v1310)) OF SL-CommTxPoolToAddModExt-r13
SL-TxPoolIdentity-r12 ::= SEQUENCE {
 poolIdentity-r12 SL-TxPoolIdentity-r12,
 pool-r12 SL-CommResourcePool-r12
}
SL-TxPoolIdentity-v1310 ::= SEQUENCE {
 poolIdentity-v1310 SL-TxPoolIdentity-v1310,
 pool-r13 SL-CommResourcePool-r12
}
MAC-MainConfigSL-r12 ::= SEQUENCE {
 periodic-BSR-TimerSL PeriodicBSR-Timer-r12 OPTIONAL, -- Need ON
 retx-BSR-TimerSL RetxBSR-Timer-r12
}
-- ASN1STOP
```
### SL-CommConfig field descriptions

**commTxAllowRelayDedicated**  
Indicates whether the UE is allowed to transmit relay related sidelink communication using the configured dedicated transmission resources i.e. either via scheduled or via UE selected resources.

**commTxPoolNormalDedicated**  
Indicates a pool of transmission resources the UE is allowed to use while in RRC_CONNECTED.

**logicalChGroupInfoList**  
Indicates for each logical channel group the list of associated priorities, used as specified in TS 36.321 [6], in order of increasing logical channel group identity.

**mcs**  
Indicates the MCS as defined in TS 36.212 [23, 14.2.1]. If not configured, the selection of MCS is up to UE implementation.

**multipleTx**  
Indicates whether the UE should perform multiple transmissions to different destinations in one SC period in accordance with TS 36.321 [6, 5.14.1.1]. Value TRUE indicates that multiple transmissions should be performed.

**sc-CommTxConfig**  
Indicates a pool of resources for SC when E-UTRAN schedules Tx resources (i.e. when indices included in DCI format 5 indicate the actual data resources to be used as specified in TS 36.212 [22, 5.3.3.1.9]).

**scheduled**  
Indicates the configuration for the case E-UTRAN schedules the transmission resources based on sidelink specific BSR from the UE.

**ue-Selected**  
Indicates the configuration for the case the UE selects the transmission resources from a pool of resources configured by E-UTRAN.

---

**SL-CommResourcePool**

The IE SL-CommResourcePool and SL-CommResourcePoolV2X specifies the configuration information for an individual pool of resources for sidelink communication and V2X sidelink communication respectively. The IE covers the configuration of both the sidelink control information and the data.

---

**SL-CommResourcePool** information element

```asn1
-- ASN1START

SL-CommRxPoolList-r12 ::= SEQUENCE (SIZE (1..maxSL-RxPool-r12)) OF SL-CommResourcePool-r12

SL-CommRxPoolListV2X-r14 ::= SEQUENCE (SIZE (1..maxSL-V2X-RxPool-r14)) OF SL-CommResourcePoolV2X-r14

-- ASN1END
```
SL-CommResourcePoolV2X-r14 ::= SEQUENCE {
  sl-OffsetIndicator-r14  SL-OffsetIndicator-r12  OPTIONAL,  -- Need OR
  sl-Subframe-r14        SubframeBitmapSL-r14,
  adjacencyPSCCH-PSSCH-r14 BOOLEAN,
  sizeSubchannel-r14     ENUMERATED {
    n4, n5, n6, n8, n9, n10, n12, n15, n16, n18, n20, n25, n30,
    n48, n50, n72, n75, n96, n100, spare13, spare12, spare11,
    spare10, spare9, spare8, spare7, spare6, spare5, spare4,
    spare3, spare2, spare1},
  numSubchannel-r14      ENUMERATED {n1, n3, n5, n8, n10, n15, n20, spare1},
  startRB-Subchannel-r14  INTEGER (0..99),
  sizeSubchannel-r14     ENUMERATED {
    n4, n5, n6, n8, n9, n10, n12, n15, n16, n18, n20, n25, n30,
    n48, n50, n72, n75, n96, n100, spare13, spare12, spare11,
    spare10, spare9, spare8, spare7, spare6, spare5, spare4,
    spare3, spare2, spare1},
  numSubchannel-r14      ENUMERATED {n1, n3, n5, n8, n10, n15, n20, spare1},
  startRB-PSCCH-Pool-r14    INTEGER (0..99) OPTIONAL,  -- Need OR
  rxParametersNCel1-r14    SEQUENCE {
    tdd-Config-r14        TDD-Config OPTIONAL,  -- Need OR
    syncConfigIndex-r14   INTEGER (0..15) OPTIONAL,  -- Need OR
  }
  dataTxParameters-r14    SL-TxParameters-r12 OPTIONAL,  -- Cond Tx
  zoneID-r14              INTEGER (0..7) OPTIONAL,  -- Need OR
  threshS-RSSI-CBR-r14     INTEGER (0..45) OPTIONAL,  -- Cond Tx
  poolReportId-r14        SL-V2X-TxPoolReportIdentity-r14 OPTIONAL,  -- Need OR
  cbr-pssch-TxConfigList-r14  SL-CBR-PPP-PtxConfigList-r14 OPTIONAL,  -- Need OR
  resourceSelectionConfigP2X-r14  SL-P2X-ResourceSelectionConfig-r14 OPTIONAL,  -- Cond P2X
  syncAllowed-r14         SL-SyncAllowed-r14 OPTIONAL,  -- Need OR
  restrictResourceReservationPeriod-r14 SL-RestrictResourceReservationPeriodList-r14 OPTIONAL,  -- Need OR
  ...

  SL-TRPT-Subset-r12 ::= BIT STRING (SIZE 3..5)

  SL-V2X-TxPoolReportIdentity-r14 ::= INTEGER (1..maxSL-PoolToMeasure-r14)

  -- ASN1STOP
<table>
<thead>
<tr>
<th><strong>Field Description</strong></th>
<th><strong>Meaning</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>adjacencyPSCCH-PSSCH</strong></td>
<td>Indicates whether a UE shall always transmit PSCCH and PSSCH in adjacent RBs (indicated by TRUE) or in non-adjacent RBs (indicated by FALSE) (see TS 36.213 [23]).</td>
</tr>
<tr>
<td><strong>cbr-pssch-TxConfigList</strong></td>
<td>Indicates the mapping between PPPPs, CBR ranges by using indexes of the entry in cbr-RangeCommonConfigList, and PSSCH transmission parameters and CR limit by using indexes of the entry in sl-CBR-PSSCH-TxConfigList. If SL-CommResourcePoolV2X is included in MobilityControlInfoV2X, it refers to cbr-MobilityTxConfigList for cbr-RangeCommonConfigList and sl-CBR-PSSCH-TxConfigList. If SL-CommResourcePoolV2X is included in SL-V2X-ConfigDedicated, it refers to cbr-DedicatedTxConfigList for cbr-RangeCommonConfigList and sl-CBR-PSSCH-TxConfigList. Otherwise, it refers to cbr-CommonTxConfigList included in the SystemInformationBlockType21 of the serving cell / PCell for cbr-RangeCommonConfigList and sl-CBR-PSSCH-TxConfigList.</td>
</tr>
<tr>
<td><strong>numSubchannel</strong></td>
<td>Indicates the number of subchannels in the corresponding resource pool (see TS 36.213 [23]).</td>
</tr>
<tr>
<td><strong>poolReportId</strong></td>
<td>The identity of the transmission resource pool used for CBR measurement reporting, which is corresponding to the poolIdentity reported in measResultListCBR. This field is only present in the transmission pools configured in RRCConnectionReconfiguration and v2x-CommTxPoolExceptional, p2x-CommTxPoolNormalCommon, v2x-CommTxPoolNormalCommon, v2x-CommTxPoolExceptional in SystemInformationBlockType21. Otherwise, the field is absent.</td>
</tr>
<tr>
<td><strong>resourceSelectionConfigP2X</strong></td>
<td>Indicates the allowed resource selection mechanism(s), i.e. partial sensing and/or random selection, for P2X related V2X sidelink communication.</td>
</tr>
<tr>
<td><strong>restrictResourceReservationPeriod</strong></td>
<td>If configured, the field restrictResourceReservationPeriod configured in v2x-ResourceSelectionConfig shall be ignored for transmission on this pool.</td>
</tr>
<tr>
<td><strong>sc-Period</strong></td>
<td>Indicates the period over which resources are allocated in a cell for SC and over which scheduled and UE selected data transmissions occur, see PSCCH period in TS 36.213 [23]. Value in number of subframes. Value sf40 corresponds to 40 subframes, sf80 corresponds to 80 subframes and so on. E-UTRAN configures values sf40, sf80, sf160 and sf320 for FDD and for TDD config 1 to 5, values sf70, sf140 and sf280 for TDD config 0, and finally values sf60, sf120 and sf240 for TDD config 6.</td>
</tr>
<tr>
<td><strong>sizeSubchannel</strong></td>
<td>Indicates the number of PRBs of each subchannel in the corresponding resource pool (see TS 36.213 [23]). The value n5 denotes 5 PRBs; n6 denotes 6 PRBs and so on. E-UTRAN configures values n5, n6, n10, n15, n20, n25, n50, n75 and n100 in the case of adjacencyPSCCH-PSSCH set to TRUE; otherwise, E-UTRAN configures values n4, n5, n6, n8, n9, n10, n12, n15, n16, n18, n20, n30, n48, n72 and n96 in the case of adjacencyPSCCH-PSSCH set to FALSE.</td>
</tr>
<tr>
<td><strong>sl-OffsetIndicator</strong></td>
<td>Indicates the offset of the first subframe of a resource pool, i.e., the starting subframe of the repeating bitmap sl-Subframe, within a SFN cycle. If absent, the resource pool starts from first subframe of SFN=0. This field is not applicable to V2X sidelink communication.</td>
</tr>
<tr>
<td><strong>sl-Subframe</strong></td>
<td>Indicates the bitmap of the resource pool, which is defined by repeating the bitmap within a SFN cycle (see TS 36.213 [23]).</td>
</tr>
<tr>
<td><strong>startRB-PSCCH-Pool</strong></td>
<td>Indicates the lowest RB index of the PSCCH pool (see TS 36.213 [23]). This field is absent when a pool is (pre)configured such that a UE always transmits SC and data in adjacent RBs in the same subframe.</td>
</tr>
<tr>
<td><strong>startRB-Subchannel</strong></td>
<td>Indicates the lowest RB index of the subchannel with the lowest index (see TS 36.213 [23]).</td>
</tr>
<tr>
<td><strong>syncAllowed</strong></td>
<td>Indicates the allowed synchronization reference(s) which is (are) allowed to use the configured resource pool.</td>
</tr>
<tr>
<td><strong>syncConfigIndex</strong></td>
<td>Indicates the synchronisation configuration that is associated with a reception pool, by means of an index to the corresponding entry of commSyncConfig in SystemInformationBlockType18 for sidelink communication, or by means of an index to the corresponding entry of v2x-SyncConfig in SystemInformationBlockType21 for V2X sidelink communication.</td>
</tr>
<tr>
<td><strong>tdc-Config</strong></td>
<td>TDD configuration associated with the reception pool of the cell indicated by syncConfigIndex. Absence of the field indicates the same duplex mode as the cell providing this field and the same UL/DL configuration as indicated by subframeAssignment in SystemInformationBlockType1 in case of TDD.</td>
</tr>
<tr>
<td><strong>threshRSSI-CBR</strong></td>
<td>Indicates the S-RSSI threshold for determining the contribution of a sub-channel to the CBR measurement, as specified in TS 36.214 [48]. Value 0 corresponds to -112 dBm, value 1 to -110 dBm, value n to (-112 + n*2) dBm, and so on.</td>
</tr>
</tbody>
</table>
### SL-CommResourcePool field descriptions

**adjacencyPSCCH-PSSCH**
Indicates whether a UE shall always transmit PSCCH and PSSCH in adjacent RBs (indicated by TRUE) or in non-adjacent RBs (indicated by FALSE) (see TS 36.213 [23]).

**trpt-Subset**
Indicates the subset of T-RPT available (see TS 36.213 [23, 14.1.1.1.1]). Consists of a bitmap which is used to indicate the set of available ‘k’ values to be used for sidelink communication (see TS 36.213 [23, 14.1.1.3]). If T-RPT subset configuration is not signaled/ preconfigured then UE assumes the whole T-RPT set is available.

**zoneID**
Indicates the zone ID for which the UE shall use this resource pool as described in 5.10.13.2. The field is absent in v2x-CommTxPoolExceptional, p2x-CommTxPoolNormalCommon and v2x-CommRxPool in SIB21 or in mobilityControlInfoV2X.

### Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tx</strong></td>
<td>The field is mandatory present when included in commTxPoolNormalDedicated, commTxPoolNormalDedicatedExt, commTxPoolNormalCommon, commTxPoolNormalCommonExt, commTxPoolExceptional, sc-CommTxConfig, v2x-CommTxPoolNormalCommon, v2x-CommTxPoolNormalExceptional, v2x-CommTxPoolNormalDedicated, p2x-CommTxPoolNormalCommon or v2x-CommTxPoolNormal and p2x-CommTxPoolNormal in v2x-InterFreqInfoList. Otherwise the field is not present.</td>
</tr>
<tr>
<td><strong>P2X</strong></td>
<td>The field is mandatory present when included in p2x-CommTxPoolNormalCommon, v2x-CommTxPoolNormalDedicated in sl-V2X-ConfigDedicated for P2X related V2X sidelink communication or p2x-CommTxPoolNormal in v2x-InterFreqInfoList. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

### SL-CommTxPoolSensingConfig

The IE SL-CommTxPoolSensingConfig specifies V2X sidelink communication configurations used for UE autonomous resource selection.

#### SL-CommTxPoolSensingConfig information element

```asn1
-- ASN1START
SL-CommTxPoolSensingConfig-r14 ::= SEQUENCE {
 pssch-TxConfigList-r14 : SL-PSSCH-TxConfigList-r14,
 thresPSSCH-RSRP-List-r14 : SL-ThresPSSCH-RSRP-List-r14,
 restrictResourceReservationPeriod-r14 : SL-RestrictResourceReservationPeriodList-r14
 OPTIONAL, -- Need OR
 probResourceKeep-r14 ENUMERATED {v0, v0dot2, v0dot4, v0dot6, v0dot8,
 spare3, spare2, spare1},
 p2x-SensingConfig-r14 SEQUENCE {
 minNumCandidateSF-r14 INTEGER {1..13},
 gapCandidateSensing-r14 BIT STRING {SIZE (10)}
 } OPTIONAL, -- Need OR
 sl-ReselectAfter-r14 ENUMERATED {n1, n2, n3, n4, n5, n6, n7, n8, n9,
 spare7, spare6, spare5, spare4, spare3, spare2,
 spare1} OPTIONAL -- Need OR
}
-- ASN1STOP
```
### SL-CommTxPoolSensingConfig field descriptions

#### gapCandidateSensing
Indicates which subframe should be sensed when a certain subframe is considered as a candidate resource (see TS 36.213 [23]).

#### minNumCandidateSF
Indicates the minimum number of subframes that are included in the possible candidate resources.

#### p2x-SensingConfig
Indicates the sensing configuration for P2X related V2X sidelink communication transmission only.

#### probResourceKeep
Indicates the probability with which the UE keeps the current resource when the resource reselection counter reaches zero for sensing based UE autonomous resource selection (see TS 36.213 [23]).

#### pssch-TxConfigList
Indicates PSSCH TX parameters such as MCS, PRB number, retransmission number, associated to different UE absolute speeds and different synchronization reference types for UE autonomous resource selection (see TS 36.213 [23]).

#### restrictResourceReservationPeriod
Indicates which values are allowed for the signaling of the resource reservation period in PSCCH.

#### sl-ReselectAfter
Indicates the number of consecutive skipped transmissions before triggering resource reselection for V2X sidelink communication (see TS 36.321 [6]).

#### thresPSSCH-RSRP-List
Indicates a list of 64 thresholds, and the threshold should be selected based on the priority in the decoded SCI and the priority in the SCI to be transmitted (see TS 36.213 [23]). A resource is excluded if it is indicated or reserved by a decoded SCI and PSSCH RSRP in the associated data resource is above a threshold.

---

### SL-CP-Len

The IE `SL-CP-Len` indicates the cyclic prefix length, see TS 36.211 [21].

#### SL-CP-Len information element

```asn1
-- ASN1START
SL-CP-Len-r12 ::= ENUMERATED {normal, extended}

-- ASN1STOP
```

---

### SL-DiscConfig

The IE `SL-DiscConfig` specifies the dedicated configuration information for sidelink discovery.

#### SL-DiscConfig information element

```asn1
-- ASN1START
SL-DiscConfig-r12 ::= SEQUENCE {
 discTxResources-r12 SEQUENCE {
 release NULL,
 setup CHOICE {
 scheduled-r12 SEQUENCE {
 discTxConfig-r12 SL-DiscResourcePool-r12 OPTIONAL, -- Need ON
 discTF-IndexList-r12 SL-TF-IndexPairList-r12 OPTIONAL, -- Need ON
 discHoppingConfig-r12 SL-HoppingConfigDisc-r12 OPTIONAL -- Need ON
 },
 ue-Selected-r12 SEQUENCE {
 poolToReleaseList-r12 SL-TxPoolToReleaseList-r12 OPTIONAL, -- Need ON
 poolToAddModList-r12 SL-DiscTxPoolToAddModList-r12 OPTIONAL -- Need ON
 } OPTIONAL, -- Need ON
 },
 discTxPoolDedicated-r12 SEQUENCE {
 discTF-IndexList-v1260 CHOICE {
 release NULL,
 } OPTIONAL, -- Need ON
 },
 },
 ...)
}
```

---
setup        SEQUENCE {
            discTF-IndexList-r12b        SL-TF-IndexPairList-r12b
        }  OPTIONAL -- Need ON
    ]],
    [[
        discTxResourcesPS-r13  CHOICE {
            release        NULL,
            setup        CHOICE {
                scheduled-r13        SL-DiscTxConfigScheduled-r13,
                ue-Selected-r13        SL-DiscTxPoolDedicated-r13
            }
        }
    ]],
    discTxInterFreqInfo-r13  CHOICE {
        release        NULL,
        setup        SEQUENCE {
            discTxCarrierFreq-r13  ARFCN-ValueEUTRA-r9  OPTIONAL, -- Need OR
            discTxRefCarrierDedicated-r13  SL-DiscTxRefCarrierDedicated-r13  OPTIONAL, -- Need
            discTxInfoInterFreqListAdd-r13  SL-DiscTxInfoInterFreqListAdd-r13  OPTIONAL
        }
    ]]
}

SL-DiscSysInfoToReportFreqList-r13 ::= SEQUENCE (SIZE (1..maxFreq)) OF ARFCN-ValueEUTRA-r9

SL-DiscTxInfoInterFreqListAdd-r13 ::= SEQUENCE {
    discTxFreqToAddModList-r13  SEQUENCE (SIZE (1..maxFreq)) OF SL-DiscTxResourceInfoPerFreq-r13  OPTIONAL, -- Need ON
    discTxFreqToReleaseList-r13  SEQUENCE (SIZE (1..maxFreq)) OF ARFCN-ValueEUTRA-r9  OPTIONAL, -- Need ON
    ...
}

SL-DiscTxResourceIdPerFreq-r13 ::= SEQUENCE {
    discTxCarrierFreq-r13  ARFCN-ValueEUTRA-r9,
    discTxResources-r13  SL-DiscTxResource-r13  OPTIONAL, -- Need OR
    discTxResourcesPS-r13  SL-DiscTxResource-r13  OPTIONAL, -- Need OR
    discTxRefCarrierDedicated-r13  SL-DiscTxRefCarrierDedicated-r13  OPTIONAL, -- Need
    discCellSelectionInfo-r13  CellSelectionInfoNFreq-r13  OPTIONAL, -- Need
    ...
}

SL-DiscTxResourceId-r13 ::= CHOICE {
    release        NULL,
    setup        CHOICE {
        scheduled-r13        SL-DiscTxConfigScheduled-r13,
        ue-Selected-r13        SL-DiscTxPoolDedicated-r13
    }
}

SL-DiscTxPoolToAddModList-r12 ::= SEQUENCE (SIZE (1..maxSL-TxPool-r12)) OF SL-DiscTxPoolToAddMod-r12

SL-DiscTxPoolToAddMod-r12 ::= SEQUENCE {
    poolIdentity-r12  SL-TxPoolIdentity-r12,
    pool-r12  SL-DiscResourcePool-r12
}
SL-DiscTxConfigScheduled-r13 ::= SEQUENCE {
  discTxConfig-r13 : SL-DiscResourcePool-r12 OPTIONAL, -- Need ON
  discTF-IndexList-r13 : SL-TF-IndexPairList-r12b OPTIONAL, -- Need ON
  discHoppingConfig-r13 : SL-HoppingConfigDisc-r12 OPTIONAL, -- Need ON
  ...
}

SL-DiscTxPoolDedicated-r13 ::= SEQUENCE {
  poolToReleaseList-r13 : SL-TxPoolToReleaseList-r12 OPTIONAL, -- Need ON
  poolToAddModList-r13 : SL-DiscTxPoolToAddModList-r12 OPTIONAL -- Need ON
}

SL-TF-IndexPairList-r12 ::= SEQUENCE (SIZE (1..maxSL-TF-IndexPair-r12)) OF SL-TF-IndexPair-r12

SL-TF-IndexPair-r12 ::= SEQUENCE {
  discSF-Index-r12 : INTEGER (1.. 200)  OPTIONAL, -- Need ON
  discPRB-Index-r12 : INTEGER (1.. 50)  OPTIONAL -- Need ON
}

SL-TF-IndexPairList-r12b ::= SEQUENCE (SIZE (1..maxSL-TF-IndexPair-r12)) OF SL-TF-IndexPair-r12b

SL-TF-IndexPair-r12b ::= SEQUENCE {
  discSF-Index-r12b : INTEGER (0..209)  OPTIONAL, -- Need ON
  discPRB-Index-r12b : INTEGER (0..49)   OPTIONAL -- Need ON
}

SL-DiscTxRefCarrierDedicated-r13 ::= CHOICE {
  pCell NULL,
  sCell SCellIndex-r10
}

-- ASN1STOP

**SL-DiscConfig field descriptions**

**discCellSelectionInfo**
Parameters that may be used by the UE to select/ reselect a cell on the concerned non serving frequency. If absent, the UE acquires the information from the target cell on the concerned frequency. See TS 36.304 [4, 11.4].

**discSysInfoToReportConfig**
Indicates the request to start a Sidelink UEInformation procedure for reporting system information acquired during an inter-frequency discovery procedure.

**discTF-IndexList**
Indicates a list of time-frequency resource indices pair where each pair of indices corresponds to one discovery message. E-UTRAN only configures discTF-IndexList-r12b when configuring the UE with scheduled SL discovery Tx resources. When receiving discTF-IndexList-r12b, the UE shall only consider this field (and hence ignore discTF-IndexList-r12, if included or previously configured).

**discTxConfig**
Indicates the configuration used when E-UTRAN schedules Tx resources (i.e. the fields discSF-Index and discPRB-Index indicate the actual resources to be used).

**discTxInterFreqInfo**
Indicates frequency applicable for the resources indicated by discTxResources-r12 (i.e. original resource field may cover first inter-frequency), and possibly resource allocations on additional frequencies as may be indicated by field discTxInInterFreqListAdd.

**discTxRefCarrierDedicated**
Indicates if the PCell or an SCell is to be used as reference for DL measurements and synchronization, instead of the DL frequency paired with the one used to transmit sidelink discovery announcements on, see TS 36.213 [23, 14.3.1].

**discTxResources**
Indicates the resources assigned to the UE for discovery announcements, which can either be a pool from which the UE may select or a set of resources specifically assigned for use by the UE.

**discTxResourcesPS**
Indicates the resources assigned to the UE for PS discovery announcements, which can either be a pool from which the UE may select or a set of resources specifically assigned for use by the UE.

**SL-TF-IndexPair**
A pair of indices, one for the time domain and one for the frequency domain, indicating the start of resources within the pool covered by discTxConfig, see TS 36.211 [21, 9.5.6] for one discovery message. The upper limits of discSF-Index and discPRB-Index are defined in TS 36.213 [23, 14.3.1].
The IE \texttt{SL-DiscResourcePool} specifies the configuration information for an individual pool of resources for sidelink discovery.

\textbf{\texttt{SL-DiscResourcePool} information element}

```asn1
-- ASN1START
SL-DiscTxPoolList-r12 ::= SEQUENCE (SIZE (1..maxSL-TxPool-r12)) OF SL-DiscResourcePool-r12
SL-DiscRxPoolList-r12 ::= SEQUENCE (SIZE (1..maxSL-RxPool-r12)) OF SL-DiscResourcePool-r12
SL-DiscResourcePool-r12 ::= SEQUENCE {
 cp-Len-r12 SL-CP-Len-r12,
 discPeriod-r12 ENUMERATED {rf32, rf64, rf128, rf256, rf512, rf1024, rf16-v1310, spare},
 numRetx-r12 INTEGER (0..3),
 numRepetition-r12 INTEGER (1..50),
 tf-ResourceConfig-r12 SL-TF-ResourceConfig-r12,
 txParameters-r12 SEQUENCE {
 txParametersGeneral-r12 SL-TxParameters-r12,
 ue-SelectedResourceConfig-r12 SEQUENCE {
 poolSelection-r12 CHOICE {
 rsrpBased-r12 SL-PoolSelectionConfig-r12,
 random-r12 NULL
 },
 txProbability-r12 ENUMERATED {p25, p50, p75, p100}
 } OPTIONAL, -- Need OR
 ue-SelectedResourceConfig-r12 SEQUENCE {
 poolSelection-r12 CHOICE {
 rsrpBased-r12 SL-PoolSelectionConfig-r12,
 random-r12 NULL
 },
 txProbability-r12 ENUMERATED {p25, p50, p75, p100}
 } OPTIONAL, -- Cond Tx
 } OPTIONAL, -- Need OR
 rxParameters-r12 SEQUENCE {
 tdd-Config-r12 TDD-Config OPTIONAL, -- Need OR
 syncConfigIndex-r12 INTEGER (0..15)
 } OPTIONAL, -- Need OR
 ...,
 [[discPeriod-v1310 CHOICE {
 release NULL,
 setup ENUMERATED {rf4, rf6, rf7, rf8, rf12, rf14, rf24, rf28}
 } OPTIONAL, -- Need ON
 }
 rxParamAddNeighFreq-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 physCellId-r13 PhysCellIdList-r13
 }
 } OPTIONAL, -- Need ON
 txParamAddNeighFreq-r13 CHOICE {
 release NULL,
 setup SEQUENCE {
 physCellId-r13 PhysCellIdList-r13,
 p-Max P-Max OPTIONAL, -- Need OP
 tdd-Config-r13 TDD-Config OPTIONAL, -- Cond TDD-OR
 tdd-Config-v1130 TDD-Config-v1130 OPTIONAL, -- Cond TDD-OR
 freqInfo SEQUENCE {
 ul-CarrierFreq ARFCN-ValueEUTRA OPTIONAL, -- Need OP
 ul-Bandwidth ENUMERATED {n6, n15, n25, n50, n75, n100} OPTIONAL, -- Need OP
 additionalSpectrumEmission AdditionalSpectrumEmission
 },
 referenceSignalPower INTEGER (-60..50),
 syncConfigIndex-r13 INTEGER (0..15) OPTIONAL, -- Need OR
 }
 } OPTIONAL, -- Need ON
],
 [[txParamAddNeighFreq-v1370 CHOICE {
 release NULL,
 setup SEQUENCE {
 freqInfo-v1370 SEQUENCE {
 additionalSpectrumEmission-v1370 AdditionalSpectrumEmission-v1010
 }
 }
 } OPTIONAL, -- Need ON
]]
}"
```

\texttt{PhysCellIdList-r13 ::= SEQUENCE (SIZE (1..maxSL-DiscCells-r13)) OF PhysCellId}

-- ASN1END
```
SL-PoolSelectionConfig-r12 ::= SEQUENCE {
 threshLow-r12 RSRP-RangeSL2-r12,
 threshHigh-r12 RSRP-RangeSL2-r12
}

SL-DiscResourcePool field descriptions

- **discPeriod**
 Indicates the period over which resources are allocated in a cell for discovery message transmission/reception, see PSDCH period in TS 36.213 [23]. Value in number of radio frames. Value rf32 corresponds to 32 radio frames, rf64 corresponds to 64 radio frames and so on. The extended values apply for PS discovery (not only for sidelink relaying). When broadcasting an extended value, E-UTRAN sets the original field to spare to ensure legacy UEs ignore the concerned pool entry.

- **numRepetition**
 Indicates the number of times subframeBitmap is repeated for mapping to subframes that occurs within a discPeriod. The highest value E-UTRAN uses is value 5 for FDD and TDD configuration 0, value 13 for TDD configuration 1, value 25 for TDD configuration 2, value 17 for TDD configuration 3, value 40 for TDD configuration 4, value 50 for TDD configuration 5 and value 7 for TDD configuration 6. E-UTRAN configures numRepetition and subframeBitmap such that the mapped subframes do not exceed the discPeriod.

- **poolSelection**
 Indicates the mechanism for selecting a (transmission) pool when multiple candidates are provided. E-UTRAN configures the same value (i.e. a pool selection method) for all candidate pools within one pool list (discTxPoolCommon or discTxPoolDedicated) but the pool selection method in different pool lists may or may not be the same.

- **syncConfigIndex**
 Indicates the synchronisation configuration that is associated with a reception or transmission pool, by means of an index to the corresponding entry of discSyncConfig in SystemInformationBlockType19.

- **threshLow, threshHigh**
 Specifies the thresholds used to select a resource pool in RSRP based pool selection. The E-UTRAN should configure threshLow and threshHigh such that the UE selects only one resource pool upon RSRP based pool selection.

- **txProbability**
 Indicates the probability of transmitting announcement in a discovery period when configured with a pool of resources, see TS 36.321 [6].

SL-DiscSysInfoReport

The IE **SL-DiscSysInfoReport** contains the parameters related to sidelink discovery acquired from system information of inter-frequency cells (including inter-PLMN).

SL-DiscSysInfoReport information element

```
SL-DiscSysInfoReport-r13 ::= SEQUENCE {
  plmn-IdentityList-r13 PLMN-IdentityList OPTIONAL,
  cellIdentity-r13 CellIdentity OPTIONAL,
  carrierFreqInfo-r13 ARFCN-ValueEUTRA-r9 OPTIONAL,
  discRxResources-r13 SL-DiscRxPoolList-r12 OPTIONAL,
  discTxPoolCommon-r13 SL-DiscTxPoolList-r12 OPTIONAL,
  discTxPowerInfo-r13 SL-DiscTxPowerInfoList-r12 OPTIONAL,
  discSyncConfig-r13 SL-SyncConfigFreq-r13 OPTIONAL,
  discCellSelectionInfo-r13 SEQUENCE {
    q-RxLevMin-r13 Q-RxLevMin,
    q-RxLevMinOffset-r13 INTEGER (1..8) OPTIONAL
  } OPTIONAL,
  cellReselectionInfo-r13 SEQUENCE {
    q-Hyst-r13 ENUMERATED {
      dB0, dB1, dB2, dB3, dB4, dB5, dB6, dB8, dB10,
      dB12, dB14, dB16, dB18, dB20, dB22, dB24,
    }
    q-RxLevMin-r13 Q-RxLevMin,
  }
}
```
t-ReselectionEUTRA-r13 T-Reselection OPTIONAL,
tdd-Config-r13 TDD-Config OPTIONAL,
freqInfo-r13 SEQUENCE {
 ul-CarrierFreq-r13 ARFCN-ValueEUTRA OPTIONAL,
 ul-Bandwidth-r13 ENUMERATED {n6, n15, n25, n50, n75, n100} OPTIONAL,
 additionalSpectrumEmission-r13 AdditionalSpectrumEmission OPTIONAL,
}
p-Max-r13 P-Max OPTIONAL,
referenceSignalPower-r13 INTEGER (-60..50) OPTIONAL,
...,

[]

freqInfo-v1370 SEQUENCE {
 additionalSpectrumEmission-v1370 AdditionalSpectrumEmission-v1010 OPTIONAL,
}
]]

-- ASN1STOP

SL-DiscSysInfoReport field descriptions

- **carrierFreqInfo**: Indicates the frequency of the cell from which the UE acquired the system information relevant for discovery.
- **cellIdentity**: Indicates the identity of the cell from which the UE acquired the system information relevant for discovery.
- **plmn-IdentityList**: Indicates the list of PLMN identity of the cell from which the UE acquired the system information relevant for discovery.

SL-DiscTxPowerInfo

The IE **SL-DiscTxPowerInfo** specifies power control parameters for one or more power classes.

SL-DiscTxPowerInfo information element

-- ASN1START

SL-DiscTxPowerInfoList-r12 ::= SEQUENCE (SIZE (maxSL-DiscPowerClass-r12)) OF SL-DiscTxPowerInfo-r12

SL-DiscTxPowerInfo-r12 ::= SEQUENCE {
 discMaxTxPower-r12 P-Max,
 ...,
}

-- ASN1STOP

SL-DiscTxPowerInfo field descriptions

- **discMaxTxPower**: Indicates the P-Max parameter used to calculate the maximum transmit power a UE configured with the concerned range class, see TS 24.333 [70, 4.2.11]. The first entry in **SL-DiscTxPowerInfoList** corresponds to UE range class 'short', the second entry corresponds to 'medium' and the third entry corresponds to 'long'.

SL-GapConfig

The IE **SL-GapConfig** indicates the gaps, requested or assigned, to enable the UE to receive or transmit sidelink discovery, intra or inter frequency (including inter-PLMN).

SL-GapConfig information element

-- ASN1START

SL-GapConfig-r13 ::= SEQUENCE {
 gapPatternList-r13 SL-GapPatternList-r13
}

SL-GapPatternList-r13 ::= SEQUENCE (SIZE (1..maxSL-GP-r13)) OF SL-GapPattern-r13

SL-GapPattern

SL-GapPattern field descriptions

- **gapOffset**: Indicates the offset from the start of SFN 0 to the start of the first **gapPeriod**. If the SFN period is not an integer multiple of **gapPeriod**, no subframes within this period (i.e. from SFN 0 to offset) are considered part of the gap.

- **gapPeriod**: Indicates the period by which **gapSubframeBitmap** is repeated.

- **gapSubframeBitmap**: Indicates the subframes of one or more individual gaps, not only covering the subframes of the associated discovery resources but also including e.g. re-tuning and synchronisation delays. The UE and E-UTRAN signal bit strings of valid sizes only i.e. sizes equal to or less than **gapPeriod**. Value 1 indicates that the UE is allowed to use the subframe for sidelink discovery.

SL-GapRequest

The IE **SL-GapRequest** indicates the gaps requested by the UE to receive or transmit sidelink discovery, intra or inter frequency (including inter-PLMN).

SL-GapRequest information element

SL-HoppingConfig

The IE **SL-HoppingConfig** indicates the hopping configuration used for sidelink.

SL-HoppingConfig information element

SL-HoppingConfig field descriptions

a

Per cell parameter: $N_{PSDCH}^{(1)}$ see TS 36.213 [23, 14.3.1].

b

Per UE parameter: $N_{PSDCH}^{(2)}$ see TS 36.213 [23, 14.3.1].

c

Per cell parameter: $N_{PSDCH}^{(3)}$ see TS 36.213 [23, 14.3.1]

hoppingParameter

Affects the hopping performed as specified in TS 36.213 [23, 14.1.1.2 and 14.1.1.4]. In case value 504 is received, the value used by the UE is 510.

numSubbands

Parameter: N_{num} see TS 36.211 [21, 9.3.6].

rb-Offset

Parameter: N_{RB}^{HO}, see TS 36.211 [21, 9.3.6].

SL-InterFreqInfoListV2X

The IE SL-$InterFreqInfoListV2X$ indicates synchronization and resource allocation configurations of the neighboring frequency for V2X sidelink communication.

SL-InterFreqInfoListV2X information element

```
-- ASN1START
SL-InterFreqInfoListV2X-r14 ::= SEQUENCE (SIZE (0..maxFreqV2X-1-r14)) OF SL-InterFreqInfoV2X-r14

SL-InterFreqInfoV2X-r14 ::= SEQUENCE {
    plmn-IdentityList-r14    PLMN-IdentityList   OPTIONAL,  -- Need OP
    v2x-CommCarrierFreq-r14   ARFCN-ValueEUTRA-r9,   -- Need OR
    sl-MaxTxPower-r14     P-Max    OPTIONAL,  -- Need OR
    sl-Bandwidth-r14     ENUMERATED {n6, n15, n25, n50, n75, n100} OPTIONAL, -- Need OR
    v2x-SchedulingPool-r14    SL-CommResourcePoolV2X-r14    OPTIONAL, -- Need OR
    v2x-UE-ConfigList-r14  SL-V2X-UE-ConfigList-r14 OPTIONAL, -- Need OR
    ...,
    [** additionalSpectrumEmissionV2X-r14 **] CHOICE {
        additionalSpectrumEmission-r14  AdditionalSpectrumEmission
        additionalSpectrumEmission-v1440 AdditionalSpectrumEmission-v1010
    } OPTIONAL  -- Need OR
    }

-- ASN1STOP
```

SL-InterFreqInfoListV2X field descriptions

plmn-IdentityList

Indicates PLMN identities of this frequency for reception of V2X sidelink communication. If this field is not present, the UE considers this frequency for reception of V2X sidelink communication concerns the first PLMN entry in the `plmn-IdentityList` in SystemInformationBlockType1.

sl-MaxTxPower

Indicates the maximum transmission power for transmitting V2X sidelink communication on the corresponding frequency.

additionalSpectrumEmissionV2X

Indicates the `additionalSpectrumEmission` value defined in TS 36.101 [42, 6.2.4] for V2X sidelink communication.

v2x-SchedulingPool

Indicates the resource pool for inter-carrier scheduled resource allocation. This field is configured in RRC dedicated signalling only when scheduled is configured in IE SL-V2X-ConfigDedicated.

v2x-UE-ConfigList

Indicates the inter-carrier resource configuration. If there is only one entry in the list without `physCellId` configured, the configuration is applied to the frequency identified by `v2x-CommCarrierFreq` (i.e. carrier specific configuration); if the entry of this field includes `physCellIdList`, the configuration is applied to the cell(s) identified by `physCellIdList` (i.e. cell specific configuration).
The IE **SL-V2X-UE-ConfigList** indicates inter-frequency resource configuration per-carrier or per-cell.

SL-V2X-UE-ConfigList information element

```
-- ASN1START
SL-V2X-UE-ConfigList-r14 ::= SEQUENCE (SIZE (1.. maxCellIntra)) OF SL-V2X-InterFreqUE-Config-r14

SL-V2X-InterFreqUE-Config-r14 ::= SEQUENCE {
  physCellIdList-r14     PhysCellIdList-r13     OPTIONAL, -- Need OR
  typeTxSync-r14      SL-TypeTxSync-r14     OPTIONAL, -- Need OR
  v2x-SyncConfig-r14     SL-SyncConfigListNFreqV2X-r14  OPTIONAL, -- Need OR
  v2x-CommRxPool-r14     SL-CommRxPoolListV2X-r14    OPTIONAL, -- Need OR
  v2x-CommTxPoolNormal-r14    SL-CommTxPoolListV2X-r14    OPTIONAL, -- Need OR
  v2x-CommTxPoolExceptional-r14  SL-CommResourcePoolV2X-r14   OPTIONAL, -- Need OR
  v2x-ResourceSelectionConfig-r14  SL-CommRxPoolSensingConfig-r14  OPTIONAL, -- Need OR
  offsetDFN-r14      INTEGER (0..1000)     OPTIONAL, -- Need OR
  ...}

-- ASN1STOP
```

SL-V2X-UE-ConfigList field descriptions

- **offsetDFN**
 Indicates the timing offset for the UE to determine DFN timing when GNSS is used for timing reference. Value 0 corresponds to 0 milliseconds, value 1 corresponds to 0.001 milliseconds, value 2 corresponds to 0.002 milliseconds, and so on.

- **p2x-CommTxPoolNormal**
 Indicates the resources on a carrier frequency by which the UE may transmit P2X related V2X sidelink communication.

- **physCellIdList**
 If configured, the resource configuration is applicable for the cell(s) identified by this field. Otherwise, the resource configuration is for a given carrier frequency.

- **typeTxSync**
 Indicates the prioritized synchronization type (i.e. eNB or GNSS) for performing V2X sidelink communication on a carrier frequency.

- **v2x-CommRxPool**
 Indicates the resources on a carrier frequency by which the UE may receive V2X sidelink communication. This field is absent within `v2x-InterFreqInfoList` included in `RRCConnectionReconfiguration` except if received with `MobilityControlInfo` or `MobilityControlInfoV2X`.

- **v2x-CommTxPoolExceptional**
 Indicates the resources on a carrier frequency by which the UE may transmit V2X sidelink communication in exceptional conditions, as specified in 5.10.13.

- **v2x-CommTxPoolNormal**
 Indicates the resources on a carrier frequency by which the UE may transmit V2X sidelink communication.

- **v2x-SyncConfig**
 Indicates the synchronization configuration used for transmission/reception of SLSS on the given frequency.

SL-OffsetIndicator

The IE **SL-OffsetIndicator** indicates the offset of the pool of resources relative to SFN 0 of the cell from which it was obtained or, when out of coverage, relative to DFN 0.

SL-OffsetIndicator information element

```
-- ASN1START
SL-OffsetIndicator-r12 ::= CHOICE {
  small-r12        INTEGER (0..319),
  large-r12        INTEGER (0..10239)
}

-- ASN1STOP
```
SL-OffsetIndicatorSync field descriptions

SL-OffsetIndicator
In *sc-TF-ResourceConfig*, it indicates the offset of the first period of pool of resources within a SFN cycle. For *data-TF-ResourceConfig*, it corresponds to the offsetIndicator as defined in TS 36.213 [23, 14.1.3].

SL-OffsetIndicatorSync
For sidelink discovery and sidelink communication, synchronisation resources are present in those SFN and subframes which satisfy the relation: \((\text{SFN} \times 10 + \text{Subframe Number}) \mod 40 = \text{SL-OffsetIndicatorSync}\). For V2X sidelink communication, synchronisation resources are present in those SFN and subframes which satisfy the relation: \((\text{SFN} \times 10 + \text{Subframe Number}) \mod 160 = \text{SL-OffsetIndicatorSync}\).

SL-P2X-ResourceSelectionConfig

The IE *SL-P2X-ResourceSelectionConfig* includes the configuration of resource selection for P2X related V2X sidelink communication. E-UTRAN configures at least one resource selection mechanism.

SL-P2X-ResourceSelectionConfig information element

```asn1
-- ASN1START
SL-P2X-ResourceSelectionConfig-r14 ::= SEQUENCE {
  partialSensing-r14 ENUMERATED {true} OPTIONAL, -- Need OR
  randomSelection-r14 ENUMERATED {true} OPTIONAL -- Need OR
}
-- ASN1STOP
```

SL-P2X-ResourceSelectionConfig field descriptions

partialSensing
Indicates that partial sensing is allowed for UE autonomous resource selection in a resource pool.

randomSelection
Indicates that random selection is allowed for UE autonomous resource selection in a resource pool.

SL-PeriodComm

The IE *SL-PeriodComm* indicates the period over which resources allocated in a cell for sidelink communication.

SL-PeriodComm information element

```asn1
-- ASN1START
SL-PeriodComm-r12 ::= ENUMERATED {sf40, sf60, sf70, sf80, sf120, sf140, sf160, sf240, sf280, sf320, spare6, spare5, spare4, spare3, spare2, spare}
-- ASN1STOP
```

SL-Priority

The IE *SL-Priority* indicates the one or more priorities of resource pool used for sidelink communication, or of a logical channel group used in case of scheduled sidelink communication resources, see TS 36.321 [6].

SL-Priority information element

```asn1
-- ASN1START
```
The IE SL-PSSCH-TxConfigList indicates PSSCH transmission parameters. When lower layers select parameters from the range indicated in IE SL-PSSCH-TxConfigList, the UE considers both configurations in IE SL-PSSCH-TxConfigList and the CBR-dependent configurations represented in IE SL-CBR-PPPP-TxConfigList. Only one IE SL-PSSCH-TxConfig is provided per typeTxSync.

SL-PSSCH-TxConfigList information element

SL-PSSCH-TxConfigList field descriptions

`allowedRetxNumberPSSCH` Indicates the allowed retransmission number for transmissions on PSSCH (see TS 36.213 [23]). The value n0 indicates no retransmission for a transport block allowed; the value n1 indicates that the UE shall perform one retransmission for a transport block; and the value both indicates that the UE may autonomously select no retransmission or one retransmission for a transport block.

`maxTxPower` Indicates the maximum transmission power for transmission on PSSCH and PSCCH (see TS 36.213 [23]).

`minMCS-PSSCH, maxMCS-PSSCH` Indicates the minimum and maximum MCS values used for transmissions on PSSCH (see TS 36.213 [23]).

`minSubchannel-NumberPSSCH, maxSubchannel-NumberPSSCH` Indicates the minimum and maximum number of sub-channels which may be used for transmissions on PSSCH (see TS 36.213 [23]).

`thresUE-Speed` Indicates a UE speed threshold.

`typeTxSync` Indicates the synchronization reference type (see TS 36.213 [23]). For configurations by the eNB, only gnss and enb can be configured; and for pre-configuration, only gnss and ue can be configured. If the field is absent, the configuration is applicable for all synchronization reference types.

`parametersAboveThres` Indicates TX parameters for the UE speed above thresUE-Speed.

`parametersBelowThres` Indicates TX parameters for the UE speed below thresUE-Speed.
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR</td>
<td>The field is optionally present, need OR, in IE SL-CBR-CommonTxConfigList-r14, or in IE SL-CBR-PreconfigTxConfigList-r14. Otherwise the field is not present. Need OR.</td>
</tr>
</tbody>
</table>

--

SL-RestrictResourceReservationPeriodList

The IE SL-RestrictResourceReservationPeriodList indicates which values are allowed for the signaling of the resource reservation period in PSCCH for V2X sidelink communication, see TS 36.321 [6].

SL-RestrictResourceReservationPeriodList information element

```asn1
-- ASN1START
SL-RestrictResourceReservationPeriodList-r14 ::= SEQUENCE (SIZE (1..maxReservationPeriod-r14)) OF
  SL-RestrictResourceReservationPeriod-r14
SL-RestrictResourceReservationPeriod-r14 ::=  ENUMERATED {v0dot2, v0dot5, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, spare4, spare3, spare2, spare1}
-- ASN1STOP
```

SL-RestrictResourceReservationPeriodList field descriptions

Value v0dot2 means SL-RestrictResourceReservationPeriod is set to 0.2, value v0dot5 means SL-RestrictResourceReservationPeriod is set to 0.5, value v1 means SL-RestrictResourceReservationPeriod is set to 1, and so on. Value v0dot2 and value v0dot5 are configured in a pool-specific manner only. E-UTRAN should not set value v0dot2 and v0dot5 for transmission pool for P2X related V2X sidelink communication.

--

SLSSID

The IE SLSSID identifies a cell and is used by the receiving UE to detect asynchronous neighbouring cells, and by transmitting UEs to extend the synchronisation signals beyond the cell’s coverage area.

SLSSID information element

```asn1
-- ASN1START
SLSSID-r12 ::=     INTEGER (0..167)
-- ASN1STOP
```

--

SL-SyncAllowed

The IE SL-SyncAllowed indicates the allowed the synchronization references for a transmission resource pool for V2X sidelink communication.

SL-SyncAllowed information element

```asn1
-- ASN1START
SL-SyncAllowed-r14 ::=  SEQUENCE {
  gnss-Sync-r14      ENUMERATED {true}    OPTIONAL, -- Need OR
  enb-Sync-r14      ENUMERATED {true}    OPTIONAL, -- Need OR
  ue-Sync-r14       ENUMERATED {true}    OPTIONAL -- Need OR
}
-- ASN1STOP
```
SL-SyncAllowed field descriptions

enb-Sync
If configured, the (pre-) configured resources can be used if the UE is directly or indirectly synchronized to eNB (i.e., synchronized to a reference UE which is directly synchronized to eNB).

gnss-Sync
If configured, the (pre-) configured resources can be used if the UE is directly or indirectly synchronized to GNSS (i.e., synchronized to a reference UE which is directly synchronized to GNSS).

ue-Sync
If configured, the (pre-) configured resources can be used if the UE is synchronized to a reference UE which is synchronized to neither GNSS nor eNB directly or indirectly.

--

SL-SyncConfig

The IE **SL-SyncConfig** specifies the configuration information concerning reception of synchronisation signals from neighbouring cells as well as concerning the transmission of synchronisation signals for sidelink communication and sidelink discovery.

SL-SyncConfig information element

```
-- ASN1START

SL-SyncConfigList-r12 ::= SEQUENCE { SIZE (1..maxSL-SyncConfig-r12)) OF SL-SyncConfig-r12
SL-SyncConfigListV2X-r14 ::= SEQUENCE { SIZE (1..maxSL-V2X-SyncConfig-r14)) OF SL-SyncConfig-r12
SL-SyncConfig-r12 ::= SEQUENCE { syncCP-Len-r12                         SL-CP-Len-r12,
syncOffsetIndicator-r12                     SL-OffsetIndicatorSync-r12,
sssid-r12                                   SLSSID-r12,
txParameters-r12                            SEQUENCE { syncTxParameters-r12         SL-TxParameters-r12,
syncTxThresholdIC-r12                       RSRP-RangeSL-r12,
syncInfoReserved-r12                        BIT STRING (SIZE (19)) OPTIONAL -- Need OR
}
rxParameters-r12                            SEQUENCE { physCellId-r12                   PhysCellId,
discSyncWindow-r12                           ENUMERATED {w1, w2}
}
]
...
[[ syncTxPeriodic-r13                  ENUMERATED {true} OPTIONAL -- Need OR
]]
[[ syncOffsetIndicator-v1430 SL-OffsetIndicatorSync-v1430 OPTIONAL, -- Need OR
gnss-Sync-r14                     ENUMERATED {true} OPTIONAL -- Need OR
]]
}

SL-SyncConfigListNFreq-r13 ::= SEQUENCE { SIZE (1..maxSL-SyncConfig-r12)) OF SL-SyncConfigNFreq-r13
SL-SyncConfigListNFreqV2X-r14 ::= SEQUENCE { SIZE (1..maxSL-V2X-SyncConfig-r14)) OF SL-SyncConfigNFreq-r13
SL-SyncConfigNFreq-r13 ::= SEQUENCE { asyncParameters-r13  SEQUENCE { syncCP-Len-r13                         SL-CP-Len-r12,
syncOffsetIndicator-r13                     SL-OffsetIndicatorSync-r12,
sssid-r13                                    SLSSID-r12,
}
rxParameters-r13                            SEQUENCE { discSyncWindow-r13                ENUMERATED {w1, w2}
}
]
[[ syncOffsetIndicator-v1430 SL-OffsetIndicatorSync-v1430 OPTIONAL, -- Need OR
gnss-Sync-r14                     ENUMERATED {true} OPTIONAL -- Need OR
]]
```

-- ASN1END
SL-SyncConfig field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discSyncWindow</td>
<td>Indicates the synchronization window over which the UE expects that SLSS or discovery resources indicated by the pool configuration (see TS 36.213 [23, 14.4]). The value (w_1) denotes 5 milliseconds. The value (w_2) denotes the length corresponding to normal cyclic prefix divided by 2.</td>
</tr>
<tr>
<td>syncCP-Len</td>
<td>In case of V2X sidelink communications this field is always configured to normal.</td>
</tr>
<tr>
<td>syncInfoReserved</td>
<td>Reserved for future use.</td>
</tr>
<tr>
<td>syncOffsetIndicator</td>
<td>E-UTRAN should ensure syncOffsetIndicator is set to the same value as syncOffsetIndicator1 or syncOffsetIndicator2 in preconfigSync within SL-Preconfiguration, if configured. If syncOffsetIndicator-v1430 is configured, the UE shall ignore the field syncOffsetIndicator-r12. E-UTRAN should ensure syncOffsetIndicators is set to syncOffsetIndicator1 in v2x-CommPreconfigSync within SL-V2X-Preconfiguration, if syncOffsetIndicator3 is pre-configured in SL-V2X-Preconfiguration or if gnss-Sync is included in the corresponding entry and syncOffsetIndicator3 is not pre-configured in SL-V2X-Preconfiguration for a concerned frequency.</td>
</tr>
<tr>
<td>syncTxAperiodic</td>
<td>Indicates whether in each discovery period in which UE transmits discovery, the UE transmits SLSS once or periodically (i.e., every 40ms). In the latter case (periodic) the UE also transmits the MasterInformationBlock-SL message alongside. E-UTRAN configures this field only for synchronisation configurations applicable for PS discovery.</td>
</tr>
<tr>
<td>syncTxAperiodic</td>
<td>Indicates the threshold used while in coverage. In case the RSRP measurement of the cell chosen for transmission of sidelink communication/discovery announcements/V2X sidelink communication, or of the cell used as reference for DL measurements and synchronization, is below the level indicated by this field, the UE may transmit SLSS (i.e., become synchronisation reference) when performing the corresponding sidelink transmission.</td>
</tr>
<tr>
<td>txParameters</td>
<td>Includes parameters relevant only for transmission. E-UTRAN includes the field in one entry per list, as included in commSyncConfig or discSyncConfig.</td>
</tr>
<tr>
<td>gnss-Sync</td>
<td>if configured, the synchronization configuration is used for SLSS transmission/reception when the UE is synchronized to GNSS, by using slssid=0 and ignoring slssid-r12 configured. If not configured, the synchronization configuration is used for SLSS transmission/reception when the UE is synchronized to eNB, by using the configured slssid-r12.</td>
</tr>
</tbody>
</table>

SL-TF-ResourceConfig

The IE **SL-TF-ResourceConfig** specifies a set of time/frequency resources used for sidelink.

SL-TF-ResourceConfig information element

```asn
-- ASN1START

SL-TF-ResourceConfig-r12 ::= SEQUENCE {
  prb-Num-r12       INTEGER (1..100),
  prb-Start-r12     INTEGER (0..99),
  prb-End-r12       INTEGER (0..99),
  offsetIndicator-r12     SL-OffsetIndicator-r12,
  subframeBitmap-r12     SubframeBitmapSL-r12
}

SubframeBitmapSL-r12 ::= CHOICE {
  bs4-r12         BIT STRING (SIZE (4)),
  bs8-r12         BIT STRING (SIZE (8)),
  bs12-r12        BIT STRING (SIZE (12)),
  bs16-r12        BIT STRING (SIZE (16)),
  bs30-r12        BIT STRING (SIZE (30)),
  bs40-r12        BIT STRING (SIZE (40)),
  bs42-r12        BIT STRING (SIZE (42)),
}

SubframeBitmapSL-r14 ::= CHOICE {
  bs10-r14        BIT STRING (SIZE (10)),
  bs16-r14        BIT STRING (SIZE (16)),
  bs20-r14        BIT STRING (SIZE (20)),
  bs30-r14        BIT STRING (SIZE (30)),
  bs40-r14        BIT STRING (SIZE (40)),
  bs50-r14        BIT STRING (SIZE (50)),
  bs60-r14        BIT STRING (SIZE (60)),
  bs100-r14       BIT STRING (SIZE (100))
}

-- ASN1END
```
SL-TF-ResourceConfig field descriptions

<table>
<thead>
<tr>
<th>prb-Start, prb-End, prb-Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidelink transmissions on a sub-frame can occur on PRB with index greater than or equal to prb-Start and less than prb-Start + prb-Num, and on PRB with index greater than prb-End - prb-Num and less than or equal to prb-End. Even for neighbouring cells, prb-Start and prb-End are relative to PRB #0 of the cell from which it was obtained. See TS 36.213 [23, 14.1.3, 14.2.3, 14.3.3].</td>
</tr>
</tbody>
</table>

subframeBitmap

Indicates the subframe bitmap indicating resources used for sidelink. For sidelink communication, E-UTRAN configures value bs40 for FDD and the following values for TDD: value bs42 for configuration0, value bs16 for configuration1, value bs8 for configuration2, value bs12 for configuration3, value bs8 for configuration4, value bs4 for configuration5 and value bs30 for configuration6. For V2X sidelink communication, E-UTRAN configures value bs16, bs20 or bs100 for FDD or Frame Structure Type 1 as defined in 3GPP TS 36.211 [21], and the following values for TDD or Frame Structure Type 2 as defined in 3GPP TS 36.211 [21]: value bs60 for configuration0, value bs40 for configuration1, value bs20 for configuration2, value bs30 for configuration3, value bs20 for configuration4, value bs10 for configuration5 and value bs50 for configuration6.

SL-TxPower

The IE SL-TxPower is used to limit the UE’s sidelink transmission power on a carrier frequency. The unit is dBm. Value minusinfinity corresponds to –infinity.

SL-TxPower information element

```asn1
SL-TxPower-r14 ::=  CHOICE {
  minusinfinity-r14    NULL,
  txPower-r14      INTEGER (-41..31)
}
```

SL-TypeTxSync

The IE SL-TypeTxSync indicates the synchronization reference type.

SL-TypeTxSync information element

```asn1
SL-TypeTxSync-r14 ::=  ENUMERATED {gnss, enb, ue}
```

SL-ThresPSSCH-RSRP-List

IE SL-ThresPSSCH-RSRP-List indicates a threshold used for sensing based UE autonomous resource selection (see TS 36.213 [23]). A resource is excluded if it is indicated or reserved by a decoded SCI and PSSCH RSRP in the associated data resource is above the threshold defined by IE SL-ThresPSSCH-RSRP-List.

SL-ThresPSSCH-RSRP-List information element

```asn1
SL-ThresPSSCH-RSRP-List-r14 ::= SEQUENCE (SIZE (64)) OF SL-ThresPSSCH-RSRP-r14
SL-ThresPSSCH-RSRP-r14 ::=  INTEGER (0..66)
```
SL-ThresPSSCH-RSRP field descriptions

Value 0 corresponds to minus infinity dBm, value 1 corresponds to -128dBm, value 2 corresponds to -126dBm, value n corresponds to (-128 + (n-1)*2) dBm and so on, value 66 corresponds to infinity dBm.

SL-TxParameters

The IE **SL-TxParameters** identifies a set of parameters configured for sidelink transmission, used for communication, discovery and synchronisation.

SL-TxParameters information element

```asn1
  SL-TxParameters-r12 ::= SEQUENCE {
    alpha-r12        Alpha-r12,
    p0-r12         P0-SL-r12
  }
  P0-SL-r12 ::= INTEGER (-126..31)
```

alpha

Parameter(s): $\alpha_{\text{PSSCH},1}, \alpha_{\text{PSSCH},2}, \alpha_{\text{PSSCH},3}, \alpha_{\text{PSSCH},4}, \alpha_{\text{PSCCH},1}, \alpha_{\text{PSCCH},2}, \alpha_{\text{PSDCCH},1}, \alpha_{\text{PSSS}}$ see TS 36.213 [23, 14.1.1.5, 14.2.1.3, 14.3.1, 14.4] where α_0 corresponds to 0, α_{04} corresponds to value 0.4, α_{05} to 0.5, α_{06} to 0.6, α_{07} to 0.7, α_{08} to 0.8, α_{09} to 0.9 and α_{1} corresponds to 1. This field applies for sidelink power control.

p0

Parameter: $P_{\text{O-PSSCH},1}, P_{\text{O-PSSCH},2}, P_{\text{O-PSSCH},3}, P_{\text{O-PSSCH},4}, P_{\text{O-PSCCH},1}, P_{\text{O-PSCCH},2}, P_{\text{O-PSDCCH},1}, P_{\text{O-PSSS}}$ see TS 36.213 [23, 14.1.1.5, 14.2.1.3, 14.3.1, 14.4], unit dBm.

SL-TxPoolIdentity

The IE **SL-TxPoolIdentity** identifies an individual pool entry configured for sidelink transmission, used for communication and discovery.

SL-TxPoolIdentity information element

```asn1
  SL-TxPoolIdentity-r12 ::= INTEGER (1.. maxSL-TxPool-r12)
  SL-TxPoolIdentity-v1310 ::= INTEGER (maxSL-TxPool-r12Plus1-r13.. maxSL-TxPool-r13)
  SL-V2X-TxPoolIdentity-r14 ::= INTEGER (1.. maxSL-V2X-TxPool-r14)
```

SL-TxPoolToReleaseList

The IE **SL-TxPoolToReleaseList** is used to release one or more individual pool entries used for sidelink transmission, for communication and discovery.

SL-TxPoolToReleaseList information element

```asn1
  SL-TxPoolToReleaseList-r12 ::= SEQUENCE (SIZE (1..maxSL-TxPool-r12)) OF SL-TxPoolIdentity-r12
  SL-TxPoolToReleaseListExt-r13 ::= SEQUENCE (SIZE (1..maxSL-TxPool-v1310)) OF SL-TxPoolIdentity-v1310
```
SL-V2X-ConfigDedicated

The IE `SL-V2X-ConfigDedicated` specifies the dedicated configuration information for V2X sidelink communication.

```asn1
-- ASN1START
SL-V2X-ConfigDedicated-r14 ::= SEQUENCE {
  commTxResources-r14 CHOICE {
    release NULL,
    setup CHOICE {
      scheduled-r14 SEQUENCE {
        sl-V-RNTI-r14 C-RNTI,
        mac-MainConfig-r14 MAC-MainConfigSL-r12,
        v2x-SchedulingPool-r14 SL-CommResourcePoolV2X-r14 OPTIONAL, -- Need ON
        mcs-r14 INTEGER (0..31) OPTIONAL, -- Need OR
        logicalChGroupInfoList-r14 LogicalChGroupInfoList-r13
      },
      ue-Selected-r14 SEQUENCE {
        -- Pool for normal usage
        v2x-CommTxPoolNormalDedicated-r14 SEQUENCE {
          poolToReleaseList-r14 SL-TxPoolToReleaseListV2X-r14 OPTIONAL, -- Need ON
          poolToAddModList-r14 SL-TxPoolToAddModListV2X-r14 OPTIONAL, -- Need ON
        } OPTIONAL, -- Need ON
        v2x-CommTxPoolSensingConfig-r14 SL-CommTxPoolSensingConfig-r14 OPTIONAL -- Need ON
        v2x-InterFreqInfoList-r14 SL-InterFreqInfoListV2X-r14 OPTIONAL, -- Need ON
        thresSL-TxPrioritization-r14 SL-Priority-r13 OPTIONAL, -- Need OR
        typeTxSync-r14 SL-TypeTxSync-r14 OPTIONAL, -- Need OR
        cbr-DedicatedTxConfigList-r14 SL-CBR-CommonTxConfigList-r14 OPTIONAL, -- Need OR
      },
    }
  }
  v2x-InterFreqInfoList-r14 SL-InterFreqInfoListV2X-r14 OPTIONAL, -- Need ON
  thresSL-TxPrioritization-r14 SL-Priority-r13 OPTIONAL, -- Need OR
  typeTxSync-r14 SL-TypeTxSync-r14 OPTIONAL, -- Need OR
  cbr-DedicatedTxConfigList-r14 SL-CBR-CommonTxConfigList-r14 OPTIONAL, -- Need OR
}
-- ASN1STOP
```
SL-V2X-ConfigDedicated field descriptions

- **cbr-DedicatedTxConfigList**
 Indicates the dedicated list of CBR range division and the list of PSCCH TX configurations available to configure congestion control to the UE for V2X sidelink communication.

- **logicalChGroupInfoList**
 Indicates for each logical channel group the list of associated priorities, used as specified in TS 36.321 [6], in order of increasing logical channel group identity.

- **mcs**
 Indicates the MCS as defined in TS 36.213 [23, 14.2.1]. If not configured, the selection of MCS is up to UE implementation.

- **scheduled**
 Indicates the configuration for the case E-UTRAN schedules the transmission resources based on sidelink specific BSR from the UE.

- **si-V-RNTI**
 Indicates the RNTI used for DCI dynamically scheduling sidelink resources for V2X sidelink communication.

- **thresSL-TxPrioritization**
 Indicates the threshold used to determine whether SL V2X transmission is prioritized over uplink transmission if they overlap in time (see TS 36.321 [6]). This value shall overwrite thresSL-TxPrioritization configured in SIB21 or SL-V2X-Preconfiguration if any.

- **typeTxSync**
 Indicates the prioritized synchronization type (i.e. eNB or GNSS) for performing V2X sidelink communication on PCell.

- **ue-Selected**
 Indicates the configuration for the case the UE selects the transmission resources from a pool of resources configured by E-UTRAN.

- **v2x-InterFreqInfoList**
 Indicates synchronization and resource allocation configurations of other carrier frequencies than the serving carrier frequency for V2X sidelink communication. For inter-carrier scheduled resource allocation, CIF=1 in DCI-5A corresponds to the first entry in this frequency list, CIF=2 corresponds to the second entry, and so on (see TS 36.213 [23]). CIF=0 in DCI-5A corresponds to the frequency where the DCI is received.

- **v2x-SchedulingPool**
 Indicates a pool of resources when E-UTRAN schedules Tx resources for V2X sidelink communications.

SL-ZoneConfig

The IE **SL-ZoneConfig** indicates zone configurations used for V2X sidelink communication.

SL-ZoneConfig information element

```asn1
-- ASN1START
SL-ZoneConfig-r14 ::= SEQUENCE {
  zoneLength-r14 ENUMERATED { m5, m10, m20, m50, m100, m200, m500, spare1 },
  zoneWidth-r14 ENUMERATED { m5, m10, m20, m50, m100, m200, m500, spare1 },
  zoneIdLongiMod-r14 INTEGER {1..4},
  zoneIdLatiMod-r14 INTEGER {1..4} }

-- ASN1STOP
```

SL-ZoneConfig field descriptions

- **zoneLength**
 Indicates the length of each geographic zone. Value m5 corresponds to 5 meters, m10 corresponds to 10 meters and so on.

- **zoneWidth**
 Indicates the width of each geographic zone. Value m5 corresponds to 5 meters, m10 corresponds to 10 meters and so on.

- **zoneIdLongiMod**
 Indicates the total number of zones that is configured with respect to longitude.

- **zoneIdLatiMod**
 Indicates the total number of zones that is configured with respect to latitude.
6.4 RRC multiplicity and type constraint values

Multiplicity and type constraint definitions

- **maxACDC-Cat-r13**: INTEGER ::= 16 -- Maximum number of ACDC categories (per PLMN)
- **maxAvailNarrowBands-r13**: INTEGER ::= 16 -- Maximum number of narrowbands
- **maxBandComb-r10**: INTEGER ::= 128 -- Maximum number of band combinations.
- **maxBandComb-r13**: INTEGER ::= 384 -- Maximum number of band combinations in Rel-13
- **maxBands**: INTEGER ::= 64 -- Maximum number of bands listed in EUTRA UE caps
- **maxBandwidthClass-r10**: INTEGER ::= 16 -- Maximum number of supported CA BW classes per band
- **maxBandwidthCombSet-r10**: INTEGER ::= 32 -- Maximum number of bandwidth combination sets per supported band combination
- **maxCBR-Level-r14**: INTEGER ::= 16 -- Maximum number of CBR levels
- **maxCBR-Level-1-r14**: INTEGER ::= 15
- **maxCBR-Report-r14**: INTEGER ::= 72 -- Maximum number of CBR results in a report
- **maxCDMA-BandClass**: INTEGER ::= 32 -- Maximum value of the CDMA band classes
- **maxCE-Level-r13**: INTEGER ::= 4 -- Maximum number of CE levels
- **maxCellBlack**: INTEGER ::= 16 -- Maximum number of blacklisted physical cell identity ranges listed in SIB type 4 and 5
- **maxCellHistory-r12**: INTEGER ::= 16 -- Maximum number of visited EUTRA cells reported
- **maxCellInfoGERAN-r9**: INTEGER ::= 32 -- Maximum number of GERAN cells for which system information can be provided as redirection assistance
- **maxCellInfoUTRA-r9**: INTEGER ::= 16 -- Maximum number of UTRA cells for which system information can be provided as redirection assistance
- **maxCombIDC-r11**: INTEGER ::= 128 -- Maximum number of reported UL CA combinations
- **maxCSI-IM-r11**: INTEGER ::= 3 -- Maximum number of CSI-IM configurations
- **maxCSI-IM-r12**: INTEGER ::= 4 -- Maximum number of CSI-IM configurations
- **minCSI-IM-r13**: INTEGER ::= 5 -- Minimum number of CSI IM configurations from which REL-13 extension is used
- **maxCSI-IM-r13**: INTEGER ::= 24 -- Maximum number of CSI-IM configurations
- **maxCSI-IM-v1310**: INTEGER ::= 20 -- Maximum number of additional CSI-IM configurations
- **maxCSI-Proc-r11**: INTEGER ::= 4 -- Maximum number of CSI processes (per carrier frequency)
- **maxCSI-RS-NZP-r11**: INTEGER ::= 3 -- Maximum number of CSI RS resource configurations using non-zero Tx power
- **minCSI-RS-NZP-r13**: INTEGER ::= 4 -- Minimum number of CSI RS resource from which REL-13 extension is used
- **maxCSI-RS-NZP-r13**: INTEGER ::= 24 -- Maximum number of CSI RS resource configurations using non-zero Tx power
- **maxCSI-RS-NZP-v1310**: INTEGER ::= 21 -- Maximum number of additional CSI RS resource configurations using non-zero Tx power
- **maxCSI-RS-ZP-r11**: INTEGER ::= 4 -- Maximum number of CSI RS resource configurations using zero Tx power (per carrier frequency)
- **maxCQI-ProcExt-r11**: INTEGER ::= 3 -- Maximum number of additional periodic CQI configurations (per carrier frequency)
- **maxFreqUTRA-TDD-r10**: INTEGER ::= 6 -- Maximum number of UTRA TDD carrier frequencies for which system information can be provided as redirection assistance
- **maxCellInter**: INTEGER ::= 16 -- Maximum number of neighbouring inter-frequency cells listed in SIB type 5
- **maxCellIntra**: INTEGER ::= 16 -- Maximum number of neighbouring intra-frequency cells listed in SIB type 4
- **maxCellListGERAN**: INTEGER ::= 3 -- Maximum number of lists of GERAN cells
- **maxCellMeas**: INTEGER ::= 32 -- Maximum number of entries in each of the cell lists in a measurement object
- **maxCellReport**: INTEGER ::= 8 -- Maximum number of reported cells/CSI-RS resources
- **maxConfigSPS-r14**: INTEGER ::= 8 -- Maximum number of simultaneous SPS configurations
- **maxCSI-RS-Meas-r12**: INTEGER ::= 96 -- Maximum number of entries in the CSI-RS list in a measurement object
- **maxDRB**: INTEGER ::= 11 -- Maximum number of Data Radio Bearers
- **maxDS-Duration-r12**: INTEGER ::= 5 -- Maximum number of subframes in a discovery signals occasion
- **maxDS-ZTP-CSI-RS-r12**: INTEGER ::= 5 -- Maximum number of zero transmission power CSI-RS for a serving cell concerning discovery signals
maxEARFCN INTEGER ::= 65535 -- Maximum value of EUTRA carrier frequency
maxEARFCN-Plus1 INTEGER ::= 65536 -- Lowest value extended EARFCN range
maxEFPDCCH-Set-r11 INTEGER ::= 2 -- Highest value extended EFPDCCH set indicator
maxFBI INTEGER ::= 64 -- Maximum value of frequency band indicator
maxFBI-Plus1 INTEGER ::= 65 -- Lowest value extended FBI range
maxFBI2 INTEGER ::= 256 -- Highest value extended FBI range
maxFreq INTEGER ::= 8 -- Maximum number of carrier frequencies
maxFreqIDC-r11 INTEGER ::= 32 -- Maximum number of carrier frequencies that are affected by the IDC problems
maxFreqMBMS-r11 INTEGER ::= 5 -- Maximum number of carrier frequencies for which an MBMS capable UE may indicate an interest
maxFreqV2X-r14 INTEGER ::= 8 -- Maximum number of carrier frequencies for which V2X sidelink communication can be configured
maxFreqV2X-1-r14 INTEGER ::= 7 -- Highest index of frequencies
maxGERAN-SI INTEGER ::= 10 -- Maximum number of GERAN SI blocks that can be provided as part of NACC information
maxGNSF INTEGER ::= 16 -- Maximum number of GERAN neighbour freq groups
maxLCG-r13 INTEGER ::= 4 -- Maximum number of logical channel groups
maxLogMeasReport-r10 INTEGER ::= 520 -- Maximum number of logged measurement entries that can be reported by the UE in one message
maxMB SFN-Allocations INTEGER ::= 8 -- Maximum number of MB SFN frame allocations with different offset
maxMBSFN-Area INTEGER ::= 8 -- Maximum number of carrier frequencies
maxMBSFN-Area-1 INTEGER ::= 7 -- Different offset
maxMBMS-ServiceListPerUE-r13 INTEGER ::= 15 -- Maximum number of services which the UE can include in the MBMS interest indication
maxMeasId INTEGER ::= 32
maxMeasId-Plus1 INTEGER ::= 33
maxMeasId-r12 INTEGER ::= 64
maxMultiBands INTEGER ::= 8 -- Maximum number of additional frequency bands that a cell belongs to
maxNS-Pmax-r10 INTEGER ::= 8 -- Maximum number of NS and P-Max values per band
maxNAICS-Entries-r12 INTEGER ::= 32 -- Maximum number of supported NAICS combination(s)
maxNeighCell-r12 INTEGER ::= 8 -- Maximum number of neighbouring cells in NAICS configuration (per carrier frequency)
maxNeighCell-SCPTM-r13 INTEGER ::= 8 -- Maximum number of SCPTM neighbour cells
maxOb jectId INTEGER ::= 32
maxObjec tId-Plus1-r13 INTEGER ::= 33
maxObjectId-r13 INTEGER ::= 64
maxP-a-PerNeighCell-r12 INTEGER ::= 3 -- Maximum number of power offsets for a neighbour cell in NAICS configuration
maxPageRec INTEGER ::= 16
maxPhysCellIdRange-r9 INTEGER ::= 4 -- Maximum number of physical cell identity ranges
maxPLMN-r11 INTEGER ::= 6 -- Maximum number of PLMNs
maxPLMN-1-r14 INTEGER ::= 5 -- Maximum number of PLMNs minus one
maxPNoffset INTEGER ::= 511 -- Maximum number of CDMA2000 PN offsets
maxPMCH-PerMBSFN INTEGER ::= 31 -- Maximum number of supported MB SFN frames
maxPSSCH-TXConfig-r14 INTEGER ::= 32 -- Maximum number of PSSCH TX configurations
maxQCI-r13 INTEGER ::= 6 -- Maximum number of QCIs
maxRAR-Capabilities INTEGER ::= 8 -- Maximum number of interworking RATs (incl EUTRA) (per carrier frequency)
maxRE-MapQCL-r1 INTEGER ::= 4 -- Maximum number of PDSCH RE Mapping configurations
maxReservationPeriod-r14 INTEGER ::= 16 -- Maximum number of resource reservation periodicities for sidelink V2X communication
maxRSTD-Freq-r10 INTEGER ::= 3 -- Maximum number of frequency layers for RSTD measurement
maxSAI-MBMS-r11 INTEGER ::= 64 -- Maximum number of MBMS service area identities broadcast per carrier frequency
maxSCell-r10 INTEGER ::= 4 -- Maximum number of SCells
maxSCell-r13 INTEGER ::= 31 -- Highest value of extended number range of SCells
maxSC-MTC-r13 INTEGER ::= 1023 -- Maximum number of SC-MTCs in one cell
maxSC-MTC-Br-r14 INTEGER ::= 128 -- Maximum number of SC-MTCs in one cell for feMTC
maxSL-CommRxPool1NFreq-r13 INTEGER ::= 32 -- Maximum number of individual sidelink communication Rx resource pools on neighbouring freq
maxSL-CommRxPool1Preconf-v1310 INTEGER ::= 12 -- Maximum number of additional preconfigured sidelink communication Rx resource pool entries
maxSL-TxPool-12Plus1-r13 INTEGER ::= 5 -- First additional individual sidelink Tx resource pool
maxSL-TxPool-v1310 INTEGER ::= 4 -- Maximum number of additional sidelink Tx resource pool entries
maxSL-TxPool-r13 INTEGER ::= 8 -- Maximum number of individual sidelink Tx resource pools
maxSL-CommTxPool1Preconf-v1310 INTEGER ::= 7 -- Maximum number of additional preconfigured sidelink Tx resource pool entries
maxSL-Dest-r12 INTEGER ::= 16 -- Maximum number of sidelink destinations
maxSL-DiscCells-r13 INTEGER ::= 16 -- Maximum number of cells with similar sidelink
maxSL-DiscPowerClass-r12 INTEGER ::= 3 -- Maximum number of sidelink power classes
maxSL-DiscRxPoolPreconf-r13 INTEGER ::= 16 -- Maximum number of preconfigured sidelink Rx resource pools
maxSL-DiscSysInfoReportFreq-r13 INTEGER ::= 8 -- Maximum number of frequencies to include in a SidelinkUEInformation for SI reporting
maxSL-DiscTxPoolPreconf-r13 INTEGER ::= 4 -- Maximum number of preconfigured sidelink Tx resource pools
maxSL-GP-r13 INTEGER ::= 8 -- Maximum number of gap patterns that can be requested for a frequency or assigned
maxSL-PoolToMeasure-r14 INTEGER ::= 72 -- Maximum number of TX resource pools for CBR measurement and report
maxSL-Prior-r13 INTEGER ::= 8 -- Maximum number of entries in sidelink priority list
maxSL-RxPool-r12 INTEGER ::= 16 -- Maximum number of individual sidelink Rx resource pools
maxSL-SyncConfig-r12 INTEGER ::= 16 -- Maximum number of sidelink Sync configurations
maxSL-TF-IndexPair-r12 INTEGER ::= 64 -- Maximum number of sidelink Time Freq resource index pairs
maxSL-TxPool-r12 INTEGER ::= 4 -- Maximum number of individual sidelink Tx resource pools
maxSL-V2X-RxPool-r14 INTEGER ::= 16 -- Maximum number of RX resource pools for V2X sidelink communication
maxSL-V2X-RxPoolPreconf-r14 INTEGER ::= 16 -- Maximum number of RX resource pools for V2X sidelink communication
maxSL-V2X-TxPool-r14 INTEGER ::= 8 -- Maximum number of TX resource pools for V2X sidelink communication
maxSL-V2X-TxPoolPreconf-r14 INTEGER ::= 8 -- Maximum number of TX resource pools for V2X sidelink communication
maxSL-V2X-SyncConfig-r14 INTEGER ::= 16 -- Maximum number of sidelink Sync configurations for V2X sidelink communication
maxSL-V2X-CBRConfig-r14 INTEGER ::= 4 -- Maximum number of CBR range configurations for V2X sidelink communication congestion control
maxSL-V2X-CBRConfig-1-r14 INTEGER ::= 3 -- Maximum number of TX parameter configurations for V2X sidelink communication congestion control
maxSL-V2X-TxConfig-r14 INTEGER ::= 64 -- Maximum number of TX parameter configurations for V2X sidelink communication congestion control
maxSL-V2X-TxConfig-1-r14 INTEGER ::= 63 -- Maximum number of CBR range configurations in pre-configuration for V2X sidelink communication congestion control
maxSL-V2X-CBRConfig2-r14 INTEGER ::= 8 -- Maximum number of CBR range configurations in pre-configuration for V2X sidelink communication congestion control
maxSL-V2X-CBRConfig2-1-r14 INTEGER ::= 7 -- Maximum number of TX parameter configurations in pre-configuration for V2X sidelink communication congestion control
maxSL-V2X-TxConfig2-r14 INTEGER ::= 128 -- Maximum number of TX parameter configurations in pre-configuration for V2X sidelink communication congestion control
maxSL-V2X-TxConfig2-1-r14 INTEGER ::= 127 -- Maximum number of STAGs
maxServiceCount INTEGER ::= 16 -- Maximum number of MBMS services that can be included in an MBMS counting request and response
maxServiceCount-1 INTEGER ::= 15
maxSessionPerPMCH INTEGER ::= 29
maxSessionPerPMCH-1 INTEGER ::= 28
maxSIB INTEGER ::= 32 -- Maximum number of SIBs
maxSIB-1 INTEGER ::= 31
maxSI-Message INTEGER ::= 32 -- Maximum number of SI messages
maxSimultaneousBands-r10 INTEGER ::= 64 -- Maximum number of simultaneously aggregated bands
maxSubframePatternIDC-r11 INTEGER ::= 8 -- Maximum number of subframe reservation patterns that the UE can simultaneously recommend to the E-UTRAN for use.
maxTrafficPattern-r14 INTEGER ::= 8 -- Maximum number of periodical traffic patterns that the UE can simultaneously report to the E-UTRAN.
maxUTRA-FDD-Carrier INTEGER ::= 16 -- Maximum number of UTRA FDD carrier frequencies
maxUTRA-TDD-Carrier INTEGER ::= 16 -- Maximum number of UTRA TDD carrier frequencies
maxWLAN-Id-r12 INTEGER ::= 16 -- Maximum number of WLAN identifiers
maxWLAN-Bands-r13 INTEGER ::= 8 -- Maximum number of WLAN bands
maxWLAN-Id-r13 INTEGER ::= 32 -- Maximum number of WLAN identifiers
maxWLAN-Channels-r13 INTEGER ::= 16 -- Maximum number of WLAN channels used in WLAN-CarrierInfo
maxWLAN-CarrierInfo-r13 INTEGER ::= 8 -- Maximum number of WLAN Carrier Information
maxWLAN-Id-Report-r14 INTEGER ::= 32 -- Maximum number of WLAN IDs to report

NOTE: The value of maxDRB aligns with SA2.
6.5 PC5 RRC messages

NOTE: The messages included in this section reflect the current status of the discussions. Additional messages may be included at a later stage.

6.5.1 General message structure

-- PC5-RRC-Definitions

This ASN.1 segment is the start of the PC5 RRC PDU definitions.

-- SBCCH-SL-BCH-Message

The SBCCH-SL-BCH-Message class is the set of RRC messages that may be sent from the UE to the UE via SL-BCH on the SBCCH logical channel.

-- SBCCH-SL-BCH-Message-V2X

The SBCCH-SL-BCH-Message-V2X class is the set of RRC messages that may be sent from the UE to the UE via SL-BCH on the SBCCH logical channel for V2X sidelink communication.
6.5.2 Message definitions

- **MasterInformationBlock-SL**

 The MasterInformationBlock-SL includes the information transmitted by a UE transmitting SLSS, i.e. acting as synchronisation reference, via SL-BCH.

 Signalling radio bearer: N/A
 RLC-SAP: TM
 Logical channel: SBCCH
 Direction: UE to UE

 MasterInformationBlock-SL

  ```asn1
  MasterInformationBlock-SL ::= SEQUENCE {
    sl-Bandwidth-r12     ENUMERATED {
      n6, n15, n25, n50, n75, n100},
    tdd-ConfigSL-r12     TDD-ConfigSL-r12,
    directFrameNumber-r12    BIT STRING (SIZE (10)),
    directSubframeNumber-r12   INTEGER (0..9),
    inCoverage-r12      BOOLEAN,
    reserved-r12      BIT STRING (SIZE (19))
  }
  ```

 MasterInformationBlock-SL field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>directFrameNumber</td>
<td>Indicates the frame number in which SLSS and SL-BCH are transmitted. The subframe in the frame corresponding to directFrameNumber is indicated by directSubframeNumber.</td>
</tr>
<tr>
<td>inCoverage</td>
<td>Value TRUE indicates that the UE transmitting the MasterInformationBlock-SL is in E-UTRAN coverage.</td>
</tr>
<tr>
<td>sl-Bandwidth</td>
<td>Parameter: transmission bandwidth configuration. n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on.</td>
</tr>
</tbody>
</table>

- **MasterInformationBlock-SL-V2X**

 The MasterInformationBlock-SL-V2X includes the information transmitted by a UE transmitting SLSS, i.e. acting as synchronisation reference, via SL-BCH for V2X sidelink communication.

 Signalling radio bearer: N/A
 RLC-SAP: TM
 Logical channel: SBCCH
 Direction: UE to UE

 MasterInformationBlock-SL-V2X

  ```asn1
  MasterInformationBlock-SL-V2X ::= SEQUENCE {
    sl-Bandwidth-r14     ENUMERATED {
      n6, n15, n25, n50, n75, n100},
    tdd-ConfigSL-r14     TDD-ConfigSL-r12,
    directFrameNumber-r14    BIT STRING (SIZE (10)),
    directSubframeNumber-r14   INTEGER (0..9),
    inCoverage-r14      BOOLEAN,
    reserved-r14      BIT STRING (SIZE (27))
  }
  ```
6.6 Direct Indication Information

Direct Indication information is transmitted on MPDCCH using P-RNTI but without associated Paging message. Table 6.6-1 defines the Direct Indication information, see TS 36.212 [22, 5.3.3.1.14].

When bit n is set to 1, UE shall behave as if the corresponding field is set in the Paging message, see 5.3.2.3. Bit 1 is the least significant bit.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Direct Indication information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>systemInfoModification</td>
</tr>
<tr>
<td>2</td>
<td>etws-Indication</td>
</tr>
<tr>
<td>3</td>
<td>cmas-Indication</td>
</tr>
<tr>
<td>4</td>
<td>eab-ParamModification</td>
</tr>
<tr>
<td>5</td>
<td>systemInfoModification-eDRX</td>
</tr>
<tr>
<td>6, 7, 8</td>
<td>Not used, and shall be ignored by UE if received.</td>
</tr>
</tbody>
</table>

6.6a Direct Indication FeMBMS

On MBMS-dedicated cell and on FeMBMS/Unicast-mixed cell, a Direct Indication FeMBMS is transmitted on PDCCH together with 8-bit MCCH change notification using M-RNTI, see TS 36.212 [22, 5.3.3.1.4]. Table 6.6a-1 defines the Direct Indication FeMBMS.

When the first bit is set to 1, UE shall behave as if systemInfoModification field is set in the Paging message and when the second bit is set to 1, UE shall behave as if both etws-Indication and cmas-Indication are set in the Paging message, see 5.3.2.3. Bit 1 is the least significant bit.
Table 6.6a-1: Direct Indication FeMBMS

<table>
<thead>
<tr>
<th>Bit</th>
<th>Direct Indication FeMBMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>systemInfoModification</td>
</tr>
<tr>
<td>2</td>
<td>etws-Indication and cmas-Indication</td>
</tr>
</tbody>
</table>

6.7 NB-IoT RRC messages

6.7.1 General NB-IoT message structure

```asn1
-- ASN1START
NBIOT-RRC-Definitions DEFINITIONS AUTOMATIC TAGS ::= BEGIN
IMPORTS
    RRCConnectionReestablishmentReject,
    SecurityModeCommand,
    SecurityModeComplete,
    SecurityModeFailure,
    AdditionalSpectrumEmission,
    ARFCN-ValueEUTRA-r9,
    CellIdentity,
    DedicatedInfoNAS,
    DRB-Identity,
    InitialUE-Identity,
    IntraFreqBlackCellList,
    IntraFreqNeighCellList,
    maxBands,
    maxCellBlack,
    maxCellInter,
    maxFB12,
    maxFreq,
    maxMultiBands,
    maxPageRec,
    maxPLMN-r11,
    maxSAI-MBMS-r11,
    maxSIB,
    maxSIB-1,
    MBMS-SAI-r11,
    MBMS-SAI-List-r11,
    MBMSSessionInfo-r13,
    NextHopChainingCount,
    PagingUE-Identity,
    PLMN-Identity,
    P-Max,
    PowerRampingParameters,
    PreambleTransMax,
    PhysCellId,
    Q-OffsetRange,
    Q-QualMin-r9,
    Q-RxLevMin,
    ReestabUE-Identity,
    RegisteredMME,
    ReselectionThreshold,
    ResumeIdentity-r13,
    RRC-TransactionIdentifier,
    RSRP-Range,
    ShortMAC-I,
    S-TMSI,
    SystemInformationBlockType16-r11,
    SystemInfoValueTagSI-r13,
    T-Reordering,
    TimeAlignmentTimer,
    TMSI-r9,
    TrackingAreaCode,
    DataInactivityTimer-r14
FROM EUTRA-RRC-Definitions;
```
The **BCCH-BCH-Message-NB** class is the set of RRC messages that may be sent from the E-UTRAN to the UE via BCH on the BCCH logical channel.

```asn1
BCCH-BCH-Message-NB ::= SEQUENCE {
  message     BCCH-BCH-MessageType-NB
}
BCCH-BCH-MessageType-NB ::= MasterInformationBlock-NB
```

The **BCCH-DL-SCH-Message-NB** class is the set of RRC messages that may be sent from the E-UTRAN to the UE via DL-SCH on the BCCH logical channel.

```asn1
BCCH-DL-SCH-Message-NB ::= SEQUENCE {
  message     BCCH-DL-SCH-MessageType-NB
}
BCCH-DL-SCH-MessageType-NB ::= CHOICE {
  c1      CHOICE {
    systemInformation-r13    SystemInformation-NB,
    systemInformationBlockType1-r13  SystemInformationBlockType1-NB
  },
  messageClassExtension SEQUENCE {}
}
```

The **PCCH-Message-NB** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the PCCH logical channel.

```asn1
PCCH-Message-NB ::= SEQUENCE {
  message     PCCH-MessageType-NB
}
PCCH-MessageType-NB ::= CHOICE {
  c1      CHOICE {
    paging-r13       Paging-NB
  },
  messageClassExtension SEQUENCE {}
}
```

The **DL-CCCH-Message-NB** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the downlink CCCH logical channel.
DL-CCCH-Message-NB

The **DL-CCCH-Message-NB** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the downlink DCCH logical channel.

-- ASN1START

DL-CCCH-Message-NB ::= SEQUENCE {
 message DL-CCCH-MessageType-NB
}

DL-CCCH-MessageType-NB ::= CHOICE {
 c1 CHOICE {
 rrcConnectionReestablishment-r13 RRCConnectionReestablishment-NB,
 rrcConnectionReestablishmentReject-r13 RRCConnectionReestablishmentReject-NB,
 rrcConnectionSetup-r13 RRCConnectionSetup-NB,
 spare4 NULL, spare3 NULL, spare2 NULL, spare1 NULL
 },
 messageClassExtension SEQUENCE {}
}

-- ASN1STOP

UL-CCCH-Message-NB

The **UL-CCCH-Message-NB** class is the set of RRC messages that may be sent from the UE to the E-UTRAN on the uplink CCCH logical channel.

-- ASN1START

UL-CCCH-Message-NB ::= SEQUENCE {
 message UL-CCCH-MessageType-NB
}

UL-CCCH-MessageType-NB ::= CHOICE {
 c1 CHOICE {
 rrcConnectionReestablishmentRequest-r13 RRCConnectionReestablishmentRequest-NB,
 rrcConnectionRequest-r13 RRCConnectionRequest-NB,
 rrcConnectionResumeRequest-r13 RRCConnectionResumeRequest-NB,
 spare1 NULL
 },
 messageClassExtension SEQUENCE {}
}

-- ASN1STOP
-- SC-MCCH-Message-NB

The SC-MCCH-Message-NB class is the set of RRC messages that may be sent from the E-UTRAN to the NB-IoT UE on the SC-MCCH logical channel.

```
-- ASN1START
SC-MCCH-Message-NB ::= SEQUENCE {
    message     SC-MCCH-MessageType-NB
}

SC-MCCH-MessageType-NB ::= CHOICE {
    c1      CHOICE {
        scptmConfiguration-r14      SCPTMConfiguration-NB-r14
    },
    messageClassExtension  SEQUENCE {}
}

-- ASN1STOP
```

-- UL-DCCH-Message-NB

The UL-DCCH-Message-NB class is the set of RRC messages that may be sent from the UE to the E-UTRAN on the uplink DCCH logical channel.

```
-- ASN1START
UL-DCCH-Message-NB ::= SEQUENCE {
    message     UL-DCCH-MessageType-NB
}

UL-DCCH-MessageType-NB ::= CHOICE {
    c1      CHOICE {
        rrcConnectionReconfigurationComplete-r13 RRCConnectionReconfigurationComplete-NB,  
        rrcConnectionReestablishmentComplete-r13 RRCConnectionReestablishmentComplete-NB,  
        rrcConnectionSetupComplete-r13        RRCConnectionSetupComplete-NB,  
        securityModeComplete-r13             SecurityModeComplete,  
        securityModeFailure-r13              SecurityModeFailure,  
        ueCapabilityInformation-r13          UECapabilityInformation-NB,  
        ulInformationTransfer-r13           ULInformationTransfer-NB,  
        rrcConnectionResumeComplete-r13      RRCConnectionResumeComplete-NB,  
        spare8 NULL, spare7 NULL,  
        spare6 NULL, spare5 NULL, spare4 NULL,  
        spare3 NULL, spare2 NULL, spare1 NULL
    },
    messageClassExtension  SEQUENCE {}
}

-- ASN1STOP
```

6.7.2 NB-IoT Message definitions

-- DLInformationTransfer-NB

The DLInformationTransfer-NB message is used for the downlink transfer of NAS dedicated information.

- Signalling radio bearer: SRB1 or SRB1bis
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: E-UTRAN to UE
DLInformationTransfer-NB message

-- ASN1START
DLInformationTransfer-NB ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE {
 dlInformationTransfer-r13 DLInformationTransfer-NB-r13-IEs,
 spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {} }
}
DLInformationTransfer-NB-r13-IEs ::= SEQUENCE {
 dedicatedInfoNAS-r13 DedicatedInfoNAS,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
-- ASN1STOP

-- MasterInformationBlock-NB
The MasterInformationBlock-NB includes the system information transmitted on BCH.

Signalling radio bearer: N/A
RLC-SAP: TM
Logical channel: BCCH
Direction: E-UTRAN to UE

-- ASN1START
MasterInformationBlock-NB ::= SEQUENCE {
 systemFrameNumber-MSB-r13 BIT STRING (SIZE (4)),
 hyperSFN-LSB-r13 BIT STRING (SIZE (2)),
 schedulingInfoSIB1-r13 INTEGER (0..15),
 systemInfoValueTag-r13 INTEGER (0..31),
 ab-Enabled-r13 BOOLEAN,
 operationModeInfo-r13 CHOICE {
 inband-SamePCI-r13 Inband-SamePCI-NB-r13,
 inband-DifferentPCI-r13 Inband-DifferentPCI-NB-r13,
 guardband-r13 Guardband-NB-r13,
 standalone-r13 Standalone-NB-r13
 },
 spare BIT STRING (SIZE (11))
}
ChannelRasterOffset-NB-r13 ::= ENUMERATED {khz-7dot5, khz-2dot5, khz2dot5, khz7dot5}
Guardband-NB-r13 ::= SEQUENCE {
 rasterOffset-r13 ChannelRasterOffset-NB-r13,
 spare
}
Inband-SamePCI-NB-r13 ::= SEQUENCE {
 eutra-CRS-SequenceInfo-r13 INTEGER (0..31)
}
Inband-DifferentPCI-NB-r13 ::= SEQUENCE {
 eutra-NumCRS-Ports-r13 ENUMERATED (same, four),
 rasterOffset-r13 ChannelRasterOffset-NB-r13,
 spare
}
Standalone-NB-r13 ::= SEQUENCE {
 spare BIT STRING (SIZE (5))
}
MasterInformationBlock-NB field descriptions

ab-Enabled
Value TRUE indicates that access barring is enabled and that the UE shall acquire SystemInformationBlockType14-NB before initiating RRC connection establishment or resume.

eutra-CRS-SequenceInfo
Information of the carrier containing NPSS/NSSS/NPBCH. Each value is associated with an E-UTRA PRB index as an offset from the middle of the LTE system sorted out by channel raster offset. See TS 36.211 [21] and TS 36.213 [23].

eutra-NumCRS-Ports
Number of E-UTRA CRS antenna ports, either the same number of ports as NRS or 4 antenna ports. See TS 36.211 [21], TS 36.212 [22], and TS 36.213 [23].

hyperSFN-LSB
Indicates the 2 least significant bits of hyper SFN. The remaining bits are present in SystemInformationBlockType1-NB.

operationModelInfo
Deployment scenario (in-band/guard-band/standalone) and related information. See TS 36.211 [21] and TS 36.213 [23].

- **Inband-SamePCI** indicates an in-band deployment and that the NB-IoT and LTE cell share the same physical cell id and have the same number of NRS and CRS ports.
- **Inband-DifferentPCI** indicates an in-band deployment and that the NB-IoT and LTE cell have different physical cell id.
- **guardband** indicates a guard-band deployment.
- **standalone** indicates a standalone deployment.

rasterOffset
NB-IoT offset from LTE channel raster. Unit in kHz in set {-7.5, -2.5, 2.5, 7.5} See TS 36.211 [21] and TS 36.213 [23].

schedulingInfoSIB1
This field contains an index to a table specified in TS 36.213 [23, Table 16.4.1.3-3] that defines SystemInformationBlockType1-NB scheduling information.

systemFrameNumber-MSB
Defines the 4 most significant bits of the SFN. As indicated in TS 36.211 [21], the 6 least significant bits of the SFN are acquired implicitly by decoding the NPBCH.

systemInfoValueTag
Common for all SIBs other than MIB-NB, SIB14-NB and SIB16-NB.

Paging-NB

The **Paging-NB** message is used for the notification of one or more UEs.

- Signalling radio bearer: N/A
- RLC-SAP: TM
- Logical channel: PCCH
- Direction: E-UTRAN to UE

Paging-NB message

```asn1
Paging-NB ::= SEQUENCE {
  pagingRecordList-r13      PagingRecordList-NB-r13  OPTIONAL, -- Need ON
  systemInfoModification-r13   ENUMERATED {true}    OPTIONAL, -- Need ON
  systemInfoModification-eDRX-r13  ENUMERATED {true}  OPTIONAL, -- Need ON
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
```

```asn1
PagingRecordList-NB-r13 ::= SEQUENCE (SIZE (1..maxPageRec)) OF PagingRecord-NB-r13
```

```asn1
PagingRecord-NB-r13 ::= SEQUENCE {
  ue-Identity-r13      PagingUE-Identity, ...
}
```
Paging-NB field descriptions

systemInfoModification
If present: indication of a BCCH modification other than for SystemInformationBlockType14-NB (SIB14-NB) and SystemInformationBlockType16-NB (SIB16-NB). This indication does not apply to UEs using eDRX cycle longer than the BCCH modification period.

systemInfoModification-eDRX
If present: indication of a BCCH modification other than for SystemInformationBlockType14-NB (SIB14-NB) and SystemInformationBlockType16-NB (SIB16-NB). This indication applies only to UEs using eDRX cycle longer than the BCCH modification period.

ue-Identity
Provides the NAS identity of the UE that is being paged.

--

RRConnectionReconfiguration-NB
The RRConnectionReconfiguration-NB message is the command to modify an RRC connection. It may convey information for resource configuration (including RBs, MAC main configuration and physical channel configuration) including any associated dedicated NAS information.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

--

RRConnectionReconfiguration-NB message

-- ASN1START

RRConnectionReconfiguration-NB ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcConnectionReconfiguration-r13 RRCConnectionReconfiguration-NB-r13-IEs,
 spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}\n }
}

RRConnectionReconfiguration-NB-r13-IEs ::= SEQUENCE {
 dedicatedInfoNASList-r13 SEQUENCE (SIZE(1..maxDRB-NB-r13)) OF DedicatedInfoNAS OPTIONAL, -- Need ON
 radioResourceConfigDedicated-r13 RadioResourceConfigDedicated-NB-r13 OPTIONAL, -- Need ON
 fullConfig-r13 ENUMERATED {true} OPTIONAL, -- Cond
 Reestab lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

RRConnectionReconfiguration-NB field descriptions

dedicatedInfoNASList
This field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for each PDU in the list.

fullConfig
Indicates the full configuration option is applicable for the RRC Connection Reconfiguration message.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reestab</td>
<td>This field is optionally present, need ON upon the first reconfiguration after RRC connection re-establishment; otherwise the field is not present.</td>
</tr>
</tbody>
</table>
RRCConnectionReconfigurationComplete-NB

The `RRCConnectionReconfigurationComplete-NB` message is used to confirm the successful completion of an RRC connection reconfiguration.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: UE to E-UTRAN

RRCConnectionReconfigurationComplete-NB message

```asn1
RRCConnectionReconfigurationComplete-NB ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    rrcConnectionReconfigurationComplete-r13 RRCConnectionReconfigurationComplete-NB-r13-IEs,
    criticalExtensionsFuture SEQUENCE {}
  }
}
```

RRCConnectionReestablishment-NB

The `RRCConnectionReestablishment-NB` message is used to re-establish SRB1.

- Signalling radio bearer: SRB0
- RLC-SAP: TM
- Logical channel: CCCH
- Direction: E-UTRAN to UE

RRCConnectionReestablishment-NB message

```asn1
RRCConnectionReestablishment-NB ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    c1 CHOICE{
      rrcConnectionReestablishment-r13 RRCConnectionReestablishment-NB-r13-IEs,
      spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}
```

RRCConnectionReestablishment-NB-r13-IEs

```asn1
RRCConnectionReestablishment-NB-r13-IEs ::= SEQUENCE {
  radioResourceConfigDedicated-r13 RadioResourceConfigDedicated-NB-r13,
  nextHopChainingCount-r13 NextHopChainingCount-r13,
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension RRCConnectionReestablishment-NB-v1430-IEs OPTIONAL
}
```

RRCConnectionReestablishment-NB-v1430-IEs

```asn1
RRCConnectionReestablishment-NB-v1430-IEs ::= SEQUENCE {
  dl-NAS-MAC BIT STRING (SIZE (16)) OPTIONAL, -- Cond Reestablish-CP
  nonCriticalExtension SEQUENCE {} OPTIONAL
}
```
RRConnectionReestablishment-NB field descriptions

dl-NAS-MAC
Downlink authentication token, see TS 33.401 [32]. If this field is present, the UE shall ignore the field nextHopChainingCount.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reestablish-CP</td>
<td>This field is mandatory present for NB-IoT UE using the Control Plane CIoT EPS optimisation; otherwise the field is not present.</td>
</tr>
</tbody>
</table>

RRConnectionReestablishmentComplete-NB

The RRConnectionReestablishmentComplete-NB message is used to confirm the successful completion of an RRC connection re-establishment.

Signalling radio bearer: SRB1 or SRB1bis

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

RRConnectionReestablishmentComplete-NB message

RRConnectionReestablishmentRequest-NB

The RRConnectionReestablishmentRequest-NB message is used to request the reestablishment of an RRC connection.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: UE to E-UTRAN

RRConnectionReestablishmentRequest-NB message

RRCConnectionReestablishmentRequest-NB-r14-IEs ::= SEQUENCE {
 ue-Identity-r14 ReestabUE-Identity-CP-NB-r14,
 reestablishmentCause-r14 ReestablishmentCause-NB-r13,
 spare BIT STRING (SIZE (4))
}

RRCConnectionReestablishmentCause-NB-r13 ::= ENUMERATED {
 reconfigurationFailure, otherFailure,
 spare2, spare1
}

ReestabUE-Identity-CP-NB-r14 ::= SEQUENCE {
 s-TMSI-r14 S-TMSI,
 ul-NAS-MAC-r14 BIT STRING (SIZE (16)),
 ul-NAS-Count-r14 BIT STRING (SIZE (5))
}

-- ASN1STOP

RRCConnectionReestablishmentRequest-NB field descriptions

reestablishmentCause
Indicates the failure cause that triggered the re-establishment procedure. eNB is not expected to reject a RRCConnectionReestablishmentRequest due to unknown cause value being used by the UE.

ue-Identity
UE identity included to retrieve UE context and to facilitate contention resolution by lower layers.

ul-NAS-Count
For description of this field see TS 33.401 [32].

ul-NAS-MAC
For description of this field see TS 33.401 [32].

—

RRCConnectionReject-NB
The RRCConnectionReject-NB message is used to reject the RRC connection establishment or RRC connection resume.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: E-UTRAN to UE

RRCConnectionReject-NB message

-- ASN1START

RRCConnectionReject-NB ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 rrcConnectionReject-r13 RRCConnectionReject-NB-r13-IEs,
 spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE ()
 }
}

RRCConnectionReject-NB-r13-IEs ::= SEQUENCE {
 extendedWaitTime-r13 INTEGER (1..1800),
 rrc-SuspendIndication-r13 ENUMERATED {true} OPTIONAL, -- Need ON
}

-- ASN1STOP

lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}
-- ASN1STOP

RRConnectionReject-NB field descriptions

extendedWaitTime
Value in seconds.

rrc-SuspendIndication
If present, this field indicates that the UE should remain suspended and not release its stored context.

RRConnectionRelease-NB

The **RRConnectionRelease-NB** message is used to command the release of an RRC connection.

- Signalling radio bearer: SRB1 or SRB1bis
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: E-UTRAN to UE

RRConnectionRelease-NB message

```asn1
RRCConnectionRelease-NB ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    c1 RRCConnectionRelease-r13-IEs,
    criticalExtensionsFuture SEQUENCE {}
  }
}

RRCConnectionRelease-NB-r13-IEs ::= SEQUENCE {
  releaseCause-r13 ReleaseCause-NB-r13, OPTIONAL, -- Need OR
  resumeIdentity-r13 ResumeIdentity-r13 OPTIONAL,
  extendedWaitTime-r13 INTEGER (1..1800) OPTIONAL, -- Need ON
  redirectedCarrierInfo-r13 RedirectedCarrierInfo-NB-r13 OPTIONAL, -- Need ON
  lateNonCriticalExtension OCTET STRING OPTIONAL,
}

RRCConnectionRelease-NB-v1430-IEs ::= SEQUENCE {
  redirectedCarrierInfo-v1430 RedirectedCarrierInfo-NB-v1430 OPTIONAL, -- Cond
}

ReleaseCause-NB-r13 ::= ENUMERATED {loadBalancingTAUrequired, other, rrc-Suspend, spare1}

RedirectedCarrierInfo-NB-r13 ::= CarrierFreq-NB-r13

RedirectedCarrierInfo-NB-v1430 ::= SEQUENCE {
  redirectedCarrierOffsetDedicated-r14 t322-r14
}

-- ASN1STOP
```
RRConnectionRelease-NB field descriptions

extendedWaitTime
Value in seconds.

extendedWaitTime-CPdata
Wait time for data transfer using the Control Plane CIoT EPS optimisation. Value in seconds. See TS 24.301 [35].

redirectedCarrierInfo
The redirectedCarrierInfo indicates a carrier frequency (downlink for FDD) and is used to redirect the UE to a NB-IoT carrier frequency, by means of the cell selection upon leaving RRC_CONNECTED as specified in TS 36.304 [4].

redirectedCarrierOffsetDedicated
Parameter “Offsetdedicatedfrequency” in TS 36.304 [4]. For NB-IoT carrier frequencies, a UE that supports multi-band cells considers the redirectedCarrierOffsetDedicated to be common for all overlapping bands (i.e. regardless of the EARFCN that is used).

releaseCause
The releaseCause is used to indicate the reason for releasing the RRC Connection. E-UTRAN should not set the releaseCause to loadBalancingTAURequired if the extendedWaitTime is present.

T322
Timer T322 as described in section 7.3. Value minN corresponds to N minutes.

RRConnectionRequest-NB

The RRConnectionRequest-NB message is used to request the establishment of an RRC connection.

- Signalling radio bearer: SRB0
- RLC-SAP: TM
- Logical channel: CCCH
- Direction: UE to E-UTRAN

RRConnectionRequest-NB message

```asn1
-- ASN1START
RRConnectionRequest-NB ::= SEQUENCE {
    criticalExtensions CHOICE {
        rrcConnectionRequest-r13 RRCConnectionRequest-NB-r13-IEs,
        criticalExtensionsFuture SEQUENCE {}
    }
}
RRConnectionRequest-NB-r13-IEs ::= SEQUENCE {
    ue-Identity-r13 InitialUE-Identity,
    establishmentCause-r13 EstablishmentCause-NB-r13,
    multiToneSupport-r13 ENUMERATED {true} OPTIONAL,
    multiCarrierSupport-r13 ENUMERATED {true} OPTIONAL,
    spare BIT STRING (SIZE 22)
}
-- ASN1STOP
```
RRCConnectionRequest-NB field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>establishmentCause</td>
<td>Provides the establishment cause for the RRC connection request as provided by the upper layers. eNB is not expected to reject a RRCConnectionRequest due to unknown cause value being used by the UE.</td>
</tr>
<tr>
<td>multiCarrierSupport</td>
<td>If present, this field indicates that the UE supports multi-carrier operation.</td>
</tr>
<tr>
<td>multiToneSupport</td>
<td>If present, this field indicates that the UE supports UL multi-tone transmissions on NPUSCH.</td>
</tr>
<tr>
<td>ue-Identity</td>
<td>UE identity included to facilitate contention resolution by lower layers.</td>
</tr>
</tbody>
</table>

RRCConnectionResume-NB

The RRCConnectionResume-NB message is used to resume the suspended RRC connection.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: E-UTRAN to UE

RRCConnectionResume-NB message

```asn1
RRCConnectionResume-NB ::= SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier,  
    criticalExtensions     CHOICE {
        c1         CHOICE {
            rrcConnectionResume-r13    RRCConnectionResume-NB-r13-IEs,  
            spare1        NULL
        },
        criticalExtensionsFuture   SEQUENCE {}
    }
}

RRCConnectionResume-NB-r13-IEs ::= SEQUENCE {
    radioResourceConfigDedicated-r13  RadioResourceConfigDedicated-NB-r13 OPTIONAL,  
    nextHopChainingCount-r13    NextHopChainingCount,  
    drb-ContinueROHC-r13     ENUMERATED {true}    OPTIONAL, -- Need ON
    lateNonCriticalExtension    OCTET STRING     OPTIONAL, -- Need OP
    nonCriticalExtension     SEQUENCE {}      OPTIONAL
}
```

RRCConnectionResume-NB field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drb-ContinueROHC</td>
<td>This field indicates whether to continue or reset the header compression protocol context for the DRBs configured with the header compression protocol. Presence of the field indicates that the header compression protocol context continues while absence indicates that the header compression protocol context is reset.</td>
</tr>
</tbody>
</table>

RRCConnectionResumeComplete-NB

The RRCConnectionResumeComplete-NB message is used to confirm the successful completion of an RRC connection resumption.
signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

RRConnectionResumeComplete-NB message

```asn1
RRConnectionResumeComplete-NB ::= SEQUENCE {
  rrc-TransactionIdentifier    RRC-TransactionIdentifier,
  criticalExtensions       CHOICE {
    rrcConnectionResumeComplete-r13    RRCConnectionResumeComplete-NB-r13-IEs,
    criticalExtensionsFuture     SEQUENCE {}
  }
}

RRCConnectionResumeComplete-NB-r13-IEs ::= SEQUENCE {
  selectedPLMN-Identity-r13     INTEGER (1..maxPLMN-r11) OPTIONAL,
  dedicatedInfoNAS-r13      DedicatedInfoNAS OPTIONAL,
  lateNonCriticalExtension     OCTET STRING     OPTIONAL,
  nonCriticalExtension      SEQUENCE {}      OPTIONAL
}
```

RRConnectionResumeComplete-NB field descriptions

selectedPLMN-Identity

Index of the PLMN selected by the UE from the plmn-IdentityList included in SystemInformationBlockType1-NB. 1 if the 1st PLMN is selected from the plmn-IdentityList included in SIB1-NB, 2 if the 2nd PLMN is selected from the plmn-IdentityList included in SIB1-NB and so on.

RRCConnectionResumeRequest-NB

The RRCConnectionResumeRequest-NB message is used to request the resumption of a suspended RRC connection.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: UE to E-UTRAN

RRCConnectionResumeRequest-NB message

```asn1
RRCConnectionResumeRequest-NB ::= SEQUENCE {
  criticalExtensions      CHOICE {
    rrcConnectionResumeRequest-r13   RRCConnectionResumeRequest-NB-r13-IEs,
    criticalExtensionsFuture    SEQUENCE {}
  }
}

RRCConnectionResumeRequest-NB-r13-IEs ::= SEQUENCE {
  resumeID-r13        ResumeIdentity-r13,
  shortResumeMAC-I-r13       ShortMAC-I,
  resumeCause-r13        EstablishmentCause-NB-r13,
  spare          BIT STRING (SIZE (9))
}
```

ETSI
RRConnectionResumeRequest-NB field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resumeCause</td>
<td>Provides the resume cause for the RRC connection resume request as provided by the upper layers. eNB is not expected to reject a RRConnectionResumeRequest due to unknown cause value being used by the UE.</td>
</tr>
<tr>
<td>resumeID</td>
<td>UE identity to facilitate UE context retrieval at eNB.</td>
</tr>
<tr>
<td>shortResumeMAC-I</td>
<td>Authentication token to facilitate UE authentication at eNB.</td>
</tr>
</tbody>
</table>

- **RRConnectionSetup-NB**

The **RRConnectionSetup-NB** message is used to establish SRB1 and SRB1bis.

Signalling radio bearer: SRB0
RLC-SAP: TM
Logical channel: CCCH
Direction: E-UTRAN to UE

RRConnectionSetup-NB message

```asn1
RRConnectionSetup-NB ::= SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier,
    criticalExtensions     CHOICE {
        c1         CHOICE {
            rrcConnectionSetup-r13    RRCConnectionSetup-NB-r13-IEs,
            spare1 NULL
        },
        criticalExtensionsFuture   SEQUENCE { }
    }
}
```

- **RRConnectionSetupComplete-NB**

The **RRConnectionSetupComplete-NB** message is used to confirm the successful completion of an RRC connection establishment.

Signalling radio bearer: SRB1bis
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

RRConnectionSetupComplete-NB message

```asn1
RRConnectionSetupComplete-NB ::= SEQUENCE {
    rrc-TransactionIdentifier    RRC-TransactionIdentifier,
    criticalExtensions      CHOICE{
        rrcConnectionSetupComplete-r13  RRCConnectionSetupComplete-NB-r13-IEs,
        criticalExtensionsFuture   SEQUENCE { }
    }
}
```
RRCConnectionSetupComplete-NB-r13-IEs ::= SEQUENCE {
 selectedPLMN-Identity-r13 INTEGER (1..maxPLMN-r11),
 s-TMSI-r13 S-TMSI OPTIONAL,
 registeredMME-r13 RegisteredMME OPTIONAL,
 dedicatedInfoNAS-r13 DedicatedInfoNAS,
 attachWithoutPDN-Connectivity-r13 ENUMERATED {true} OPTIONAL,
 up-CIoT-EPS-Optimisation-r13 ENUMERATED {true} OPTIONAL,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension RRCConnectionSetupComplete-NB-v1430-IEs OPTIONAL
}

RRCConnectionSetupComplete-NB-v1430-IEs ::= SEQUENCE {
 dcn-ID-r14 INTEGER (0..65535) OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

RRCConnectionSetupComplete-NB field descriptions

attachWithoutPDN-Connectivity
This field is used to indicate that the UE performs an Attach without PDN connectivity procedure, as indicated by the upper layers, TS 24.301 [35].

dcn-ID
The Dedicated Core Network Identity, see TS 23.401 [41].

gummei-Type
This field is used to indicate that the GUMMEI included is mapped (from 2G/3G identifiers) as indicated by the upper layers, TS 24.301 [35].

registeredMME
This field is used to transfer the GUMMEI of the MME where the UE is registered, as provided by upper layers.

selectedPLMN-Identity
Index of the PLMN selected by the UE from the plmn-IdentityList included in SystemInformationBlockType1-NB. 1 if the 1st PLMN is selected from the plmn-IdentityList included in SIB1, 2 if the 2nd PLMN is selected from the plmn-IdentityList included in SIB1 and so on.

up-CIoT-EPS-Optimisation
This field is included when the UE supports S1-U data transfer or the User plane CIoT EPS Optimisation, as indicated by the upper layers, see TS 24.301 [35].

SCPTMConfiguration-NB

The SCPTMConfiguration-NB message contains the control information applicable for MBMS services transmitted via SC-MRB.

Signalling radio bearer: N/A

RLC-SAP: UM

Logical channel: SC-MCCH

Direction: E-UTRAN to UE

SCPTMConfiguration-NB message

--- ASN1START

SCPTMConfiguration-NB-r14 ::= SEQUENCE {
 sc-mtch-InfoList-r14 SC-MTCH-InfoList-NB-r14,
 scptm-NeighbourCellList-r14 SCPTM-NeighbourCellList-NB-r14 OPTIONAL, -- Need OP
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

--- ASN1STOP
SystemInformation-NB

The **SystemInformation-NB** message is used to convey one or more System Information Blocks. All the SIBs included are transmitted with the same periodicity.

- **Signalling radio bearer:** N/A
- **RLC-SAP:** TM
- **Logical channel:** BCCH
- **Direction:** E-UTRAN to UE

SystemInformation-NB message

```asn1
SystemInformation-NB ::= SEQUENCE {
  criticalExtensions     CHOICE {
    systemInformation-r13    SystemInformation-NB-r13-IEs,
    criticalExtensionsFuture   SEQUENCE {}
  }
}
SystemInformation-NB-r13-IEs ::= SEQUENCE {
  sib-TypeAndInfo-r13     SEQUENCE (SIZE (1..maxSIB)) OF CHOICE {
    sib2-r13       SystemInformationBlockType2-NB-r13,
    sib3-r13       SystemInformationBlockType3-NB-r13,
    sib4-r13       SystemInformationBlockType4-NB-r13,
    sib5-r13       SystemInformationBlockType5-NB-r13,
    sib14-r13       SystemInformationBlockType14-NB-r13,
    sib16-r13       SystemInformationBlockType16-NB-r13,
    ...,
    sib15-v1430     SystemInformationBlockType15-NB-r14,
    sib20-v1430     SystemInformationBlockType20-NB-r14,
    sib22-v1430     SystemInformationBlockType22-NB-r14
  },
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
```

SystemInformationBlockType1-NB

The **SystemInformationBlockType1-NB** message contains information relevant when evaluating if a UE is allowed to access a cell and defines the scheduling of other system information.

- **Signalling radio bearer:** N/A
- **RLC-SAP:** TM
- **Logical channel:** BCCH
- **Direction:** E-UTRAN to UE

SystemInformationBlockType1-NB message

```asn1
SystemInformationBlockType1-NB ::= SEQUENCE {
  hyperSFN-MSB-r13     BIT STRING (SIZE (8)),
}
```
cellAccessRelatedInfo-r13 SEQUENCE {
 plmn-IdentityList-r13 PLMN-IdentityList-NB-r13,
 trackingAreaCode-r13 TrackingAreaCode,
 cellIdentity-r13 CellIdentity,
 cellBarred-r13 ENUMERATED {barred, notBarred},
 intraFreqRmselection-r13 ENUMERATED {allowed, notAllowed}
},
cellSelectionInfo-r13 SEQUENCE {
 q-RxLevMin-r13 Q-RxLevMin,
 q-QualMin-r13 Q-QualMin-r9
},
p-Max-r13 P-Max OPTIONAL, -- Need OP
freqBandIndicator-r13 FreqBandIndicator-NB-r13,
freqBandInfo-r13 NS-PmaxList-NB-r13 OPTIONAL, -- Need OR
downlinkBitmap-r13 DL-Bitmap-NB-r13 OPTIONAL, -- Need OP,
eutraControlRegionSize-r13 ENUMERATED {n1, n2, n3} OPTIONAL, -- Cond inband
}
cellSelectionInfo-v1350 CellSelectionInfo-NB-v1350 OPTIONAL, -- Cond Qrxlevmin
cellSelectionInfo-v1430 CellSelectionInfo-NB-v1430 OPTIONAL
}
cellSelectionInfo-v1450 CellSelectionInfo-NB-v1450 OPTIONAL
}
exceptAnchor
nonCriticalExtension SEQUENCE {} OPTIONAL

PLMN-IdentityList-NB-r13 ::= SEQUENCE {
 PLMN-IdentityInfo-NB-r13 ::= SEQUENCE {
 plmn-Identity-r13 PLMN-Identity,
 cellReservedForOperatorUse-r13 ENUMERATED {reserved, notReserved},
 attachWithoutPDN-Connectivity-r13 ENUMERATED {true} OPTIONAL -- Need OP
}
SchedulingInfoList-NB-r13 ::= SEQUENCE {
 SchedulingInfo-NB-r13 ::= SEQUENCE {
 schedulingInfo-r13 SchedulingInfo-r13,
 si-WindowLength-r13 ENUMERATED {ms160, ms320, ms480, ms640,
 ms960, ms1280, ms1600, spare1},
 si-RadioFrameOffset-r13 INTEGER (1..15) OPTIONAL, -- Need OP
 systemInfoValueTagList-r13 SystemInfoValueTagList-
 NB-r13 OPTIONAL, -- Need OP
 lateNonCriticalExtension OCTET STRING OPTIONAL, -- Cond inband
 nonCriticalExtension OCTET STRING OPTIONAL, -- Cond inband
 }
}
SIB-MappingInfo-r13 ::= SEQUENCE {
 sib-Mapping-r13 SIB-MappingInfo-NB-r13,
 si-TB-r13 ENUMERATED {b56, b120, b208, b256, b328, b440, b552, b680}
}
SystemInfoValueTagList-NB-r13 ::= SEQUENCE {
 SystemInfoValueTag-r13 ::= SEQUENCE {
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r13 TimeFrequencyInfo,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
 timeFrequencyInfo-r2 TimeFrequencyInfo,
 timeFrequencyInfo-r1 TimeFrequencyInfo,
 timeFrequencyInfo-r0 TimeFrequencyInfo,
 systemInfoValueTag-r13 SystemInfoValueTag,
 timeFrequencyInfo-r12 TimeFrequencyInfo,
 timeFrequencyInfo-r11 TimeFrequencyInfo,
 timeFrequencyInfo-r10 TimeFrequencyInfo,
 timeFrequencyInfo-r9 TimeFrequencyInfo,
 timeFrequencyInfo-r8 TimeFrequencyInfo,
 timeFrequencyInfo-r7 TimeFrequencyInfo,
 timeFrequencyInfo-r6 TimeFrequencyInfo,
 timeFrequencyInfo-r5 TimeFrequencyInfo,
 timeFrequencyInfo-r4 TimeFrequencyInfo,
 timeFrequencyInfo-r3 TimeFrequencyInfo,
```asn1
sibType3-NB-r13, sibType4-NB-r13, sibType5-NB-r13,
sibType14-NB-r13, sibType16-NB-r13, sibType15-NB-r14,
sibType20-NB-r14, sibType22-NB-r14

CellSelectionInfo-NB-v1350 ::= SEQUENCE {
    delta-RxLevMin-v1350 INTEGER (-8..-1)
}

CellSelectionInfo-NB-v1430 ::= SEQUENCE {
    powerClass14dBm-Offset-r14 ENUMERATED
        {dB-6, dB-3, dB3, dB6, dB9, dB12} OPTIONAL, -- Need OP
    ce-authorisationOffset-r14 ENUMERATED
        {dB5, dB10, dB15, dB20, dB25, dB30, dB35} OPTIONAL -- Need OP
}
```

ASN1STOP
SystemInformationBlockType1-NB field descriptions

attachWithoutPDN-Connectivity
If present, the field indicates that attach without PDN connectivity as specified in TS 24.301 [35] is supported for this PLMN.

ce-authorisationOffset
Parameter "Qoffsetauthorization" in TS 36.304 [4]. Value in dB. Value dB5 corresponds to 5 dB, dB10 corresponds to 10 dB and so on.
If the field is absent, the value of 0 dB shall be used for "Qoffsetauthorization".

cellBarred
Barred means the cell is barred, as defined in TS 36.304 [4].

cellIdentity
Indicates the cell identity.

cellReservedForOperatorUse
As defined in TS 36.304 [4].

cellSelectionInfo
Cell selection information as specified in TS 36.304 [4].

downlinkBitmap
NB-IoT downlink subframe configuration for downlink transmission. If the bitmap is not present, the UE shall assume that all subframes are valid (except for subframes carrying NPSS/NSSS/NPBCH/SIB1-NB) as specified in TS 36.213 [23, 16.4].

eutraControlRegionSize
Indicates the control region size of the E-UTRA cell for the in-band operation mode, see TS 36.213 [23]. Unit is in number of OFDM symbols.

freqBandInfo
A list of additionalPmax and additionalSpectrumEmission values as defined in TS 36.101 [42, 6.2.4F] for the frequency band in freqBandIndicator. If the field is absent, the UE applies the (default) value of 0 dB for "Poffset" in TS 36.304 [4].

hyperSFN-MSB
Indicates the 8 most significant bits of hyper-SFN. Together with hyperSFN-LSB in MIB-NB, the complete hyper-SFN is built up. hyper-SFN is incremented by one when the SFN wraps around.

intraFreqReselection
Used to control cell reselection to intra-frequency cells when the highest ranked cell is barred, or treated as barred by the UE, as specified in TS 36.304 [4].

multiBandInfoList
A list of additional frequency band indicators, additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [42, table 5.5-1]. If the UE supports the frequency band in the freqBandIndicator IE it shall apply that frequency band. Otherwise, the UE shall apply the first listed band which it supports in the multiBandInfoList IE.

nrs-CRS-PowerOffset
NRS power offset between NRS and E-UTRA CRS, see TS 36.213 [23, 16.2.2]. Unit in dB. Default value of 0.

plmn-IdentityList
List of PLMN identities. The first listed *PLMN-Identity* is the primary PLMN.

p-Max
Value applicable for the cell. If absent the UE applies the maximum power according to the UE capability.

q-QualMin
Parameter "Qqualmin" in TS 36.304 [4].

q-RxLevMin, delta-RxLevMin
Parameter Q_{levmin} in TS 36.304 [4]. If \(\delta_{\text{RxLevMin}} \) is not included, actual value \(Q_{\text{levmin}} = q_{\text{RxLevMin}} \times 2 \) [dBm]. If \(\delta_{\text{RxLevMin}} \) is included, actual value \(Q_{\text{levmin}} = (q_{\text{RxLevMin}} + \delta_{\text{RxLevMin}}) \times 2 \) [dBm].

schedulingInfoList
Indicates additional scheduling information of SI messages.

si-Periodicity
Periodicity of the SI-message in radio frames, such that rf256 denotes 256 radio frames, rf512 denotes 512 radio frames, and so on.

si-RadioFrameOffset
Offset in number of radio frames to calculate the start of the SI window.
If the field is absent, no offset is applied.

si-RepetitionPattern
Indicates the starting radio frames within the SI window used for SI message transmission. Value every2ndRF corresponds to every 2 radio frames, value every4thRF corresponds to every 4 radio frames and so on. The first transmission of the SI message is transmitted from the first radio frame of the SI window.
SystemInformationBlockType1-NB field descriptions

si-TB
This field indicates the transport block size in number of bits and the corresponding number of consecutive NB-IoT downlink subframes that are used to broadcast the SI message. Value b56 corresponds to 56 bits, b120 corresponds to 120 bits and so on. TBS of 56 bits and 120 bits are transmitted over 2 sub-frames, other TBS are transmitted over 8 sub-frames, see TS 36.213 [23, Table 16.4.1.5.1-1].

si-WindowLength
Common SI scheduling window for all SIs. Unit in milliseconds, where ms160 denotes 160 milliseconds, ms320 denotes 320 milliseconds and so on.

sib-MappingInfo
List of the SIBs mapped to this SystemInformation message. There is no mapping information of SIB2-NB; it is always present in the first SystemInformation message listed in the schedulingInfoList list.

siSystemInfoValueTagList
Indicates SI message specific value tags. It includes the same number of entries, and listed in the same order, as in SchedulingInfoList.

siSystemInfoValueTagSI
SI message specific value tag as specified in Clause 5.2.1.3. Common for all SIBs within the SI message other than SIB14-NB.

trackingAreaCode
A trackingAreaCode that is common for all the PLMNs listed.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>inband</td>
<td>The field is mandatory present if IE operationModeInfo in MIB-NB is set to inband-SamePCI or inband-DifferentPCI. Otherwise the field is not present.</td>
</tr>
<tr>
<td>inband-SamePCI</td>
<td>The field is mandatory present, if IE operationModeInfo in MIB-NB is set to inband-SamePCI. Otherwise the field is not present.</td>
</tr>
<tr>
<td>inband-SamePCI-ExceptAnchor</td>
<td>The field is optionally present if IE operationModeInfo in MIB-NB is set to a value other than inband-SamePCI, and at least one non-anchor carrier is inband carrier and uses the same PCI as the E-UTRA carrier. Otherwise the field is not present.</td>
</tr>
<tr>
<td>Qrxlevmin</td>
<td>This field is optionally present, Need OR, if q-RxLevMin is set to the minimum value. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

UECapabilityEnquiry-NB

The **UECapabilityEnquiry-NB** message is used to request the transfer of UE radio access capabilities for NB-IoT.

Signalling radio bearer: SRB1 or SRB1bis

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

UECapabilityEnquiry-NB message

```asn1
UECapabilityEnquiry-NB ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,
  criticalExtensions     CHOICE {
    c1         CHOICE {
      ueCapabilityEnquiry-r13    UECapabilityEnquiry-NB-r13-IEs,
      spare1        NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
}

UECapabilityEnquiry-NB-r13-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
```

The **UECapabilityInformation-NB** message is used to transfer of UE radio access capabilities requested by the E-UTRAN.

Signalling radio bearer: SRB1 or SRB1bis
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

UECapabilityInformation-NB message

```asn1
UECapabilityInformation-NB ::= SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier,
    criticalExtensions     CHOICE{
        ueCapabilityInformation-r13  UECapabilityInformation-NB-r13-IEs,
        criticalExtensionsFuture  SEQUENCE {} } } } }
```

UECapabilityInformation-NB field descriptions

ue-RadioPagingInfo
This field contains UE capability information used for paging.

ULInformationTransfer-NB

The **ULInformationTransfer-NB** message is used for the uplink transfer of NAS information.

Signalling radio bearer: SRB1 or SRB1bis
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

ULInformationTransfer-NB message

```asn1
ULInformationTransfer-NB ::= SEQUENCE {
    criticalExtensions     CHOICE {
        ulInformationTransfer-r13  ULInformationTransfer-NB-r13-IEs,
        criticalExtensionsFuture  SEQUENCE {} } } } }
```

ULInformationTransfer-NB-r13-IEs

```asn1
ULInformationTransfer-NB-r13-IEs ::= SEQUENCE {
    dedicatedInfoNAS-r13     DedicatedInfoNAS, } } }
```
6.7.3 NB-IoT information elements

6.7.3.1 NB-IoT System information blocks

– **SystemInformationBlockType2-NB**

The IE `SystemInformationBlockType2-NB` contains radio resource configuration information that is common for all UEs.

NOTE: UE timers and constants related to functionality for which parameters are provided in another SIB are included in the corresponding SIB.

SystemInformationBlockType2-NB field descriptions

additionalSpectrumEmission
The UE requirements related to IE `AdditionalSpectrumEmission` are defined in TS 36.101 [42, 6.2.4F].

cp-Reestablishment
This field indicates if the NB-IoT UE is allowed to trigger RRC connection re-establishment when AS security has not been activated.

multiBandInfoList
A list of `additionalSpectrumEmission` i.e. one for each additional frequency band included in `multiBandInfoList` in `SystemInformationBlockType1-NB`, listed in the same order.

ul-CarrierFreq
Uplink carrier frequency as defined in TS 36.101 [42, 5.7.3F]. If `operationModeInfo` in the MIB-NB is set to `standalone` and the field is absent, the value of the carrier frequency is determined by the TX-RX frequency separation defined in TS 36.101 [42, table 5.7.4-1] and the value of the carrier frequency offset is 0. If `operationModeInfo` in the MIB-NB is not set to `standalone`, the field is mandatory present.

– **SystemInformationBlockType3-NB**

The IE `SystemInformationBlockType3-NB` contains cell re-selection information common for intra-frequency, and inter-frequency cell re-selection as well as intra-frequency cell re-selection information other than neighbouring cell related.
SystemInformationBlockType3-NB-r13 ::= SEQUENCE {
 cellReselectionInfoCommon-r13 SEQUENCE {
 q-Hyst-r13 ENUMERATED {
 dB0, dB1, dB2, dB3, dB4, dB5, dB6, dB8, dB10,
 dB12, dB14, dB16, dB18, dB20, dB22, dB24
 }
 },
 cellReselectionServingFreqInfo-r13 SEQUENCE {
 s-NonIntraSearch-r13 ReselectionThreshold
 },
 intraFreqCellReselectionInfo-r13 SEQUENCE {
 q-RxLevMin-r13 Q-RxLevMin,
 q-QualMin-r13 Q-QualMin-r9 OPTIONAL, -- Need OP
 p-Max-r13 P-Max OPTIONAL, -- Need OP
 s-IntraSearchP-r13 ReselectionThreshold,
 t-Reselection-r13 T-Reselection-NB-r13
 },
 freqBandInfo-r13 NS-PmaxList-NB-r13 OPTIONAL, -- Need OR
 multiBandInfoList-r13 SEQUENCE (SIZE (1..maxMultiBands)) OF
 NS-PmaxList-NB-r13 OPTIONAL, -- Need OR
 lateNonCriticalExtension OCTET STRING OPTIONAL,

 ...,
 [[intraFreqCellReselectionInfo-v1350 IntraFreqCellReselectionInfo-NB-v1350 OPTIONAL -- Cond
 Qrxlevmin
]],
 [[intraFreqCellReselectionInfo-v1360 IntraFreqCellReselectionInfo-NB-v1360 OPTIONAL -- Need
 OR
]],
 [[intraFreqCellReselectionInfo-v1430 IntraFreqCellReselectionInfo-NB-v1430 OPTIONAL -- Need
 OR
]],
 [[cellReselectionInfoCommon-v1450 CellReselectionInfoCommon-NB-v1450 OPTIONAL -- Need
 OR
]]
}

IntraFreqCellReselectionInfo-NB-v1350 ::= SEQUENCE {
 delta-RxLevMin-v1350 INTEGER (-8..-1)
}

IntraFreqCellReselectionInfo-NB-v1360 ::= SEQUENCE {
 s-IntraSearchP-v1360 ReselectionThreshold-NB-v1360
}

IntraFreqCellReselectionInfo-NB-v1430 ::= SEQUENCE {
 powerClass14dBm-Offset-r14 ENUMERATED {dB-6, dB-3, dB3, dB6, dB9, dB12} OPTIONAL, -- Need OP
 ce-AuthorisationOffset-r14 ENUMERATED {dB5, dB10, dB15, dB20, dB25, dB30, dB35} OPTIONAL
 -- Need OP
}

CellReselectionInfoCommon-NB-v1450 ::= SEQUENCE {
 s-SearchDeltaP-r14 ENUMERATED {dB6, dB9, dB12, dB15}
}

-- ASN1STOP
SystemInformationBlockType3-NB field descriptions

ce-AuthorisationOffset
Parameter “Qoffsetauthorization” in TS 36.304 [4]. Value in dB. Value dB5 corresponds to 5 dB, dB10 corresponds to 10 dB and so on.
If the field is absent, the UE applies the value of ce-authorisationOffset in SystemInformationBlockType1-NB.

multiBandInfoList
A list of additionalPmax and additionalSpectrumEmission values as defined in TS 36.101 [42, 6.2.4F] applicable for the intra-frequency neighbouring NB-IoT cells if the UE selects the frequency band from freqBandIndicator in SystemInformationBlockType1-NB.

powerClass14dBm-Offset
Parameter ”Poffset” in TS 36.304 [4], only applicable for UE supporting powerClassNB-14dBm. Value in dB. Value dB-6 corresponds to -6 dB, dB-3 corresponds to -3 dB and so on. If the field is absent, the UE applies the (default) value of 0 dB for ”Poffset” in TS 36.304 [4].

p-Max
Value applicable for the intra-frequency neighbouring E-UTRA cells. If absent the UE applies the maximum power according to the UE capability.

q-Hyst
Parameter Qhyst in TS 36.304 [4]. Value in dB. Value dB1 corresponds to 1 dB, dB2 corresponds to 2 dB and so on.

q-QualMin
Parameter “Qqualmin” in TS 36.304 [4], applicable for intra-frequency neighbour cells. If the field is not present, the UE applies the (default) value of negative infinity for Qqualmin.

q-RxLevMin, delta-RxLevMin
Parameter “Qrxlevmin” in TS 36.304 [4], applicable for intra-frequency neighbour cells. If delta-RxLevMin is not included, actual value Qrxlevmin = q-RxLevMin * 2 [dBm]. If delta-RxLevMin is included, actual value Qrxlevmin = (q-RxLevMin + delta-RxLevMin) * 2 [dBm].

s-IntraSearchP
Parameter ”SIntraSearch” in TS 36.304 [4].
In case s-IntraSearchP-v1360 is included, the UE shall ignore s-IntraSearchP (i.e. without suffix).

s-NonIntraSearch
Parameter ”SnonIntraSearch” in TS 36.304 [4].

s-SearchDeltaP
Parameter ”SSearchDeltaP” in TS 36.304 [4]. This parameter is only applicable for UEs supporting relaxed monitoring as specified in TS 36.306 [5]. Value dB6 corresponds to 6 dB, dB9 corresponds to 9 dB and so on.

t-Reselection
Parameter ”TreselectionNB-IoT_intra” in TS 36.304 [4].

SystemInformationBlockType4-NB

The IE SystemInformationBlockType4-NB contains neighbouring cell related information relevant only for intra-frequency cell re-selection. The IE includes cells with specific re-selection parameters.

SystemInformationBlockType4-NB information element

```asn1
SystemInformationBlockType4-NB-r13 ::= SEQUENCE {
  intraFreqNeighCellList-r13   IntraFreqNeighCellList OPTIONAL, -- Need OR
  intraFreqBlackCellList-r13   IntraFreqBlackCellList OPTIONAL, -- Need OR
  intraFreqNonCriticalExtension OCTET STRING OPTIONAL,
  ...}
```

SystemInformationBlockType4-NB field descriptions

intraFreqBlackCellList
List of blacklisted intra-frequency neighbouring cells.

intraFreqNeighCellList
List of intra-frequency neighbouring cells with specific cell re-selection parameters.
The IE `SystemInformationBlockType5-NB` contains information relevant only for inter-frequency cell re-selection i.e. information about other NB-IoT frequencies and inter-frequency neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency.

SystemInformationBlockType5-NB information element

```markdown
-- ASN1START
SystemInformationBlockType5-NB-r13 ::= SEQUENCE {
  interFreqCarrierFreqList-r13   InterFreqCarrierFreqList-NB-r13,
  t-Reselection-r13      T-Reselection-NB-r13,
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  ...,
  [[ scptm-FreqOffset-r14    INTEGER (1..8)      OPTIONAL -- Need OP
  ]]
}

InterFreqCarrierFreqList-NB-r13 ::=  SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-NB-r13

InterFreqCarrierFreqInfo-NB-r13 ::= SEQUENCE {
  dl-CarrierFreq-r13     CarrierFreq-NB-r13,
  q-RxLevMin-r13        Q-RxLevMin,
  q-QualMin-r13         Q-QualMin-r9     OPTIONAL,  -- Need OP
  p-Max-r13             P-Max       OPTIONAL,  -- Need OP
  q-OffsetFreq-r13      Q-OffsetRange     DEFAULT dB0,
  interFreqNeighCellList-r13   InterFreqNeighCellList-NB-r13 OPTIONAL,  -- Need OR
  interFreqBlackCellList-r13   InterFreqBlackCellList-NB-r13 OPTIONAL,  -- Need OR
  multiBandInfoList-r13    MultiBandInfoList-NB-r13  OPTIONAL,  -- Need OR
  ...,
  [[ delta-RxLevMin-v1350   INTEGER (-8..-1)  OPTIONAL -- Cond Qrxlevmin
  ]],
  [[ powerClass14dBm-Offset-r14  ENUMERATED {dB-6, dB-3, dB3, dB6, dB9, dB12}
    OPTIONAL, -- Need OP
  ],
  [ ce-AuthorisationOffset-r14  ENUMERATED {dB5, dB10, dB15, dB20, dB25, dB30, dB35}
    OPTIONAL -- Need OP
  ]]
}

InterFreqNeighCellList-NB-r13 ::=  SEQUENCE (SIZE (1..maxCellInter)) OF PhysCellId

InterFreqBlackCellList-NB-r13 ::=  SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellId

-- ASN1STOP
```
SystemInformationBlockType5-NB field descriptions

ce-AuthorisationOffset
Parameter "Qoffsetauthorisation" in TS 36.304 [4]. Value in dB. Value dB5 corresponds to 5 dB, dB10 corresponds to 10 dB and so on. If the field is absent, the UE applies the value of ce-authorisationOffset in SystemInformationBlockType1-NB.

p-Max
Value applicable for the neighbouring NB-IoT cells on this carrier frequency. If absent the UE applies the maximum power according to the UE capability.

interFreqBlackCellList
List of blacklisted inter-frequency neighbouring cells.

interFreqCarrierFreqList
List of neighbouring inter-frequencies. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the E-ARFCN used to indicate this.

interFreqNeighCellList
List of inter-frequency neighbouring cells.

multiBandInfoList
Indicates the list of frequency bands, with the associated additionalPmax and additionalSpectrumEmission values as defined in TS 36.101 [42, 6.2.4], in addition to the band represented by dl-CarrierFreq for which cell reselection parameters are common.

powerClass14dBm-Offset
Parameter "Poffset" in TS 36.304 [4], only applicable for UE supporting powerClassNB-14dBm. Value in dB. Value dB-6 corresponds to -6 dB, dB-3 corresponds to -3 dB and so on. If the field is absent, the UE applies the (default) value of 0 dB for "Poffset" in TS 36.304 [4]

q-OffsetFreq
Parameter "Qoffsetfrequency." in TS 36.304 [4].

q-QualMin
Parameter "Qqualmin" in TS 36.304 [4]. If the field is not present, the UE applies the (default) value of negative infinity for Qqualmin.

q-RxlevMin, delta-RxLevMin
Parameter "QRxLevmin" in TS 36.304 [4]. If delta-RxLevMin is not included, actual value Qrxlevmin = q-RxLevMin * 2 [dBm]. If delta-RxLevMin is included, actual value Qrxlevmin = (q-RxLevMin + delta-RxLevMin) * 2 [dBm].

scptm-FreqOffset
Parameter QoffsetSCPTM in TS 36.304 [4]. Actual value QoffsetSCPTM = field value * 2 [dB]. If the field is absent, the UE uses infinite dBs for the SC-PTM frequency offset with cell ranking as specified in TS 36.304 [4].

t-Reselection
Parameter "TreselectionNB-IoT_inter" in TS 36.304 [4].

Conditional presence

<table>
<thead>
<tr>
<th>Qrxlevmin</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field is optionally present,需 OR, if q-RxLevMin is set to the minimum value. Otherwise the field is not present.</td>
<td></td>
</tr>
</tbody>
</table>

SystemInformationBlockType14-NB

The IE SystemInformationBlockType14-NB contains the AB parameters.

SystemInformationBlockType14-NB information element

```
-- ASN1START

SystemInformationBlockType14-NB-r13 ::= SEQUENCE {
  ab-Param-r13 CHOICE {
    ab-Common-r13 AB-Config-NB-r13, 
    ab-PerPLMN-List-r13 SEQUENCE (SIZE (1..maxPLMN-r11)) OF AB-ConfigPLMN-NB-r13 }
  lateNonCriticalExtension OCTET STRING OPTIONAL, -- Need OR ...
}

AB-ConfigPLMN-NB-r13 ::= SEQUENCE {
  ab-Config-r13 AB-Config-NB-r13 OPTIONAL -- Need OR }

AB-Config-NB-r13 ::= SEQUENCE {
  ab-Category-r13 ENUMERATED {a, b, c},
  ab-BarringBitmap-r13 BIT STRING (SIZE(10)),
  ab-BarringForExceptionData-r13 ENUMERATED {true} OPTIONAL, -- Need OP
```

ETSI
SystemInformationBlockType14-NB field descriptions

ab-BarringBitmap
Access class barring for AC 0-9. The first/ leftmost bit is for AC 0, the second bit is for AC 1, and so on.

ab-BarringForExceptionData
Indicates whether ExceptionData is subject to access barring.

ab-BarringForSpecialAC
Access class barring for AC 11-15. The first/ leftmost bit is for AC 11, the second bit is for AC 12, and so on.

ab-Category
Indicates the category of UEs for which AB applies. Value a corresponds to all UEs, value b corresponds to the UEs that are neither in their HPLMN nor in a PLMN that is equivalent to it, and value c corresponds to the UEs that are neither in the PLMN listed as most preferred PLMN of the country where the UEs are roaming in the operator-defined PLMN selector list on the USIM, nor in their HPLMN nor in a PLMN that is equivalent to their HPLMN, see TS 22.011 [10].

ab-Common
The AB parameters applicable for all PLMN(s).

ab-PerPLMN-List
The AB parameters per PLMN, listed in the same order as the PLMN(s) occur in plmn-IdentityList in SystemInformationBlockType1-NB.

-- SystemInformationBlockType15-NB

The IE SystemInformationBlockType15-NB contains the MBMS Service Area Identities (SAI) of the current and/or neighbouring carrier frequencies.

SystemInformationBlockType15-NB information element

```asn1
-- ASN1START
SystemInformationBlockType15-NB-r14 ::= SEQUENCE {
  mbms-SAI-IntraFreq-r14     MBMS-SAI-List-r11  OPTIONAL,  -- Need OR
  mbms-SAI-InterFreqList-r14  MBMS-SAI-InterFreqList-NB-r14 OPTIONAL,  -- Need OR
  lateNonCriticalExtension    OCTET STRING     OPTIONAL,
  ...
}
MBMS-SAI-InterFreqList-NB-r14 ::=  SEQUENCE (SIZE (1..maxFreq)) OF MBMS-SAI-InterFreq-NB-r14
MBMS-SAI-InterFreq-NB-r14 ::=   SEQUENCE {
  dl-CarrierFreq-r14      CarrierFreq-NB-r13,
  mbms-SAI-List-r14      MBMS-SAI-List-r11,
  multiBandInfoList-r14     AdditionalBandInfoList-NB-r14 OPTIONAL  -- Need OR
}
-- ASN1STOP
```

SystemInformationBlockType15-NB field descriptions

mbms-SAI-InterFreqList
Contains a list of neighboring frequencies including additional frequency bands, if any, that provide MBMS services and the corresponding MBMS SAIs.

mbms-SAI-IntraFreq
Contains the list of MBMS SAIs for the current frequency. A duplicate MBMS SAI indicates that this and all following SAIs are not offered by this cell but only by neighbour cells on the current frequency. For MBMS service continuity, the UE shall use all MBMS SAIs listed in mbms-SAI-IntraFreq to derive the MBMS frequencies of interest.

mbms-SAI-List
Contains a list of MBMS SAIs for a specific frequency.

multiBandInfoList
A list of additional frequency bands applicable for the cells participating in the SC-PTM transmission.
– SystemInformationBlockType16-NB

The IE SystemInformationBlockType16-NB contains information related to GPS time and Coordinated Universal Time (UTC). The UE may use the parameters provided in this system information block to obtain the UTC, the GPS and the local time.

```asn1
SystemInformationBlockType16-NB-r13 ::= SystemInformationBlockType16-r11
```

– SystemInformationBlockType20-NB

The IE SystemInformationBlockType20-NB contains the information required to acquire the control information associated with transmission of MBMS using SC-PTM.

```asn1
SystemInformationBlockType20-NB information element
```

```asn1
SystemInformationBlockType20-NB-r14 ::= SEQUENCE {
    npdcch-SC-MCCH-Config-r14     NPDCCH-SC-MCCH-Config-NB-r14,
    sc-mcch-CarrierConfig-r14     DL-CarrierConfigCommon-NB-r14,
    di-CarrierIndex-r14           INTEGER (0.. maxNonAnchorCarriers-NB-r14)
}
```

```asn1
NPDCCH-SC-MCCH-Config-NB-r14 ::= SEQUENCE {
    npdcch-NumRepetitions-SC-MCCH-r14  ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128, r256, r512, r1024, r2048},
    npdcch-StartSF-SC-MCCH-r14     ENUMERATED {v1dot5, v2, v4, v8, v16, v32, v48, v64},
    npdcch-Offset-SC-MCCH-r14     ENUMERATED {zero, oneEighth, oneQuarter, threeEighth, oneHalf, fiveEighth, threeQuarter, sevenEighth}
}
```

```asn1
SC-MCCH-SchedulingInfo-NB-r14 ::= SEQUENCE {
    onDurationTimerSCPTM-r14     ENUMERATED {pp1, pp2, pp3, pp4, pp8, pp16, pp32, spare},
    drx-InactivityTimerSCPTM-r14  ENUMERATED {pp0, pp1, pp2, pp3, pp4, pp8, pp16, pp32},
    schedulingPeriodStartOffsetSCPTM-r14   CHOICE {
        sf10     INTEGER (0..9),
        sf20     INTEGER (0..19),
        sf32     INTEGER (0..31),
        sf40     INTEGER (0..63),
        sf64     INTEGER (0..127),
        sf80     INTEGER (0..159),
        sf128    INTEGER (0..255),
        sf160    INTEGER (0..319),
        sf256    INTEGER (0..511),
        sf320    INTEGER (0..639),
        sf512    INTEGER (0..1023),
        sf640    INTEGER (0..2047),
        sf1024   INTEGER (0..4095),
        sf2048   INTEGER (0..8191),
    }
}
```
SystemInformationBlockType20-NB field descriptions

dl-CarrierConfig
Downlink carrier used for SC-MCCH.

dl-CarrierIndex
Index to a downlink carrier signalled in system information. Value '0' corresponds to the anchor carrier, value '1' corresponds to the first entry in `dl-ConfigList` in `SystemInformationBlockType22-NB`, value '2' corresponds to the second entry in `dl-ConfigList` and so on.

drx-InactivityTimerSCPTM
Timer for SC-MCCH reception in TS 36.321 [6]. Value in number of NPDCCH periods. Value pp1 corresponds to 1 NPDCCH period, pp2 corresponds to 2 NPDCCH periods and so on.

npdcch-NumRepetitions-SC-MCCH
The maximum number of NPDCCH repetitions the UE needs to monitor for SC-MCCH multicast search space, see TS 36.213 [23].

npdcch-Offset-SC-MCCH
Fractional period offset of starting subframe for NPDCCH multicast search space for SC-MCCH, see TS 36.213 [23].

npdcch-StartSF-SC-MCCH
Starting subframes configuration of the NPDCCH multicast search space for SC-MCCH, see TS 36.213 [23].

onDurationTimerSCPTM
Timer for SC-MCCH reception in TS 36.321 [6]. Value in number of NPDCCH periods. Value pp1 corresponds to 1 NPDCCH period, pp2 corresponds to 2 NPDCCH periods and so on.

schedulingPeriodStartOffsetSCPTM
SCPTM-SchedulingCycle and SCPTM-SchedulingOffset in TS 36.321 [6]. The value of SCPTM-SchedulingCycle is in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. The value of SCPTM-SchedulingOffset is in number of sub-frames.

sc-mcch-CarrierConfig
Downlink carrier that is used for SC-MCCH.

sc-mcch-ModificationPeriod
Defines periodically appearing boundaries, i.e. radio frames for which (H-SFN * 1024 + SFN) mod sc-mcch-ModificationPeriod = 0. The contents of different transmissions of SC-MCCH information can only be different if there is at least one such boundary in-between them. Value rf32 corresponds to 32 radio frames, value rf128 corresponds to 128 radio frames and so on.

sc-mcch-Offset
Indicates, together with the sc-mcch-RepetitionPeriod, the boundary of the repetition period: (H-SFN * 1024 + SFN) mod sc-mcch-RepetitionPeriod = sc-mcch-Offset.

sc-mcch-RepetitionPeriod
Defines the interval between transmissions of SC-MCCH information, in radio frames. Value rf32 corresponds to 32 radio frames, rf128 corresponds to 128 radio frames and so on.

sc-mcch-SchedulingInfo
DRX information for the SC-MCCH. If the field is absent, DRX is not used for SC-MCCH reception.

SystemInformationBlockType22-NB

The IE `SystemInformationBlockType22-NB` contains radio resource configuration for paging and random access procedure on non-anchor carriers.

SystemInformationBlockType22-NB information element

-- ASN1START

```asn1
SystemInformationBlockType22-NB-r14 ::= SEQUENCE {
    dl-ConfigList-r14 DL-ConfigCommonList-NB-r14 OPTIONAL, -- Need OR
    ul-ConfigList-r14 UL-ConfigCommonList-NB-r14 OPTIONAL, -- Need OR
    pagingWeightAnchor-r14 PagingWeight-NB-r14 OPTIONAL, -- Cond pcch-config
    nprrach-ProbabilityAnchorList-r14 NPRACh-ProbabilityAnchorList-NB-r14 OPTIONAL, -- Cond
    nprrach-config lateNonCriticalExtension OCTET STRING OPTIONAL,
    ...
}
```

-- ASN1STOP
DL-ConfigCommonList-NB-r14 ::= SEQUENCE { SIZE (1..maxNonAnchorCarriers-NB-r14)) OF DL-ConfigCommon-NB-r14 }

UL-ConfigCommonList-NB-r14 ::= SEQUENCE { SIZE (1..maxNonAnchorCarriers-NB-r14)) OF UL-ConfigCommon-NB-r14 }

DL-ConfigCommon-NB-r14 ::= SEQUENCE { dl-CarrierConfig-r14 DL-CarrierConfigCommon-NB-r14, pcch-Config-r14 PCCH-Config-NB-r14 OPTIONAL, -- Need OR ...

PCCH-Config-NB-r14 ::= SEQUENCE { npdcch-NumRepetitionPaging-r14 ENUMERATED { r1, r2, r4, r8, r16, r32, r64, r128, r256, r512, r1024, r2048, spare4, spare3, spare2, spare1} OPTIONAL, -- Need OP pagingWeight-r14 PagingWeight-NB-r14 DEFAULT w1, ...

PagingWeight-NB-r14 ::= ENUMERATED { w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, w16} }

UL-ConfigCommon-NB-r14 ::= SEQUENCE { ul-CarrierFreq-r14 CarrierFreq-NB-r13, nprach-ParametersList-r14 NPRACH-ParametersList-NB-r14 OPTIONAL, -- Need OR ...

NPRACH-ParametersList-NB-r14 ::= SEQUENCE { SIZE (1..maxNPRACH-Resources-NB-r13)) OF NPRACH-Parameters-NB-r14 }

NPRACH-Parameters-NB-r14 ::= SEQUENCE { nprach-Parameters-r14 SEQUENCE { npdcch-NumRepetitions-RA-r14 ENUMERATED { r1, r2, r4, r8, r16, r32, r64, r128, r256, r512, r1024, r2048, spare4, spare3, spare2, spare1} OPTIONAL, -- Need OP npdcch-StartSF-CSS-RA-r14 ENUMERATED { v1dot5, v2, v4, v8, v16, v32, v48, v64} OPTIONAL, -- Need OP npdcch-Offset-RA-r14 ENUMERATED { zero, oneEighth, oneFourth, threeEighth } OPTIONAL, -- Need OP nprach-NumCBRA-StartSubcarriers-r14 ENUMERATED { n8, n10, n11, n12, n20, n22, n23, n24, n32, n34, n35, n36, n40, n44, n46, n48} OPTIONAL, -- Need OP npdcch-CarrierIndex-r14 INTEGER (1..maxNonAnchorCarriers-NB-r14) OPTIONAL, -- Need Op ...

NPRACH-ProbabilityAnchorList-NB-r14 ::= SEQUENCE { SIZE (1..maxNPRACH-Resources-NB-r13)) OF NPRACH-ProbabilityAnchor-NB-r14 }

NPRACH-ProbabilityAnchor-NB-r14 ::= SEQUENCE { nprach-ProbabilityAnchor-r14 ENUMERATED { zero, oneSixteenth, oneFifteenth, oneFourteenth, oneThirteenth, oneTwelfth, oneEleventh, oneTenth, oneNinth, oneEighth, oneSeventh, oneSixth, oneFifth, oneFourth, oneThird, oneHalf} OPTIONAL, -- Need OP }
SystemInformationBlockType2-NB field descriptions

dl-CarrierConfig
Provides the configuration of the DL non-anchor carrier.

dl-ConfigList
List of DL non-anchor carriers and associated configuration that can be used for paging and/or random access.

nprach-CarrierIndex
Index of the carrier in the list of DL non anchor carriers. The first entry in the list has index '1', the second entry has index '2' and so on.
If the field is absent, the DL anchor carrier is used.

nprach-NumRepititionPaging
Maximum number of repetitions for NPDCCH common search space (CSS) for paging, see TS 36.213 [23, 16.6].
If the field is absent, the value of nprach-NumRepititionPaging configured in SystemInformationBlockType2-NB in E-UTRAN includes the same number of entries, and listed in the same order, as in
SystemInformationBlockType2-NB

nprach-ParametersList
Configure NPRACH parameters for each NPRACH resource on one non-anchor UL carrier. Up to three NPRACH resources can be configured on one non-anchor UL carrier. Each NPRACH resource is associated with a different number of NPRACH repetitions.
E-UTRAN includes the same number of entries, and listed in the same order, as in nprach-ParametersList in SystemInformationBlockType2-NB.

nprach-Periodicity
Periodicity of a NPRACH resource, see TS 36.211 [21, 10.1.6]. Unit in millisecond.
If the field is absent, the value of nprach-Periodicity configured in SystemInformationBlockType2-NB for the NPRACH resource in the corresponding entry in nprach-ParametersList applies.

nprach-ProbabilityAnchor
Configure the selection probability for the anchor carrier NPRACH resource. Value zero corresponds to a probability of 0, oneSixteenth corresponds to the probability of 1/16, oneFifteenth corresponds to the probability of 1/15, and so on.
If the field is absent, the selection probability of the anchor carrier NPRACH resource is 1.
All non-anchor carriers NPRACH resources have equal probability between them. The probability of selecting a non-anchor carrier NPRACH resource is (1- nprach-ProbabilityAnchor).

nprach-ProbabilityAnchorList
Configures the selection probability for each NPRACH resource on the anchor carrier.
E-UTRAN includes the same number of entries, and listed in the same order, as in nprach-ParametersList in SystemInformationBlockType2-NB.

nprach-StartTime
Start time of the NPRACH resource in one period, see TS 36.211 [23, 10.1.6]. Unit in millisecond.
If the field is absent, the value of nprach-StartTime configured in SystemInformationBlockType2-NB for the NPRACH resource in the corresponding entry in nprach-ParametersList applies.

nprach-SubcarrierOffset
Frequency location of the NPRACH resource, see TS 36.211 [21, 10.1.6]. In number of subcarriers, offset from sub-carrier 0.
If the field is absent, the value of nprach-SubcarrierOffset configured in SystemInformationBlockType2-NB for the NPRACH resource in the corresponding entry of nprach-ParametersList applies.

nprach-SubcarrierMSG3-RangeStart
Fraction for calculating the starting subcarrier index of the range reserved for indication of UE support for multi-tone Msg3 transmission, within the NPRACH resource, see TS 36.211 [21, 10.1.6]. Multi-tone Msg3 transmission is not supported for {32, 64, 128} repetitions of NPRACH. For at least one of the NPRACH resources with the number of NPRACH repetitions other than {32, 64, 128}, the value of nprach-SubcarrierMSG3-RangeStart should not be 0.

If nprach-SubcarrierMSG3-RangeStart is equal to zero, no start subcarrier index for the single-tone Msg3 NPRACH is allocated and the start subcarrier indexes for the multi-tone Msg3 NPRACH partition are given by nprach-SubcarrierOffset + [0, nprach-NumCBRA-StartSubcarriers - 1].

If nprach-SubcarrierMSG3-RangeStart is equal to oneThird or twoThird the start subcarrier indexes for the two partitions are given by:

- For the single-tone Msg3 NPRACH partition:
 nprach-SubcarrierOffset + \[0, \text{FLOOR} \left(\frac{nprach-NumCBRA-StartSubcarriers \times nprach-SubcarrierMSG3-RangeStart}{nprach-SubcarrierOffset} \right) - 1\]

- For the multi-tone Msg3 NPRACH partition:
 nprach-SubcarrierOffset + \[\text{FLOOR} \left(\frac{nprach-NumCBRA-StartSubcarriers \times nprach-SubcarrierMSG3-RangeStart}{nprach-SubcarrierOffset} \right), nprach-NumCBRA-StartSubcarriers - 1\]

If the field is absent, the value of nprach-SubcarrierMSG3-RangeStart configured in SystemInformationBlockType2-NB for the NPRACH resource in the corresponding entry of nprach-ParametersList applies.

If nprach-SubcarrierMSG3-RangeStart is equal to one, the start subcarrier indexes for the single-tone Msg3 NPRACH are given by nprach-SubcarrierOffset + [0, nprach-NumCBRA-StartSubcarriers - 1] and no start subcarrier index for the multi-tone Msg3 NPRACH partition is allocated.

pagingWeight
Weight of the non-anchor paging carrier for uneven paging load distribution across the carriers. Value w1 corresponds to a relative weight of 1, w2 corresponds to a relative weight of 2, and so on.

The paging load for a carrier \(i\) is equal to \(w(i)/W\) where \(i\) is equal to 0 for the anchor carrier and equal to the index of the carrier in the dl-ConfigList for a non-anchor carrier. \(W\) is the sum of the weights of all paging carriers.

To avoid correlation between paging carrier and paging occasion, the weights should be assigned such that: \(nB \times W <= 16384\).

pagingWeightAnchor
Weight of the anchor carrier for uneven paging load distribution across the carriers. Value w1 corresponds to a relative weight of 1, w2 corresponds to a relative weight of 2, and so on.

If the field is absent, the (default) value of w0 is applied, i.e. the anchor carrier is not used for paging.

pcch-Config
Configure the PCCH parameters for the non-anchor DL carrier.

ul-CarrierFreq
UL carrier frequency of the non-anchor carrier as defined in TS 36.101 [42, 5.7.3F].

ul-ConfigList
List of UL non-anchor carriers and associated configuration that can be used for random access.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcch-Config</td>
<td>This field is optionally present, Need OP, if the field dl-ConfigList is present and at least one of the carriers in dl-ConfigList is configured for paging. Otherwise the field is not present and only the anchor carrier is used for paging.</td>
</tr>
<tr>
<td>nprach-config</td>
<td>This field is mandatory present, if the field ul-ConfigList is present and at least one of the carriers in ul-ConfigList is configured for random access. Otherwise the field is not present and only the anchor carrier is used for random access.</td>
</tr>
</tbody>
</table>

6.7.3.2 NB-IoT Radio resource control information elements

CarrierConfigDedicated-NB

The IE CarrierConfigDedicated-NB is used to specify a carrier in NB-IoT.

CarrierConfigDedicated-NB information elements

```
-- ASN1START
CarrierConfigDedicated-NB-r13 ::= SEQUENCE {
  dl-CarrierConfig-r13  DL-CarrierConfigDedicated-NB-r13,
  ul-CarrierConfig-r13  UL-CarrierConfigDedicated-NB-r13
}

DL-CarrierConfigDedicated-NB-r13 ::= SEQUENCE {
  dl-CarrierFreq-r13  CarrierFreq-NB-r13,

```
CarrierConfigDedicated-NB field descriptions

 dl-CarrierConfig
 Downlink carrier used for all unicast transmissions.

 dl-CarrierFreq
 DL carrier frequency. The downlink carrier is not in a E-UTRA PRB which contains E-UTRA PSS/SSS/PBCH.

 dl-GapNonAnchor
 Downlink transmission gap configuration for the anchor/ non-anchor carrier, see TS 36.211 [21, 10.2.3.4].

 downlinkBitmapNonAnchor
 NB-IoT downlink subframe configuration for downlink transmission on the anchor/ non-anchor carrier. See TS 36.213 [23, 16.4].

 eutraControlRegionSize
 Indicates the control region size of the E-UTRA cell for the in-band operation mode, see TS 36.213 [23]. Unit in number of OFDM symbols. If operationModeInfo in MIB-NB is set to inband-SamePCI or inband-DifferentPCI, it should be set to the value broadcast in SIB1-NB.

 eutra-NumCRS-Ports
 Number of E-UTRA CRS antenna ports, either the same number of ports as NRS or 4 antenna ports. See TS 36.211 [21], TS 36.212 [22], and TS 36.213 [23].

 inbandCarrierInfo
 Provides the configuration of the anchor/ non-anchor inband carrier.

 indexToMidPRB
 The PRB index is signaled by offset from the middle of the EUTRA system.

 nrs-PowerOffsetNonAnchor
 Provides the power offset of the downlink narrowband reference-signal EPRE of the anchor/ non-anchor carrier relative to the anchor carrier, unit in dB. Value dB-12 corresponds to -12 dB, dB-10 corresponds to -10 dB and so on. See TS 36.213 [23, 16.2.2].

 samePCI-Indicator
 This parameter specifies whether the anchor/ non-anchor carrier reuses the same PCI as the EUTRA carrier.

 ul-CarrierConfig
 Uplink anchor/ non-anchor carrier used for all unicast transmissions.

 ul-CarrierFreq
 UL carrier frequency as defined in TS 36.101 [42, 5.7.3F]. If absent, the same TX-RX frequency separation and carrier frequency offset as for the anchor carrier applies.
Conditional presence

<table>
<thead>
<tr>
<th>Presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-anchor-inband</td>
<td>The field is mandatory present if the anchor/ non-anchor carrier is an inband carrier; otherwise it is not present.</td>
</tr>
<tr>
<td>anchor-guardband</td>
<td>The field is mandatory present if <code>operationModelInfo</code> is set to <code>guardband</code> in the MIB; otherwise it is not present.</td>
</tr>
</tbody>
</table>

CarrierFreq-NB

The IE `CarrierFreq-NB` is used to provide the NB-IoT carrier frequency, as defined in TS 36.101 [42].

CarrierFreq-NB information elements

-- ASN1START

```asn1
CarrierFreq-NB-r13 ::= SEQUENCE {
  carrierFreq-r13    ARFCN-ValueEUTRA-r9,
  carrierFreqOffset-r13  ENUMERATED {
    v-10, v-9, v-8, v-7, v-6, v-5, v-4, v-3, v-2, v-1, v-0dot5,
    v0, v1, v2, v3, v4, v5, v6, v7, v8, v9
  } OPTIONAL -- Need ON
}
```

-- ASN1STOP

CarrierFreq-NB field descriptions

- **carrierFreq**
 - Provides the ARFCN applicable for the NB-IoT carrier frequency as defined in TS 36.101 [42, Table 5.7.3-1].

- **carrierFreqOffset**
 - Offset of the NB-IoT channel number to EARFCN as defined in TS 36.101 [42, 5.7.3F]. Value v-10 means -10, v-9 means -9, and so on.

DL-Bitmap-NB

The IE `DL-Bitmap-NB` is used to specify the set of NB-IoT downlink subframes for downlink transmission.

DL-Bitmap-NB information element

-- ASN1START

```asn1
DL-Bitmap-NB-r13 ::= CHOICE {
  subframePattern10-r13   BIT STRING (SIZE (10)),
  subframePattern40-r13   BIT STRING (SIZE (40))
}
```

-- ASN1STOP

DL-Bitmap-NB field descriptions

- **subframePattern10, subframePattern40**
 - NB-IoT downlink subframe configuration over 10ms or 40ms for inband and 10ms for standalone/guardband. The first/leftmost bit corresponds to the subframe #0 of the radio frame satisfying SFN mod x = 0, where x is the size of the bit string divided by 10. Value 0 in the bitmap indicates that the corresponding subframe is invalid for downlink transmission. Value 1 in the bitmap indicates that the corresponding subframe is valid for downlink transmission.

DL-CarrierConfigCommon-NB

The IE `DL-CarrierConfigCommon-NB` is used to specify the common configuration of a DL non-anchor carrier in NB-IoT.

DL-CarrierConfigCommon-NB information elements

-- ASN1START
DL-CarrierConfigCommon-NB ::= SEQUENCE {
 dl-CarrierFreq-r14 CarrierFreq-NB-r13,
 downlinkBitmapNonAnchor-r14 CHOICE {
 useNoBitmap-r14 NULL,
 useAnchorBitmap-r14 NULL,
 explicitBitmapConfiguration-r14 DL-Bitmap-NB-r13
 },
 dl-GapNonAnchor-r14 CHOICE {
 useNoGap-r14 NULL,
 useAnchorGapConfig-r14 NULL,
 explicitGapConfiguration-r14 DL-GapConfig-NB-r13
 },
 inbandCarrierInfo-r14 SEQUENCE {
 samePCI-Indicator-r14 CHOICE {
 samePCI-r14 SEQUENCE {
 indexToMidPRB-r14 INTEGER (-55..54)
 },
 differentPCI-r14 SEQUENCE {
 eutra-NumCRS-Ports-r14 ENUMERATED {same, four}
 }
 },
 eutraControlRegionSize-r14 ENUMERATED {n1, n2, n3}
 },
 nrs-PowerOffsetNonAnchor-r14 ENUMERATED {dB-12, dB-10, dB-8, dB-6, dB-4, dB-2, dB0, dB3} DEFAULT dB0,
 ...
}

--- ASN1STOP

DL-CarrierConfigCommon-NB field descriptions

dl-CarrierFreq
- DL carrier frequency. The downlink carrier is not in a E-UTRA PRB which contains E-UTRA PSS/SSS/PBCH.

dl-GapNonAnchor
- Downlink transmission gap configuration for the non-anchor carrier, see TS 36.211 [21, 10.2.3.4].

downlinkBitmapNonAnchor
- NB-IoT downlink subframe configuration for downlink transmission on the non-anchor carrier. See TS 36.213 [23, 16.4].

eutraControlRegionSize
- Indicates the control region size of the E-UTRA cell for the in-band operation mode, see TS 36.213 [23]. Unit is in number of OFDM symbols. If operationModeInfo in MIB-NB is set to inband-SamePCI or inband-DifferentPCI, it should be set to the value broadcast in SIB1-NB.

eutra-NumCRS-Ports
- Number of E-UTRA CRS antenna ports, either the same number of ports as NRS or 4 antenna ports. See TS 36.211 [21], TS 36.212 [22], and TS 36.213 [23].

inbandCarrierInfo
- Provides the configuration of a non-anchor inband carrier.

indexToMidPRB
- The PRB index is signaled by offset from the middle of the EUTRA system.

nrs-PowerOffsetNonAnchor
- Provides the downlink narrowband reference-signal EPRE offset of the non-anchor carrier relative to the downlink narrowband reference-signal EPRE of the anchor carrier, unit in dB. Value dB-12 corresponds to -12 dB, dB-10 corresponds to -10 dB and so on. See TS 36.213 [23, 16.2.2].

samePCI-Indicator
- This parameter specifies whether the non-anchor carrier reuses the same PCI as the EUTRA carrier.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-anchor-inband</td>
<td>The field is mandatory present if the non-anchor carrier is an inband carrier; otherwise it is not present.</td>
</tr>
<tr>
<td>anchor-guardband</td>
<td>The field is mandatory present, if operationModeInfo is set to guardband in the MIB; otherwise it is not present.</td>
</tr>
</tbody>
</table>

DL-GapConfig-NB

The IE DL-GapConfig-NB is used to specify the downlink gap configuration for NPDCCH and NPDSCH. Downlink gaps apply to all NPDCCH/NPDSCH transmissions except for BCCH.
DL-GapConfig-NB information element

DL-GapConfig-NB-r13 ::= SEQUENCE {
 dl-GapThreshold-r13 ENUMERATED {n32, n64, n128, n256},
 dl-GapPeriodicity-r13 ENUMERATED {sf64, sf128, sf256, sf512},
 dl-GapDurationCoeff-r13 ENUMERATED {oneEighth, oneFourth, threeEighth, oneHalf}
}

DL-GapConfig-NB field descriptions

dl-GapDurationCoeff
Coefficient to calculate the gap duration of a DL transmission: dl-GapDurationCoeff * dl-GapPeriodicity, Duration in number of subframes. See TS 36.211 [21, 10.2.3.4].

dl-GapPeriodicity
Periodicity of a DL transmission gap in number of subframes. See TS 36.211 [21, 10.2.3.4].

dl-GapThreshold
Threshold on the maximum number of repetitions configured for NPDCCH before application of DL transmission gap configuration. See TS 36.211 [21, 10.2.3.4].

LogicalChannelConfig-NB

The IE LogicalChannelConfig-NB is used to configure the logical channel parameters.

LogicalChannelConfig-NB information element

LogicalChannelConfig-NB-r13 ::= SEQUENCE {
 priority-r13 INTEGER (1..16) OPTIONAL, -- Cond UL
 logicalChannelSR-Prohibit-r13 BOOLEAN OPTIONAL, -- Need ON
 ...
}

LogicalChannelConfig-NB field descriptions

logicalChannelSR-Prohibit
Value TRUE indicates that the logicalChannelSR-ProhibitTimer is enabled for the logical channel. If logicalChannelSR-Prohibit is configured (i.e. indicates value TRUE), E-UTRAN also configures logicalChannelSR-ProhibitTimer. See TS 36.321 [6].

priority
Logical channel priority in TS 36.321 [6]. Value is an integer.

MAC-MainConfig-NB

The IE MAC-MainConfig-NB is used to specify the MAC main configuration for signalling and data radio bearers.

MAC-MainConfig-NB information element

MAC-MainConfig-NB-r13 ::= SEQUENCE {
 ul-SCH-Config-r13 SEQUENCE {
 periodicBSR-Timer-r13 PeriodicBSR-Timer-NB-r13 OPTIONAL, -- Need ON
 retxBSR-Timer-r13 RetxBSR-Timer-NB-r13
 }
}

LogicalChannelConfig-NB field descriptions

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>The field is mandatory present for UL logical channels; otherwise it is not present.</td>
</tr>
</tbody>
</table>
ETSI

3GPP TS 36.331 version 14.6.2 Release 14

ETSI TS 136 331 V14.6.2 (2018-04)

643

-- ASN1STOP
MAC-MainConfig-NB field descriptions

drx-Config
Used to configure DRX as specified in TS 36.321 [6].

drx-Cycle
longDRX-Cycle in TS 36.321 [6]. The value of longDRX-Cycle is in number of sub-frames. Value sf256 corresponds to 256 sub-frames, sf512 corresponds to 512 sub-frames and so on. In case drx-Cycle-v1430 is signalled, the UE shall ignore drx-Cycle-r13.

drx-StartOfset
drxStartOffset in TS 36.321 [6]. Value is in number of sub-frames by step of (drx-cycle / 256).

drx-InactivityTimer
Timer for DRX in TS 36.321 [6]. Value pp0 corresponds to 0 PDCCH period and behaviour as specified in 7.3.2 applies, pp1 corresponds to 1 PDCCH period, pp2 corresponds to 2 PDCCH periods and so on.

drx-RetransmissionTimer
Timer for DRX in TS 36.321 [6]. Value pp0 corresponds to 0 PDCCH periods. Value pp1 corresponds to 1 PDCCH period and behaviour as specified in 7.3.2 applies, pp2 corresponds to 2 PDCCH periods and so on.

drx-ULRetransmissionTimer
Timer for DRX in TS 36.321 [6]. Value in number of PDCCH periods. Value pp0 corresponds to 0 PDCCH period and behaviour as specified in 7.3.2 applies, pp1 corresponds to 1 PDCCH period, pp2 corresponds to 2 PDCCH periods and so on.

logicalChannelSR-ProhibitTimer
Timer used to delay the transmission of an SR. See TS 36.321 [6]. Value pp2 corresponds to 2 PDCCH periods, pp8 corresponds to 8 PDCCH periods and so on.

periodicBSR-Timer
Timer for BSR reporting in TS 36.321 [6]. Value pp2 corresponds to 2 PDCCH periods, pp4 corresponds to 4 PDCCH periods and so on.

onDurationTimer
Timer for DRX in TS 36.321 [6]. Value in number of PDCCH periods. Value pp1 corresponds to 1 PDCCH period, pp2 corresponds to 2 PDCCH periods and so on.

timeAlignmentTimer
Indicates the value of the time alignment timer, see TS 36.321 [6].

NPDCCH-ConfigDedicated-NB
The IE NPDCCH-ConfigDedicated-NB specifies the subframes and resource blocks for NPDCCH monitoring.

NPDCCH-ConfigDedicated-NB information element

```asn
NPDCCH-ConfigDedicated-NB-r13 ::= SEQUENCE {
  npdcch-NumRepetitions-r13 ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128,
                                     r256, r512, r1024, r2048,
                                     spare4, spare3, spare2, spare1},
  npdcch-StartSF-USS-r13 ENUMERATED {v1dot5, v2, v4, v8, v16, v32, v48, v64},
  npdcch-Offset-USS-r13 ENUMERATED {zero, oneEighth, oneFourth, threeEighth}
}
```

NPDCCH-ConfigDedicated-NB field descriptions

npdcch-NumRepetitions
Maximum number of repetitions for NPDCCH UE specific search space (USS), see TS 36.213 [23, 16.6]. UE monitors one set of values (consisting of aggregation level, number of repetitions and number of blind decodes) according to the configured maximum number of repetitions.

npdcch-Offset-USS
Fractional period offset of starting subframe for NPDCCH UE specific search space (USS), see TS 36.213 [23, 16.6].

npdcch-StartSF-USS
Starting subframe configuration for an NPDCCH UE-specific search space, see TS 36.213 [23, 16.6]. Value v1dot5 corresponds to 1.5, value 2 corresponds to 2 and so on.

NPDSCH-ConfigCommon-NB
The IE NPDSCH-ConfigCommon-NB is used to specify the common NPDSCH configuration.

NPDSCH-ConfigCommon-NB information element

-- ASN1START

NPDSCH-ConfigCommon-NB-r13 ::= SEQUENCE {
 nrs-Power-r13 INTEGER (-60..50)
}

-- ASN1STOP

NPDSCH-ConfigCommon-NB field descriptions

nrs-Power
Provides the downlink narrowband reference-signal EPRE, see TS 36.213 [23, 16.2]. The actual value in dBm.

NPRACH-ConfigSIB-NB
The IE NPRACH-ConfigSIB-NB is used to specify the NPRACH configuration for the anchor carrier.

NPRACH-ConfigSIB-NB information elements

-- ASN1START

NPRACH-ConfigSIB-NB-r13 ::= SEQUENCE {
 nprrach-CP-Length-r13 ENUMERATED {us66dot7, us266dot7},
 rsrp-ThresholdsPrachInfoList-r13 RSRP-ThresholdsNPRACH-InfoList-NB-r13 OPTIONAL, -- need
 OR
 nprrach-ParametersList-r13 NPRACH-ParametersList-NB-r13
}

NPRACH-ConfigSIB-NB-v1330 ::= SEQUENCE {
 nprrach-ParametersList-v1330 NPRACH-ParametersList-NB-v1330
}

NPRACH-ConfigSIB-NB-v1450 ::= SEQUENCE {
 maxNumPreambleAttemptCE-r14 ENUMERATED {n3, n4, n5, n6, n7, n8, n10, spare1}
}

NPRACH-ParametersList-NB-r13 ::= SEQUENCE (SIZE (1.. maxNPRACH-Resources-NB-r13)) OF NPRACH-Parameters-NB-r13

NPRACH-ParametersList-NB-v1330 ::= SEQUENCE (SIZE (1.. maxNPRACH-Resources-NB-r13)) OF NPRACH-Parameters-NB-v1330

NPRACH-Parameters-NB-r13 ::= SEQUENCE {
 nprrach-Periodicity-r13 ENUMERATED {ms40, ms80, ms160, ms240, ms320, ms640, ms1280, ms2560},
 nprrach-StartTime-r13 ENUMERATED {ms8, ms16, ms32, ms64, ms128, ms256, ms512, ms1024},
 nprrach-SubcarrierOffset-r13 ENUMERATED {n0, n12, n24, n36, n2, n18, n34, spare1},
 nprrach-NumSubcarriers-r13 ENUMERATED {n12, n24, n36, n48},
 nprrach-SubcarrierMSG3-RangeStart-r13 ENUMERATED {zero, oneThird, twoThird, one},
 maxNumPreambleAttemptCE-r13 ENUMERATED {n3, n4, n5, n6, n7, n8, n10, spare1},
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>numRepetitionsPerPreambleAttempt-r13</td>
<td>ENUMERATED</td>
<td>{n1, n2, n4, n8, n16, n32, n64, n128},</td>
</tr>
<tr>
<td>npdcch-NumRepetitions-RA-r13</td>
<td>ENUMERATED</td>
<td>{r1, r2, r4, r8, r16, r32, r64, r128, r256, r512, r1024, r2048, spare4, spare3, spare2, spare1},</td>
</tr>
<tr>
<td>npdcch-StartSF-CSS-RA-r13</td>
<td>ENUMERATED</td>
<td>{v1dot5, v2, v4, v8, v16, v32, v48, v64},</td>
</tr>
<tr>
<td>npdcch-Offset-RA-r13</td>
<td>ENUMERATED</td>
<td>{zero, oneEighth, oneFourth, threeEighth},</td>
</tr>
<tr>
<td>nprach-NumCBRA-StartSubcarriers-r13</td>
<td>ENUMERATED</td>
<td>{n8, n10, n11, n12, n20, n22, n23, n24, n32, n34, n35, n36, n40, n44, n46, n48}</td>
</tr>
</tbody>
</table>
NPRACH-ConfigSIB-NB field descriptions

maxNumPreambleAttemptCE
Maximum number of preamble transmission attempts per NPRACH resource. See TS 36.321 [6].
If the UE supports enhanced random access power control and maxNumPreambleAttemptCE-r14 is included, the UE shall use maxNumPreambleAttemptCE-r14 instead of maxNumPreambleAttemptCE-r13 for the first entry in nprach-ParametersList.

npdcch-NumRepetitions-RA
Maximum number of repetitions for NPDCCH common search space (CSS) for RAR, Msg3 retransmission and Msg4, see TS 36.213 [23, 16.6].

npdcch-Offset-RA
Fractional period offset of starting subframe for NPDCCH common search space (CSS Type 2), see TS 36.213 [23, 16.6].

npdcch-StartSF-CSS-RA
Starting subframe configuration for NPDCCH common search space (CSS), including RAR, Msg3 retransmission, and Msg4, see TS 36.213 [23, 16.6].

nprach-CP-Length
Cyclic prefix length for NPRACH transmission (TcP), see TS 36.211 [21, 10.1.6]. Value us66dot7 corresponds to 66.7 microseconds and value us266dot7 corresponds to 266.7 microseconds.

nprach-NumCBRA-StartSubcarriers
The number of start subcarriers from which a UE can randomly select a start subcarrier as specified in TS 36.321 [6]. The start subcarrier indices that the UE is allowed to randomly select from, are given by:

nprach-SubcarrierOffset + [0, nprach-NumCBRA-StartSubcarriers - 1]

nprach-NumSubcarriers
Number of sub-carriers in a NPRACH resource, see TS 36.211 [21, 10.1.6]. In number of subcarriers.

nprach-ParametersList
Configures NPRACH parameters for each NPRACH resource. Up to three PRACH resources can be configured in a cell. Each NPRACH resource is associated with a different number of NPRACH repetitions.

nprach-Periodicity
Periodicity of a NPRACH resource, see TS 36.211 [21, 10.1.6]. Unit in millisecond.

nprach-StartTime
Start time of the NPRACH resource in one period, see TS 36.211 [21, 10.1.6]. Unit in millisecond.

nprach-SubcarrierOffset
Frequency location of the NPRACH resource, see TS 36.211 [21, 10.1.6]. In number of subcarriers, offset from subcarrier 0.

nprach-SubcarrierMSG3-RangeStart
Fraction for calculating the starting subcarrier index of the range reserved for indication of UE support for multi-tone Msg3 transmission, within the NPRACH resource, see TS 36.211 [21, 10.1.6]. Multi-tone Msg3 transmission is not supported for {32, 64, 128} repetitions of NPRACH. For at least one of the NPRACH resources with the number of NPRACH repetitions other than {32, 64, 128}, the value of nprach-SubcarrierMSG3-RangeStart should not be 0. If nprach-SubcarrierMSG3-RangeStart is equal to zero, no start subcarrier index for the single-tone Msg3 NPRACH is allocated and the start subcarrier indexes for the multi-tone Msg3 NPRACH partition are given by nprach-SubcarrierOffset + [0, nprach-NumCBRA-StartSubcarriers - 1]. If nprach-SubcarrierMSG3-RangeStart is equal to oneThird or twoThird the start subcarrier indexes for the two partitions are given by:

nprach-SubcarrierOffset + [0, floor(nprach-NumCBRA-StartSubcarriers * nprach-SubcarrierMSG3-RangeStart) - 1]

for the single-tone Msg3 NPRACH partition;

nprach-SubcarrierOffset + [floor(nprach-NumCBRA-StartSubcarriers * nprach-SubcarrierMSG3-RangeStart), nprach-NumCBRA-StartSubcarriers - 1]

for the multi-tone Msg3 NPRACH partition;

if nprach-SubcarrierMSG3-RangeStart is equal to one, the start subcarrier indexes for the single-tone Msg3 NPRACH are given by nprach-SubcarrierOffset + [0, nprach-NumCBRA-StartSubcarriers - 1] and no start subcarrier index for the multi-tone Msg3 NPRACH partition is allocated.

numRepetitionsPerPreambleAttempt
Number of NPRACH repetitions per attempt for each NPRACH resource, See TS 36.211 [21, 10.1.6].

rsrp-ThresholdsPrachInfoList
The criterion for UEs to select a NPRACH resource. Up to 2 RSRP threshold values can be signalled. The first element corresponds to RSRP threshold 1, the second element corresponds to RSRP threshold 2. See TS 36.321 [6]. If absent, there is only one NPRACH resource.
A UE that supports powerClassNB-14dBm-r14 shall correct the RSRP threshold values before applying them as follows:

RSRP threshold = Signalled RSRP threshold - min(0, (14-min(23, P-Max)) where P-Max is the value of p-Max field in SystemInformationBlockType1-NB.
NPUSCH-Config-NB

The IE **NPUSCH-ConfigCommon-NB** is used to specify the common NPUSCH configuration. The IE **NPUSCH-ConfigDedicated-NB** is used to specify the UE specific NPUSCH configuration.

NPUSCH-Config-NB information element

```asciidraw
NPUSCH-ConfigCommon-NB-r13 ::= SEQUENCE {
  ack-NACK-NumRepetitions-Msg4-r13 SEQUENCE (SIZE(1.. maxNPRACH-Resources-NB-r13)) OF ACK-NACK-NumRepetitions-NB-r13,
  srs-SubframeConfig-r13 ENUMERATED {
    sc0, sc1, sc2, sc3, sc4, sc5, sc6, sc7,
    sc8, sc9, sc10, sc11, sc12, sc13, sc14, sc15
  } OPTIONAL, -- Need OR
  dmrs-Config-r13 SEQUENCE {
    threeTone-BaseSequence-r13 INTEGER (0..12) OPTIONAL, -- Need OP
    threeTone-CyclicShift-r13 INTEGER (0..2),
    sixTone-BaseSequence-r13 INTEGER (0..14) OPTIONAL, -- Need OP
    sixTone-CyclicShift-r13 INTEGER (0..3),
    twelveTone-BaseSequence-r13 INTEGER (0..30) OPTIONAL -- Need OP
  } OPTIONAL, -- Need OR
  ul-ReferenceSignalsNPUSCH-r13 UL-ReferenceSignalsNPUSCH-NB-r13
}

UL-ReferenceSignalsNPUSCH-NB-r13 ::= SEQUENCE {
  groupHoppingEnabled-r13 BOOLEAN,
  groupAssignmentNPUSCH-r13 INTEGER (0..29)
}

NPUSCH-ConfigDedicated-NB-r13 ::= SEQUENCE {
  ack-NACK-NumRepetitions-r13 ACK-NACK-NumRepetitions-NB-r13 OPTIONAL, -- Need ON
  npusch-AllSymbols-r13 BOOLEAN OPTIONAL, -- Cond SRS
  groupHoppingDisabled-r13 ENUMERATED {true} OPTIONAL -- Need OR
}

ACK-NACK-NumRepetitions-NB-r13 ::= ENUMERATED (r1, r2, r4, r8, r16, r32, r64, r128)
```

NPUSCH-Config-NB field descriptions

ack-NACK-NumRepetitions
Number of repetitions for the ACK NACK resource unit carrying HARQ response to NPDSCH, see TS 36.213 [23, 16.4.2]. If absent, the value of ack-NACK-NumRepetitions-Msg4 signalled in SIB2 is used.

ack-NACK-NumRepetitions-Msg4
Number of repetitions for ACK/NACK HARQ response to NPDSCH containing Msg4 per NPRACH resource, see TS 36.213 [23, 16.4.2].

groupAssignmentNPUSCH
See TS 36.211 [21, 10.1.4.1.3].

groupHoppingDisabled
See TS 36.211 [21, 10.1.4.1.3].

groupHoppingEnabled
See TS 36.211 [21, 10.1.4.1.3].

npusch-AllSymbols
If set to TRUE, the UE shall use all NB-IoT symbols for NPUSCH transmission. If set to FALSE, the UE punctures the NPUSCH transmissions in the symbols that collide with SRS. If the field is not present, the UE uses all NB-IoT symbols for NPUSCH transmission. See TS 36.211 [21, 10.1.3.6].

sixTone-BaseSequence
The base sequence of DMRS sequence in a cell for 6 tones transmission; see TS 36.211 [21, 10.1.4.1.2]. If absent, it is given by NB-IoT CellID mod 14. Value 14 is not used.

sixTone-CyclicShift
Define 4 cyclic shifts for the 6-tone case, see TS 36.211 [21, 10.1.4.1.2].

srs-SubframeConfig
SRS SubframeConfiguration. See TS 36.211 [21, table 5.5.3.3-1]. Value sc0 corresponds to value 0, sc1 to value 1 and so on.

threeTone-BaseSequence
The base sequence of DMRS sequence in a cell for 3 tones transmission; see TS 36.211 [21, 10.1.4.1.2]. If absent, it is given by NB-IoT CellID mod 12. Value 12 is not used.

threeTone-CyclicShift
Define 3 cyclic shifts for the 3-tone case, see TS 36.211 [21, 10.1.4.1.2].

twelveTone-BaseSequence
The base sequence of DMRS sequence in a cell for 12 tones transmission; see TS 36.211 [21, 10.1.4.1.2]. If absent, it is given by NB-IoT CellID mod 30. Value 30 is not used.

ul-ReferenceSignalsNPUSCH
Used to specify parameters needed for the transmission on NPUSCH.

Conditional presence	Explanation
SRS | This field is optionally present, need OP, if srs-SubframeConfig is broadcasted. Otherwise, the IE is not present.

PCP-Config-NB

The IE PDCP-Config-NB is used to set the configurable PDCP parameters for data radio bearers.

PCP-Config-NB information element

-- ASN1START

PDCP-Config-NB-r13 ::= SEQUENCE { discardTimer-r13 ENUMERATED { ms5120, ms10240, ms20480, ms40960, ms81920, infinity, spare2, spare1 } OPTIONAL, -- Cond Setup headerCompression-r13 CHOICE { notUsed NULL, rohc SEQUENCE { maxCID-r13 INTEGER (1..16383) DEFAULT 15, profiles-r13 SEQUENCE { profile0x0002 BOOLEAN, profile0x0003 BOOLEAN, profile0x0004 BOOLEAN, profile0x0006 BOOLEAN, profile0x0102 BOOLEAN, profile0x0103 BOOLEAN, profile0x0104 BOOLEAN } }, ...

-- ASN1END
PDCP-Config-NB field descriptions

discardTimer
Indicates the discard timer value specified in TS 36.323 [8]. Value in milliseconds. Value ms5120 means 5120 ms, ms10240 means 10240 ms and so on.

headerCompression
E-UTRAN does not reconfigure header compression except optionally upon RRC Connection Resumption.

maxCID
Indicates the value of the MAX_CID parameter as specified in TS 36.323 [8]. The total value of MAX_CIDs across all bearers for the UE should be less than or equal to the value of maxNumberROHC-ContextSessions parameter as indicated by the UE.

profiles
The profiles used by both compressor and decompressor in both UE and E-UTRAN. The field indicates which of the ROHC profiles specified in TS 36.323 [8] are supported, i.e. value true indicates that the profile is supported. Profile 0x0000 shall always be supported when the use of ROHC is configured. If support of two ROHC profile identifiers with the same 8 LSB’s is signalled, only the profile corresponding to the highest value shall be applied.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td>The field is mandatory present in case of radio bearer setup. Otherwise the field is optionally present, need ON.</td>
</tr>
</tbody>
</table>

PhysicalConfigDedicated-NB

The IE *PhysicalConfigDedicated-NB* is used to specify the UE specific physical channel configuration.

PhysicalConfigDedicated-NB information element

```
PhysicalConfigDedicated-NB-r13 ::= SEQUENCE {
  carrierConfigDedicated-r13   CarrierConfigDedicated-NB-r13  OPTIONAL, -- Need ON
  npdcch-ConfigDedicated-r13   NPDCCH-ConfigDedicated-NB-r13  OPTIONAL, -- Need ON
  npusch-ConfigDedicated-r13   NPUSCH-ConfigDedicated-NB-r13  OPTIONAL, -- Need ON
  uplinkPowerControlDedicated-r13  UplinkPowerControlDedicated-NB-r13 OPTIONAL, -- Need ON
  ...,
  [ [ twoHARQ-ProcessesConfig-r14 ENUMERATED {true} OPTIONAL -- Need OR ] ]
  [ [ interferenceRandomisationConfig-r14 ENUMERATED {true} OPTIONAL -- Need OR ] ]
}
```

ETSI
PhysicalConfigDedicated-NB field descriptions

carrierConfigDedicated
Anchor/ non-anchor carrier used for all unicast transmissions.

interferenceRandomisationConfig
Interference randomisation enabled in connected mode, except for random access procedure in connected mode, see TS 36.211 [21]. For random access in connected mode interference randomisation on non-anchor is used and is not used on anchor carrier, see TS 36.211 [21].

npdcch-ConfigDedicated
NPDCCH configuration.

npusch-ConfigDedicated
UL unicast configuration.

twoHARQ-ProcessesConfig
Activation of two HARQ processes, see TS 36.212 [22] and TS 36.213 [23].

uplink-PowerControlDedicated
UL power control parameter.

RACH-ConfigCommon-NB

The IE RACH-ConfigCommon-NB is used to specify the generic random access parameters.

RACH-ConfigCommon-NB information element

```asn1
-- ASN1START
RACH-ConfigCommon-NB-r13 ::= SEQUENCE {
preambleTransMax-CE-r13          PreambleTransMax,
powerRampingParameters-r13       PowerRampingParameters,
rach-InfoList-r13               RACH-InfoList-NB-r13,
connEstFailOffset-r13            INTEGER (0..15) OPTIONAL, -- Need OP
...
[ [ powerRampingParameters-v1450 PowerRampingParameters-NB-v1450 OPTIONAL -- Need OR
]]
}
RACH-InfoList-NB-r13 ::= SEQUENCE (SIZE (1.. maxNPRACH-Resources-NB-r13)) OF RACH-Info-r13
RACH-Info-r13 ::= SEQUENCE {
  ra-ResponseWindowSize-r13 ENUMERATED {
    pp2, pp3, pp4, pp5, pp6, pp7, pp8, pp10},
  mac-ContentionResolutionTimer-r13 ENUMERATED {
    pp1, pp2, pp3, pp4, pp8, pp16, pp32, pp64}
}
PowerRampingParameters-NB-v1450 ::= SEQUENCE {
preambleInitialReceivedTargetPower-v1450 ENUMERATED {
  dBm-130, dBm-128, dBm-126, dBm-124, dBm-122,
  dBm-88, dBm-86, dBm-84, dBm-82, dBm-80} OPTIONAL, -- Need OR
powerRampingStepCE1-r14 ENUMERATED (dB0, dB2, dB4, dB6),
preambleInitialReceivedTargetPowerCE1-r14 ENUMERATED {
  dBm-130, dBm-128, dBm-126, dBm-124, dBm-122,
  dBm-120, dBm-118, dBm-116, dBm-114, dBm-112,
  dBm-110, dBm-108, dBm-106, dBm-104, dBm-102,
  dBm-100, dBm-98, dBm-96, dBm-94, dBm-92,
  dBm-90, dBm-88, dBm-86, dBm-84, dBm-82, dBm-80}
} OPTIONAL -- Need OR
-- ASN1STOP
```
RACH-ConfigCommon-NB field descriptions

- **connEstFailOffset**: Parameter "Qoffsettemp" in TS 36.304 [4]. If the field is not present the value of infinity shall be used for "Qoffsettemp".

- **mac-ContentionResolutionTimer**: Timer for contention resolution in TS 36.321 [6]. Value in PDCCH periods. Value pp1 corresponds to 1 PDCCH period, pp2 corresponds to 2 PDCCH periods and so on. The value considered by the UE is: mac-ContentionResolutionTimer = Min (signaled value x PDCCH period, 10.24s).

- **powerRampingParameters, powerRampingParametersCE1**: Power ramping step and preamble initial received target power – same as TS 36.213 [23] and TS 36.321 [6]. If the UE does not support enhanced random access power control and more than one repetition level is configured in the cell, then the UE transmits NPRACH with max power except for the lowest repetition level. Otherwise, the UE uses NPRACH power ramping.

- **preambleTransMax-CE**: Maximum number of preamble transmission in TS 36.321 [6]. Value is an integer.

- **ra-ResponseWindowSize**: Duration of the RA response window in TS 36.321 [6]. Value in PDCCH periods. Value pp2 corresponds to 2 PDCCH periods and so on. The value considered by the UE is: ra-ResponseWindowSize = Min (signaled value x PDCCH period, 10.24s).

RadioResourceConfigCommonSIB-NB

The IE **RadioResourceConfigCommonSIB-NB** is used to specify common radio resource configurations in the system information, e.g., the random access parameters and the static physical layer parameters.

RadioResourceConfigCommonSIB-NB Information element

```plaintext
-- ASN1START

RadioResourceConfigCommonSIB-NB-r13 ::= SEQUENCE {
    rach-ConfigCommon-r13     RACH-ConfigCommon-NB-r13,
    bcch-Config-r13           BCCH-Config-NB-r13,
    pcch-Config-r13           PCCH-Config-NB-r13,
    nprach-Config-r13         NPRACH-ConfigSIB-NB-r13,
    npdcsch-ConfigCommon-r13  NPDSCH-ConfigCommon-NB-r13,
    npusch-ConfigCommon-r13   NPUSCH-ConfigCommon-NB-r13,
    dl-Gap-r13                DL-GapConfig-NB-r13   OPTIONAL,  -- Need OP
    uplinkPowerControlCommon-r13   UplinkPowerControlCommon-NB-r13,
    ...,
    [[ nprach-Config-v1330     NPRACH-ConfigSIB-NB-v1330 OPTIONAL  -- Need OR
        ]],
    [[ nprach-Config-v1450     NPRACH-ConfigSIB-NB-v1450 OPTIONAL  -- Cond
        EnhPowerControl ]]
}

BCCH-Config-NB-r13 ::= SEQUENCE {
    modificationPeriodCoeff-r13    ENUMERATED {n16, n32, n64, n128}
}

PCCH-Config-NB-r13 ::= SEQUENCE {
    defaultPagingCycle-r13     ENUMERATED {rf128, rf256, rf512, rf1024},
    nB-r13                     ENUMERATED {
        fourT, twoT, oneT, halfT, quarterT, one8thT,
        one6thT, one32ndT, one64thT,
        one28thT, one256chT, one512thT, one1024thT,
        spare3, spare2, spare1},
    npdcsch-NumRepetitionPaging-r13  ENUMERATED {
        r1, r2, r4, r8, r16, r32, r64, r128,
        r256, r512, r1024, r2048,
        spare4, spare3, spare2, spare1}
}

-- ASN1STOP
```
RadioResourceConfigCommonSIB-NB field descriptions

defaultPagingCycle
Default paging cycle, used to derive T in TS 36.304 [4]. Value rf128 corresponds to 128 radio frames, rf256 corresponds to 256 radio frames and so on.

dl-Gap
Downlink transmission gap configuration for the anchor carrier. See TS 36.211 [21, 10.2.3.4]. If the field is absent, there is no gap.

modificationPeriodCoeff
Actual modification period, expressed in number of radio frames = \(\text{modificationPeriodCoeff} \times \text{defaultPagingCycle} \). n16 corresponds to value 16, n32 corresponds to value 32, and so on. The BCCH modification period should be larger or equal to 40.96s.

nB
Parameter: nB is used as one of parameters to derive the Paging Frame and Paging Occasion according to TS 36.304 [4]. Value in multiples of T as defined in TS 36.304 [4]. A value of fourT corresponds to 4 * T, a value of twoT corresponds to 2 * T and so on.

npdcch-NumRepetitionPaging
Maximum number of repetitions for NPDCCH common search space (CSS) for paging, see TS 36.213 [23, 16.6].

Conditional presence	Explanation
EnhPowerControl | This field is optional present, need OR, if PowerRampingParameters-NB-v1450 is included in SIB2-NB. Otherwise the field is not present.

RadioResourceConfigDedicated-NB

The IE RadioResourceConfigDedicated-NB is used to setup/modify/release RBs, to modify the MAC main configuration, and to modify dedicated physical configuration.

RadioResourceConfigDedicated-NB information element

```asn1
-- ASN1START
RadioResourceConfigDedicated-NB-r13 ::= SEQUENCE {
  srb-ToAddModList-r13     SRB-ToAddModList-NB-r13   OPTIONAL, -- Need ON
  drb-ToAddModList-r13     DRB-ToAddModList-NB-r13   OPTIONAL, -- Need ON
  drb-ToReleaseList-r13    DRB-ToReleaseList-NB-r13  OPTIONAL, -- Need ON
  mac-MainConfig-r13      CHOICE {
    explicitValue-r13      MAC-MainConfig-NB-r13,
    defaultValue-r13      NULL
  } OPTIONAL, -- Need ON
  physicalConfigDedicated-r13 PhysicalConfigDedicated-NB-r13 OPTIONAL, -- Need ON
  rlf-TimersAndConstants-r13    RLF-TimersAndConstants-NB-r13 OPTIONAL, -- Need ON
  ...
}
SRB-ToAddModList-NB-r13 ::= SEQUENCE (SIZE (1)) OF SRB-ToAddMod-NB-r13

SRB-ToAddMod-NB-r13 ::= SEQUENCE {
  rlc-Config-r13      CHOICE {
    explicitValue      RLC-Config-NB-r13,
    defaultValue      NULL
  } OPTIONAL, -- Cond Setup
  logicalChannelConfig-r13   CHOICE {
    explicitValue      LogicalChannelConfig-NB-r13,
    defaultValue      NULL
  } OPTIONAL, -- Cond Setup
  ...
  /* rlc-Config-v1430    RLC-Config-NB-v1430   OPTIONAL -- Need ON */
}
DRB-ToAddModList-NB-r13 ::= SEQUENCE (SIZE (1..maxDRB-NB-r13)) OF DRB-ToAddMod-NB-r13

DRB-ToAddMod-NB-r13 ::= SEQUENCE {
  eps-BearerIdentity-r13    INTEGER (0..15)    OPTIONAL, -- Cond DRB-Setup
  drb-Identity-r13     DRB-Identity,           -- Cond DRB-Setup
  pdcp-Config-r13      PDCP-Config-NB-r13     OPTIONAL, -- Cond Setup
  rlc-Config-r13      RLC-Config-NB-r13       OPTIONAL, -- Cond Setup
  logicalChannelIdentity-r13   INTEGER (3..10)    OPTIONAL, -- Cond DRB-Setup
  logicalChannelConfig-r13   LogicalChannelConfig-NB-r13 OPTIONAL, -- Cond Setup
  ...
}
```
RadioResourceConfigDedicated-NB field descriptions

logicalChannelConfig
For SRB a choice is used to indicate whether the logical channel configuration is signalled explicitly or set to the
default logical channel configuration for SRB1 as specified in 9.2.1.1.

logicalChannelIdentity
The logical channel identity for both UL and DL for a DRB. Value 3 is not used.

mac-MainConfig
The default MAC MAIN configuration is specified in 9.2.2.

physicalConfigDedicated
The default dedicated physical configuration is specified in 9.2.4.

rlc-Config
For SRBs a choice is used to indicate whether the RLC configuration is signalled explicitly or set to the values defined
in the default RLC configuration for SRB1 in 9.2.1.1. RLC AM is the only applicable RLC mode.

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB-Setup</td>
<td>The field is mandatory present if the corresponding DRB is being set up; otherwise it is not present.</td>
</tr>
<tr>
<td>Setup</td>
<td>The field is mandatory present if the corresponding SRB/DRB is being setup; otherwise the field is optionally present, need ON.</td>
</tr>
</tbody>
</table>

-- RLC-Config-NB
The IE RLC-Config-NB is used to specify the RLC configuration of SRBs and DRBs.

RLC-Config-NB information element

-- ASN1START

RLC-Config-NB-v1430 ::= CHOICE {
 am
 SEQUENCE {
 ul-AM-RLC-r13 UL-AM-RLC-NB-r13,
 dl-AM-RLC-r13 DL-AM-RLC-NB-r13
 },

 ...
}

T-PollRetransmit-NB-r13 ::= ENUMERATED {
 ms250, ms500, ms1000, ms2000, ms3000, ms4000,
 ms6000, ms10000, ms15000, ms25000, ms40000, ms60000,
 ms90000, ms120000, ms180000, spare1
}
RLC-Config-NB field descriptions

enableStatusReportSN-Gap
Indicates that status reporting due to detection of reception failure is enabled, as specified in TS 36.322 [7].

maxRetxThreshold
Parameter for RLC AM in TS 36.322 [7]. Value t1 corresponds to 1 retransmission, t2 to 2 retransmissions and so on.

t-PollRetransmit
Timer for RLC AM in TS 36.322 [7], in milliseconds. Value msX means X ms, msY means Y ms and so on.

t-Reordering
Timer for reordering in TS 36.322 [7], in milliseconds.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>twoHARQ</td>
<td>The field is mandatory present if twoHARQ-ProcessesConfig is set to TRUE. Otherwise, the field is not present and, if previously configured, the timer is released.</td>
</tr>
</tbody>
</table>

RLF-TimersAndConstants-NB

The IE **RLF-TimersAndConstants-NB** contains UE specific timers and constants applicable for UEs in RRC_CONNECTED.

RLF-TimersAndConstants-NB information element

```asn1
RLF-TimersAndConstants-NB-r13 ::= CHOICE {
  release        NULL,
  setup        SEQUENCE {
    t301-r13       ENUMERATED {
      ms2500, ms4000, ms6000, ms10000,
      ms15000, ms25000, ms40000, ms60000},
    t310-r13       ENUMERATED {
      ms0, ms200, ms500, ms1000, ms2000, ms4000, ms8000},
    n310-r13       ENUMERATED {
      n1, n2, n3, n4, n6, n8, n10, n20},
    t311-r13       ENUMERATED {
      ms1000, ms3000, ms5000, ms10000, ms15000,
      ms20000, ms30000},
    n311-r13       ENUMERATED {
      n1, n2, n3, n4, n5, n6, n8, n10},
    ...,
    t311-v1350     ENUMERATED {
      ms40000, ms60000, ms90000, ms120000}
  }
}
```

n3xy
Constants are described in section 7.4. n1 corresponds with 1, n2 corresponds with 2 and so on.

t3xy
Timers are described in section 7.3. Value ms0 corresponds with 0 ms, ms200 corresponds with 200 ms and so on. The UE shall use the extended value **t311-v1350**, if present, and ignore the value signaled by **t311-r13**.

UplinkPowerControl-NB

The IE **UplinkPowerControlCommon-NB** and IE **UplinkPowerControlDedicated-NB** are used to specify parameters for uplink power control in the system information and in the dedicated signalling, respectively.

UplinkPowerControl-NB information elements

```asn1
-- ASN1START
UplinkPowerControl-NB ::= SEQUENCE {
  ...}
-- ASN1STOP
```
UplinkPowerControlCommon-NB-r13 ::= SEQUENCE {
 p0-NominalNPUSCH-r13 INTEGER (-126..24),
 alpha-r13 ENUMERATED {a10, a104, a105, a106, a107, a108, a109, a11},
 deltaPreambleMsg3-r13 INTEGER (-1..6)
}

UplinkPowerControlDedicated-NB-r13 ::= SEQUENCE {
 p0-UE-NPUSCH-r13 INTEGER (-8..7)
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>UplinkPowerControl-NB field descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha Parameter: $\alpha_c(1)$. See TS 36.213 [23, 16.2.1.1] where al0 corresponds to 0, al04 corresponds to value 0.4, al05 to 0.5, al06 to 0.6, al07 to 0.7, al08 to 0.8, al09 to 0.9 and al1 corresponds to 1.</td>
</tr>
<tr>
<td>deltaPreambleMsg3 Parameter: $\Delta_{PREAMBLE_Msg3}$. See TS 36.213 [23, 16.2.1.1]. Actual value = IE value * 2 [dB].</td>
</tr>
<tr>
<td>p0-NominalNPUSCH Parameter: $P_{O_NOMINAL_NPUSCH,c} (1)$. See TS 36.213 [23, 16.2.1.1], unit dBm.</td>
</tr>
<tr>
<td>p0-UE-NPUSCH Parameter: $P_{O_UE_NPUSCH,c} (1)$. See TS 36.213 [23, 16.2.1.1], unit dB.</td>
</tr>
</tbody>
</table>

6.7.3.3 NB-IoT Security control information elements

Void

6.7.3.4 NB-IoT Mobility control information elements

- **AdditionalBandInfoList-NB**

AdditionalBandInfoList-NB information element

-- ASN1START

AdditionalBandInfoList-NB-r14 ::= SEQUENCE (SIZE (1..maxMultiBands)) OF FreqBandIndicator-NB-r13

-- ASN1STOP

- **FreqBandIndicator-NB**

The IE *FreqBandIndicator-NB* indicates the E-UTRA operating band as defined in TS 36.101 [42, table 5.5-1].

FreqBandIndicator-NB information element

-- ASN1START

FreqBandIndicator-NB-r13 ::= INTEGER (1.. maxFBI2)

-- ASN1STOP

- **MultiBandInfoList-NB**

MultiBandInfoList-NB information element

-- ASN1START

MultiBandInfoList-NB-r13 ::= SEQUENCE (SIZE (1..maxMultiBands)) OF MultiBandInfo-NB-r13

-- ASN1STOP
MultiBandInfo-NB-r13 ::= SEQUENCE {
 freqBandIndicator-r13 FreqBandIndicator-NB-r13 OPTIONAL, -- Need OR
 freqBandInfo-r13 NS-PmaxList-NB-r13 OPTIONAL -- Need OR
}
-- ASN1STOP

NS-PmaxList-NB

The IE NS-PmaxList-NB concerns a list of additionalPmax and additionalSpectrumEmission as defined in TS 36.101 [42, 6.2.4F] for a given frequency band. E-UTRAN does not include the same value of additionalSpectrumEmission in SystemInformationBlockType2-NB within this list.

NS-PmaxList-NB information element

-- ASN1START
NS-PmaxList-NB-r13 ::= SEQUENCE (SIZE (1..maxNS-Pmax-NB-r13)) OF NS-PmaxValue-NB-r13
NS-PmaxValue-NB-r13 ::= SEQUENCE {
 additionalPmax-r13 P-Max OPTIONAL, -- Need OR
 additionalSpectrumEmission-r13 AdditionalSpectrumEmission
}
-- ASN1STOP

ReselectionThreshold-NB

The IE ReselectionThreshold-NB is used to indicate an Rx level threshold for cell reselection. Actual value of threshold = field value * 2 [dB].

ReselectionThreshold-NB information element

-- ASN1START
ReselectionThreshold-NB-v1360 ::= INTEGER (32..63)
-- ASN1STOP

T-Reselection-NB

The IE T-Reselection-NB concerns the cell reselection timer TreselectionRAT for NB-IoT.

Value in seconds. s0 means 0 second and behaviour as specified in 7.3.2 applies, s3 means 3 seconds and so on.

T-Reselection-NB information element

-- ASN1START
T-Reselection-NB-r13 ::= ENUMERATED {s0, s3, s6, s9, s12, s15, s18, s21}
-- ASN1STOP

6.7.3.5 NB-IoT Measurement information elements

Void
6.7.3.6 NB-IoT Other information elements

— EstablishmentCause-NB

The IE EstablishmentCause-NB provides the establishment cause for the RRC connection request or the RRC connection resume request as provided by the upper layers.

EstablishmentCause-NB information element

```
--- ASN1START
 EstablishmentCause-NB-r13 ::= ENUMERATED {
  mt-Access, mo-Signalling, mo-Data, mo-ExceptionData,
  delayTolerantAccess-v1330, spare3, spare2, spare1}
--- ASN1STOP
```

— UE-Capability-NB

The IE UE-Capability-NB is used to convey the NB-IoT UE Radio Access Capability Parameters, see TS 36.306 [5]. The IE UE-Capability-NB is transferred in NB-IoT only.

UE-Capability-NB information element

```
--- ASN1START
 UE-Capability-NB-r13 ::= SEQUENCE {
  accessStratumRelease-r13 AccessStratumRelease-NB-r13, OPTIONAL,
  ue-Category-NB-r13 ENUMERATED (nb1) OPTIONAL,
  multipleDRB-r13 ENUMERATED (supported) OPTIONAL,
  pdcp-Parameters-r13 PDCP-Parameters-NB-r13 OPTIONAL,
  phyLayerParameters-r13 PhyLayerParameters-NB-r13, OPTIONAL,
  rf-Parameters-r13 RF-Parameters-NB-r13, OPTIONAL,
  dummy SEQUENCE () OPTIONAL
  }

 UE-Capability-NB-Ext-r14-IEs ::= SEQUENCE {
  ue-Category-NB-r14 ENUMERATED (nb2) OPTIONAL,
  mac-Parameters-r14 MAC-Parameters-NB-r14 OPTIONAL,
  phyLayerParameters-v1430 PhyLayerParameters-NB-v1430 OPTIONAL,
  rf-Parameters-v1430 RF-Parameters-NB-v1430,
  nonCriticalExtension UE-Capability-NB-v1440-IEs OPTIONAL
  }

 UE-Capability-NB-v1440-IEs ::= SEQUENCE {
  phyLayerParameters-v1440 PhyLayerParameters-NB-v1440 OPTIONAL,
  nonCriticalExtension SEQUENCE () OPTIONAL
  }

 AccessStratumRelease-NB-r13 ::= ENUMERATED (rel13, rel14, spare6, spare5, spare4, spare3, spare2, spare1, ...)

 PDCP-Parameters-NB-r13 ::= SEQUENCE {
  supportedROHC-Profiles-r13 SEQUENCE {
    profile0x0002 BOOLEAN, OPTIONAL,
    profile0x0003 BOOLEAN, OPTIONAL,
    profile0x0004 BOOLEAN, OPTIONAL,
    profile0x0006 BOOLEAN, OPTIONAL,
    profile0x0102 BOOLEAN, OPTIONAL,
    profile0x0103 BOOLEAN, OPTIONAL,
    profile0x0104 BOOLEAN, OPTIONAL
  },
  maxNumberROHC-ContextSessions-r13 ENUMERATED (cs2, cs4, cs8, cs12) DEFAULT cs2,
  ...,
  }

 MAC-Parameters-NB-r14 ::= SEQUENCE {
  dataInactMon-r14 ENUMERATED (supported) OPTIONAL,
  rai-Support-r14 ENUMERATED (supported) OPTIONAL
  }

 PhyLayerParameters-NB-r13 ::= SEQUENCE {
  ..., ...
  }
--- ASN1STOP
```
PhyLayerParameters-NB-v1430 ::= SEQUENCE {
 multiCarrier-NPRACh-r14 ENUMERATED {supported} OPTIONAL,
 twoHARQ-Processes-r14 ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters-NB-v1440 ::= SEQUENCE {
 interferenceRandomisation-r14 ENUMERATED {supported} OPTIONAL
}

RF-Parameters-NB-r13 ::= SEQUENCE {
 supportedBandList-r13 SupportedBandList-NB-r13,
 multiNS-Pmax-r13 ENUMERATED {supported} OPTIONAL
}

RF-Parameters-NB-v1430 ::= SEQUENCE {
 powerClassNB-14dBm-r14 ENUMERATED {supported} OPTIONAL
}

SupportedBandList-NB-r13 ::= SEQUENCE {SIZE (1..maxBands)} OF SupportedBand-NB-r13

SupportedBand-NB-r13 ::= SEQUENCE {
 band-r13 FreqBandIndicator-NB-r13,
 powerClassNB-20dBm-r13 ENUMERATED {supported} OPTIONAL
}

-- ASN1STOP
UE-Capability-NB field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accessStratumRelease</td>
<td>Set to rel14 in this version of the specification.</td>
</tr>
<tr>
<td>dataInactMon</td>
<td>Indicates whether the UE supports the data inactivity monitoring as specified in TS 36.321 [6].</td>
</tr>
<tr>
<td>dummy</td>
<td>This field is not used in the specification. It shall not be sent by the UE.</td>
</tr>
<tr>
<td>interferenceRandomisation</td>
<td>Indicates whether the UE supports interference randomisation in connected mode as defined in TS.36.211 [21].</td>
</tr>
<tr>
<td>maxNumberOfROHC-ContextSessions</td>
<td>Set to the maximum number of concurrently active ROHC contexts supported by the UE, excluding context sessions that leave all headers uncompressed. cs2 corresponds with 2 (context sessions), cs4 corresponds with 4 and so on. The network ignores this field if the UE supports none of the ROHC profiles in supportedROHC-Profiles.</td>
</tr>
<tr>
<td>multiCarrier</td>
<td>Defines whether the UE supports multi-carrier operation.</td>
</tr>
<tr>
<td>multiCarrier-NPRACH</td>
<td>Defines whether the UE supports NPRACH on non-anchor carrier as specified in TS 36.321 [6].</td>
</tr>
<tr>
<td>multipleDRB</td>
<td>Defines whether the UE supports multiple DRBs.</td>
</tr>
<tr>
<td>multiNS-Pmax</td>
<td>Defines whether the UE supports the mechanisms defined for NB-IoT cells broadcasting NS-PmaxList-NB.</td>
</tr>
<tr>
<td>multiTone</td>
<td>Defines whether the UE supports UL multi-tone transmissions on NPUSCH.</td>
</tr>
<tr>
<td>powerClassNB-14dBm</td>
<td>Defines whether the UE supports power class 14dBm in all the bands supported by the UE as specified in TS 36.101 [42]. If powerClassNB-20dBm is included, the UE shall not include the field powerClassNB-14dBm.</td>
</tr>
<tr>
<td>powerClassNB-20dBm</td>
<td>Defines whether the UE supports power class 20dBm in NB-IoT for the band, as specified in TS 36.101 [42]. If neither powerClassNB-14dBm nor powerClassNB-20dBm is included, UE supports power class 23 dBm in the NB-IoT band.</td>
</tr>
<tr>
<td>rai-Support</td>
<td>Defines whether the UE supports release assistance indication (RAI) as specified in TS 36.321 [6].</td>
</tr>
<tr>
<td>supportedBandList</td>
<td>Includes the supported NB-IoT bands as defined in TS 36.101 [42].</td>
</tr>
<tr>
<td>supportedROHC-Profiles</td>
<td>List of supported ROHC profiles as defined in TS 36.323 [8].</td>
</tr>
<tr>
<td>twoHARQ-Procesess</td>
<td>Defines whether the UE supports two HARQ processes operation in DL and UL as specified in TS 36.212 [22] and TS 36.213 [23].</td>
</tr>
<tr>
<td>ue-Category-NB</td>
<td>UE category as defined in TS 36.306 [5]. Value nb1 corresponds to UE category NB1, value nb2 corresponds to UE category NB2. A UE shall always include the field ue-Category-NB-r13 in this version of the specification.</td>
</tr>
</tbody>
</table>

NOTE 1: The IE UE-Capability-NB does not include AS security capability information, since these are the same as the security capabilities that are signalled by NAS. Consequently AS need not provide “man-in-the-middle” protection for the security capabilities.

UE-RadioPagingInfo-NB

The IE UE-RadioPagingInfo-NB contains UE NB-IoT capability information needed for paging.

UE-RadioPagingInfo-NB information element

```asn1
UE-RadioPagingInfo-NB-r13 ::= SEQUENCE {
  ue-Category-NB-r13     ENUMERATED {nb1}   OPTIONAL,
  ...,
  [[ multiCarrierPaging-r14 ENUMERATED {true} ] OPTIONAL
```

ETSI
UE-RadioPagingInfo-NB field descriptions

multiCarrierPaging
Indicates whether the UE supports paging on non-anchor carriers as defined in TS 36.304 [4].

ue-Category-NB
UE NB-IoT category as defined in TS 36.306 [5]. A UE shall always include the field ue-Category-NB-r13 in this version of the specification.

-- ASN1START

UE-TimersAndConstants-NB

The IE UE-TimersAndConstants-NB contains timers and constants used by the UE in either RRC_CONNECTED or RRC_IDLE.

UE-TimersAndConstants-NB information element

-- ASN1START

UE-TimersAndConstants-NB-r13 ::= SEQUENCE {
 t300-r13 ENUMERATED {
 ms2500, ms4000, ms6000, ms10000,
 ms15000, ms25000, ms40000, ms60000},
 t301-r13 ENUMERATED {
 ms2500, ms4000, ms6000, ms10000,
 ms15000, ms25000, ms40000, ms60000},
 t310-r13 ENUMERATED {
 ms0, ms200, ms500, ms1000, ms2000, ms4000, ms8000},
 n310-r13 ENUMERATED {
 n1, n2, n3, n4, n6, n8, n10, n20},
 t311-r13 ENUMERATED {
 ms1000, ms3000, ms5000, ms10000, ms15000,
 ms20000, ms30000},
 n311-r13 ENUMERATED {
 n1, n2, n3, n4, n5, n6, n8, n10},
 ...
 t311-v1350 ENUMERATED {
 ms40000, ms60000, ms90000, ms120000} OPTIONAL -- Need OR
}

-- ASN1STOP

UE-TimersAndConstants-NB field descriptions

n2xy
Constants are described in section 7.4. n1 corresponds with 1, n2 corresponds with 2 and so on.

t3xy
Timers are described in section 7.3. Value ms0 corresponds with 0 ms, ms200 corresponds with 200 ms and so on. The UE shall use the extended value t311-v1350, if present, and ignore the value signaled by t311-r13.

6.7.3.7 NB-IoT MBMS information elements

Void
6.7.3.7a NB-IoT SC-PTM information elements

SC-MTCH-InfoList-NB

The IE **SC-MTCH-InfoList-NB** provides the list of ongoing MBMS sessions transmitted via SC-MRB and for each MBMS session, the associated G-RNTI and scheduling information.

SC-MTCH-InfoList-NB information element

```asn1
-- ASN1START
SC-MTCH-InfoList-NB-r14 ::= SEQUENCE (SIZE (0.. maxSC-MTCH-NB-r14)) OF SC-MTCH-Info-NB-r14

SC-MTCH-Info-NB-r14 ::= SEQUENCE {
    sc-mtch-CarrierConfig-r14   CHOICE {
        dl-CarrierConfig-r14     DL-CarrierConfigCommon-NB-r14,
        dl-CarrierIndex-r14     INTEGER (0.. maxNonAnchorCarriers-NB-r14)
    },
    mbmsSessionInfo-r14        MBMSinformation-NB-r13,
    sc-mtch-SchedulingInfo-r14 SC-MTCH-SchedulingInfo-NB-r14 OPTIONAL, -- Need OP
    sc-mtch-NeighbourCell-r14  BIT STRING (SIZE(maxNeighCell-SCPTM-NB-r14)) OPTIONAL, -- Need OP
    npdcch-NPDSCH-MaxTBS-SC-MTCH-r14 ENUMERATED {n680, n2536},
    npdcch-NumRepetitions-SC-MTCH-r14 ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128, r256, r512, r1024, r2048, spare4, spare3, spare2, spare1},
    npdcch-StartSF-SC-MTCH-r14 ENUMERATED {v1dot5, v2, v4, v8, v16, v32, v48, v64},
    npdcch-Offset-SC-MTCH-r14 ENUMERATED {zero, oneEighth, oneQuarter, threeEighth, oneHalf, fiveEighth, threeQuarter, sevenEighth},
    ...
}

SC-MTCH-SchedulingInfo-NB-r14 ::= SEQUENCE {
    onDurationTimerSCPTM-r14    ENUMERATED {
        pp1, pp2, pp3, pp4,
        pp8, pp16, pp32, spare3},
    drx-InactivityTimerSCPTM-r14 ENUMERATED {
        pp0, pp1, pp2, pp3, pp4, pp8, pp16, pp32},
    schedulingPeriodStartOffsetSCPTM-r14 CHOICE {
        sf10     INTEGER(0..9),
        sf20     INTEGER(0..19),
        sf32     INTEGER(0..31),
        sf40     INTEGER(0..39),
        sf64     INTEGER(0..63),
        sf80     INTEGER(0..79),
        sf128    INTEGER(0..127),
        sf160    INTEGER(0..159),
        sf256    INTEGER(0..255),
        sf320    INTEGER(0..319),
        sf512    INTEGER(0..511),
        sf640    INTEGER(0..639),
        sf1024   INTEGER(0..1023),
        sf2048   INTEGER(0..2047),
        sf4096   INTEGER(0..4095),
        sf8192   INTEGER(0..8191)
    },
    ...
}

-- ASN1STOP
```
SC-MTCH-InfoList-NB field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dl-CarrierConfig</td>
<td>Downlink carrier used for SC-MTCH.</td>
<td></td>
</tr>
<tr>
<td>dl-CarrierIndex</td>
<td>Index to a downlink carrier signalled in system information. Value '0' corresponds to the anchor carrier, value '1' corresponds to the first entry in dl-ConfigList in SystemInformationBlockType22-NB, value '2' corresponds to the second entry in dl-ConfigList and so on.</td>
<td></td>
</tr>
<tr>
<td>drx-InactivityTimerSCPTM</td>
<td>Timer for SC-MTCH reception in TS 36.321 [6]. Value in number of NPDCCH periods. Value pp1 corresponds to 1 NPDCCH period, pp2 corresponds to 2 NPDCCH periods and so on.</td>
<td></td>
</tr>
<tr>
<td>g-RNTI</td>
<td>G-RNTI used to scramble the scheduling and transmission of a SC-MTCH.</td>
<td></td>
</tr>
<tr>
<td>mbmsSessionInfo</td>
<td>Indicates the ongoing MBMS session in a SC-MTCH.</td>
<td></td>
</tr>
<tr>
<td>npdcch-NPDSCH-MaxTBS-SC-MTCH</td>
<td>Maximum NPDSCH TBS for the SC-MTCH, see TS 36.213 [23]. Value n680 corresponds to 680 bits and value n2536 corresponds to 2536 bits.</td>
<td></td>
</tr>
<tr>
<td>npdcch-NumRepetition-SC-MTCH</td>
<td>The maximum number of NPDCCH repetitions the UE needs to monitor for SC-MTCH multicast search space, see TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>npdcch-Offset-SC-MTCH</td>
<td>Fractional period offset of starting subframe for NPDCCH multicast search space for SC-MTCH, see TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>npdcch-startSF-SC-MTCH</td>
<td>Starting subframes configuration of the NPDCCH multicast search space for SC-MTCH, see TS 36.213 [23].</td>
<td></td>
</tr>
<tr>
<td>onDurationTimerSCPTM</td>
<td>Timer for SC-MTCH reception in TS 36.321 [6]. Value in number of NPDCCH periods. Value pp1 corresponds to 1 NPDCCH period, pp2 corresponds to 2 NPDCCH periods and so on.</td>
<td></td>
</tr>
<tr>
<td>schedulingPeriodStartOffsetSCPTM</td>
<td>SCPTM-SchedulingCycle and SCPTM-SchedulingOffset in TS 36.321 [6]. The value of SCPTM-SchedulingCycle is in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. The value of SCPTM-SchedulingOffset is in number of sub-frames.</td>
<td></td>
</tr>
<tr>
<td>sc-mtch-CarrierConfig</td>
<td>Downlink carrier that is used for SC-MTCH.</td>
<td></td>
</tr>
<tr>
<td>sc-mtch-NeighbourCell</td>
<td>Indicates neighbour cells which also provide this service on SC-MTCH. The first bit is set to 1 if the service is provided on SC-MTCH in the first cell in scptmNeighbourCellList, otherwise it is set to 0. The second bit is set to 1 if the service is provided on SC-MTCH in the second cell in scptmNeighbourCellList, and so on. If this field is absent, the UE shall assume that this service is not available on SC-MTCH in any neighbour cell.</td>
<td></td>
</tr>
<tr>
<td>sc-mtch-SchedulingInfo</td>
<td>DRX information for the SC-MTCH. If this field is absent, DRX is not used for the SC-MTCH.</td>
<td></td>
</tr>
</tbody>
</table>

SCPTM-NeighbourCellList-NB

The IE SCPTM-NeighbourCellList-NB indicates a list of neighbour cells where ongoing MBMS sessions provided via SC-MRB in the current cells are also provided.

```asn1
-- ASNI1START
SCPTM-NeighbourCellList-NB-r14 ::= SEQUENCE (SIZE (1..maxNeighCell-SCPTM-NB-r14)) OF PCI-ARFCN-NB-r14

PCI-ARFCN-NB-r14 ::= SEQUENCE {
  physCellId-r14  PhysCellId,
  carrierFreq-r14  CarrierFreq-NB-r13  OPTIONAL  -- Need OP
}
-- ASNI1STOP
```
SCPTM-NeighbourCellList-NB field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>physCellId</td>
<td>Physical Cell Identity of the neighbour cell.</td>
</tr>
<tr>
<td>carrierFreq</td>
<td>Carrier frequency of the neighbour cell. Absence of the IE means that the neighbour cell is on the same frequency as the current cell.</td>
</tr>
</tbody>
</table>

6.7.4 NB-IoT RRC multiplicity and type constraint values

– Multiplicity and type constraint definitions

```asn1
maxNPRACH-Resources-NB-r13 INTEGER ::= 3 -- Maximum number of NPRACH resources for NB-IoT
maxNonAnchorCarriers-NB-r14 INTEGER ::= 15 -- Maximum number of non-anchor carriers for NB-IoT
maxDRB-NB-r13 INTEGER ::= 2 -- Maximum number of Data Radio Bearers for NB-IoT
maxNeighCell-SCPTM-NB-r14 INTEGER ::= 8 -- Maximum number of SCPTM neighbour cells
maxNS-Pmax-NB-r13 INTEGER ::= 4 -- Maximum number of NS and P-Max values per band
maxSC-MTCH-NB-r14 INTEGER ::= 64 -- Maximum number of SC-MTCHs in one cell for NB-IoT
maxSI-Message-NB-r13 INTEGER ::= 8 -- Maximum number of SI messages for NB-IoT
```

– End of NBIOT-RRC-Definitions

```asn1
END
```

6.7.5 Direct Indication Information

Direct Indication information is transmitted on NPDCCH using P-RNTI but without associated Paging-NB message. Table 6.7.5-1 defines the Direct Indication information, see TS 36.212 [22, 6.4.3.3].

When bit \(n \) is set to 1, the UE shall behave as if the corresponding field is set in the Paging-NB message, see 5.3.2.3. Bit 1 is the least significant bit.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field in Direct Indication information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>systemInfoModification</code></td>
</tr>
<tr>
<td>2</td>
<td><code>systemInfoModification-eDRX</code></td>
</tr>
<tr>
<td>3, 4, 5, 6, 7, 8</td>
<td>Not used, and shall be ignored by UE if received</td>
</tr>
</tbody>
</table>

7 Variables and constants

7.1 UE variables

NOTE: To facilitate the specification of the UE behavioural requirements, UE variables are represented using ASN.1. Unless explicitly specified otherwise, it is however up to UE implementation how to store the variables. The optionality of the IEs in ASN.1 is used only to indicate that the values may not always be available.
-- EUTRA-UE-Variables

This ASN.1 segment is the start of the E-UTRA UE variable definitions.

```
-- ASN1START
EUTRA-UE-Variables DEFINITIONS AUTOMATIC TAGS ::= 
BEGIN
IMPORTS
    AbsoluteTimeInfo-r10,
    AreaConfiguration-r10,
    AreaConfiguration-v1130,
    CarrierFreqGERAN,
    CellIdentity,
    ConnEstFailReport-r11,
    SpeedStateScaleFactors,
    C-RNTI,
    LoggingDuration-r10,
    LoggingInterval-r10,
    LogMeasInfo-r10,
    MeasCSI-RS-Id-r12,
    MeasId,
    MeasId-v1250,
    MeasIdToAddModList,
    MeasIdToAddModListExt-r12,
    MeasIdToAddModListExt-v1310,
    MeasIdToAddModListExt-v1310,
    MeasObjectToAddModList,
    MeasObjectToAddModListExt-v9e0,
    MeasObjectToAddModListExt-r13,
    MeasScaleFactor-r12,
    MobilityStateParameters,
    NeighCellConfig,
    PhysCellId,
    PhysCellIdCDMA2000,
    PhysCellIdGERAN,
    PhysCellIdUTRA-FDD,
    PhysCellIdUTRA-TDD,
    PLMN-Identity,
    PLMN-IdentityList3-r11,
    QuantityConfig,
    ReportConfigToAddModList,
    RLF-Report-r9,
    TargetMBSFN-AreaList-r12,
    TraceReference-r10,
    Tx-ResourcePoolMeasList-r14,
    VisitedCellInfoList-r12,
    maxCellMeas,
    maxCSI-RS-Meas-r12,
    maxMeasId,
    maxMeasId-v1250,
    UL-DelayConfig-r13,
    WLAN-CarrierInfo-r13,
    WLAN-Identifiers-r12,
    WLAN-Id-List-r13,
    WLAN-Status-r13,
    WLAN-Status-v1430,
    WLAN-SuspendConfig-r14
FROM EUTRA-RRC-Definitions;
-- ASN1STOP
```

-- VarConnEstFailReport

The UE variable `VarConnEstFailReport` includes the connection establishment failure information.

```
VarConnEstFailReport UE variable
```

-- ASN1START
VarConnEstFailReport-r11 ::= SEQUENCE {
 connEstFailReport-r11 ConnEstFailReport-r11,
 plmn-Identity-r11 PLMN-Identity
}

-- ASN1STOP

-- VarLogMeasConfig

The UE variable VarLogMeasConfig includes the configuration of the logging of measurements to be performed by the UE while in RRC_IDLE, covering intra-frequency, inter-frequency, inter-RAT mobility and MBSFN related measurements. If MBSFN logging is configured, the UE performs logging of measurements while in both RRC_IDLE and RRC_CONNECTED. Otherwise, the UE performs logging of measurements only while in RRC_IDLE.

VarLogMeasConfig UE variable

VarLogMeasConfig-r10 ::= SEQUENCE {
 areaConfiguration-r10 AreaConfiguration-r10 OPTIONAL,
 loggingDuration-r10 LoggingDuration-r10,
 loggingInterval-r10 LoggingInterval-r10
}

VarLogMeasConfig-r11 ::= SEQUENCE {
 areaConfiguration-r10 AreaConfiguration-v1130 OPTIONAL,
 loggingDuration-r10 LoggingDuration-r10,
 loggingInterval-r10 LoggingInterval-r10
}

VarLogMeasConfig-r12 ::= SEQUENCE {
 areaConfiguration-r10 AreaConfiguration-r10 OPTIONAL,
 areaConfiguration-v1130 AreaConfiguration-v1130 OPTIONAL,
 loggingDuration-r10 LoggingDuration-r10,
 loggingInterval-r10 LoggingInterval-r10,
 targetMBSFN-AreaList-r12 TargetMBSFN-AreaList-r12 OPTIONAL
}

-- ASN1STOP

-- VarLogMeasReport

The UE variable VarLogMeasReport includes the logged measurements information.

VarLogMeasReport UE variable

VarLogMeasReport-r10 ::= SEQUENCE {
 traceReference-r10 TraceReference-r10,
 traceRecordingSessionRef-r10 OCTET STRING (SIZE (2)),
 tce-Id-r10 OCTET STRING (SIZE (1)),
 plmn-Identity-r10 PLMN-Identity,
 absoluteTimeInfo-r10 AbsoluteTimeInfo-r10,
 logMeasInfoList-r10 LogMeasInfoList2-r10
}

VarLogMeasReport-r11 ::= SEQUENCE {
 traceReference-r10 TraceReference-r10,
 traceRecordingSessionRef-r10 OCTET STRING (SIZE (2)),
 tce-Id-r10 OCTET STRING (SIZE (1)),
 plmn-IdentityList-r11 PLMN-IdentityList3-r11,
 absoluteTimeInfo-r10 AbsoluteTimeInfo-r10,
 logMeasInfoList-r10 LogMeasInfoList2-r10
}

LogMeasInfoList2-r10 ::= SEQUENCE (SIZE (1..maxLogMeas-r10)) OF LogMeasInfo-r10

-- ASN1STOP
VarMeasConfig

The UE variable `VarMeasConfig` includes the accumulated configuration of the measurements to be performed by the UE, covering intra-frequency, inter-frequency and inter-RAT mobility related measurements.

NOTE: The amount of measurement configuration information, which a UE is required to store, is specified in subclause 11.1. If the number of frequencies configured for a particular RAT exceeds the minimum performance requirements specified in [16], it is up to UE implementation which frequencies of that RAT are measured. If the total number of frequencies for all RATs provided to the UE in the measurement configuration exceeds the minimum performance requirements specified in [16], it is up to UE implementation which frequencies/RATs are measured.

VarMeasConfig UE variable

```asciidoc
VarMeasConfig ::=     SEQUENCE {
  -- Measurement identities
  measIdList       MeasIdToAddModList     OPTIONAL,
  measIdListExt-r12     MeasIdToAddModListExt-r12   OPTIONAL,
  measIdList-v1310      MeasIdToAddModList-v1310    OPTIONAL,
  -- Measurement objects
  measObjectList      MeasObjectToAddModList    OPTIONAL,
  measObjectListExt-r13    MeasObjectToAddModListExt-r13  OPTIONAL,
  -- Reporting configurations
  reportConfigList     ReportConfigToAddModList   OPTIONAL,
  -- Other parameters
  quantityConfig      QuantityConfig      OPTIONAL,
  measScaleFactor-r12     MeasScaleFactor-r12     OPTIONAL,
  s-Measure       INTEGER (-140..-44)     OPTIONAL,
  speedStatePars      CHOICE {
    release        NULL,
    setup        SEQUENCE {
      mobilityStateParameters    MobilityStateParameters,
      timeToTrigger-SF     SpeedStateScaleFactors
    }
  }                  OPTIONAL,
  allowInterruptions-r11   BOOLEAN        OPTIONAL
}
```

VarMeasReportList

The UE variable `VarMeasReportList` includes information about the measurements for which the triggering conditions have been met.

VarMeasReportList UE variable

```asciidoc
VarMeasReportList ::=    SEQUENCE (SIZE (1..maxMeasId)) OF VarMeasReport
VarMeasReportList-r12 ::=   SEQUENCE (SIZE (1..maxMeasId-r12)) OF VarMeasReport
VarMeasReport ::=     SEQUENCE {
  -- List of measurement that have been triggered
  measId        MeasId,
  cellsTriggeredList     CellsTriggeredList    OPTIONAL,
  csi-RS-TriggeredList-r12   CSI-RS-TriggeredList-r12  OPTIONAL,
  poolsTriggeredList-r14    Tx-ResourcePoolMeasList-r14 OPTIONAL,
  numberOfReportsSent     INTEGER
}
CellsTriggeredList ::=    SEQUENCE (SIZE (1..maxCellMeas)) OF CHOICE {
  physCellIdEUTRA       PhysCellId,
  physCellIdUTRA         CHOICE {
    fdd          PhysCellIdUTRA-FDD,
    tdd          PhysCellIdUTRA-TDD
  },
```
physCellIdGERAN SEQUENCE {
 carrierFreq CarrierFreqGERAN,
 physCellId PhysCellIdGERAN
},
physCellIdCDMA2000 PhysCellIdCDMA2000,
wlan-Identifiers-r13 WLAN-Identifiers-r12
}

CSI-RS-TriggeredList-r12 ::= SEQUENCE (SIZE (1..maxCSI-RS-Meas-r12)) OF MeasCSI-RS-Id-r12

-- ASN1STOP

VarMobilityHistoryReport

The UE variable VarMobilityHistoryReport includes the mobility history information.

-- ASN1START
VarMobilityHistoryReport-r12 ::= VisitedCellInfoList-r12

-- ASN1STOP

VarRLF-Report

The UE variable VarRLF-Report includes the radio link failure information or handover failure information.

VarRLF-Report UE variable

-- ASN1START
VarRLF-Report-r10 ::= SEQUENCE {
 rlf-Report-r10 RLF-Report-r9,
 plmn-Identity-r10 PLMN-Identity
}
VarRLF-Report-r11 ::= SEQUENCE {
 rlf-Report-r10 RLF-Report-r9,
 plmn-IdentityList-r11 PLMN-IdentityList3-r11
}

-- ASN1STOP

VarShortMAC-Input

The UE variable VarShortMAC-Input specifies the input used to generate the shortMAC-I.

VarShortMAC-Input UE variable

-- ASN1START
VarShortMAC-Input ::= SEQUENCE {
 cellIdentity CellIdentity,
 physCellId PhysCellId,
 c-RNTI C-RNTI
}

-- ASN1STOP

VarShortMAC-Input field descriptions

cellIdentity
Set to CellIdentity of the current cell.
c-RNTI
Set to C-RNTI that the UE had in the PCell it was connected to prior to the failure.
physCellId
Set to the physical cell identity of the PCell the UE was connected to prior to the failure.

VarShortResumeMAC-Input

The UE variable `VarShortResumeMAC-Input` specifies the input used to generate the `shortResumeMAC-I` during RRC Connection Resume procedure.

VarShortResumeMAC-Input UE variable

```asn1
VarShortResumeMAC-Input-r13 ::= SEQUENCE {
  cellIdentity-r13      CellIdentity,
  physCellId-r13       PhysCellId,
  c-RNTI-r13           C-RNTI,
  resumeDiscriminator-r13     BIT STRING(SIZE(1))
}
```

VarShortResumeMAC-Input field descriptions

- **cellIdentity**
 Set to CellIdentity of the current cell.

- **c-RNTI**
 Set to C-RNTI that the UE had in the PCell it was connected to prior to suspension of the RRC connection.

- **physCellId**
 Set to the physical cell identity of the PCell the UE was connected to prior to suspension of the RRC connection.

- **resumeDiscriminator**
 A constant that allows differentiation in the calculation of the MAC-I for `shortResumeMAC-I`
 The resumeDiscriminator is set to ’1’

VarWLAN-MobilityConfig

The UE variable `VarWLAN-MobilityConfig` includes information about WLAN for access selection and mobility.

VarWLAN-MobilityConfig UE variable

```asn1
VarWLAN-MobilityConfig ::=     SEQUENCE {
  wlan-MobilitySet-r13     WLAN-Id-List-r13   OPTIONAL,
  successReportRequested     ENUMERATED {true}   OPTIONAL,
  wlan-SuspendConfig-r14     WLAN-SuspendConfig-r14  OPTIONAL
}
```

VarWLAN-MobilityConfig field descriptions

- **wlan-MobilitySet**
 Indicates the WLAN mobility set configured.

- **successReportRequested**
 Indicates whether the UE shall report successful connection to WLAN. Applicable to LWA and LWIP.

VarWLAN-Status

The UE variable `VarWLAN-Status` includes information about the status of WLAN connection for LWA, RCLWI or LWIP.

VarWLAN-Status UE variable

```asn1
VarWLAN-Status-r13 ::=    SEQUENCE {
  status-r13        WLAN-Status-r13,
  status-r14        WLAN-Status-v1430 OPTIONAL
}
```
VarWLAN-Status field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Indicates the connection status to WLAN and causes for connection failures.</td>
</tr>
</tbody>
</table>

– Multiplicity and type constraint definitions

This section includes multiplicity and type constraints applicable (only) for UE variables.

```asn1
maxLogMeas-r10  INTEGER ::= 4060 -- Maximum number of logged measurement entries
  -- that can be stored by the UE
```

– End of EUTRA-UE-Variables

7.1a NB-IoT UE variables

NOTE: To facilitate the specification of the UE behavioural requirements, UE variables are represented using ASN.1. Unless explicitly specified otherwise, it is however up to UE implementation how to store the variables. The optionality of the IEs in ASN.1 is used only to indicate that the values may not always be available.

– NBIO-T-UE-Variables

This ASN.1 segment is the start of the NB-IoT UE variable definitions.

```asn1
NBIO-T-UE-Variables DEFINITIONS AUTOMATIC TAGS ::= BEGIN
IMPORTS
  VarShortMAC-Input,
  VarShortResumeMAC-Input-r13
FROM EUTRA-UE-Variables;
VarShortMAC-Input-NB-r13 ::= VarShortMAC-Input
VarShortResumeMAC-Input-NB-r13 ::= VarShortResumeMAC-Input-r13
```

– End of NBIO-T-UE-Variables
7.2 Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Reset</th>
<th>Incremented</th>
<th>When reaching max value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.3 Timers

7.3.1 Timers (Informative)
<table>
<thead>
<tr>
<th>Timer</th>
<th>Start</th>
<th>Stop</th>
<th>At expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>T300</td>
<td>Transmission of <code>RRCConnectionRequest</code> or <code>RRCConnectionResume Request</code></td>
<td>Reception of <code>RRCConnectionSetup</code>, <code>RRCConnectionReject</code> or <code>RRCConnectionResume</code> message, cell re-selection and upon abortion of connection establishment by upper layers</td>
<td>Perform the actions as specified in 5.3.3.6</td>
</tr>
<tr>
<td>NOTE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T301</td>
<td>Transmission of <code>RRCConnectionReestablishmentRequest</code></td>
<td>Reception of <code>RRCConnectionReestablishmentRequest</code> or <code>RRCConnectionReestablishmentReject</code> message as well as when the selected cell becomes unsuitable</td>
<td>Go to RRC_IDLE</td>
</tr>
<tr>
<td>NOTE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T302</td>
<td>Reception of <code>RRCConnectionReject</code> while performing RRC connection establishment</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T303</td>
<td>Access barred while performing RRC connection establishment for mobile originating calls</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T304</td>
<td>Reception of <code>RRCConnectionReconfiguration</code> message including the <code>MobilityControlInfo</code> or reception of <code>MobilityFromEUTRACommand</code> message including <code>CellChangeOrder</code></td>
<td>Criterion for successful completion of handover within E-UTRA, handover to E-UTRA or cell change order is met (the criterion is specified in the target RAT in case of inter-RAT)</td>
<td>In case of cell change order from E-UTRA or intra E-UTRA handover, initiate the RRC connection re-establishment procedure; In case of handover to E-UTRA, perform the actions defined in the specifications applicable for the source RAT.</td>
</tr>
<tr>
<td>T305</td>
<td>Access barred while performing RRC connection establishment for mobile originating signalling</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T306</td>
<td>Access barred while performing RRC connection establishment for mobile originating CS fallback.</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T307</td>
<td>Reception of <code>RRCConnectionReconfiguration</code> message including <code>MobilityControlInfoSCG</code></td>
<td>Successful completion of random access on the PCell, upon initiating re-establishment and upon SCG release</td>
<td>Inform E-UTRAN about the SCG change failure by initiating the SCG failure information procedure as specified in 5.6.13.</td>
</tr>
<tr>
<td>T308</td>
<td>Access barred due to ACDC while performing RRC connection establishment subject to ACDC</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation for ACDC as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T310</td>
<td>Upon detecting physical layer problems for the PCell i.e. upon receiving N310 consecutive out-of-sync indications from lower layers</td>
<td>Upon receiving N311 consecutive in-sync indications from lower layers for the PCell, upon triggering the handover procedure and upon initiating the connection re-establishment procedure</td>
<td>If security is not activated: go to RRC_IDLE else: initiate the connection re-establishment procedure</td>
</tr>
<tr>
<td>NOTE1</td>
<td>NOTE2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T311</td>
<td>Upon initiating the RRC connection re-establishment procedure</td>
<td>Selection of a suitable E-UTRA cell or a cell using another RAT.</td>
<td>Enter RRC_IDLE</td>
</tr>
<tr>
<td>NOTE1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer</td>
<td>Start</td>
<td>Stop</td>
<td>At expiry</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T312</td>
<td>Upon triggering a measurement report for a measurement identity for</td>
<td>Upon receiving N311 consecutive in-sync indications from lower layers, upon triggering the handover procedure, upon initiating</td>
<td>If security is not activated: go to RRC_IDLE else: initiate the connection re-establishment procedure</td>
</tr>
<tr>
<td>NOTE2</td>
<td>which T312 has been configured, while T310 is running</td>
<td>the connection re-establishment procedure, and upon the expiry of T310</td>
<td></td>
</tr>
<tr>
<td>T313</td>
<td>Upon detecting physical layer problems for the PSCell i.e. upon</td>
<td>Upon receiving N314 consecutive in-sync indications from lower layers for the PSCell, upon initiating the connection re-</td>
<td>Inform E-UTRAN about the SCG radio link failure by initiating the SCG failure information procedure as specified in 5.6.13.</td>
</tr>
<tr>
<td>NOTE2</td>
<td>receiving N313 consecutive out-of-sync indications from lower layers</td>
<td>establishment procedure, upon SCG release and upon receiving RRCConnectionReconfiguration including MobilityControlInfoSCG</td>
<td></td>
</tr>
<tr>
<td>T320</td>
<td>Upon receiving t320 or upon cell (re)selection to E-UTRA from another</td>
<td>Upon entering RRC_CONNECTED, when PLMN selection is performed on request by NAS, or upon cell (re)selection to another RAT (in</td>
<td>Discard the cell reselection priority information provided by dedicated signalling.</td>
</tr>
<tr>
<td></td>
<td>RAT with validity time configured for dedicated priorities (in which</td>
<td>which case the timer is carried on to the other RAT).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>case the remaining validity time is applied).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T321</td>
<td>Upon receiving measConfig including a reportConfig with the</td>
<td>Upon acquiring the information needed to set all fields of cellGlobalId for the requested cell, upon receiving measConfig that</td>
<td>Initiate the measurement reporting procedure, stop performing the related measurements and remove the corresponding measId</td>
</tr>
<tr>
<td></td>
<td>purpose set to reportCGI</td>
<td>includes removal of the reportConfig with the purpose set to reportCGI</td>
<td></td>
</tr>
<tr>
<td>T322</td>
<td>Upon receiving redirectedCarrierOffsetDedicated included in</td>
<td>Upon entering RRC_CONNECTED, when PLMN selection is performed on request by NAS, or upon cell (re)selection to another RAT.</td>
<td></td>
</tr>
<tr>
<td>NOTE1</td>
<td>RedirectedCarrierInfo</td>
<td></td>
<td>Release redirectedCarrierOffsetDedicated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T325</td>
<td>Timer (re)started upon receiving RRCConnectionReject message with</td>
<td>Upon log volume exceeding the suitable UE memory, upon initiating the release of LoggedMeasurementConfiguration procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deprioritisationTimer.</td>
<td></td>
<td>Perform the actions specified in 5.6.6.4</td>
</tr>
<tr>
<td>T330</td>
<td>Upon receiving LoggedMeasurementConfiguration message</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T340</td>
<td>Upon transmitting UEAssistanceInformation message with powerPrefIndication set to normal</td>
<td>Upon initiating the connection re-establishment procedure</td>
<td>No action.</td>
</tr>
<tr>
<td>NOTE2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T341</td>
<td>Upon transmitting UEAssistanceInformation message with bw-Preference.</td>
<td>Upon resuming an RRC connection or upon initiating the connection re-establishment procedure</td>
<td>No action.</td>
</tr>
<tr>
<td>NOTE2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T342</td>
<td>Upon transmitting DelayBudgetReport message.</td>
<td>Upon initiating the connection re-establishment and connection resume procedures</td>
<td>No action.</td>
</tr>
<tr>
<td>NOTE2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T350</td>
<td>Upon entering RRC_IDLE if t350 has been received in wlan-OffloadInfo.</td>
<td>Upon entering RRC_CONNECTED, or upon cell reselection.</td>
<td>Perform the actions specified in 5.6.12.4</td>
</tr>
</tbody>
</table>
7.3.2 Timer handling

When the UE applies zero value for a timer, the timer shall be started and immediately expire unless explicitly stated otherwise.
7.4 Constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>N310</td>
<td>Maximum number of consecutive "out-of-sync" or "early-out-of-sync" indications for the PCell received from lower layers</td>
</tr>
<tr>
<td>N311</td>
<td>Maximum number of consecutive "in-sync" or "early-in-sync" indications for the PCell received from lower layers</td>
</tr>
<tr>
<td>N313</td>
<td>Maximum number of consecutive "out-of-sync" indications for the PSCell received from lower layers</td>
</tr>
<tr>
<td>N314</td>
<td>Maximum number of consecutive "in-sync" indications for the PSCell received from lower layers</td>
</tr>
</tbody>
</table>

8 Protocol data unit abstract syntax

8.1 General

The RRC PDU contents in clause 6, clause 9.3.2 and clause 10 are described using abstract syntax notation one (ASN.1) as specified in ITU-T Rec. X.680 [13] and X.681 [14]. Transfer syntax for RRC PDUs is derived from their ASN.1 definitions by use of Packed Encoding Rules, unaligned as specified in ITU-T Rec. X.691 [15].

The following encoding rules apply in addition to what has been specified in X.691:

- When a bit string value is placed in a bit-field as specified in 15.6 to 15.11 in X.691, the leading bit of the bit string value shall be placed in the leading bit of the bit-field, and the trailing bit of the bit string value shall be placed in the trailing bit of the bit-field.

NOTE: The terms 'leading bit' and 'trailing bit' are defined in ITU-T Rec. X.680. When using the 'bstring' notation, the leading bit of the bit string value is on the left, and the trailing bit of the bit string value is on the right.

- When decoding types constrained with the ASN.1 Contents Constraint ("CONTAINING"), automatic decoding of the contained type should not be performed because errors in the decoding of the contained type should not cause the decoding of the entire RRC message PDU to fail. It is recommended that the decoder first decodes the outer PDU type that contains the OCTET STRING or BIT STRING with the Contents Constraint, and then decodes the contained type that is nested within the OCTET STRING or BIT STRING as a separate step.

- When decoding a) RRC message PDUs, b) BIT STRING constrained with a Contents Constraint, or c) OCTET STRING constrained with a Contents Constraint, PER decoders are required to never report an error if there are extraneous zero or non-zero bits at the end of the encoded RRC message PDU, BIT STRING or OCTET STRING.

8.2 Structure of encoded RRC messages

An RRC PDU, which is the bit string that is exchanged between peer entities/ across the radio interface contains the basic production as defined in X.691.

RRC PDUs shall be mapped to and from PDCP SDUs (in case of DCCH) or RLC SDUs (in case of PCCH, BCCH, BR-BCCH, CCCH or MCCH) upon transmission and reception as follows:

- when delivering an RRC PDU as an PDCP SDU to the PDCP layer for transmission, the first bit of the RRC PDU shall be represented as the first bit in the PDCP SDU and onwards; and

- when delivering an RRC PDU as an RLC SDU to the RLC layer for transmission, the first bit of the RRC PDU shall be represented as the first bit in the RLC SDU and onwards; and
- upon reception of an PDCP SDU from the PDCP layer, the first bit of the PDCP SDU shall represent the first bit of the RRC PDU and onwards; and
- upon reception of an RLC SDU from the RLC layer, the first bit of the RLC SDU shall represent the first bit of the RRC PDU and onwards.

8.3 Basic production

The 'basic production' is obtained by applying UNALIGNED PER to the abstract syntax value (the ASN.1 description) as specified in X.691. It always contains a multiple of 8 bits.

8.4 Extension

The following rules apply with respect to the use of protocol extensions:
- A transmitter compliant with this version of the specification shall, unless explicitly indicated otherwise on a PDU type basis, set the extension part empty. Transmitters compliant with a later version may send non-empty extensions;
- A transmitter compliant with this version of the specification shall set spare bits to zero;

8.5 Padding

If the encoded RRC message does not fill a transport block, the RRC layer shall add padding bits. This applies to PCCH, BCCH and BR-BCCH.

Padding bits shall be set to 0 and the number of padding bits is a multiple of 8.

Figure 8.5-1: RRC level padding

9 Specified and default radio configurations

Specified and default configurations are configurations of which the details are specified in the standard. Specified configurations are fixed while default configurations can be modified using dedicated signalling.
9.1 Specified configurations

9.1.1 Logical channel configurations

9.1.1.1 BCCH configuration

Parameters

Name	Value	Semantics description	Ver
PDCP configuration	N/A		
RLC configuration	TM		
MAC configuration	TM		

Note: RRC will perform padding, if required due to the granularity of the TF signalling, as defined in 8.5.

9.1.1.2 CCCH configuration

Parameters

Name	Value	Semantics description	Ver
PDCP configuration	N/A		
RLC configuration	TM		
MAC configuration	Normal MAC headers are used		
Logical channel configuration			
priority	1	Highest priority	
prioritisedBitRate	infinity		
bucketSizeDuration	N/A		
logicalChannelGroup	0		
logicalChannelSR-Mask-r9	release		v920

9.1.1.3 PCCH configuration

Parameters

Name	Value	Semantics description	Ver
PDCP configuration	N/A		
RLC configuration	TM		
MAC configuration	TM		

Note: RRC will perform padding, if required due to the granularity of the TF signalling, as defined in 8.5.

9.1.1.4 MCCH and MTCH configuration

Parameters
9.1.1.5 SBCCH configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCP configuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLC configuration</td>
<td>UM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sn-FieldLength</td>
<td>size5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-Reordering</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: RRC will perform padding, if required due to the granularity of the TF signalling, as defined in 8.5.

9.1.1.6 STCH configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCP configuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>discardTimer</td>
<td>Undefined</td>
<td>Up to UE implementation</td>
<td></td>
</tr>
<tr>
<td>pdcp-SN-Size</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxCID</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>profiles</td>
<td></td>
<td>Uni-directional UM RLC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UM window size is set to 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uni-directional UM RLC</td>
<td>v1440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UM window size is set to 0 for sidelink communication</td>
<td></td>
</tr>
<tr>
<td>sn-FieldLength</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelIdentity</td>
<td>Undefined</td>
<td>Selected by the transmitting UE, up to UE implementation</td>
<td></td>
</tr>
<tr>
<td>Logical channel configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>Undefined</td>
<td>Selected by the transmitting UE, up to UE implementation</td>
<td></td>
</tr>
<tr>
<td>prioritisedBitRate</td>
<td>Undefined</td>
<td>Selected by the transmitting UE, up to UE implementation</td>
<td></td>
</tr>
<tr>
<td>bucketSizeDuration</td>
<td>Undefined</td>
<td>Selected by the transmitting UE, up to UE implementation</td>
<td></td>
</tr>
<tr>
<td>logicalChannelGroup</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-Reordering</td>
<td>Undefined</td>
<td>Only used for V2X sidelink communication. Selected by the receiving UE, up to UE implementation</td>
<td>v1440</td>
</tr>
<tr>
<td>MAC configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.1.1.8 BR-BCCH configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCP configuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLC configuration</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC configuration</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: RRC will perform padding, if required due to the granularity of the TF signalling, as defined in 8.5.

9.1.2 SRB configurations

9.1.2.1 SRB1

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelIdentity</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.1.2.1a SRB1bis

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelIdentity</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.1.2.2 SRB2

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelIdentity</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2 Default radio configurations

The following sections only list default values for REL-8 parameters included in protocol version v8.5.0. For all fields introduced in a later protocol version, the default value is "released" unless explicitly specified otherwise. If UE is to apply default configuration while it is configured with some critically extended fields, the UE shall apply the original
version with only default values. For the following fields, introduced in a protocol version later than v8.5.0, the default corresponds with "value not applicable":

- codeBookSubsetRestriction-v920;
- pmi-RI-Report;

NOTE 1: Value "N/A" indicates that the UE does not apply a specific value (i.e. upon switching to a default configuration, E-UTRAN can not assume the UE keeps the previously configured value). This implies that E-UTRAN needs to configure a value before invoking the related functionality.

NOTE 2: In general, the signalling should preferably support a "release" option for fields introduced after v8.5.0. The "value not applicable" should be used restrictively, mainly limited to for fields which value is relevant only if another field is set to a value other than its default.

9.2.1 SRB configurations

9.2.1.1 SRB1

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>NB-IoT</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration CHOICE</td>
<td>am</td>
<td>am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ul-RLC-Config</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>t-PollRetransmit</td>
<td>ms45</td>
<td>ms25000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>pollPDU</td>
<td>infinity</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>pollByte</td>
<td>infinity</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>maxRetxThreshold</td>
<td>t4</td>
<td>t4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dl-RLC-Config</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>t-Reordering</td>
<td>ms35</td>
<td>released</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>t-StatusProhibit</td>
<td>ms0</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>enableStatusReportSN-Gap</td>
<td>N/A</td>
<td>disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical channel configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>1</td>
<td>1</td>
<td>Highest priority</td>
<td></td>
</tr>
<tr>
<td>prioritisedBitRate</td>
<td>infinity</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bucketSizeDuration</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelGroup</td>
<td>0</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelSR-Prohibit</td>
<td>N/A</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.1.2 SRB2

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration CHOICE</td>
<td>am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ul-RLC-Config</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.2.2 Default MAC main configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>NB-IoT</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxHARQ-tx</td>
<td>n5</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>periodicBSR-Timer</td>
<td>infinity</td>
<td>pp8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retxBSR-Timer</td>
<td>sf2560</td>
<td>infinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ttiBundling</td>
<td>FALSE</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>drx-Config</td>
<td>release</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phr-Config</td>
<td>release</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.3 Default semi-persistent scheduling configuration

<table>
<thead>
<tr>
<th>SPS-Config</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>>sps-ConfigDL</td>
<td>release</td>
<td></td>
</tr>
<tr>
<td>>sps-ConfigUL</td>
<td>release</td>
<td></td>
</tr>
</tbody>
</table>

9.2.4 Default physical channel configuration

Parameters (not applicable for NB-IoT)

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDSCH-ConfigDedicated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Name | Value | Semantics description | Ver
--- | --- | --- | ---
>p-a dB0 | | |

PUCCH-ConfigDedicated

- **tdc-AckNackFeedbackMode**
 - bundling
- **ackNackRepetition**
 - release

Only valid for TDD mode

PUSCH-ConfigDedicated

- **betaOffset-ACK-Index**
 - 10
- **betaOffset-RI-Index**
 - 12
- **betaOffset-CQI-Index**
 - 15

UplinkPowerControlDedicated

- **p0-UE-PUSCH**
 - 0
- **deltaMCS-Enabled**
 - en0 (disabled)
- **accumulationEnabled**
 - TRUE
- **p0-UE-PUCCH**
 - 0
- **pSRS-Offset**
 - 7
- **filterCoefficient**
 - fc4

tpc-pdcch-ConfigPUCCH

tpc-pdcch-ConfigPUSCH

CQI-ReportConfig

- **CQI-ReportPeriodic**
 - release
- **cqi-ReportModeAperiodic**
 - N/A
- **nomPDSCH-RS-EPRE-Offset**
 - N/A

SoundingRS-UL-ConfigDedicated

AntennaInfoDedicated

- **transmissionMode**
 - tm1, tm2

If the number of PBCH antenna ports is one, tm1 is used as default; otherwise tm2 is used as default

- **codebookSubsetRestriction**
 - N/A
- **ue-TransmitAntennaSelection**
 - release

SchedulingRequestConfig

Parameters applicable for NB-IoT

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPUSCH-ConfigDedicated-NB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.2.5 Default values timers and constants

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>t310</td>
<td>ms1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n310</td>
<td>n1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t311</td>
<td>ms1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n311</td>
<td>n1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.3 Sidelink pre-configured parameters

9.3.1 Specified parameters

This section only list parameters which value is specified in the standard.

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>preconfigSync</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>syncTxParameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>>alpha</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>preconfigComm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>sc-TxParameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>>alpha</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>dataTxParameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>>alpha</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2x-CommPreconfigSync</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>syncTxParameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>>alpha</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2x-CommTxPoolList, p2x-CommTxPoolList</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>dataTxParameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>>alpha</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.3.2 Pre-configurable parameters

This ASN.1 segment is the start of the E-UTRA definitions of pre-configured sidelink parameters.

NOTE 1: Upper layers are assumed to provide a set of pre-configured parameters that are valid at the current UE location if any, see TS 24.334 [69, 10.2].

```asn1
-- ASN1START
EUTRA-Sidelink-Preconf DEFINITIONS AUTOMATIC TAGS ::= BEGIN
```
IMPORTS
 AdditionalSpectrumEmission,
 AdditionalSpectrumEmission-v1010,
 ARFCN-ValueEUTRA-r9,
 FilterCoefficient,
 maxCBR-Level-r14,
 maxCBR-Level-1-r14,
 maxFreq,
 maxFreqV2X-r14,
 maxSL-TxPool-r12,
 maxSL-CommRxPoolPreconf-v1310,
 maxSL-CommTxPoolPreconf-v1310,
 maxSL-DiscRxPoolPreconf-r13,
 maxSL-DiscTxPoolPreconf-r13,
 maxSL-V2X-CBRConfig2-r14,
 maxSL-V2X-CBRConfig2-1-r14,
 maxSL-V2X-RxPoolPreconf-r14,
 maxSL-V2X-TxConfig2-r14,
 maxSL-V2X-TxConfig2-1-r14,
 maxSL-V2X-TxPoolPreconf-r14,
 P-Max,
 ReselectionInfoRelay-r13,
 SL-AnchorCarrierFreqList-V2X-r14,
 SL-CBR-Levels-Config-r14,
 SL-CBR-PSSCH-TxConfig-r14,
 SL-CommTxPoolSensingConfig-r14,
 SL-CP-Len-r12,
 SL-HoppingConfigComm-r12,
 SL-OffsetIndicator-r12,
 SL-OffsetIndicatorSync-r12,
 SL-OffsetIndicatorSync-v1430,
 SL-PeriodComm-r12,
 RSRP-RangeEL3-r12,
 SL-PriorityList-r13,
 SL-TP-ResourceConfig-r12,
 SL-TRPT-Subset-r12,
 SL-TxParameters-r12,
 SL-ZoneConfig-r14,
 P0-SL-r12,
 TDD-ConfigSL-r12,
 SubframeBitmapSL-r14,
 SL-P2X-ResourceSelectionConfig-r14,
 SL-RestrictResourceReservationPeriodList-r14,
 SL-SyncAllowed-r14,
 SL-OffsetIndicatorSync-r14,
 SL-Priority-r13
FROM EUTRA-RRC-Definitions;

-- ASN1STOP

SL-Preconfiguration

The IE **SL-Preconfiguration** includes the sidelink pre-configured parameters.

SL-Preconfiguration information elements

-- ASN1START

SL-Preconfiguration-r12 ::= SEQUENCE {
 preconfigGeneral-r12, -- SL-PreconfigGeneral-r12,
 preconfigSync-r12, -- SL-PreconfigSync-r12,
 preconfigComm-r12, -- SL-PreconfigCommPoolList4-r12,
 ...
 [[
 preconfigComm-v1310, -- SL-PreconfigCommRxPoolList-r13,
 commRxPoolList-r13, -- SL-PreconfigCommTxPoolList-r13
 commTxPoolList-r13, -- SL-PreconfigCommTxPoolList-r13
]],
 preconfigDisc-r13, -- SL-PreconfigDiscRxPoolList-r13,
 discRxPoolList-r13, -- SL-PreconfigDiscTxPoolList-r13
 discTxPoolList-r13, -- SL-PreconfigDiscTxPoolList-r13
 preconfigRelay-r13, -- SL-PreconfigRelay-r13
]
}
ETSI TS 136 331 V14.6.2 (2018-04)

3GPP TS 36.331 version 14.6.2 Release 14

SL-PreconfigGeneral-r12 ::= SEQUENCE {
 -- PDCP configuration
 rohc-Profiles-r12 SEQUENCE {
 profile0x0001-r12 BOOLEAN,
 profile0x0002-r12 BOOLEAN,
 profile0x0004-r12 BOOLEAN,
 profile0x0006-r12 BOOLEAN,
 profile0x0101-r12 BOOLEAN,
 profile0x0102-r12 BOOLEAN,
 profile0x0104-r12 BOOLEAN
 },
 -- Physical configuration
 carrierFreq-r12 ARFCN-ValueEUTRA-r9,
 maxTxPower-r12 P-Max,
 additionalSpectrumEmission-r12 AdditionalSpectrumEmission,
 sl-bandwidth-r12 ENUMERATED {n6, n15, n25, n50, n75, n100},
 tdd-ConfigSL-r12 TDD-ConfigSL-r12,
 reserved-r12 BIT STRING (SIZE (19)),
 ...,
 [[additionalSpectrumEmission-v1440 AdditionalSpectrumEmission-v1010 OPTIONAL]]}

SL-PreconfigSync-r12 ::= SEQUENCE {
 syncCP-Len-r12 SL-CP-Len-r12,
 syncOffsetIndicator1-r12 SL-OffsetIndicatorSync-r12,
 syncOffsetIndicator2-r12 SL-OffsetIndicatorSync-r12,
 syncTxParameters-r12 P0-SL-r12,
 syncTxThresholdOC-r12 RSRP-RangeSL-r12,
 filterCoefficient-r12 FilterCoefficient,
 syncRefMinHyst-r12 ENUMERATED {dB0, dB3, dB6, dB9, dB12},
 syncRefDiffHyst-r12 ENUMERATED {dB0, dB3, dB6, dB9, dB12, dBInf},
 ...,
 [[syncTxPeriodic-r13 ENUMERATED {true} OPTIONAL]]}

SL-PreconfigCommPoolList4-r12 ::= SEQUENCE (SIZE (1..maxSL-TxPool-r12)) OF SL-PreconfigCommPool-r12

SL-PreconfigCommRxPoolList-r13 ::= SEQUENCE (SIZE (1..maxSL-CommRxPoolPreconf-v1310)) OF SL-PreconfigCommPool-r12

SL-PreconfigCommTxPoolList-r13 ::= SEQUENCE (SIZE (1..maxSL-CommTxPoolPreconf-v1310)) OF SL-PreconfigCommPool-r12

SL-PreconfigCommPool-r12 ::= SEQUENCE {
 -- This IE is same as SL-CommResourcePool with rxParametersNCell absent
 sc-CP-Len-r12 SL-CP-Len-r12,
 sc-Period-r12 SL-PeriodComm-r12,
 sc-TF-ResourceConfig-r12 SL-TF-ResourceConfig-r12,
 sc-TxParameters-r12 P0-SL-r12,
 data-CP-Len-r12 SL-CP-Len-r12,
 data-TF-ResourceConfig-r12 SL-TF-ResourceConfig-r12,
 dataHoppingConfig-r12 SL-HoppingConfigComm-r12,
 dataTxParameters-r12 P0-SL-r12,
 trpt-Subset-r12 SL-TRPT-Subset-r12,
 ...,
 [[priorityList-r13 SL-PriorityList-r13 OPTIONAL -- For Tx]]
}

SL-PreconfigDiscRxPoolList-r13 ::= SEQUENCE (SIZE (1..maxSL-DiscRxPoolPreconf-r13)) OF SL-PreconfigDiscPool-r13

SL-PreconfigDiscTxPoolList-r13 ::= SEQUENCE (SIZE (1..maxSL-DiscTxPoolPreconf-r13)) OF SL-PreconfigDiscPool-r13

SL-PreconfigDiscPool-r13 ::= SEQUENCE {
 -- This IE is same as SL-DiscResourcePool with rxParameters absent
 cp-Len-r13 SL-CP-Len-r12,
 discPeriod-r13 ENUMERATED {rf4, rf6, rf7, rf8, rf12, rf14, rf16, rf24, rf28, rf32, rf64, rf128, rf256, rf512, rf1024, spare},
 numRetx-r13 INTEGER (0..3),
 numRepetition-r13 INTEGER (1..50),
SL-Peconfiguration field descriptions

carrierFreq
Indicates the carrier frequency for out of coverage sidelink communication and sidelink discovery. In case of FDD it is uplink carrier frequency and the corresponding downlink frequency can be determined from the default TX-RX frequency separation defined in TS 36.101 [42, table 5.7.3-1].

additionalSpectrumEmission
The UE requirements related to IE AdditionalSpectrumEmission are defined in TS 36.101 [42, 6.2.4]. If additionalSpectrumEmissionExt-r14 is configured, the UE only considers additionalSpectrumEmissionExt-r14 and ignores additionalSpectrumEmission-r12.

commRxPoolList
Indicates a list of reception pools for sidelink communication in addition to the resource pools indicated by preconfigComm.

commTxPoolList
Indicates a list of transmission pools for sidelink communication in addition to the first resource pool within preconfigComm.

preconfigComm
Indicates a list of resource pools. The first resource pool in the list is used for both reception and transmission of sidelink communication. The other resource pools, if present, are only used for reception of sidelink communication.

syncRefDiffHyst
Hysteresis when evaluating a SyncRef UE using relative comparison. Value $dB0$ corresponds to 0 dB, $dB3$ to 3 dB and so on. value $dBinf$ corresponds to infinite dB.

syncRefMinHyst
Hysteresis when evaluating a SyncRef UE using absolute comparison. Value $dB0$ corresponds to 0 dB, $dB3$ to 3 dB and so on.

NOTE 1: The network may configure one or more of the reception only resource pools in preconfigComm to cover reception from in coverage UEs using scheduled resource allocation. For such a resource pool the network should set all bits of subframeBitmap to 1 and offsetIndicator to indicate the subframe immediately following the sidelink control information.

NOTE 2: The network should ensure that the resources defined by the first entry in preconfigComm (used for transmission by an out of coverage UE) do not overlap with those of the pool(s) covering scheduled transmissions by in coverage UEs. Furthermore, the network should ensure that for none of the entries in preconfigComm the resources defined by sc-TF-ResourceConfig overlap.

-- SL-V2X-Preconfiguration

The IE SL-V2X-Preconfiguration includes the sidelink pre-configured parameters used for V2X sidelink communication.

SL-V2X-Preconfiguration information elements

-- ASN1STOP

SL-V2X-Preconfiguration-r14 ::= SEQUENCE {
 v2x-PreconfigFreqList-r14 SL-V2X-PreconfigFreqList-r14,
 anchorCarrierFreqList-r14 SL-AnchorCarrierFreqList-V2X-r14 OPTIONAL,
 cbr-PreconfigList-r14 SL-CBR-PreconfigTxConfigList-r14 OPTIONAL,
...
}

SL-CBR-PreconfigTxConfigList-r14 ::= SEQUENCE {
...
cbr-RangeCommonConfigList-r14 ::= SEQUENCE {
 sl-CBR-PPSSCH-TxConfigList-r14 OPTIONAL,
 sl-CBR-PSSCH-TxConfigList-r14 OPTIONAL,
}

SL-V2X-PreconfigFreqList-r14 ::= SEQUENCE {
 v2x-CommPreconfigGeneral-r14 OPTIONAL,
 v2x-CommPreconfigSync-r14 OPTIONAL,
 v2x-CommRxPoolList-r14 OPTIONAL,
 v2x-CommTxPoolList-r14 OPTIONAL,
 p2x-CommRxPoolList-r14 OPTIONAL,
 p2x-CommTxPoolList-r14 OPTIONAL,
 v2x-ResourceSelectionConfig-r14 OPTIONAL,
 zoneConfig-r14 OPTIONAL,
 offsetPriority-r14 ENUMERATED {gnss, emb},
 thresSL-TxPrioritization-r14 OPTIONAL,
 offsetDFN-r14 INTEGER (0..1000) OPTIONAL,
 ...
}

SL-V2X-RxPoolList-r14 ::= SEQUENCE {
 v2x-CommRxPoolList-r14 OPTIONAL,
 ...
}

SL-V2X-TxPoolList-r14 ::= SEQUENCE {
 v2x-CommTxPoolList-r14 OPTIONAL,
 p2x-CommTxPoolList-r14 OPTIONAL,
 ...
}

SL-V2X-PreconfigCommPool-r14 ::= SEQUENCE {
 sl-OffsetIndicator-r14 OPTIONAL,
 sl-Subframe-r14 SubframeBitmapSL-r14,
 adjacencyPSCH-PSSCH-r14 BOOLEAN,
 sizeSubchannel-r14 ENUMERATED {
 n4, n5, n6, n8, n9, n10, n12, n15, n16, n18, n20, n25, n30,
 n48, n50, n72, n75, n96, n100, spare13, spare12, spare11,
 spare10, spare9, spare8, spare7, spare6, spare5, spare4,
 spare3, spare2, spare1},
 numSubchannel-r14 ENUMERATED {n1, n3, n5, n8, n10, n15, n20, spare1},
 startRB-Subchannel-r14 INTEGER (0..99),
 dataTxParameters-r14 P0-SL-r12,
 zoneID-r14 INTEGER (0..7) OPTIONAL,
 threshS-RSSI-CBR-r14 INTEGER (0..45) OPTIONAL,
 cbr-psch-TxConfigList-r14 SL-CBR-PPP-TxPreconfigList-r14 OPTIONAL,
 resourceSelectionConfigP2X-r14 SL-P2X-ResourceSelectionConfig-r14 OPTIONAL,
 syncAllowed-r14 SL-SyncAllowed-r14 OPTIONAL,
 restrictResourceReservationPeriod-r14 SL-RestrictResourceReservationPeriodList-r14 OPTIONAL,
 ...
}

SL-V2X-SyncOffsetIndicators-r14 ::= SEQUENCE {
 syncOffsetIndicators-r14 SL-V2X-SyncOffsetIndicators-r14,
 syncTxParameters-r14 P0-SL-r12,
 syncRxThresholdOoC-r14 RSRP-RangeRL3-r12,
 filterCoefficient-r14 FilterCoefficient,
 syncRefMinHyst-r14 ENUMERATED {dB0, dB3, dB6, dB9, dB12},
 syncRefDiffHyst-r14 ENUMERATED {dB0, dB3, dB6, dB9, dB12, dBinf},
 ...
}

SL-V2X-SyncOffsetIndicatorsSync-r14 ::= SEQUENCE {
 syncOffsetIndicatorsSync-r14 SL-OffsetIndicatorsSync-r14,
 ...
}

SL-CBR-PPP-TxPreconfigList-r14 ::= SEQUENCE {
 priorityThreshold-r14 INTEGER (0..maxSL-CBR-PPP-TxPreconfigList-r14),
 priorityIndex-r14 INTEGER (0..maxSL-CBR-PPP-TxPreconfigList-r14),
 ...
}

SL-CBR-PPP-TxPreconfigIndex-r14 ::= SEQUENCE {
 priorityIndex-r14 INTEGER (0..maxSL-CBR-PPP-TxPreconfigList-r14),
 ...
}
Tx-PreconfigIndex-r14 ::= INTEGER(0..maxSL-V2X-TxConfig2-1-r14)
SL-V2X-Preconfiguration field descriptions

adjacencyPSCCH-PSSCH
Indicates whether a UE always transmits PSCCH and PSSCH in adjacent RBs (indicated by TRUE) or it may transmit
PSCCH and PSSCH in non-adjacent RBs (indicated by FALSE). This parameter appears only when a pool is
configured such that a UE transmits PSCCH and the associated PSSCH in the same subframe.

anchorCarrierFreqList
Indicates carrier frequencies which may include inter-carrier resource configuration for V2X sidelink communication.

cbr-PreconfigList
Indicates the preconfigured list of CBR ranges and the list of PSSCH transmission configurations available to
configure congestion control to the UE for V2X sidelink communication.

cbr-psch-TxConfigList
Indicates the mapping between PPPPs, CBR ranges by using indexes of the entry in cbr-RangeCommonConfigList in
cbr-PreconfigList, and PSSCH transmission parameters and CR limits by using indexes of the entry in sl-CBR-
PSSCH-TxConfigList in cbr-PreconfigList.

numSubchannel
Indicates the number of subchannels in the corresponding resource pool.

offsetDFN
Indicates the timing offset for the UE to determine DFN timing when GNSS is used for timing reference. Value 0
coresponds to 0 milliseconds, value 1 corresponds to 0.001 milliseconds, value 2 corresponds to 0.002 milliseconds,
and so on.

resourceSelectionConfigP2X
Indicates the allowed resource selection mechanism(s), i.e. partial sensing and/or random selection, for P2X related
V2X sidelink communication.

restrictResourceReservationPeriod
If configured, the field restrictResourceReservationPeriod configured in v2x-ResourceSelectionConfig shall be ignored
for transmission on this pool.

sizeSubchannel
Indicates the number of PRBs of each subchannel in the corresponding resource pool. The value n5 denotes 5 PRBs;
n6 denotes 6 PRBs and so on. The values n5, n6, n10, n15, n20, n25, n50, n75 and n100 apply in the case of
adjacencyPSCCH-PSSCH set to TRUE; the values n4, n5, n6, n8, n9, n10, n12, n15, n16, n18, n20, n30, n48, n72
and n96 apply in the case of adjacencyPSCCH-PSSCH set to FALSE.

sl-OffsetIndicator
Indicates the offset of the first subframe of a resource pool within a SFN cycle. If absent, the resource pool starts from
first subframe of SFN=0. This field is not applicable to V2X sidelink communication.

sl-Subframe
Indicates the bitmap of the resource pool, which is is defined by repeating the bitmap within a SFN cycle (see TS
36.213 [23]).

startRB-Subchannel
Indicates the lowest RB index of the subchannel with the lowest index.

startRB-PSCCH-Pool
Indicates the lowest RB index of the PSCCH pool.

syncAllowed
Indicates the allowed syncronization reference(s) which is (are) allowed to use the pre-configured resource pool.

syncPriority
Indicates the synchronization priority order. In case the UE does not detect any cell which configures syncronization
configuration on the carrier frequency in anchorCarrierFreqList, if this field is set to gnss, the UE shall prioritize GNSS
over the UE directly synchronized to eNB; if this field is set to enb, the UE shall prioritize the UE directly synchronized
to eNB over GNSS.

thresSL-TxPrioritization
Indicates the threshold used to determine whether SL V2X transmission is prioritized over uplink transmission if they
overlap in time (see TS 36.321 [6]).

threshS-RSSI-CBR
Indicates the S-RSSI threshold for determining the contribution of a sub-channel to the CBR measurement, as
specified in TS 36.214 [48]. Value 0 corresponds to -112 dBm, value 1 to -110 dBm, value n to (-112 + n*2) dBm, and
so on.

v2x-CommRxPoolList
Indicates a list of reception pools for V2X sidelink communication.

v2x-CommTxPoolList
Indicates a list of transmission pools for V2X sidelink communication.

v2x-ResourceSelectionConfig
Indicates V2X sidelink communication configurations used for UE autonomous resource selection.

zoneConfig
Indicates zone configurations used for V2X sidelink communication in 5.10.13.2.

zoneID
Indicates the zone ID for which the UE shall use this resource pool as described in 5.10.13.2. The field is absent in
v2x-CommRxPoolList and p2x-CommTxPoolList in SL-V2X-PreconfigFreqInfo.
10 Radio information related interactions between network nodes

10.1 General

This section specifies RRC messages that are transferred between network nodes. These RRC messages may be transferred to or from the UE via another Radio Access Technology. Consequently, these messages have similar characteristics as the RRC messages that are transferred across the E-UTRA radio interface, i.e. the same transfer syntax and protocol extension mechanisms apply.

10.2 Inter-node RRC messages

10.2.1 General

This section specifies RRC messages that are sent either across the X2- or the S1-interface, either to or from the eNB, i.e. a single 'logical channel' is used for all RRC messages transferred across network nodes. The information could originate from or be destined for another RAT.

-- EUTRA-InterNodeDefinitions

This ASN.1 segment is the start of the E-UTRA inter-node PDU definitions.

```asn1
EUTRA-InterNodeDefinitions DEFINITIONS AUTOMATIC TAGS ::= BEGIN
IMPORTS
  AntennaInfoCommon,
  AntennaInfoDedicated-v10i0,
  ARFCN-ValueEUTRA,
  ARFCN-ValueEUTRA-v9e0,
  ARFCN-ValueEUTRA-r9,
  CellIdentity,
  C-RNTI,
  DL-DCCH-Message,
  DRB-Identity,
  DRB-ToReleaseList,
  FreqBandIndicator-r11,
  InDeviceCoexIndication-r11,
  LWA-Config-r13,
  MasterInformationBlock,
  maxBands,
  maxFreq,
  maxDRB,
  maxSCell-r10,
  maxSCell-r13,
  maxServCell-r10,
  maxServCell-r13,
  MBMSInterestIndication-r11,
  MeasConfig,
  MeasGapConfig,
  MeasGapConfigPerCC-List-r14,
  MeasResultForRSRI-r13,
  MeasResultListWLAN-r13,
  OtherConfig-r9,
  PhysCellId,
  P-Max,
  PowerCoordinationInfo-r12,
  SidelinkUEInformation-r12,
  SL-CommConfig-r12,
  SL-DiscConfig-r12,
  RadioResourceConfigDedicated,
  RCLWI-Configuration-r13,
  RSRP-Range,
```

ETSI
10.2.2 Message definitions

-- **HandoverCommand**

This message is used to transfer the handover command generated by the target eNB.

Direction: target eNB to source eNB/ source RAN

HandoverCommand message

```
-- ASN1START
HandoverCommand ::= SEQUENCE {
  criticalExtensions CHOICE {
    c1 CHOICE {
      handoverCommand-r8     HandoverCommand-r8-IEs,
      spare7 NULL,
      spare6 NULL, spare5 NULL, spare4 NULL,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {} OPTIONAL
  }
}
HandoverCommand-r8-IEs ::= SEQUENCE {
  handoverCommandMessage OCTET STRING (CONTAINING DL-DCCH-Message),
  nonCriticalExtension SEQUENCE {} OPTIONAL
}
-- ASN1STOP
```

HandoverCommand field descriptions

handoverCommandMessage
Contains the entire DL-DCCH-Message including the **RRConnectionReconfiguration** message used to perform handover within E-UTRAN or handover to E-UTRAN, generated (entirely) by the target eNB.
NOTE: The source BSC, in case of inter-RAT handover from GERAN to E-UTRAN, expects that the HandoverCommand message includes DL-DCCH-Message only. Thus, criticalExtensionsFuture, spare1-spare7 and nonCriticalExtension should not be used regardless whether the source RAT is E-UTRAN, UTRAN or GERAN.

--

HandoverPreparationInformation

This message is used to transfer the E-UTRA RRC information used by the target eNB during handover preparation, including UE capability information.

Direction: source eNB/ source RAN to target eNB

HandoverPreparationInformation message

```asn1
HandoverPreparationInformation ::= SEQUENCE {
  criticalExtensions     CHOICE {
    c1         CHOICE{
      handoverPreparationInformation-r8 HandoverPreparationInformation-r8-IEs,
      spare7 NULL,
      spare6 NULL, spare5 NULL, spare4 NULL,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
}

HandoverPreparationInformation-r8-IEs ::= SEQUENCE {
  ue-RadioAccessCapabilityInfo  UE-CapabilityRAT-ContainerList,
  as-Config     AS-Config     OPTIONAL,  -- Cond HO
  rrm-Config     RRM-Config     OPTIONAL,
  as-Context     AS-Context    OPTIONAL,  -- Cond HO
  nonCriticalExtension    HandoverPreparationInformation-v920-IEs  OPTIONAL
}

HandoverPreparationInformation-v920-IEs ::= SEQUENCE {
  ue-ConfigRelease-v9   ENUMERATED {
    rel9, rel10, rel11, rel12, v10j0, v11e0,
    v1280, rel13, ..., rel14}   OPTIONAL, -- Cond HO2
  nonCriticalExtension    HandoverPreparationInformation-v9d0-IEs  OPTIONAL
}

HandoverPreparationInformation-v9d0-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING (CONTAINING HandoverPreparationInformation-v9y0-IEs) OPTIONAL,
  nonCriticalExtension    HandoverPreparationInformation-v9e0-IEs  OPTIONAL
}

-- Late non-critical extensions:
HandoverPreparationInformation-v9y0-IEs ::= SEQUENCE {
  -- Following field is only for pre REL-10 late non-critical extensions
  lateNonCriticalExtension OCTET STRING     OPTIONAL,-- Cond HO2
  nonCriticalExtension    HandoverPreparationInformation-v10j0-IEs  OPTIONAL
}

HandoverPreparationInformation-v10j0-IEs ::= SEQUENCE {
  as-Config-v10j0     AS-Config-v10j0   OPTIONAL,-- Cond HO2
  nonCriticalExtension    SEQUENCE {}    OPTIONAL
}

-- Regular non-critical extensions:
HandoverPreparationInformation-v9e0-IEs ::= SEQUENCE {
  as-Config-v9e0     AS-Config-v9e0   OPTIONAL, -- Cond HO2
  nonCriticalExtension    HandoverPreparationInformation-v1130-IEs  OPTIONAL
}

HandoverPreparationInformation-v1130-IEs ::= SEQUENCE {
  as-Context-v1130     AS-Context-v1130 OPTIONAL, -- Cond HO2
  nonCriticalExtension    HandoverPreparationInformation-v1250-IEs
}

HandoverPreparationInformation-v1250-IEs ::= SEQUENCE {

```
HandoverPreparationInformation field descriptions

as-Config
The radio resource configuration. Applicable in case of intra-E-UTRA handover. If the target receives an incomplete MeasConfig and RadioResourceConfigDedicated in the as-Config, the target eNB may decide to apply the full configuration option based on the ue-ConfigRelease.

as-Context
Local E-UTRAN context required by the target eNB.

makeBeforeBreakReq
To request the target eNB to add the makeBeforeBreak indication in the mobilityControlInfo in case of intra-frequency handover.

rrm-Config
Local E-UTRAN context used depending on the target node's implementation, which is mainly used for the RRM purpose.

ue-ConfigRelease
Indicates the RRC protocol release or version applicable for the current UE configuration. This could be used by target eNB to decide if the full configuration approach should be used. If this field is not present, the target assumes that the current UE configuration is based on the release 8 version of RRC protocol. NOTE 1.

ue-RadioAccessCapabilityInfo
For E-UTRA radio access capabilities, it is up to E-UTRA how the backward compatibility among supportedBandCombinationReduced, supportedBandCombination and supportedBandCombinationAdd is ensured. If supportedBandCombinationReduced and supportedBandCombinationAdd are included into ueCapabilityRAT-Container, it can be assumed that the value of fields, requestedBands, reducedIntNonContCombRequested and requestedCCsXL are consistend with all supported band combination fields. NOTE 2.

ue-SupportedEARFCN
Includes UE supported EARFCN of the handover target E-UTRA cell if the target E-UTRA cell belongs to multiple frequency bands.

NOTE 1: The source typically sets the ue-ConfigRelease to the release corresponding with the current dedicated radio configuration. The source may however also consider the common radio resource configuration e.g. in case interoperability problems would appear if the UE temporary continues extensions of this part of the configuration in a target PCell not supporting them.

NOTE 2: The following table indicates per source RAT whether RAT capabilities are included or not.

<table>
<thead>
<tr>
<th>Source RAT</th>
<th>E-UTRA capabilities</th>
<th>UTRA capabilities</th>
<th>GERAN capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTRAN</td>
<td>Included</td>
<td>May be included, ignored by eNB if received</td>
<td>May be included</td>
</tr>
<tr>
<td>GERAN CS</td>
<td>Excluded</td>
<td>May be included, ignored by eNB if received</td>
<td>Included</td>
</tr>
<tr>
<td>GERAN PS</td>
<td>Excluded</td>
<td>May be included, ignored by eNB if received</td>
<td>Included</td>
</tr>
<tr>
<td>E-UTRAN</td>
<td>Included</td>
<td>May be included</td>
<td>May be included</td>
</tr>
</tbody>
</table>
Conditional presence | Explanation
--- | ---
HO | The field is mandatory present in case of handover within E-UTRA; otherwise the field is not present.
HO2 | The field is optional present in case of handover within E-UTRA; otherwise the field is not present.
HO3 | The field is optional present in case of handover from GERAN to E-UTRA, otherwise the field is not present.

SCG-Config

This message is used to transfer the SCG radio configuration generated by the SeNB.

Direction: Secondary eNB to master eNB

SCG-Config message

```
-- ASN1START

SCG-Config-r12 ::= SEQUENCE {
  criticalExtensions CHOICE {
    c1 CHOICE{
      scg-Config-r12 SCG-Config-r12-IEs,
      spare7 NULL,
      spare6 NULL, spare5 NULL, spare4 NULL,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}

SCG-Config-r12-IEs ::= SEQUENCE {
  scg-RadioConfig-r12 SCG-ConfigPartSCG-r12 OPTIONAL,
  nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP
```

SCG-Config field descriptions

- **scg-RadioConfig-r12**

 Includes the change of the dedicated SCG configuration and, upon addition of an SCG cell, the common SCG configuration.

 The SeNB only includes a new SCG cell in response to a request from MeNB, but may include release of an SCG cell release or release of the SCG part of an SCG/Split DRB without prior request from MeNB. The SeNB does not use this field to initiate release of the SCG.

SCG-ConfigInfo

This message is used by MeNB to request the SeNB to perform certain actions e.g. to establish, modify or release an SCG, and it may include additional information e.g. to assist the SeNB with assigning the SCG configuration.

Direction: Master eNB to secondary eNB

SCG-ConfigInfo message

```
-- ASN1START

SCG-ConfigInfo-r12 ::= SEQUENCE {
  criticalExtensions CHOICE {
    c1 CHOICE{
      scg-ConfigInfo-r12 SCG-ConfigInfo-r12-IEs,
      spare7 NULL,
      spare6 NULL, spare5 NULL, spare4 NULL,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}

-- ASN1STOP
```
SCG-ConfigInfo-r12-IEs ::= SEQUENCE {
 radioResourceConfigDedMCG-r12 RadioResourceConfigDedicated OPTIONAL,
 sCellToAddModListMCG-r12 SCellToAddModList-r10 OPTIONAL,
 measGapConfig-r12 MeasGapConfig OPTIONAL,
 powerCoordinationInfo-r12 PowerCoordinationInfo-r12 OPTIONAL,
 scg-RadioConfig-r12 SCG-ConfigPartSCG-r12 OPTIONAL,
 eutra-CapabilityInfo-r12 OCTET STRING (CONTAINING UECapabilityInformation) OPTIONAL,
 scg-ConfigRestrictInfo-r12 SCG-ConfigRestrictInfo-r12 OPTIONAL,
 measResultIndication-r12 OCTET STRING OPTIONAL,
 mbmsInterestIndication-r12 MBMSInterestIndication-r11 OPTIONAL,
 scg-RadioConfig-r12 SCG-ConfigPartSCG-r12 OPTIONAL,
 mbmsInterestIndication-r12 MBMSInterestIndication-r11 OPTIONAL,
 scg-ConfigRestrictInfo-r12 SCG-ConfigRestrictInfo-r12 OPTIONAL,
 DRB-ToAddModListSCG-r12 DRB-InfoListSCG-r12 OPTIONAL,
 DRB-ToReleaseListSCG-r12 DRB-ToReleaseList OPTIONAL,
 sCellToAddModListSCG-r12 SCellToAddModListSCG-r12 OPTIONAL,
 sCellToReleaseListSCG-r12 SCellToReleaseList-r10 OPTIONAL,
 p-Max-r12 P-Max OPTIONAL,
 nonCriticalExtension SCG-ConfigInfo-v1310-IEs OPTIONAL
}

SCG-ConfigInfo-v1310-IEs ::= SEQUENCE {
 measResultSSTD-r13 MeasResultSSTD-r13 OPTIONAL,
 sCellToAddModListMCG-Ext-r13 SCellToAddModListExt-r13 OPTIONAL,
 measResultServCellListSCG-r13 MeasResultServCellListSCG-r13 OPTIONAL,
 sCellToAddModListSCG-Ext-r13 SCellToAddModListSCG-Ext-r13 OPTIONAL,
 nonCriticalExtension SCG-ConfigInfo-v1330-IEs OPTIONAL
}

SCG-ConfigInfo-v1330-IEs ::= SEQUENCE {
 measResultListRSSI-SCG-r13 MeasResultListRSSI-SCG-r13 OPTIONAL,
 nonCriticalExtension SCG-ConfigInfo-v1430-IEs OPTIONAL
}

SCG-ConfigInfo-v1430-IEs ::= SEQUENCE {
 makeBeforeBreakSCG-Req-r14 ENUMERATED {true} OPTIONAL,
 nonCriticalExtension SEQUENCE () OPTIONAL
}

DRB-InfoListSCG-r12 ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-InfoSCG-r12

DRB-InfoSCG-r12 ::= SEQUENCE {
 epsBearerIdentity-r12 INTEGER (0..15) OPTIONAL, -- Cond DRB-Setup
 drb-Identity-r12 DRB-Identity,
 drb-Type-r12 ENUMERATED {split, scg} OPTIONAL, -- Cond DRB-Setup
 ...
}

SCellToAddModListSCG-r12 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF Cell-ToAddMod-r12

Cell-ToAddMod-r12 ::= SEQUENCE {
 sCellIndex-r12 SCellIndex-r10,
 cellIdentification-r12 SEQUENCE {
 physCellId-r12 PhysCellId,
 dl-CarrierFreq-r12 ARFCN-ValueEUTRA-r9
 } OPTIONAL, -- Cond SCellAdd
 measResultCellToAdd-r12 SEQUENCE {
 rsrpResult-r12 RSRP-Range,
 rsrqResult-r12 RSRQ-Range
 } OPTIONAL, -- Cond SCellAdd2
 ...
}

MeasResultServCellListSCG-r12 ::= SEQUENCE (SIZE (1..maxServCell-r10)) OF MeasResultServCellSCG-r12

MeasResultServCellListSCG-Ext-r13 ::= SEQUENCE (SIZE (1..maxServCell-r13)) OF MeasResultServCellSCG-r12

MeasResultServCellSCG-r12 ::= SEQUENCE {
 ...
MeasResultListRSSI-SCG-r13 ::= SEQUENCE (SIZE (1..maxServCell-r13)) OF MeasResultRSSI-SCG-r13
MeasResultRSSI-SCG-r13 ::= SEQUENCE {
 servCellId-r13 ServCellIndex-r13,
 measResultForRSSI-r13 MeasResultForRSSI-r13 }

SCG-ConfigRestrictInfo-r12 ::= SEQUENCE {
 maxSCH-TB-BitsDL-r12 INTEGER (1..100),
 maxSCH-TB-BitsUL-r12 INTEGER (1..100)
}

-- ASN1STOP

SCG-ConfigInfo field descriptions

dbToToAddModListSCG
Includes DRBs the SeNB is requested to establish or modify (DRB type change).

dbToReleaseListSCG
Includes DRBs the SeNB is requested to release.

makeBeforeBreakSCG-Req
To request the target eNB to add the makeBeforeBreakSCG indication in the mobilityControlInfoSCG in case of intra-frequency SCG change.

maxSCH-TB-BitsXL
Indicates the maximum DL-SCH/UL-SCH TB bits that may be scheduled in a TTI. Specified as a percentage of the value defined for the applicable UE category.

measGapConfig
Includes the current measurement gap configuration.

measResultListRSSI-SCG
Includes RSSI measurement results of SCG (serving) cells.

measResultSSTD
Includes measurement results of UE SFN and Subframe Timing Difference between the PCell and the PSCell.

measResultServCellListSCG
Includes measurement results of SCG (serving) cells.

radioResourceConfigDedMCG
Includes the current dedicated MCG radio resource configuration.

sCellIndex
If sCellIndex-r13 is present, sCellIndex-r12 shall be ignored.

sCellToAddModListMCG, sCellToAddModListMCG-Ext
Includes the current MCG SCell configuration. Field sCellToAddModListMCG is used to add the first 4 SCells with sCellIndex-r10 while sCellToAddModListMCG-Ext is used to add the rest.

sCellToAddModListSCG, sCellToAddModListSCG-Ext
Includes SCG cells the SeNB is requested to establish. Measurement results may be provided for these cells. Field sCellToAddModListSCG is used to add the first 4 SCells with sCellIndex-r12 while sCellToAddModListSCG-Ext is used to add the rest.

sCellToReleaseListSCG, sCellToReleaseListSCG-Ext
Includes SCG cells the SeNB is requested to release.

scg-RadioConfig
Includes the current dedicated SCG configuration.

scg-ConfigRestrictInfo
Includes fields for which MeNB explicitly indicates the restriction to be observed by SeNB.

servCellId
If servCellId-r13 is present, servCellId-r12 shall be ignored.

p-Max
Cell specific value i.e. as broadcast by PCell.
Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB-Setup</td>
<td>The field is mandatory present in case DRB establishment is requested; otherwise the field is not present.</td>
</tr>
<tr>
<td>SCellAdd</td>
<td>The field is mandatory present in case SCG cell establishment is requested; otherwise the field is not present.</td>
</tr>
<tr>
<td>SCellAdd2</td>
<td>The field is optional present in case SCG cell establishment is requested; otherwise the field is not present.</td>
</tr>
</tbody>
</table>

UEPagingCoverageInformation

This message is used to transfer UE paging coverage information, covering both upload to and download from the EPC.

Direction: eNB to/from EPC

UEStructure

- **UEPagingCoverageInformation message**

```asn1
-- ASN1START

UEPagingCoverageInformation ::= SEQUENCE {
  criticalExtensions     CHOICE {
    c1         CHOICE{
      uePagingCoverageInformation-r13   UEPagingCoverageInformation-r13-IEs,
      spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}  
  }
}
-- ASN1STOP
```

UEPagingCoverageInformation field descriptions

- **mpdcch-NumRepetition**
 Number of repetitions for MPDCCH. The value is an estimate of the required number of repetitions for MPDCCH for paging.

UERadioAccessCapabilityInformation

This message is used to transfer UE radio access capability information, covering both upload to and download from the EPC.

Direction: eNB to/from EPC

UEStructure

- **UERadioAccessCapabilityInformation message**

```asn1
-- ASN1START

UERadioAccessCapabilityInformation ::= SEQUENCE {
  criticalExtensions     CHOICE {
    c1         CHOICE{
      ueRadioAccessCapabilityInformation-r8   UERadioAccessCapabilityInformation-r8-IEs,
      spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}  
  }
}
-- ASN1STOP
```

UERadioAccessCapabilityInformation field descriptions

- **ue-RadioAccessCapabilityInfo**
 OCTET STRING (CONTAINING UE Capability Information),
UERadioAccessCapabilityInformation field descriptions

ue-RadioAccessCapabilityInfo
Including E-UTRA, GERAN, and CDMA2000-1xRTT Bandclass radio access capabilities (separated). UTRA radio access capabilities are not included. For E-UTRA radio access capabilities, it is up to E-UTRA how the backward compatibility among supportedBandCombinationReduced, supportedBandCombination and supportedBandCombinationAdd is ensured. If supportedBandCombinationReduced and supportedBandCombination/supportedBandCombinationAdd are included into ueCapabilityRAT-Container, it can be assumed that the value of fields, requestedBands, reducedIntNonContCombRequested and requestedCCsXL are consistent with all supported band combination fields.

UERadioPagingInformation

This message is used to transfer radio paging information, covering both upload to and download from the EPC.

Direction: eNB to/ from EPC

UERadioPagingInformation message

UERadioPagingInfo
The field is used to transfer UE capability information used for paging. The eNB generates the **ue-RadioPagingInfo** and the contained UE capability information is absent when not supported by the UE.

supportedBandListEUTRAForPaging
Indicates the UE supported frequency bands which is derived by the eNB from **UE-EUTRA-Capability**.

10.3 Inter-node RRC information element definitions

AS-Config
The **AS-Config** IE contains information about RRC configuration information in the source eNB which can be utilized by target eNB to determine the need to change the RRC configuration during the handover preparation phase. The
information can also be used after the handover is successfully performed or during the RRC connection re-establishment or resume.

AS-Config information element

```asn1
-- ASN1START

AS-Config ::= SEQUENCE {
    sourceMeasConfig MeasConfig,
    sourceRadioResourceConfig RadioResourceConfigDedicated,
    sourceSecurityAlgorithmConfig SecurityAlgorithmConfig,
    sourceUE-Identity C-RNTI,
    sourceMasterInformationBlock MasterInformationBlock,
    sourceSystemInformationBlockType1 SystemInformationBlockType1(WITH COMPONENTS {..., nonCriticalExtension ABSENT}),
    sourceSystemInformationBlockType2 SystemInformationBlockType2,
    antennaInfoCommon AntennaInfoCommon,
    sourceDl-CarrierFreq ARFCN-ValueEUTRA,
    ...,
    [[ sourceSystemInformationBlockType1Ext OCTET STRING (CONTAINING SystemInformationBlockType1-v990-IEs) OPTIONAL,
    sourceOtherConfig-r9 OtherConfig-r9
    -- sourceOtherConfig-r9 should have been optional. A target eNB compliant with this transfer
    -- syntax should support receiving an AS-Config not including this extension addition group
    -- e.g. from a legacy source eNB
    ]],
    [[ sourceSCellConfigList-r10 SCellToAddModList-r10 OPTIONAL
    ]],
    [[ sourceConfigSCG-r12 SCG-Config-r12 OPTIONAL
    ]]
}

AS-Config-v9e0 ::= SEQUENCE {
    sourceDl-CarrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0
}

AS-Config-v10j0 ::= SEQUENCE {
    antennasInfoDedicatedPCell-v1010 AntennaInfoDedicated-v1010 OPTIONAL
}

AS-Config-v1250 ::= SEQUENCE {
    sourceWlan-OffloadConfig-r12 WLAN-OffloadConfig-r12 OPTIONAL,
    sourceSL-CommConfig-r12 SL-CommConfig-r12 OPTIONAL,
    sourceSL-DiscConfig-r12 SL-DiscConfig-r12 OPTIONAL
}

AS-Config-v1320 ::= SEQUENCE {
    sourceSCellConfigList-r13 SCellToAddModListExt-r13 OPTIONAL,
    sourceRCLWI-Configuration-r13 RCLWI-Configuration-r13 OPTIONAL
}

AS-Config-v1430 ::= SEQUENCE {
    sourceSL-V2X-CommConfig-r14 SL-V2X-CommConfigDedicated-r14 OPTIONAL,
    sourceLWA-Config-r14 LWA-Config-r13 OPTIONAL,
    sourceWLAN-MeasResult-r14 MeasResultListWLAN-r13 OPTIONAL
}

-- ASN1STOP

NOTE: The AS-Config re-uses information elements primarily created to cover the radio interface signalling requirements. Consequently, the information elements may include some parameters that are not relevant for the target eNB e.g. the SFN as included in the MasterInformationBlock.
**AS-Config field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>antennaInfoCommon</strong></td>
<td>This field provides information about the number of antenna ports in the source PCell.</td>
</tr>
<tr>
<td><strong>sourceDL-CarrierFreq</strong></td>
<td>Provides the parameter Downlink EARFCN in the source PCell, see TS 36.101 [42]. If the source eNB provides AS-Config-v9e0, it sets sourceDL-CarrierFreq (i.e. without suffix) to maxEARFCN.</td>
</tr>
<tr>
<td><strong>sourceLWA-Config</strong></td>
<td>LWA configuration in the source PCell when handover is triggered.</td>
</tr>
<tr>
<td><strong>sourceOtherConfig</strong></td>
<td>Provides other configuration in the source PCell.</td>
</tr>
<tr>
<td><strong>sourceMasterInformationBlock</strong></td>
<td>MasterInformationBlock transmitted in the source PCell.</td>
</tr>
<tr>
<td><strong>sourceMeasConfig</strong></td>
<td>Measurement configuration in the source cell. The measurement configuration for all measurements existing in the source eNB when handover is triggered shall be included. See 10.5.</td>
</tr>
<tr>
<td><strong>sourceRCLWI-Configuration</strong></td>
<td>RCLWI Configuration in the source PCell.</td>
</tr>
<tr>
<td><strong>sourceSL-CommConfig</strong></td>
<td>This field covers the sidelink communication configuration.</td>
</tr>
<tr>
<td><strong>sourceSL-DiscConfig</strong></td>
<td>This field covers the sidelink discovery configuration.</td>
</tr>
<tr>
<td><strong>sourceRadioResourceConfig</strong></td>
<td>Radio configuration in the source PCell. The radio resource configuration for all radio bearers existing in the source PCell when handover is triggered shall be included. See 10.5.</td>
</tr>
<tr>
<td><strong>sourceSCellConfigList</strong></td>
<td>Radio resource configuration (common and dedicated) of the SCells configured in the source eNB.</td>
</tr>
<tr>
<td><strong>sourceSecurityAlgorithmConfig</strong></td>
<td>This field provides the AS integrity protection (SRBs) and AS ciphering (SRBs and DRBs) algorithm configuration used in the source PCell.</td>
</tr>
<tr>
<td><strong>sourceSystemInformationBlockType1</strong></td>
<td>SystemInformationBlockType1 (or SystemInformationBlockType1-BR) transmitted in the source PCell.</td>
</tr>
<tr>
<td><strong>sourceSystemInformationBlockType2</strong></td>
<td>SystemInformationBlockType2 transmitted in the source PCell.</td>
</tr>
<tr>
<td><strong>sourceSL-V2X-CommConfig</strong></td>
<td>Indicates the V2X sidelink communication related configurations configured in the source eNB.</td>
</tr>
<tr>
<td><strong>sourceWLAN-MeasResult</strong></td>
<td>WLAN measurement results in the source PCell when handover is triggered.</td>
</tr>
</tbody>
</table>

---

### AS-Context

The IE **AS-Context** is used to transfer local E-UTRAN context required by the target eNB.

#### AS-Context information element

```asn1
-- ASN1START

AS-Context ::= SEQUENCE {
 reestablishmentInfo ReestablishmentInfo OPTIONAL -- Cond HO
}

AS-Context-v1130 ::= SEQUENCE {
 idc-Indication-r11 OCTET STRING (CONTAINING InDeviceCoexIndication-r11) OPTIONAL, -- Cond HO2
 mbmsInterestIndication-r11 OCTET STRING (CONTAINING MBMSInterestIndication-r11) OPTIONAL, -- Cond HO2
 powerPrefIndication-r11 OCTET STRING (CONTAINING UEAssistanceInformation-r11) OPTIONAL, -- Cond HO2
 ...,
 [sidelinkUEInformation-r12 OCTET STRING (CONTAINING SidelinkUEInformation-r12) OPTIONAL -- Cond HO2
]
}

AS-Context-v1320 ::= SEQUENCE {
 wlanConnectionStatusReport-r13 OCTET STRING (CONTAINING
```
WLANConnectionStatusReport-r13) OPTIONAL  -- Cond HO2

-- ASN1STOP

---

**AS-Context field descriptions**

<table>
<thead>
<tr>
<th>idc-Indication</th>
<th>Including information used for handling the IDC problems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>reestablishmentInfo</td>
<td>Including information needed for the RRC connection re-establishment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>The field is mandatory present in case of handover within E-UTRA; otherwise the field is not present.</td>
</tr>
<tr>
<td>HO2</td>
<td>The field is optional present in case of handover within E-UTRA; otherwise the field is not present.</td>
</tr>
</tbody>
</table>

---

**ReestablishmentInfo**

The *ReestablishmentInfo* IE contains information needed for the RRC connection re-establishment.

**ReestablishmentInfo information element**

```asn1
ReestablishmentInfo ::= SEQUENCE {
 sourcePhysCellId PhysCellId,
 targetCellShortMAC-I ShortMAC-I,
 additionalReestabInfoList AdditionalReestabInfoList OPTIONAL,
 ...
}
AdditionalReestabInfoList ::= SEQUENCE (SIZE (1..maxReestabInfo)) OF AdditionalReestabInfo
AdditionalReestabInfo ::= SEQUENCE{
 cellIdentity CellIdentity,
 key-eNodeB-Star Key-eNodeB-Star,
 shortMAC-I ShortMAC-I
}
Key-eNodeB-Star ::= BIT STRING (SIZE (256))
```

**ReestablishmentInfo field descriptions**

- **additionalReestabInfoList**
  Contains a list of shortMAC-I and KeNB* for cells under control of the target eNB, required for potential re-establishment by the UE in these cells to succeed.

- **key-eNodeB-Star**
  Parameter KeNB*: See TS 33.401 [32, 7.2.8.4]. If the cell identified by cellIdentity belongs to multiple frequency bands, the source eNB selects the DL-EARFCN for the KeNB* calculation using the same logic as UE uses when selecting the DL-EARFCN in IDLE as defined in section 6.2.2. This parameter is only used for X2 handover, and for S1 handover, it shall be ignored by target eNB.

- **sourcePhysCellId**
  The physical cell identity of the source PCell, used to determine the UE context in the target eNB at re-establishment.

- **targetCellShortMAC-I**
  The ShortMAC-I for the handover target PCell, in order for potential re-establishment to succeed.

---

**RRM-Config**

The *RRM-Config* IE contains information about UE specific RRM information before the handover which can be utilized by target eNB.
RRM-Config information element

-- ASN1START

RRM-Config ::= SEQUENCE {
    ue-InactiveTime ENUMERATED {
        s1, s2, s3, s5, s7, s10, s15, s20,
        s25, s30, s40, s50, min1, min1s20c, min1s40,
        min2, min2s30, min3, min3s30, min4, min5, min6,
        min7, min8, min9, min10, min12, min14, min17, min20,
        min24, min28, min33, min38, min44, min50, hr1,
        hr1min30, hr2, hr2min30, hr3, hr3min30, hr4, hr5, hr6,
        hr8, hr10, hr13, hr16, hr20, day1, day1hr12, day2,
        day2hr12, day3, day4, day5, day7, day10, day14, day19,
        day24, day30, dayMoreThan30} OPTIONAL,
    ...,
    [[ candidateCellInfoList-r10 CandidateCellInfoList-r10 OPTIONAL ]]
}

CandidateCellInfoList-r10 ::= SEQUENCE (SIZE (1..maxFreq)) OF CandidateCellInfo-r10

CandidateCellInfo-r10 ::= SEQUENCE {
    -- cellIdentification
    physCellId-r10 PhysCellId,
    dl-CarrierFreq-r10 ARFCN-ValueEUTRA,
    -- available measurement results
    rsrpResult-r10 RSRP-Range OPTIONAL,
    rsrqResult-r10 RSRQ-Range OPTIONAL,
    ...,
    [[ dl-CarrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL ]],
    [[ rsrqResult-v1250 RSRQ-Range-v1250 OPTIONAL ]],
    [[ rs-sinr-Result-r13 RS-SINR-Range-r13 OPTIONAL ]]
}

-- ASN1STOP

RRM-Config field descriptions

candidateCellInfoList
A list of the best cells on each frequency for which measurement information was available, in order of decreasing RSRP.

dl-CarrierFreq
The source includes dl-CarrierFreq-v1090 if and only if dl-CarrierFreq-r10 is set to maxEARFCN.

ue-InactiveTime
Duration while UE has not received or transmitted any user data. Thus the timer is still running in case e.g., UE measures the neighbour cells for the HO purpose. Value s1 corresponds to 1 second, s2 corresponds to 2 seconds and so on. Value min1 corresponds to 1 minute, value min1s20 corresponds to 1 minute and 20 seconds, value min1s40 corresponds to 1 minute and 40 seconds and so on. Value hr1 corresponds to 1 hour, hr1min30 corresponds to 1 hour and 30 minutes and so on.

10.4 Inter-node RRC multiplicity and type constraint values

-- ASN1START

maxReestabInfo INTEGER ::= 32 -- Maximum number of KeNB* and shortMAC-I forwarded -- at handover for re-establishment preparation

-- ASN1STOP

-- End of EUTRA-InterNodeDefinitions

-- ASN1START
10.5 Mandatory information in AS-Config

The AS-Config transferred between source eNB and target-eNB shall include all IEs necessary to describe the AS context. The conditional presence in section 6 is only applicable for eNB to UE communication.

The "need" or "cond" statements are not applied in case of sending the IEs from source eNB to target eNB. Some fields shall be included regardless of the "need" or "cond" e.g. discardTimer. The AS-Config re-uses information elements primarily created to cover the radio interface signalling requirements. The information elements may include some parameters that are not relevant for the target eNB e.g. the SFN as included in the MasterInformationBlock.

All the fields in the AS-Config as defined in 10.3 that are introduced after v9.2.0 and that are optional for eNB to UE communication shall be included, if the functionality is configured. The fields in the AS-Config that are defined before and including v9.2.0 shall be included as specified in the following.

Within the sourceRadioResourceConfig, sourceMeasConfig and sourceOtherConfig, the source eNB shall include fields that are optional for eNB to UE communication, if the functionality is configured unless explicitly specified otherwise in the following:

- in accordance with a condition that is explicitly stated to be applicable; or
- a default value is defined for the concerned field; and the configured value is the same as the default value that is defined; or
- the need of the field is OP and the current UE configuration corresponds with the behaviour defined for absence of the field;

The following fields, if the functionality is configured, are not mandatory for the source eNB to include in the AS-Config since delta signalling by the target eNB for these fields is not supported:

- semiPersistSchedC-RNTI
- measGapConfig

For the measurement configuration, a corresponding operation as 5.5.6.1 and 5.5.2.2a is executed by target eNB.

10.6 Inter-node NB-IoT messages

10.6.1 General

This section specifies NB-IoT RRC messages that are sent either across the X2- or the S1-interface, either to or from the eNB, i.e. a single 'logical channel' is used for all NB-IoT RRC messages transferred across network nodes.

---

**NB-IoT-InterNodeDefinitions**

This ASN.1 segment is the start of the NB-IoT inter-node PDU definitions.

```
-- ASN1START

NB-IoT-InterNodeDefinitions DEFINITIONS AUTOMATIC TAGS ::= BEGIN IMPORTS C-RNTI, PhysCellId, SecurityAlgorithmConfig, ShortMAC-I FROM EUTRA-RRC-Definitions
```
10.6.2 Message definitions

- **HandoverPreparationInformation-NB**

This message is used to transfer the UE context from the eNB where the RRC connection has been suspended and transfer it to the eNB where the RRC Connection has been requested to be resumed.

**Direction:** source eNB to target eNB

**HandoverPreparationInformation-NB message**

```markdown
-- ASN1START
HandoverPreparationInformation-NB ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE{
 handoverPreparationInformation-r13 HandoverPreparationInformation-NB-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

HandoverPreparationInformation-NB-IEs ::= SEQUENCE {
 ue-RadioAccessCapabilityInfo-r13 UE-Capability-NB-r13,
 as-Config-r13 AS-Config-NB,
 rrm-Config-r13 RRM-Config-NB OPTIONAL,
 as-Context-r13 AS-Context-NB OPTIONAL,
 nonCriticalExtension HandoverPreparationInformation-NB-v1380-IEs
 OPTIONAL
}

HandoverPreparationInformation-NB-v1380-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension HandoverPreparationInformation-NB-Ext-r14-IEs OPTIONAL
}

HandoverPreparationInformation-NB-Ext-r14-IEs ::= SEQUENCE {
 ue-RadioAccessCapabilityInfoExt-r14 OCTET STRING (CONTAINING UE-Capability-NB-Ext-r14-IEs)
 OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
-- ASN1STOP
```

**HandoverPreparationInformation-NB field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-Config</td>
<td>The radio resource configuration.</td>
</tr>
<tr>
<td>as-Context</td>
<td>The local E-UTRAN context required by the target eNB.</td>
</tr>
<tr>
<td>rrm-Config</td>
<td>The local E-UTRAN context used depending on the target node's implementation, which is mainly used for the RRM purpose.</td>
</tr>
</tbody>
</table>
-- **UEPagingCoverageInformation-NB**

This message is used to transfer UE paging coverage information for NB-IoT, covering both upload to and download from the EPC.

Direction: eNB to/from EPC

**UEPagingCoverageInformation-NB message**

```asn1
UEPagingCoverageInformation-NB ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE{
 uePagingCoverageInformation-r13 UEPagingCoverageInformation-NB-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
```

**UEPagingCoverageInformation-NB field descriptions**

### npdcch-NumRepetitionPaging

Number of repetitions for NPDCCH, see TS 36.211 [21]. This value is an estimate of the required number of repetitions for NPDCCH.

-- **UERadioAccessCapabilityInformation-NB**

This message is used to transfer UE NB-IoT Radio Access capability information, covering both upload to and download from the EPC.

Direction: eNB to/from EPC

**UERadioAccessCapabilityInformation-NB message**

```asn1
UERadioAccessCapabilityInformation-NB ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE{
 ueRadioAccessCapabilityInformation-r13 UERadioAccessCapabilityInformation-NB-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
```

**UERadioAccessCapabilityInformation-NB-IEs**

```asn1
ue-RadioAccessCapabilityInfo-r13 OCTET STRING (CONTAINING UE-Capability-NB-r13),
nonCriticalExtension UERadioAccessCapabilityInformation-NB-v1380-IEs
```

**UERadioAccessCapabilityInformation-NB-v1380-IEs**

```asn1
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension UERadioAccessCapabilityInformation-NB-r14-IEs
```

**UERadioAccessCapabilityInformation-NB-r14-IEs**

```asn1
ue-RadioAccessCapabilityInfo-r14 OCTET STRING (CONTAINING UECapabilityInformation-NB)
```
UERadioAccessCapabilityInformation-NB field descriptions

**ue-RadioAccessCapabilityInfo**
The NB-IoT UE Radio Access Capability Parameters, see TS 36.306 [5].

---

**UERadioPagingInformation-NB**

This message is used to transfer NB-IoT radio paging information, covering both upload to and download from the EPC.

Direction: eNB to/from EPC

---

**UERadioPagingInformation-NB message**

```asn1
UERadioPagingInformation-NB ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE{
 ueRadioPagingInformation-r13 UERadioPagingInformation-NB-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
```

---

**UERadioPagingInformation-NB-IEs ::= SEQUENCE {**

```asn1
ue-RadioPagingInfo-r13 OCTET STRING (CONTAINING UE-RadioPagingInfo-NB-r13),
nonCriticalExtension SEQUENCE {} OPTIONAL
```

---

**UERadioPagingInformation-NB field descriptions**

**ue-RadioPagingInfo**
The field is used to transfer UE NB-IoT capability information used for paging. The eNB generates the *ue-RadioPagingInfo* and the contained UE capability information is absent when not supported by the UE.

10.7 Inter-node NB-IoT RRC information element definitions

---

**AS-Config-NB**
The *AS-Config-NB* IE contains information about NB-IoT RRC configuration information in the source eNB which can be utilized by target eNB.

---

**AS-Config-NB information element**

```asn1
AS-Config-NB ::= SEQUENCE {
 sourceRadioResourceConfig-r13 RadioResourceConfigDedicated-NB-r13,
 sourceSecurityAlgorithmConfig-r13 SecurityAlgorithmConfig,
 sourceUE-Identity-r13 C-RNTI,
 sourceD1-CarrierFreq-r13 CarrierFreq-NB-r13,
 ...
}
```
### AS-Config-NB field descriptions

**sourceDL-CarrierFreq**  
Provides the parameter Downlink EARFCN in the source PCell, see TS 36.101 [42].

**sourceRadioResourceConfig**  
Radio configuration in the source PCell. The radio resource configuration for all radio bearers existing in the source PCell shall be included. See 10.9.

**sourceSecurityAlgorithmConfig**  
This field provides the AS integrity protection (SRBs) and AS ciphering (SRBs and DRBs) algorithm configuration used in the source PCell.

---

### AS-Context-NB

The IE **AS-Context-NB** is used to transfer the UE context required by the target eNB.

#### AS-Context-NB information element

```asn1
AS-Context-NB ::= SEQUENCE {
 reestablishmentInfo-r13 ReestablishmentInfo-NB OPTIONAL,
 ... }
```

---

#### AS-Context-NB field descriptions

**reestablishmentInfo**  
Including information needed for the RRC connection re-establishment.

---

### ReestablishmentInfo-NB

The **ReestablishmentInfo-NB** IE contains information needed for the RRC connection re-establishment.

#### ReestablishmentInfo-NB information element

```asn1
ReestablishmentInfo-NB ::= SEQUENCE {
 sourcePhysCellId-r13 PhysCellId,
 targetCellShortMAC-I-r13 ShortMAC-I,
 additionalReestabInfoList-r13 AdditionalReestabInfoList OPTIONAL,
 ... }
```

---

#### ReestablishmentInfo-NB field descriptions

**additionalReestabInfoList**  
Contains a list of shortMAC-I and KeNB* for cells under control of the target eNB, required for potential re-establishment by the UE in these cells to succeed.

**sourcePhysCellId**  
The physical cell identity of the source PCell, used to determine the UE context in the target eNB at re-establishment.

**targetCellShortMAC-I**  
The ShortMAC-I for the target PCell, in order for potential re-establishment to succeed.

---

### RRM-Config-NB

The **RRM-Config-NB** IE contains information about UE specific RRM information which can be utilized by target eNB.
**RRM-Config-NB information element**

```asn1
RRM-Config-NB ::= SEQUENCE {
 ue-InactiveTime ENUMERATED {
 s1, s2, s3, s5, s7, s10, s15, s20,
 s25, s30, s40, s50, min1, min1s20, min1s40,
 min2, min2s30, min3, min3s30, min4, min5, min6,
 min7, min8, min9, min10, min12, min14, min17, min20,
 min24, min28, min33, min38, min44, min50, hr1,
 hr1min30, hr2, hr2min30, hr3, hr3min30, hr4, hr5, hr6,
 hr8, hr10, hr13, hr16, hr20, day1, day1hr12, day2,
 day2hr12, day3, day4, day5, day7, day10, day14, day19,
 day24, day30, dayMoreThan30} OPTIONAL,
 ...
}
```

**RRM-Config-NB field descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ue-InactiveTime</td>
<td>Duration while UE has not received or transmitted any user data. Value s1 corresponds to 1 second, s2 corresponds to 2 seconds and so on. Value min1 corresponds to 1 minute, value min1s20 corresponds to 1 minute and 20 seconds, value min1s40 corresponds to 1 minute and 40 seconds and so on. Value hr1 corresponds to 1 hour, hr1min30 corresponds to 1 hour and 30 minutes and so on.</td>
</tr>
</tbody>
</table>

### 10.8 Inter-node RRC multiplicity and type constraint values

- Multiplicity and type constraints definitions

- End of **NB-IoT-InterNodeDefinitions**

### 10.9 Mandatory information in AS-Config-NB

The AS-Config-NB transferred between source eNB and target-eNB shall include all IEs necessary to describe the AS context. The conditional presence in section 6 is only applicable for eNB to UE communication.

The "Need" or "Cond" statements are not applied in case of sending the IEs from source eNB to target eNB. Some information elements shall be included regardless of the "Need" or "Cond" e.g. discardTimer. The AS-Config-NB re-uses information elements primarily created to cover the radio interface signalling requirements.

Within the sourceRadioResourceConfig, the source eNB shall include fields that are optional for eNB to UE communication, if the functionality is configured unless explicitly specified otherwise in the following:

- in accordance with a condition that is explicitly stated to be applicable; or
- a default value is defined for the concerned field; and the configured value is the same as the default value that is defined; or
- the need of the field is OP and the current UE configuration corresponds with the behaviour defined for absence of the field;
11 UE capability related constraints and performance requirements

11.1 UE capability related constraints

The following table lists constraints regarding the UE capabilities that E-UTRAN is assumed to take into account.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>NB-IoT</th>
</tr>
</thead>
<tbody>
<tr>
<td>#DRBs</td>
<td>The number of DRBs that a UE shall support</td>
<td>8</td>
<td>(0, 1, 2)</td>
</tr>
<tr>
<td>#RLC-AM</td>
<td>The number of RLC AM entities that a UE shall support</td>
<td>10</td>
<td>(2, 3)</td>
</tr>
<tr>
<td>#minCellperMeasObjectEUTRA</td>
<td>The minimum number of neighbour cells (excluding blacklist cells) that a UE shall be able to store within a MeasObjectEUTRA. NOTE.</td>
<td>32</td>
<td>N/A</td>
</tr>
<tr>
<td>#minBlackCellRangesperMeasObjectEUTRA</td>
<td>The minimum number of blacklist cell PCI ranges that a UE shall be able to store within a MeasObjectEUTRA</td>
<td>32</td>
<td>N/A</td>
</tr>
<tr>
<td>#minCellperMeasObjectUTRA</td>
<td>The minimum number of neighbour cells that a UE shall be able to store within a MeasObjectUTRA. NOTE.</td>
<td>32</td>
<td>N/A</td>
</tr>
<tr>
<td>#minCellperMeasObjectGERAN</td>
<td>The minimum number of neighbour cells that a UE shall be able to store within a MeasObjectGERAN. NOTE.</td>
<td>32</td>
<td>N/A</td>
</tr>
<tr>
<td>#minCellperMeasObjectCDMA2000</td>
<td>The minimum number of neighbour cells that a UE shall be able to store within a MeasObjectCDMA2000. NOTE.</td>
<td>32</td>
<td>N/A</td>
</tr>
<tr>
<td>#minCellTotal</td>
<td>The minimum number of neighbour cells (excluding blacklist cells) that UE shall be able to store in total in all measurement objects configured</td>
<td>256</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTE: In case of CGI reporting, the limit regarding the cells E-UTRAN can configure includes the cell for which the UE is requested to report CGI i.e. the amount of neighbour cells that can be included is at most (# minCellperMeasObjectRAT - 1), where RAT represents EUTRA/UTRA/GERAN/CDMA2000 respectively.

NOTE1: #DRBs based on UE capability, #RLC-AM = #DRBs + 2.

11.2 Processing delay requirements for RRC procedures

The UE performance requirements for RRC procedures are specified in the following tables, by means of a value N:

N = the number of 1ms subframes from the end of reception of the E-UTRAN -> UE message on the UE physical layer up to when the UE shall be ready for the reception of uplink grant for the UE -> E-UTRAN response message with no access delay other than the TTI-alignment (e.g. excluding delays caused by scheduling, the random access procedure or physical layer synchronisation).

NOTE: No processing delay requirements are specified for RN-specific procedures.
Figure 11.2-1: Illustration of RRC procedure delay

Table 11.2-1: UE performance requirements for RRC procedures for UEs other than NB-IoT UEs
### RRC Connection Control Procedures

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>E-UTRAN -&gt; UE</th>
<th>UE -&gt; E-UTRAN</th>
<th>N</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRC connection establishment</td>
<td>RRCConnectionSetup or RRCConnectionResume</td>
<td>RRCConnectionSetupComplete or RRCConnectionResumeComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection release</td>
<td>RRCConnectionRelease</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-configuration (radio resource configuration)</td>
<td>RRCConnectionReconfiguration</td>
<td>RRCConnectionReconfigurationComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-configuration (measurement configuration)</td>
<td>RRCConnectionReconfiguration</td>
<td>RRCConnectionReconfigurationComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-configuration (intra-LTE mobility)</td>
<td>RRCConnectionReconfiguration</td>
<td>RRCConnectionReconfigurationComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection reconfiguration (SCell addition/release)</td>
<td>RRCConnectionReconfiguration</td>
<td>RRCConnectionReconfigurationComplete</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>RRC connection reconfiguration (SCG establishment/ release, SCG cell addition/ release)</td>
<td>RRCConnectionReconfiguration</td>
<td>RRCConnectionReconfigurationComplete</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-establishment</td>
<td>RRCConnectionReestablishment</td>
<td>RRCConnectionReestablishmentComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Initial security activation</td>
<td>SecurityModeCommand</td>
<td>SecurityModeCommandComplete/SecurityModeCommandFailure</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Initial security activation + RRC connection re-configuration (RB establishment)</td>
<td>SecurityModeCommand, RRCConnectionReconfiguration</td>
<td>RRCConnectionReconfigurationComplete</td>
<td>20</td>
<td>The two DL messages are transmitted in the same TTI</td>
</tr>
<tr>
<td>Paging</td>
<td>Paging</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

### Inter RAT mobility

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>E-UTRAN -&gt; UE</th>
<th>UE -&gt; E-UTRAN</th>
<th>N</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handover to E-UTRA</td>
<td>RRCConnectionReconfiguration (sent by other RAT)</td>
<td>RRCConnectionReconfigurationComplete</td>
<td>NA</td>
<td>The performance of this procedure is specified in [50] in case of handover from GSM and [29], [30] in case of handover from UTRA.</td>
</tr>
<tr>
<td>Handover from E-UTRA to CDMA2000</td>
<td>MobilityFromEUTRACommand</td>
<td></td>
<td>NA</td>
<td>The performance of this procedure is specified in [16]</td>
</tr>
<tr>
<td>Handover from E-UTRA to CDMA2000</td>
<td>HandoverFromEUTRAAPPreparationRequest (CDMA2000)</td>
<td></td>
<td>NA</td>
<td>Used to trigger the handover preparation procedure with a CDMA2000 RAT. The performance of this procedure is specified in [16]</td>
</tr>
</tbody>
</table>

### Measurement procedures

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>Measurement Reporting</th>
<th>MeasurementReport</th>
<th>N</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE capability transfer</td>
<td>UECapabilityEnquiry</td>
<td>UECapabilityInformation</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Counter check</td>
<td>CounterCheck</td>
<td>CounterCheckResponse</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Proximity indication</td>
<td>ProximityIndication</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

### Other procedures

<table>
<thead>
<tr>
<th>Procedure title</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UE capability transfer</td>
<td>UECapabilityEnquiry</td>
</tr>
<tr>
<td></td>
<td>Counter check</td>
<td>CounterCheck</td>
</tr>
<tr>
<td></td>
<td>Proximity indication</td>
<td>ProximityIndication</td>
</tr>
</tbody>
</table>
### Table 11.2-2: UE performance requirements for RRC procedures for NB-IoT UEs

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>E-UTRAN → UE</th>
<th>UE → E-UTRAN</th>
<th>N</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RRC Connection Control Procedures</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRC connection establishment</td>
<td>RRCConnectionSetup-NB or RRCConnectionResume-NB</td>
<td>RRCConnectionSetupComplete-NB or RRCConnectionResumeComplete-NB</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>RRC connection release</td>
<td>RRCConnectionRelease-NB</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-configuration (radio resource configuration)</td>
<td>RRCConnectionReconfiguration-NB</td>
<td>RRCConnectionReconfigurationComplete-NB</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-establishment</td>
<td>RRCConnectionReestablishment-NB</td>
<td>RRCConnectionReestablishmentComplete-NB</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Initial security activation</td>
<td>SecurityModeCommand</td>
<td>SecurityModeCommandComplete/SecurityModeCommandFailure</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Initial security activation + RRC connection re-configuration (RB establishment)</td>
<td>SecurityModeCommand, RRCConnectionReconfiguration-NB</td>
<td>RRCConnectionReconfigurationComplete-NB</td>
<td>55</td>
<td>The two DL messages are transmitted in the same TTI</td>
</tr>
<tr>
<td>Paging</td>
<td>Paging-NB</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td><strong>Other procedures</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE capability transfer</td>
<td>UECapabilityEnquiry-NB</td>
<td>UECapabilityInformation-NB</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

11.3 Void
Annex A (informative): Guidelines, mainly on use of ASN.1

Editor's note No agreements have been reached concerning the extension of RRC PDUs so far. Any statements in this section about the protocol extension mechanism should be considered as FFS.

A.1 Introduction

The following clauses contain guidelines for the specification of RRC protocol data units (PDUs) with ASN.1.

A.2 Procedural specification

A.2.1 General principles

The procedural specification provides an overall high level description regarding the UE behaviour in a particular scenario.

It should be noted that most of the UE behaviour associated with the reception of a particular field is covered by the applicable parts of the PDU specification. The procedural specification may also include specific details of the UE behaviour upon reception of a field, but typically this should be done only for cases that are not easy to capture in the PDU section e.g. general actions, more complicated actions depending on the value of multiple fields.

Likewise, the procedural specification need not specify the UE requirements regarding the setting of fields within the messages that are send to E-UTRAN i.e. this may also be covered by the PDU specification.

A.2.2 More detailed aspects

The following more detailed conventions should be used:

- Bullets:
  - Capitals should be used in the same manner as in other parts of the procedural text i.e. in most cases no capital applies since the bullets are part of the sentence starting with 'The UE shall:'
  - All bullets, including the last one in a sub-clause, should end with a semi-colon i.e. an ';'  
- Conditions
  - Whenever multiple conditions apply, a semi-colon should be used at the end of each conditions with the exception of the last one, i.e. as in 'if cond1; or cond2:'

A.3 PDU specification

A.3.1 General principles

A.3.1.1 ASN.1 sections

The RRC PDU contents are formally and completely described using abstract syntax notation (ASN.1), see X.680 [13], X.681 (02/2002) [14].

The complete ASN.1 code is divided into a number of ASN.1 sections in the specifications. In order to facilitate the extraction of the complete ASN.1 code from the specification, each ASN.1 section begins with a text paragraph consisting entirely of an *ASN.1 start tag*, which consists of a double hyphen followed by a single space and the text string "ASN1START" (in all upper case letters). Each ASN.1 section ends with a text paragraph consisting entirely of an *ASN.1 stop tag*, which consists of a double hyphen followed by a single space and the text "ASN1STOP" (in all upper case letters):

```json
-- ASN1START
```
The text paragraphs containing the ASN.1 start and stop tags should not contain any ASN.1 code significant for the complete description of the RRC PDU contents. The complete ASN.1 code may be extracted by copying all the text paragraphs between an ASN.1 start tag and the following ASN.1 stop tag in the order they appear, throughout the specification.

NOTE: A typical procedure for extraction of the complete ASN.1 code consists of a first step where the entire RRC PDU contents description (ultimately the entire specification) is saved into a plain text (ASCII) file format, followed by a second step where the actual extraction takes place, based on the occurrence of the ASN.1 start and stop tags.

A.3.1.2 ASN.1 identifier naming conventions

The naming of identifiers (i.e., the ASN.1 field and type identifiers) should be based on the following guidelines:

- Message (PDU) identifiers should be ordinary mixed case without hyphenation. These identifiers, e.g., the \texttt{RRCConnectionModificationCommand}, should be used for reference in the procedure text. Abbreviated forms of these identifiers should not be used.

- Type identifiers other than PDU identifiers should be ordinary mixed case, with hyphenation used to set off acronyms only where an adjacent letter is a capital, e.g., \texttt{EstablishmentCause}, \texttt{SelectedPLMN} (not \texttt{Selected-PLMN}, since the "d" in "Selected" is lowercase), \texttt{InitialUE-Identity} and \texttt{MeasSFN-SFN-TimeDifference}.

- Field identifiers shall start with a lowercase letter and use mixed case thereafter, e.g., \texttt{establishmentCause}. If a field identifier begins with an acronym (which would normally be in upper case), the entire acronym is lowercase \texttt{plmn-Identity}, not \texttt{pLMN-Identity}. The acronym is set off with a hyphen \texttt{ue-Identity}, not \texttt{ueIdentity}, in order to facilitate a consistent search pattern with corresponding type identifiers.

- Identifiers that are likely to be keywords of some language, especially widely used languages, such as C++ or Java, should be avoided to the extent possible.

- Identifiers, other than PDU identifiers, longer than 25 characters should be avoided where possible. It is recommended to use abbreviations, which should be done in a consistent manner i.e. use 'Meas' instead of 'Measurement' for all occurrences. Examples of typical abbreviations are given in table A.3.1.2.1-1 below.

- \textit{For future extension}: When an extension is introduced a suffix is added to the identifier of the concerned ASN.1 field and/ or type. A suffix of the form ",rX" is used, with X indicating the release, for ASN.1 fields or types introduced in a later release (i.e. a release later than the original/ first release of the protocol) as well as for ASN.1 fields or types for which a revision is introduced in a later release replacing a previous version, e.g., \texttt{Foo-r9} for the Rel-9 version of the ASN.1 type \texttt{Foo}. A suffix of the form ",rXb" is used for the first revision of a field that it appears in the same release (X) as the original version of the field, ",rXc" for a second intra-release revision and so on. A suffix of the form ",vXYZ" is used for ASN.1 fields or types that only are an extension of a corresponding earlier field or type (see sub-clause A.4), e.g., \texttt{AnElement-v10b0} for the extension of the ASN.1 type \texttt{AnElement} introduced in version 10.11.0 of the specification. A number 0...9, 10, 11, etc. is used to represent the first part of the version number, indicating the release of the protocol. Lower case letters \texttt{a}, \texttt{b}, \texttt{c}, \texttt{etc.} are used to represent the second (and third) part of the version number if they are greater than 9. In the procedural specification, in field descriptions as well as in headings suffices are not used, unless there is a clear need to distinguish the extension from the original field.

- More generally, in case there is a need to distinguish different variants of an ASN.1 field or IE, a suffix should be added at the end of the identifiers e.g. \texttt{MeasObjectUTRA}, \texttt{ConfigCommon}. When there is no particular need to distinguish the fields (e.g. because the field is included in different IEs), a common field identifier name may be used. This may be attractive e.g. in case the procedural specification is the same for the different variants.
Table A.3.1.2-1: Examples of typical abbreviations used in ASN.1 identifiers

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Abbreviated word</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm</td>
<td>Communication</td>
</tr>
<tr>
<td>Conf</td>
<td>Confirmation</td>
</tr>
<tr>
<td>Config</td>
<td>Configuration</td>
</tr>
<tr>
<td>Disc</td>
<td>Discovery</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>Ext</td>
<td>Extension</td>
</tr>
<tr>
<td>Freq</td>
<td>Frequency</td>
</tr>
<tr>
<td>Id</td>
<td>Identity</td>
</tr>
<tr>
<td>Ind</td>
<td>Indication</td>
</tr>
<tr>
<td>Info</td>
<td>Information</td>
</tr>
<tr>
<td>Meas</td>
<td>Measurement</td>
</tr>
<tr>
<td>Neigh</td>
<td>Neighbour(ing)</td>
</tr>
<tr>
<td>Param(s)</td>
<td>Parameter(s)</td>
</tr>
<tr>
<td>Persist</td>
<td>Persistent</td>
</tr>
<tr>
<td>Phys</td>
<td>Physical</td>
</tr>
<tr>
<td>Proc</td>
<td>Process</td>
</tr>
<tr>
<td>Reestab</td>
<td>Reestablishment</td>
</tr>
<tr>
<td>Req</td>
<td>Request</td>
</tr>
<tr>
<td>Rx</td>
<td>Reception</td>
</tr>
<tr>
<td>Sched</td>
<td>Scheduling</td>
</tr>
<tr>
<td>Sync</td>
<td>Synchronisation</td>
</tr>
<tr>
<td>Thresh</td>
<td>Threshold</td>
</tr>
<tr>
<td>Tx/Transm</td>
<td>Transmission</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
</tbody>
</table>

NOTE: The table A.3.1.2.1-1 is not exhaustive. Additional abbreviations may be used in ASN.1 identifiers when needed.

A.3.1.3 Text references using ASN.1 identifiers

A text reference into the RRC PDU contents description from other parts of the specification is made using the ASN.1 field or type identifier of the referenced element. The ASN.1 field and type identifiers used in text references should be in the italic font style. The "do not check spelling and grammar" attribute in Word should be set. Quotation marks (i.e., " ") should not be used around the ASN.1 field or type identifier.

A reference to an RRC PDU type should be made using the corresponding ASN.1 type identifier followed by the word "message", e.g., a reference to the RRCConnectionRelease message.

A reference to a specific part of an RRC PDU, or to a specific part of any other ASN.1 type, should be made using the corresponding ASN.1 field identifier followed by the word "field", e.g., a reference to the prioritisedBitRate field in the example below.

```
-- /example/ ASN1START
LogicalChannelConfig ::= SEQUENCE {
 ul-SpecificParameters SEQUENCE {
 priority Priority,
 prioritisedBitRate BucketSizeDuration,
 bucketSizeDuration BucketSizeDuration,
 logicalChannelGroup INTEGER (0..3)
 } OPTIONAL
}
-- ASN1STOP
```

NOTE: All the ASN.1 start tags in the ASN.1 sections, used as examples in this annex to the specification, are deliberately distorted, in order not to include them when the ASN.1 description of the RRC PDU contents is extracted from the specification.

A reference to a specific type of information element should be made using the corresponding ASN.1 type identifier preceded by the acronym "IE", e.g., a reference to the IE LogicalChannelConfig in the example above.
References to a specific type of information element should only be used when those are generic, i.e., without regard to the particular context wherein the specific type of information element is used. If the reference is related to a particular context, e.g., an RRC PDU type (message) wherein the information element is used, the corresponding field identifier in that context should be used in the text reference.

A reference to a specific value of an ASN.1 field should be made using the corresponding ASN.1 value without using quotation marks around the ASN.1 value, e.g., 'if the \texttt{status} field is set to value \texttt{true}'.

A.3.2 High-level message structure

Within each logical channel type, the associated RRC PDU (message) types are alternatives within a CHOICE, as shown in the example below.

```
-- /example/ ASN1START
DL-DCCH-Message ::= SEQUENCE {
 message DL-DCCH-MessageType
}
DL-DCCH-MessageType ::= CHOICE {
 c1 CHOICE {
 dlInformationTransfer DLInformationTransfer,
 handoverFromEUTRAPreparationRequest HandoverFromEUTRAPreparationRequest,
 mobilityFromEUTRACommand MobilityFromEUTRACommand,
 rrcConnectionReconfiguration RRCConnectionReconfiguration,
 rrcConnectionRelease RRCConnectionRelease,
 securityModeCommand SecurityModeCommand,
 ueCapabilityEnquiry UECapabilityEnquiry,
 spare1 NULL
 },
 messageClassExtension SEQUENCE {}
}
-- ASN1STOP
```

A nested two-level CHOICE structure is used, where the alternative PDU types are alternatives within the inner level \texttt{c1} CHOICE.

Spare alternatives (i.e., \texttt{spare1} in this case) may be included within the \texttt{c1} CHOICE to facilitate future extension. The number of such spare alternatives should not extend the total number of alternatives beyond an integer-power-of-two number of alternatives (i.e., eight in this case).

Further extension of the number of alternative PDU types is facilitated using the \texttt{messageClassExtension} alternative in the outer level CHOICE.

A.3.3 Message definition

Each PDU (message) type is specified in an ASN.1 section similar to the one shown in the example below.

```
-- /example/ ASN1START
RRCConnectionReconfiguration ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcConnectionReconfiguration-r8 RRCConnectionReconfiguration-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
```

-- Enter the IEs here.
```
```

-- ASN1STOP
Hooks for critical and non-critical extension should normally be included in the PDU type specification. How these hooks are used is further described in sub-clause A.4.

Critical extensions are characterised by a redefinition of the PDU contents and need to be governed by a mechanism for protocol version agreement between the encoder and the decoder of the PDU, such that the encoder is prevented from sending a critically extended version of the PDU type, which is not comprehended by the decoder.

Critical extension of a PDU type is facilitated by a two-level CHOICE structure, where the alternative PDU contents are alternatives within the inner level c1 CHOICE. Spare alternatives (i.e., spare3 down to spare1 in this case) may be included within the c1 CHOICE. The number of spare alternatives to be included in the original PDU specification should be decided case by case, based on the expected rate of critical extension in the future releases of the protocol.

Further critical extension, when the spare alternatives from the original specifications are used up, is facilitated using the criticalExtensionsFuture in the outer level CHOICE.

In PDU types where critical extension is not expected in the future releases of the protocol, the inner level c1 CHOICE and the spare alternatives may be excluded, as shown in the example below.

```asn1
RRCConnectionReconfigurationComplete ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 rrcConnectionReconfigurationComplete-r8
 RRCConnectionReconfigurationComplete-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}
 } }

-- Enter the IEs here. -- -- Cond condTag
...

-- /example/ ASN1STOP
```

Non-critical extensions are characterised by the addition of new information to the original specification of the PDU type. If not comprehended, a non-critical extension may be skipped by the decoder, whilst the decoder is still able to complete the decoding of the comprehended parts of the PDU contents.

Non-critical extensions at locations other than the end of the message or other than at the end of a field contained in a BIT or OCTET STRING are facilitated by use of the ASN.1 extension marker "...". The original specification of a PDU type should normally include the extension marker at the end of the sequence of information elements contained.

Non-critical extensions at the end of the message or at the end of a field that is contained in a BIT or OCTET STRING are facilitated by use of an empty sequence that is marked OPTIONAL e.g. as shown in the following example:

```asn1
RRCMessage-r8-IEs ::= SEQUENCE {
 field1 InformationElement1,
 field2 InformationElement2,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- /example/ ASN1STOP
```

The ASN.1 section specifying the contents of a PDU type may be followed by a field description table where a further description of, e.g., the semantic properties of the fields may be included. The general format of this table is shown in the example below. The field description table is absent in case there are no fields for which further description needs to be provided e.g. because the PDU does not include any fields, or because an IE is defined for each field while there is nothing specific regarding the use of this IE that needs to be specified.
The field description table has one column. The header row shall contain the ASN.1 type identifier of the PDU type.

The following rows are used to provide field descriptions. Each row shall include a first paragraph with a field identifier (in bold and italic font style) referring to the part of the PDU to which it applies. The following paragraphs at the same row may include (in regular font style), e.g., semantic description, references to other specifications and/or specification of value units, which are relevant for the particular part of the PDU.

The parts of the PDU contents that do not require a field description shall be omitted from the field description table.

### A.3.4 Information elements

Each IE (information element) type is specified in an ASN.1 section similar to the one shown in the example below.

```asn1
-- /example/ ASN1START
PRACH-ConfigSIB ::= SEQUENCE {
 rootSequenceIndex INTEGER (0..1023),
 prach-ConfigInfo PRACH-ConfigInfo
}

PRACH-Config ::= SEQUENCE {
 rootSequenceIndex INTEGER (0..1023),
 prach-ConfigInfo PRACH-ConfigInfo OPTIONAL -- Need ON
}

PRACH-ConfigInfo ::= SEQUENCE {
 prach-ConfigIndex ENUMERATED {ffs},
 highSpeedFlag ENUMERATED {ffs},
 zeroCorrelationZoneConfig ENUMERATED {ffs}
}

-- ASN1STOP
```

IEs should be introduced whenever there are multiple fields for which the same set of values apply. IEs may also be defined for other reasons e.g. to break down a ASN.1 definition in to smaller pieces.

A group of closely related IE type definitions, like the IEs PRACH-ConfigSIB and PRACH-Config in this example, are preferably placed together in a common ASN.1 section. The IE type identifiers should in this case have a common base, defined as the generic type identifier. It may be complemented by a suffix to distinguish the different variants. The "PRACH-Config" is the generic type identifier in this example, and the "SIB" suffix is added to distinguish the variant. The sub-clause heading and generic references to a group of closely related IEs defined in this way should use the generic type identifier.

The same principle should apply if a new version, or an extension version, of an existing IE is created for critical or non-critical extension of the protocol (see sub-clause A.4). The new version, or the extension version, of the IE is included in the same ASN.1 section defining the original. A suffix is added to the type identifier, using the naming conventions defined in sub-clause A.3.1.2, indicating the release or version of the where the new version, or extension version, was introduced.

Local IE type definitions, like the IE PRACH-ConfigInfo in the example above, may be included in the ASN.1 section and be referenced in the other IE types defined in the same ASN.1 section. The use of locally defined IE types should be encouraged, as a tool to break up large and complex IE type definitions. It can improve the readability of the code. There may also be a benefit for the software implementation of the protocol end-points, as these IE types are typically provided by the ASN.1 compiler as independent data elements, to be used in the software implementation.

An IE type defined in a local context, like the IE PRACH-ConfigInfo, should not be referenced directly from other ASN.1 sections in the RRC specification. An IE type which is referenced in more than one ASN.1 section should be defined in a separate sub-clause, with a separate heading and a separate ASN.1 section (possibly as one in a set of
closely related IE types, like the IEs PRACH-ConfigSIB and PRACH-Config in the example above). Such IE types are also referred to as 'global IEs'.

NOTE: Referring to an IE type, that is defined as a local IE type in the context of another ASN.1 section, does not generate an ASN.1 compilation error. Nevertheless, using a locally defined IE type in that way makes the IE type definition difficult to find, as it would not be visible at an outline level of the specification. It should be avoided.

The ASN.1 section specifying the contents of one or more IE types, like in the example above, may be followed by a field description table, where a further description of, e.g., the semantic properties of the fields of the information elements may be included. This table may be absent, similar as indicated in sub-clause A.3.3 for the specification of the PDU type. The general format of the field description table is the same as shown in sub-clause A.3.3 for the specification of the PDU type.

A.3.5 Fields with optional presence

A field with optional presence may be declared with the keyword DEFAULT. It identifies a default value to be assumed, if the sender does not include a value for that field in the encoding:

```
-- /example/ ASN1START
PreambleInfo ::= SEQUENCE {
 numberOfRA-Preambles INTEGER (1..64) DEFAULT 1,
 ...
}
-- ASN1STOP
```

Alternatively, a field with optional presence may be declared with the keyword OPTIONAL. It identifies a field for which a value can be omitted. The omission carries semantics, which is different from any normal value of the field:

```
-- /example/ ASN1START
PRACH-Config ::= SEQUENCE {
 rootSequenceIndex INTEGER (0..1023),
 prach-ConfigInfo PRACH-ConfigInfo OPTIONAL -- Need ON
}
-- ASN1STOP
```

The semantics of an optionally present field, in the case it is omitted, should be indicated at the end of the paragraph including the keyword OPTIONAL, using a short comment text with a need statement. The need statement includes the keyword "Need", followed by one of the predefined semantics tags (OP, ON or OR) defined in sub-clause 6.1. If the semantics tag OP is used, the semantics of the absent field are further specified either in the field description table following the ASN.1 section, or in procedure text.

The addition of OPTIONAL keywords for capability groups is based on the following guideline. If there is more than one field in the lower level IE, then OPTIONAL keyword is added at the group level. If there is only one field in the lower level IE, OPTIONAL keyword is not added at the group level.

A.3.6 Fields with conditional presence

A field with conditional presence is declared with the keyword OPTIONAL. In addition, a short comment text shall be included at the end of the paragraph including the keyword OPTIONAL. The comment text includes the keyword "Cond", followed by a condition tag associated with the field ("UL" in this example):

```
-- /example/ ASN1START
LogicalChannelConfig ::= SEQUENCE {
 ul-SpecificParameters SEQUENCE {
 priority INTEGER (0),
 ...
 } OPTIONAL -- Cond UL
}
-- ASN1STOP
```
When conditionally present fields are included in an ASN.1 section, the field description table after the ASN.1 section shall be followed by a conditional presence table. The conditional presence table specifies the conditions for including the fields with conditional presence in the particular ASN.1 section.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>Specification of the conditions for including the field associated with the condition tag = &quot;UL&quot;. Semantics in case of optional presence under certain conditions may also be specified.</td>
</tr>
</tbody>
</table>

The conditional presence table has two columns. The first column (heading: "Conditional presence") contains the condition tag (in italic font style), which links the fields with a condition tag in the ASN.1 section to an entry in the table. The second column (heading: "Explanation") contains a text specification of the conditions and requirements for the presence of the field. The second column may also include semantics, in case of an optional presence of the field, under certain conditions i.e. using the same predefined tags as defined for optional fields in A.3.5.

Conditional presence should primarily be used when presence of a field depends on the presence and/ or value of other fields within the same message. If the presence of a field depends on whether another feature/ function has been configured, while this function can be configured independently e.g. by another message and/ or at another point in time, the relation is best reflected by means of a statement in the field description table.

If the ASN.1 section does not include any fields with conditional presence, the conditional presence table shall not be included.

Whenever a field is only applicable in specific cases e.g. TDD, use of conditional presence should be considered.

### A.3.7 Guidelines on use of lists with elements of SEQUENCE type

Where an information element has the form of a list (the SEQUENCE OF construct in ASN.1) with the type of the list elements being a SEQUENCE data type, an information element shall be defined for the list elements even if it would not otherwise be needed.

For example, a list of PLMN identities with reservation flags is defined as in the following example:

```asn1
-- /example/ ASN1START
PLMN-IdentityInfoList ::= SEQUENCE (SIZE (1..6)) OF PLMN-IdentityInfo

PLMN-IdentityInfo ::= SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellReservedForOperatorUse ENUMERATED {reserved, notReserved}
}
-- ASN1STOP
```

rather than as in the following (bad) example, which may cause generated code to contain types with unpredictable names:

```asn1
-- /bad example/ ASN1START
PLMN-IdentityList ::= SEQUENCE (SIZE (1..6)) OF SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellReservedForOperatorUse ENUMERATED {reserved, notReserved}
}
-- ASN1STOP
```


A.4 Extension of the PDU specifications

A.4.1 General principles to ensure compatibility

It is essential that extension of the protocol does not affect interoperability i.e. it is essential that implementations based on different versions of the RRC protocol are able to interoperate. In particular, this requirement applies for the following kind of protocol extensions:

- Introduction of new PDU types (i.e. these should not cause unexpected behaviour or damage).
- Introduction of additional fields in an extensible PDUs (i.e. it should be possible to ignore uncomprehended extensions without affecting the handling of the other parts of the message).
- Introduction of additional values of an extensible field of PDUs. If used, the behaviour upon reception of an uncomprehended value should be defined.

It should be noted that the PDU extension mechanism may depend on the logical channel used to transfer the message e.g. for some PDUs an implementation may be aware of the protocol version of the peer in which case selective ignoring of extensions may not be required.

The non-critical extension mechanism is the primary mechanism for introducing protocol extensions i.e. the critical extension mechanism is used merely when there is a need to introduce a 'clean' message version. Such a need appears when the last message version includes a large number of non-critical extensions, which results in issues like readability, overhead associated with the extension markers. The critical extension mechanism may also be considered when it is complicated to accommodate the extensions by means of non-critical extension mechanisms.

A.4.2 Critical extension of messages and fields

The mechanisms to critically extend a message are defined in A.3.3. There are both "outer branch" and "inner branch" mechanisms available. The "outer branch" consists of a CHOICE having the name criticalExtensions, with two values, c1 and criticalExtensionsFuture. The criticalExtensionsFuture branch consists of an empty SEQUENCE, while the c1 branch contains the "inner branch" mechanism.

The "inner branch" structure is a CHOICE with values of the form "MessageName-rX-IEs" (e.g., "RRCConnectionReconfiguration-r8-IEs") or "spareX", with the spare values having type NULL. The "-rX-IEs" structures contain the complete structure of the message IEs for the appropriate release; i.e., the critical extension branch for the Rel-10 version of a message includes all Rel-8 and Rel-9 fields (that are not obviated in the later version), rather than containing only the additional Rel-10 fields.

The following guidelines may be used when deciding which mechanism to introduce for a particular message, i.e. only an 'outer branch', or an 'outer branch' in combination with an 'inner branch' including a certain number of spares:

- For certain messages, e.g. initial uplink messages, messages transmitted on a broadcast channel, critical extension may not be applicable.
- An outer branch may be sufficient for messages not including any fields.
- The number of spares within inner branch should reflect the likelihood that the message will be critically extended in future releases (since each release with a critical extension for the message consumes one of the spare values). The estimation of the critical extension likelihood may be based on the number, size and changeability of the fields included in the message.
- In messages where an inner branch extension mechanism is available, all spare values of the inner branch should be used before any critical extensions are added using the outer branch.

The following example illustrates the use of the critical extension mechanism by showing the ASN.1 of the original and of a later release

```asn1
-- /example/ ASN1START
RRCMessage ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 ...
 }
 }
}

-- Original release
RRCMessage ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 ...
 }
 }
}
```
It is important to note that critical extensions may also be used at the level of individual fields, i.e., a field may be replaced by a critically extended version. When sending the extended version, the original version may also be included (e.g., original field is mandatory, EUTRAN is unaware if UE supports the extended version). In such cases, a UE supporting both versions may be required to ignore the original field. The following example illustrates the use of the critical extension mechanism by showing the ASN.1 of the original and of a later release.

--- /example/ ASN1START --- Original release

RRCMessage ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    c1 CHOICE {
      rrcMessage-r8 RRCMessage-r8-IEs,
      rrcMessage-r10 RRCMessage-r10-IEs,
      rrcMessage-r11 RRCMessage-r11-IEs,
      rrcMessage-r14 RRCMessage-r14-IEs
    },
    later CHOICE {
      c2 CHOICE {
        rrcMessage-r16 RRCMessage-r16-IEs,
        spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
        spare3 NULL, spare2 NULL, spare1 NULL
      },
      criticalExtensionsFuture SEQUENCE {}
    }
  },
  criticalExtensionsFuture SEQUENCE {}
}

--- /example/ ASN1STOP

--- Later release

RRCMessage ::= SEQUENCE {
  rrc-TransactionIdentifier RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    c1 CHOICE {
      rrcMessage-r8 RRCMessage-r8-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}

--- ASN1STOP

--- Conditional presence

<table>
<thead>
<tr>
<th>Condition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoField2rN</td>
<td>The field is optionally present, need ON, if field2-rN is absent. Otherwise the field is not present</td>
</tr>
</tbody>
</table>
Finally, it is noted that a critical extension may be introduced in the same release as the one in which the original field was introduced e.g. to correct an essential ASN.1 error. In such cases a UE capability may be introduced, to assist E-UTRAN in deciding whether or not to use the critically extension.

**A.4.3 Non-critical extension of messages**

**A.4.3.1 General principles**

The mechanisms to extend a message in a non-critical manner are defined in A.3.3. W.r.t. the use of extension markers, the following additional guidelines apply:

- When further non-critical extensions are added to a message that has been critically extended, the inclusion of these non-critical extensions in earlier critical branches of the message should be avoided when possible.

- The extension marker ("…") is the primary non-critical extension mechanism that is used unless a length determinant is not required. Examples of cases where a length determinant is not required:
  - at the end of a message,
  - at the end of a structure contained in a BIT STRING or OCTET STRING

- When an extension marker is available, non-critical extensions are preferably placed at the location (e.g. the IE) where the concerned parameter belongs from a logical/functional perspective (referred to as the 'default extension location')

- It is desirable to aggregate extensions of the same release or version of the specification into a group, which should be placed at the lowest possible level.

- In specific cases it may be preferable to place extensions elsewhere (referred to as the 'actual extension location') e.g. when it is possible to aggregate several extensions in a group. In such a case, the group should be placed at the lowest suitable level in the message. <TBD: ref to separate example>

- In case placement at the default extension location affects earlier critical branches of the message, locating the extension at a following higher level in the message should be considered.

- In case an extension is not placed at the default extension location, an IE should be defined. The IE's ASN.1 definition should be placed in the same ASN.1 section as the default extension location. In case there are intermediate levels in-between the actual and the default extension location, an IE may be defined for each level. Intermediate levels are primarily introduced for readability and overview. Hence intermediate levels need not always be introduced e.g. they may not be needed when the default and the actual extension location are within the same ASN.1 section. <TBD: ref to separate example>

**A.4.3.2 Further guidelines**

Further to the general principles defined in the previous section, the following additional guidelines apply regarding the use of extension markers:

- Extension markers within SEQUENCE
  - Extension markers are primarily, but not exclusively, introduced at the higher nesting levels
  - Extension markers are introduced for a SEQUENCE comprising several fields as well as for information elements whose extension would result in complex structures without it (e.g. re-introducing another list)
  - Extension markers are introduced to make it possible to maintain important information structures e.g. parameters relevant for one particular RAT
  - Extension markers are also used for size critical messages (i.e. messages on BCCH, BR-BCCH, PCCH and CCCH), although introduced somewhat more carefully
  - The extension fields introduced (or frozen) in a specific version of the specification are grouped together using double brackets.

- Extension markers within ENUMERATED
Non-critical extensions at the end of a message/ of a field contained in an OCTET or BIT STRING:

- When a nonCriticalExtension is actually used, a "Need" statement should not be provided for the field, which always is a group including at least one extension and a field facilitating further possible extensions. For simplicity, it is recommended not to provide a "Need" statement when the field is not actually used either.

Further, more general, guidelines:

- In case a need statement is not provided for a group, a "Need" statement is provided for all individual extension fields within the group i.e. including for fields that are not marked as OPTIONAL. The latter is to clarify the action upon absence of the whole group.

A.4.3.3 Typical example of evolution of IE with local extensions

The following example illustrates the use of the extension marker for a number of elementary cases (sequence, enumerated, choice). The example also illustrates how the IE may be revised in case the critical extension mechanism is used.

NOTE In case there is a need to support further extensions of release n while the ASN.1 of release (n+1) has been frozen, without requiring the release n receiver to support decoding of release (n+1) extensions, more advanced mechanisms are needed e.g. including multiple extension markers.

```
-- /example/ ASN1START

InformationElement1 ::= SEQUENCE {
 field1 ENUMERATED {
 value1, value2, value3, value4-v880,
 ..., value5-v960 },
 field2 CHOICE {
 field2a BOOLEAN,
 field2b InformationElement2b,
 ..., field2c-v960 InformationElement2c-r9
 },
 ..., field3-r9 InformationElement3-r9 OPTIONAL -- Need OR
 [[field3-v9a0 InformationElement3-v9a0 OPTIONAL, -- Need OR
 field4-r9 InformationElement4 OPTIONAL -- Need OR
]],
}

InformationElement1-r10 ::= SEQUENCE {
 field1 ENUMERATED {
 value1, value2, value3, value4-v880,
 value5-v960, value6-v1170, spare2, spare1, ... },
 field2 CHOICE {
 field2a BOOLEAN,
 field2b InformationElement2b,
 field2c-v960 InformationElement2c-r9,
 ..., field2d-v12b0 INTEGER (0..63)
 },
 field3-r9 InformationElement3-r10 OPTIONAL -- Need OR
 field4-r9 InformationElement4 OPTIONAL -- Need OR
 field5-r10 BOOLEAN,

```
Some remarks regarding the extensions of `InformationElement1` as shown in the above example:

- The `InformationElement1` is initially extended with a number of non-critical extensions. In release 10 however, a critical extension is introduced for the message using this IE. Consequently, a new version of the IE `InformationElement1` (i.e. `InformationElement1-r10`) is defined in which the earlier non-critical extensions are incorporated by means of a revision of the original field.

- The `value4-v880` is replacing a spare value defined in the original protocol version for `field1`. Likewise `value6-v1170` replaces `spare3` that was originally defined in the r10 version of `field1`.

- Within the critically extended release 10 version of `InformationElement1`, the names of the original fields/IEs are not changed, unless there is a real need to distinguish them from other fields/IEs. E.g. the `field1` and `InformationElement4` were defined in the original protocol version (release 8) and hence not tagged. Moreover, the `field3-r9` is introduced in release 9 and not re-tagged; although, the `InformationElement3` is also critically extended and therefore tagged `InformationElement3-r10` in the release 10 version of `InformationElement1`.

### A.4.3.4 Typical examples of non-critical extension at the end of a message

The following example illustrates the use of non-critical extensions at the end of the message or at the end of a field that is contained in a BIT or OCTET STRING i.e. when an empty sequence is used.

```
-- /example/ ASN1START

RRCMessage-r8-IEs ::= SEQUENCE {
 field1 InformationElement1,
 field2 InformationElement2,
 field3 InformationElement3 OPTIONAL, -- Need ON
 nonCriticalExtension RRCMessage-v860-IEs OPTIONAL
}

RRCMessage-v860-IEs ::= SEQUENCE {
 field4-v860 InformationElement4 OPTIONAL, -- Need OP
 field5-v860 BOOLEAN OPTIONAL, -- Cond C54
 nonCriticalExtension RRCMessage-v940-IEs OPTIONAL
}

RRCMessage-v940-IEs ::= SEQUENCE {
 field6-v940 InformationElement6-r9 OPTIONAL, -- Need OR
 nonCriticalExtensions SEQUENCE {} OPTIONAL
}

-- ASN1STOP
```

Some remarks regarding the extensions shown in the above example:

- The `InformationElement4` is introduced in the original version of the protocol (release 8) and hence no suffix is used.

### A.4.3.5 Examples of non-critical extensions not placed at the default extension location

The following example illustrates the use of non-critical extensions in case an extension is not placed at the default extension location.
\section*{ParentIE-\textit{WithEM}}

The IE \textit{ParentIE-\textit{WithEM}} is an example of a high level IE including the extension marker (EM). The root encoding of this IE includes two lower level IEs \textit{ChildIE1-WithoutEM} and \textit{ChildIE2-WithoutEM} which not include the extension marker. Consequently, non-critical extensions of the Child-IEs have to be included at the level of the Parent-IE.

The example illustrates how the two extension IEs \textit{ChildIE1-WithoutEM-vNx0} and \textit{ChildIE2-WithoutEM-vNx0} (both in release N) are used to connect non-critical extensions with a default extension location in the lower level IEs to the actual extension location in this IE.

\begin{verbatim}
ParentIE-\textit{WithEM} ::=  SEQUENCE {
  -- Root encoding, including:
  childIE1-WithoutEM     ChildIE1-WithoutEM    OPTIONAL,  -- Need ON
  childIE2-WithoutEM     ChildIE2-WithoutEM    OPTIONAL,  -- Need ON
  ...
  [[ childIE1-WithoutEM-vNx0    ChildIE1-WithoutEM-vNx0  OPTIONAL,  -- Need ON
    childIE2-WithoutEM-vNx0    ChildIE2-WithoutEM-vNx0  OPTIONAL  -- Need ON
  ]]
}
\end{verbatim}

Some remarks regarding the extensions shown in the above example:

\begin{itemize}
  \item The fields \textit{childIEx-WithoutEM-vNx0} may not really need to be optional (depends on what is defined at the next lower level).
  \item In general, especially when there are several nesting levels, fields should be marked as optional only when there is a clear reason.
\end{itemize}

\section*{ChildIE1-\textit{WithoutEM}}

The IE \textit{ChildIE1-\textit{WithoutEM}} is an example of a lower level IE, used to control certain radio configurations including a configurable feature which can be setup or released using the local IE \textit{ChIE1-\textit{ConfigurableFeature}}. The example illustrates how the new field \textit{chIE1-NewField} is added in release N to the configuration of the configurable feature. The example is based on the following assumptions:

\begin{itemize}
  \item when initially configuring as well as when modifying the new field, the original fields of the configurable feature have to be provided also i.e. as if the extended ones were present within the setup branch of this feature.
  \item when the configurable feature is released, the new field should be released also.
  \item when omitting the original fields of the configurable feature the UE continues using the existing values (which is used to optimise the signalling for features that typically continue unchanged upon handover).
  \item when omitting the new field of the configurable feature the UE releases the existing values and discontinues the associated functionality (which may be used to support release of unsupported functionality upon handover to an eNB supporting an earlier protocol version).
\end{itemize}

The above assumptions, which affect the use of conditions and need codes, may not always apply. Hence, the example should not be re-used blindly.

\begin{verbatim}
ChildIE1-\textit{WithoutEM} ::=  SEQUENCE {
  -- Root encoding, including:
  chIE1-\textit{ConfigurableFeature}  ChIE1-\textit{ConfigurableFeature}  OPTIONAL  -- Need ON
}
\end{verbatim}
ChildIE1-WithoutEM-vNx0 ::= SEQUENCE {
    chIE1-ConfigurableFeature-vNx0 ChIE1-ConfigurableFeature-vNx0 OPTIONAL -- Cond ConfigF
}

ChIE1-ConfigurableFeature ::= CHOICE {
    release NULL,
    setup SEQUENCE {
        -- Root encoding
    }
}

ChIE1-ConfigurableFeature-vNx0 ::= SEQUENCE {
    chIE1-NewField-rN INTEGER (0..31)
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigF</td>
<td>The field is optional present, need OR, in case of chIE1-ConfigurableFeature is included and set to &quot;setup&quot;; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

-- ChildIE2-WithoutEM

The IE ChildIE2-WithoutEM is an example of a lower level IE, typically used to control certain radio configurations. The example illustrates how the new field chIE1-NewField is added in release N to the configuration of the configurable feature.

ChildIE2-WithoutEM information element

-- /example/ ASN1START

ChildIE2-WithoutEM ::= CHOICE {
    release NULL,
    setup SEQUENCE {
        -- Root encoding
    }
}

ChildIE2-WithoutEM-vNx0 ::= SEQUENCE {
    chIE2-NewField-rN INTEGER (0..31) OPTIONAL -- Cond ConfigF
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigF</td>
<td>The field is optional present, need OR, in case of chIE2-ConfigurableFeature is included and set to &quot;setup&quot;; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

A.5 Guidelines regarding inclusion of transaction identifiers in RRC messages

The following rules provide guidance on which messages should include a Transaction identifier:

1. DL messages on CCCH that move UE to RRC-Idle should not include the RRC transaction identifier.
2. All network initiated DL messages by default should include the RRC transaction identifier.
3. All UL messages that are direct response to a DL message with an RRC Transaction identifier should include the RRC Transaction identifier.
4. All UL messages that require a direct DL response message should include an RRC transaction identifier.
5: All UL messages that are not in response to a DL message nor require a corresponding response from the network should not include the RRC Transaction identifier.

A.6 Protection of RRC messages (informative)

The following list provides information which messages can be sent (unprotected) prior to security activation and which messages can be sent unprotected after security activation. Those messages indicated "-" in "P" column should never be sent unprotected by eNB or UE. Further requirements are defined in the procedural text.

P…Messages that can be sent (unprotected) prior to security activation
A - I…Messages that can be sent without integrity protection after security activation
A - C…Messages that can be sent unciphered after security activation
NA… Message can never be sent after security activation
<table>
<thead>
<tr>
<th>Message</th>
<th>P</th>
<th>A-I</th>
<th>A-C</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSFBParametersRequestCDMA2000</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CSFBParametersResponseCDMA2000</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CounterCheck</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CounterCheckResponse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DelayBudgetReport</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DLInformationTransfer</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HandoverFromEUTRARequestCDMA2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>InDeviceCoexIndication</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>InterFreqRSTDMeasurementIndication</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LoggedMeasurementsConfiguration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MasterInformationBlock</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MBMSCountingRequest</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MBMSCountingResponse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MBMSInterestIndication</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MBSNAreaConfiguration</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MeasurementReport</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MobilityFromEUTRACommand</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Paging</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ProximityIndication</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RNReconfiguration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RNReconfigurationComplete</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionReconfiguration</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionReconfigurationComplete</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionReestablishment</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionReestablishmentComplete</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionReestablishmentReject</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionReestablishmentRequest</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionReject</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Justification for P: If the RRC connection only for signalling not requiring DRBs or ciphered messages, or the signalling connection has to be released prematurely, this message is sent as unprotected.</td>
</tr>
<tr>
<td>RRCConnectionRelease</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Justification for P: If the RRC connection only for signalling not requiring DRBs or ciphered messages, or the signalling connection has to be released prematurely, this message is sent as unprotected.</td>
</tr>
<tr>
<td>RRCConnectionRequest</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionResume</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>When this message is transmitted, security is activated but suspended. Integrity verification is done after the message received by RRC.</td>
</tr>
<tr>
<td>RRCConnectionResumeRequest</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>This message is not protected by PDCP operation. However, a short MAC-I is included.</td>
</tr>
<tr>
<td>RRCConnectionResumeComplete</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionSetup</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RRCConnectionSetupComplete</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SCGFailureInformation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SCPTMConfiguration</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>P</td>
<td>A-I</td>
<td>A-C</td>
<td>Comment</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SecurityModeCommand</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Integrity protection applied, but no ciphering (integrity verification done after the message received by RRC)</td>
</tr>
<tr>
<td>SecurityModeComplete</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>Integrity protection applied, but no ciphering. Ciphering is applied after completing the procedure.</td>
</tr>
<tr>
<td>SecurityModeFailure</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Neither integrity protection nor ciphering applied.</td>
</tr>
<tr>
<td>SidelinkUEInformation</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SystemInformation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>SystemInformationBlockType1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>UEAssistanceInformation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UECapabilityEnquiry</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UECapabilityInformation</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UEInformationRequest</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UEInformationResponse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>In order to protect privacy of UEs, UEInformationResponse is only sent from the UE after successful security activation</td>
</tr>
<tr>
<td>ULHandoverPreparationTransfer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>This message should follow HandoverFromEUTRAPreparationRequest</td>
</tr>
<tr>
<td>ULInformationTransfer</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WLANConnectionStatusReport</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

### A.7 Miscellaneous

The following miscellaneous conventions should be used:

- References: Whenever another specification is referenced, the specification number and optionally the relevant subclause, table or figure, should be indicated in addition to the pointer to the References section e.g. as follows: 'see TS 36.212 [22, 5.3.3.1.6]'.

- UE capabilities: TS 36.306 [5] specifies that E-UTRAN should in general respect the UE's capabilities. Hence there is no need to include statement clarifying that E-UTRAN, when setting the value of a certain configuration field, shall respect the related UE capabilities unless there is a particular need e.g. particularly complicated cases.
Annex B (normative): Release 8 and 9 AS feature handling

B.1 Feature group indicators

This annex contains the definitions of the bits in fields featureGroupIndicators (in Table B.1-1) and featureGroupIndRel9Add (in Table B.1-1a).

In this release of the protocol, the UE shall include the fields featureGroupIndicators in the IE UE-EUTRA-Capability and featureGroupIndRel9Add in the IE UE-EUTRA-Capability-v9a0. All the functionalities defined within the field featureGroupIndicators defined in Table B.1-1 or Table B.1-1a are mandatory for the UE (with exceptions for category M1 and M2 UEs), if the related capability (frequency band, RAT, SR-VCC or Inter-RAT ANR) is also supported. For a specific indicator, if all functionalities for a feature group listed in Table B.1-1 have been implemented and tested, the UE shall set the indicator as one (1), else (i.e. if any one of the functionalities in a feature group listed in Table B.1-1 or Table B.1-1a, which have not been implemented or tested), the UE shall set the indicator as zero (0).

The UE shall set all indicators that correspond to RATs not supported by the UE as zero (0).

The UE shall set all indicators, which do not have a definition in Table B.1-1 or Table B.1-1a, as zero (0).

If the optional fields featureGroupIndicators or featureGroupIndRel9Add are not included by a UE of a future release, the network may assume that all features pertaining to the RATs supported by the UE, respectively listed in Table B.1-1 or Table B.1-1a and deployed in the network, have been implemented and tested by the UE.

In Table B.1-1, a 'VoLTE capable UE’ corresponds to a UE which is IMS voice capable and a 'MCPTT capable UE’ corresponds to a UE which supports MCPTT voice application as defined in TS 23.179 [73].

The indexing in Table B.1-1a starts from index 33, which is the leftmost bit in the field featureGroupIndRel9Add.

<table>
<thead>
<tr>
<th>Index of indicator (bit number)</th>
<th>Definition (description of the supported functionality, if indicator set to one)</th>
<th>Notes</th>
<th>If indicated “Yes” the feature shall be implemented and successfully tested for this version of the specification</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (leftmost bit)</td>
<td>- Intra-subframe frequency hopping for PUSCH scheduled by UL grant</td>
<td></td>
<td>set to 1 by category M1 and M2 UEs that have implemented and successfully tested &quot;Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-0 – UE selected subband CQI without PMI&quot;</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>- DCI format 3a (TPC commands for PUCCH and PUSCH with single bit power adjustments)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-0 – UE selected subband CQI without PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-2 – UE selected subband CQI with multiple PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Simultaneous CQI and ACK/NACK on PUCCH, i.e. PUCCH format 2a and 2b</td>
<td></td>
<td>- If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>- Absolute TPC command for PUSCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resource allocation type 1 for PDSCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH: Mode 2-0 – UE selected subband CQI without PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH: Mode 2-1 – UE selected subband CQI with single PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 5bit RLC UM SN</td>
<td></td>
<td>can only be set to 1 if the UE has set bit number 7 to 1.</td>
<td>Yes, if UE supports VoLTE, MCPTT, or both.</td>
</tr>
<tr>
<td></td>
<td>- 7bit PDCP SN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes, if UE supports SRVCC to EUTRAN from GERAN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>- Short DRX cycle</td>
<td>- can only be set to 1 if the UE has set bit number 5 to 1.</td>
<td>- not supported by category M1 or M2 UE</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>- Long DRX cycle</td>
<td>- DRX command MAC control element</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>- Prioritised bit rate</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>- RLC UM</td>
<td>- can only be set to 0 if the UE does neither support VoLTE nor MCPTT</td>
<td>Yes, if UE supports VoLTE, MCPTT, or both.</td>
<td>Yes, if UE supports SRVCC to EUTRAN from GERAN.</td>
</tr>
<tr>
<td>8</td>
<td>- EUTRA RRC_CONNECTED to UTRA FDD or UTRA TDD CELL_DCH PS handover, if the UE supports either only UTRAN FDD or only UTRAN TDD</td>
<td>- EUTRA RRC_CONNECTED to UTRA FDD CELL_DCH PS handover, if the UE supports both UTRAN FDD and UTRAN TDD</td>
<td>- related to SR-VCC</td>
<td>Yes, except for category M1 and M2 UEs</td>
</tr>
<tr>
<td>9</td>
<td>- EUTRA RRC_CONNECTED to GERAN GSM_Dedicated handover</td>
<td>- EUTRA RRC_CONNECTED to GERAN (Packet) Idle by Cell Change Order</td>
<td>- EUTRA RRC_CONNECTED to GERAN (Packet) Idle by Cell Change Order with NACC (Network Assisted Cell Change)</td>
<td>Yes, except for category M1 and M2 UEs</td>
</tr>
<tr>
<td>10</td>
<td>- EUTRA RRC_CONNECTED to CDMA2000 1xRTT CS Active handover</td>
<td>- related to SR-VCC</td>
<td>- can only be set to 1 if the UE has set bit number 23 to 1</td>
<td>Yes, except for category M1 and M2 UEs</td>
</tr>
<tr>
<td>11</td>
<td>- EUTRA RRC_CONNECTED to CDMA2000 HRPD Active handover</td>
<td>- related to SR-VCC</td>
<td>- can only be set to 1 if the UE has set bit number 24 to 1</td>
<td>Yes, except for category M1 and M2 UEs</td>
</tr>
<tr>
<td>12</td>
<td>- Inter-frequency handover (within FDD or TDD)</td>
<td>- can only be set to 1 if the UE has set bit number 26 to 1</td>
<td>Yes, except for category M1 and M2 UEs, unless UE only supports band 13</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>- Measurement reporting event: Event A4 – Neighbour &gt; threshold</td>
<td>- Measurement reporting event: Event A5 – Serving &lt; threshold1 &amp; Neighbour &gt; threshold2</td>
<td>- Measurement reporting event: Event A1 – Neighbour &gt; threshold for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively</td>
<td>Yes, except for category M1 and M2 UEs</td>
</tr>
<tr>
<td>14</td>
<td>- Measurement reporting event: Event B1 – Neighbour &gt; threshold for UTRAN FDD or UTRAN TDD, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1</td>
<td>- Measurement reporting event: Event B1 – Neighbour &gt; threshold for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively</td>
<td>- Measurement reporting event: Event B1 – Neighbour &gt; threshold for GERAN, 1xRTT or HRPD, if the UE has set bit number 23, 24 or 26 to 1, respectively</td>
<td>Yes, for FDD, if UE supports only UTRAN FDD and does not support UTRAN TDD or GERAN or 1xRTT or HRPD</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>#</th>
<th>Feature Description</th>
<th>Yes/No</th>
</tr>
</thead>
</table>
| 16 | - Intra-frequency periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells`  
- Inter-frequency periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells`, if the UE has set bit number 25 to 1  
- Inter-RAT periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells` for UTRAN FDD or UTRAN TDD, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1  
- Inter-RAT periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells` for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively  
- Inter-RAT periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells` for GERAN, 1xRTT or HRPD, if the UE has set bit number 23, 24 or 26 to 1, respectively.  
NOTE: Event triggered periodical reporting (i.e., with `triggerType` set to `event` and with `reportAmount` > 1) is a mandatory functionality of event triggered reporting and therefore not the subject of this bit.  
- If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0. | Yes      | No       |
| 17 | Intra-frequency ANR features including:  
- Intra-frequency periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells`  
- Intra-frequency periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportCGI`  
- Inter-frequency periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportCGI`  
- can only be set to 1 if the UE has set bit number 5 to 1.  
- If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0. | Yes      | No       |
| 18 | Inter-frequency ANR features including:  
- Inter-frequency periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells`  
- Inter-frequency periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportCGI`  
- can only be set to 1 if the UE has set bit number 5 and bit number 25 to 1.  
- If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0.  
- Yes, unless UE only supports band 13 | Yes      | No       |
### Inter-RAT ANR features including:

- **Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCells for GERAN**, if the UE has set bit number 23 to 1
- **Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCellsForSON for UTRAN FDD or UTRAN TDD**, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1
- **Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCellsForSON for UTRAN FDD or UTRAN TDD**, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively
- **Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCellsForSON for 1xRTT or HRPD**, if the UE has set bit number 24 or 26 to 1, respectively
- **Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportCGI for UTRAN FDD or UTRAN TDD**, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1
- **Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportCGI for GERAN, 1xRTT or HRPD**, if the UE has set bit number 23, 24 or 26 to 1, respectively

### Bit Number 7

- **If bit number 7 is set to 0:**
  - SRB1 and SRB2 for DCCH + 8x AM DRB
- **If bit number 7 is set to 1:**
  - SRB1 and SRB2 for DCCH + 8x AM DRB
  - SRB1 and SRB2 for DCCH + 5x AM DRB + 3x UM DRB

**NOTE:** UE which indicate support for a DRB combination also support all subsets of the DRB combination. Therefore, release of DRB(s) never results in an unsupported DRB combination.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCells for GERAN, if the UE has set bit number 23 to 1</td>
<td>- can only be set to 1 if the UE has set bit number 5 to 1 and the UE has set at least one of the bit number 22, 23, 24 or 26 to 1.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCellsForSON for UTRAN FDD or UTRAN TDD, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1</td>
<td>- even if the UE sets bits 33 to 37, it shall still set bit 19 to 1 if inter-RAT ANR features are tested for all RATs for which inter-RAT measurement reporting is indicated as tested</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCellsForSON for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively</td>
<td>- Regardless of what bit number 7 and bit number 20 is set to, UE shall support at least SRB1 and SRB2 for DCCH + 4x AM DRB</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Inter-RAT periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCellsForSON for 1xRTT or HRPD, if the UE has set bit number 24 or 26 to 1, respectively</td>
<td>- Regardless of what bit number 20 is set to, if bit number 7 is set to 1, UE shall support at least SRB1 and SRB2 for DCCH + 4x AM DRB + 1x UM DRB</td>
<td>No</td>
</tr>
</tbody>
</table>

**NOTE:** UE which indicate support for a DRB combination also support all subsets of the DRB combination. Therefore, release of DRB(s) never results in an unsupported DRB combination.
<table>
<thead>
<tr>
<th>Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>- Predefined intra- and inter-subframe frequency hopping for PUSCH with N_ssb &gt; 1&lt;br&gt; - Predefined inter-subframe frequency hopping for PUSCH with N_ssb &gt; 1</td>
</tr>
<tr>
<td>22</td>
<td>- UTRAN FDD or UTRAN TDD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode, if the UE supports either only UTRAN FDD or only UTRAN TDD&lt;br&gt; - UTRAN FDD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode, if the UE supports both UTRAN FDD and UTRAN TDD</td>
</tr>
<tr>
<td>23</td>
<td>- GERAN measurements, reporting and measurement reporting event B2 in E-UTRA connected mode</td>
</tr>
<tr>
<td>24</td>
<td>- 1xRTT measurements, reporting and measurement reporting event B2 in E-UTRA connected mode</td>
</tr>
<tr>
<td>25</td>
<td>- Inter-frequency measurements and reporting in E-UTRA connected mode &lt;br&gt; NOTE: The UE setting this bit to 1 and indicating support for FDD and TDD frequency bands in the UE capability signalling implements and is tested for FDD measurements while the UE is in TDD, and for TDD measurements while the UE is in FDD.</td>
</tr>
<tr>
<td>26</td>
<td>- HRPD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode</td>
</tr>
<tr>
<td>27</td>
<td>- EUTRA RRC_CONNECTED to UTRA FDD or UTRA TDD CELL_DCH CS handover, if the UE supports either only UTRAN FDD or only UTRAN TDD&lt;br&gt; - EUTRA RRC_CONNECTED to UTRA FDD CELL_DCH CS handover, if the UE supports both UTRAN FDD and UTRAN TDD&lt;br&gt; - related to SR-VCC&lt;br&gt; - can only be set to 1 if the UE has set bit number 8 to 1 and supports SR-VCC from EUTRA defined in TS 24.008 [49] &lt;br&gt; - If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0.</td>
</tr>
<tr>
<td>28</td>
<td>- TTI bundling</td>
</tr>
<tr>
<td>29</td>
<td>- Semi-Persistent Scheduling</td>
</tr>
<tr>
<td>30</td>
<td>- Handover between FDD and TDD&lt;br&gt; - can only be set to 1 if the UE has set bit number 13 to 1</td>
</tr>
<tr>
<td></td>
<td>Indicates whether the UE supports the mechanisms defined for cells broadcasting multi band information i.e. comprehending <code>multiBandInfoList</code>, disregarding in RRC_CONNECTED the related system information fields and understanding the EARFCN signalling for all bands, that overlap with the bands supported by the UE, and that are defined in the earliest version of TS 36.101 [42] that includes all UE supported bands.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>31</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

**NOTE:** The column FDD/ TDD diff indicates if the UE is allowed to signal different values for FDD and TDD.
Table B.1-1a: Definitions of feature group indicators
<table>
<thead>
<tr>
<th>Index of indicator</th>
<th>Definition</th>
<th>Notes</th>
<th>If indicated “Yes” the feature shall be implemented and successfully tested for this version of the specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(bit number)</td>
<td>(description of the supported functionality, if indicator set to one)</td>
<td></td>
<td>FDD/ TDD diff</td>
</tr>
</tbody>
</table>
| 33 (leftmost bit) | Inter-RAT ANR features for UTRAN FDD including:  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportStrongestCellsForSON  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportCGI | - can only be set to 1 if the UE has set bit number 5 and bit number 22 to 1. | Yes |
| 34                | Inter-RAT ANR features for GERAN including:  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportStrongestCells  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportCGI | - can only be set to 1 if the UE has set bit number 5 and bit number 23 to 1. | Yes |
| 35                | Inter-RAT ANR features for 1xRTT including:  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportStrongestCellsForSON  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportCGI | - can only be set to 1 if the UE has set bit number 5 and bit number 24 to 1. | Yes |
| 36                | Inter-RAT ANR features for HRPD including:  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportStrongestCellsForSON  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportCGI | - can only be set to 1 if the UE has set bit number 5 and bit number 26 to 1. | Yes |
| 37                | Inter-RAT ANR features for UTRAN TDD including:  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportStrongestCellsForSON  
|                   | - Inter-RAT periodical measurement reporting where triggerType is set to periodic and purpose is set to reportCGI | - can only be set to 1 if the UE has set bit number 5 and at least one of the bit number 22 (for UEs supporting only UTRA TDD) or the bit number 39 to 1. | Yes |
| 38                | EUTRA RRC_CONNECTED to UTRA TDD CELL_DCH PS handover, if the UE supports both UTRAN FDD and UTRAN TDD | - can only be set to 1 if the UE has set bit number 39 to 1 | Yes |
| 39                | UTRAN TDD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode, if the UE supports both UTRAN FDD and UTRAN TDD | - If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0. | Yes |
Clarification for mobility from EUTRAN and inter-frequency handover within EUTRAN

There are several feature groups related to mobility from E-UTRAN and inter-frequency handover within EUTRAN. The description of these features is based on the assumption that we have 5 main "functions" related to mobility from E-UTRAN:

A. Support of measurements and cell reselection procedure in idle mode
B. Support of RRC release with redirection procedure in connected mode
C. Support of Network Assisted Cell Change in connected mode
D. Support of measurements and reporting in connected mode
E. Support of handover procedure in connected mode

All functions can be applied for mobility to Inter-frequency to EUTRAN, GERAN, UTRAN, CDMA2000 HRPD and CDMA2000 1xRTT except for function C which is only applicable for mobility to GERAN. Table B.1-2 below summarises the mobility functions that are supported based on the UE capability signaling (band support) and the setting of the feature group support indicators.

<table>
<thead>
<tr>
<th>Feature Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>- EUTRA RRC_CONNECTED to UTRA TDD CELL_DCH CS handover, if the UE supports both UTRAN FDD and UTRAN TDD - related to SR-VCC - can only be set to 1 if the UE has set bit number 38 to 1</td>
</tr>
<tr>
<td>41</td>
<td>Measurement reporting event: Event B1 – Neighbour &gt; threshold for UTRAN FDD, if the UE supports UTRAN FDD and has set bit number 22 to 1 - If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0.</td>
</tr>
<tr>
<td>42</td>
<td>- DCI format 3a (TPC commands for PUCCH and PUSCH with single bit power adjustments) - If a category M1 or M2 UE supports this feature group, this bit shall be set to 1. For a UE of all other categories, this bit shall be set to 0.</td>
</tr>
<tr>
<td>43</td>
<td>Undefined</td>
</tr>
<tr>
<td>44</td>
<td>Undefined</td>
</tr>
<tr>
<td>45</td>
<td>Undefined</td>
</tr>
<tr>
<td>46</td>
<td>Undefined</td>
</tr>
<tr>
<td>47</td>
<td>Undefined</td>
</tr>
<tr>
<td>48</td>
<td>Undefined</td>
</tr>
<tr>
<td>49</td>
<td>Undefined</td>
</tr>
<tr>
<td>50</td>
<td>Undefined</td>
</tr>
<tr>
<td>51</td>
<td>Undefined</td>
</tr>
<tr>
<td>52</td>
<td>Undefined</td>
</tr>
<tr>
<td>53</td>
<td>Undefined</td>
</tr>
<tr>
<td>54</td>
<td>Undefined</td>
</tr>
<tr>
<td>55</td>
<td>Undefined</td>
</tr>
<tr>
<td>56</td>
<td>Undefined</td>
</tr>
<tr>
<td>57</td>
<td>Undefined</td>
</tr>
<tr>
<td>58</td>
<td>Undefined</td>
</tr>
<tr>
<td>59</td>
<td>Undefined</td>
</tr>
<tr>
<td>60</td>
<td>Undefined</td>
</tr>
<tr>
<td>61</td>
<td>Undefined</td>
</tr>
<tr>
<td>62</td>
<td>Undefined</td>
</tr>
<tr>
<td>63</td>
<td>Undefined</td>
</tr>
<tr>
<td>64</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

NOTE: The column FDD/ TDD diff indicates if the UE is allowed to signal different values for FDD and TDD. Annex E specifies for which TDD and FDD serving cells a UE supporting TDD/FDD CA shall support a feature for which it indicates support within the FGI signalling.
Table B.1-2: Mobility from E-UTRAN

<table>
<thead>
<tr>
<th>Feature</th>
<th>GERAN</th>
<th>UTRAN</th>
<th>HRPD</th>
<th>1xRTT</th>
<th>EUTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Measurements and cell reselection procedure in E-UTRA idle mode</td>
<td>Supported if GERAN band support is indicated</td>
<td>Supported if UTRAN band support is indicated</td>
<td>Supported if CDMA2000 HRPD band support is indicated</td>
<td>Supported if CDMA2000 1xRTT band support is indicated</td>
<td>Supported for supported bands</td>
</tr>
<tr>
<td>B. RRC release with blind redirection procedure in E-UTRA connected mode</td>
<td>Supported if GERAN band support is indicated</td>
<td>Supported if UTRAN band support is indicated</td>
<td>Supported if CDMA2000 HRPD band support is indicated</td>
<td>Supported if CDMA2000 1xRTT band support is indicated</td>
<td>Supported for supported bands</td>
</tr>
<tr>
<td>C. Cell Change Order (with or without) Network Assisted Cell Change) in E-UTRA connected mode</td>
<td>Group 10</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>D. Inter-frequency/RAT measurements, reporting and measurement reporting event B2 (for inter-RAT) in E-UTRA connected mode</td>
<td>Group 23</td>
<td>Group 22/39</td>
<td>Group 26</td>
<td>Group 24</td>
<td>Group 25</td>
</tr>
<tr>
<td>E. Inter-frequency/RAT handover procedure in E-UTRA connected mode</td>
<td>Group 9 (GSM_connected handover) Separate UE capability bit defined in TS 36.306 [5] for PS handover</td>
<td>Group 8/38 (PS handover) or Group 27/40 (SRVCC handover)</td>
<td>Group 12</td>
<td>Group 11</td>
<td>Group 13 (within FDD TDD) Group 30 (between FD and TDD)</td>
</tr>
</tbody>
</table>

In case measurements and reporting function is not supported by UE, the network may still issue the mobility procedures redirection (B) and CCO (C) in a blind fashion.

### B.2 CSG support

In this release of the protocol, it is mandatory for the UE to support a minimum set of CSG functionality consisting of:

- Identifying whether a cell is CSG or not;
- Ignoring CSG cells in cell selection/reselection.

Additional CSG functionality in AS, i.e. the requirement to detect and camp on CSG cells when the “CSG whitelist” is available or when manual CSG selection is triggered by the user, are related to the corresponding NAS features. This additional AS functionality consists of:

- Manual CSG selection;
- Autonomous CSG search;
- Implicit priority handling for cell reselection with CSG cells.

It is possible that this additional CSG functionality in AS is not supported or tested in early UE implementations.

Note that since the above AS features relate to idle mode operations, the capability support is not signalled to the network. For these reasons, no “feature group indicator” is assigned to this feature to indicate early support in Rel-8.
Annex C (normative): Release 10 AS feature handling

C.1 Feature group indicators

This annex contains the definitions of the bits in field featureGroupIndRel10.

In this release of the protocol, the UE shall include the field featureGroupIndRel10 in the IE UE-EUTRA-Capability-v1020-IEs. All the functionalities defined within the field featureGroupIndRel10 defined in Table C.1-1 are mandatory for the UE, if the related capability (spatial multiplexing in UL, PDSCH transmission mode 9, carrier aggregation, handover to EUTRA, or RAT) is also supported. For a specific indicator, if all functionalities for a feature group listed in Table C.1-1 have been implemented and tested, the UE shall set the indicator as one (1), else (i.e. if any one of the functionalities in a feature group listed in Table C.1-1 have not been implemented or tested), the UE shall set the indicator as zero (0).

The UE shall set all indicators that correspond to RATs not supported by the UE as zero (0).

The UE shall set all indicators, which do not have a definition in Table C.1-1, as zero (0).

If the optional field featureGroupIndRel10 is not included by a UE of a future release, the network may assume that all features, listed in Table C.1-1 and deployed in the network, have been implemented and tested by the UE.

The indexing in Table C.1-1 starts from index 101, which is the leftmost bit in the field featureGroupIndRel10.

### Table C.1-1: Definitions of feature group indicators

<table>
<thead>
<tr>
<th>Index of indicator</th>
<th>Definition (description of the supported functionality, if indicator set to one)</th>
<th>Notes</th>
<th>If indicated &quot;Yes&quot; the feature shall be implemented and successfully tested for this version of the specification</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>101 (leftmost bit)</td>
<td>- DMRS with OCC (orthogonal cover code) and SGH (sequence group hopping) disabling</td>
<td>- if the UE supports two or more layers for spatial multiplexing in UL, this bit shall be set to 1. &lt;br&gt; - If a category 0 or 1bis UE does not support this feature, this bit shall be set to 0.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>- Trigger type 1 SRS (aperiodic SRS) transmission (Up to X ports) &lt;br&gt; NOTE: X = number of supported layers on given band</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>- PDSCH transmission mode 9 when up to 4 CSI reference signal ports are configured and when not operating in CE mode</td>
<td>- for Category 8 UEs, this bit shall be set to 1.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>- PDSCH transmission mode 9 for TDD when 8 CSI reference signal ports are configured and when not operating in CE mode</td>
<td>- if the UE does not support TDD, this bit is irrelevant (capability signalling exists for FDD for this feature), and this bit shall be set to 0. &lt;br&gt; - for Category 8 UEs, this bit shall be set to 1.</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
### Table

| 105 | - Periodic CQI/PMI/RI reporting on PUCCH: Mode 2-0 – UE selected subband CQI without PMI, when PDSCH transmission mode 9 is configured  
- Periodic CQI/PMI/RI reporting on PUCCH: Mode 2-1 – UE selected subband CQI with single PMI, when PDSCH transmission mode 9 and up to 4 CSI reference signal ports are configured  
- this bit can be set to 1 only if indices 2 (Table B.1-1) and 103 are set to 1.  
- For UEs capable of TDD-FDD CA, this bit can be set to 1 for both FDD and TDD if index 2 is set to 1 for both FDD and TDD, and index 103 is set to 1 for at least one of FDD and TDD duplex modes. | Yes |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **106** | **- Periodic CQI/PMI/RI/PTI reporting on PUCCH: Mode 2-1 – UE selected subband CQI with single PMI, when PDSCH transmission mode 9 and 8 CSI reference signal ports are configured**  
- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if `tm9-With-8Tx-FDD-r10` is set to 'supported') and if index 2 (Table B.1-1) is set to 1.  
- For UEs capable of TDD-FDD CA, this bit can be set to 1 for both FDD and TDD if at least one of index 104 and `tm9-With-8Tx-FDD-r10` is set to 1/'supported', and if index 2 is set to 1 for both FDD and TDD.  
- For UEs capable of TDD-FDD CA, this bit can be set to 1 for both FDD and TDD if at least one of index 104 and `tm9-With-8Tx-FDD-r10` is set to 1/'supported'. | **Yes** |
| **107** | **- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-0 – UE selected subband CQI without PMI, when PDSCH transmission mode 9 is configured**  
- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-2 – UE selected subband CQI with multiple PMI, when PDSCH transmission mode 9 and up to 4 CSI reference signal ports are configured  
- this bit can be set to 1 only if indices 1 (Table B.1-1) and 103 are set to 1.  
- For UEs capable of TDD-FDD CA, this bit can be set to 1 for both FDD and TDD if index 1 is set to 1 for both FDD and TDD, and index 103 is set to 1 for at least one of FDD and TDD duplex modes. | **Yes** |
| **108** | **- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-2 – UE selected subband CQI with multiple PMI, when PDSCH transmission mode 9 and 8 CSI reference signal ports are configured**  
- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if `tm9-With-8Tx-FDD-r10` is set to 'supported') and if index 1 (Table B.1-1) is set to 1.  
- For UEs capable of TDD-FDD CA, this bit can be set to 1 for both FDD and TDD if at least one of index 104 and `tm9-With-8Tx-FDD-r10` is set to 1/'supported', and if index 1 is set to 1 for both FDD and TDD. | **Yes** |
| **109** | **- Periodic CQI/PMI/RI reporting on PUCCH Mode 1-1, submode 1**  
- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if `tm9-With-8Tx-FDD-r10` is set to 'supported').  
- For UEs capable of TDD-FDD CA, this bit can be set to 1 for both FDD and TDD if at least one of index 104 and `tm9-With-8Tx-FDD-r10` is set to 1/'supported'. | **Yes** |
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH Mode 1-1, submode 2</td>
<td>- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if tm9- With-8Tx-FDD-r10 is set to ‘supported’). - For UEs capable of TDD-FDD CA, this bit can be set to 1 for both FDD and TDD if at least one of index 104 and tm9-With-8Tx-FDD-r10 is set to 1/ ‘supported’.</td>
</tr>
<tr>
<td>111</td>
<td>- Measurement reporting trigger Event A6</td>
<td>- this bit can be set to 1 only if the UE supports carrier aggregation.</td>
</tr>
<tr>
<td>112</td>
<td>- SCell addition within the handover to EUTRA procedure</td>
<td>- this bit can be set to 1 only if the UE supports carrier aggregation and the handover to EUTRA procedure.</td>
</tr>
<tr>
<td>113</td>
<td>- Trigger type 0 SRS (periodic SRS) transmission on X Serving Cells</td>
<td>- this bit can be set to 1 only if the UE supports carrier aggregation in UL.</td>
</tr>
<tr>
<td>114</td>
<td>- Reporting of both UTRA CPICH RSCP and Ec/N0 in a Measurement Report</td>
<td>- this bit can be set to 1 only if index 22 (Table B.1-1) is set to 1.</td>
</tr>
<tr>
<td>115</td>
<td>- time domain ICIC RLM/RRM measurement subframe restriction for the serving cell - time domain ICIC RRM measurement subframe restriction for neighbour cells - time domain ICIC CSI measurement subframe restriction</td>
<td>- If a category M1 or M2 UE does not support this feature group, this bit shall be set to 0.</td>
</tr>
<tr>
<td>116</td>
<td>- Relative transmit phase continuity for spatial multiplexing in UL</td>
<td>- this bit can be set to 1 only if the UE supports two or more layers for spatial multiplexing in UL.</td>
</tr>
<tr>
<td>117</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Undefined</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Undefined</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The column FDD/ TDD diff indicates if the UE is allowed to signal different values for FDD and TDD. Annex E specifies for which TDD and FDD serving cells a UE supporting TDD/FDD CA shall support a feature for which it indicates support within the FGI signalling.
Annex D (informative): Descriptive background information

D.1 Signalling of Multiple Frequency Band Indicators (Multiple FBI)

D.1.1 Mapping between frequency band indicator and multiple frequency band indicator

This subclause describes the use of the Multiple Frequency Band Indicator (MFBI) lists and the E-UTRA frequency bands in SystemInformationBlockType1 by means of an example as shown in Figure D.1.1-1. In this example:
- E-UTRAN cell belongs to band B90 and also bands B6, B7, B91, and B92.
- The freqBandIndicatorPriority field is not present in SystemInformationBlockType1.
- E-UTRAN uses B64 to indicate the presence of B90 in freqBandIndicator-v9e0.
- For the MFBI list of this cell, E-UTRAN uses B64 in MultiBandInfoList to indicate the position and priority of the bands in MultiBandInfoList-v9e0.
- The UE, after reading SystemInformationBlockType1, generates an MFBI list with priority of B91, B6, B92, and B7. If the UE supports the frequency band in the freqBandIndicator-v9e0 IE it applies that frequency band. Otherwise, the UE applies the first listed band in the MFBI list which it supports.

![Diagram](image-url)

Figure D.1.1-1: Mapping of frequency bands to MultiBandInfoList/MultiBandInfoList-v9e0

D.1.2 Mapping between inter-frequency neighbour list and multiple frequency band indicator

This subclause describes the use of the Multiple Frequency Band Indicator (MFBI) lists and the E-UTRA frequencies signalled in SystemInformationBlockType5 by means of an example as shown in Figure D.1.2-1. In this example:
- E-UTRAN includes 4 frequencies (EARFCNs): the bands associated with f1 and f4 belong to bands lower than 64; the bands associated with f2 and f3 belong to bands larger than 64. The reserved EARFCN value of 65535 is used to indicate the presence of ARFCN-ValueEUTRA-v9e0.
- The band associated with f1 has two overlapping bands, B1 and B2 (lower than 64); the band associated with f2 has one overlapping band, B91; the band associated with f3 has four overlapping bands B3, B4, B92, and B93; and the band associated with f4 does not have overlapping bands.

- E-UTRAN includes 4 lists in both `interFreqCarrierFreqList-v8h0` and `interFreqCarrierFreqList-v9e0` and ensure the order of the lists is matching. Each list corresponds to one EARFCN and contains up to 8 bands. The first list corresponds to f1, the second list corresponds to f2, and so on. The grey lists mean not including `MultiBandInfoList` or `MultiBandInfoList-v9e0`, i.e. the corresponding EARFCN does not have any overlapping frequency bands in `MultiBandInfoList` or `MultiBandInfoList-v9e0`.

![Diagram](image)

Figure D.1.2-1: Mapping of EARFCNs to MultiBandInfoList/MultiBandInfoList-v9e0

D.1.3 Mapping between UTRA FDD frequency list and multiple frequency band indicator

This subclause describes the use of the Multiple Frequency Band Indicator (MFBI) lists and the UTRA FDD frequencies signalled in `SystemInformationBlockType6` by means of an example as shown in Figure D.1.3-1. In this example:

- E-UTRAN includes 4 UTRA FDD frequencies (UARFCNs).

- The bands associated with f1 and f4 have no overlapping bands. The band associated with f2 has two overlapping bands, B1 and B2. The band associated with f3 has one overlapping band, B3.

- E-UTRAN includes 4 lists in `carrierFreqListUTRA-FDD-v8h0` with the first and fourth entry not including `MultiBandInfoList`.

![Diagram](image)
Figure D.1.3-1: Mapping of UARFCNs to *MultiBandInfoList*
Annex E (normative):
TDD/FDD differentiation of FGIs/capabilities in TDD-FDD CA

Annex E specifies for which TDD and FDD serving cells a UE supporting TDD/FDD CA shall support a feature/capability for which it indicates support within the FGI/capability signalling.

A UE that indicates support for TDD/ FDD CA:

- For the fields for which the UE is allowed to indicate different support for FDD and TDD, the UE shall support the feature on the PCell and/or SCell(s), as specified in tables E-1, E-2 and E-3 in accordance to the following rules:
  - PCell: the UE shall support the feature for the PCell, if the UE indicates support of the feature for the PCell duplex mode;
  - SCell: the UE shall support the feature for SCell(s), if the UE indicates support of the feature for the SCell duplex mode;
  - Per serving cell: the UE shall support the feature for a serving cell if the UE indicates support of the feature for the serving cell's duplex mode;
  - All serving cells: UE shall support the feature if the UE indicates support of the feature for both TDD and FDD duplex modes;
- For the fields where the UE is not allowed to indicate different support for FDD and TDD, the UE shall support the feature for PCell and SCell(s) if the UE indicates support of the feature via the common FGI/capability bit.

Table E-1: Rel-8/9 FGIs for which FDD/TDD differentiation is allowed (from Annex B)

<table>
<thead>
<tr>
<th>Index of indicator</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>2</td>
<td>All serving cells</td>
</tr>
<tr>
<td>4</td>
<td>All serving cells</td>
</tr>
<tr>
<td>8</td>
<td>PCell</td>
</tr>
<tr>
<td>9</td>
<td>PCell</td>
</tr>
<tr>
<td>10</td>
<td>PCell</td>
</tr>
<tr>
<td>11</td>
<td>PCell</td>
</tr>
<tr>
<td>12</td>
<td>PCell</td>
</tr>
<tr>
<td>15</td>
<td>PCell</td>
</tr>
<tr>
<td>19</td>
<td>PCell</td>
</tr>
<tr>
<td>22</td>
<td>PCell</td>
</tr>
<tr>
<td>23</td>
<td>PCell</td>
</tr>
<tr>
<td>24</td>
<td>PCell</td>
</tr>
<tr>
<td>26</td>
<td>PCell</td>
</tr>
<tr>
<td>27</td>
<td>PCell</td>
</tr>
<tr>
<td>28</td>
<td>PCell</td>
</tr>
<tr>
<td>29</td>
<td>PCell</td>
</tr>
<tr>
<td>33</td>
<td>PCell</td>
</tr>
<tr>
<td>34</td>
<td>PCell</td>
</tr>
<tr>
<td>35</td>
<td>PCell</td>
</tr>
<tr>
<td>36</td>
<td>PCell</td>
</tr>
<tr>
<td>37</td>
<td>PCell</td>
</tr>
<tr>
<td>38</td>
<td>PCell</td>
</tr>
<tr>
<td>39</td>
<td>PCell</td>
</tr>
<tr>
<td>40</td>
<td>PCell</td>
</tr>
<tr>
<td>41</td>
<td>PCell</td>
</tr>
</tbody>
</table>
Table E-2: Rel-10 FGIs for which FDD/TDD differentiation is allowed (from Annex C)

<table>
<thead>
<tr>
<th>Index of indicator</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>103</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>105</td>
<td>All serving cells</td>
</tr>
<tr>
<td>106</td>
<td>All serving cells</td>
</tr>
<tr>
<td>107</td>
<td>All serving cells</td>
</tr>
<tr>
<td>108</td>
<td>All serving cells</td>
</tr>
<tr>
<td>109</td>
<td>All serving cells</td>
</tr>
<tr>
<td>110</td>
<td>All serving cells</td>
</tr>
<tr>
<td>111</td>
<td>SCell</td>
</tr>
<tr>
<td>112</td>
<td>PCell</td>
</tr>
<tr>
<td>113</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>115</td>
<td>PCell</td>
</tr>
<tr>
<td>116</td>
<td>Per serving cell</td>
</tr>
</tbody>
</table>

Table E-3: Rel-12 UE-EUTRA capabilities for which FDD/TDD differentiation is allowed

<table>
<thead>
<tr>
<th>UE-EUTRA-Capability</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>crossCarrierScheduling</td>
<td>All serving cells</td>
</tr>
<tr>
<td>e-CSFB-1XRTT</td>
<td>PCell</td>
</tr>
<tr>
<td>e-CSFB-ConcPS-Mob1XRTT</td>
<td>PCell</td>
</tr>
<tr>
<td>e-CSFB-dual-1XRTT</td>
<td>PCell</td>
</tr>
<tr>
<td>ePDCCH</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>e-RedirectionUTRA</td>
<td>PCell</td>
</tr>
<tr>
<td>e-RedirectionUTRA-TDD</td>
<td>PCell</td>
</tr>
<tr>
<td>inDeviceCoexInd</td>
<td>All serving cells</td>
</tr>
<tr>
<td>interFreqRSTD-Measurement</td>
<td>PCell</td>
</tr>
<tr>
<td>interFreqSI-AcquisitionForHO</td>
<td>PCell</td>
</tr>
<tr>
<td>interRAT-PS-HO-ToGERAN</td>
<td>PCell</td>
</tr>
<tr>
<td>intraFreqSI-AcquisitionForHO</td>
<td>PCell</td>
</tr>
<tr>
<td>mbms-Scell</td>
<td>SCell</td>
</tr>
<tr>
<td>mbms-NonServingCell</td>
<td>SCell</td>
</tr>
<tr>
<td>multiACK-CSIreporting</td>
<td>PCell</td>
</tr>
<tr>
<td>multiClusterPUSCH-WithinCC</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>otdoa-UE-Assisted</td>
<td>PCell</td>
</tr>
<tr>
<td>pmi-Disabling</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>rsrqMeasWideband</td>
<td>Per serving cell</td>
</tr>
<tr>
<td>simultaneousPUCCH-PUSCH</td>
<td>All serving cells</td>
</tr>
<tr>
<td>ss-CCH-InterHandl</td>
<td>PCell</td>
</tr>
<tr>
<td>txDiv-PUCCH1b-ChSelect</td>
<td>PCell</td>
</tr>
<tr>
<td>ue-TxAntennaSelectionSupported</td>
<td>All serving cells</td>
</tr>
<tr>
<td>utran-SI-AcquisitionForHO</td>
<td>PCell</td>
</tr>
</tbody>
</table>
Annex F (normative): UE requirements on ASN.1 comprehension

This subclause specifies UE requirements regarding the ASN.1 transfer syntax support i.e. the ASN.1 definitions to be comprehended by the UE.

A UE that indicates release X in field accessStratumRelease shall comprehend the entire transfer syntax (ASN.1) of release X, in particular at least the first version upon ASN.1 freeze. The UE is however not required to support dedicated signalling related transfer syntax associated with optional features it does not support.

In case a UE that indicates release X in field accessStratumRelease supports a feature specified in release X+ N (i.e. early UE implementation) additional requirements apply.

Critical extensions (dedicated signaling)

If the early implemented feature involves one or more critical extensions (i.e. case of dedicated signaling), the UE shall comprehend the parts of the transfer syntax (ASN.1) of release X+ N that are related to the feature implemented early. This in particular concerns the ASN.1 parts related to configuration of the feature. The UE obviously also has to support the ASN.1 parts related to indicating support of the feature (in UE capabilities).

If configuration of an early implemented feature introduced in release X+ N involves a message or field that has been critically extended, the UE shall support configuration of all features supported by the UE that are associated with sub-fields of this critical extension. Apart from the early implemented feature(s), the UE need however not support functionality beyond what is defined in the release the UE indicates in access stratum release.

Let’s consider the example of a UE indicating value X in field accessStratumRelease that supports the features associated with fields A1, A3 and A5 of InformationElementA (see ASN.1 below). The feature implemented early is associated with field A5, and can only be configured by the –rX+N version of InformationElementA. In such case, the UE should support configuration of the features associated with fields A1, A3 and A5 by the –rX+N version of InformationElementA. If however one of the features was modified, e.g. the feature associated with field A3, E-UTRAN should assume the UE only supports the feature according to the release it indicated in field accessStratumRelease (X). I.e. UE is neither required to support the additional code-point (n80-vX+N0) nor the additional sub-field (fieldA3a).

| InformationElementA-rX ::= SEQUENCE { |
| fieldA1-rX          InformationElementA1-rX OPTIONAL, -- Need ON |
| fieldA2-rX          InformationElementA2-rX OPTIONAL, -- Need OR |
| fieldA3-rX          InformationElementA3-rX OPTIONAL -- Need OR |
| } |

| InformationElementA-rX+N ::= SEQUENCE { |
| fieldA1-rX+N        InformationElementA1-rX OPTIONAL, -- Need ON |
| fieldA2-rX+N        InformationElementA2-rX OPTIONAL, -- Need OR |
| fieldA3-rX+N        InformationElementA3-rX+N OPTIONAL, -- Need OR |
| fieldA4-rX+N        InformationElementA4-rX+N OPTIONAL, -- Need OR |
| fieldA5-rX+N        InformationElementA5-rX+N OPTIONAL -- Need OR |
| } |

| InformationElementA3-rX+N ::= SEQUENCE { |
| fieldA1a-rX+N       InformationElementA1a-rX OPTIONAL, -- Need ON |
| fieldA2a-rX+N       ENUMERATED {n10, n20, n40, n80-vX+N0} OPTIONAL, -- Need OR |
| fieldA3a-rX+N       InformationElementA3a-rX+N OPTIONAL -- Need OR |
| } |

Non-critical extensions (broadcast signaling)

If the early implemented feature involves one or more non-critical extensions in broadcast signaling (i.e. system information), the UE shall comprehend the parts of the transfer syntax (ASN.1) of release X+ N that are related to the feature implemented early. The SIB(s) containing the release X+ N fields related to the early implemented features may also include other extensions concerning releases from X upto X+N. The UE shall comprehend such intermediate fields (but again is not required to support the functionality associated with these intermediate fields, in case this concerns optional features not supported by the UE).
Annex G (informative):
Change history
3GPP TS 36.331 version 14.6.2 Release 14

754

ETSI TS 136 331 V14.6.2 (2018-04)

Change history
Date

TSG # TSG Doc.

CR

Rev Cat

12/2007
03/2008
03/2008
05/2008
09/2008
12/2008
03/2009

RP-38
RP-39
RP-39
RP-40
RP-41
RP-42
RP-43

RP-070920
RP-080163
RP-080164
RP-080361
RP-080693
RP-081021
RP-090131

0001
0002
0003
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

4
2
1
1
1
1
1
1
1

RP-43

RP-090131
RP-090133
RP-090131

0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0036
0037
0038
0039
0040
0041
0042
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0063

1
1
1
1
2
1
1
1
1
1
1
3
-

RP-43
RP-43
RP-43
RP-43
RP-43
RP-43
RP-43
RP-43
RP-43

RP-090131
RP-090131
RP-090131
RP-090131
RP-090131
RP-090367
RP-090131
RP-090131
RP-090131

0066
0067
0069
0071
0072
0077
0078
0079
0080

1
1
6
1
-

Subject/Comment
Approved at TSG-RAN #38 and placed under Change Control
CR to 36.331 with Miscellaneous corrections
CR to 36.331 to convert RRC to agreed ASN.1 format
CR to 36.331 on Miscellaneous clarifications/ corrections
CR on Miscellaneous corrections and clarifications
Miscellaneous corrections and clarifications
Correction to the Counter Check procedure
CR to 36.331-UE Actions on Receiving SIB11
Spare usage on BCCH
Issues in handling optional IE upon absence in GERAN NCL
CR to 36.331 on Removal of useless RLC re-establishment at RB release
Clarification to RRC level padding at PCCH and BCCH
Removal of Inter-RAT message
Padding of the SRB-ID for security input
Validity of ETWS SIB
Configuration of the Two-Intervals-SPS
Corrections on Scaling Factor Values of Qhyst
Optionality of srsMaxUppts
CR for discussion on field name for common and dedicated IE
Corrections to Connected mode mobility
Clarification regarding the measurement reporting procedure
Corrections on s-Measure
R1 of CR0023 (R2-091029) on combination of SPS and TTI bundling for
TDD
L3 filtering for path loss measurements
S-measure handling for reportCGI
Measurement configuration clean up
Alignment of measurement quantities for UTRA
CR to 36.331 on L1 parameters ranges alignment
Default configuration for transmissionMode
CR to 36.331 on RRC Parameters for MAC, RLC and PDCP
CR to 36.331 - Clarification on Configured PRACH Freq Offset
Clarification on TTI bundling configuration
Update of R2-091039 on Inter-RAT UE Capability
Feature Group Support Indicators
Corrections to RLF detection
Indication of Dedicated Priority
Security Clean up
Correction of TTT value range
Correction on CDMA measurement result IE
Clarification of Measurement Reporting
Spare values in DL and UL Bandwidth in MIB and SIB2
Clarifications to System Information Block Type 8
Reception of ETWS secondary notification
Validity time for ETWS message Id and Sequence No
CR for Timers and constants values used during handover to E-UTRA
Inter-RAT Security Clarification
CR to 36.331 on consistent naming of 1xRTT identifiers
Capturing RRC behavior regarding NAS local release
Report CGI before T321 expiry and UE null reporting
System Information and 3 hour validity
Inter-Node AS Signalling
Set of values for the parameter "messagePowerOffsetGroupB"
CR to paging reception for ETWS capable UEs in RRC_CONNECTED
CR for CSG related items in 36.331
SRS common configuration
RRC processing delay
CR for HNB Name
Handover to EUTRA delta configuration
Delivery of Message Identifier and Serial Number to upper layers for
ETWS
Clarification on the maximum size of cell lists
Missing RRC messages in 'Protection of RRC messages'
Clarification on NAS Security Container
Extension of range of CQI/PMI configuration index
Access barring alleviation in RRC connection establishment
Corrections to feature group support indicators
CR from email discussion to capture DRX and TTT handling
Need Code handling on BCCH messages
Unification of T300 and T301 and removal of miscallaneous FFSs

ETSI

New
version
8.0.0
8.1.0
8.1.0
8.2.0
8.3.0
8.4.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0
8.5.0


<table>
<thead>
<tr>
<th>CR</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-43 RP-090131 0084</td>
<td>Proposed CR modifying the code-point definitions of neighbourCellConfiguration</td>
</tr>
<tr>
<td>RP-43 RP-090131 0087</td>
<td>Remove Redundant Optionality in SIB8</td>
</tr>
<tr>
<td>RP-43 RP-090131 0089</td>
<td>Corrections to the generic error handing</td>
</tr>
<tr>
<td>RP-43 RP-090131 0090</td>
<td>Configurability of T301</td>
</tr>
<tr>
<td>RP-43 RP-090131 0091</td>
<td>Correction related to TTT</td>
</tr>
<tr>
<td>RP-43 RP-090131 0095</td>
<td>CR for 36.331 on SPS-config</td>
</tr>
<tr>
<td>RP-43 RP-090131 0096</td>
<td>CR for Deactivation of periodical measurement</td>
</tr>
<tr>
<td>RP-43 RP-090131 0099</td>
<td>SMC and reconfiguration</td>
</tr>
<tr>
<td>RP-43 RP-090131 0101</td>
<td>TDD handover</td>
</tr>
<tr>
<td>RP-43 RP-090131 0102</td>
<td>Corrections to system information acquisition</td>
</tr>
<tr>
<td>RP-43 RP-090131 0106</td>
<td>Some Corrections and Clarifications to 36.331</td>
</tr>
<tr>
<td>RP-43 RP-090131 0109</td>
<td>Clarification on the Maximum number of RCH context session parameter</td>
</tr>
<tr>
<td>RP-43 RP-090131 0110</td>
<td>Transmission of rm-Config at Inter-RAT Handover</td>
</tr>
<tr>
<td>RP-43 RP-090131 0111</td>
<td>Use of SameRefSignalsInNeighbor parameter</td>
</tr>
<tr>
<td>RP-43 RP-090131 0112</td>
<td>Default serving cell offset for measurement event A3</td>
</tr>
<tr>
<td>RP-43 RP-090131 0114</td>
<td>di-EARFCN missing in HandoverPreparationInformation</td>
</tr>
<tr>
<td>RP-43 RP-090131 0115</td>
<td>Cleanup of references to 36.101</td>
</tr>
<tr>
<td>RP-43 RP-090131 0117</td>
<td>Correction to the value range of UE-Categories</td>
</tr>
<tr>
<td>RP-43 RP-090131 0122</td>
<td>Correction on RRC connection re-establishment</td>
</tr>
<tr>
<td>RP-43 RP-090131 0124</td>
<td>Performing Measurements to report CGI for CDMA2000</td>
</tr>
<tr>
<td>RP-43 RP-090131 0125</td>
<td>CDMA2000-SystemTimeInfo in VarMeasurementConfiguration</td>
</tr>
<tr>
<td>RP-43 RP-090131 0126</td>
<td>UE Capability Information for CDMA2000 1xRTT</td>
</tr>
<tr>
<td>RP-43 RP-090131 0127</td>
<td>CDMA2000 related editorial changes</td>
</tr>
<tr>
<td>RP-43 RP-090131 0128</td>
<td>Draft CR to 36.331 on State mismatch recovery at re-establishment</td>
</tr>
<tr>
<td>RP-43 RP-090131 0129</td>
<td>Draft CR to 36.331 on Renaming of AC barring related IEs</td>
</tr>
<tr>
<td>RP-43 RP-090131 0130</td>
<td>Draft CR to 36.331 on Inheriting of dedicated priorities at inter-RAT reselection</td>
</tr>
<tr>
<td>RP-43 RP-090131 0135</td>
<td>Proposed CR to 36.331 Description alignment for paging parameter, nb</td>
</tr>
<tr>
<td>RP-43 RP-090131 0139</td>
<td>Miscellaneous corrections and clarifications resulting from ASN.1 review</td>
</tr>
<tr>
<td>RP-43 RP-090131 0141</td>
<td>Correction regarding Redirection Information to GERAN</td>
</tr>
<tr>
<td>RP-43 RP-090131 0142</td>
<td>Further ASN.1 review related issues</td>
</tr>
<tr>
<td>RP-43 RP-090131 0143</td>
<td>Periodic measurements</td>
</tr>
<tr>
<td>RP-43 RP-090131 0144</td>
<td>Further analysis on code point “OFF” for ri-ConfigIndex</td>
</tr>
<tr>
<td>RP-43 RP-090131 0145</td>
<td>Adding and deleting same measurement or configuration in one message</td>
</tr>
<tr>
<td>RP-43 RP-090131 0147</td>
<td>Corrections to IE dataCodingScheme in SIB11</td>
</tr>
<tr>
<td>RP-43 RP-090131 0148</td>
<td>Clarification on Mobility from E-UTRA</td>
</tr>
<tr>
<td>RP-43 RP-090131 0149</td>
<td>36.331 CR related to “not applicable”</td>
</tr>
<tr>
<td>RP-43 RP-090131 0150</td>
<td>UE radio capability transfer</td>
</tr>
<tr>
<td>RP-43 RP-090131 0151</td>
<td>CR to 36.331 on value of CDMA band classes</td>
</tr>
<tr>
<td>RP-43 RP-090131 0152</td>
<td>Corrections to DRB modification</td>
</tr>
<tr>
<td>RP-43 RP-090131 0153</td>
<td>Correction to presence condition for pdcp-config</td>
</tr>
<tr>
<td>RP-43 RP-090131 0155</td>
<td>TDD HARQ-ACK feedback mode</td>
</tr>
<tr>
<td>RP-43 RP-090275 0157</td>
<td>Corrections regarding use of carrierFreq for CDMA (SIB8) and GERAN (measObject)</td>
</tr>
<tr>
<td>RP-43 RP-090321 0156</td>
<td>Sending of GERAN SI/PSI information at Inter-RAT Handover</td>
</tr>
<tr>
<td>RP-43 RP-090339 0158</td>
<td>Clarification of CSG support</td>
</tr>
<tr>
<td>06/2009</td>
<td>04</td>
</tr>
<tr>
<td>RP-44 RP-090516 0159</td>
<td>Minor corrections to the feature grouping</td>
</tr>
<tr>
<td>RP-44 RP-090516 0160</td>
<td>Security clarification</td>
</tr>
<tr>
<td>RP-44 RP-090516 0161</td>
<td>Sending of GERAN SI/PSI information at Inter-RAT Handover</td>
</tr>
<tr>
<td>RP-44 RP-090516 0163</td>
<td>Correction of UE measurement model</td>
</tr>
<tr>
<td>RP-44 RP-090516 0164</td>
<td>Restricting the reconfiguration of UM RLC SN field size</td>
</tr>
<tr>
<td>RP-44 RP-090516 0165</td>
<td>36.331 CR on Clarification on cell change order from GERAN to E-UTRAN</td>
</tr>
<tr>
<td>RP-44 RP-090516 0166</td>
<td>36.331 CR - Handling of expired TAT and failed D-SR</td>
</tr>
<tr>
<td>RP-44 RP-090516 0167</td>
<td>Proposed CR to 36.331 Clarification on mandatory information in AS-Config</td>
</tr>
<tr>
<td>RP-44 RP-090516 0168</td>
<td>Miscellaneous small corrections</td>
</tr>
<tr>
<td>RP-44 RP-090516 0173</td>
<td>Clarification on the basis of delta signalling</td>
</tr>
<tr>
<td>RP-44 RP-090516 0177</td>
<td>CR on Alignment of CCCH and DCCH handling of missing mandatory field</td>
</tr>
<tr>
<td>RP-44 RP-090516 0180</td>
<td>Handling of Measurement Context During HO Preparation</td>
</tr>
<tr>
<td>RP-44 RP-090516 0181</td>
<td>Clarification of key-eNodeB-Star in AdditionalReestableInfo</td>
</tr>
<tr>
<td>RP-44 RP-090516 0182</td>
<td>UE Capability Transfer</td>
</tr>
<tr>
<td>RP-44 RP-090516 0186</td>
<td>Clarification regarding mobility from E-UTRA in-between SMC and SRB2/DRB setup</td>
</tr>
<tr>
<td>RP-44 RP-090516 0188</td>
<td>Correction and completion of specification conventions</td>
</tr>
<tr>
<td>RP-44 RP-090516 0195</td>
<td>RB combination in feature group indicator</td>
</tr>
<tr>
<td>RP-44 RP-090516 0196</td>
<td>CR for need code for fields in mobilityControlInfo</td>
</tr>
<tr>
<td>RP-44 RP-090497 0197</td>
<td>Alignment of pusch-HoppingOffset with 36.211</td>
</tr>
<tr>
<td>RP-44 RP-090570 0198</td>
<td>Explicit srb-Identity values for SRB1 and SRB2</td>
</tr>
<tr>
<td>RP-44 RP-090516 0199</td>
<td>Removing use of defaultValue for mac-DefaultConfig</td>
</tr>
<tr>
<td>09/2009</td>
<td>45</td>
</tr>
<tr>
<td>CR</td>
<td>Enhancement or Change</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
</tr>
<tr>
<td>RP-45</td>
<td>0201</td>
</tr>
<tr>
<td>RP-45</td>
<td>0202</td>
</tr>
<tr>
<td>RP-45</td>
<td>0203</td>
</tr>
<tr>
<td>RP-45</td>
<td>0204</td>
</tr>
<tr>
<td>RP-45</td>
<td>0205</td>
</tr>
<tr>
<td>RP-45</td>
<td>0206</td>
</tr>
<tr>
<td>RP-45</td>
<td>0207</td>
</tr>
<tr>
<td>RP-45</td>
<td>0210</td>
</tr>
<tr>
<td>RP-45</td>
<td>0213</td>
</tr>
<tr>
<td>RP-45</td>
<td>0218</td>
</tr>
<tr>
<td>RP-45</td>
<td>0224</td>
</tr>
<tr>
<td>RP-45</td>
<td>0250</td>
</tr>
<tr>
<td>RP-45</td>
<td>0251</td>
</tr>
<tr>
<td>09/2009</td>
<td>0220</td>
</tr>
<tr>
<td>RP-45</td>
<td>0222</td>
</tr>
<tr>
<td>RP-45</td>
<td>0223</td>
</tr>
<tr>
<td>RP-45</td>
<td>0230</td>
</tr>
<tr>
<td>RP-45</td>
<td>0243</td>
</tr>
<tr>
<td>RP-45</td>
<td>0247</td>
</tr>
<tr>
<td>RP-45</td>
<td>0252</td>
</tr>
<tr>
<td>12/2009</td>
<td>0253</td>
</tr>
<tr>
<td>RP-45</td>
<td>0254</td>
</tr>
<tr>
<td>RP-46</td>
<td>0256</td>
</tr>
<tr>
<td>RP-46</td>
<td>0257</td>
</tr>
<tr>
<td>RP-46</td>
<td>0258</td>
</tr>
<tr>
<td>RP-46</td>
<td>0260</td>
</tr>
<tr>
<td>RP-46</td>
<td>0261</td>
</tr>
<tr>
<td>RP-46</td>
<td>0263</td>
</tr>
<tr>
<td>RP-46</td>
<td>0265</td>
</tr>
<tr>
<td>RP-46</td>
<td>0266</td>
</tr>
<tr>
<td>RP-46</td>
<td>0267</td>
</tr>
<tr>
<td>RP-46</td>
<td>0268</td>
</tr>
<tr>
<td>RP-46</td>
<td>0269</td>
</tr>
<tr>
<td>RP-46</td>
<td>0271</td>
</tr>
<tr>
<td>RP-46</td>
<td>0272</td>
</tr>
<tr>
<td>RP-46</td>
<td>0273</td>
</tr>
<tr>
<td>RP-46</td>
<td>0274</td>
</tr>
<tr>
<td>RP-46</td>
<td>0276</td>
</tr>
<tr>
<td>RP-46</td>
<td>0277</td>
</tr>
<tr>
<td>RP-46</td>
<td>0281</td>
</tr>
<tr>
<td>RP-46</td>
<td>0285</td>
</tr>
<tr>
<td>RP-46</td>
<td>0288</td>
</tr>
<tr>
<td>RP-46</td>
<td>0297</td>
</tr>
<tr>
<td>RP-46</td>
<td>0298</td>
</tr>
<tr>
<td>RP-46</td>
<td>0301</td>
</tr>
<tr>
<td>RP-46</td>
<td>0305</td>
</tr>
<tr>
<td>RP-46</td>
<td>0306</td>
</tr>
<tr>
<td>RP-46</td>
<td>0309</td>
</tr>
<tr>
<td>RP-46</td>
<td>0311</td>
</tr>
<tr>
<td>RP-46</td>
<td>0316</td>
</tr>
<tr>
<td>RP-46</td>
<td>0318</td>
</tr>
<tr>
<td>RP-46</td>
<td>0322</td>
</tr>
<tr>
<td>03/2010</td>
<td>0327</td>
</tr>
<tr>
<td>RP-47</td>
<td>0331</td>
</tr>
<tr>
<td>RP-47</td>
<td>0332</td>
</tr>
<tr>
<td>RP-47</td>
<td>0333</td>
</tr>
<tr>
<td>RP-47</td>
<td>0334</td>
</tr>
<tr>
<td>RP-47</td>
<td>0335</td>
</tr>
<tr>
<td>RP-47</td>
<td>0336</td>
</tr>
<tr>
<td>RP-47</td>
<td>0337</td>
</tr>
<tr>
<td>RP-47</td>
<td>0338</td>
</tr>
<tr>
<td>RP-47</td>
<td>0339</td>
</tr>
<tr>
<td>RP-47</td>
<td>0340</td>
</tr>
<tr>
<td>RP-47</td>
<td>0341</td>
</tr>
<tr>
<td>RP-47</td>
<td>0342</td>
</tr>
<tr>
<td>RP-47</td>
<td>0343</td>
</tr>
<tr>
<td>RP-47</td>
<td>0344</td>
</tr>
<tr>
<td>RP-47</td>
<td>0345</td>
</tr>
</tbody>
</table>
RP-47 RP-100308 0346 - Introduction of power-limited device indication in UE capability. 9.2.0
RP-47 RP-100305 0347 - Missing agreement in MCCH change notification. 9.2.0
RP-47 RP-100305 0348 1 Corrections related to MCCH change notification and value ranges 9.2.0
RP-47 RP-100306 0349 2 Prohibit timer for proximity indication 9.2.0
RP-47 RP-100306 0350 1 Proximity Indication after handover and re-establishment 9.2.0
RP-47 RP-100305 0351 - Specifying the exact mapping of notificationIndicator in SIB13 to PDCCH bits 9.2.0
RP-47 RP-100308 0352 - Corrections out of ASN.1 review scope 9.2.0
RP-47 RP-100308 0353 - CR on clarification of system information change 9.2.0
RP-47 RP-100304 0361 - Correction on the range of UE Rx-1x time difference measurement result 9.2.0
RP-47 RP-100305 0362 - Small clarifications regarding MBMS 9.2.0
RP-47 RP-100308 0363 - Introduction of REL-9 indication within field accessStratumRelease 9.2.0
RP-47 RP-100306 0364 - Extending mobility description to cover inbound mobility 9.2.0
RP-47 RP-100308 0365 1 Clarification regarding enhanced CSFB to 1XRTT 9.2.0
RP-47 RP-100308 0368 - Handling of dedicated RLF timers 9.2.0
RP-47 RP-100305 0370 1 Clarification on UE’s behavior of receiving MBMS service 9.2.0
RP-47 RP-100305 0371 - MBMS Service ID and Session ID 9.2.0
RP-47 RP-100305 0372 1 Inclusion of non-MBSFN region length in SIB13 9.2.0
RP-47 RP-100309 0374 1 CR to 36.331 for 1xVCSFB access class barring parameters in SIB8 9.2.0
RP-47 RP-100308 0375 - Multiple 1XRTT/HRPD target cells in MobilityFromUTRACommand 9.2.0
RP-47 RP-100308 0376 - Independent support indicators for Dual-Rx CSFB and S102 in SIB8 9.2.0
RP-47 RP-100285 0378 - Clarification on DRX StartOffset for TDD 9.2.0
RP-47 RP-100308 0379 1 Miscellaneous corrections from REL-9 ASN.1 review 9.2.0
RP-47 RP-100308 0381 - Need codes and missing conventions 9.2.0
RP-47 RP-100308 0383 1 Introduction of Full Configuration Handover for handling earlier eNB releases 9.2.0
RP-47 RP-100308 0385 - Clarification to SFN reference in RRC 9.2.0
RP-47 RP-100308 0390 - RSRP and RSRQ based Thresholds 9.2.0
RP-47 RP-100189 0392 3 Redirection enhancements to GERAN 9.2.0
RP-47 RP-100308 0398 - Cell reselection enhancements CR for 36.331 9.2.0
RP-47 RP-100307 0401 3 CR on UE-originated RLFreporting for MRO SON use case 9.2.0
RP-47 RP-100309 0401 3 CR to 36.331 on Redirection enhancements to UTRAN 9.2.0
RP-47 RP-100306 0403 2 Proximity status indication handling at mobility 9.2.0
RP-47 RP-100305 0404 - Upper layer aspect of MBSFN area id 9.2.0
RP-47 RP-100308 0405 - Redirection for enhanced 1xRTT CS fallback with concurrent PSHO 9.2.0
RP-47 RP-100301 0406 - Avoiding interleaving of transmission of CMAS notifications 9.2.0
RP-47 RP-100308 0407 1 Introduction of UE GERAN DTM capability indicator 9.2.0
RP-47 RP-100381 0408 2 Introducing provisions for late ASN.1 corrections 9.2.0
RP-47 RP-100245 0411 Correction/ alignment of REL-9 UE capability signalling 9.2.0
06/2010
RP-48 RP-100553 0412 - Clarification for mapping between warning message and CB-data 9.3.0
RP-48 RP-100556 0413 - Clarification of radio link failure related actions 9.3.0
RP-48 RP-100554 0414 - Clarification on UE actions upon leaving RRC_CONNECTED 9.3.0
RP-48 RP-100553 0415 - Correction on CMAS system information 9.3.0
RP-48 RP-100554 0416 1 Corrections to MBMS 9.3.0
RP-48 RP-100556 0418 - Decoding of unknown future extensions 9.3.0
RP-48 RP-100556 0419 1 Miscellaneous small corrections and clarifications 9.3.0
RP-48 RP-100551 0420 - Prohibit timer for proximity indication 9.3.0
RP-48 RP-100566 0421 - RLF report for MRO correction 9.3.0
RP-48 RP-100546 0423 1 Missing UTRA bands in IRAT-ParametersUTRA-FDD 9.3.0
RP-48 RP-100556 0424 - Correction on handling of dedicated RLF timers 9.3.0
RP-48 RP-100556 0431 1 Protection of RRC messages 9.3.0
RP-48 RP-100556 0433 - Handling missing Essential system information 9.3.0
RP-48 RP-100551 0434 1 Clarification on UMTS CSG detected cell reporting in LTE 9.3.0
RP-48 RP-100556 0436 - Introducing provisions for late corrections 9.3.0
RP-48 RP-100556 0437 - Clarification regarding / alignment of REL-9 UE capabilities 9.3.0
09/2010
RP-49 RP-100845 0440 - Correction to 3GPP2 reference for interworking with cdma2000 1x 9.4.0
RP-49 RP-100851 0441 - Clarification on UL handover preparation transfer 9.4.0
RP-49 RP-100851 0442 1 Clarifications regarding fullConfiguration 9.4.0
RP-49 RP-100851 0443 - Clarifications regarding handover to E-UTRAN 9.4.0
RP-49 RP-100854 0444 - Correction on the table of conditionally mandatory Release 9 features 9.4.0
RP-49 RP-100851 0445 - Corrections to TS36.331 on MeasConfig IE 9.4.0
RP-49 RP-100853 0446 2 CR to 36.331 on clarification for MBMS PTM RBs 9.4.0
RP-49 RP-100851 0447 - Introduction of late corrections container for E-UTRA UE capabilities 9.4.0
RP-49 RP-100851 0448 - Renaming of containers for late non-critical extensions 9.4.0
RP-49 RP-100851 0452 - Clarifications Regarding Redirection from LTE 9.4.0
RP-49 RP-100845 0456 - Description of multi-user MIMO functionality in feature group indicator table 9.4.0
RP-49 RP-100845 0458 - Correct the PEMAX H to PEMAX 9.4.0
RP-49 RP-100851 0460 - Clarification for feature group indicator bit 11 9.4.0
RP-49 RP-100851 0465 1 Clarification of FGI setting for inter-RAT features not supported by the UE 9.4.0
RP-49 RP-101008 0475 1 FGI settings in Rel-9 9.4.0
12/2010
RP-50 RP-101197 0483 - Clarification on Meaning of FGI Bits 9.5.0
RP-50 RP-101197 0485 - Clarification regarding reconfiguration of the quantityConfig 9.5.0
RP-50 RP-101210 0486 1 Corrections to the presence of IE regarding DRX and CQI 9.5.0
RP-50 RP-101210 0493 1 The field descriptions of MeasObjectEUtra 9.5.0
RP-50 RP-101197 0498 1 Clarification of FGI settings non ANR periodical measurement reporting 9.5.0
RP-50 RP-101209 0500 1 Corrections to RLF Report 9.5.0
RP-50 RP-101206 0519 1 T321 timer fix 9.5.0
RP-50 RP-101197 0524 1 Restriction of AC barring parameter setting 9.5.0
RP-50 RP-101210 0525 1 Removal of SEQUENCE OF SEQUENCE in UEInformationResponse 9.5.0
RP-50 RP-101197 0526 1 Clarification regarding default configuration value N/A 9.5.0
RP-50 RP-101431 0532 1 Splitting FGI bit 3 9.5.0
RP-50 RP-101183 0476 4 36.331 CR on Introduction of Minimization of Drive Tests 10.0.0
RP-50 RP-101234 0477 4 AC-Barring for Mobile Originating CSFB call 10.0.0
RP-50 RP-101214 0478 1 Addition of UE-EUTRA-Capability descriptions 10.0.0
RP-50 RP-101214 0481 1 Clarification on Default Configuration for CGI-ReportConfig 10.0.0
RP-50 RP-101215 0487 1 CR to 36.331 adding e1xCSFB support for dual Rx/Tx UE 10.0.0
RP-50 RP-101227 0488 1 Introduction of Carrier Aggregation and UL/DL MIMO 10.0.0
RP-50 RP-101228 0489 1 Introduction of relays in RRC 10.0.0
RP-50 RP-101214 0490 1 Priority indication for CSFB with re-direction 10.0.0
RP-50 RP-101214 0491 1 SiB Size Limitations 10.0.0
RP-50 RP-101214 0513 1 Combined Quantity Report for IRAT measurement of UTRAN 10.0.0
RP-50 RP-101214 0527 1 UE power saving and Local release 10.0.0
RP-50 RP-101429 0530 1 Inclusion of new UE categories in Rel-10 10.0.0
03/2011
RP-51 RP-110282 0533 1 36331_Cxxx_Protection of Logged Measurements Configuration 10.1.0
RP-51 RP-110294 0534 1 Stage-3 CR for MBMS enhancement 10.1.0
RP-51 RP-110282 0535 1 Clean up MTD-related text 10.1.0
RP-51 RP-110282 0536 1 Clear MDT configuration and logs when the UE is not registered 10.1.0
RP-51 RP-110280 0537 1 Correction to the field description of nb 10.1.0
RP-51 RP-110289 0538 1 CR on impact on UP with remove&add approach_2 10.1.0
RP-51 RP-110282 0539 1 CR to 36.331 on corrections for MDT 10.1.0
RP-51 RP-110290 0543 1 Introduction of CA/MIMO capability signalling and measurement capability signalling in CA 10.1.0
RP-51 RP-110282 0544 1 MDT PDU related clarifications 10.1.0
RP-51 RP-110282 0545 1 Correction on release of logged measurement configuration while in another RAT 10.1.0
RP-51 RP-110289 0546 1 Miscellaneous Corrections for CA Running RRC CR 10.1.0
RP-51 RP-110280 0547 1 Miscellaneous small clarifications and corrections 10.1.0
RP-51 RP-110293 0548 4 Necessary changes for RLF reporting enhancements 10.1.0
RP-51 RP-110282 0549 1 Memory size for logged measurements capable UE 10.1.0
RP-51 RP-110289 0550 1 Parameters confusion of non-CA and CA configurations 10.1.0
RP-51 RP-110272 0553 1 Presence condition for cellSelectionInfo-v920 in SIB1 10.1.0
RP-51 RP-110282 0554 1 Removal of MDT configuration at T330 expiry 10.1.0
RP-51 RP-110289 0556 1 Signalling aspects of existing LTE-A parameters 10.1.0
RP-51 RP-110280 0557 1 Some Corrections on measurement 10.1.0
RP-51 RP-110291 0558 1 Stored system information for RNs 10.1.0
RP-51 RP-110291 0559 1 Support of Integrity Protection for Relay 10.1.0
RP-51 RP-110290 0561 2 Updates of LT parameters for CA and UL/DL MIMO 10.1.0
RP-51 RP-110291 0571 1 Note for Dedicated SIB for RNs 10.1.0
RP-51 RP-110272 0579 1 Correction to es-fallbackIndicator field description 10.1.0
RP-51 RP-110289 0580 1 Clarification to the default configuration of cellDeactivationTimer 10.1.0
RP-51 RP-110289 0581 1 Miscellaneous corrections to TS 36.331 on Carrier Aggregation 10.1.0
RP-51 RP-110280 0584 1 Correction of configuration description in SIB2 10.1.0
RP-51 RP-110265 0587 1 Clarification of band indicator in handover from E-UTRAN to GERAN 10.1.0
RP-51 RP-110265 0588 1 36331_CRxxx Support of Delay Tolerant access requests 10.1.0
RP-51 RP-110292 0590 1 Update of R2-110807 on CSI measurement resource restriction for time domain ICIC 10.1.0
RP-51 RP-110292 0591 1 Update of R2-110821 on RRM/RLM resource restriction for time domain ICIC 10.1.0
RP-51 RP-110290 0592 1 Corrections on UE capability related parameters 10.1.0
RP-51 RP-110292 0596 1 Validity time for location information in Immediate MDT 10.1.0
RP-51 RP-110290 0597 1 CR to 36.331 adding UE capability indicator for dual Rx/Tx e1xCSFB 10.1.0
RP-51 RP-110280 0598 1 Miscellaneous corrections to CA 10.1.0
RP-51 RP-110280 0599 1 Further correction to combined measurement report of UTRAN 10.1.0
RP-51 RP-110280 0600 1 Correction to the reference of ETWS 10.1.0
RP-51 RP-110269 0602 1 Introduction of OTDOA inter-freq RSTD measurement indication procedure 10.1.0
RP-51 RP-110280 0603 1 Correction of use of RRCConnectionReestablishment message for contention resolution 10.1.0
RP-51 RP-110282 0604 1 CR to 36.331 on MDT neighbour cell measurements logging 10.1.0
RP-51 RP-110272 0609 1 Minor ASN.1 corrections for the UEInformationResponse message 10.1.0
RP-51 RP-110280 0613 1 Clarification regarding dedicated RLF timers and constants 10.1.0
RP-51 RP-110282 0615 1 Release of Logged Measurement Configuration 10.1.0
RP-51 RP-110280 0616 1 Some corrections on TS 36.331 10.1.0
RP-51 RP-110280 0623 1 AC barring procedure clean up 10.1.0
RP-51 RP-110282 0624 1 Counter proposal to R2-110986 on UE capabilities for MDT 10.1.0
RP-51 RP-110280 0628 1 UE information report for RACH 10.1.0
Clarifications to P
Correction on PUCCH configuration for Un interface
Correction to Subframe Allocation End in PMCH
CR for Reconfiguration of discardTimer in PDCP
CR to 36.331 on redirected utra
UE capabilities for Rel-10 LTE features with eICIC measurement
Corrections to
Correction on DL allocations in MBSFN subframes
Clarification on bandEUTRA
UE actions upon leaving RRC_CONNECTED
Additional information for RLF report
Introduction of TCE ID for logged MDT
Miscellaneous corrections (related to leave preparation for ASN.1 freeze)
PLMN check for MDT logging
UE actions upon leaving RRC_CONNECTED
Clarification on bandEUTRA-r10 and supportedBandListEUTRA
Updated value range for the Extended Wait Timer
Value range of DRX-InactivityTimer
Correction for SR-VCC and QCI usage
Restructuring of QCI-ReportConfig-r10
Correction on DL allocations in MBSFN subframes
Reference SFN for MeasSubframePattern
Clarifications to CA related field descriptions
Corrections to codebookSubsetRestriction and SRS parameters
Corrections to the handling of n-ConfigIndex for TM9
UE capabilities for Rel-10 LTE features with eICIC measurement restrictions as FGI (A11)
CR to 36.331 on redirectedutra-TDD carrier frequency
Explicit AS signalling for mapped PTMSISGUti
Counter proposal for Updates of mandatory information in AS-Config
CR for Reconfiguration of discardTimer in PDCP-Config
On the missing multiplicity of UE capability parameters
Radio frame alignment of CSA and MSP
Reconfiguration involving critically extended IEs (using fullFieldConfig i.e. option 2)
Counter proposal to R2-112753 on CR to remove CSG Identity validity limited to CSG cell
Increase of prioritisedBitRate
CA and MIMO Capabilities in LTE Rel-10
TS36.331 Correction
maxNumberROHC-ContextSessions when no ROHC profile is supported
Correction to Subframe Allocation End in PMCH-Info
Correction on PUCCH configuration for Un interface
Miscellaneous corrections to 36.331
36.331 correction on CSG identity validity to allow introduction of CSG RAN sharing
AdditionalSpectrumEmissions in CA
CR to 36.331 on Small correction of PHR parameter
Clarifications to P-max on CA
Clarification on whether subframes signalling MCS applies
Corrections in RRC
Replace the table with exception list in 10.5 AS-Config
Corrections to the field descriptions
Configuration of simultaneous PUCCH&PUSCH
Corrections to release of csi-SubframePatternConfig and cqi-Mask
09/2011

<table>
<thead>
<tr>
<th>CR Date</th>
<th>CR No.</th>
<th>Issue Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/2011</td>
<td>RP-55</td>
<td>0855 1 Limiting MBMS counting responses to within the PLMN</td>
</tr>
<tr>
<td>06/2011</td>
<td>RP-56</td>
<td>0909 1 Duplicated ASN.1 naming correction</td>
</tr>
<tr>
<td>06/2011</td>
<td>RP-56</td>
<td>0912 1 Change in Scheduling Information for ETWS</td>
</tr>
<tr>
<td>06/2011</td>
<td>RP-56</td>
<td>0914 1 Clarification of mch-SchedulingPeriod configuration</td>
</tr>
<tr>
<td>06/2011</td>
<td>RP-56</td>
<td>0916 1 Change in Scheduling Information for CMAS</td>
</tr>
<tr>
<td>06/2011</td>
<td>RP-56</td>
<td>0919 1 Introducing means to signal different REL-10 FDD/TDD Capabilities/FGIs for Dual-xDD UE</td>
</tr>
<tr>
<td>06/2011</td>
<td>RP-56</td>
<td>0920 1 Clarification on setting of dedicated NS value for CA by E-UTRAN</td>
</tr>
<tr>
<td>09/2011</td>
<td>RP-57</td>
<td>0982 1 Introduction of EAB</td>
</tr>
<tr>
<td>09/2011</td>
<td>RP-57</td>
<td>0990 1 Additional special subframe configuration related correction</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1063 1 Correction related to differentiating UTRAN modes in FGIs</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1065 1 Processing delay for RRCConnectionReconfiguration</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1066 2 Addition of the stage-3 agreements on IDC</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1067 3 Carrier Aggregation Enhancement RAN1 parameters</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1068 1 Clarification of SR period</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1069 1 Clarification on HandoverCommand message</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1070 1 Clarification on mobility related issues</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1071 1 Correction of the signaling for Uncertainty and Confidence</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1072 2 Corrections to MBMS Service Continuity</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1073 1 CR to 36.331 on SIB15 acquisition</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1074 1 Handling of 1xCSFB failure</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1075 1 Miscellaneous corrections</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1076 1 RAN overload control using RRC connection Rejection</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1077 1 RRC support for CoMP in UL</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1078 1 Some clarification to Carrier aggregation enhancements</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1079 1 Validity of EAB SIB and acquisition of SIB1</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1080 1 Clarification for Multiple Frequency Band Indicators feature</td>
</tr>
<tr>
<td>12/2011</td>
<td>RP-58</td>
<td>1081 1 Moving the TMS capability</td>
</tr>
<tr>
<td>RP</td>
<td>Issue</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>CR to 36.331 on introducing ROHC context continue for intra-ENB handover</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Correction on MDT multi-PLMN support</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Clarification and alignment of handling of other configuration</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Introducing support for Coordinated Multi-Point (CoMP) operation</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Introducing further UE aspects regarding multi band cells</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>CR to 36.331 on additional information in RLF report for inter-RAT MRO</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Correction on Power preference indication</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>SIB1 provisioning via dedicated signalling</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Measurement reporting of Scells</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Introduction of EPDCCH parameters in TS 36.331</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Introduction of Rel-11 UE capabilities</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Introduction of wideband RSRQ measurements</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Introduction of network sharing for CDMA2000 inter-working</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Broadcast of Time Info by Using a New SIB</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>GERAN measurement object at ANR</td>
<td></td>
</tr>
<tr>
<td>RP-58</td>
<td>Miscellaneous corrections from review preceeding ASN.1 freeze</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Mandatory supporting of B1 measurement to UMTS FDD (FGI bit 15)</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Clarification on MBMS Service Continuity</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>IDC Problem Reporting</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Corrections on definition of CSG member cell</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Extension of FBl and EARFCN</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Invalidation of ETWS with security feature</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Invalid measurement configuration with different (E)ARFCN</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>PPI and IDC indication upon handover</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Correcting further UE aspects regarding multi band cells</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Behaviour in case of excessive dedicated priority information</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Clarification on EARFCN signalling in Mobility control info</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>IDC-SubframePattern length for FDD</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Introduction of wideband RSRQ measurements in RRC_IDLE</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Optional support of RLF report for inter-RAT MRO</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>The presence of bandcombination for non-CA capable UEs</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Correction for event A5</td>
<td></td>
</tr>
<tr>
<td>RP-59</td>
<td>Mandating the settings of FGI bit 14, 27 and 28 to true</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification on the redirection to UTRA-TDD frequency in case of CSFB High Priority</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Correction of wrong reference</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification to support deprioritisation feature</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification on KASME key usage</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Correction on multi-IA capability</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>MBMS interest indication upon handover/ re-establishment</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Conditions RI reference inheriting CSI process (DL CoMP)</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification on NZP CSI-RS resource configuration for UE supporting 1 CSI process</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Corrections to field description of pdsch-Start-r11</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Need code corrections in Rel-11 RRC</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Miscellaneous small corrections</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>FDD/TDD diff column correction for FG31</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>measCycleSCell upon SCcell configuration</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification on RRC Connection Reconfiguration with Critical Extension</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Security key generation in case of MFBl</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification on inclusion of non-CA band combinations</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>CR on ROHC parameter configuration in Rel-11 RRC</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification on UE CA capability</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Updating 3GPP2 specification references</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarification on the configuration of the extended PHR</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>Clarifications on SystemTimeInfoCDMA2000 IE</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>MFBl impact on MBMS service continuity</td>
<td></td>
</tr>
<tr>
<td>RP-60</td>
<td>MFBl aspects for dedicated signalling</td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Clarification on PhysCellIdRange</td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Correction on the first subframe of the measurement gap</td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Correction for MFBl in SIB15 and SIB6</td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Clarification of MFBl impact on MBMS service continuity</td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Clarification of UE action for otherwise in conditions</td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Corrections to the 3GPP2 specification references in 36.331</td>
<td></td>
</tr>
<tr>
<td>RP-61</td>
<td>Clarifications regarding the usage of &quot;ril-Cause&quot; in case of handover failure</td>
<td></td>
</tr>
<tr>
<td>RP-62</td>
<td>Introduction of capability bit for UTRA MFBl</td>
<td></td>
</tr>
<tr>
<td>RP-62</td>
<td>Addition of inter-frequency RSTD measurement capability indicator for OTDOA</td>
<td></td>
</tr>
<tr>
<td>RP-62</td>
<td>Clarification on supportedBand</td>
<td></td>
</tr>
<tr>
<td>RP-62</td>
<td>Capturing mandatory/optional agreements on Rel-11 UE features</td>
<td></td>
</tr>
<tr>
<td>RP-62</td>
<td>Clarification on otherwise behaviour</td>
<td></td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131995</td>
<td>1373</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131991</td>
<td>1374</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131729</td>
<td>1375</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131991</td>
<td>1389</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131995</td>
<td>1390</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-132005</td>
<td>1391</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131991</td>
<td>1395</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131984</td>
<td>1397</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131984</td>
<td>1404</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131993</td>
<td>1405</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131995</td>
<td>1409</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131991</td>
<td>1410</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131998</td>
<td>1376</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-132002</td>
<td>1378</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-131988</td>
<td>1379</td>
</tr>
<tr>
<td>RP-62</td>
<td>RP-132002</td>
<td>1406</td>
</tr>
<tr>
<td>03/2014</td>
<td>RP-63</td>
<td>RP-140359</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140346</td>
<td>1435</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140359</td>
<td>1436</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140362</td>
<td>1439</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140352</td>
<td>1442</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140356</td>
<td>1450</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140359</td>
<td>1453</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140340</td>
<td>1455</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140340</td>
<td>1456</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140357</td>
<td>1457</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140364</td>
<td>1462</td>
</tr>
<tr>
<td>RP-63</td>
<td>RP-140354</td>
<td>1463</td>
</tr>
<tr>
<td>06/2014</td>
<td>RP-64</td>
<td>RP-140869</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140871</td>
<td>1475</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140879</td>
<td>1477</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140873</td>
<td>1478</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140877</td>
<td>1479</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140885</td>
<td>1490</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140885</td>
<td>1486</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140885</td>
<td>1506</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140873</td>
<td>1489</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140878</td>
<td>1556</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140888</td>
<td>1557</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140871</td>
<td>1545</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140892</td>
<td>1520</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140873</td>
<td>1517</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140873</td>
<td>1554</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140871</td>
<td>1551</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140884</td>
<td>1495</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140885</td>
<td>1499</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140892</td>
<td>1510</td>
</tr>
<tr>
<td>RP-64</td>
<td>RP-140849</td>
<td>1555</td>
</tr>
<tr>
<td>09/2014</td>
<td>RP-65</td>
<td>RP-141494</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141505</td>
<td>1599</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141499</td>
<td>1584</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141511</td>
<td>1567</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141511</td>
<td>1603</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141498</td>
<td>1630</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141496</td>
<td>1577</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141496</td>
<td>1597</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141496</td>
<td>1623</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141489</td>
<td>1574</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141507</td>
<td>1570</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141510</td>
<td>1572</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141496</td>
<td>1615</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141506</td>
<td>1579</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141499</td>
<td>1601</td>
</tr>
<tr>
<td>RP-65</td>
<td>RP-141511</td>
<td>1560</td>
</tr>
</tbody>
</table>
Introduction of new DL UE categories 15&16
Restriction to
Clarification on extended RSRQ range support
Correction to additionalSpectrumEmission
Clarification on Cell barring for downlink only bands
Mandatory present of supportedMIMO
Clarification on FDD/TDD differentiation of FGIs/capabilities in TDD-FDD
CR on ROHC for split bearer
Correction to SCG change
Reconfiguration of SPS
RRC_CONNECTED
Correction on handling of wlan-OffloadConfigDedicated upon leaving
Correction for aperiodic CSI trigger
Clarification on SCG reconfiguration
Miscellaneous changes resulting from review for REL
Presence of codebookSubsetRestriction
The absence of dedicated uplink power control parameter signalling
Clarification to usage of field deltaTxD-OffsetPUCCH-Format1bCS-r11 in MCC
Support of Discovery Signals measurement in TS 36.331
UE capability for modified MPR behavior
Outstanding Need OP for non
Introduction of missing Rel
Correction for p0
Introduction
Support of 256QAM in TS 36.331 (per band 256QAM
Prohibit timer for SR
New UE categories for DL 600Mbps
Correction of remaining TBD for Rel
Minor corrections regarding WLAN interworking
Support of TTI bundling without resource allocation restriction for LTE
PDCP SN
Reduction of possible values for WLAN backhaul rate thresholds in LTE
size change during HO for RLC
skip, CSFB and SSAC signalling per PLMN
ETSI
ETSI TS 136 331 V14.6.2 (2018-04)
763
RP-68  150923  1824  -  Clean-up corrections to TS 36.331  12.6.0
RP-68  150918  1846  1  Correction to IDC signalling  12.6.0
RP-68  150921  1822  1  Change of LCID upon DC-specific DRB reconfiguration  12.6.0
RP-68  150921  1832  1  Correction to PRH format  12.6.0
RP-68  150921  1842  1  Correction on conditions for sidelink operation  12.6.0
RP-68  150811  1834  2  Correction on the TF-IIndexPair value for ProSe Direct Discovery  12.6.0
09/2015 RP-68  151443  1866  -  Correction on UE band combination capability  12.7.0
RP-69  151438  1869  -  Correction on Restriction to CA capability signalling  12.7.0
RP-69  151443  1884  -  The support of UL64QAM  12.7.0
RP-69  151442  1889  -  Small corrections concerning RadioResourceConfig  12.7.0
RP-69  151441  1900  -  Sidelink discovery related corrections  12.7.0
RP-69  151440  1905  2  Clarification of Beacon RSII Encoding  12.7.0
RP-69  151439  1911  1  1  Correction for IDC signalling enhancement for UL CA  12.7.0
RP-69  151440  1880  2  Clarification on cell selection sequence upon leaving RRC_CONNECTED  12.7.0
RP-69  151438  1908  -  Correction to additionalSpectrumEmission - Option 1  12.7.0
RP-69  151439  1879  1  Correction on the reference of EPDCCCH  12.7.0
RP-69  151441  1891  1  Introducing general handling and guidelines concerning critical extensions within a release  12.7.0
RP-69  151443  1909  1  Applicability of longCodeState1xRRTT for 1xRRTT IRAT ANR  12.7.0
RP-69  151441  1912  1  Sidelink terminology alignment in TS 36.331  12.7.0
RP-69  151442  1906  2  Clarification for NAICS capability signalling  12.7.0
RP-69  151467  1861  2  Additional MIMO/CSI capability for intra-band contiguous CA  12.7.0
RP-69  151466  1887  2  Signalling for 4-layer MIMO with TM3 and TM4  12.7.0
RP-69  151625  1914  2  Allowing NAICS with TM10  12.7.0
12/2015 RP-70  152053  1916  -  Correction on SCC release  12.8.0
RP-70  152053  1902  1  Clarification to SCC RLFP timers and constants reconfiguration  12.8.0
RP-70  152053  1933  -  Correction to triggerQuantityCSI-RS  12.8.0
RP-70  152053  1946  -  Correction to NAICS field descriptions  12.8.0
RP-70  152055  1947  -  Correction of need code definition terminology  12.8.0
RP-70  152050  1964  -  Clarification on FDD/TDD difference for UL CA IDC indication  12.8.0
RP-70  152046  1975  -  Correction to SystemTimeInfoCDMA2000 IE  12.8.0
RP-70  152053  1928  1  highPriorityAccess for MMTEL voice, MMTEL video and SMS  12.8.0
RP-70  152053  1922  1  Correction to the support of Mobility State reporting  12.8.0
RP-70  152046  1971  1  MaxLayerMIMO in HandoverPreparationInformation  12.8.0
RP-70  152046  1987  -  Correction to ASN.1 field names for 4-layer TM3/4  12.8.0
RP-70  152053  1969  1  Correction on measurement identity autonomous removal in dual connectivity  12.8.0
RP-70  152053  1979  1  Clarification on tdc-FDD-CA-PCellDuplex  12.8.0
RP-70  152049  1919  2  Alternative new maximum transport block sizes for DL 64QAM and 256QAM in TM9/10  12.8.0
RP-70  152050  1934  1  Some general RRC issues  12.8.0
RP-70  152055  1965  1  Correction on capability rsn-OnAllSymbols  12.8.0
RP-70  152056  1931  2  Addition of establishment cause for mobile-originating VoLTE calls and network indication in SIB2  12.8.0
RP-70  152048  1927  2  CR to correct UE messages to be sent only after security activation  12.8.0
RP-70  152053  1973  3  Clarification of MG3  12.8.0
RP-70  152113  1923  4  Enabling multiple NS and P-Max operation per cell  12.8.0
12/2015 RP-70  152084  1917  -  MCCCH acquisition for 1.4MHz MBSFN  13.0.0
RP-70  152084  1937  -  Paging optimization  13.0.0
RP-70  152084  1972  -  White-list of cells for EUTRA measurement reporting  13.0.0
RP-70  152074  1920  1  Introduction of Dual Connectivity enhancements in Rel-13  13.0.0
RP-70  152078  1983  2  Introduction of Licensed-Assisted Access using LTE  13.0.0
RP-70  152075  1952  1  Extension of Frequency Priorities  13.0.0
RP-70  152075  1949  1  Introduction of RS-SINR measurements using non critical extension  13.0.0
RP-70  152079  1961  2  Introducing EBF FD MIMO parameters  13.0.0
RP-70  152081  1935  1  Removing SCG change restrictions regarding upon handover  13.0.0
RP-70  152066  1984  1  Introduction of Application specific Congestion control for Data Communication in LTE  13.0.0
RP-70  152071  1872  6  36331 CR for capturing B5C and SCell on PUCCH  13.0.0
RP-70  152073  1953  2  Introduction CS interference mitigation on SCell  13.0.0
RP-70  152080  1939  3  Introduction of SC-PTM  13.0.0
RP-70  152082  1941  2  Introduction of Rel-13 MDT enhancements  13.0.0
RP-70  152075  1955  3  Introduction of load redistribution in RRC IDLE  13.0.0
RP-70  152076  1988  -  Introducing extended DRX  13.0.0
RP-70  152084  1953  2  Clarification on the FGI bits setting for MCPTT  13.0.0
RP-70  152072  1936  2  Introducing eSC  13.0.0
03/2016 RP-71  160454  2001  2  eO2D changes resulting from review for ASN.1 freeze  13.1.0
RP-71  160468  2002  2  Miscellaneous changes resulting from review for ASN.1 freeze  13.1.0
RP-71  160470  2005  1  Corrections and missing agreement on the eCA  13.1.0
RP-71  160470  2006  2  corrections on RSSI measurement  13.1.0
RP-71  160457  2008  3  Introduction of LTE-WLAN Aggregation  13.1.0
RP-71  160470  2010  2  Corrections on SC-PTM  13.1.0
RP-71  160470  2016  -  Support of extended RLC AM SN for SCG  13.1.0
Correction on essential system information missing
Correction on system information handling in eMTC
Correction on condition nonFullConfig in dual connectivity
Correction of backhaul bandwidth description
Correction to channel number range
Autonomous WLAN measurement ID removal
Miscellaneous RRC corrections for LWA
Avoiding simultaneous configuration of CR on SI window combining for MTC signalling
Correction of periodic CSI reporting and clarification on p-C and CBSR for GNSS
Introducing EBF/FD
Configuration of LWA and LWIP upon handover
Alignment of RCLWI configuration
Small eSL related corrections
Small corrections to LWIP communication
Correction on conditions for establishing RRC Connection for sidelink drb combination
UE capability of an additional Rx and Tx requirement for a CA band
Clarification on SC
Corrections to MTCe in TS 36.331
MBMS interest indication by SC
The correction on the description of 5.5.4.1
Introduction of the extension of EBF/FD
Adding device coexistence for UL CA change of victim system
Maximum UL timing difference for DC
Some corrections on CA enhancement Capability for CA enhancement
Further clarifications on Rel
EBF/FD
Miscellaneous corrections for SC
PTM corrections following ASN.1 review
PTM
Device Coexistence for UL CA change of

---

**06/2016**

**RP-72 RP-161080 2114**: Corrections to MTCe in TS 36.331

**RP-72 RP-161080 2115**: Miscellaneous corrections to TS 36.331 related to eDRX

**RP-72 RP-161080 2116**: Inter-node signalling

**RP-72 RP-161080 2117**: Clarification on SC-PTM

**RP-72 RP-161076 2118**: UE capability of an additional Rx and Tx requirement for a CA band combination

**RP-72 RP-161073 2125**: drb-identity change in full configuration

**RP-72 RP-161080 2126**: Miscellaneous correction for sidelink

**RP-72 RP-161080 2127**: Corrections for conditions of sidelink operation

**RP-72 RP-161080 2130**: Correction on conditions for establishing RRC Connection for sidelink communication

**RP-72 RP-161080 2131**: Corrections for sidelink communication transmission

**RP-72 RP-161080 2132**: Correction to WLAN measurements

**RP-72 RP-161080 2133**: Small corrections to LWIP

**RP-72 RP-161080 2134**: Small eSL related corrections

**RP-72 RP-161080 2135**: Alignment of RCLWI configuration

**RP-72 RP-161080 2136**: Configuration of LWA and LWIP upon handover

**RP-72 RP-161080 2137**: Introducing EBF/FD-MIMO capabilities

**RP-72 RP-161077 2140**: Clarification regarding IDC indication upon change of UL CA affecting GNSS

**RP-72 RP-161080 2143**: Correction of periodic CSI reporting and clarification on p-C and CBSR signalling

**RP-72 RP-161080 2144**: CR on SI window combining for MTC

**RP-72 RP-161080 2145**: Avoiding simultaneous configuration of LWA and DC for a UE

**RP-72 RP-161080 2146**: Miscellaneous RRC corrections for LWA

**RP-72 RP-161080 2147**: Autonomous WLAN measurement ID removal

**RP-72 RP-161080 2149**: Correction to channel number range

**RP-72 RP-161080 2150**: Correction of backhaul bandwidth description

**RP-72 RP-161080 2151**: Correction on frequency hopping signalling

**RP-72 RP-161075 2152**: Support of CRS-Assistance signalling for the DL Control Channel IM

**RP-72 RP-161078 2154**: Correction on condition notFullConfig in dual connectivity

**RP-72 RP-161080 2159**: Correction on system information handling in eMTC

**RP-72 RP-161080 2160**: Correction on essential system information missing

**RP-72 RP-161080 2162**: Steering command during T350
Correction on cell reselection procedure while T300 is running
Small corrections regarding (WLAN) measurement reporting
Corrections on system information acquisition for Sidelink discovery
Simplification of UE capability reporting procedure
Clarification to intra
Miscellaneous corrections to section 4 and 5 for NB
Cleanup of the NB
Corrections to NB
Correction on WLAN connection management
Correction on WLAN authentication
NAS timer settings for eMTC
Introduction of LWIP counter
Restricting Unattended Data Traffic
Correction to 1302 and T308 conflict issue
Various corrections to MTC related ASN.1 and field descriptions
Clarification to field description for the timer T360
Clarification to ordering of Rel13 Frequency priority lists
Introduction of LWIP counter
Clarification on EpdcchSetConfig for eMTC
Skipping fallback "2DL + 1UL" CA in UE capability report in Rel 13
09/2016
Correction to access barring checking for network sharing case
Correction to LWIP and LWA
Correction to LWIP and LWA
Backward compatibility of CA band combination signalling
Correction on measurement reporting for WLAN
Correction on WLAN authentication
Corrections to simultaneous configuration of LWA, RCLWI and LWIP
Correction on WLAN connection management
Issue on resume procedure
Corrections to NB-IoT in 36.331
Cleanup of the NB-IoT ASN.1
Miscellaneous corrections to section 4 and 5 for NB-IoT
Clarification to intra-band contiguous CA capabilities
Clarification on RRC processing delay for CIoT
Supporting new UE Rx - 1x time difference mapping table
Alignment of procedure when handling up-CIoT-EPS-Optimisation
Simplification of UE capability reporting procedure
Corrections on system information acquisition for Sidelink discovery
Small corrections regarding (WLAN) measurement reporting
Correction on cell reselection procedure while T300 is running
Correction on full configuration
RP-73  RP-161758  2281  1  Correction on SRB addition and modification  13.3.0
RP-73  RP-161756  2282  1  Clarifications on RCLWI  13.3.0
RP-73  RP-161758  2283  1  Introduction of DelayTolerantAccess establishment cause in NB-IoT  13.3.0
RP-73  RP-161762  2284  1  Maximum number of simultaneous UL PDCP delay measurements for FeMOT  13.3.0
RP-73  RP-161762  2287  2  Clarification on DRX cycle used by the UE  13.3.0
RP-73  RP-161755  2288  1  Invalidation of stored system information in connected mode  13.3.0
RP-73  RP-161755  2289  1  Clarification on bit mapping of fdd-DownlinkOrTddSubframeBitmapLC and tdd-UplinkSubframeBitmapLC  13.3.0
RP-73  RP-161759  2290  -  Correction on C-IoT optimizations for non-NB-IoT UE  13.3.0
RP-73  RP-161749  2295  1  Clarification on timer handling for zero value  13.3.0
RP-73  RP-161759  2299  1  Measurement configuration during RRC resume in CioT  13.3.0
RP-73  RP-161755  2301  1  Correction on UE-PagingCoverageInformation  13.3.0
RP-73  RP-161749  2305  1  DRB re-setup in Full Configuration  13.3.0
RP-73  RP-161755  2306  1  Rel-13 correction for eMTC parameter values  13.3.0
RP-73  RP-161753  2307  1  CR on forwarding LAA measurement results for DC  13.3.0
RP-73  RP-161756  2309  1  Clarification on association Timer  13.3.0
RP-73  RP-161756  2310  -  Clarification on PDCP-Config and statusFeedback for LWA  13.3.0
RP-73  RP-161756  2311  1  Order of addition and removal of WLAN-Identifiers  13.3.0
RP-73  RP-161756  2313  3  Multiple WLAN measurement objects on the same frequency  13.3.0
RP-73  RP-161755  2315  1  Correction about eMTC frequency hopping parameters  13.3.0
RP-73  RP-161753  2317  1  Handling of tdd-Config-r10 for LAA Scell  13.3.0
RP-73  RP-161760  2318  1  Introduction of 1.2Gbps and 1.6Gbps UE categories in Rel-13  13.3.0
RP-73  RP-161755  2320  2  Extended T310 timer values for eMTC  13.3.0
RP-73  RP-161761  2323  1  Introducing UE capability of Rel 13 CCH IM  13.3.0
RP-73  RP-161761  2324  1  Introducing UE capability of CFS-IM for T1-9  13.3.0
RP-73  RP-161827  2325  2  Continuous uplink transmission in eMTC  13.3.0
RP-73  RP-161755  2328  1  Correction on PUSCH repetition numbers for CE Mode A  13.3.0
RP-73  RP-161755  2329  1  Frequency hopping configuration for paging  13.3.0
RP-73  RP-161758  2334  2  Reservation of RA resources in NB-IoT  13.3.0
RP-73  RP-161754  2336  1  Extended PHR corrections  13.3.0
RP-73  RP-161756  2337  1  Corrections for LWA/LWP  13.3.0
RP-73  RP-161782  2338  3  Correction on 1216-port CSI-RS resource configuration for FD-MIMO  13.3.0
RP-73  RP-161758  2342  2  Correction of downlink gap applicability for NB-IoT  13.3.0
RP-73  RP-161751  2344  1  Indication of the maxLayersMIMO  13.3.0
RP-73  RP-161758  2346  -  nrs-Power signaling for NB-IoT non-anchor carrier  13.3.0
09/2016  RP-161746  2261  1  Introducing V2V to TS 36.331  14.0.0
RP-73  RP-161745  2340  1  Introduction of enhanced LAA for LTE  14.0.0
RP-73  RP-161747  2341  -  Introduction of L2 Latency reduction techniques  14.0.0
12/2016  RP-162318  2362  1  Clarification on the RRC connection resume procedure  14.1.0
RP-74  RP-162313  2364  1  Clarification on AS-Config  14.1.0
RP-74  RP-162316  2366  1  Corrections to LWA release  14.1.0
RP-74  RP-162327  2373  1  Signalling of LWIP aggregation  14.1.0
RP-74  RP-162318  2375  1  Miscellaneous corrections to TS 36.331  14.1.0
RP-74  RP-162317  2377  1  Clarification on valid value range of codebookConfigNx fields  14.1.0
RP-74  RP-162321  2378  -  Miscellaneous corrections to eLAA  14.1.0
RP-74  RP-162311  2381  -  FDD&D2D diff for mbms-AsyncDC  14.1.0
RP-74  RP-162316  2386  -  Corrections to WLAN status monitoring  14.1.0
RP-74  RP-162314  2389  -  Clarification to the security mode command procedure for NB-IoT  14.1.0
RP-74  RP-162318  2391  -  Clarification on UE power class 2 indication  14.1.0
RP-74  RP-162312  2394  -  Clarification on UE behavior in Paging procedure  14.1.0
RP-74  RP-162314  2396  -  Corrections to NB-IoT SystemInformationBlockType2 handling  14.1.0
RP-74  RP-162314  2398  1  Data available for transmission  14.1.0
RP-74  RP-162315  2400  1  Correction on Downlink power allocation for SC-PTM  14.1.0
RP-74  RP-162328  2402  -  Corrections on V2V in TS 36.331  14.1.0
RP-74  RP-162314  2403  -  Correction on field description of up/cp-CIoT-EPS-Optimisation  14.1.0
RP-74  RP-162327  2404  -  Extension of PollByte  14.1.0
RP-74  RP-162317  2407  -  Clarification on Rel-13 CCH-IM UE capability  14.1.0
RP-74  RP-162317  2411  -  Configuration of DMTc for neighbour and serving cells in LAA carrier frequency  14.1.0
RP-74  RP-162314  2413  -  Clarification on uplink carrier frequency  14.1.0
RP-74  RP-162314  2415  -  NB-IoT RRC Processing Delays  14.1.0
RP-74  RP-162314  2420  1  Correction of connection suspension related aspects  14.1.0
RP-74  RP-162317  2422  -  Clarification regarding on CSI-RS resource configuration for FD-MIMO  14.1.0
RP-74  RP-162316  2424  -  Clearing of measurements upon reporting WLAN unavailability  14.1.0
RP-74  RP-162313  2428  -  Minor changes regarding UE category  14.1.0
RP-74  RP-162309  2435  1  Correction of NOTE 3 in UE-EUTRA-Capability related to multiple CA-MIMO-ParametersDLUL  14.1.0
RP-74  RP-162311  2441  1  Clarification on reporting of the plmn-IdentityList  14.1.0
RP-74  RP-162317  2446  2  Correction on SSTD Measurement Reporting  14.1.0
RP-74  RP-162322  2449  1  Introduction Enhancements for High Speed in 36.331  14.1.0
RP-74  RP-162312  2451  -  System information update for eDRX UEs  14.1.0
<table>
<thead>
<tr>
<th>RP-74</th>
<th>RP-162317</th>
<th>2453</th>
<th>1</th>
<th>Correction on ACDC handling</th>
<th>14.1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-74</td>
<td>RP-162328</td>
<td>2457</td>
<td>1</td>
<td>Correction and Clarification to TS 36.331</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162313</td>
<td>2459</td>
<td>1</td>
<td>Correction to frequency hopping configuration</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162314</td>
<td>2461</td>
<td>-</td>
<td>Correction to non-anchor carrier configuration</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162329</td>
<td>2462</td>
<td>1</td>
<td>UE capabilities for Latency Reduction</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162311</td>
<td>2466</td>
<td>1</td>
<td>Corrections on sidelink pre-configurations and default configurations</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162317</td>
<td>2469</td>
<td>-</td>
<td>Minor corrections for Rel-13 eD2D</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162324</td>
<td>2471</td>
<td>3</td>
<td>Introduction of SRS switching for LTE</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162325</td>
<td>2473</td>
<td>1</td>
<td>Introduction of MUST</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162314</td>
<td>2474</td>
<td>-</td>
<td>Clarification on system information acquisition for NB-IoT</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162314</td>
<td>2476</td>
<td>-</td>
<td>Editorial correction for NB-IoT</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162314</td>
<td>2478</td>
<td>-</td>
<td>Acknowledgement delay of RRCConnectionRelease message in NB-IoT</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162330</td>
<td>2484</td>
<td>-</td>
<td>Introduction of new UL category in Rel-13</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162327</td>
<td>2485</td>
<td>-</td>
<td>Addition of eCall over IMS indication in SIB1</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162313</td>
<td>2488</td>
<td>-</td>
<td>DMRS scrambling sequence initialization parameter for MPDCCH</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162313</td>
<td>2490</td>
<td>-</td>
<td>RSRP threshold when only CE level 0 is used</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162313</td>
<td>2492</td>
<td>-</td>
<td>Correction on fdd-DownlinkOrTddSubframeBitmapBR</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162313</td>
<td>2495</td>
<td>-</td>
<td>Correction to presence of uplink frequency hopping interval parameter</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162315</td>
<td>2497</td>
<td>1</td>
<td>Correction to SC-PTM scheduling period start offset</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162316</td>
<td>2504</td>
<td>-</td>
<td>Correction to WLAN measurement configuration</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162328</td>
<td>2509</td>
<td>1</td>
<td>Introducing Shorter Resource Reservation Periodicities for V2X</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162313</td>
<td>2519</td>
<td>1</td>
<td>Acknowledgement delay of RRCConnectionRelease message for eMTC UEs</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162314</td>
<td>2525</td>
<td>-</td>
<td>Correction on channel bandwidth definition for NB-IoT</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162316</td>
<td>2534</td>
<td>1</td>
<td>Clarifications on empty WLAN identifiers</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162316</td>
<td>2542</td>
<td>1</td>
<td>Clarifications on empty WLAN identifiers in Mobility Set for RCLWI</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162350</td>
<td>2546</td>
<td>-</td>
<td>timInfoUTC in SIB16</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162313</td>
<td>2547</td>
<td>-</td>
<td>Clarification on fdd-DownlinkOrTddSubframeBitmapBR</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162321</td>
<td>2548</td>
<td>2</td>
<td>Introduction of capabilities for eLAA</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162309</td>
<td>2552</td>
<td>-</td>
<td>Clarification on prioritization of multiple Pmax values</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162329</td>
<td>2553</td>
<td>-</td>
<td>CR on RV setting with UL skipping</td>
<td>14.1.0</td>
</tr>
<tr>
<td>RP-74</td>
<td>RP-162314</td>
<td>2555</td>
<td>1</td>
<td>Correction of default physical channel configuration for NB-IoT</td>
<td>14.1.0</td>
</tr>
</tbody>
</table>
Introducing a new SL master information block for V2X sidelink UE capabilities

Introduction of new Transport Block Size for DL 256QAM

Correction on eLWA

Correction on UE capabilities for eLAA

Correction to exceptional pool usage in TS 36.331

Fixed ASN.1 syntax check error ("PLMN-IdentityList-MBMS-14" -> "PLMN-IdentityList-MBMS-14")

Updated the version number on the cover sheet

Introducing 256QAM in UL

Introduction of data inactivity timer

Corrections to WLAN status monitoring

Introduce a new parameter for V2X resource reselection

Introduce V2X in TS 36.331

Indication of S1 signalling of 1Rx UE category

Introduction of new UL UE category for 300Mbps with 64QAM

Introduction of SFN indication in handover message
RP-76	RP-171224	2737	1	F	Correction to SIB-Type-NB	14.3.0	
RP-76	RP-171233	2741	5	F	Clarification of intra-frequency applicability of makeBeforeBreak HO	14.3.0	
RP-76	RP-171224	2745	3	F	Correction to the value range of ce-CongestionControlOffset	14.3.0	
RP-76	RP-171224	2746	2	C	Introduction of Overload Control for Control plane data only	14.3.0	
RP-76	RP-171223	2748	2	F	SC-MCCH information change notification for FeMTC and NB-IoT enhancements	14.3.0	
RP-76	RP-171223	2749	1	F	Alignment of the parameter names for SC-PTM DRX for SC-MCCH and SC-MTCH	14.3.0	
RP-76	RP-171223	2752	3	F	Corrections to RACH-less handover and SCG change	14.3.0	
RP-76	RP-171222	2759	7	F	Corrections to per-CC measurement gap configuration and add the support for UE reporting of numFreqEffectiveReduced when frequencies are configured for reduced measurement performance	14.3.0	
RP-76	RP-171223	2760	1	F	Corrections to make before break mobility	14.3.0	
RP-76	RP-171243	2768	2	F	Clarification regarding requesting fallback combinations with different capabilities	14.3.0	
RP-76	RP-171226	2771	1	F	Leap second change for DFN timing	14.3.0	
RP-76	RP-171244	2773	1	A	Correction to RACH CE level info list	14.3.0	
RP-76	RP-171223	2775	2	C	CE mode configuration/deconfiguration without handover	14.3.0	
RP-76	RP-171227	2791	3	F	Correction on V2X Rx pool for inter-frequency configuration in 36.331	14.3.0	
RP-76	RP-171248	2795	1	A	Entry-Level UE Support UL 64QAM	14.3.0	
RP-76	RP-171235	2797	1	F	FDD TDD difference for VoLTE capability	14.3.0	
RP-76	RP-171242	2801	4	A	Setting of FGI 107 and 108 in case of TDD-FDD CA	14.3.0	
RP-76	RP-171226	2813	1	F	Correction of RRCConnectionReconfiguration reception for V2X	14.3.0	
RP-76	RP-171227	2820	T	CN on V2X miscellaneous RRC corrections	14.3.0		
RP-76	RP-171224	2823	2	B	Introduction of RRC connection re-establishment for NB-IoT control plane	14.3.0	
RP-76	RP-171243	2826	-	A	Miscellaneous corrections to CA enhancements	14.3.0	
RP-76	RP-171244	2828	2	A	Clarification to MIB repetitions	14.3.0	
RP-76	RP-171243	2830	3	A	LAA/WiFi sharing indiction	14.3.0	
RP-76	RP-171225	2831	-	B	Enable Uplink-Only RoHC operations	14.3.0	
RP-76	RP-171245	2833	1	A	Clarification on contention based random access for NB-IoT	14.3.0	
RP-76	RP-171245	2836	-	A	Editorial correction on ab-Barring parameter	14.3.0	
RP-76	RP-171223	2842	F	Correction to FGI 25	14.3.0		
RP-76	RP-171223	2844	1	F	Correction to InterFreqRSTMDmeasurementIndication message	14.3.0	
RP-76	RP-171223	2845	2	B	Introduction of enhanced RLM reporting	14.3.0	
RP-76	RP-171245	2848	1	A	Correction on the UE AS context handling	14.3.0	
RP-76	RP-171224	2849	1	A	Correction on attach without PDN connectivity	14.3.0	
RP-76	RP-171233	2851	1	F	Miscellaneous RRC corrections on mobility enhancement	14.3.0	
RP-76	RP-171223	2853	1	A	Clarification on logicalChannelSR-ProhibitTimer for NB-IoT	14.3.0	
RP-76	RP-171223	2854	2	F	Correction to SC-MCCH and SC-MTCH configuration without delta configuration	14.3.0	
RP-76	RP-171230	2869	1	F	Correction of SRS switching	14.3.0	
RP-76	RP-171223	2870	2	F	Miscellaneous feMTC corrections and clarifications resulting from ASN.1 review	14.3.0	
RP-76	RP-171237	2871	-	F	Miscellaneous eDECTOR corrections and clarifications resulting from ASN.1 review	14.3.0	
RP-76	RP-171221	2873	1	F	Miscellaneous feMBMS corrections and clarifications resulting from ASN.1 review	14.3.0	
RP-76	RP-171221	2874	1	B	UE capabilities for feMBMS	14.3.0	
RP-76	RP-171224	2876	1	F	Long DRX values with regular wake-up cycle – Option 1	14.3.0	
RP-76	RP-171244	2879	A	Correction on terminology of SI for eMTC	14.3.0		
RP-76	RP-171223	2882	1	F	Correction on the description of ce-srsEnhancement for FeMTC	14.3.0	
RP-76	RP-171223	2883	2	B	Measurement gap sharing for FeMTC intra- and inter-frequency measurement	14.3.0	
RP-76	RP-171223	2884	1	F	Minor correction in TS 36.331 for feMTC	14.3.0	
RP-76	RP-171223	2885	2	F	Corrections on reconfiguration between CE mode and normal mode in FeMTC	14.3.0	
RP-76	R-1705852	2887	1	F	Clarification regarding eFD-MIMO configuration (REL-14)	14.3.0	
RP-76	RP-171235	2889	1	F	Correction of issues related to ASN.1 review for eVoLTE	14.3.0	
RP-76	RP-171230	2890	1	F	Merging of returningTimeBandPairList with regular supported BC capabilities (ASN.1 review issue S.059)	14.3.0	
RP-76	RP-171222	2891	-	F	Consistent gap pattern configuration for serving cells	14.3.0	
RP-76	RP-171407	2903	2	B	Introduction of UE capability for V2X in 36.331	14.3.0	
RP-76	RP-171227	2905	1	F	Correction on V2X behavior in 36.331	14.3.0	
RP-76	RP-171246	2912	2	B	EUTRAN sharing enhancement	14.3.0	
RP-76	RP-171244	2919	-	A	Clarification on additionalSpectrumEmission for eMTC	14.3.0	
RP-76	RP-171245	2920	-	A	Clarification on additionalSpectrumEmission for NB-IoT	14.3.0	
RP-76	RP-171224	2927	-	F	Correction to CarrierConfigDedicated-NB	14.3.0	
RP-76	RP-171224	2929	2	F	Miscellaneous NB-IoT corrections and clarifications resulting from ASN.1 review	14.3.0	
RP-76	RP-171245	2931	2	A	Extension of SIIntraSearchP value range	14.3.0	
RP-76	RP-171223	2932	-	F	Maximum PDSCCH/PSDCCH BW preference indication handling for handover	14.3.0	
RP-76	RP-171225	2938	3	F	Revert PDCP state variable HFN and SN back to the values used in the source cell	14.3.0	
RP-77	2907	A	Correction to PUCCH-ConfigDedication	14.4.0			
RP-77	2993	2	CR on condition for RRC connection establishment and condition for sidelink UE information for V2X sidelink communication	14.4.0			
RP-77	2994	2	Correction on RACH-less SeNB Change	14.4.0			
RP-77	2995	F	Corrections on eVolTE	14.4.0			
RP-77	2997	2	Corrections to random selection for P2X related V2X sidelink communication	14.4.0			
RP-77	3002	2	A	additionalSpectrumEmission extension	14.4.0		
RP-77	3008	F	Correction of field descriptions for recommendedBitRate and recommendedBitRateQuery	14.4.0			
RP-77	3014	2	A	RPM Measurement Clarification on Discovery Signals for LAA	14.4.0		
RP-77	3018	A	Correction in PUSCH-Config description	14.4.0			
RP-77	3022	F	Cat-M1 indication by Cat-M2 UE	14.4.0			
RP-77	3025	1	A	Clarification on the freeHoppingParametersDL during handover	14.4.0		
RP-77	3027	1	A	Clarification on nrsR-ThresholdsPrachInfoList during handover	14.4.0		
RP-77	3028	F	Clarification on systemInformationBlockType2Dedicated	14.4.0			
RP-77	3030	2	A	Clarification on Bandwidth Reduced operation	14.4.0		
RP-77	3036	F	Correction for connEstFailOffset	14.4.0			
RP-77	3040	F	Clarification on LWIP aggregation	14.4.0			
RP-77	3041	F	Correction to eLAAs configuration	14.4.0			
RP-77	3042	2	C	Packet Reordering for Sidelink	14.4.0		
RP-77	3044	1	A	Corrections on TS 36.331 for Rel-13 MTC	14.4.0		
RP-77	3047	F	Corrections on Bandwidth preference indication for Rel-14 MTC	14.4.0			
RP-77	3048	1	F	Corrections on TS 36.331 for Rel-14 MTC	14.4.0		
RP-77	3051	2	F	Clarification on TSSC UE capability	14.4.0		
RP-77	3052	1	F	Corrections to UL 256 QAM capability field descriptions	14.4.0		
RP-77	3054	1	F	Clarification on per CC measurement gap	14.4.0		
RP-77	3055	1	C	Introduction of RLC UM support for LWA	14.4.0		
RP-77	3057	A	Correction on eCA with Dual Connectivity	14.4.0			
RP-77	3059	F	Clarification of the PTAG value for the RACH-less handover	14.4.0			
RP-77	3063	1	A	Clarification on number of RACH CE levels vs number of RSRP thresholds	14.4.0		
RP-77	3064	1	F	Correction to contention free random access	14.4.0		
RP-77	3065	2	C	Introduction of Release Assistance Indication	14.4.0		
RP-77	3067	2	A	TM9 capabilities in CE mode	14.4.0		
RP-77	3068	1	F	Introduction of interference randomisation in NB-IoT	14.4.0		
RP-77	3070	-	A	Clarification on PUSCH SCce change	14.4.0		
12/2017	RP-78	2968	5	F	Cleaning up CQI and CSI-RS-related configurations (related to Rel-14 ASNI 1 review issue N.099)	14.5.0	
RP-78	2982	8	B	Introduction of the overheating indication	14.5.0		
RP-78	3037	4	F	Target cell optional PBCH repetition status indication	14.5.0		
RP-78	3046	3	A	Corrections on paging monitoring in RRC_CONNECTED in Rel-13 eMTC	14.5.0		
RP-78	3071	3	B	Introduction of DL 2Gbps Category	14.5.0		
RP-78	3072	3	F	Correction to Inter-frequency reception for V2X sidelink communication	14.5.0		
RP-78	3073	4	F	CR on SIB21 reading	14.5.0		
RP-78	3081	2	A	UE capabilities for Tx antenna selection	14.5.0		
RP-78	3084	3	F	Transmission of P2X sidelink communication in Exceptional Pool	14.5.0		
RP-78	3085	2	F	Correction on SubframeBitmap Configuration in Band 47	14.5.0		
RP-78	3088	1	F	Correction on SRS switching capabilities field description	14.5.0		
RP-78	3090	2	F	Clarification on Interference Randomisation in NB-IoT in 36.331	14.5.0		
RP-78	3091	1	F	MUST capability	14.5.0		
RP-78	3096	4	A	Corrections on field description of cellSelectionInfoCE for eMTC	14.5.0		
RP-78	3107	2	F	Correction to UE capabilities	14.5.0		
RP-78	RP-172623	3108	1	A	Define requirement for reception of number of simultaneous SC-PTM services	14.5.0	
RP-78	RP-172616	3110	3	B	Signaling of NCSG Support for Inter-F Measurement	14.5.0	
RP-78	RP-172623	3112	2	A	Clarification on csi-RS-ConfigNZPId	14.5.0	
RP-78	RP-172617	3113	4	F	Correction to UE-Capability-NB extension and provision for late rel-13 corrections	14.5.0	
RP-78	RP-172624	3120	1	F	Alignment of FG14 (Short DRX) for Cat M1 and M2	14.5.0	
RP-78	RP-172616	3127	1	F	UE capability for support of SRS enhancements without support of comb 4	14.5.0	
RP-78	RP-172624	3129	1	F	MB-BSFN subframes for target cell during handover to CE cell	14.5.0	
RP-78	RP-172615	3132	3	C	Reject of unprotected redirect to GERAN	14.5.0	
RP-78	RP-172616	3135	2	F	Correction to actions related to InterFreqSTDMeasurementIndication message	14.5.0	
RP-78	RP-172616	3137	1	F	Clarification on srs-UpPdsAdd in SRS coverage enhancement	14.5.0	
RP-78	RP-172616	3138	1	F	Scheduling information of SIB1-BR when skipping MIB during HO	14.5.0	
RP-78	RP-172624	3140	1	A	Introducing a definition for the term UE in CE	14.5.0	
RP-78	RP-172617	3153	2	F	NRS-CRS power offset configuration for NB-IoT	14.5.0	
RP-78	RP-172617	3154	3	C	Introduction of relaxed monitoring in NB-IoT	14.5.0	
RP-78	RP-172617	3157	1	F	Successful acknowledgement of RRCConnectionRelease	14.5.0	
RP-78	RP-172624	3160	1	A	TM6 capabilities in CE mode	14.5.0	
RP-78	RP-172616	3169	1	F	Correction on the field description of ce-PDSCH-TenProcesses	14.5.0	
RP-78	RP-172617	3175	1	F	Small corrections to CarrierConfigDedicated, T322 and T-reordering default configuration	14.5.0	
RP-78	RP-172617	3176	1	F	Correction to random access power control in 36.331	14.5.0	
RP-78	RP-172616	3180	1	B	Introduction of a new configuration for ssp10 with less CRS	14.5.0	
RP-78	RP-172617	3184	-	F	Correction on zone configuration in transmission pool selection	14.5.0	
RP-78	RP-172622	3190	-	A	DCI monitoring subframes for eIMTA	14.5.0	
RP-78	RP-172623	3194	-	F	SFN desynchroniazon between eNB and eDRX UE	14.5.0	
01/2018	RP-78	-	-	-	Removed revision marks (MCC)	14.5.1	
03/2018	RP-79	RP-180443	3216	-	F	Correction on SRS carrier switching	14.6.0
RP-79	RP-180443	3221	-	F	Correction to field description for HARQ-ACK delay for Rel-14 MTC	14.6.0	
RP-79	RP-180445	3223	1	F	Correction to RRCConnectionReestablishment message in 36.331	14.6.0	
RP-79	RP-180443	3237	2	C	Introduction of support of relaxed monitoring for BL and CE UE	14.6.0	
RP-79	RP-180448	3244	2	B	Introduction of LTE DL 1.4Gbps Category	14.6.0	
RP-79	RP-180442	3255	1	A	Correction to handling of p-Max procedure for high-power UEs	14.6.0	
RP-79	RP-180445	3257	-	F	Small correction on PhysicalConfigDedicated-NB	14.6.0	
RP-79	RP-180446	3262	2	F	Correction on Override of the highPriorityAccess Establishment Cause by the mo-VoiceCall value	14.6.0	
RP-79	RP-180442	3266	1	A	Different power class support for band combinations	14.6.0	
RP-79	RP-180444	3271	1	F	Clarifications on V2X resource selection in the absence of positioning information	14.6.0	
RP-79	RP-180446	3273	1	F	Correction to GERAN redirection without security	14.6.0	
RP-79	RP-180441	3276	1	A	Correction to pucch-ConfigDedicated for fallback configuration	14.6.0	
RP-79	RP-180446	3278	2	F	Signalling for reading shared PLMN information from non-CSG cells	14.6.0	
RP-79	RP-180443	3281	-	F	Clarification to PUCCH Configuration for LAA SCells	14.6.0	
RP-79	RP-180444	3292	1	F	Correction on Si-offsetIndicator for the sidelink resource pool	14.6.0	
RP-79	RP-180441	3295	2	F	Clarification on the NPRACH starting subcarrier partitioning for multi-tone Msg3 transmission	14.6.0	
RP-79	RP-180441	3305	-	A	RRC Corrections for RRC Resume	14.6.0	
04/2018	RP-79	-	-	-	New version to fix ASN.1 formatting	14.6.1	
RP-79	-	-	-	-	To maintain the compatibility between Rel-14 and Rel-15 ASN.1, "OPTIONAL" is removed from otherParameters-1460 in UE-EUTRA-Capability-v1460-1Es	14.6.2	
## History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V14.2.2 May 2017</td>
</tr>
<tr>
<td>V14.3.0 October 2017</td>
</tr>
<tr>
<td>V14.4.0 October 2017</td>
</tr>
<tr>
<td>V14.5.1 January 2018</td>
</tr>
<tr>
<td>V14.6.2 April 2018</td>
</tr>
</tbody>
</table>