ETSI TS 136 331 V12.3.0 (2014-09)

LTE;
Evolved Universal Terrestrial Radio Access (E-UTRA);
Radio Resource Control (RRC);
Protocol specification
(3GPP TS 36.331 version 12.3.0 Release 12)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
Contents

Intellectual Property Rights .. 2
Foreword .. 2
Modal verbs terminology .. 2
Foreword .. 14

1 Scope .. 15
2 References .. 15

3 Definitions, symbols and abbreviations .. 18
3.1 Definitions ... 18
3.2 Abbreviations .. 19

4 General .. 21
4.1 Introduction ... 21
4.2 Architecture .. 21
4.2.1 UE states and state transitions including inter RAT ... 21
4.2.2 Signalling radio bearers .. 23
4.3 Services .. 24
4.3.1 Services provided to upper layers .. 24
4.3.2 Services expected from lower layers ... 24
4.4 Functions .. 24

5 Procedures ... 25
5.1 General .. 25
5.1.1 Introduction ... 25
5.1.2 General requirements ... 25
5.2 System information .. 26
5.2.1 Introduction ... 26
5.2.1.1 General ... 26
5.2.1.2 Scheduling .. 27
5.2.1.3 System information validity and notification of changes ... 27
5.2.1.4 Indication of ETWS notification ... 28
5.2.1.5 Indication of CMAS notification ... 28
5.2.1.6 Notification of EAB parameters change ... 29
5.2.1.7 System information required by the UE ... 29
5.2.1.8 System information acquisition by the UE ... 30
5.2.1.9 Essential system information missing .. 32
5.2.1.10 Actions upon reception of the MasterInformationBlock message 32
5.2.1.11 Actions upon reception of the SystemInformationBlockType1 message 32
5.2.1.12 Actions upon reception of SystemInformation messages .. 33
5.2.1.13 Actions upon reception of SystemInformationBlockType2 ... 33
5.2.1.14 Actions upon reception of SystemInformationBlockType3 ... 33
5.2.1.15 Actions upon reception of SystemInformationBlockType4 ... 33
5.2.1.16 Actions upon reception of SystemInformationBlockType5 ... 33
5.2.1.17 Actions upon reception of SystemInformationBlockType6 ... 34
5.2.1.18 Actions upon reception of SystemInformationBlockType7 ... 34
5.2.1.19 Actions upon reception of SystemInformationBlockType8 ... 34
5.2.1.20 Actions upon reception of SystemInformationBlockType9 ... 35
5.2.1.21 Actions upon reception of SystemInformationBlockType10 .. 35
5.2.1.22 Actions upon reception of SystemInformationBlockType11 .. 35
5.2.1.23 Actions upon reception of SystemInformationBlockType12 .. 36
5.2.1.24 Actions upon reception of SystemInformationBlockType13 .. 36
5.2.1.25 Actions upon reception of SystemInformationBlockType14 .. 36
5.2.2.22 Actions upon reception of SystemInformationBlockType15 .. 36
5.2.2.23 Actions upon reception of SystemInformationBlockType16 .. 37
5.2.2.24 Actions upon reception of SystemInformationBlockType17 .. 37
5.2.3 Acquisition of an SI message .. 37
5.3 Connection control .. 37
5.3.1 Introduction ... 37
5.3.1.1 RRC connection control ... 37
5.3.1.2 Security ... 38
5.3.1.2a RN security ... 39
5.3.1.3 Connected mode mobility .. 39
5.3.2 Paging .. 40
5.3.2.1 General ... 40
5.3.2.2 Initiation .. 40
5.3.2.3 Reception of the Paging message by the UE .. 41
5.3.3 RRC connection establishment ... 42
5.3.3.1 General ... 42
5.3.3.2 Initiation .. 42
5.3.3.3 Actions related to transmission of RRCConnectionRequest message ... 45
5.3.3.4 Reception of the RRCConnectionSetup message by the UE ... 45
5.3.3.5 Cell re-selection while T300, T302, T303, T305 or T306 is running ... 46
5.3.3.6 T300 expiry .. 47
5.3.3.7 T302, T303, T305 or T306 expiry or stop ... 48
5.3.3.8 Reception of the RRCConnectionReject message by the UE .. 48
5.3.3.9 Abortion of RRC connection establishment .. 49
5.3.3.10 Handling of SSAC related parameters .. 49
5.3.3.11 Access barring check ... 50
5.3.3.12 EAB check .. 50
5.3.4 Initial security activation .. 51
5.3.4.1 General ... 51
5.3.4.2 Initiation .. 52
5.3.4.3 Reception of the SecurityModeCommand message by the UE .. 52
5.3.5 RRC connection reconfiguration ... 53
5.3.5.1 General ... 53
5.3.5.2 Initiation .. 53
5.3.5.3 Reception of an RRCConnectionReconfiguration message by the UE 53
5.3.5.4 Reception of an RRCConnectionReconfiguration message including the mobilityControlInfo by the UE (handover) .. 54
5.3.5.5 Reconfiguration failure ... 57
5.3.5.6 T304 expiry (handover failure) ... 58
5.3.5.7 Void .. 59
5.3.5.8 Radio Configuration involving full configuration option .. 59
5.3.6 Counter check .. 60
5.3.6.1 General ... 60
5.3.6.2 Initiation .. 60
5.3.6.3 Reception of the CounterCheck message by the UE .. 60
5.3.7 RRC connection re-establishment ... 61
5.3.7.1 General ... 61
5.3.7.2 Initiation .. 62
5.3.7.3 Actions following cell selection while T311 is running ... 62
5.3.7.4 Actions related to transmission of RRCConnectionReestablishmentRequest message 63
5.3.7.5 Reception of the RRCConnectionReestablishment message by the UE 63
5.3.7.6 T311 expiry .. 65
5.3.7.7 T301 expiry or selected cell no longer suitable .. 65
5.3.7.8 Reception of RRCConnectionReestablishmentReject message by the UE 65
5.3.8 RRC connection release ... 66
5.3.8.1 General ... 66
5.3.8.2 Initiation .. 66
5.3.8.3 Reception of the RRCConnectionRelease message by the UE .. 66
5.3.8.4 T320 expiry .. 66
5.3.9 RRC connection release requested by upper layers .. 66
5.3.9.1 General ... 66
5.3.10 Radio resource configuration

5.3.10.0 General

5.3.10.1 SRB addition/ modification

5.3.10.2 DRB release

5.3.10.3 DRB addition/ modification

5.3.10.3a SCell release

5.3.10.3b SCell addition/ modification

5.3.10.4 MAC main reconfiguration

5.3.10.5 Semi-persistent scheduling reconfiguration

5.3.10.6 Physical channel reconfiguration

5.3.10.7 Radio Link Failure Timers and Constants reconfiguration

5.3.10.8 Time domain measurement resource restriction for serving cell

5.3.10.9 Other configuration

5.3.11 Radio link failure related actions

5.3.11.1 Detection of physical layer problems in RRC_CONNECTED

5.3.11.2 Recovery of physical layer problems

5.3.11.3 Detection of radio link failure

5.3.12 UE actions upon leaving RRC_CONNECTED

5.3.13 UE actions upon PUCCH/ SRS release request

5.3.14 Proximity indication

5.3.14.1 General

5.3.14.2 Initiation

5.3.14.3 Actions related to transmission of ProximityIndication message

5.3.15 Void

5.4 Inter-RAT mobility

5.4.1 Introduction

5.4.2 Handover to E-UTRA

5.4.2.1 General

5.4.2.2 Initiation

5.4.2.3 Reception of the RRCConnectionReconfiguration by the UE

5.4.2.4 Reconfiguration failure

5.4.2.5 T304 expiry (handover to E-UTRA failure)

5.4.3 Mobility from E-UTRA

5.4.3.1 General

5.4.3.2 Initiation

5.4.3.3 Reception of the MobilityFromEUTRACommand by the UE

5.4.3.4 Successful completion of the mobility from E-UTRA

5.4.3.5 Mobility from E-UTRA failure

5.4.4 Handover from E-UTRA preparation request (CDMA2000)

5.4.4.1 General

5.4.4.2 Initiation

5.4.4.3 Reception of the HandoverFromEUTRAPreparationRequest by the UE

5.4.5 UL handover preparation transfer (CDMA2000)

5.4.5.1 General

5.4.5.2 Initiation

5.4.5.3 Actions related to transmission of the ULHandoverPreparationTransfer message

5.4.5.4 Failure to deliver the ULHandoverPreparationTransfer message

5.4.6 Inter-RAT cell change order to E-UTRAN

5.4.6.1 General

5.4.6.2 Initiation

5.4.6.3 UE fails to complete an inter-RAT cell change order

5.5 Measurements

5.5.1 Introduction

5.5.2 Measurement configuration

5.5.2.1 General

5.5.2.2 Measurement identity removal

5.5.2.2a Measurement identity autonomous removal

5.5.2.3 Measurement identity addition/ modification

5.5.2.4 Measurement object removal

5.5.2.5 Measurement object addition/ modification

5.5.2.6 Reporting configuration removal
5.5.2.7 Reporting configuration addition/ modification .. 89
5.5.2.8 Quantity configuration .. 90
5.5.2.9 Measurement gap configuration .. 90
5.5.3 Performing measurements .. 90
5.5.3.1 General ... 90
5.5.3.2 Layer 3 filtering ... 92
5.5.4 Measurement report triggering .. 92
5.5.4.1 General ... 92
5.5.4.2 Event A1 (Serving becomes better than threshold) ... 95
5.5.4.3 Event A2 (Serving becomes worse than threshold) ... 95
5.5.4.4 Event A3 (Neighbour becomes offset better than PCell) ... 96
5.5.4.5 Event A4 (Neighbour becomes better than threshold) .. 97
5.5.4.6 Event A5 (PCell becomes worse than threshold1 and neighbour becomes better than threshold2) ... 97
5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) ... 98
5.5.4.7 Event B1 (Inter RAT neighbour becomes better than threshold) 99
5.5.4.8 Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2) ... 99
5.5.5 Measurement reporting ... 100
5.5.6 Measurement related actions ... 102
5.5.6.1 Actions upon handover and re-establishment ... 102
5.5.6.2 Speed dependant scaling of measurement related parameters 103
5.5.7 Inter-frequency RSTD measurement indication .. 104
5.5.7.1 General ... 104
5.5.7.2 Initiation ... 104
5.5.7.3 Actions related to transmission of InterFreqRSTDMeasurementIndication message 105
5.6 Other .. 105
5.6.1 DL information transfer ... 105
5.6.1.1 General ... 105
5.6.1.2 Initiation ... 105
5.6.1.3 Reception of the DLInformationTransfer by the UE .. 105
5.6.2 UL information transfer ... 106
5.6.2.1 General ... 106
5.6.2.2 Initiation ... 106
5.6.2.3 Actions related to transmission of ULInformationTransfer message 106
5.6.2.4 Failure to deliver ULInformationTransfer message .. 106
5.6.3 UE capability transfer .. 107
5.6.3.1 General ... 107
5.6.3.2 Initiation ... 107
5.6.3.3 Reception of the UECapabilityEnquiry by the UE ... 107
5.6.4 CSFB to 1x Parameter transfer ... 109
5.6.4.1 General ... 109
5.6.4.2 Initiation ... 110
5.6.4.3 Actions related to transmission of CSFBParametersRequestCDMA2000 message 110
5.6.4.4 Reception of the CSFBParametersResponseCDMA2000 message 110
5.6.5 UE Information ... 110
5.6.5.1 General ... 110
5.6.5.2 Initiation ... 110
5.6.5.3 Reception of the UEInformationRequest message ... 110
5.6.6 Logged Measurement Configuration .. 112
5.6.6.1 General ... 112
5.6.6.2 Initiation ... 112
5.6.6.3 Reception of the LoggedMeasurementConfiguration by the UE 112
5.6.6.4 T330 expiry .. 112
5.6.7 Release of Logged Measurement Configuration .. 113
5.6.7.1 General ... 113
5.6.7.2 Initiation ... 113
5.6.8 Measurements logging ... 113
5.6.8.1 General ... 113
5.6.8.2 Initiation ... 113
5.6.9 In-device coexistence indication .. 115
5.6.9.1 General ... 115
5.6.9.2 Initiation ... 115
5.6.9.3 Actions related to transmission of InDeviceCoexIndication message .. 116
5.6.10 UE Assistance Information .. 116
5.6.10.1 General .. 116
5.6.10.2 Initiation ... 116
5.6.10.3 Actions related to transmission of UEAssistanceInformation message ... 117
5.6.11 Mobility history Information .. 117
5.6.11.1 General ... 117
5.6.11.2 Initiation ... 117
5.6.12 RAN-assisted WLAN interworking .. 118
5.6.12.1 General ... 118
5.6.12.2 Dedicated WLAN offload configuration .. 118
5.6.12.3 WLAN offload RAN evaluation .. 119
5.6.12.4 T350 expiry or stop .. 119
5.6.12.5 Cell re-selection while T350 is running ... 119
5.7 Generic error handling .. 119
5.7.1 General .. 119
5.7.2 ASN.1 violation or encoding error ... 119
5.7.3 Field set to a not comprehended value ... 120
5.7.4 Mandatory field missing .. 120
5.7.5 Not comprehended field .. 121
5.8 MBMS .. 121
5.8.1 Introduction ... 121
5.8.1.1 General ... 121
5.8.1.2 Scheduling .. 122
5.8.1.3 MCCH information validity and notification of changes .. 122
5.8.2 MCCH information acquisition ... 123
5.8.2.1 General ... 123
5.8.2.2 Initiation ... 123
5.8.2.3 MCCH information acquisition by the UE .. 123
5.8.2.4 Actions upon reception of the MBSFNAreaConfiguration message .. 124
5.8.2.5 Actions upon reception of the MBMSCountingRequest message .. 124
5.8.3 MBMS PTM radio bearer configuration ... 124
5.8.3.1 General ... 124
5.8.3.2 Initiation ... 124
5.8.3.3 MRB establishment ... 124
5.8.3.4 MRB release ... 125
5.8.4 MBMS Counting Procedure ... 125
5.8.4.1 General ... 125
5.8.4.2 Initiation ... 125
5.8.4.3 Reception of the MBMSCountingRequest message by the UE .. 125
5.8.5 MBMS interest indication .. 126
5.8.5.1 General ... 126
5.8.5.2 Initiation ... 126
5.8.5.3 Determine MBMS frequencies of interest .. 127
5.8.5.4 Actions related to transmission of MBMSInterestIndication message ... 127
5.9 RN procedures .. 128
5.9.1 RN reconfiguration .. 128
5.9.1.1 General ... 128
5.9.1.2 Initiation ... 128
5.9.1.3 Reception of the RNReconfiguration by the RN .. 128
6 Protocol data units, formats and parameters (tabular & ASN.1) ... 129
6.1 General .. 129
6.2 RRC messages .. 130
6.2.1 General message structure .. 131
- EUTRA-RRC-Definitions .. 131
- BCCH-BCH-Message ... 131
- BCCH-DL-SCH-Message ... 131
- MCCH-Message ... 131
- PCCH-Message ... 132
- DL-CCCH-Message ... 132
- DL-DCCH-Message .. 132

ETSI
6.2.2 Message definitions ... 134

- CounterCheck .. 134
- CounterCheckResponse .. 134
- CSFBParametersRequestCDMA2000 .. 135
- CSFBParametersResponseCDMA2000 ... 136
- DLInformationTransfer .. 137
- HandoverFromEUTRAPreparationRequest (CDMA2000) ... 137
- InDeviceCoexIndication ... 138
- InterFreqRSTDMeasurementIndication .. 140
- LoggedMeasurementConfiguration .. 141
- MasterInformationBlock ... 143
- MBMSCountingRequest ... 143
- MBMSCountingResponse ... 144
- MBMSInterestIndication ... 145
- MBSFNAreaConfiguration ... 145
- MeasurementReport ... 146
- MobilityFromEUTRAClaim .. 146
- Paging .. 149
- ProximityIndication ... 150
- RNReconfiguration ... 151
- RNReconfigurationComplete ... 151
- RRCConnectionReconfiguration .. 152
- RRCConnectionReconfigurationComplete ... 154
- RRCConnectionReestablishment .. 155
- RRCConnectionReestablishmentComplete .. 155
- RRCConnectionReject ... 156
- RRCConnectionReestablishmentReject ... 157
- RRCConnectionReject ... 158
- RRCConnectionRelease ... 159
- RRCConnectionRequest ... 162
- RRCConnectionSetup .. 163
- RRCConnectionSetupComplete .. 164
- SecurityModeCommand ... 165
- SecurityModeComplete ... 166
- SecurityModeFailure ... 166
- SystemInformation ... 167
- SystemInformationBlockType1 .. 167
- UEAssistanceInformation .. 171
- UECapabilityEnquiry ... 171
- UECapabilityInformation ... 172
- UEInformationRequest ... 173
- UEInformationResponse ... 174
- ULHandoverPreparationTransfer (CDMA2000) .. 179
- ULInformationTransfer .. 179

6.3 RRC information elements .. 180

6.3.1 System information blocks ... 180

- SystemInformationBlockType2 .. 180
- SystemInformationBlockType3 .. 182
- SystemInformationBlockType4 .. 184
- SystemInformationBlockType5 .. 184
- SystemInformationBlockType6 .. 186
- SystemInformationBlockType7 .. 188
- SystemInformationBlockType8 .. 189
- SystemInformationBlockType9 .. 194
- SystemInformationBlockType10 .. 194
- SystemInformationBlockType11 .. 195
- SystemInformationBlockType12 .. 196
- SystemInformationBlockType13 .. 196
- SystemInformationBlockType14 .. 197
- SystemInformationBlockType15 .. 197
6.3.2 Radio resource control information elements ... 200
- AntennaInfo .. 200
- AntennaInfoUL ... 201
- CQI-ReportConfig .. 202
- CQI-ReportPeriodicProcExtId ... 207
- CrossCarrierSchedulingConfig ... 207
- CSI-IM-Config ... 208
- CSI-IM-ConfigId .. 208
- CSI-Process .. 208
- CSI-ProcessId ... 210
- CSI-RS-Config .. 210
- CSI-RS-ConfigNZP ... 211
- CSI-RS-ConfigNZPid .. 212
- CSI-RS-ConfigZP .. 212
- CSI-RS-ConfigZPid .. 212
- DMRS-Config ... 212
- DRB-Identity ... 213
- EPDCCH-Config .. 213
- EIMTA-MainConfig ... 214
- LogicalChannelConfig ... 215
- MAC-MainConfig .. 216
- PDCP-Config .. 220
- PDSCH-Config ... 221
- PDSCH-RE-MappingQCL-ConfigId ... 222
- PHICH-Config ... 223
- PhysicalConfigDedicated ... 223
- P-Max ... 226
- PRACH-Config ... 226
- PresenceAntennaPortI .. 227
- PUCCH-Config .. 227
- PUSCH-Config ... 230
- RACH-ConfigCommon ... 232
- RACH-ConfigDedicated ... 233
- RadioResourceConfigCommon .. 234
- RadioResourceConfigDedicated .. 236
- RLC-Config ... 238
- RLF-TimersAndConstants .. 240
- RN-SubframeConfig ... 240
- SchedulingRequestConfig .. 242
- SoundingRS-UL-Config ... 243
- SPS-Config ... 244
- TDD-Config ... 246
- TimeAlignmentTimer ... 247
- TPC-PDCCCH-Config .. 247
- UplinkPowerControl ... 248

6.3.3 Security control information elements ... 250
- NextHopChainingCount ... 250
- SecurityAlgorithmConfig ... 251
- ShortMAC-I ... 251

6.3.4 Mobility control information elements ... 251
- AdditionalSpectrumEmission ... 251
- ARFCN-ValueCDMA2000 .. 252
- ARFCN-ValueEUTRA .. 252
- ARFCN-ValueGERAN .. 252
- ARFCN-ValueUTRA ... 252
- BandclassCDMA2000 .. 253
- BandIndicatorGERAN ... 253
- CarrierFreqCDMA2000 ... 253
- CarrierFreqGERAN ... 253
- CarrierFreqGERAN... 254
6.3.5 Measurement information elements

- AllowedMeasBandwidth
- Hysteresis
- LocationInfo
- MeasConfig
- MeasGapConfig
- MeasId
- MeasIdToAddModList
- MeasObjectCDMA2000
- MeasObjectEUTRA
- MeasObjectGERAN
- MeasObjectId
- MeasObjectToAddModList
- MeasObjectUTRA
- MeasResults
- QuantityConfig
- ReportConfigEUTRA
- ReportConfigGeran
- ReportConfigInterRAT
- ReportConfigToAddModList
- ReportInterval
- RSRP-Range
- RSRQ-Range
- TrackingAreaCode
- T-Reselection
- TrackingAreaInfoHRPD
- ReselectionThreshold
- ReselectionThresholdQ
- ScellId
- ServCellId
- SpeedStateScaleFactors
- SystemInfoGeran
- SystemInfoCdma2000
- PhysCellIdCdma2000
- PhysCellIdUttra-FDD
- PhysCellIdUttra-Tdd
- PhysCellIdGeran
- PhysCellIdUTRA-FDD
- PhysCellIdUTRA-TDD
- PhysCellIdRangeUTRA-FDD
- PhysCellIdRangeUTRA-TDD
- RsrqReportConfigToAddModList
- RsrqReportConfigId
- RsrqReportConfigEutra
- RsrqReportConfigGeran
- CSF-RegistrationParam1xRTT
- MeasObjectToAddModList
- MeasResults
- MeasObjectGERAN
- MeasConfig
- Hysteresis
- CellReselectionPriority
- CSG-Identity
- FreqBandIndicator
- MobilityControlInfo
- MobilityParametersCdma2000 (1xRTT)
- MobilityStateParameters
- MultiBandInfoList
- PhyCellId
- PhyCellIdRange
- PhyCellIdRangeUTRA-FDDList
- PhyCellIdCdma2000
- PhyCellIdGeran
- PhyCellIdUttra-FDD
- PhyCellIdUttra-Tdd
- Plmn-Identity
- Plmn-IdentityList2
- PreRegistrationInfoHRPD
- Q-QualMin
- Q-RxLevMin
- Q-OffsetRange
- Q-OffsetRangeInterRAT
- ReselectionThreshold
- ReselectionThresholdQ
- ScellId
- ServCellId
- SpeedStateScaleFactors
- SystemInfoGeran
- SystemInfoCdma2000
- PhysCellIdCdma2000
- PhysCellIdUttra-FDD
- PhysCellIdUttra-Tdd
- PhysCellIdGeran
- PhysCellIdUttra-FDD
- PhysCellIdUttra-Tdd
- PhysCellIdGeran
- PhysCellIdUttra-FDD
- PhysCellIdUttra-Tdd
- PhysCellIdRangeUttra-FDD
- PhysCellIdRangeUttra-Tdd
- RsrqReportConfigToAddModList
- RsrqReportConfigId
- RsrqReportConfigEutra
- RsrqReportConfigGeran
- CSF-RegistrationParam1xRTT
- MeasObjectToAddModList
- MeasResults
A.4.3.4 Typical examples of non critical extension at the end of a message .. 350
A.4.3.5 Examples of non-critical extensions not placed at the default extension location 350
– ParentIE-WithEM .. 351
– ChildIE1-WithoutEM .. 351
– ChildIE2-WithoutEM .. 352
A.5 Guidelines regarding inclusion of transaction identifiers in RRC messages ... 352
A.6 Protection of RRC messages (informative) ... 353
A.7 Miscellaneous ... 355

Annex B (normative): Release 8 and 9 AS feature handling ... 356
B.1 Feature group indicators .. 356
B.2 CSG support .. 364

Annex C (normative): Release 10 AS feature handling ... 365
C.1 Feature group indicators .. 365

Annex D (informative): Descriptive background information ... 368
D.1 Signalling of Multiple Frequency Band Indicators (Multiple FBI) ... 368
D.1.1 Mapping between frequency band indicator and multiple frequency band indicator 368
D.1.2 Mapping between inter-frequency neighbour list and multiple frequency band indicator 368
D.1.3 Mapping between UTRA FDD frequency list and multiple frequency band indicator 369

Annex E (informative): Change history .. 371
History ... 382
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document specifies the Radio Resource Control protocol for the radio interface between UE and E-UTRAN as well as for the radio interface between RN and E-UTRAN.

The scope of the present document also includes:

- the radio related information transported in a transparent container between source eNB and target eNB upon inter eNB handover;
- the radio related information transported in a transparent container between a source or target eNB and another system upon inter RAT handover.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[3] 3GPP TS 36.302: "Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer ".
[10] 3GPP TS 22.011: "Service accessibility".

3GPP TS 36.133: "Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management".

3GPP TS 25.101: "Universal Terrestrial Radio Access (UTRA); User Equipment (UE) radio transmission and reception (FDD)".

3GPP TS 25.102: "Universal Terrestrial Radio Access (UTRA); User Equipment (UE) radio transmission and reception (TDD)".

3GPP TS 25.331: "Universal Terrestrial Radio Access (UTRA); Radio Resource Control (RRC); Protocol specification".

3GPP TS 45.005: "Radio transmission and reception".

3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation".

3GPP TS 36.212: "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding".

3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures".

3GPP2 C.S0024-C v2.0: "cdma2000 High Rate Packet Data Air Interface Specification".

3GPP TS 23.003: "Numbering, addressing and identification".

3GPP TS 45.008: "Radio subsystem link control".

3GPP TS 25.133: "Requirements for Support of Radio Resource Management (FDD)".

3GPP TS 25.123: "Requirements for Support of Radio Resource Management (TDD)".

3GPP TS 36.401: "Evolved Universal Terrestrial Radio Access (E-UTRA); Architecture description".

3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture".

3GPP2 A.S0008-C v4.0: "Interoperability Specification (IOS) for High Rate Packet Data (HRPD) Radio Access Network Interfaces with Session Control in the Access Network".

3GPP TS 24.301: "Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3".

3GPP TS 44.060: "General Packet Radio Service (GPRS); Mobile Station (MS) - Base Station System (BSS) interface; Radio Link Control/Medium Access Control (RLC/MAC) protocol".

3GPP TS 23.041: "Technical realization of Cell Broadcast Service (CBS)".

3GPP TS 23.038: "Alphabets and Language".
[39] 3GPP TS 36.413: "Evolved Universal Terrestrial Radio Access (E-UTRAN); S1 Application Protocol (S1 AP)".
[40] 3GPP TS 25.304: "Universal Terrestrial Radio Access (UTRAN); User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected mode".
[42] 3GPP TS 36.101: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception".
[43] 3GPP TS 44.005: "Data Link (DL) Layer General Aspects".
[44] 3GPP2 C.S0087-A v2.0: "E-UTRAN - cdma2000 HRPD Connectivity and Interworking Air Interface Specification"
[45] 3GPP TS 44.018: "Mobile radio interface layer 3 specification; Radio Resource Control (RRC) protocol".
[46] 3GPP TS 25.223: "Spreading and modulation (TDD)".
[47] 3GPP TS 36.104: "Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception".
[49] 3GPP TS 24.008: "Mobile radio interface layer 3 specification; Core network protocols; Stage 3".
[50] 3GPP TS 45.010: "Radio subsystem synchronization".
[51] 3GPP TS 23.272: "Circuit Switched Fallback in Evolved Packet System; Stage 2".
[52] 3GPP TS 29.061: "Interworking between the Public Land Mobile Network (PLMN) supporting packet based services and Packet Data Networks (PDN)".
[53] 3GPP2 C.S0097-0 v3.0: "E-UTRAN - cdma2000 1x Connectivity and Interworking Air Interface Specification".
[54] 3GPP TS 36.355: "LTE Positioning Protocol (LPP)".
[56] 3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and functional description".
[57] 3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".
[58] 3GPP TS 32.422: "Telecommunication management; Subsriber and equipment trace; Trace control and configuration management".
[59] 3GPP TS 22.368: "Service Requirements for Machine Type Communications; Stage 1".
[60] 3GPP TS 37.320: "Universal Terrestrial Radio Access (UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRA); Radio measurement collection for Minimization of Drive Tests (MDT); Overall description; Stage 2".
[61] 3GPP TS 23.216: "Single Radio Voice Call Continuity (SRVCC); Stage 2".
[62] 3GPP TS 22.146: "Multimedia Broadcast/Multicast Service (MBMS); Stage 1".
[63] 3GPP TR 36.816: "Evolved Universal Terrestrial Radio Access (E-UTRA); Study on signalling and procedure for interference avoidance for in-device coexistence".
[64] IS-GPS-200F: "Navstar GPS Space Segment/Navigation User Segment Interfaces".
3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Commercial Mobile Alert System: Public Warning System that delivers Warning Notifications provided by Warning Notification Providers to CMAS capable UEs.

CSG member cell: A cell broadcasting the identity of the selected PLMN, registered PLMN or equivalent PLMN and for which the CSG whitelist of the UE includes an entry comprising the cell's CSG ID and the respective PLMN identity.

EU-Alert: Public Warning System that delivers Warning Notifications provided by Warning Notification Providers using the same AS mechanisms as defined for CMAS.

Field: The individual contents of an information element are referred as fields.

Floor: Mathematical function used to 'round down' i.e. to the nearest integer having a lower or equal value.

Information element: A structural element containing a single or multiple fields is referred as information element.

Korean Public Alert System (KPAS): Public Warning System that delivers Warning Notifications provided by Warning Notification Providers using the same AS mechanisms as defined for CMAS.

MBMS service: MBMS bearer service as defined in TS 23.246 [56] (i.e. provided via an MRB).

Primary Cell: The cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure, or the cell indicated as the primary cell in the handover procedure.

Primary Timing Advance Group: Timing Advance Group containing the PCell.

Secondary Cell: A cell, operating on a secondary frequency, which may be configured once an RRC connection is established and which may be used to provide additional radio resources.

Secondary Timing Advance Group: Timing Advance Group not containing the PCell. A secondary timing advance group contains at least one cell with configured uplink.

Serving Cell: For a UE in RRC_CONNECTED not configured with CA there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA the term ‘serving cells’ is used to denote the set of one or more cells comprising of the primary cell and all secondary cells.

Timing Advance Group: A group of serving cells that is configured by RRC and that, for the cells with an UL configured, use the same timing reference cell and the same Timing Advance value.
3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

1xRTT CDMA2000 1x Radio Transmission Technology
ACK Acknowledgement
AM Acknowledged Mode
ARQ Automatic Repeat Request
AS Access Stratum
ASN.1 Abstract Syntax Notation One
BCCH Broadcast Control Channel
BCD Binary Coded Decimal
BCH Broadcast Channel
CA Carrier Aggregation
CCCH Common Control Channel
CCO Cell Change Order
CMAS Commercial Mobile Alert Service
CP Control Plane
C-RNTI Cell RNTI
CRS Cell-specific Reference Signal
CSFB CS fallback
CSG Closed Subscriber Group
CSI Channel State Information
DCCH Dedicated Control Channel
DCI Downlink Control Information
DL Downlink
DL-SCH Downlink Shared Channel
DRB (user) Data Radio Bearer
DRX Discontinuous Reception
DTCH Dedicated Traffic Channel
EAB Extended Access Barring
EHPLMN Equivalent Home Public Land Mobile Network
eIMTA Enhanced Interference Management and Traffic Adaptation
ENB Evolved Node B
EPC Evolved Packet Core
EPDCCH Enhanced Physical Downlink Control Channel
EPS Evolved Packet System
ETWS Earthquake and Tsunami Warning System
E-UTRA Evolved Universal Terrestrial Radio Access
E-UTRAN Evolved Universal Terrestrial Radio Access Network
FDD Frequency Division Duplex
FFS For Further Study
GERAN GSM/EDGE Radio Access Network
GNSS Global Navigation Satellite System
GSM Global System for Mobile Communications
HARQ Hybrid Automatic Repeat Request
HPLMN Home Public Land Mobile Network
HRPD CDMA2000 High Rate Packet Data
IDC In-Device Coexistence
IE Information element
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
ISM Industrial, Scientific and Medical
kB Kilobyte (1000 bytes)
L1 Layer 1
L2 Layer 2
L3 Layer 3
MAC Medium Access Control
MBMS Multimedia Broadcast Multicast Service
MBSFN Multimedia Broadcast multicast service Single Frequency Network
MDT Minimization of Drive Tests
MIB Master Information Block
MO Mobile Originating
MRB MBMS Point to Multipoint Radio Bearer
MRO Mobility Robustness Optimisation
MSI MCH Scheduling Information
MT Mobile Terminating
N/A Not Applicable
NACC Network Assisted Cell Change
NAS Non Access Stratum
PCCH Paging Control Channel
PCell Primary Cell
PDCCCH Physical Downlink Control Channel
PDCP Packet Data Convergence Protocol
PDU Protocol Data Unit
PLMN Public Land Mobile Network
PTAG Primary Timing Advance Group
PUCCH Physical Uplink Control Channel
QoS Quality of Service
RACH Random Access CHannel
RAT Radio Access Technology
RB Radio Bearer
RLC Radio Link Control
RN Relay Node
RNTI Radio Network Temporary Identifier
ROHC ROBust Header Compression
RPLMN Registered Public Land Mobile Network
RRC Radio Resource Control
RSCP Received Signal Code Power
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indicator
SAE System Architecture Evolution
SAP Service Access Point
SCell Secondary Cell
SFN System Frame Number
SI System Information
SIB System Information Block
SI-RNTI System Information RNTI
SPS Semi-Persistent Scheduling
SR Scheduling Request
SRB Signalling Radio Bearer
SSAC Service Specific Access Control
STAG Secondary Timing Advance Group
S-TMSI SAE Temporary Mobile Station Identifier
TA Tracking Area
TAG Timing Advance Group
TDD Time Division Duplex
TDM Time Division Multiplexing
TM Transparent Mode
TPC-RNTI Transmit Power Control RNTI
UE User Equipment
UICC Universal Integrated Circuit Card
UL Uplink
UL-SCH Uplink Shared Channel
UM Unacknowledged Mode
UP User Plane
UTC Coordinated Universal Time
UTRAN Universal Terrestrial Radio Access Network
VoLTE Voice over Long Term Evolution
WLAN Wireless Local Area Network
4 General

4.1 Introduction

In this specification, (parts of) procedures and messages specified for the UE equally apply to the RN for functionality necessary for the RN. There are also (parts of) procedures and messages which are only applicable to the RN in its communication with the E-UTRAN, in which case the specification denotes the RN instead of the UE. Such RN-specific aspects are not applicable to the UE.

This specification is organised as follows:

- sub-clause 4.2 describes the RRC protocol model;
- sub-clause 4.3 specifies the services provided to upper layers as well as the services expected from lower layers;
- sub-clause 4.4 lists the RRC functions;
- clause 5 specifies RRC procedures, including UE state transitions;
- clause 6 specifies the RRC message in a mixed format (i.e. tabular & ASN.1 together);
- clause 7 specifies the variables (including protocol timers and constants) and counters to be used by the UE;
- clause 8 specifies the encoding of the RRC messages;
- clause 9 specifies the specified and default radio configurations;
- clause 10 specifies the RRC messages transferred across network nodes;
- clause 11 specifies the UE capability related constraints and performance requirements.

4.2 Architecture

4.2.1 UE states and state transitions including inter RAT

A UE is in RRC_CONNECTED when an RRC connection has been established. If this is not the case, i.e. no RRC connection is established, the UE is in RRC_IDLE state. The RRC states can further be characterised as follows:

- **RRC_IDLE**:
 - A UE specific DRX may be configured by upper layers.
 - UE controlled mobility;
 - The UE:
 - Monitors a Paging channel to detect incoming calls, system information change, for ETWS capable UEs, ETWS notification, and for CMAS capable UEs, CMAS notification;
 - Performs neighbouring cell measurements and cell (re-)selection;
 - Acquires system information.
 - Performs logging of available measurements together with location and time for logged measurement configured UEs.

- **RRC_CONNECTED**:
 - Transfer of unicast data to/from UE.
- At lower layers, the UE may be configured with a UE specific DRX.
- For UEs supporting CA, use of one or more SCells, aggregated with the PCell, for increased bandwidth;
- Network controlled mobility, i.e. handover and cell change order with optional network assistance (NACC) to GERAN;
- The UE:
 - Monitors a Paging channel and/or System Information Block Type 1 contents to detect system information change, for ETWS capable UEs, ETWS notification, and for CMAS capable UEs, CMAS notification;
 - Monitors control channels associated with the shared data channel to determine if data is scheduled for it;
 - Provides channel quality and feedback information;
 - Performs neighbouring cell measurements and measurement reporting;
 - Acquires system information.

The following figure not only provides an overview of the RRC states in E-UTRA, but also illustrates the mobility support between E-UTRAN, UTRAN and GERAN.

![E-UTRA states and inter RAT mobility procedures, 3GPP](image)

Figure 4.2.1-1: E-UTRA states and inter RAT mobility procedures, 3GPP

The following figure illustrates the mobility support between E-UTRAN, CDMA2000 1xRTT and CDMA2000 HRPD. The details of the CDMA2000 state models are out of the scope of this specification.
The inter-RAT handover procedure(s) supports the case of signalling, conversational services, non-conversational services and combinations of these.

In addition to the state transitions shown in Figure 4.2.1-1 and Figure 4.2.1-2, there is support for connection release with redirection information from E-UTRA RRC_CONNECTED to GERAN, UTRAN and CDMA2000 (HRPD Idle/1xRTT Dormant mode).

4.2.2 Signalling radio bearers

"Signalling Radio Bearers" (SRBs) are defined as Radio Bearers (RB) that are used only for the transmission of RRC and NAS messages. More specifically, the following three SRBs are defined:

- SRB0 is for RRC messages using the CCCH logical channel;
- SRB1 is for RRC messages (which may include a piggybacked NAS message) as well as for NAS messages prior to the establishment of SRB2, all using DCCH logical channel;
- SRB2 is for RRC messages which include logged measurement information as well as for NAS messages, all using DCCH logical channel. SRB2 has a lower-priority than SRB1 and is always configured by E-UTRAN after security activation.

In downlink piggybacking of NAS messages is used only for one dependant (i.e. with joint success/failure) procedure: bearer establishment/modification/release. In uplink NAS message piggybacking is used only for transferring the initial NAS message during connection setup.

NOTE: The NAS messages transferred via SRB2 are also contained in RRC messages, which however do not include any RRC protocol control information.

Once security is activated, all RRC messages on SRB1 and SRB2, including those containing NAS or non-3GPP messages, are integrity protected and ciphered by PDCP. NAS independently applies integrity protection and ciphering to the NAS messages.
4.3 Services

4.3.1 Services provided to upper layers

The RRC protocol offers the following services to upper layers:

- Broadcast of common control information;
- Notification of UEs in RRC_IDLE, e.g. about a terminating call, for ETWS, for CMAS;
- Transfer of dedicated control information, i.e. information for one specific UE.

4.3.2 Services expected from lower layers

In brief, the following are the main services that RRC expects from lower layers:

- PDCP: integrity protection and ciphering;
- RLC: reliable and in-sequence transfer of information, without introducing duplicates and with support for segmentation and concatenation.

Further details about the services provided by Packet Data Convergence Protocol layer (e.g. integrity and ciphering) are provided in TS 36.323 [8]. The services provided by Radio Link Control layer (e.g. the RLC modes) are specified in TS 36.322 [7]. Further details about the services provided by Medium Access Control layer (e.g. the logical channels) are provided in TS 36.321 [6]. The services provided by physical layer (e.g. the transport channels) are specified in TS 36.302 [3].

4.4 Functions

The RRC protocol includes the following main functions:

- Broadcast of system information:
 - Including NAS common information;
 - Information applicable for UEs in RRC_IDLE, e.g. cell (re-)selection parameters, neighbouring cell information and information (also) applicable for UEs in RRC_CONNECTED, e.g. common channel configuration information.
 - Including ETWS notification, CMAS notification;
- RRC connection control:
 - Paging;
 - Establishment/ modification/ release of RRC connection, including e.g. assignment/ modification of UE identity (C-RNTI), establishment/ modification/ release of SRB1 and SRB2, access class barring;
 - Initial security activation, i.e. initial configuration of AS integrity protection (SRBs) and AS ciphering (SRBs, DRBs);
 - For RNs, configuration of AS integrity protection for DRBs;
 - RRC connection mobility including e.g. intra-frequency and inter-frequency handover, associated security handling, i.e. key/ algorithm change, specification of RRC context information transferred between network nodes;
 - Establishment/ modification/ release of RBs carrying user data (DRBs);
 - Radio configuration control including e.g. assignment/ modification of ARQ configuration, HARQ configuration, DRX configuration;
 - For RNs, RN-specific radio configuration control for the radio interface between RN and E-UTRAN;
- In case of CA, cell management including e.g. change of PCell, addition/ modification/ release of SCell(s) and addition/modification/release of STAG(s);
- QoS control including assignment/ modification of semi-persistent scheduling (SPS) configuration information for DL and UL, assignment/ modification of parameters for UL rate control in the UE, i.e. allocation of a priority and a prioritised bit rate (PBR) for each RB;
- Recovery from radio link failure;
- Inter-RAT mobility including e.g. security activation, transfer of RRC context information;
- Measurement configuration and reporting:
 - Establishment/ modification/ release of measurements (e.g. intra-frequency, inter-frequency and inter- RAT measurements);
 - Setup and release of measurement gaps;
 - Measurement reporting;
- Other functions including e.g. transfer of dedicated NAS information and non-3GPP dedicated information, transfer of UE radio access capability information, support for E-UTRAN sharing (multiple PLMN identities);
- Generic protocol error handling;
- Support of self-configuration and self-optimisation;
- Support of measurement logging and reporting for network performance optimisation [60];

NOTE: Random access is specified entirely in the MAC including initial transmission power estimation.

5 Procedures

5.1 General

5.1.1 Introduction

The procedural requirements are structured according to the main functional areas: system information (5.2), connection control (5.3), inter-RAT mobility (5.4) and measurements (5.5). In addition sub-clause 5.6 covers other aspects e.g. NAS dedicated information transfer, UE capability transfer, sub-clause 5.7 specifies the generic error handling, sub-clause 5.8 covers MBMS and sub-clause 5.9 covers RN-specific procedures.

5.1.2 General requirements

The UE shall:

1> process the received messages in order of reception by RRC, i.e. the processing of a message shall be completed before starting the processing of a subsequent message;

NOTE 1: E-UTRAN may initiate a subsequent procedure prior to receiving the UE’s response of a previously initiated procedure.

1> within a sub-clause execute the steps according to the order specified in the procedural description;

1> consider the term ‘radio bearer’ (RB) to cover SRBs and DRBs but not MRBs unless explicitly stated otherwise;

1> set the rrc-TransactionIdentifier in the response message, if included, to the same value as included in the message received from E-UTRAN that triggered the response message;

1> upon receiving a choice value set to setup:
2> apply the corresponding received configuration and start using the associated resources, unless explicitly specified otherwise;

1> upon receiving a choice value set to *release*:

2> clear the corresponding configuration and stop using the associated resources;

1> upon handover to E-UTRA; or

1> upon receiving an *RRCConnectionReconfiguration* message including the *fullConfig*:

2> apply the Conditions in the ASN.1 for inclusion of the fields for the DRB/PDCP/RLC setup during the reconfiguration of the DRBs included in the *drb-ToAddModList*;

NOTE 2: At each point in time, the UE keeps a single value for each field except for during handover when the UE temporarily stores the previous configuration so it can revert back upon handover failure. In other words: when the UE reconfigures a field, the existing value is released except for during handover.

NOTE 3: Although not explicitly stated, the UE initially considers all functionality to be deactivated/released until it is explicitly stated that the functionality is setup/activated. Correspondingly, the UE initially considers lists to be empty e.g. the list of radio bearers, the list of measurements.

5.2 System information

5.2.1 Introduction

5.2.1.1 General

System information is divided into the *MasterInformationBlock* (MIB) and a number of *SystemInformationBlocks* (SIBs). The MIB includes a limited number of most essential and most frequently transmitted parameters that are needed to acquire other information from the cell, and is transmitted on BCH. SIBs other than *SystemInformationBlockType1* are carried in *SystemInformation* (SI) messages and mapping of SIBs to SI messages is flexibly configurable by *schedulingInfoList* included in *SystemInformationBlockType1*, with restrictions that: each SIB is contained only in a single SI message, and at most once in that message; only SIBs having the same scheduling requirement (periodicity) can be mapped to the same SI message; *SystemInformationBlockType2* is always mapped to the SI message that corresponds to the first entry in the list of SI messages in *schedulingInfoList*. There may be multiple SI messages transmitted with the same periodicity. *SystemInformationBlockType1* and all SI messages are transmitted on DL-SCH.

NOTE 1: The physical layer imposes a limit to the maximum size a SIB can take. When DCI format 1C is used the maximum allowed by the physical layer is 1736 bits (217 bytes) while for format 1A the limit is 2216 bits (277 bytes), see TS 36.212 [22] and TS 36.213 [23].

In addition to broadcasting, E-UTRAN may provide *SystemInformationBlockType1*, including the same parameter values, via dedicated signalling i.e., within an *RRCConnectionReconfiguration* message.

The UE applies the system information acquisition and change monitoring procedures for the PCell. For an SCell, E-UTRAN provides, via dedicated signalling, all system information relevant for operation in RRC_CONNECTED when adding the SCell. Upon change of the relevant system information of a configured SCell, E-UTRAN releases and subsequently adds the concerned SCell, which may be done with a single *RRCConnectionReconfiguration* message. If the UE is receiving or interested to receive an MBMS service in a cell, the UE shall apply the system information acquisition and change monitoring procedure to acquire parameters relevant for MBMS operation and apply the parameters acquired from system information only for MBMS operation for this cell.

NOTE 2: E-UTRAN may configure via dedicated signalling different parameter values than the ones broadcast in the concerned SCell.

An RN configured with an RN subframe configuration does not need to apply the system information acquisition and change monitoring procedures. Upon change of any system information relevant to an RN, E-UTRAN provides the system information blocks containing the relevant system information to an RN configured with an RN subframe configuration via dedicated signalling using the *RNReconfiguration* message. For RNs configured with an RN subframe configuration, the system information contained in this dedicated signalling replaces any corresponding stored system
information and takes precedence over any corresponding system information acquired through the system information acquisition procedure. The dedicated system information remains valid until overridden.

NOTE 3: E-UTRAN may configure an RN, via dedicated signalling, with different parameter values than the ones broadcast in the concerned cell.

5.2.1.2 Scheduling

The MIB uses a fixed schedule with a periodicity of 40 ms and repetitions made within 40 ms. The first transmission of the MIB is scheduled in subframe #0 of radio frames for which the SFN mod 4 = 0, and repetitions are scheduled in subframe #0 of all other radio frames.

The SystemInformationBlockType1 uses a fixed schedule with a periodicity of 80 ms and repetitions made within 80 ms. The first transmission of SystemInformationBlockType1 is scheduled in subframe #5 of radio frames for which the SFN mod 8 = 0, and repetitions are scheduled in subframe #5 of all other radio frames for which SFN mod 2 = 0.

The SI messages are transmitted within periodically occurring time domain windows (referred to as SI-windows) using dynamic scheduling. Each SI message is associated with a SI-window and the SI-windows of different SI messages do not overlap. That is, within one SI-window only the corresponding SI is transmitted. The length of the SI-window is common for all SI messages, and is configurable. Within the SI-window, the corresponding SI message can be transmitted a number of times in any subframe other than MBSFN subframes, uplink subframes in TDD, and subframe #5 of radio frames for which SFN mod 2 = 0. The UE acquires the detailed time-domain scheduling (and other information, e.g. frequency-domain scheduling, used transport format) from decoding SI-RNTI on PDCCH (see TS 36.321 [6]).

A single SI-RNTI is used to address SystemInformationBlockType1 as well as all SI messages.

SystemInformationBlockType1 configures the SI-window length and the transmission periodicity for the SI messages.

5.2.1.3 System information validity and notification of changes

Change of system information (other than for ETWS, CMAS and EAB parameters) only occurs at specific radio frames, i.e. the concept of a modification period is used. System information may be transmitted a number of times with the same content within a modification period, as defined by its scheduling. The modification period boundaries are defined by SFN values for which SFN mod \(m = 0 \), where \(m \) is the number of radio frames comprising the modification period. The modification period is configured by system information.

When the network changes (some of the) system information, it first notifies the UEs about this change, i.e. this may be done throughout a modification period. In the next modification period, the network transmits the updated system information. These general principles are illustrated in figure 5.2.1.3-1, in which different colours indicate different system information. Upon receiving a change notification, the UE acquires the new system information immediately from the start of the next modification period. The UE applies the previously acquired system information until the UE acquires the new system information.

![Figure 5.2.1.3-1: Change of system Information](image)

The Paging message is used to inform UEs in RRC_IDLE and UEs in RRC_CONNECTED about a system information change. If the UE receives a Paging message including the systemInfoModification, it knows that the system information will change at the next modification period boundary. Although the UE may be informed about changes in system information, no further details are provided e.g. regarding which system information will change.

SystemInformationBlockType1 includes a value tag, systemInfoValueTag, that indicates if a change has occurred in the SI messages. UEs may use systemInfoValueTag, e.g. upon return from out of coverage, to verify if the previously stored SI messages are still valid. Additionally, the UE considers stored system information to be invalid after 3 hours from the moment it was successfully confirmed as valid, unless specified otherwise.
E-UTRAN may not update systemInfoValueTag upon change of some system information e.g. ETWS information, CMAS information, regularly changing parameters like time information (SystemInformationBlockType8, SystemInformationBlockType16), EAB parameters. Similarly, E-UTRAN may not include the systemInfoModification within the Paging message upon change of some system information.

The UE verifies that stored system information remains valid by either checking systemInfoValueTag in SystemInformationBlockType1 after the modification period boundary, or attempting to find the systemInfoModification indication at least modificationPeriodCoeff times during the modification period in case no paging is received, in every modification period. If no paging message is received by the UE during a modification period, the UE may assume that no change of system information will occur at the next modification period boundary. If UE in RRC_CONNECTED, during a modification period, receives one paging message, it may deduce from the presence/ absence of systemInfoModification whether a change of system information other than ETWS information, CMAS information and EAB parameters will occur in the next modification period or not.

ETWS and/or CMAS capable UEs in RRC_CONNECTED shall attempt to read paging at least once every defaultPagingCycle to check whether ETWS and/or CMAS notification is present or not.

5.2.1.4 Indication of ETWS notification

ETWS primary notification and/or ETWS secondary notification can occur at any point in time. The Paging message is used to inform ETWS capable UEs in RRC_IDLE and UEs in RRC_CONNECTED about presence of an ETWS primary notification and/or ETWS secondary notification. If the UE receives a Paging message including the etws-Indication, it shall start receiving the ETWS primary notification and/or ETWS secondary notification according to schedulingInfoList contained in SystemInformationBlockType1. If the UE receives Paging message including the etws-Indication while it is acquiring ETWS notification(s), the UE shall continue acquiring ETWS notification(s) based on the previously acquired schedulingInfoList until it re-acquires schedulingInfoList in SystemInformationBlockType1.

NOTE: The UE is not required to periodically check schedulingInfoList contained in SystemInformationBlockType1, but Paging message including the etws-Indication triggers the UE to re-acquire schedulingInfoList contained in SystemInformationBlockType1 for scheduling changes for SystemInformationBlockType10 and SystemInformationBlockType11. The UE may or may not receive a Paging message including the etws-Indication and/or systemInfoModification when ETWS is no longer scheduled.

ETWS primary notification is contained in SystemInformationBlockType10 and ETWS secondary notification is contained in SystemInformationBlockType11. Segmentation can be applied for the delivery of a secondary notification. The segmentation is fixed for transmission of a given secondary notification within a cell (i.e. the same segment size for a given segment with the same messageIdentifier, serialNumber and warningMessageSegmentNumber). An ETWS secondary notification corresponds to a single CB data IE as defined according to TS 23.041 [37].

5.2.1.5 Indication of CMAS notification

CMAS notification can occur at any point in time. The Paging message is used to inform CMAS capable UEs in RRC_IDLE and UEs in RRC_CONNECTED about presence of one or more CMAS notifications. If the UE receives a Paging message including the cmas-Indication, it shall start receiving the CMAS notifications according to schedulingInfoList contained in SystemInformationBlockType1. If the UE receives Paging message including the cmas-Indication while it is acquiring CMAS notification(s), the UE shall continue acquiring CMAS notification(s) based on the previously acquired schedulingInfoList until it re-acquires schedulingInfoList in SystemInformationBlockType1.

NOTE: The UE is not required to periodically check schedulingInfoList contained in SystemInformationBlockType1, but Paging message including the cmas-Indication triggers the UE to re-acquire schedulingInfoList contained in SystemInformationBlockType12 for scheduling changes for SystemInformationBlockType12. The UE may or may not receive a Paging message including the cmas-Indication and/or systemInfoModification when SystemInformationBlockType12 is no longer scheduled.

CMAS notification is contained in SystemInformationBlockType12. Segmentation can be applied for the delivery of a CMAS notification. The segmentation is fixed for transmission of a given CMAS notification within a cell (i.e. the same segment size for a given segment with the same messageIdentifier, serialNumber and warningMessageSegmentNumber). E-UTRAN does not interleave transmissions of CMAS notifications, i.e. all segments of a given CMAS notification transmission are transmitted prior to those of another CMAS notification. A CMAS notification corresponds to a single CB data IE as defined according to TS 23.041 [37].
5.2.1.6 Notification of EAB parameters change

Change of EAB parameters can occur at any point in time. The EAB parameters are contained in SystemInformationBlockType14. The Paging message is used to inform EAB capable UEs in RRC_IDLE about a change of EAB parameters or that SystemInformationBlockType14 is no longer scheduled. If the UE receives a Paging message including the "eab-ParamModification", it shall acquire SystemInformationBlockType14 according to schedulingInfoList contained in SystemInformationBlockType1. If the UE receives a Paging message including the "eab-ParamModification" while it is acquiring SystemInformationBlockType14, the UE shall continue acquiring SystemInformationBlockType14 based on the previously acquired schedulingInfoList until it re-acquires schedulingInfoList in SystemInformationBlockType1.

NOTE: The EAB capable UE is not expected to periodically check schedulingInfoList contained in SystemInformationBlockType1.

5.2.2 System information acquisition

5.2.2.1 General

The UE applies the system information acquisition procedure to acquire the AS- and NAS- system information that is broadcasted by the E-UTRAN. The procedure applies to UEs in RRC_IDLE and UEs in RRC_CONNECTED.

5.2.2.2 Initiation

The UE shall apply the system information acquisition procedure upon selecting (e.g. upon power on) and upon re-selecting a cell, after handover completion, after entering E-UTRA from another RAT, upon return from out of coverage, upon receiving a notification that the system information has changed, upon receiving an indication about the presence of an ETWS notification, upon receiving an indication about the presence of a CMAS notification, upon receiving a notification that the EAB parameters have changed, upon receiving a request from CDMA2000 upper layers and upon exceeding the maximum validity duration. Unless explicitly stated otherwise in the procedural specification, the system information acquisition procedure overwrites any stored system information, i.e. delta configuration is not applicable for system information and the UE discontinues using a field if it is absent in system information unless explicitly specified otherwise.

5.2.2.3 System information required by the UE

The UE shall:

1> ensure having a valid version, as defined below, of (at least) the following system information, also referred to as the 'required' system information:

2> if in RRC_IDLE:

3> the MasterInformationBlock and SystemInformationBlockType1 as well as SystemInformationBlockType2 through SystemInformationBlockType8 (depending on support of the concerned RATs), SystemInformationBlockType17 (depending on support of RAN-assisted WLAN interworking);

2> if in RRC_CONNECTED:
the MasterInformationBlock, SystemInformationBlockType1 and SystemInformationBlockType2 as well as SystemInformationBlockType8 (depending on support of CDMA2000), SystemInformationBlockType17 (depending on support of RAN-assisted WLAN interworking);

1> delete any stored system information after 3 hours from the moment it was confirmed to be valid as defined in 5.2.1.3, unless specified otherwise;

1> consider any stored system information except SystemInformationBlockType10, SystemInformationBlockType11, systemInformationBlockType12 and systemInformationBlockType14 to be invalid if systemInfoValueTag included in the SystemInformationBlockType1 is different from the one of the stored system information;

5.2.2.4 System information acquisition by the UE

The UE shall:

1> apply the specified BCCH configuration defined in 9.1.1.1;

1> if the procedure is triggered by a system information change notification:

2> start acquiring the required system information, as defined in 5.2.2.3, from the beginning of the modification period following the one in which the change notification was received;

NOTE 1: The UE continues using the previously received system information until the new system information has been acquired.

1> if the UE is in RRC_IDLE and enters a cell for which the UE does not have stored a valid version of the system information required in RRC_IDLE, as defined in 5.2.2.3:

2> acquire, using the system information acquisition procedure as defined in 5.2.3, the system information required in RRC_IDLE, as defined in 5.2.2.3;

1> following successful handover completion to a PCell for which the UE does not have stored a valid version of the system information required in RRC_CONNECTED, as defined in 5.2.2.3:

2> acquire, using the system information acquisition procedure as defined in 5.2.3, the system information required in RRC_CONNECTED, as defined in 5.2.2.3;

2> upon acquiring the concerned system information:

3> discard the corresponding radio resource configuration information included in the radioResourceConfigCommon previously received in a dedicated message, if any;

1> following a request from CDMA2000 upper layers:

2> acquire SystemInformationBlockType8, as defined in 5.2.3;

1> neither initiate the RRC connection establishment procedure nor initiate transmission of the RRCConnectionReestablishmentRequest message until the UE has a valid version of the MasterInformationBlock and SystemInformationBlockType1 messages as well as SystemInformationBlockType2;

1> not initiate the RRC connection establishment subject to EAB until the UE has a valid version of SystemInformationBlockType14, if broadcast;

1> if the UE is ETWS capable:

2> upon entering a cell during RRC_IDLE, following successful handover or upon connection re-establishment:

3> discard any previously buffered warningMessageSegment;

3> clear, if any, the current values of messageIdentifier and serialNumber for SystemInformationBlockType11;

2> when the UE acquires SystemInformationBlockType1 following ETWS indication, upon entering a cell during RRC_IDLE, following successful handover or upon connection re-establishment:

3> if schedulingInfoList indicates that SystemInformationBlockType10 is present:
[start acquiring]

SystemInformationBlockType10 immediately;

3> if schedulingInfoList indicates that SystemInformationBlockType11 is present:

4> start acquiring SystemInformationBlockType11 immediately;

NOTE 2: UEs shall start acquiring SystemInformationBlockType10 and SystemInformationBlockType11 as described above even when systemInfoValueTag in SystemInformationBlockType1 has not changed.

1> if the UE is CMAS capable:

2> upon entering a cell during RRC_IDLE, following successful handover or upon connection re-establishment:

3> discard any previously buffered warningMessageSegment;

3> clear, if any, stored values of messageIdentifier and serialNumber for SystemInformationBlockType12 associated with the discarded warningMessageSegment;

2> when the UE acquires SystemInformationBlockType1 following CMAS indication, upon entering a cell during RRC_IDLE, following successful handover and upon connection re-establishment:

3> if schedulingInfoList indicates that SystemInformationBlockType12 is present:

4> acquire SystemInformationBlockType12;

NOTE 3: UEs shall start acquiring SystemInformationBlockType12 as described above even when systemInfoValueTag in SystemInformationBlockType1 has not changed.

1> if the UE is interested to receive MBMS services:

2> if schedulingInfoList indicates that SystemInformationBlockType13 is present and the UE does not have stored a valid version of this system information block:

3> acquire SystemInformationBlockType13;

2> if the UE is capable of MBMS Service Continuity:

3> if schedulingInfoList indicates that SystemInformationBlockType15 is present and the UE does not have stored a valid version of this system information block:

4> acquire SystemInformationBlockType15;

1> if the UE is EAB capable:

2> when the UE does not have stored a valid version of SystemInformationBlockType14 upon entering RRC_IDLE, or when the UE acquires SystemInformationBlockType1 following EAB parameters change notification or upon entering a cell during RRC_IDLE:

3> if schedulingInfoList indicates that SystemInformationBlockType14 is present:

4> start acquiring SystemInformationBlockType14 immediately;

3> else:

4> discard SystemInformationBlockType14, if previously received;

NOTE 4: EAB capable UEs start acquiring SystemInformationBlockType14 as described above even when systemInfoValueTag in SystemInformationBlockType1 has not changed.

NOTE 5: EAB capable UEs maintain an up to date SystemInformationBlockType14 in RRC_IDLE.

1> if the UE supports RAN-assisted WLAN interworking:

2> if schedulingInfoList indicates that SystemInformationBlockType17 is not present:

3> release wlan-OffloadConfigCommon, if received and inform upper layers about the release;
The UE may apply the received SIBs immediately, i.e. the UE does not need to delay using a SIB until all SI messages have been received. The UE may delay applying the received SIBs until completing lower layer procedures associated with a received or a UE originated RRC message, e.g. an ongoing random access procedure.

NOTE 6: While attempting to acquire a particular SIB, if the UE detects from schedulingInfoList that it is no longer present, the UE should stop trying to acquire the particular SIB.

5.2.2.5 Essential system information missing

The UE shall:

1> if in RRC_IDLE or in RRC_CONNECTED while T311 is running:

2> if the UE is unable to acquire the **MasterInformationBlock** or the **SystemInformationBlockType1**:

3> consider the cell as barred in accordance with TS 36.304 [4]; and

3> perform barring as if **intraFreqReselection** is set to **allowed**, and as if the **csg-Indication** is set to **FALSE**;

2> else if the UE is unable to acquire the **SystemInformationBlockType2**:

3> treat the cell as barred in accordance with TS 36.304 [4];

5.2.2.6 Actions upon reception of the **MasterInformationBlock** message

Upon receiving the **MasterInformationBlock** message the UE shall:

1> apply the radio resource configuration included in the **phich-Config**;

1> if the UE is in RRC_IDLE or if the UE is in RRC_CONNECTED while T311 is running:

2> if the UE has no valid system information stored according to 5.2.2.3 for the concerned cell:

3> apply the received value of **dl-Bandwidth** to the **ul-Bandwidth** until **SystemInformationBlockType2** is received;

5.2.2.7 Actions upon reception of the **SystemInformationBlockType1** message

Upon receiving the **SystemInformationBlockType1** either via broadcast or via dedicated signalling, the UE shall:

1> if in RRC_IDLE or in RRC_CONNECTED while T311 is running; and

1> if the UE is a category 0 UE according to 36.306 [5]; and

1> if **category0Allowed** is not included in **SystemInformationBlockType1**:

2> consider the cell as barred in accordance with TS 36.304 [4];

1> if in RRC_CONNECTED while T311 is not running, and the UE supports multi-band cells as defined by bit 31 in **featureGroupIndicators**:

2> disregard the **freqBandIndicator** and **multiBandInfoList**, if received, while in RRC_CONNECTED;

2> forward the **cellIdentity** to upper layers;

2> forward the **trackingAreaCode** to upper layers;

1> else:

2> if the frequency band indicated in the **freqBandIndicator** is part of the frequency bands supported by the UE; or

2> if the UE supports **multiBandInfoList**, and if one or more of the frequency bands indicated in the **multiBandInfoList** are part of the frequency bands supported by the UE:

3> forward the **cellIdentity** to upper layers;
3> forward the trackingAreaCode to upper layers;

2> else:

3> consider the cell as barred in accordance with TS 36.304 [4]; and

3> perform barring as if intraFreqReselection is set to notAllowed, and as if the csg-Indication is set to FALSE;

5.2.2.8 Actions upon reception of SystemInformation messages

No UE requirements related to the contents of the SystemInformation messages apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.9 Actions upon reception of SystemInformationBlockType2

Upon receiving SystemInformationBlockType2, the UE shall:

1> apply the configuration included in the radioResourceConfigCommon;

1> if upper layers indicate that a (UE specific) paging cycle is configured:

2> apply the shortest of the (UE specific) paging cycle and the defaultPagingCycle included in the radioResourceConfigCommon;

1> if the mbsfn-SubframeConfigList is included:

2> consider that DL assignments may occur in the MBSFN subframes indicated in the mbsfn-SubframeConfigList under the conditions specified in [23, 7.1];

1> apply the specified PCCH configuration defined in 9.1.1.3;

1> not apply the timeAlignmentTimerCommon;

1> if in RRC_CONNECTED and UE is configured with RLF timers and constants values received within rlf-TimersAndConstants:

2> not update its values of the timers and constants in ue-TimersAndConstants except for the value of timer T300;

1> if in RRC_CONNECTED while T311 is not running; and the UE supports multi-band cells as defined by bit 31 in featureGroupIndicators:

2> disregard the additionalSpectrumEmission and ul-CarrierFreq, if received, while in RRC_CONNECTED;

5.2.2.10 Actions upon reception of SystemInformationBlockType3

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.11 Actions upon reception of SystemInformationBlockType4

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.12 Actions upon reception of SystemInformationBlockType5

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.
5.2.2.13 Actions upon reception of **SystemInformationBlockType6**

No UE requirements related to the contents of this **SystemInformationBlock** apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.14 Actions upon reception of **SystemInformationBlockType7**

No UE requirements related to the contents of this **SystemInformationBlock** apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.15 Actions upon reception of **SystemInformationBlockType8**

Upon receiving **SystemInformationBlockType8**, the UE shall:

1> if **sib8-PerPLMN-List** is included and the UE is capable of network sharing for CDMA2000:
 2> apply the CDMA2000 parameters below corresponding to the RPLMN;
1> if the **systemTimeInfo** is included:
 2> forward the **systemTimeInfo** to CDMA2000 upper layers;
1> if the UE is in RRC_IDLE and if **searchWindowSize** is included:
 2> forward the **searchWindowSize** to CDMA2000 upper layers;
1> if **parametersHRPD** is included:
 2> forward the **preRegistrationInfoHRPD** to CDMA2000 upper layers only if the UE has not received the **preRegistrationInfoHRPD** within an **RRCCConnectionReconfiguration** message after entering this cell;
 2> if the **cellReselectionParametersHRPD** is included:
 3> forward the **neighCellList** to the CDMA2000 upper layers;
1> if the **parameters1XRTT** is included:
 2> if the **csfb-RegistrationParam1XRTT** is included:
 3> forward the **csfb-RegistrationParam1XRTT** to the CDMA2000 upper layers which will use this information to determine if a CS registration/re-registration towards CDMA2000 1xRTT in the EUTRA cell is required;
 2> else:
 3> indicate to CDMA2000 upper layers that CSFB Registration to CDMA2000 1xRTT is not allowed;
2> if the **longCodeState1XRTT** is included:
 3> forward the **longCodeState1XRTT** to CDMA2000 upper layers;
2> if the **cellReselectionParameters1XRTT** is included:
 3> forward the **neighCellList** to the CDMA2000 upper layers;
2> if the **csfb-SupportForDualRxUEs** is included:
 3> forward **csfb-SupportForDualRxUEs** to the CDMA2000 upper layers;
2> else:
 3> forward **csfb-SupportForDualRxUEs**, with its value set to **FALSE**, to the CDMA2000 upper layers;
2> if **ac-BarringConfig1XRTT** is included:
 3> forward **ac-BarringConfig1XRTT** to the CDMA2000 upper layers;
2> if the csfb-DualRxTxSupport is included:

3> forward csfb-DualRxTxSupport to the CDMA2000 upper layers;

2> else:

3> forward csfb-DualRxTxSupport, with its value set to \texttt{FALSE}, to the CDMA2000 upper layers;

5.2.2.16 Actions upon reception of \textit{SystemInformationBlockType9}

Upon receiving \textit{SystemInformationBlockType9}, the UE shall:

1> if \texttt{hnb-Name} is included, forward the \texttt{hnb-Name} to upper layers;

5.2.2.17 Actions upon reception of \textit{SystemInformationBlockType10}

Upon receiving \textit{SystemInformationBlockType10}, the UE shall:

1> forward the received \texttt{warningType}, \texttt{messageIdentifier} and \texttt{serialNumber} to upper layers;

5.2.2.18 Actions upon reception of \textit{SystemInformationBlockType11}

Upon receiving \textit{SystemInformationBlockType11}, the UE shall:

1> if there is no current value for \texttt{messageIdentifier} and \texttt{serialNumber} for \textit{SystemInformationBlockType11}; or

1> if either the received value of \texttt{messageIdentifier} or of \texttt{serialNumber} or of both are different from the current values of \texttt{messageIdentifier} and \texttt{serialNumber} for \textit{SystemInformationBlockType11}:

2> use the received values of \texttt{messageIdentifier} and \texttt{serialNumber} for \textit{SystemInformationBlockType11} as the current values of \texttt{messageIdentifier} and \texttt{serialNumber} for \textit{SystemInformationBlockType11};

2> discard any previously buffered \texttt{warningMessageSegment};

2> if all segments of a warning message have been received:

3> assemble the warning message from the received \texttt{warningMessageSegment};

3> forward the received warning message, \texttt{messageIdentifier}, \texttt{serialNumber} and \texttt{dataCodingScheme} to upper layers;

3> stop reception of \textit{SystemInformationBlockType11};

3> discard the current values of \texttt{messageIdentifier} and \texttt{serialNumber} for \textit{SystemInformationBlockType11};

2> else:

3> store the received \texttt{warningMessageSegment};

3> continue reception of \textit{SystemInformationBlockType11};

1> else if all segments of a warning message have been received:

2> assemble the warning message from the received \texttt{warningMessageSegment};

2> forward the received complete warning message, \texttt{messageIdentifier}, \texttt{serialNumber} and \texttt{dataCodingScheme} to upper layers;

2> stop reception of \textit{SystemInformationBlockType11};

2> discard the current values of \texttt{messageIdentifier} and \texttt{serialNumber} for \textit{SystemInformationBlockType11};

1> else:

2> store the received \texttt{warningMessageSegment};

2> continue reception of \textit{SystemInformationBlockType11};
The UE should discard any stored warningMessageSegment and the current value of messageIdentifier and serialNumber for SystemInformationBlockType11 if the complete warning message has not been assembled within a period of 3 hours.

5.2.2.19 Actions upon reception of SystemInformationBlockType12

Upon receiving SystemInformationBlockType12, the UE shall:

1> if the SystemInformationBlockType12 contains a complete warning message:

 2> forward the received warning message, messageIdentifier, serialNumber and dataCodingScheme to upper layers;

 2> continue reception of SystemInformationBlockType12;

1> else:

 2> if the received values of messageIdentifier and serialNumber are the same (each value is the same) as a pair for which a warning message is currently being assembled:

 3> store the received warningMessageSegment;

 3> if all segments of a warning message have been received:

 4> assemble the warning message from the received warningMessageSegment;

 4> forward the received warning message, messageIdentifier, serialNumber and dataCodingScheme to upper layers;

 4> stop assembling a warning message for this messageIdentifier and serialNumber and delete all stored information held for it;

 3> continue reception of SystemInformationBlockType12;

 2> else if the received values of messageIdentifier and/or serialNumber are not the same as any of the pairs for which a warning message is currently being assembled:

 3> start assembling a warning message for this messageIdentifier and serialNumber pair;

 3> store the received warningMessageSegment;

 3> continue reception of SystemInformationBlockType12;

The UE should discard warningMessageSegment and the associated values of messageIdentifier and serialNumber for SystemInformationBlockType12 if the complete warning message has not been assembled within a period of 3 hours.

NOTE: The number of warning messages that a UE can re-assemble simultaneously is a function of UE implementation.

5.2.2.20 Actions upon reception of SystemInformationBlockType13

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.

5.2.2.21 Actions upon reception of SystemInformationBlockType14

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.

5.2.2.22 Actions upon reception of SystemInformationBlockType15

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/ or within the corresponding field descriptions.
5.2.2.23 Actions upon reception of SystemInformationBlockType16

No UE requirements related to the contents of this SystemInformationBlock apply other than those specified elsewhere e.g. within procedures using the concerned system information, and/or within the corresponding field descriptions.

5.2.2.24 Actions upon reception of SystemInformationBlockType17

Upon receiving SystemInformationBlockType17, the UE shall:

1> if wlan-OffloadConfigCommon corresponding to the RPLMN is included:
 2> apply the wlan-Id-List corresponding to the RPLMN;
 2> if not configured with the wlan-OffloadDedicated;
 3> apply the wlan-OffloadConfigCommon corresponding to the RPLMN and forward it to upper layers;

5.2.3 Acquisition of an SI message

When acquiring an SI message, the UE shall:

1> determine the start of the SI-window for the concerned SI message as follows:

2> for the concerned SI message, determine the number n which corresponds to the order of entry in the list of SI messages configured by schedulingInfoList in SystemInformationBlockType1;

2> determine the integer value $x = (n - 1)w$, where w is the $si-WindowLength$;

2> the SI-window starts at the subframe $#a$, where $a = x \mod 10$, in the radio frame for which SFN mod $T = \text{FLOOR}(x/10)$, where T is the $si-Periodicity$ of the concerned SI message;

NOTE: E-UTRAN should configure an SI-window of 1 ms only if all SIs are scheduled before subframe #5 in radio frames for which SFN mod 2 = 0.

1> receive DL-SCH using the SI-RNTI from the start of the SI-window and continue until the end of the SI-window whose absolute length in time is given by $si-WindowLength$, or until the SI message was received, excluding the following subframes:

2> subframe #5 in radio frames for which SFN mod 2 = 0;

2> any MBSFN subframes;

2> any uplink subframes in TDD;

1> if the SI message was not received by the end of the SI-window, repeat reception at the next SI-window occasion for the concerned SI message;

5.3 Connection control

5.3.1 Introduction

5.3.1.1 RRC connection control

RRC connection establishment involves the establishment of SRB1. E-UTRAN completes RRC connection establishment prior to completing the establishment of the S1 connection, i.e. prior to receiving the UE context information from the EPC. Consequently, AS security is not activated during the initial phase of the RRC connection. During this initial phase of the RRC connection, the E-UTRAN may configure the UE to perform measurement reporting. However, the UE only accepts a handover message when security has been activated.

NOTE: In case the serving frequency broadcasts multiple overlapping bands, E-UTRAN can only configure measurements after having obtained the UE capabilities, as the measurement configuration needs to be set according to the band selected by the UE.
Upon receiving the UE context from the EPC, E-UTRAN activates security (both ciphering and integrity protection) using the initial security activation procedure. The RRC messages to activate security (command and successful response) are integrity protected, while ciphering is started only after completion of the procedure. That is, the response to the message used to activate security is not ciphered, while the subsequent messages (e.g. used to establish SRB2 and DRBs) are both integrity protected and ciphered.

After having initiated the initial security activation procedure, E-UTRAN initiates the establishment of SRB2 and DRBs, i.e. E-UTRAN may do this prior to receiving the confirmation of the initial security activation from the UE. In any case, E-UTRAN will apply both ciphering and integrity protection for the RRC connection reconfiguration messages used to establish SRB2 and DRBs. E-UTRAN should release the RRC connection if the initial security activation and/or the radio bearer establishment fails (i.e. security activation and DRB establishment are triggered by a joint S1-procedure, which does not support partial success).

For SRB2 and DRBs, security is always activated from the start, i.e. the E-UTRAN does not establish these bearers prior to activating security.

For some radio configuration fields, a critical extension has been defined. A switch from the original version of the field to the critically extended version is allowed using any connection reconfiguration. The UE reverts to the original version of some critically extended fields upon handover and re-establishment as specified elsewhere in this specification. Otherwise, switching a field from the critically extended version to the original version is only possible using the handover or re-establishment procedure with the full configuration option.

After having initiated the initial security activation procedure, E-UTRAN may configure a UE that supports CA, with one or more SCells in addition to the PCell that was initially configured during connection establishment. The PCell is used to provide the security inputs and upper layer system information (i.e. the NAS mobility information e.g. TAI). SCells are used to provide additional downlink and optionally uplink radio resources.

The release of the RRC connection normally is initiated by E-UTRAN. The procedure may be used to re-direct the UE to an E-UTRA frequency or an inter-RAT carrier frequency. Only in exceptional cases, as specified within this specification, TS 36.300 [9], TS 36.304 [4] or TS 24.301 [35], may the UE abort the RRC connection, i.e. move to RRC_IDLE without notifying E-UTRAN.

5.3.1.2 Security

AS security comprises of the integrity protection of RRC signalling (SRBs) as well as the ciphering of RRC signalling (SRBs) and user data (DRBs).

RRC handles the configuration of the security parameters which are part of the AS configuration: the integrity protection algorithm, the ciphering algorithm and two parameters, namely the keyChangeIndicator and the nextHopChainingCount, which are used by the UE to determine the AS security keys upon handover and/or connection re-establishment.

The integrity protection algorithm is common for signalling radio bearers SRB1 and SRB2. The ciphering algorithm is common for all radio bearers (i.e. SRB1, SRB2 and DRBs). Neither integrity protection nor ciphering applies for SRB0.

RRC integrity and ciphering are always activated together, i.e. in one message/procedure. RRC integrity and ciphering are never de-activated. However, it is possible to switch to a 'NULL' ciphering algorithm (eea0).

The 'NULL' integrity protection algorithm (eia0) is used only for the UE in limited service mode [32, TS33.401]. In case the 'NULL' integrity protection algorithm is used, 'NULL' ciphering algorithm is also used.

NOTE 1: Lower layers discard RRC messages for which the integrity check has failed and indicate the integrity verification check failure to RRC.

The AS applies three different security keys: one for the integrity protection of RRC signalling (K\textsubscript{RRCint}), one for the ciphering of RRC signalling (K\textsubscript{RRCenc}) and one for the ciphering of user data (K\textsubscript{UPenc}). All three AS keys are derived from the K\textsubscript{EnB} key. The K\textsubscript{EnB} is based on the K\textsubscript{ASME} key, which is handled by upper layers.

Upon connection establishment new AS keys are derived. No AS-parameters are exchanged to serve as inputs for the derivation of the new AS keys at connection establishment.

The integrity and ciphering of the RRC message used to perform handover is based on the security configuration used prior to the handover and is performed by the source eNB.
The integrity and ciphering algorithms can only be changed upon handover. The four AS keys (KeNB, KRRCint, KRRCenc and KUPenc) change upon every handover and connection re-establishment. The keyChangeIndicator is used upon handover and indicates whether the UE should use the keys associated with the KASME key taken into use with the latest successful NAS SMC procedure. The nextHopChainingCount parameter is used upon handover and connection re-establishment by the UE when deriving the new KeNB that is used to generate KRRCint, KRRCenc and KUPenc (see TS 33.401 [32]). An intra cell handover procedure may be used to change the keys in RRC_CONNECTED.

For each radio bearer an independent counter (COUNT, as specified in TS 36.323 [8]) is maintained for each direction. For each DRB, the COUNT is used as input for ciphering. For each SRB, the COUNT is used as input for both ciphering and integrity protection. It is not allowed to use the same COUNT value more than once for a given security key. In order to limit the signalling overhead, individual messages/packets include a short sequence number (PDCP nextHopChainingCount). An intra cell handover procedure may be used to change the keys in RRC_CONNECTED.

For each SRB, the value provided by RRC to lower layers to derive the 5-bit BEARER parameter used as input for ciphering and for integrity protection is the value of the corresponding srb-Identity with the MSBs padded with zeroes.

5.3.1.2a RN security

For RNs, AS security follows the procedures in 5.3.1.2. Furthermore, E-UTRAN may configure per DRB whether or not integrity protection is used. The use of integrity protection may be configured only upon DRB establishment and reconfigured only upon handover or upon the first reconfiguration following RRC connection re-establishment.

To provide integrity protection on DRBs between the RN and the E-UTRAN, the KUPint key is derived from the KeNB key as described in TS33.401 [32]. The same integrity protection algorithm used for SRBs also applies to the DRBs. The KUPint changes at every handover and RRC connection re-establishment and is based on an updated KeNB which is derived by taking into account the nextHopChainingCount. The COUNT value maintained for DRB ciphering is also used for integrity protection, if the integrity protection is configured for the DRB.

5.3.1.3 Connected mode mobility

In RRC_CONNECTED, the network controls UE mobility, i.e. the network decides when the UE shall connect to which E-UTRA cell(s), or inter-RAT cell. For network controlled mobility in RRC_CONNECTED, the PCell can be changed using an RRCConnectionReconfiguration message including the mobilityControlInfo (handover), whereas the SCell(s) can be changed using the RRCConnectionReconfiguration message either with or without the mobilityControlInfo. The network triggers the handover procedure e.g. based on radio conditions, load. To facilitate this, the network may configure the UE to perform measurement reporting (possibly including the configuration of measurement gaps). The network may also initiate handover blindly, i.e. without having received measurement reports from the UE.

Before sending the handover message to the UE, the source eNB prepares one or more target cells. The source eNB selects the target PCell. The source eNB may also provide the target eNB with a list of best cells on each frequency for which measurement information is available, in order of decreasing RSRP. The source eNB may also include available measurement information for the cells provided in the list. The target eNB decides which SCells are configured for use after handover, which may include cells other than the ones indicated by the source eNB.

The target eNB generates the message used to perform the handover, i.e. the message including the AS-configuration to be used in the target cell(s). The source eNB transparently (i.e. does not alter values/content) forwards the handover message/ information received from the target to the UE. When appropriate, the source eNB may initiate data forwarding for (a subset of) the DRBs.

After receiving the handover message, the UE attempts to access the target PCell at the first available RACH occasion according to Random Access resource selection defined in TS 36.321 [6], i.e. the handover is asynchronous. Consequently, when allocating a dedicated preamble for the random access in the target PCell, E-UTRA shall ensure it is available from the first RACH occasion the UE may use. Upon successful completion of the handover, the UE sends a message used to confirm the handover.

If the target eNB does not support the release of RRC protocol which the source eNB used to configure the UE, the target eNB may be unable to comprehend the UE configuration provided by the source eNB. In this case, the target eNB...
should use the full configuration option to reconfigure the UE for Handover and Re-establishment. Full configuration option includes an initialization of the radio configuration, which makes the procedure independent of the configuration used in the source cell(s) with the exception that the security algorithms are continued for the RRC re-establishment. After the successful completion of handover, PDCP SDUs may be re-transmitted in the target cell(s). This only applies for DRBs using RLC-AM mode and for handovers not involving full configuration option. The further details are specified in TS 36.323 [8]. After the successful completion of handover not involving full configuration option, the SN and the HFN are reset except for the DRBs using RLC-AM mode (for which both SN and HFN continue). For reconfigurations involving the full configuration option, the PDCP entities are newly established (SN and HFN do not continue) for all DRBs irrespective of the RLC mode. The further details are specified in TS 36.323 [8].

One UE behaviour to be performed upon handover is specified, i.e. this is regardless of the handover procedures used within the network (e.g. whether the handover includes X2 or S1 signalling procedures).

The source eNB should, for some time, maintain a context to enable the UE to return in case of handover failure. After having detected handover failure, the UE attempts to resume the RRC connection either in the source PCell or in another cell using the RRC re-establishment procedure. This connection resumption succeeds only if the accessed cell is prepared, i.e. concerns a cell of the source eNB or of another eNB towards which handover preparation has been performed. The cell in which the re-establishment procedure succeeds becomes the PCell while SCells and STAGs, if configured, are released.

Normal measurement and mobility procedures are used to support handover to cells broadcasting a CSG identity. In addition, E-UTRAN may configure the UE to report that it is entering or leaving the proximity of cell(s) included in its CSG whitelist. Furthermore, E-UTRAN may request the UE to provide additional information broadcast by the handover candidate cell e.g. global cell identity, CSG identity, CSG membership status.

NOTE: E-UTRAN may use the ‘proximity report’ to configure measurements as well as to decide whether or not to request additional information broadcast by the handover candidate cell. The additional information is used to verify whether or not the UE is authorised to access the target PCell and may also be needed to identify handover candidate cell (PCI confusion i.e. when the physical layer identity that is included in the measurement report does not uniquely identify the cell).

5.3.2 Paging

5.3.2.1 General

![Figure 5.3.2.1-1: Paging](image)

The purpose of this procedure is:

- to transmit paging information to a UE in RRC_IDLE and/or;
- to inform UEs in RRC_IDLE and UEs in RRC_CONNECTED about a system information change and/or;
- to inform about an ETWS primary notification and/or ETWS secondary notification and/or;
- to inform about a CMAS notification.

The paging information is provided to upper layers, which in response may initiate RRC connection establishment, e.g. to receive an incoming call.
5.3.2.2 Initiation

E-UTRAN initiates the paging procedure by transmitting the Paging message at the UE’s paging occasion as specified in TS 36.304 [4]. E-UTRAN may address multiple UEs within a Paging message by including one PagingRecord for each UE. E-UTRAN may also indicate a change of system information, and/or provide an ETWS notification or a CMAS notification in the Paging message.

5.3.2.3 Reception of the Paging message by the UE

Upon receiving the Paging message, the UE shall:

1> if in RRC_IDLE, for each of the PagingRecord, if any, included in the Paging message:

2> if the ue-Identity included in the PagingRecord matches one of the UE identities allocated by upper layers:

3> forward the ue-Identity and the cn-Domain to the upper layers;

1> if the systemInfoModification is included:

2> re-acquire the required system information using the system information acquisition procedure as specified in 5.2.2.

1> if the etws-Indication is included and the UE is ETWS capable:

2> re-acquire SystemInformationBlockType1 immediately, i.e., without waiting until the next system information modification period boundary;

2> if the schedulingInfoList indicates that SystemInformationBlockType10 is present:

3> acquire SystemInformationBlockType10;

2> if the schedulingInfoList indicates that SystemInformationBlockType11 is present:

3> acquire SystemInformationBlockType11;

1> if the cmas-Indication is included and the UE is CMAS capable:

2> re-acquire SystemInformationBlockType1 immediately, i.e., without waiting until the next system information modification period boundary as specified in 5.2.1.5;

2> if the schedulingInfoList indicates that SystemInformationBlockType12 is present:

3> acquire SystemInformationBlockType12;

1> if in RRC_IDLE, the eab-ParamModification is included and the UE is EAB capable:

2> consider previously stored SystemInformationBlockType14 as invalid;

2> re-acquire SystemInformationBlockType1 immediately, i.e., without waiting until the next system information modification period boundary as specified in 5.2.1.6;

2> re-acquire SystemInformationBlockType14 using the system information acquisition procedure as specified in 5.2.2.4;
5.3.3 RRC connection establishment

5.3.3.1 General

The purpose of this procedure is to establish an RRC connection. RRC connection establishment involves SRB1 establishment. The procedure is also used to transfer the initial NAS dedicated information/message from the UE to E-UTRAN.

E-UTRAN applies the procedure as follows:
- to establish SRB1 only.

5.3.3.2 Initiation

The UE initiates the procedure when upper layers request establishment of an RRC connection while the UE is in RRC_IDLE.

Upon initiation of the procedure, the UE shall:

1> if upper layers indicate that the RRC connection is subject to EAB (see TS 24.301 [35]):
 2> if the result of the EAB check, as specified in 5.3.3.12, is that access to the cell is barred:
 3> inform upper layers about the failure to establish the RRC connection and that EAB is applicable, upon which the procedure ends;
1> if the UE is establishing the RRC connection for mobile terminating calls:
 2> if timer T302 is running:
3> inform upper layers about the failure to establish the RRC connection and that access barring for mobile terminating calls is applicable, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for emergency calls:

2> if SystemInformationBlockType2 includes the ac-BarringInfo:

3> if the ac-BarringForEmergency is set to TRUE:

4> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11]:

NOTE 1: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN.

5> if the ac-BarringInfo includes ac-BarringForMO-Data, and for all of these valid Access Classes for the UE, the corresponding bit in the ac-BarringForSpecialAC contained in ac-BarringForMO-Data is set to one:

6> consider access to the cell as barred;

4> else:

5> consider access to the cell as barred;

2> if access to the cell is barred:

3> inform upper layers about the failure to establish the RRC connection, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating calls:

2> perform access barring check as specified in 5.3.3.11, using T303 as "Tbarring" and ac-BarringForMO-Data as "AC barring parameter";

2> if access to the cell is barred:

3> if SystemInformationBlockType2 includes ac-BarringForCSFB or the UE does not support CS fallback:

4> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating calls is applicable, upon which the procedure ends;

3> else (SystemInformationBlockType2 does not include ac-BarringForCSFB and the UE supports CS fallback):

4> if timer T306 is not running, start T306 with the timer value of T303;

4> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating calls and mobile originating CS fallback is applicable, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating signalling:

2> perform access barring check as specified in 5.3.3.11, using T305 as "Tbarring" and ac-BarringForMO-Signalling as "AC barring parameter";

2> if access to the cell is barred:

3> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating signalling is applicable, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating CS fallback:

2> if SystemInformationBlockType2 includes ac-BarringForCSFB:

3> perform access barring check as specified in 5.3.3.11, using T306 as "Tbarring" and ac-BarringForCSFB as "AC barring parameter";
3> if access to the cell is barred:
 4> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating CS fallback is applicable, due to ac-BarringForCSFB, upon which the procedure ends;

2> else:

3> perform access barring check as specified in 5.3.3.11, using T306 as "Tbarring" and ac-BarringForMO-Data as "AC barring parameter";

3> if access to the cell is barred:
 4> if timer T303 is not running, start T303 with the timer value of T306;
 4> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating CS fallback and mobile originating calls is applicable, due to ac-BarringForMO-Data, upon which the procedure ends;

1> else if the UE is establishing the RRC connection for mobile originating MMTEL voice, mobile originating MMTEL video, mobile originating SMSoIP or mobile originating SMS:

2> if the UE is establishing the RRC connection for mobile originating MMTEL voice and SystemInformationBlockType2 includes ac-BarringSkipForMMTELVoice, or

2> if the UE is establishing the RRC connection for mobile originating MMTEL video and SystemInformationBlockType2 includes ac-BarringSkipForMMTELVideo, or

2> if the UE is establishing the RRC connection for mobile originating SMSoIP or mobile originating SMS, and SystemInformationBlockType2 includes ac-BarringSkipForSMS:
 3> consider access to the cell as not barred;

2> else:

3> if establishmentCause is set to mo-Signalling:
 4> perform access barring check as specified in 5.3.3.11, using T305 as "Tbarring" and ac-BarringForMO-Signalling as "AC barring parameter";
 4> if access to the cell is barred:
 5> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating signalling is applicable, upon which the procedure ends;

3> if establishmentCause is set to mo-Data:
 4> perform access barring check as specified in 5.3.3.11, using T303 as "Tbarring" and ac-BarringForMO-Data as "AC barring parameter"
 4> if access to the cell is barred:
 5> if SystemInformationBlockType2 includes ac-BarringForCSFB or the UE does not support CS fallback:
 6> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating calls is applicable, upon which the procedure ends;
 5> else (SystemInformationBlockType2 does not include ac-BarringForCSFB and the UE supports CS fallback):
 6> if timer T306 is not running, start T306 with the timer value of T303;
 6> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating calls and mobile originating CS fallback is applicable, upon which the procedure ends;
1> apply the default physical channel configuration as specified in 9.2.4;
1> apply the default semi-persistent scheduling configuration as specified in 9.2.3;
1> apply the default MAC main configuration as specified in 9.2.2;
1> apply the CCCH configuration as specified in 9.1.1.2;
1> apply the timeAlignmentTimerCommon included in SystemInformationBlockType2;
1> start timer T300;
1> initiate transmission of the RRCCoonectionRequest message in accordance with 5.3.3.3;

NOTE 2: Upon initiating the connection establishment procedure, the UE is not required to ensure it maintains up to date system information applicable only for UEs in RRC_IDLE state. However, the UE needs to perform system information acquisition upon cell re-selection.

5.3.3.3 Actions related to transmission of RRCCoonectionRequest message

The UE shall set the contents of RRCCoonectionRequest message as follows:

1> set the ue-Identity as follows:
 2> if upper layers provide an S-TMSI:
 3> set the ue-Identity to the value received from upper layers;
 2> else:
 3> draw a random value in the range 0 .. 2^40-1 and set the ue-Identity to this value;

 NOTE 1: Upper layers provide the S-TMSI if the UE is registered in the TA of the current cell.

1> set the establishmentCause in accordance with the information received from upper layers;

The UE shall submit the RRCCoonectionRequest message to lower layers for transmission.

The UE shall continue cell re-selection related measurements as well as cell re-selection evaluation. If the conditions for cell re-selection are fulfilled, the UE shall perform cell re-selection as specified in 5.3.3.5.

5.3.3.4 Reception of the RRCCoonectionSetup by the UE

NOTE: Prior to this, lower layer signalling is used to allocate a C-RNTI. For further details see TS 36.321 [6];

The UE shall:

1> perform the radio resource configuration procedure in accordance with the received radioResourceConfigDedicated and as specified in 5.3.10;

1> if stored, discard the cell reselection priority information provided by the idleModeMobilityControlInfo or inherited from another RAT;

1> stop timer T300;
1> stop timer T302, if running;
1> stop timer T303, if running;
1> stop timer T305, if running;
1> stop timer T306, if running;
1> perform the actions as specified in 5.3.3.7;
1> stop timer T320, if running;
1> stop timer T350, if running;
1> enter RRC_CONNECTED;
1> stop the cell re-selection procedure;
1> consider the current cell to be the PCell;
1> set the content of RRCConnectionSetupComplete message as follows:

2> set the selectedPLMN-Identity to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]) from the PLMN(s) included in the plmn-IdentityList in SystemInformationBlockType1;
2> if upper layers provide the ‘Registered MME’, include and set the registeredMME as follows:

3> if the PLMN identity of the ‘Registered MME’ is different from the PLMN selected by the upper layers:
4> include the plmnIdentity in the registeredMME and set it to the value of the PLMN identity in the ‘Registered MME’ received from upper layers;
3> set the mmegi and the mmec to the value received from upper layers;
2> if upper layers provided the ‘Registered MME’:
3> include and set the gummei-Type to the value provided by the upper layers;
2> if connecting as an RN:
3> include the rn-SubframeConfigReq;
2> set the dedicatedInfoNAS to include the information received from upper layers;
2> if the UE has radio link failure or handover failure information available in VarRLF-Report and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:
3> include rlf-InfoAvailable;
2> if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:
3> include logMeasAvailableMBSFN;
2> else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:
3> include logMeasAvailable;
2> if the UE has connection establishment failure information available in VarConnEstFailReport and if the RPLMN is equal to plmn-Identity stored in VarConnEstFailReport:
3> include connEstFailInfoAvailable;
2> if the UE supports mobility state reporting, include the mobilityState and set it to the mobility state (as specified in TS 36.304 [4]) of the UE just prior to entering RRC_CONNECTED state;
2> if the UE supports storage of mobility history information and the UE has mobility history information available in VarMobilityHistoryReport:
3> include the mobilityHistoryAvail;
2> submit the RRCConnectionSetupComplete message to lower layers for transmission, upon which the procedure ends;

5.3.3.5 Cell re-selection while T300, T302, T303, T305 or T306 is running

The UE shall:
1> if cell reselection occurs while T300, T302, T303, T305 or T306 is running:

2> if timer T302, T303, T305 and/or T306 is running:
 3> stop timer T302, T303, T305 and T306, whichever ones were running;
 3> perform the actions as specified in 5.3.3.7;

2> if timer T300 is running:
 3> stop timer T300;

3> reset MAC, release the MAC configuration and re-establish RLC for all RBs that are established;

3> inform upper layers about the failure to establish the RRC connection;

5.3.3.6 T300 expiry

The UE shall:

1> if timer T300 expires:

2> reset MAC, release the MAC configuration and re-establish RLC for all RBs that are established;

2> if the UE supports RRC Connection Establishment failure temporary Qoffset and T300 has expired a consecutive connEstFailCount times on the same cell for which txFailParams is included in SystemInformationBlockType2:
 3> for a period as indicated by connEstFailOffsetValidity:
 4> use connEstFailOffset for the parameter Qoffsettemp for the concerned cell when performing cell selection and reselection according to TS 36.304 [4] and TS 25.304 [40];

NOTE 1: When performing cell selection, if no suitable or acceptable cell can be found, it is up to UE implementation whether to stop using connEstFailOffset for the parameter Qoffsettemp during connEstFailOffsetValidity for the concerned cell.

2> store the following connection establishment failure information in the VarConnEstFailReport by setting its fields as follows:

3> clear the information included in VarConnEstFailReport, if any;

3> set the plmn-Identity to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]) from the PLMN(s) included in the plmn-IdentityList in SystemInformationBlockType1;

3> set the failedCellId to the global cell identity of the cell where connection establishment failure is detected;

3> set the measResultFailedCell to include the RSRP and RSRQ, if available, of the cell where connection establishment failure is detected and based on measurements collected up to the moment the UE detected the failure;

3> if available, set the measResultNeighCells, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements for at most the following number of neighbouring cells: 6 intra-frequency and 3 inter-frequency neighbours per frequency as well as 3 inter-RAT neighbours, per frequency/ set of frequencies (GERAN) per RAT and according to the following:
 4> for each neighbour cell included, include the optional fields that are available;

NOTE 2: The UE includes the latest results of the available measurements as used for cell reselection evaluation, which are performed in accordance with the performance requirements as specified in TS 36.133 [16].

3> if detailed location information is available, set the content of the locationInfo as follows:
 4> include the locationCoordinates;
 4> include the horizontalVelocity, if available;
3GPP TS 36.331 version 12.3.0 Release 12

5.3.3.6 UE successful random access procedure

2> set the numberOfPreamblesSent to indicate the number of preambles sent by MAC for the failed random access procedure;
3> set contentionDetected to indicate whether contention resolution was not successful as specified in TS 36.321 [6] for at least one of the transmitted preambles for the failed random access procedure;
3> set maxTxPowerReached to indicate whether or not the maximum power level was used for the last transmitted preamble, see TS 36.321 [6];

2> inform upper layers about the failure to establish the RRC connection, upon which the procedure ends;

The UE may discard the connection establishment failure information, i.e. release the UE variable VarConnEstFailReport, 48 hours after the failure is detected, upon power off or upon detach.

5.3.3.7 T302, T303, T305 or T306 expiry or stop

The UE shall:

1> if timer T302 expires or is stopped:
 2> inform upper layers about barring alleviation for mobile terminating access;
 2> if timer T303 is not running:
 3> inform upper layers about barring alleviation for mobile originating calls;
 2> if timer T305 is not running:
 3> inform upper layers about barring alleviation for mobile originating signalling;
 2> if timer T306 is not running:
 3> inform upper layers about barring alleviation for mobile originating CS fallback;

1> if timer T303 expires or is stopped:
 2> if timer T302 is not running:
 3> inform upper layers about barring alleviation for mobile originating calls;

1> if timer T305 expires or is stopped:
 2> if timer T302 is not running:
 3> inform upper layers about barring alleviation for mobile originating signalling;

1> if timer T306 expires or is stopped:
 2> if timer T302 is not running:
 3> inform upper layers about barring alleviation for mobile originating CS fallback;

5.3.3.8 Reception of the RRCConnectionReject by the UE

The UE shall:

1> stop timer T300;
1> reset MAC and release the MAC configuration;
1> start timer T302, with the timer value set to the waitTime;
1> if the extendedWaitTime is present and the UE supports delay tolerant access:
 2> forward the extendedWaitTime to upper layers;
1> if deprioritisationReq is included and the UE supports RRC Connection Reject with deprioritisation:
2> start or restart timer T325 with the timer value set to the deprioritisationTimer signalled;
2> store the deprioritisationReq until T325 expiry;

NOTE: The UE stores the deprioritisation request irrespective of any cell reselection absolute priority assignments (by dedicated or common signalling) and regardless of RRC connections in E-UTRAN or other RATs unless specified otherwise.

1> inform upper layers about the failure to establish the RRC connection and that access barring for mobile originating calls, mobile originating signalling, mobile terminating access and mobile originating CS fallback is applicable, upon which the procedure ends;

5.3.3.9 Abortion of RRC connection establishment

If upper layers abort the RRC connection establishment procedure while the UE has not yet entered RRC_CONNECTED, the UE shall:

1> stop timer T300, if running;
1> reset MAC, release the MAC configuration and re-establish RLC for all RBs that are established;

5.3.3.10 Handling of SSAC related parameters

Upon request from the upper layers, the UE shall:

1> set the local variables BarringFactorForMMTEL-Voice and BarringTimeForMMTEL-Voice as follows:
2> if ssac-BarringForMMTEL-Voice is present:

3> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11], and

NOTE: ACs 12, 13, 14 are only valid for use in the home country and ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN.

3> if, for at least one of these Access Classes, the corresponding bit in the ac-BarringForSpecialAC contained in ssac-BarringForMMTEL-Voice is set to zero:

4> set BarringFactorForMMTEL-Voice to one and BarringTimeForMMTEL-Voice to zero;
3> else:

4> set BarringFactorForMMTEL-Voice and BarringTimeForMMTEL-Voice to the value of ac-BarringFactor and ac-BarringTime included in ssac-BarringForMMTEL-Voice, respectively;
2> else set BarringFactorForMMTEL-Voice to one and BarringTimeForMMTEL-Voice to zero;

1> set the local variables BarringFactorForMMTEL-Video and BarringTimeForMMTEL-Video as follows:
2> if ssac-BarringForMMTEL-Video is present:

3> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11], and

3> if, for at least one of these Access Classes, the corresponding bit in the ac-BarringForSpecialAC contained in ssac-BarringForMMTEL-Video is set to zero:

4> set BarringFactorForMMTEL-Video to one and BarringTimeForMMTEL-Video to zero;
3> else:

4> set BarringFactorForMMTEL-Video and BarringTimeForMMTEL-Video to the value of ac-BarringFactor and ac-BarringTime included in ssac-BarringForMMTEL-Video, respectively;
2> else set BarringFactorForMMTEL-Video to one and BarringTimeForMMTEL-Video to zero;
forward the variables BarringFactorForMMTEL-Voice, BarringTimeForMMTEL-Voice, BarringFactorForMMTEL-Video and BarringTimeForMMTEL-Video to the upper layers;

5.3.3.11 Access barring check

1> if timer T302 or "Tbarring" is running:
 2> consider access to the cell as barred;
1> else if SystemInformationBlockType2 includes "AC barring parameter":
 2> if the UE has one or more Access Classes, as stored on the USIM, with a value in the range 11..15, which is valid for the UE to use according to TS 22.011 [10] and TS 23.122 [11], and
 2> for at least one of these valid Access Classes the corresponding bit in the ac-BarringForSpecialAC contained in "AC barring parameter" is set to zero:
 3> consider access to the cell as not barred;
 2> else:
 3> draw a random number 'rand' uniformly distributed in the range: $0 \leq \text{rand} < 1$;
 3> if 'rand' is lower than the value indicated by ac-BarringFactor included in "AC barring parameter":
 4> consider access to the cell as not barred;
 3> else:
 4> consider access to the cell as barred;
1> else:
 2> consider access to the cell as not barred;
1> if access to the cell is barred and both timers T302 and "Tbarring" are not running:
 2> draw a random number 'rand' that is uniformly distributed in the range $0 \leq \text{rand} < 1$;
 2> start timer "Tbarring" with the timer value calculated as follows, using the ac-BarringTime included in "AC barring parameter":
 "Tbarring" = (0.7+ 0.6 * \text{rand}) \cdot \text{ac-BarringTime}.

5.3.3.12 EAB check

The UE shall:

1> if SystemInformationBlockType14 is present and includes the eab-Param:
 2> if the eab-Common is included in the eab-Param:
 3> if the UE belongs to the category of UEs as indicated in the eab-Category contained in eab-Common; and
 3> if for the Access Class of the UE, as stored on the USIM and with a value in the range 0..9, the corresponding bit in the eab-BarringBitmap contained in eab-Common is set to one:
 4> consider access to the cell as barred;
 3> else:
 4> consider access to the cell as not barred due to EAB;
 2> else (the eab-PerPLMN-List is included in the eab-Param):
3> select the entry in the *eab-PerPLMN-List* corresponding to the PLMN selected by upper layers (see TS 23.122 [11], TS 24.301 [35]);

3> if the *eab-Config* for that PLMN is included:

4> if the UE belongs to the category of UEs as indicated in the *eab-Category* contained in *eab-Config*;

4> if for the Access Class of the UE, as stored on the USIM and with a value in the range 0..9, the corresponding bit in the *eab-BarringBitmap* contained in *eab-Config* is set to one:

5> consider access to the cell as barred;

4> else:

5> consider access to the cell as not barred due to EAB;

3> else:

4> consider access to the cell as not barred due to EAB;

1> else:

2> consider access to the cell as not barred due to EAB;

5.3.4 Initial security activation

5.3.4.1 General

The purpose of this procedure is to activate AS security upon RRC connection establishment.
5.3.4.2 Initiation

E-UTRAN initiates the security mode command procedure to a UE in RRC_CONNECTED. Moreover, E-UTRAN applies the procedure as follows:

- when only SRB1 is established, i.e. prior to establishment of SRB2 and/ or DRBs.

5.3.4.3 Reception of the SecurityModeCommand by the UE

The UE shall:

1> derive the K_{cNb} key, as specified in TS 33.401 [32];

1> derive the K_{RRCint} key associated with the $\text{integrityProtAlgorithm}$ indicated in the SecurityModeCommand message, as specified in TS 33.401 [32];

1> request lower layers to verify the integrity protection of the SecurityModeCommand message, using the algorithm indicated by the $\text{integrityProtAlgorithm}$ as included in the SecurityModeCommand message and the K_{RRCint} key;

1> if the SecurityModeCommand message passes the integrity protection check:

2> derive the K_{RRCenc} key and the K_{UPenc} key associated with the $\text{cipheringAlgorithm}$ indicated in the SecurityModeCommand message, as specified in TS 33.401 [32];

2> if connected as an RN:

3> derive the K_{UPint} key associated with the $\text{integrityProtAlgorithm}$ indicated in the SecurityModeCommand message, as specified in TS 33.401 [32];

2> configure lower layers to apply integrity protection using the indicated algorithm and the K_{RRCint} key immediately, i.e. integrity protection shall be applied to all subsequent messages received and sent by the UE, including the SecurityModeComplete message;

2> configure lower layers to apply ciphering using the indicated algorithm, the K_{RRCenc} key and the K_{UPenc} key after completing the procedure, i.e. ciphering shall be applied to all subsequent messages received and sent by the UE, except for the SecurityModeComplete message which is sent unciphered;

2> if connected as an RN:

3> configure lower layers to apply integrity protection using the indicated algorithm and the K_{UPint} key, for DRBs that are subsequently configured to apply integrity protection, if any;

2> consider AS security to be activated;

2> submit the SecurityModeComplete message to lower layers for transmission, upon which the procedure ends;

1> else:

2> continue using the configuration used prior to the reception of the SecurityModeCommand message, i.e. neither apply integrity protection nor ciphering.

2> submit the SecurityModeFailure message to lower layers for transmission, upon which the procedure ends;
5.3.5 RRC connection reconfiguration

5.3.5.1 General

![Diagram of RRC connection reconfiguration, successful](image1)

Figure 5.3.5.1-1: RRC connection reconfiguration, successful

![Diagram of RRC connection reconfiguration, failure](image2)

Figure 5.3.5.1-2: RRC connection reconfiguration, failure

The purpose of this procedure is to modify an RRC connection, e.g. to establish/modify/release RBs, to perform handover, to setup/modify/release measurements, to add/modify/release SCells. As part of the procedure, NAS dedicated information may be transferred from E-UTRAN to the UE.

5.3.5.2 Initiation

E-UTRAN may initiate the RRC connection reconfiguration procedure to a UE in RRC_CONNECTED. E-UTRAN applies the procedure as follows:

- the mobilityControlInfo is included only when AS-security has been activated, and SRB2 with at least one DRB are setup and not suspended;
- the establishment of RBs (other than SRB1, that is established during RRC connection establishment) is included only when AS security has been activated;
- the addition of SCells is performed only when AS security has been activated;

5.3.5.3 Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by the UE

If the RRCConnectionReconfiguration message does not include the mobilityControlInfo and the UE is able to comply with the configuration included in this message, the UE shall:

1> if this is the first RRCConnectionReconfiguration message after successful completion of the RRC Connection Re-establishment procedure:

2> re-establish PDCP for SRB2 and for all DRBs that are established, if any;

2> re-establish RLC for SRB2 and for all DRBs that are established, if any;
2> if the `RRCConnectionReconfiguration` message includes the `fullConfig`:
 3> perform the radio configuration procedure as specified in section 5.3.5.8;
2> if the `RRCConnectionReconfiguration` message includes the `radioResourceConfigDedicated`:
 3> perform the radio resource configuration procedure as specified in 5.3.10;
2> resume SRB2 and all DRBs that are suspended, if any;

NOTE 1: The handling of the radio bearers after the successful completion of the PDCP re-establishment, e.g. the re-transmission of unacknowledged PDCP SDUs (as well as the associated status reporting), the handling of the SN and the HFN, is specified in TS 36.323 [8].

NOTE 2: The UE may discard SRB2 messages and data that it receives prior to completing the reconfiguration used to resume these bearers.

1> else:

2> if the `RRCConnectionReconfiguration` message includes the `radioResourceConfigDedicated`:
 3> perform the radio resource configuration procedure as specified in 5.3.10;

NOTE 3: If the `RRCConnectionReconfiguration` message includes the establishment of radio bearers other than SRB1, the UE may start using these radio bearers immediately, i.e. there is no need to wait for an outstanding acknowledgment of the `SecurityModeComplete` message.

1> if the received `RRCConnectionReconfiguration` includes the `sCellToReleaseList`:

 2> perform SCell release as specified in 5.3.10.3a;
1> if the received `RRCConnectionReconfiguration` includes the `sCellToAddModList`:

 2> perform SCell addition or modification as specified in 5.3.10.3b;
1> if the received `RRCConnectionReconfiguration` includes the `systemInformationBlockType1Dedicated`:

 2> perform the actions upon reception of the `SystemInformationBlockType1` message as specified in 5.2.2.7;
1> if the `RRCConnectionReconfiguration` message includes the `dedicatedInfoNASList`:

 2> forward each element of the `dedicatedInfoNASList` to upper layers in the same order as listed;
1> if the `RRCConnectionReconfiguration` message includes the `measConfig`:

 2> perform the measurement configuration procedure as specified in 5.5.2;
1> perform the measurement identity autonomous removal as specified in 5.5.2.2a;
1> if the `RRCConnectionReconfiguration` message includes the `otherConfig`:

 2> perform the other configuration procedure as specified in 5.3.10.9;
1> if the `RRCConnectionReconfiguration` message includes `wlan-OffloadDedicated`:

 2> perform the dedicated WLAN offload configuration procedure as specified in 5.6.12.2;
1> submit the `RRCConnectionReconfigurationComplete` message to lower layers for transmission using the new configuration, upon which the procedure ends;

5.3.5.4 Reception of an `RRCConnectionReconfiguration` including the `mobilityControlInfo` by the UE (handover)

If the `RRCConnectionReconfiguration` message includes the `mobilityControlInfo` and the UE is able to comply with the configuration included in this message, the UE shall:

1> stop timer T310, if running;
1> stop timer T312, if running;
1> start timer T304 with the timer value set to t304, as included in the mobilityControlInfo;
1> if the carrierFreq is included:
 2> consider the target PCell to be one on the frequency indicated by the carrierFreq with a physical cell identity indicated by the targetPhysCellId;
1> else:
 2> consider the target PCell to be one on the frequency of the source PCell with a physical cell identity indicated by the targetPhysCellId;
1> start synchronising to the DL of the target PCell;

NOTE 1: The UE should perform the handover as soon as possible following the reception of the RRC message triggering the handover, which could be before confirming successful reception (HARQ and ARQ) of this message.

1> reset MAC;
1> re-establish PDCP for all RBs that are established;

NOTE 2: The handling of the radio bearers after the successful completion of the PDCP re-establishment, e.g. the re-transmission of unacknowledged PDCP SDUs (as well as the associated status reporting), the handling of the SN and the HFN, is specified in TS 36.323 [8].

1> re-establish RLC for all RBs that are established;
1> configure lower layers to consider the SCell(s), if configured, to be in deactivated state;
1> apply the value of the newUE-Identity as the C-RNTI;
1> if the RRCConnectionReconfiguration message includes the fullConfig:
 2> perform the radio configuration procedure as specified in section 5.3.5.8;
1> configure lower layers in accordance with the received radioResourceConfigCommon;
1> configure lower layers in accordance with any additional fields, not covered in the previous, if included in the received mobilityControlInfo;
1> if the RRCConnectionReconfiguration message includes the radioResourceConfigDedicated:
 2> perform the radio resource configuration procedure as specified in 5.3.10;
1> if the keyChangeIndicator received in the securityConfigHO is set to TRUE:
 2> update the K_{NB} key based on the K_{ASME} key taken into use with the latest successful NAS SMC procedure, as specified in TS 33.401 [32];
1> else:
 2> update the K_{NB} key based on the current K_{NB} or the NH, using the nextHopChainingCount value indicated in the securityConfigHO, as specified in TS 33.401 [32];
1> store the nextHopChainingCount value;
1> if the securityAlgorithmConfig is included in the securityConfigHO:
 2> derive the K_{RRCint} key associated with the integrityProtAlgorithm, as specified in TS 33.401 [32];
 2> if connected as an RN:
 3> derive the K_{UPint} key associated with the integrityProtAlgorithm, as specified in TS 33.401 [32];
derive the K_{RRCenc} key and the K_{UPenc} key associated with the cipheringAlgorithm, as specified in TS 33.401 [32];

else:

derive the K_{RRCint} key associated with the current integrity algorithm, as specified in TS 33.401 [32];

if connected as an RN:

derive the K_{UPint} key associated with the current integrity algorithm, as specified in TS 33.401 [32];

derive the K_{RRCenc} key and the K_{UPenc} key associated with the current ciphering algorithm, as specified in TS 33.401 [32];

configure lower layers to apply the integrity protection algorithm and the K_{RRCint} key, i.e. the integrity protection configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;

configure lower layers to apply the ciphering algorithm, the K_{RRCenc} key and the K_{UPenc} key, i.e. the ciphering configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;

if connected as an RN:

configure lower layers to apply the integrity protection algorithm and the K_{UPint} key, for current or subsequently established DRBs that are configured to apply integrity protection, if any;

if the received $RRCConnectionReconfiguration$ includes the $sCellToReleaseList$:

perform SCell release as specified in 5.3.10.3a;

if the received $RRCConnectionReconfiguration$ includes the $sCellToAddModList$:

perform SCell addition or modification as specified in 5.3.10.3b;

if the received $RRCConnectionReconfiguration$ includes the $systemInformationBlockType1Dedicated$:

perform the actions upon reception of the $SystemInformationBlockType1$ message as specified in 5.2.2.7;

perform the measurement related actions as specified in 5.5.6.1;

if the $RRCConnectionReconfiguration$ message includes the $measConfig$:

perform the measurement configuration procedure as specified in 5.5.2;

perform the measurement identity autonomous removal as specified in 5.5.2.2a;

release reportProximityConfig and clear any associated proximity status reporting timer;

if the $RRCConnectionReconfiguration$ message includes the $otherConfig$:

perform the other configuration procedure as specified in 5.3.10.9;

if the $RRCConnectionReconfiguration$ message includes $wlan-OffloadDedicated$:

perform the dedicated WLAN offload configuration procedure as specified in 5.6.12.2;

set the content of $RRCConnectionReconfigurationComplete$ message as follows:

if the UE has radio link failure or handover failure information available in $VarRLF-Report$ and if the RPLMN is included in $plmn-IdentityList$ stored in $VarRLF-Report$:

include rlf-InfoAvailable;

if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in $plmn-IdentityList$ stored in $VarLogMeasReport$ and if T330 is not running:

include logMeasAvailableMBSFN;
else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:

3> include the logMeasAvailable;

2> if the UE has connection establishment failure information available in VarConnEstFailReport and if the RPLMN is equal to plmn-Identity stored in VarConnEstFailReport:

3> include connEstFailInfoAvailable;

1> submit the RRCConnectionReconfigurationComplete message to lower layers for transmission;

if MAC successfully completes the random access procedure:

2> stop timer T304;

2> apply the parts of the CQI reporting configuration, the scheduling request configuration and the sounding RS configuration that do not require the UE to know the SFN of the target PCell, if any;

2> apply the parts of the measurement and the radio resource configuration that require the UE to know the SFN of the target PCell (e.g. measurement gaps, periodic CQI reporting, scheduling request configuration, sounding RS configuration), if any, upon acquiring the SFN of the target PCell;

NOTE 3: Whenever the UE shall setup or reconfigure a configuration in accordance with a field that is received it applies the new configuration, except for the cases addressed by the above statements.

2> if the UE is configured to provide IDC indications:

3> if the UE has transmitted an InDeviceCoexIndication message during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo:

4> initiate transmission of the InDeviceCoexIndication message in accordance with 5.6.9.3;

2> if the UE is configured to provide power preference indications:

3> if the UE has transmitted a UEAssistanceInformation message during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo:

4> initiate transmission of the UEAssistanceInformation message in accordance with 5.6.10.3;

2> if SystemInformationBlockType15 is broadcast by the PCell:

3> if the UE has transmitted a MBMSInterestIndication message during the last 1 second preceding reception of the RRCConnectionReconfiguration message including mobilityControlInfo:

4> ensure having a valid version of SystemInformationBlockType15 for the PCell;

4> determine the set of MBMS frequencies of interest in accordance with 5.8.5.3;

4> initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;

2> the procedure ends;

NOTE 4: The UE is not required to determine the SFN of the target PCell by acquiring system information from that cell before performing RACH access in the target PCell.

5.3.5.5 Reconfiguration failure

The UE shall:

1> if the UE is unable to comply with (part of) the configuration included in the RRCConnectionReconfiguration message:

2> continue using the configuration used prior to the reception of RRCConnectionReconfiguration message;

2> if security has not been activated:
3> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause other;

2> else:

3> initiate the connection re-establishment procedure as specified in 5.3.7, upon which the connection reconfiguration procedure ends;

NOTE 1: The UE may apply above failure handling also in case the RRCConnectionReconfiguration message causes a protocol error for which the generic error handling as defined in 5.7 specifies that the UE shall ignore the message.

NOTE 2: If the UE is unable to comply with part of the configuration, it does not apply any part of the configuration, i.e. there is no partial success/ failure.

5.3.5.6 T304 expiry (handover failure)

The UE shall:

1> if T304 expires (handover failure):

NOTE 1: Following T304 expiry any dedicated preamble, if provided within the rach-ConfigDedicated, is not available for use by the UE anymore.

2> revert back to the configuration used in the source PCell, excluding the configuration configured by the physicalConfigDedicated, the mac-MainConfig and the sps-Config;

2> store the following handover failure information in VarRLF-Report by setting its fields as follows:

3> clear the information included in VarRLF-Report, if any;

3> set the plmn-IdentityList to include the list of EPLMNs stored by the UE (i.e. includes the RPLMN);

3> set the measResultLastServCell to include the RSRP and RSRQ, if available, of the source PCell based on measurements collected up to the moment the UE detected handover failure;

3> set the measResultNeighCells to include the best measured cells, other than the source PCell, ordered such that the best cell is listed first, and based on measurements collected up to the moment the UE detected handover failure, and set its fields as follows;

4> if the UE was configured to perform measurements for one or more EUTRA frequencies, include the measResultListEUTRA;

4> if the UE was configured to perform measurement reporting for one or more neighbouring UTRA frequencies, include the measResultListUTRA;

4> if the UE was configured to perform measurement reporting for one or more neighbouring GERAN frequencies, include the measResultListGERAN;

4> if the UE was configured to perform measurement reporting for one or more neighbouring CDMA2000 frequencies, include the measResultsCDMA2000;

4> for each neighbour cell included, include the optional fields that are available;

NOTE 2: The measured quantities are filtered by the L3 filter as configured in the mobility measurement configuration. The measurements are based on the time domain measurement resource restriction, if configured. Blacklisted cells are not required to be reported.

3> if detailed location information is available, set the content of the locationInfo as follows:

4> include the locationCoordinates;

4> include the horizontalVelocity, if available;

3> set the failedPCellId to the global cell identity, if available, and otherwise to the physical cell identity and carrier frequency of the target PCell of the failed handover;
include previousPCellId and set it to the global cell identity of the PCell where the last RRCConnectionReconfiguration message including mobilityControlInfo was received;

set the timeConnFailure to the elapsed time since reception of the last RRCConnectionReconfiguration message including the mobilityControlInfo;

set the connectionFailureType to 'hof';

set the c-RNTI to the C-RNTI used in the source PCell;

initiate the connection re-establishment procedure as specified in 5.3.7, upon which the RRC connection reconfiguration procedure ends;

The UE may discard the handover failure information, i.e. release the UE variable VarRLF-Report, 48 hours after the failure is detected, upon power off or upon detach.

NOTE 3: E-UTRAN may retrieve the handover failure information using the UE information procedure with rlf-ReportReq set to true, as specified in 5.6.5.3.

5.3.5.7 Void

5.3.5.8 Radio Configuration involving full configuration option

The UE shall:

release/ clear all current dedicated radio configurations except the C-RNTI, the security configuration and the PDPCP, RLC, logical channel configurations for the RBs and the logged measurement configuration;

NOTE 1: Radio configuration is not just the resource configuration but includes other configurations like MeasConfig and OtherConfig.

if the RRCConnectionReconfiguration message includes the mobilityControlInfo:

release/ clear all current common radio configurations;

use the default values specified in 9.2.5 for timer T310, T311 and constant N310, N311;

else:

use values for timers T301, T310, T311 and constants N310, N311, as included in ue-TimersAndConstants received in SystemInformationBlockType2;

apply the default physical channel configuration as specified in 9.2.4;

apply the default semi-persistent scheduling configuration as specified in 9.2.3;

apply the default MAC main configuration as specified in 9.2.2;

for each srb-Identity value included in the srb-ToAddModList (SRB reconfiguration):

apply the specified configuration defined in 9.1.2 for the corresponding SRB;

apply the corresponding default RLC configuration for the SRB specified in 9.2.1.1 for SRB1 or in 9.2.1.2 for SRB2;

apply the corresponding default logical channel configuration for the SRB as specified in 9.2.1.1 for SRB1 or in 9.2.1.2 for SRB2;

NOTE 2: This is to get the SRBs (SRB1 and SRB2 for handover and SRB2 for reconfiguration after reestablishment) to a known state from which the reconfiguration message can do further configuration.

for each eps-BearerIdentity value included in the drb-ToAddModList that is part of the current UE configuration:

release the PDCP entity;

release the RLC entity or entities;
release the DTCH logical channel;
release the `drb-identity`;

NOTE 3: This will retain the `eps-bearerIdentity` but remove the DRBs including `drb-identity` of these bearers from the current UE configuration and trigger the setup of the DRBs within the AS in Section 5.3.10.3 using the new configuration. The `eps-bearerIdentity` acts as the anchor for associating the released and re-setup DRB.

1> for each `eps-BearerIdentity` value that is part of the current UE configuration but not part of the `drb-ToAddModList`:

2> perform DRB release as specified in 5.3.10.2;

5.3.6 Counter check

5.3.6.1 General

![Counter check procedure diagram](image)

The counter check procedure is used by E-UTRAN to request the UE to verify the amount of data sent/ received on each DRB. More specifically, the UE is requested to check if, for each DRB, the most significant bits of the COUNT match with the values indicated by E-UTRAN.

NOTE: The procedure enables E-UTRAN to detect packet insertion by an intruder (a 'man in the middle').

5.3.6.2 Initiation

E-UTRAN initiates the procedure by sending a `CounterCheck` message.

NOTE: E-UTRAN may initiate the procedure when any of the COUNT values reaches a specific value.

5.3.6.3 Reception of the `CounterCheck` message by the UE

Upon receiving the `CounterCheck` message, the UE shall:

1> for each DRB that is established:

2> if no COUNT exists for a given direction (uplink or downlink) because it is a uni-directional bearer configured only for the other direction:

3> assume the COUNT value to be 0 for the unused direction;

2> if the `drb-Identity` is not included in the `drb-CountMSB-InfoList`:

3> include the DRB in the `drb-CountInfoList` in the `CounterCheckResponse` message by including the `drb-Identity`, the `count-Uplink` and the `count-Downlink` set to the value of the corresponding COUNT;

2> else if, for at least one direction, the most significant bits of the COUNT are different from the value indicated in the `drb-CountMSB-InfoList`:
3> include the DRB in the `drb-CountInfoList` in the `CounterCheckResponse` message by including the `drb-Identity`, the `count-Uplink` and the `count-Downlink` set to the value of the corresponding COUNT;

1> for each DRB that is included in the `drb-CountMSB-InfoList` in the `CounterCheck` message that is not established:

2> include the DRB in the `drb-CountInfoList` in the `CounterCheckResponse` message by including the `drb-Identity`, the `count-Uplink` and the `count-Downlink` with the most significant bits set identical to the corresponding values in the `drb-CountMSB-InfoList` and the least significant bits set to zero;

1> submit the `CounterCheckResponse` message to lower layers for transmission upon which the procedure ends;

5.3.7 RRC connection re-establishment

5.3.7.1 General

```
UE       EUTRAN
         |
         v
RRCCConnectionReestablishmentRequest
         |
         v
RRCCConnectionReestablishment
         |
         v
RRCCConnectionReestablishmentComplete
```

Figure 5.3.7.1-1: RRC connection re-establishment, successful

```
UE       EUTRAN
         |
         v
RRCCConnectionReestablishmentRequest
         |
         v
RRCCConnectionReestablishmentReject
```

Figure 5.3.7.1-2: RRC connection re-establishment, failure

The purpose of this procedure is to re-establish the RRC connection, which involves the resumption of SRB1 operation, the re-activation of security and the configuration of only the PCell.

A UE in RRC_CONNECTED, for which security has been activated, may initiate the procedure in order to continue the RRC connection. The connection re-establishment succeeds only if the concerned cell is prepared i.e. has a valid UE context. In case E-UTRAN accepts the re-establishment, SRB1 operation resumes while the operation of other radio bearers remains suspended. If AS security has not been activated, the UE does not initiate the procedure but instead moves to RRC_IDLE directly.

E-UTRAN applies the procedure as follows:

- to reconfigure SRB1 and to resume data transfer only for this RB;
- to re-activate AS security without changing algorithms.
5.3.7.2 Initiation

The UE shall only initiate the procedure when AS security has been activated. The UE initiates the procedure when one of the following conditions is met:

1. upon detecting radio link failure, in accordance with 5.3.11; or
2. upon handover failure, in accordance with 5.3.5.6; or
3. upon mobility from E-UTRA failure, in accordance with 5.4.3.5; or
4. upon integrity check failure indication from lower layers; or
5. upon an RRC connection reconfiguration failure, in accordance with 5.3.5.5;

Upon initiation of the procedure, the UE shall:

1. stop timer T310, if running;
2. stop timer T312, if running;
3. start timer T311;
4. suspend all RBs except SRB0;
5. reset MAC;
6. release the SCCell(s), if configured, in accordance with 5.3.10.3a;
7. apply the default physical channel configuration as specified in 9.2.4;
8. apply the default semi-persistent scheduling configuration as specified in 9.2.3;
9. apply the default MAC main configuration as specified in 9.2.2;
10. release powerPrefIndicationConfig, if configured and stop timer T340, if running;
11. release reportProximityConfig and clear any associated proximity status reporting timer;
12. release obtainLocationConfig, if configured;
13. release idc-Config, if configured;
14. release measSubframePatternPCell, if configured;
15. if connected as an RN and configured with an RN subframe configuration:
 2. release the RN subframe configuration;
16. perform cell selection in accordance with the cell selection process as specified in TS 36.304 [4];

5.3.7.3 Actions following cell selection while T311 is running

Upon selecting a suitable E-UTRA cell, the UE shall:

1. stop timer T311;
2. release wlan-OffloadDedicated, if received and inform upper layers about the release;
3. start timer T301;
4. apply the timeAlignmentTimerCommon included in SystemInformationBlockType2;
5. initiate transmission of the RRCConnectionReestablishmentRequest message in accordance with 5.3.7.4;

NOTE: This procedure applies also if the UE returns to the source PCell.

Upon selecting an inter-RAT cell, the UE shall:
If the selected cell is a UTRA cell, and if the UE supports Radio Link Failure Report for Inter-RAT MRO, include selectedUTRA-CellId in the VarRLF-Report and set it to the physical cell identity and carrier frequency of the selected UTRA cell;

perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';

5.3.7.4 Actions related to transmission of RRCConnectionReestablishmentRequest message

If the procedure was initiated due to radio link failure or handover failure, the UE shall:

1> set the reestablishmentCellId in the VarRLF-Report to the global cell identity of the selected cell;

The UE shall set the contents of RRCConnectionReestablishmentRequest message as follows:

1> set the ue-Identity as follows:

2> set the c-RNTI to the C-RNTI used in the source PCell (handover and mobility from E-UTRA failure) or used in the PCell in which the trigger for the re-establishment occurred (other cases);

2> set the physCellId to the physical cell identity of the source PCell (handover and mobility from E-UTRA failure) or of the PCell in which the trigger for the re-establishment occurred (other cases);

2> set the shortMAC-I to the 16 least significant bits of the MAC-I calculated:

3> over the ASN.1 encoded as per section 8 (i.e., a multiple of 8 bits) VarShortMAC-Input;

3> with the K_{RRCint} key and integrity protection algorithm that was used in the source PCell (handover and mobility from E-UTRA failure) or of the PCell in which the trigger for the re-establishment occurred (other cases); and

3> with all input bits for COUNT, BEARER and DIRECTION set to binary ones;

1> set the reestablishmentCause as follows:

2> if the re-establishment procedure was initiated due to reconfiguration failure as specified in 5.3.5.5 (the UE is unable to comply with the reconfiguration):

3> set the reestablishmentCause to the value reconfigurationFailure;

2> else if the re-establishment procedure was initiated due to handover failure as specified in 5.3.5.6 (intra-LTE handover failure) or 5.4.3.5 (inter-RAT mobility from EUTRA failure):

3> set the reestablishmentCause to the value handoverFailure;

2> else:

3> set the reestablishmentCause to the value otherFailure;

The UE shall submit the RRCConnectionReestablishmentRequest message to lower layers for transmission.

5.3.7.5 Reception of the RRCConnectionReestablishment by the UE

NOTE 1: Prior to this, lower layer signalling is used to allocate a C-RNTI. For further details see TS 36.321 [6];

The UE shall:

1> stop timer T301;

1> consider the current cell to be the PCell;

1> re-establish PDCP for SRB1;

1> re-establish RLC for SRB1;
1> perform the radio resource configuration procedure in accordance with the received
 radioResourceConfigDedicated and as specified in 5.3.10;

1> resume SRB1;

NOTE 2: E-UTRAN should not transmit any message on SRB1 prior to receiving the
 RRCConnectionReestablishmentComplete message.

1> update the K_{ENB} key based on the K_{ASME} key to which the current K_{ENB} is associated, using the
 nextHopChainingCount value indicated in the RRCConnectionReestablishment message, as specified in TS
 33.401 [32];

1> store the nextHopChainingCount value;

1> derive the K_{RRC} key associated with the previously configured integrity algorithm, as specified in TS 33.401
 [32];

1> derive the K_{RRRC} key and the K_{UP} key associated with the previously configured ciphering algorithm, as
 specified in TS 33.401 [32];

1> if connected as an RN:
 2> derive the K_{UP} key associated with the previously configured integrity algorithm, as specified in TS 33.401
 [32];

1> configure lower layers to activate integrity protection using the previously configured algorithm and the K_{RRCint}
 key immediately, i.e., integrity protection shall be applied to all subsequent messages received and sent by the
 UE, including the message used to indicate the successful completion of the procedure;

1> if connected as an RN:
 2> configure lower layers to apply integrity protection using the previously configured algorithm and the K_{UPint}
 key, for subsequently resumed or subsequently established DRBs that are configured to apply integrity
 protection, if any;

1> configure lower layers to apply ciphering using the previously configured algorithm, the K_{RRCenc} key and the
 K_{UPenc} key immediately, i.e., ciphering shall be applied to all subsequent messages received and sent by the UE,
 including the message used to indicate the successful completion of the procedure;

1> set the content of RRCConnectionReestablishmentComplete message as follows:
 2> if the UE has radio link failure or handover failure information available in VarRLF-Report and if the
 RPLMN is included in plmn-IdentityList stored in VarRLF-Report:
 3> include the rlf-InfoAvailable;

 2> if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in plmn-
 IdentityList stored in VarLogMeasReport and if T330 is not running:
 3> include logMeasAvailableMBSFN;

 2> else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in plmn-
 IdentityList stored in VarLogMeasReport:
 3> include the logMeasAvailable;

 2> if the UE has connection establishment failure information available in VarConnEstFailReport and if the
 RPLMN is equal to plmn-Identity stored in VarConnEstFailReport:
 3> include the connEstFailInfoAvailable;

1> perform the measurement related actions as specified in 5.5.6.1;

1> perform the measurement identity autonomous removal as specified in 5.5.2.2a;

1> submit the RRCConnectionReestablishmentComplete message to lower layers for transmission;
1> if SystemInformationBlockType15 is broadcast by the PCell:

2> if the UE has transmitted an MBMSInterestIndication message during the last 1 second preceding detection of radio link failure:

3> ensure having a valid version of SystemInformationBlockType15 for the PCell;

3> determine the set of MBMS frequencies of interest in accordance with 5.8.5.3;

3> initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;

1> the procedure ends;

5.3.7.6 T311 expiry

Upon T311 expiry, the UE shall:

1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';

5.3.7.7 T301 expiry or selected cell no longer suitable

The UE shall:

1> if timer T301 expires; or

1> if the selected cell becomes no longer suitable according to the cell selection criteria as specified in TS 36.304 [4]:

2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';

5.3.7.8 Reception of RRCConnectionReestablishmentReject by the UE

Upon receiving the RRCConnectionReestablishmentReject message, the UE shall:

1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'RRC connection failure';

5.3.8 RRC connection release

5.3.8.1 General

![Figure 5.3.8.1-1: RRC connection release, successful](image)

The purpose of this procedure is to release the RRC connection, which includes the release of the established radio bearers as well as all radio resources.

5.3.8.2 Initiation

E-UTRAN initiates the RRC connection release procedure to a UE in RRC_CONNECTED.
5.3.8.3 Reception of the \textit{RRCConnectionRelease} by the UE

The UE shall:

1> delay the following actions defined in this sub-clause 60 ms from the moment the \textit{RRCConnectionRelease} message was received or optionally when lower layers indicate that the receipt of the \textit{RRCConnectionRelease} message has been successfully acknowledged, whichever is earlier;

1> if the \textit{RRCConnectionRelease} message includes the \textit{idleModeMobilityControlInfo}:

2> store the cell reselection priority information provided by the \textit{idleModeMobilityControlInfo};

2> if the \textit{t320} is included:

3> start timer T320, with the timer value set according to the value of \textit{t320};

1> else:

2> apply the cell reselection priority information broadcast in the system information;

1> if the \textit{releaseCause} received in the \textit{RRCConnectionRelease} message indicates \textit{loadBalancingTAURequired}:

2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause ‘load balancing TAU required’;

1> else if the \textit{releaseCause} received in the \textit{RRCConnectionRelease} message indicates \textit{cs-FallbackHighPriority}:

2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause ‘CS Fallback High Priority’;

1> else:

2> if the \textit{extendedWaitTime} is present and the UE supports delay tolerant access:

3> forward the \textit{extendedWaitTime} to upper layers;

2> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause ‘other’;

5.3.8.4 T320 expiry

The UE shall:

1> if T320 expires:

2> if stored, discard the cell reselection priority information provided by the \textit{idleModeMobilityControlInfo} or inherited from another RAT;

2> apply the cell reselection priority information broadcast in the system information;

5.3.9 RRC connection release requested by upper layers

5.3.9.1 General

The purpose of this procedure is to release the RRC connection. Access to the current PCell may be barred as a result of this procedure.

\textbf{NOTE:} Upper layers invoke the procedure, e.g. upon determining that the network has failed an authentication check, see TS 24.301 [35].

5.3.9.2 Initiation

The UE initiates the procedure when upper layers request the release of the RRC connection. The UE shall not initiate the procedure for power saving purposes.
The UE shall:

1> if the upper layers indicate barring of the PCell:
 2> treat the PCell used prior to entering RRC_IDLE as barred according to TS 36.304 [4];
1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other';

5.3.10 Radio resource configuration

5.3.10.0 General

The UE shall:

1> if the received radioResourceConfigDedicated includes the srb-ToAddModList:
 2> perform the SRB addition or reconfiguration as specified in 5.3.10.1;
1> if the received radioResourceConfigDedicated includes the drb-ToReleaseList:
 2> perform DRB release as specified in 5.3.10.2;
1> if the received radioResourceConfigDedicated includes the drb-ToAddModList:
 2> perform DRB addition or reconfiguration as specified in 5.3.10.3;
1> if the received radioResourceConfigDedicated includes the mac-MainConfig:
 2> perform MAC main reconfiguration as specified in 5.3.10.4;
1> if the received radioResourceConfigDedicated includes sps-Config:
 2> perform SPS reconfiguration according to 5.3.10.5;
1> if the received radioResourceConfigDedicated includes the physicalConfigDedicated:
 2> reconfigure the physical channel configuration as specified in 5.3.10.6;
1> if the received radioResourceConfigDedicated includes the rlf-TimersAndConstants:
 2> reconfigure the values of timers and constants as specified in 5.3.10.7;
1> if the received radioResourceConfigDedicated includes the measSubframePatternPCell:
 2> reconfigure the time domain measurement resource restriction for the serving cell as specified in 5.3.10.8;

5.3.10.1 SRB addition/ modification

The UE shall:

1> for each srb-Identity value included in the srb-ToAddModList that is not part of the current UE configuration (SRB establishment):
 2> apply the specified configuration defined in 9.1.2 for the corresponding SRB;
 2> establish a PDCP entity and configure it with the current security configuration, if applicable;
 2> establish an RLC entity in accordance with the received rlc-Config;
 2> establish a DCCH logical channel in accordance with the received logicalChannelConfig and with the logical channel identity set in accordance with 9.1.2;
1> for each srb-Identity value included in the srb-ToAddModList that is part of the current UE configuration (SRB reconfiguration):
 2> reconfigure the RLC entity in accordance with the received rlc-Config;
5.3.10.2 DRB release

The UE shall:

1. for each `drb-Identity` value included in the `drb-ToReleaseList` that is part of the current UE configuration (DRB release); or

2. for each `drb-identity` value that is to be released as the result of full configuration option according to 5.3.5.8:
 1. release the PDCP entity;
 2. release the RLC entity or entities;
 3. release the DTCH logical channel;

1. if the procedure was triggered due to handover:
 1. indicate the release of the DRB(s) and the `eps-BearerIdentity` of the released DRB(s) to upper layers after successful handover;

1. else:
 1. indicate the release of the DRB(s) and the `eps-BearerIdentity` of the released DRB(s) to upper layers immediately.

NOTE: The UE does not consider the message as erroneous if the `drb-ToReleaseList` includes any `drb-Identity` value that is not part of the current UE configuration.

5.3.10.3 DRB addition/ modification

The UE shall:

1. for each `drb-Identity` value included in the `drb-ToAddModList` that is not part of the current UE configuration (DRB establishment including the case when full configuration option is used):
 1. establish a PDCP entity and configure it with the current security configuration and in accordance with the received `pdcp-Config`;
 2. establish an RLC entity or entities in accordance with the received `rlc-Config`;
 3. establish a DTCH logical channel in accordance with the received `logicalChannelIdentity` and the received `logicalChannelConfig`;

1. if the `RRCConnectionReconfiguration` message includes the `fullConfig` IE:
 1. associate the established DRB with corresponding included `eps-BearerIdentity`;

1. else:
 1. indicate the establishment of the DRB(s) and the `eps-BearerIdentity` of the established DRB(s) to upper layers;

1. for each `drb-Identity` value included in the `drb-ToAddModList` that is part of the current UE configuration (DRB reconfiguration):
 1. if the `pdcp-Config` is included:
 1. reconfigure the PDCP entity in accordance with the received `pdcp-Config`;
 2. if the `rlc-Config` is included:
 1. reconfigure the RLC entity or entities in accordance with the received `rlc-Config`;
 2. if the `logicalChannelConfig` is included:
3> reconfigure the DTCH logical channel in accordance with the received logicalChannelConfig;

NOTE: Removal and addition of the same drb-Identity in single radioResourceConfiguration is not supported.

5.3.10.3a SCell release

The UE shall:

1> if the release is triggered by reception of the sCellToReleaseList:

2> for each sCellIndex value included in the sCellToReleaseList:

3> if the current UE configuration includes an SCell with value sCellIndex:

4> release the SCell;

1> if the release is triggered by RRC connection re-establishment:

2> release all SCells that are part of the current UE configuration;

5.3.10.3b SCell addition/ modification

The UE shall:

1> for each sCellIndex value included in the sCellToAddModList that is not part of the current UE configuration (SCell addition):

2> add the SCell, corresponding to the cellIdentification, in accordance with the received radioResourceConfigCommonSCell and radioResourceConfigDedicatedSCell;

2> configure lower layers to consider the SCell to be in deactivated state;

2> for each measId included in the measIdList within VarMeasConfig:

3> if SCells are not applicable for the associated measurement; and

3> if the concerned SCell is included in cellsTriggeredList defined within the VarMeasReportList for this measId:

4> remove the concerned SCell from cellsTriggeredList defined within the VarMeasReportList for this measId;

1> for each sCellIndex value included in the sCellToAddModList that is part of the current UE configuration (SCell modification):

2> modify the SCell configuration in accordance with the received radioResourceConfigDedicatedSCell;

5.3.10.4 MAC main reconfiguration

The UE shall:

1> reconfigure the MAC main configuration in accordance with the received mac-MainConfig other than stag-ToReleaseList and stag-ToAddModList;

1> if the received mac-MainConfig includes the stag-ToReleaseList:

2> for each STAG-Id value included in the stag-ToReleaseList that is part of the current UE configuration:

3> release the STAG indicated by STAG-Id;

1> if the received mac-MainConfig includes the stag-ToAddModList:

2> for each stag-Id value included in stag-ToAddModList that is not part of the current UE configuration (STAG addition):

3> add the STAG, corresponding to the stag-Id, in accordance with the received timeAlignmentTimerSTAG;
for each stag-Id value included in stag-ToAddModList that is part of the current UE configuration (STAG modification):

reconfigure the STAG, corresponding to the stag-Id, in accordance with the received timeAlignmentTimerSTAG;

5.3.10.5 Semi-persistent scheduling reconfiguration

The UE shall:

reconfigure the semi-persistent scheduling in accordance with the received sps-Config;

5.3.10.6 Physical channel reconfiguration

The UE shall:

if the antennaInfo-r10 is included in the received physicalConfigDedicated and the previous version of this field that was received by the UE was antennaInfo (without suffix i.e. the version defined in REL-8):

apply the default antenna configuration as specified in section 9.2.4;

if the cqi-ReportConfig-r10 is included in the received physicalConfigDedicated and the previous version of this field that was received by the UE was cqi-ReportConfig (without suffix i.e. the version defined in REL-8):

apply the default CQI reporting configuration as specified in 9.2.4;

NOTE: Application of the default configuration involves release of all extensions introduced in REL-9 and later.

reconfigure the physical channel configuration in accordance with the received physicalConfigDedicated;

if the antennaInfo is included and set to explicitValue:

if the configured transmissionMode is tm1, tm2, tm5, tm6 or tm7; or

if the configured transmissionMode is tm8 and pmi-RI-Report is not present; or

if the configured transmissionMode is tm9 and pmi-RI-Report is not present; or

if the configured transmissionMode is tm9 and pmi-RI-Report is present and antennaPortsCount within csi-RS is set to an1:

release ri-ConfigIndex in cqi-ReportPeriodic, if previously configured;

else if the antennaInfo is included and set to defaultValue:

release ri-ConfigIndex in cqi-ReportPeriodic, if previously configured;

5.3.10.7 Radio Link Failure Timers and Constants reconfiguration

The UE shall:

if the received rlf-TimersAndConstants is set to release:

use values for timers T301, T310, T311 and constants N310, N311, as included in ue-TimersAndConstants received in SystemInformationBlockType2;

else:

reconfigure the value of timers and constants in accordance with received rlf-TimersAndConstants;

5.3.10.8 Time domain measurement resource restriction for serving cell

The UE shall:

if the received measSubframePatternPCell is set to release:
release the time domain measurement resource restriction for the PCell, if previously configured

else:

apply the time domain measurement resource restriction for the PCell in accordance with the received measSubframePatternPCell;

5.3.10.9 Other configuration

The UE shall:

if the received otherConfig includes the reportProximityConfig:

if proximityIndicationEUTRA is set to enabled:

consider itself to be configured to provide proximity indications for E-UTRA frequencies in accordance with 5.3.14;

else:

consider itself not to be configured to provide proximity indications for E-UTRA frequencies;

if proximityIndicationUTRA is set to enabled:

consider itself to be configured to provide proximity indications for UTRA frequencies in accordance with 5.3.14;

else:

consider itself not to be configured to provide proximity indications for UTRA frequencies;

if the received otherConfig includes the obtainLocation:

attempt to have detailed location information available for any subsequent measurement report;

NOTE: The UE is requested to attempt to have valid detailed location information available whenever sending a measurement report for which it is configured to include available detailed location information. The UE may not succeed e.g. because the user manually disabled the GPS hardware, due to no/poor satellite coverage. Further details, e.g. regarding when to activate GNSS, are up to UE implementation.

if the received otherConfig includes the idc-Config:

if idc-Indication is included (i.e. set to setup):

consider itself to be configured to provide IDC indications in accordance with 5.6.9;

else:

consider itself not to be configured to provide IDC indications;

if autonomousDenialParameters is included:

consider itself to be allowed to deny any transmission in a particular UL subframe if during the number of subframes indicated by autonomousDenialValidity, preceeding and including this particular subframe, it autonomously denied fewer UL subframes than indicated by autonomousDenialSubframes;

else:

consider itself not to be allowed to deny any UL transmission;

if the received otherConfig includes the powerPrefIndicationConfig:

if powerPrefIndicationConfig is set to setup:

consider itself to be configured to provide power preference indications in accordance with 5.6.10;

else:
3GPP TS 36.331 version 12.3.0 Release 12

5.3.11 Radio link failure related actions

5.3.11.1 Detection of physical layer problems in RRC_CONNECTED

The UE shall:

1> upon receiving N310 consecutive "out-of-sync" indications for the PCell from lower layers while neither T300, T301, T304 nor T311 is running:

2> start timer T310;

NOTE: Physical layer monitoring and related autonomous actions do not apply to SCells.

5.3.11.2 Recovery of physical layer problems

Upon receiving N311 consecutive "in-sync" indications for the PCell from lower layers while T310 is running, the UE shall:

1> stop timer T310;

1> stop timer T312, if running;

NOTE 1: In this case, the UE maintains the RRC connection without explicit signalling, i.e. the UE maintains the entire radio resource configuration.

NOTE 2: Periods in time where neither "in-sync" nor "out-of-sync" is reported by layer 1 do not affect the evaluation of the number of consecutive "in-sync" or "out-of-sync" indications.

5.3.11.3 Detection of radio link failure

The UE shall:

1> upon T310 expiry; or

1> upon T312 expiry; or

1> upon random access problem indication from MAC while neither T300, T301, T304 nor T311 is running; or

1> upon indication from RLC that the maximum number of retransmissions has been reached:

2> consider radio link failure to be detected;

2> store the following radio link failure information in the VarRLF-Report by setting its fields as follows:

3> clear the information included in VarRLF-Report, if any;

3> set the plmn-IdentityList to include the list of EPLMNs stored by the UE (i.e. includes the RPLMN);

3> set the measResultLastServCell to include the RSRP and RSRQ, if available, of the PCell based on measurements collected up to the moment the UE detected radio link failure;

3> set the measResultNeighCells to include the best measured cells, other than the PCell, ordered such that the best cell is listed first, and based on measurements collected up to the moment the UE detected radio link failure, and set its fields as follows;

4> if the UE was configured to perform measurements for one or more EUTRA frequencies, include the measResultListEUTRA;

4> if the UE was configured to perform measurement reporting for one or more neighbouring UTRA frequencies, include the measResultListUTRA;
4> if the UE was configured to perform measurement reporting for one or more neighbouring GERAN frequencies, include the \textit{measResultListGERAN};

4> if the UE was configured to perform measurement reporting for one or more neighbouring CDMA2000 frequencies, include the \textit{measResultsCDMA2000};

4> for each neighbour cell included, include the optional fields that are available;

\textbf{NOTE:} The measured quantities are filtered by the L3 filter as configured in the mobility measurement configuration. The measurements are based on the time domain measurement resource restriction, if configured. Blacklisted cells are not required to be reported.

3> if detailed location information is available, set the content of the \textit{locationInfo} as follows:

4> include the \textit{locationCoordinates};

4> include the \textit{horizontalVelocity}, if available;

3> set the \textit{failedPCellId} to the global cell identity, if available, and otherwise to the physical cell identity and carrier frequency of the PCell where radio link failure is detected;

3> set the \textit{tac-FailedPCell} to the tracking area code, if available, of the PCell where radio link failure is detected;

3> if an \textit{RRConnectionReconfiguration} message including the \textit{mobilityControlInfo} was received before the connection failure:

4> if the last \textit{RRConnectionReconfiguration} message including the \textit{mobilityControlInfo} concerned an intra E-UTRA handover:

5> include the \textit{previousPCellId} and set it to the global cell identity of the PCell where the last \textit{RRConnectionReconfiguration} message including \textit{mobilityControlInfo} was received;

5> set the \textit{timeConnFailure} to the elapsed time since reception of the last \textit{RRConnectionReconfiguration} message including \textit{mobilityControlInfo};

4> if the last \textit{RRConnectionReconfiguration} message including the \textit{mobilityControlInfo} concerned a handover to E-UTRA from UTRA and if the UE supports Radio Link Failure Report for Inter-RAT MRO:

5> include the \textit{previousUTRA-CellId} and set it to the physical cell identity, the carrier frequency and the global cell identity, if available, of the UTRA Cell in which the last \textit{RRConnectionReconfiguration} message including \textit{mobilityControlInfo} was received;

5> set the \textit{timeConnFailure} to the elapsed time since reception of the last \textit{RRConnectionReconfiguration} message including \textit{mobilityControlInfo};

3> set the \textit{connectionFailureType} to \textit{rlf};

3> set the \textit{c-RNTI} to the C-RNTI used in the PCell;

3> set the \textit{rlf-Cause} to the trigger for detecting radio link failure;

2> if AS security has not been activated:

3> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other';

2> else:

3> initiate the connection re-establishment procedure as specified in 5.3.7;

The UE may discard the radio link failure information, i.e. release the UE variable \textit{VarRLF-Report}, 48 hours after the radio link failure is detected, upon power off or upon detach.
5.3.12 UE actions upon leaving RRC_CONNECTED

Upon leaving RRC_CONNECTED, the UE shall:

1> reset MAC;
1> stop all timers that are running except T320, T325 and T330;
1> release all radio resources, including release of the RLC entity, the MAC configuration and the associated PDCP entity for all established RBs;
1> indicate the release of the RRC connection to upper layers together with the release cause;
1> if leaving RRC_CONNECTED was triggered neither by reception of the MobilityFromEUTRACCommand message nor by selecting an inter-RAT cell while T311 was running:
 2> enter RRC_IDLE and perform procedures as specified in TS 36.304 [4, 5.2.7];
 2> start timer T350, if the UE is configured with wlan-OffloadDedicated; and if the UE is configured with t350;

5.3.13 UE actions upon PUCCH/ SRS release request

Upon receiving a PUCCH/ SRS release request from lower layers, the UE shall:

1> apply the default physical channel configuration for cqi-ReportConfig as specified in 9.2.4 and release cqi-ReportConfigSCell, for each SCell that is configured, if any;
1> apply the default physical channel configuration for soundingRS-UL-ConfigDedicated as specified in 9.2.4, for all serving cells;
1> apply the default physical channel configuration for schedulingRequestConfig as specified in 9.2.4;

Upon receiving an SRS release request from lower layers, the UE shall:

1> apply the default physical channel configuration for soundingRS-UL-ConfigDedicated, as specified in 9.2.4, for the cells of the concerned TAG;

NOTE: Upon PUCCH/ SRS release request, the UE does not modify the soundingRS-UL-ConfigDedicatedAperiodic i.e. it does not apply the default for this field (release).

5.3.14 Proximity indication

5.3.14.1 General

The purpose of this procedure is to indicate that the UE is entering or leaving the proximity of one or more CSG member cells. The detection of proximity is based on an autonomous search function as defined in TS 36.304 [4].
5.3.14.2 Initiation

A UE in RRC_CONNECTED shall:

1> if the UE enters the proximity of one or more CSG member cell(s) on an E-UTRA frequency while proximity indication is enabled for such E-UTRA cells; or

1> if the UE enters the proximity of one or more CSG member cell(s) on a UTRA frequency while proximity indication is enabled for such UTRA cells; or

1> if the UE leaves the proximity of all CSG member cell(s) on an E-UTRA frequency while proximity indication is enabled for such E-UTRA cells; or

1> if the UE leaves the proximity of all CSG member cell(s) on a UTRA frequency while proximity indication is enabled for such UTRA cells:

2> if the UE has previously not transmitted a ProximityIndication for the RAT and frequency during the current RRC connection, or if more than 5 s has elapsed since the UE has last transmitted a ProximityIndication (either entering or leaving) for the RAT and frequency:

3> initiate transmission of the ProximityIndication message in accordance with 5.3.14.3;

NOTE: In the conditions above, “if the UE enters the proximity of one or more CSG member cell(s)” includes the case of already being in the proximity of such cell(s) at the time proximity indication for the corresponding RAT is enabled.

5.3.14.3 Actions related to transmission of ProximityIndication message

The UE shall set the contents of ProximityIndication message as follows:

1> if the UE applies the procedure to report entering the proximity of CSG member cell(s):

2> set type to entering;

1> else if the UE applies the procedure to report leaving the proximity of CSG member cell(s):

2> set type to leaving;

1> if the proximity indication was triggered for one or more CSG member cell(s) on an E-UTRA frequency:

2> set the carrierFreq to eutra with the value set to the E-ARFCN value of the E-UTRA cell(s) for which proximity indication was triggered;

1> else if the proximity indication was triggered for one or more CSG member cell(s) on a UTRA frequency:

2> set the carrierFreq to utra with the value set to the ARFCN value of the UTRA cell(s) for which proximity indication was triggered;

The UE shall submit the ProximityIndication message to lower layers for transmission.

5.3.15 Void

5.4 Inter-RAT mobility

5.4.1 Introduction

The general principles of connected mode mobility are described in 5.3.1.3. The general principles of the security handling upon connected mode mobility are described in 5.3.1.2.

For the (network controlled) inter RAT mobility from E-UTRA for a UE in RRC_CONNECTED, a single procedure is defined that supports both handover, cell change order with optional network assistance (NACC) and enhanced CS fallback to CDMA2000 1xRTT. In case of mobility to CDMA2000, the eNB decides when to move to the other RAT while the target RAT determines to which cell the UE shall move.
5.4.2 Handover to E-UTRA

5.4.2.1 General

The purpose of this procedure is to, under the control of the network, transfer a connection between the UE and another Radio Access Network (e.g. GERAN or UTRAN) to E-UTRAN.

The handover to E-UTRA procedure applies when SRBs, possibly in combination with DRBs, are established in another RAT. Handover from UTRAN to E-UTRAN applies only after integrity has been activated in UTRAN.

5.4.2.2 Initiation

The RAN using another RAT initiates the Handover to E-UTRA procedure, in accordance with the specifications applicable for the other RAT, by sending the RRCConnectionReconfiguration message via the radio access technology from which the inter-RAT handover is performed.

E-UTRAN applies the procedure as follows:

- to activate ciphering, possibly using NULL algorithm, if not yet activated in the other RAT;
- to establish SRB1, SRB2 and one or more DRBs, i.e. at least the DRB associated with the default EPS bearer is established;

5.4.2.3 Reception of the RRCConnectionReconfiguration by the UE

If the UE is able to comply with the configuration included in the RRCConnectionReconfiguration message, the UE shall:

1> apply the default physical channel configuration as specified in 9.2.4;
1> apply the default semi-persistent scheduling configuration as specified in 9.2.3;
1> apply the default MAC main configuration as specified in 9.2.2;
1> start timer T304 with the timer value set to \(t_{304} \), as included in the mobilityControlInfo;
1> consider the target PCell to be one on the frequency indicated by the carrierFreq with a physical cell identity indicated by the targetPhysCellId;
1> start synchronising to the DL of the target PCell;
1> set the C-RNTI to the value of the newUE-Identity;
1> for the target PCell, apply the downlink bandwidth indicated by the dl-Bandwidth;
1> for the target PCell, apply the uplink bandwidth indicated by (the absence or presence of) the ul-Bandwidth;
1> configure lower layers in accordance with the received radioResourceConfigCommon.
configure lower layers in accordance with any additional fields, not covered in the previous, if included in the received `mobilityControlInfo`;

perform the radio resource configuration procedure as specified in 5.3.10;

forward the `nas-SecurityParamToEUTRA` to the upper layers;

derive the K_{ENB} key, as specified in TS 33.401 [32];

derive the K_{RRCenc} key associated with the `integrityProtAlgorithm`, as specified in TS 33.401 [32];

derive the K_{RRCint} key and the K_{UPenc} key associated with the `cipheringAlgorithm`, as specified in TS 33.401 [32];

configure lower layers to apply the indicated integrity protection algorithm and the K_{RRCint} key immediately, i.e. the indicated integrity protection configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;

configure lower layers to apply the indicated ciphering algorithm, the K_{RRCenc} key and the K_{UPenc} key immediately, i.e. the indicated ciphering configuration shall be applied to all subsequent messages received and sent by the UE, including the message used to indicate the successful completion of the procedure;

if the received `RRCConnectionReconfiguration` includes the `sCellToAddModList`:

perform SCell addition as specified in 5.3.10.3b;

if the `RRCConnectionReconfiguration` message includes the `measConfig`:

perform the measurement configuration procedure as specified in 5.5.2;

if the `RRCConnectionReconfiguration` message includes the `otherConfig`:

perform the other configuration procedure as specified in 5.3.10.9;

if the `RRCConnectionReconfiguration` message includes `wlan-OffloadDedicated`:

perform the dedicated WLAN offload configuration procedure as specified in 5.6.12.2;

set the content of `RRCConnectionReconfigurationComplete` message as follows:

if the UE has radio link failure or handover failure information available in `VarRLF-Report` and if the RPLMN is included in `plmn-IdentityList` stored in `VarRLF-Report`:

include `rlf-InfoAvailable`;

if the UE has MBSFN logged measurements available for E-UTRA and if the RPLMN is included in `plmn-IdentityList` stored in `VarLogMeasReport` and if T330 is not running:

include `logMeasAvailableMBSFN`;

else if the UE has logged measurements available for E-UTRA and if the RPLMN is included in `plmn-IdentityList` stored in `VarLogMeasReport`:

include the `logMeasAvailable`;

if the UE has connection establishment failure information available in `VarConnEstFailReport` and if the RPLMN is equal to `plmn-Identity` stored in `VarConnEstFailReport`:

include `connEstFailInfoAvailable`;

submit the `RRCConnectionReconfigurationComplete` message to lower layers for transmission using the new configuration;

if the `RRCConnectionReconfiguration` message does not include `rlf-TimersAndConstants` set to `setup`:

use the default values specified in 9.2.5 for timer T310, T311 and constant N310, N311;
1> if MAC successfully completes the random access procedure:

2> stop timer T304;

2> apply the parts of the CQI reporting configuration, the scheduling request configuration and the sounding RS configuration that do not require the UE to know the SFN of the target PCell, if any;

2> apply the parts of the measurement and the radio resource configuration that require the UE to know the SFN of the target PCell (e.g. measurement gaps, periodic CQI reporting, scheduling request configuration, sounding RS configuration), if any, upon acquiring the SFN of the target PCell;

NOTE 1: Whenever the UE shall setup or reconfigure a configuration in accordance with a field that is received it applies the new configuration, except for the cases addressed by the above statements.

2> enter E-UTRA RRC_CONNECTED, upon which the procedure ends;

NOTE 2: The UE is not required to determine the SFN of the target PCell by acquiring system information from that cell before performing RACH access in the target PCell.

5.4.2.4 Reconfiguration failure

The UE shall:

1> if the UE is unable to comply with (part of) the configuration included in the *RRCConnectionReconfiguration* message:

2> perform the actions defined for this failure case as defined in the specifications applicable for the other RAT;

NOTE 1: The UE may apply above failure handling also in case the *RRCConnectionReconfiguration* message causes a protocol error for which the generic error handling as defined in 5.7 specifies that the UE shall ignore the message.

NOTE 2: If the UE is unable to comply with part of the configuration, it does not apply any part of the configuration, i.e. there is no partial success/failure.

5.4.2.5 T304 expiry (handover to E-UTRA failure)

The UE shall:

1> upon T304 expiry (handover to E-UTRA failure):

2> reset MAC;

2> perform the actions defined for this failure case as defined in the specifications applicable for the other RAT;

5.4.3 Mobility from E-UTRA

5.4.3.1 General

![Diagram](MobilityFromEUTRACommand)

Figure 5.4.3.1-1: Mobility from E-UTRA, successful
The purpose of this procedure is to move a UE in RRC_CONNECTED to a cell using another Radio Access Technology (RAT), e.g. GERAN, UTRA or CDMA2000 systems. The mobility from E-UTRA procedure covers the following type of mobility:

- handover, i.e. the MobilityFromEUTRACCommand message includes radio resources that have been allocated for the UE in the target cell;
- cell change order, i.e. the MobilityFromEUTRACCommand message may include information facilitating access of and/ or connection establishment in the target cell, e.g. system information. Cell change order is applicable only to GERAN; and
- enhanced CS fallback to CDMA2000 1xRTT, i.e. the MobilityFromEUTRACCommand message includes radio resources that have been allocated for the UE in the target cell. The enhanced CS fallback to CDMA2000 1xRTT may be combined with concurrent handover or redirection to CDMA2000 HRPD.

NOTE: For the case of dual receiver/transmitter enhanced CS fallback to CDMA2000 1xRTT, the DLInformationTransfer message is used instead of the MobilityFromEUTRACCommand message (see TS 36.300 [9]).

5.4.3.2 Initiation

E-UTRAN initiates the mobility from E-UTRA procedure to a UE in RRC_CONNECTED, possibly in response to a MeasurementReport message or in response to reception of CS fallback indication for the UE from MME, by sending a MobilityFromEUTRACCommand message. E-UTRAN applies the procedure as follows:

- the procedure is initiated only when AS-security has been activated, and SRB2 with at least one DRB are setup and not suspended;

5.4.3.3 Reception of the MobilityFromEUTRACCommand by the UE

The UE shall be able to receive a MobilityFromEUTRACCommand message and perform a cell change order to GERAN, even if no prior UE measurements have been performed on the target cell.

The UE shall:

1. stop timer T310, if running;
2. stop timer T312, if running;
3. if the MobilityFromEUTRACCommand message includes the purpose set to handover:
 1. consider inter-RAT mobility as initiated towards the RAT indicated by the targetRAT-Type included in the MobilityFromEUTRACCommand message;
 2. forward the nas-SecurityParamFromEUTRA to the upper layers;
 3. access the target cell indicated in the inter-RAT message in accordance with the specifications of the target RAT;
3> if the targetRAT-Type is set to geran:

4> use the contents of systemInformation, if provided for PS Handover, as the system information to begin access on the target GERAN cell;

NOTE 1: If there are DRBs for which no radio bearers are established in the target RAT as indicated in the targetRAT-MessageContainer in the message, the E-UTRA RRC part of the UE does not indicate the release of the concerned DRBs to the upper layers. Upper layers may derive which bearers are not established from information received from the AS of the target RAT.

NOTE 2: In case of SR-VCC, the DRB to be replaced is specified in [61].

2> else if the targetRAT-Type is set to cdma2000-1XRTT or cdma2000-HRPD:

3> forward the targetRAT-Type and the targetRAT-MessageContainer to the CDMA2000 upper layers for the UE to access the cell(s) indicated in the inter-RAT message in accordance with the specifications of the CDMA2000 target-RAT;

1> else if the MobilityFromEUTRACommand message includes the purpose set to cellChangeOrder:

2> start timer T304 with the timer value set to t304, as included in the MobilityFromEUTRACommand message;

2> if the targetRAT-Type is set to geran:

3> if networkControlOrder is included in the MobilityFromEUTRACommand message:

4> apply the value as specified in TS 44.060 [36];

3> else:

4> acquire networkControlOrder and apply the value as specified in TS 44.060 [36];

3> use the contents of systemInformation, if provided, as the system information to begin access on the target GERAN cell;

2> establish the connection to the target cell indicated in the CellChangeOrder;

NOTE 3: The criteria for success or failure of the cell change order to GERAN are specified in TS 44.060[36].

1> if the MobilityFromEUTRACommand message includes the purpose set to e-CSFB:

2> if messageContCDMA2000-1XRTT is present:

3> forward the messageContCDMA2000-1XRTT to the CDMA2000 upper layers for the UE to access the cell(s) indicated in the inter-RAT message in accordance with the specification of the target RAT;

2> if mobilityCDMA2000-HRPD is present and is set to handover:

3> forward the messageContCDMA2000-HRPD to the CDMA2000 upper layers for the UE to access the cell(s) indicated in the inter-RAT message in accordance with the specification of the target RAT;

2> if mobilityCDMA2000-HRPD is present and is set to redirection:

3> forward the redirectCarrierCDMA2000-HRPD to the CDMA2000 upper layers;

NOTE 4: When the CDMA2000 upper layers in the UE receive both the messageContCDMA2000-1XRTT and messageContCDMA2000-HRPD the UE performs concurrent access to both CDMA2000 1xRTT and CDMA2000 HRPD RAT.

NOTE 5: The UE should perform the handover, the cell change order or enhanced 1xRTT CS fallback as soon as possible following the reception of the RRC message MobilityFromEUTRACommand, which could be before confirming successful reception (HARQ and ARQ) of this message.

5.4.3.4 Successful completion of the mobility from E-UTRA

Upon successfully completing the handover, the cell change order or enhanced 1xRTT CS fallback, the UE shall:
5.4.3.5 Mobility from E-UTRA failure

The UE shall:

1> perform the actions upon leaving RRC_CONNECTED as specified in 5.3.12, with release cause 'other';

NOTE: If the UE performs enhanced 1xRTT CS fallback along with concurrent mobility to CDMA2000 HRPD and the connection to either CDMA2000 1xRTT or CDMA2000 HRPD succeeds, then the mobility from E-UTRA is considered successful.

5.4.4 Handover from E-UTRA preparation request (CDMA2000)

5.4.4.1 General

The purpose of this procedure is to trigger the UE to prepare for handover or enhanced 1xRTT CS fallback to CDMA2000 by requesting a connection with this network. The UE may use this procedure to concurrently prepare for handover to CDMA2000 HRPD along with preparation for enhanced CS fallback to CDMA2000 1xRTT. This procedure applies to CDMA2000 capable UEs only.

This procedure is also used to trigger the UE which supports dual Rx/Tx enhanced 1xCSFB to redirect its second radio to CDMA2000 1xRTT.

The handover from E-UTRA preparation request procedure applies when signalling radio bearers are established.
5.4.4.2 Initiation

E-UTRAN initiates the handover from E-UTRA preparation request procedure to a UE in RRC_CONNECTED, possibly in response to a MeasurementReport message or CS fallback indication for the UE, by sending a HandoverFromEUTRAPreparationRequest message. E-UTRA initiates the procedure only when AS security has been activated.

5.4.4.3 Reception of the HandoverFromEUTRAPreparationRequest by the UE

Upon reception of the HandoverFromEUTRAPreparationRequest message, the UE shall:

1. if dualRxTxRedirectIndicator is present in the received message:
 2. forward dualRxTxRedirectIndicator to the CDMA2000 upper layers;
2. else:
 2. indicate the request to prepare handover or enhanced 1xRTT CS fallback and forward the cdma2000-Type to the CDMA2000 upper layers;
 2. if cdma2000-Type is set to type1XRTT:
 3. forward the rand and the mobilityParameters to the CDMA2000 upper layers;
 2. if concurrPrepCDMA2000-HRPD is present in the received message:
 3. forward concurrPrepCDMA2000-HRPD to the CDMA2000 upper layers;
 2. else:
 3. forward concurrPrepCDMA2000-HRPD, with its value set to FALSE, to the CDMA2000 upper layers;

5.4.5 UL handover preparation transfer (CDMA2000)

5.4.5.1 General

![Diagram](image)

Figure 5.4.5.1-1: UL handover preparation transfer

The purpose of this procedure is to tunnel the handover related CDMA2000 dedicated information or enhanced 1xRTT CS fallback related CDMA2000 dedicated information from UE to E-UTRAN when requested by the higher layers. The procedure is triggered by the higher layers on receipt of HandoverFromEUTRAPreparationRequest message. If preparing for enhanced CS fallback to CDMA2000 1xRTT and handover to CDMA2000 HRPD, the UE sends two consecutive ULHandoverPreparationTransfer messages to E-UTRAN, one per addressed CDMA2000 RAT Type. This procedure applies to CDMA2000 capable UEs only.

5.4.5.2 Initiation

A UE in RRC_CONNECTED initiates the UL Handover Preparation Transfer procedure whenever there is a need to transfer handover or enhanced 1xRTT CS fallback related non-3GPP dedicated information. The UE initiates the UL handover preparation transfer procedure by sending the ULHandoverPreparationTransfer message.
5.4.5.3 Actions related to transmission of the \textit{ULHandoverPreparationTransfer} message

The UE shall set the contents of the \textit{ULHandoverPreparationTransfer} message as follows:

1> include the \textit{cdma2000-Type} and the \textit{dedicatedInfo}.

1> if the \textit{cdma2000-Type} is set to \textit{type1XRTT}:

2> include the \textit{meid} and set it to the value received from the CDMA2000 upper layers;

1> submit the \textit{ULHandoverPreparationTransfer} message to lower layers for transmission, upon which the procedure ends;

5.4.5.4 Failure to deliver the \textit{ULHandoverPreparationTransfer} message

The UE shall:

1> if the UE is unable to guarantee successful delivery of \textit{ULHandoverPreparationTransfer} messages:

2> inform upper layers about the possible failure to deliver the information contained in the concerned \textit{ULHandoverPreparationTransfer} message;

5.4.6 Inter-RAT cell change order to E-UTRAN

5.4.6.1 General

The purpose of the inter-RAT cell change order to E-UTRAN procedure is to transfer, under the control of the source radio access technology, a connection between the UE and another radio access technology (e.g. GSM/ GPRS) to E-UTRAN.

5.4.6.2 Initiation

The procedure is initiated when a radio access technology other than E-UTRAN, e.g. GSM/GPRS, using procedures specific for that RAT, orders the UE to change to an E-UTRAN cell. In response, upper layers request the establishment of an RRC connection as specified in subclause 5.3.3.

\textbf{NOTE:} Within the message used to order the UE to change to an E-UTRAN cell, the source RAT should specify the identity of the target E-UTRAN cell as specified in the specifications for that RAT.

The UE shall:

1> upon receiving an \textit{RRCConnectionSetup} message:

2> consider the inter-RAT cell change order procedure to have completed successfully;

5.4.6.3 UE fails to complete an inter-RAT cell change order

If the inter-RAT cell change order fails the UE shall return to the other radio access technology and proceed as specified in the appropriate specifications for that RAT.

The UE shall:

1> upon failure to establish the RRC connection as specified in subclause 5.3.3:

2> consider the inter-RAT cell change order procedure to have failed;

\textbf{NOTE:} The cell change was network ordered. Therefore, failure to change to the target PCell should not cause the UE to move to UE-controlled cell selection.
5.5 Measurements

5.5.1 Introduction

The UE reports measurement information in accordance with the measurement configuration as provided by E-UTRAN. E-UTRAN provides the measurement configuration applicable for a UE in RRC_CONNECTED by means of dedicated signalling, i.e. using the `RRCConnectionReconfiguration` message.

The UE can be requested to perform the following types of measurements:

- Intra-frequency measurements: measurements at the downlink carrier frequency(ies) of the serving cell(s).
- Inter-frequency measurements: measurements at frequencies that differ from any of the downlink carrier frequency(ies) of the serving cell(s).
- Inter-RAT measurements of UTRA frequencies.
- Inter-RAT measurements of GERAN frequencies.
- Inter-RAT measurements of CDMA2000 HRPD or CDMA2000 1xRTT frequencies.

The measurement configuration includes the following parameters:

1. **Measurement objects**: The objects on which the UE shall perform the measurements.
 - For intra-frequency and inter-frequency measurements a measurement object is a single E-UTRA carrier frequency. Associated with this carrier frequency, E-UTRAN can configure a list of cell specific offsets and a list of 'blacklisted' cells. Blacklisted cells are not considered in event evaluation or measurement reporting.
 - For inter-RAT UTRA measurements a measurement object is a set of cells on a single UTRA carrier frequency.
 - For inter-RAT GERAN measurements a measurement object is a set of GERAN carrier frequencies.
 - For inter-RAT CDMA2000 measurements a measurement object is a set of cells on a single (HRPD or 1xRTT) carrier frequency.

 NOTE 1: Some measurements using the above mentioned measurement objects, only concern a single cell, e.g. measurements used to report neighbouring cell system information, PCell UE Rx-Tx time difference.

2. **Reporting configurations**: A list of reporting configurations where each reporting configuration consists of the following:
 - Reporting criterion: The criterion that triggers the UE to send a measurement report. This can either be periodical or a single event description.
 - Reporting format: The quantities that the UE includes in the measurement report and associated information (e.g. number of cells to report).

3. **Measurement identities**: A list of measurement identities where each measurement identity links one measurement object with one reporting configuration. By configuring multiple measurement identities it is possible to link more than one measurement object to the same reporting configuration, as well as to link more than one reporting configuration to the same measurement object. The measurement identity is used as a reference number in the measurement report.

4. **Quantity configurations**: One quantity configuration is configured per RAT type. The quantity configuration defines the measurement quantities and associated filtering used for all event evaluation and related reporting of that measurement type. One filter can be configured per measurement quantity.

5. **Measurement gaps**: Periods that the UE may use to perform measurements, i.e. no (UL, DL) transmissions are scheduled.

E-UTRAN only configures a single measurement object for a given frequency, i.e. it is not possible to configure two or more measurement objects for the same frequency with different associated parameters, e.g. different offsets and/or
blacklists. E-UTRAN may configure multiple instances of the same event e.g. by configuring two reporting configurations with different thresholds.

The UE maintains a single measurement object list, a single reporting configuration list, and a single measurement identities list. The measurement object list includes measurement objects, that are specified per RAT type, possibly including intra-frequency object(s) (i.e. the object(s) corresponding to the serving frequency(ies)), inter-frequency object(s) and inter-RAT objects. Similarly, the reporting configuration list includes E-UTRA and inter-RAT reporting configurations. Any measurement object can be linked to any reporting configuration of the same RAT type. Some reporting configurations may not be linked to a measurement object. Likewise, some measurement objects may not be linked to a reporting configuration.

The measurement procedures distinguish the following types of cells:

1. The serving cell(s)— these are the PCell and one or more SCells, if configured for a UE supporting CA.
2. Listed cells - these are cells listed within the measurement object(s).
3. Detected cells - these are cells that are not listed within the measurement object(s) but are detected by the UE on the carrier frequency(ies) indicated by the measurement object(s).

For E-UTRA, the UE measures and reports on the serving cell(s), listed cells and detected cells. For inter-RAT UTRA, the UE measures and reports on listed cells and optionally on cells that are within a range for which reporting is allowed by E-UTRAN. For inter-RAT GERAN, the UE measures and reports on detected cells. For inter-RAT CDMA2000, the UE measures and reports on listed cells.

NOTE 2: For inter-RAT UTRA and CDMA2000, the UE measures and reports also on detected cells for the purpose of SON.

NOTE 3: This specification is based on the assumption that typically CSG cells of home deployment type are not indicated within the neighbour list. Furthermore, the assumption is that for non-home deployments, the physical cell identity is unique within the area of a large macro cell (i.e. as for UTRAN).

Whenever the procedural specification, other than contained in sub-clause 5.5.2, refers to a field it concerns a field included in the VarMeasConfig unless explicitly stated otherwise i.e. only the measurement configuration procedure covers the direct UE action related to the received measConfig.

5.5.2 Measurement configuration

5.5.2.1 General

E-UTRAN applies the procedure as follows:

- to ensure that, whenever the UE has a measConfig, it includes a measObject for each serving frequency;
- to configure at most one measurement identity using a reporting configuration with the purpose set to reportCGI;
- for serving frequencies, set the EARFCN within the corresponding measObject according to the band as used for reception/ transmission;

The UE shall:

1> if the received measConfig includes the measObjectToRemoveList:
 2> perform the measurement object removal procedure as specified in 5.5.2.4;
1> if the received measConfig includes the measObjectToAddModList:
 2> perform the measurement object addition/ modification procedure as specified in 5.5.2.5;
1> if the received measConfig includes the reportConfigToRemoveList:
 2> perform the reporting configuration removal procedure as specified in 5.5.2.6;
1> if the received measConfig includes the reportConfigToAddModList:
2> perform the reporting configuration addition/ modification procedure as specified in 5.5.2.7;

1> if the received measConfig includes the quantityConfig:

2> perform the quantity configuration procedure as specified in 5.5.2.8;

1> if the received measConfig includes the measIdToRemoveList:

2> perform the measurement identity removal procedure as specified in 5.5.2.2;

1> if the received measConfig includes the measIdToAddModList:

2> perform the measurement identity addition/ modification procedure as specified in 5.5.2.3;

1> if the received measConfig includes the measGapConfig:

2> perform the measurement gap configuration procedure as specified in 5.5.2.9;

1> if the received measConfig includes the s-Measure:

2> set the parameter s-Measure within VarMeasConfig to the lowest value of the RSRP ranges indicated by the received value of s-Measure;

1> if the received measConfig includes the preRegistrationInfoHRPD:

2> forward the preRegistrationInfoHRPD to CDMA2000 upper layers;

1> if the received measConfig includes the speedStatePars:

2> set the parameter speedStatePars within VarMeasConfig to the received value of speedStatePars;

5.5.2.2 Measurement identity removal

The UE shall:

1> for each measId included in the received measIdToRemoveList that is part of the current UE configuration in VarMeasConfig:

2> remove the entry with the matching measId from the measIdList within the VarMeasConfig;

2> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

2> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE: The UE does not consider the message as erroneous if the measIdToRemoveList includes any measId value that is not part of the current UE configuration.

5.5.2.2a Measurement identity autonomous removal

The UE shall:

1> for each measId included in the measIdList within VarMeasConfig:

2> if the associated reportConfig concerns an event involving a serving cell while the concerned serving cell is not configured:

3> remove the measId from the measIdList within the VarMeasConfig;

3> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

3> stop the periodical reporting timer if running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE 1: The above UE autonomous removal of measId's applies only for measurement events A1, A2 and A6.
NOTE 2: When performed during re-establishment, the UE is only configured with a primary frequency (i.e. the SCell(s) are released, if configured).

5.5.2.3 Measurement identity addition/ modification

E-UTRAN applies the procedure as follows:

- configure a measId only if the corresponding measurement object, the corresponding reporting configuration and the corresponding quantity configuration, are configured;

The UE shall:

1> for each measId included in the received measIdToAddModList:

2> if an entry with the matching measId exists in the measIdList within the VarMeasConfig:

3> replace the entry with the value received for this measId;

2> else:

3> add a new entry for this measId within the VarMeasConfig;

2> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

2> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

2> if the triggerType is set to periodical and the purpose is set to reportCGI in the reportConfig associated with this measId:

3> if the_measObject associated with this measId concerns E-UTRA:

4> if the si-RequestForHO is included in the reportConfig associated with this measId:

5> start timer T321 with the timer value set to 150 ms for this measId;

4> else:

5> start timer T321 with the timer value set to 1 second for this measId;

3> else if the_measObject associated with this measId concerns UTRA:

4> if the si-RequestForHO is included in the reportConfig associated with this measId:

5> for UTRA FDD, start timer T321 with the timer value set to 2 seconds for this measId;

5> for UTRA TDD, start timer T321 with the timer value set to [1 second] for this measId;

4> else:

5> start timer T321 with the timer value set to 8 seconds for this measId;

3> else:

4> start timer T321 with the timer value set to 8 seconds for this measId;

5.5.2.4 Measurement object removal

The UE shall:

1> for each_measObjectId included in the received measObjectIdToRemoveList that is part of the current UE configuration in VarMeasConfig:

2> remove the entry with the matching measObjectId from the measObjectList within the VarMeasConfig;

2> remove all measId associated with this measObjectId from the measIdList within the VarMeasConfig, if any;
2> if a measId is removed from the measIdList:

3> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

3> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE: The UE does not consider the message as erroneous if the measObjectToRemoveList includes any measObjectId value that is not part of the current UE configuration.

5.5.2.5 Measurement object addition/ modification

The UE shall:

1> for each measObjectId included in the received measObjectToAddModList:

2> if an entry with the matching measObjectId exists in the measObjectList within the VarMeasConfig, for this entry:

3> replace the entry with the value received for this measObject, except for the fields cellsToAddModList, blackCellsToAddModList, altTTT-CellsToAddModList, cellsToRemoveList, blackCellsToRemoveList, altTTT-CellsToRemoveList and measSubframePatternConfigNeigh;

3> if the received measObject includes the cellsToRemoveList:

4> for each cellIndex included in the cellsToRemoveList:

5> remove the entry with the matching cellIndex from the cellsToAddModList;

3> if the received measObject includes the cellsToAddModList:

4> for each cellIndex value included in the cellsToAddModList:

5> if an entry with the matching cellIndex exists in the cellsToAddModList:

6> replace the entry with the value received for this cellIndex;

5> else:

6> add a new entry for the received cellIndex to the cellsToAddModList;

3> if the received measObject includes the blackCellsToRemoveList:

4> for each cellIndex included in the blackCellsToRemoveList:

5> remove the entry with the matching cellIndex from the blackCellsToAddModList;

NOTE 1: For each cellIndex included in the blackCellsToRemoveList that concerns overlapping ranges of cells, a cell is removed from the black list of cells only if all cell indexes containing it are removed.

3> if the received measObject includes the blackCellsToAddModList:

4> for each cellIndex included in the blackCellsToAddModList:

5> if an entry with the matching cellIndex is included in the blackCellsToAddModList:

6> replace the entry with the value received for this cellIndex;

5> else:

6> add a new entry for the received cellIndex to the blackCellsToAddModList;

3> if the received measObject includes the altTTT-CellsToRemoveList:

4> for each cellIndex included in the altTTT-CellsToRemoveList:

5> remove the entry with the matching cellIndex from the altTTT-CellsToAddModList;
NOTE 2: For each cellIndex included in the altTTT-CellsToRemoveList that concerns overlapping ranges of cells, a cell is removed from the list of cells only if all cell indexes containing it are removed.

3> if the received measObject includes the altTTT-CellsToAddModList:

4> for each cellIndex value included in the altTTT-CellsToAddModList:

5> if an entry with the matching cellIndex exists in the altTTT-CellsToAddModList:

6> replace the entry with the value received for this cellIndex;

5> else:

6> add a new entry for the received cellIndex to the altTTT-CellsToAddModList;

3> if the received measObject includes measSubframePatternConfigNeigh:

4> set measSubframePatternConfigNeigh within the VarMeasConfig to the value of the received field

3> for each measId associated with this measObjectId in the measIdList within the VarMeasConfig, if any:

4> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

4> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

2> else:

3> add a new entry for the received measObject to the measObjectIdList within VarMeasConfig;

5.5.2.6 Reporting configuration removal

The UE shall:

1> for each reportConfigId included in the received reportConfigToRemoveList that is part of the current UE configuration in VarMeasConfig:

2> remove the entry with the matching reportConfigId from the reportConfigList within the VarMeasConfig;

2> remove all measId associated with the reportConfigId from the measIdList within the VarMeasConfig, if any;

2> if a measId is removed from the measIdList:

3> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;

3> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

NOTE: The UE does not consider the message as erroneous if the reportConfigToRemoveList includes any reportConfigId value that is not part of the current UE configuration.

5.5.2.7 Reporting configuration addition/ modification

The UE shall:

1> for each reportConfigId included in the received reportConfigToAddModList:

2> if an entry with the matching reportConfigId exists in the reportConfigList within the VarMeasConfig, for this entry:

3> replace the entry with the value received for this reportConfig;

3> for each measId associated with this reportConfigId included in the measIdList within the VarMeasConfig, if any:

4> remove the measurement reporting entry for this measId from in VarMeasReportList, if included;
stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

else:
 add a new entry for the received reportConfig to the reportConfigList within the VarMeasConfig;

5.5.2.8 Quantity configuration

The UE shall:

1> for each RAT for which the received quantityConfig includes parameter(s):
 2> set the corresponding parameter(s) in quantityConfig within VarMeasConfig to the value of the received quantityConfig parameter(s);

1> for each measId included in the measIdList within VarMeasConfig:
 2> remove the measurement reporting entry for this measId from the VarMeasReportList, if included;
 2> stop the periodical reporting timer or timer T321, whichever one is running, and reset the associated information (e.g. timeToTrigger) for this measId;

5.5.2.9 Measurement gap configuration

The UE shall:

1> if measGapConfig is set to setup:
 2> if a measurement gap configuration is already setup, release the measurement gap configuration;
 2> setup the measurement gap configuration indicated by the measGapConfig in accordance with the received gapOffset, i.e., the first subframe of each gap occurs at an SFN and subframe meeting the following condition:

 SFN mod T = FLOOR(gapOffset/10);
 subframe = gapOffset mod 10;

 with T = MGRP/10 as defined in TS 36.133 [16];

1> else:
 2> release the measurement gap configuration;

5.5.3 Performing measurements

5.5.3.1 General

For all measurements the UE applies the layer 3 filtering as specified in 5.5.3.2, before using the measured results for evaluation of reporting criteria or for measurement reporting.

The UE shall:

1> whenever the UE has a measConfig, perform RSRP and RSRQ measurements for each serving cell, applying for the PCell the time domain measurement resource restriction in accordance with measSubframePatternPCell, if configured;

1> for each measId included in the measIdList within VarMeasConfig:
 2> if the purpose for the associated reportConfig is set to reportCGI:
 3> if si-RequestForHO is configured for the associated reportConfig:
4> perform the corresponding measurements on the frequency and RAT indicated in the associated
measObject using autonomous gaps as necessary;

3> else:
4> perform the corresponding measurements on the frequency and RAT indicated in the associated
measObject using available idle periods or using autonomous gaps as necessary;

NOTE 1: If autonomous gaps are used to perform measurements, the UE is allowed to temporarily abort
communication with all serving cell(s), i.e. create autonomous gaps to perform the corresponding
measurements within the limits specified in TS 36.133 [16]. Otherwise, the UE only supports the
measurements with the purpose set to reportCGI only if E-UTRAN has provided sufficient idle periods.

3> try to acquire the global cell identity of the cell indicated by the cellForWhichToReportCGI in the
associated measObject by acquiring the relevant system information from the concerned cell;
3> if the cell indicated by the cellForWhichToReportCGI included in the associated measObject is an E-
UTRAN cell:
4> try to acquire the CSG identity, if the CSG identity is broadcast in the concerned cell;
4> try to acquire the trackingAreaCode in the concerned cell;
4> try to acquire the list of additional PLMN Identities, as included in the plmn-IdentityList, if multiple
PLMN identities are broadcast in the concerned cell;

NOTE 2: The 'primary' PLMN is part of the global cell identity.

3> if the cell indicated by the cellForWhichToReportCGI included in the associated measObject is a UTRAN
cell:
4> try to acquire the LAC, the RAC and the list of additional PLMN Identities, if multiple PLMN
identities are broadcast in the concerned cell;
4> try to acquire the CSG identity, if the CSG identity is broadcast in the concerned cell;
3> if the cell indicated by the cellForWhichToReportCGI included in the associated measObject is a GERAN
cell:
4> try to acquire the Sector ID in the concerned cell;
3> if the cell indicated by the cellForWhichToReportCGI included in the associated measObject is a
CDMA2000 cell and the cdma2000-Type included in the measObject is typeHRPD:
4> try to acquire the Sector ID in the concerned cell;
3> if the cell indicated by the cellForWhichToReportCGI included in the associated measObject is a
CDMA2000 cell and the cdma2000-Type included in the measObject is type1XRTT:
4> try to acquire the BASE ID, SID and NID in the concerned cell;
2> else:
3> if a measurement gap configuration is setup; or
3> if the UE does not require measurement gaps to perform the concerned measurements:
4> if s-Measure is not configured; or
4> if s-Measure is configured and the PCell RSRP, after layer 3 filtering, is lower than this value:
5> perform the corresponding measurements of neighbouring cells on the frequencies and RATs
indicated in the concerned measObject, applying for neighbouring cells on the primary frequency
the time domain measurement resource restriction in accordance with
measSubframePatternConfigNeigh, if configured in the concerned measObject;
4> if the ue-RxTxTimeDiffPeriodical is configured in the associated reportConfig:
5> perform the UE Rx–Tx time difference measurements on the PCell;

2> perform the evaluation of reporting criteria as specified in 5.5.4;

NOTE 3: The \textit{s-Measure} defines when the UE is required to perform measurements. The UE is however allowed to perform measurements also when the PCell RSRP exceeds \textit{s-Measure}, e.g., to measure cells broadcasting a CSG identity following use of the autonomous search function as defined in TS 36.304 [4].

5.5.3.2 Layer 3 filtering

The UE shall:

1> for each measurement quantity that the UE performs measurements according to 5.5.3.1:

NOTE 1: This does not include quantities configured solely for UE Rx-Tx time difference measurements i.e. for those type of measurements the UE ignores the \textit{triggerQuantity} and \textit{reportQuantity}.

2> filter the measured result, before using for evaluation of reporting criteria or for measurement reporting, by the following formula:

\[
F_n = (1 - a) \cdot F_{n-1} + a \cdot M_n
\]

where

- \(M_n\) is the latest received measurement result from the physical layer;
- \(F_n\) is the updated filtered measurement result, that is used for evaluation of reporting criteria or for measurement reporting;
- \(F_{n-1}\) is the old filtered measurement result, where \(F_0\) is set to \(M_1\) when the first measurement result from the physical layer is received; and
- \(a = 1/2^{(k/4)}\), where \(k\) is the \textit{filterCoefficient} for the corresponding measurement quantity received by the \textit{quantityConfig};

2> adapt the filter such that the time characteristics of the filter are preserved at different input rates, observing that the \textit{filterCoefficient} \(k\) assumes a sample rate equal to 200 ms;

NOTE 2: If \(k\) is set to 0, no layer 3 filtering is applicable.

NOTE 3: The filtering is performed in the same domain as used for evaluation of reporting criteria or for measurement reporting, i.e., logarithmic filtering for logarithmic measurements.

NOTE 4: The filter input rate is implementation dependent, to fulfil the performance requirements set in [16]. For further details about the physical layer measurements, see TS 36.133 [16].

5.5.4 Measurement report triggering

5.5.4.1 General

The UE shall:

1> for each \textit{measId} included in the \textit{measIdList} within \textit{VarMeasConfig}:

2> if the corresponding \textit{reportConfig} includes a purpose set to \textit{reportStrongestCellsForSON}:

3> consider any neighbouring cell detected on the associated frequency to be applicable;

2> else if the corresponding \textit{reportConfig} includes a purpose set to \textit{reportCGI}:

3> consider any neighbouring cell detected on the associated frequency/ set of frequencies (GERAN) which has a physical cell identity matching the value of the \textit{cellForWhichToReportCGI} included in the corresponding \textit{measObject} within the \textit{VarMeasConfig} to be applicable;
if the corresponding measObject concerns E-UTRA:

if the ue-RxTxTimeDiffPeriodical is configured in the corresponding reportConfig:

consider only the PCell to be applicable;

else if the eventA1 or eventA2 is configured in the corresponding reportConfig:

consider only the serving cell to be applicable;

else:

consider any neighbouring cell detected on the associated frequency to be applicable when the concerned cell is not included in the blackCellsToAddModList defined within the VarMeasConfig for this measId;

for events involving a serving cell on one frequency and neighbours on another frequency, consider the serving cell on the other frequency as a neighbouring cell;

if the corresponding reportConfig includes alternativeTimeToTrigger and if the UE supports alternativeTimeToTrigger:

use the value of alternativeTimeToTrigger as the time to trigger instead of the value of timeToTrigger in the corresponding reportConfig for cells included in the altTTT-CellsToAddModList of the corresponding measObject;

else if the corresponding measObject concerns UTRA or CDMA2000:

consider a neighbouring cell on the associated frequency to be applicable when the concerned cell is included in the cellsToAddModList defined within the VarMeasConfig for this measId (i.e. the cell is included in the white-list);

NOTE 0: The UE may also consider a neighbouring cell on the associated UTRA frequency to be applicable when the concerned cell is included in the csg-allowedReportingCells within the VarMeasConfig for this measId, if configured in the corresponding measObjectUTRA (i.e. the cell is included in the range of physical cell identities for which reporting is allowed).

else if the corresponding measObject concerns GERAN:

consider a neighbouring cell on the associated set of frequencies to be applicable when the concerned cell matches the ncc-Permitted defined within the VarMeasConfig for this measId;

if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one or more applicable cells for all measurements after layer 3 filtering taken during timeToTrigger defined for this event within the VarMeasConfig, while the VarMeasReportList does not include an measurement reporting entry for this measId (a first cell triggers the event):

include a measurement reporting entry within the VarMeasReportList for this measId;

set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;

include the concerned cell(s) in the cellsTriggeredList defined within the VarMeasReportList for this measId;

if the UE supports T312 and if useT312 is included for this event and if T310 is running:

start timer T312 with the value configured in the corresponding measObject;

initiate the measurement reporting procedure, as specified in 5.5.5;

if the triggerType is set to event and if the entry condition applicable for this event, i.e. the event corresponding with the eventId of the corresponding reportConfig within VarMeasConfig, is fulfilled for one
or more applicable cells not included in the cellsTriggeredList for all measurements after layer 3 filtering taken during timeToTrigger defined for this event within the VarMeasConfig (a subsequent cell triggers the event):

3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;

3> include the concerned cell(s) in the cellsTriggeredList defined within the VarMeasReportList for this measId;

3> if the UE supports T312 and if useT312 is included for this event and if T310 is running:
 4> if T312 is not running:
 5> start timer T312 with the value configured in the corresponding measObject;

3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the triggerType is set to event and if the leaving condition applicable for this event is fulfilled for one or more of the cells included in the cellsTriggeredList defined within the VarMeasReportList for this measId for all measurements after layer 3 filtering taken during timeToTrigger defined within the VarMeasConfig for this event:

3> remove the concerned cell(s) in the cellsTriggeredList defined within the VarMeasReportList for this measId;

3> if the UE supports T312 and if useT312 is included for this event and if T310 is running:
 4> if T312 is not running:
 5> start timer T312 with the value configured in the corresponding measObject;

3> if reportOnLeave is set to TRUE for the corresponding reporting configuration or if a6-ReportOnLeave is set to TRUE for the corresponding reporting configuration:
 4> initiate the measurement reporting procedure, as specified in 5.5.5;

3> if the cellsTriggeredList defined within the VarMeasReportList for this measId is empty:
 4> remove the measurement reporting entry within the VarMeasReportList for this measId;
 4> stop the periodical reporting timer for this measId, if running;

2> if the purpose is included and set to reportStrongestCells or to reportStrongestCellsForSON and if a (first) measurement result is available:

3> include a measurement reporting entry within the VarMeasReportList for this measId;

3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;

3> initiate the measurement reporting procedure, as specified in 5.5.5;

NOTE 1: If the purpose is set to reportStrongestCells and reportAmount > 1, the UE initiates a first measurement report immediately after the quantity to be reported becomes available for the PCell. If the purpose is set to reportStrongestCells and reportAmount = 1, the UE initiates a first measurement report immediately after the quantity to be reported becomes available for the PCell and for the strongest cell among the applicable cells. If the purpose is set to reportStrongestCellsForSON, the UE initiates a first measurement report when it has determined the strongest cells on the associated frequency.

2> upon expiry of the periodical reporting timer for this measId:

3> initiate the measurement reporting procedure, as specified in 5.5.5;

2> if the purpose is included and set to reportCGI and if the UE acquired the information needed to set all fields of cgi-Info for the requested cell:

3> include a measurement reporting entry within the VarMeasReportList for this measId;
3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
3> stop timer T321;
3> initiate the measurement reporting procedure, as specified in 5.5.5;
2> upon expiry of the T321 for this measId:
3> include a measurement reporting entry within the VarMeasReportList for this measId;
3> set the numberOfReportsSent defined within the VarMeasReportList for this measId to 0;
3> initiate the measurement reporting procedure, as specified in 5.5.5;

NOTE 2: The UE does not stop the periodical reporting with triggerType set to event or to periodical while the corresponding measurement is not performed due to the PCell RSRP being equal to or better than s-Measure or due to the measurement gap not being setup.

NOTE 3: If the UE is configured with DRX, the UE may delay the measurement reporting for event triggered and periodical triggered measurements until the Active Time, which is defined in TS 36.321 [6].

5.5.4.2 Event A1 (Serving becomes better than threshold)
The UE shall:
1> consider the entering condition for this event to be satisfied when condition A1-1, as specified below, is fulfilled;
1> consider the leaving condition for this event to be satisfied when condition A1-2, as specified below, is fulfilled;
1> for this measurement, consider the primary or secondary cell that is configured on the frequency indicated in the associated measObjectEUTRA to be the serving cell;

Inequality A1-1 (Entering condition)

\[Ms - Hys > Thresh \]

Inequality A1-2 (Leaving condition)

\[Ms + Hys < Thresh \]

The variables in the formula are defined as follows:

\(Ms \) is the measurement result of the serving cell, not taking into account any offsets.

\(Hys \) is the hysteresis parameter for this event (i.e. hysteresis as defined within reportConfigEUTRA for this event).

\(Thresh \) is the threshold parameter for this event (i.e. a1-Threshold as defined within reportConfigEUTRA for this event).

\(Ms \) is expressed in dBm in case of RSRP, or in dB in case of RSRQ.

\(Hys \) is expressed in dB.

\(Thresh \) is expressed in the same unit as \(Ms \).

5.5.4.3 Event A2 (Serving becomes worse than threshold)
The UE shall:
1> consider the entering condition for this event to be satisfied when condition A2-1, as specified below, is fulfilled;
1> consider the leaving condition for this event to be satisfied when condition A2-2, as specified below, is fulfilled;
1> for this measurement, consider the primary or secondary cell that is configured on the frequency indicated in the associated measObjectEUTRA to be the serving cell;

Inequality A2-1 (Entering condition)
Ms + Hys < \textit{Thresh}

Inequality A2-2 (Leaving condition)

Ms − Hys > \textit{Thresh}

The variables in the formula are defined as follows:

- \textit{Ms} is the measurement result of the serving cell, not taking into account any offsets.
- \textit{Hys} is the hysteresis parameter for this event (i.e. \textit{hysteresis} as defined within \textit{reportConfigEUTRA} for this event).
- \textit{Thresh} is the threshold parameter for this event (i.e. \textit{a2-Threshold} as defined within \textit{reportConfigEUTRA} for this event).

\textit{Ms} is expressed in dBm in case of RSRP, or in dB in case of RSRQ.
\textit{Hys} is expressed in dB.
\textit{Thresh} is expressed in the same unit as \textit{Ms}.

5.5.4.4 Event A3 (Neighbour becomes offset better than PCell)

The UE shall:

1. consider the entering condition for this event to be satisfied when condition A3-1, as specified below, is fulfilled;
2. consider the leaving condition for this event to be satisfied when condition A3-2, as specified below, is fulfilled;

NOTE The cell(s) that triggers the event is on the frequency indicated in the associated \textit{measObject} which may be different from the (primary) frequency used by the PCell.

Inequality A3-1 (Entering condition)

\[Mn + Ofn + Ocn - Hys > Mp + Ofp + Ocp + Off \]

Inequality A3-2 (Leaving condition)

\[Mn + Ofn + Ocn + Hys < Mp + Ofp + Ocp + Off \]

The variables in the formula are defined as follows:

- \textit{Mn} is the measurement result of the neighbouring cell, not taking into account any offsets.
- \textit{Ofn} is the frequency specific offset of the frequency of the neighbour cell (i.e. \textit{offsetFreq} as defined within \textit{measObjectEUTRA} corresponding to the frequency of the neighbour cell).
- \textit{Ocn} is the cell specific offset of the neighbour cell (i.e. \textit{cellIndividualOffset} as defined within \textit{measObjectEUTRA} corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.
- \textit{Mp} is the measurement result of the PCell, not taking into account any offsets.
- \textit{Ofp} is the frequency specific offset of the primary frequency (i.e. \textit{offsetFreq} as defined within \textit{measObjectEUTRA} corresponding to the primary frequency).
- \textit{Ocp} is the cell specific offset of the PCell (i.e. \textit{cellIndividualOffset} as defined within \textit{measObjectEUTRA} corresponding to the primary frequency), and is set to zero if not configured for the PCell.
- \textit{Hys} is the hysteresis parameter for this event (i.e. \textit{hysteresis} as defined within \textit{reportConfigEUTRA} for this event).
- \textit{Off} is the offset parameter for this event (i.e. \textit{a3-Offset} as defined within \textit{reportConfigEUTRA} for this event).

\textit{Mn, Mp} are expressed in dBm in case of RSRP, or in dB in case of RSRQ.
\textit{Ofn, Ocn, Ofp, Ocp, Hys, Off} are expressed in dB.
5.5.4.5 Event A4 (Neighbour becomes better than threshold)

The UE shall:

1> consider the entering condition for this event to be satisfied when condition A4-1, as specified below, is fulfilled;

1> consider the leaving condition for this event to be satisfied when condition A4-2, as specified below, is fulfilled;

Inequality A4-1 (Entering condition)

\[Mn + Ofn + Ocn - Hys > Thresh \]

Inequality A4-2 (Leaving condition)

\[Mn + Ofn + Ocn + Hys < Thresh \]

The variables in the formula are defined as follows:

- \(Mn \) is the measurement result of the neighbouring cell, not taking into account any offsets.
- \(Ofn \) is the frequency specific offset of the frequency of the neighbour cell (i.e. offsetFreq as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell).
- \(Ocn \) is the cell specific offset of the neighbour cell (i.e. cellIndividualOffset as defined within measObjectEUTRA corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.
- \(Hys \) is the hysteresis parameter for this event (i.e. hysteresis as defined within reportConfigEUTRA for this event).
- \(Thresh \) is the threshold parameter for this event (i.e. a4-Threshold as defined within reportConfigEUTRA for this event).

\(Mn \) is expressed in dBm in case of RSRP, or in dB in case of RSRQ.

\(Ofn, Ocn, Hys \) are expressed in dB.

\(Thresh \) is expressed in the same unit as \(Mn \).

5.5.4.6 Event A5 (PCell becomes worse than threshold1 and neighbour becomes better than threshold2)

The UE shall:

1> consider the entering condition for this event to be satisfied when both condition A5-1 and condition A5-2, as specified below, are fulfilled;

1> consider the leaving condition for this event to be satisfied when condition A5-3 or condition A5-4, i.e. at least one of the two, as specified below, is fulfilled;

NOTE: The cell(s) that triggers the event is on the frequency indicated in the associated measObject which may be different from the (primary) frequency used by the PCell.

Inequality A5-1 (Entering condition 1)

\[Mp + Hys < Threshl \]

Inequality A5-2 (Entering condition 2)

\[Mn + Ofn + Ocn - Hys > Thresh2 \]

Inequality A5-3 (Leaving condition 1)

\[Mp - Hys > Threshl \]

Inequality A5-4 (Leaving condition 2)

\[Mn + Ofn + Ocn + Hys < Thresh2 \]
The variables in the formula are defined as follows:

\(M_p \) is the measurement result of the PCell, not taking into account any offsets.

\(M_n \) is the measurement result of the neighbouring cell, not taking into account any offsets.

\(O_{fn} \) is the frequency specific offset of the frequency of the neighbour cell (i.e. \(\text{offsetFreq} \) as defined within \(\text{measObjectEUTRA} \) corresponding to the frequency of the neighbour cell).

\(O_{cn} \) is the cell specific offset of the neighbour cell (i.e. \(\text{cellIndividualOffset} \) as defined within \(\text{measObjectEUTRA} \) corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.

\(H_{ys} \) is the hysteresis parameter for this event (i.e. \(\text{hysteresis} \) as defined within \(\text{reportConfigEUTRA} \) for this event).

\(T_{hresh1} \) is the threshold parameter for this event (i.e. \(a5-\text{Threshold1} \) as defined within \(\text{reportConfigEUTRA} \) for this event).

\(T_{hresh2} \) is the threshold parameter for this event (i.e. \(a5-\text{Threshold2} \) as defined within \(\text{reportConfigEUTRA} \) for this event).

\(M_n, M_p \) are expressed in dBm in case of RSRP, or in dB in case of RSRQ.

\(O_{fn}, O_{cn}, H_{ys} \) are expressed in dB.

\(T_{hresh1} \) is expressed in the same unit as \(M_p \).

\(T_{hresh2} \) is expressed in the same unit as \(M_n \).

5.5.4.6a Event A6 (Neighbour becomes offset better than SCell)

The UE shall:

1. consider the entering condition for this event to be satisfied when condition A6-1, as specified below, is fulfilled;

2. consider the leaving condition for this event to be satisfied when condition A6-2, as specified below, is fulfilled;

3. for this measurement, consider the (secondary) cell that is configured on the frequency indicated in the associated \(\text{measObjectEUTRA} \) to be the serving cell;

NOTE: The neighbour(s) is on the same frequency as the SCell i.e. both are on the frequency indicated in the associated \(\text{measObject} \).

Inequality A6-1 (Entering condition)

\[M_n + O_{cn} - H_{ys} > M_s + O_{cs} + Off \]

Inequality A6-2 (Leaving condition)

\[M_n + O_{cn} + H_{ys} < M_s + O_{cs} + Off \]

The variables in the formula are defined as follows:

\(M_n \) is the measurement result of the neighbouring cell, not taking into account any offsets.

\(O_{cn} \) is the cell specific offset of the neighbour cell (i.e. \(\text{cellIndividualOffset} \) as defined within \(\text{measObjectEUTRA} \) corresponding to the frequency of the neighbour cell), and set to zero if not configured for the neighbour cell.

\(M_s \) is the measurement result of the serving cell, not taking into account any offsets.

\(O_{cs} \) is the cell specific offset of the serving cell (i.e. \(\text{cellIndividualOffset} \) as defined within \(\text{measObjectEUTRA} \) corresponding to the serving frequency), and is set to zero if not configured for the serving cell.

\(H_{ys} \) is the hysteresis parameter for this event (i.e. \(\text{hysteresis} \) as defined within \(\text{reportConfigEUTRA} \) for this event).

\(Off \) is the offset parameter for this event (i.e. \(a6-\text{Offset} \) as defined within \(\text{reportConfigEUTRA} \) for this event).

\(M_n, M_s \) are expressed in dBm in case of RSRP, or in dB in case of RSRQ.
Ocn, Ocs, Hys, Off are expressed in dB.

5.5.4.7 Event B1 (Inter RAT neighbour becomes better than threshold)

The UE shall:
1> for UTRA and CDMA2000, only trigger the event for cells included in the corresponding measurement object;
1> consider the entering condition for this event to be satisfied when condition B1-1, as specified below, is fulfilled;
1> consider the leaving condition for this event to be satisfied when condition B1-2, as specified below, is fulfilled;

Inequality B1-1 (Entering condition)

\[Mn + Ofn - Hys > Thresh \]

Inequality B1-2 (Leaving condition)

\[Mn + Ofn + Hys < Thresh \]

The variables in the formula are defined as follows:

- \(Mn \) is the measurement result of the inter-RAT neighbour cell, not taking into account any offsets. For CDMA 2000 measurement result, \(\text{pilotStrength} \) is divided by -2.
- \(Ofn \) is the frequency specific offset of the frequency of the inter-RAT neighbour cell (i.e. \(\text{offsetFreq} \) as defined within the measObject corresponding to the frequency of the neighbour inter-RAT cell).
- \(Hys \) is the hysteresis parameter for this event (i.e. \(\text{hysteresis} \) as defined within reportConfigInterRAT for this event).
- \(Thresh \) is the threshold parameter for this event (i.e. \(\text{b1-Threshold} \) as defined within reportConfigInterRAT for this event). For CDMA2000, \(\text{b1-Threshold} \) is divided by -2.
- \(Mn \) is expressed in dBm or in dB, depending on the measurement quantity of the inter-RAT neighbour cell.
- \(Ofn, Hys \) are expressed in dB.
- \(Thresh \) is expressed in the same unit as \(Mn \).

5.5.4.8 Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2)

The UE shall:
1> for UTRA and CDMA2000, only trigger the event for cells included in the corresponding measurement object;
1> consider the entering condition for this event to be satisfied when both condition B2-1 and condition B2-2, as specified below, are fulfilled;
1> consider the leaving condition for this event to be satisfied when condition B2-3 or condition B2-4, i.e. at least one of the two, as specified below, is fulfilled;

Inequality B2-1 (Entering condition 1)

\[Mp + Hys < Thresh1 \]

Inequality B2-2 (Entering condition 2)

\[Mn + Ofn - Hys > Thresh2 \]

Inequality B2-3 (Leaving condition 1)

\[Mp - Hys > Thresh1 \]

Inequality B2-4 (Leaving condition 2)
\[Mn + Ofn + Hys < \text{Thresh2} \]

The variables in the formula are defined as follows:

- \(Mp \) is the measurement result of the PCell, not taking into account any offsets.
- \(Mn \) is the measurement result of the inter-RAT neighbour cell, not taking into account any offsets. For CDMA2000 measurement result, \(\text{pilotStrength} \) is divided by -2.
- \(Ofn \) is the frequency specific offset of the frequency of the inter-RAT neighbour cell (i.e. \(\text{offsetFreq} \) as defined within the \text{measObject} corresponding to the frequency of the inter-RAT neighbour cell).
- \(Hys \) is the hysteresis parameter for this event (i.e. \(\text{hysteresis} \) as defined within \text{reportConfigInterRAT} for this event).
- \(\text{Thresh1} \) is the threshold parameter for this event (i.e. \(b2-\text{Threshold1} \) as defined within \text{reportConfigInterRAT} for this event).
- \(\text{Thresh2} \) is the threshold parameter for this event (i.e. \(b2-\text{Threshold2} \) as defined within \text{reportConfigInterRAT} for this event).

\(Mp \) is expressed in dBm in case of RSRP, or in dB in case of RSRQ.
\(Mn \) is expressed in dBm or dB, depending on the measurement quantity of the inter-RAT neighbour cell.
\(Ofn, Hys \) are expressed in dB.
\(\text{Thresh1} \) is expressed in the same unit as \(Mp \).
\(\text{Thresh2} \) is expressed in the same unit as \(Mn \).

5.5.5 Measurement reporting

![Measurement report](image)

Figure 5.5.5-1: Measurement reporting

The purpose of this procedure is to transfer measurement results from the UE to E-UTRAN.

For the \text{measId} for which the measurement reporting procedure was triggered, the UE shall set the \text{measResults} within the \text{MeasurementReport} message as follows:

1. set the \text{measId} to the measurement identity that triggered the measurement reporting;
2. set the \text{measResultPCell} to include the quantities of the PCell;
3. set the \text{measResultServFreqList} to include for each SCell that is configured, if any, within \text{measResultSCell} the quantities of the concerned SCell, if available according to performance requirements in [16];
4. if the \text{reportConfig} associated with the \text{measId} that triggered the measurement reporting includes \text{reportAddNeighMeas}:
 1. for each serving frequency for which \text{measObjectId} is referenced in the \text{measIdList}, other than the frequency corresponding with the \text{measId} that triggered the measurement reporting:
 1. set the \text{measResultServFreqList} to include within \text{measResultBestNeighCell} the \text{physCellId} and the quantities of the best non-serving cell, based on RSRP, on the concerned serving frequency;
5. if there is at least one applicable neighbouring cell to report:
2> set the measResultNeighCells to include the best neighbouring cells up to maxReportCells in accordance with the following:

3> if the triggerType is set to event:

4> include the cells included in the cellsTriggeredList as defined within the VarMeasReportList for this measId;

3> else:

4> include the applicable cells for which the new measurement results became available since the last periodical reporting or since the measurement was initiated or reset;

NOTE: The reliability of the report (i.e. the certainty it contains the strongest cells on the concerned frequency) depends on the measurement configuration i.e. the reportInterval. The related performance requirements are specified in TS 36.133 [16].

3> for each cell that is included in the measResultNeighCells, include the physCellId;

3> if the triggerType is set to event; or the purpose is set to reportStrongestCells or to reportStrongestCellsForSON:

4> for each included cell, include the layer 3 filtered measured results in accordance with the reportConfig for this measId, ordered as follows:

5> if the measObject associated with this measId concerns E-UTRA:

6> set the measResult to include the quantity(ies) indicated in the reportQuantity within the concerned reportConfig in order of decreasing triggerQuantity, i.e. the best cell is included first;

5> if the measObject associated with this measId concerns UTRA FDD and if ReportConfigInterRAT includes the reportQuantityUTRA-FDD:

6> set the measResult to include the quantities indicated by the reportQuantityUTRA-FDD in order of decreasing measQuantityUTRA-FDD within the quantityConfig, i.e. the best cell is included first;

5> if the measObject associated with this measId concerns UTRA FDD and if ReportConfigInterRAT does not include the reportQuantityUTRA-FDD; or

5> if the measObject associated with this measId concerns UTRA TDD, GERAN or CDMA2000:

6> set the measResult to the quantity as configured for the concerned RAT within the quantityConfig in order of either decreasing quantity for UTRA and GERAN or increasing quantity for CDMA2000 pilotStrength, i.e. the best cell is included first;

3> else if the purpose is set to reportCGI:

4> if the mandatory present fields of the cgi-Info for the cell indicated by the cellForWhichToReportCGI in the associated measObject have been obtained:

5> if the cell broadcasts a CSG identity:

6> include the csg-Identity;

6> include the csg-MemberStatus and set it to member if the cell is a CSG member cell;

5> if the si-RequestForHO is configured within the reportConfig associated with this measId:

6> include the cgi-Info containing all the fields that have been successfully acquired and in accordance with the following:

7> if the cell is a CSG member cell, determine the subset of the PLMN identities, starting from the second entry of PLMN Identities in the broadcast information, that meet the following conditions:
a) equal to the RPLMN or an EPLMN; and

b) the CSG whitelist of the UE includes an entry comprising of the concerned PLMN identity and the CSG ID broadcast by the cell;

7> if the subset of PLMN identities determined according to the previous includes at least one PLMN identity, include the plmn-IdentityList and set it to include this subset of the PLMN identities;

7> if the cell is a CSG member cell, include the primaryPLMN-Suitable if the primary PLMN meets conditions a) and b) specified above;

5> else:

6> include the cgi-Info containing all the fields that have been successfully acquired and in accordance with the following:

7> include in the plmn-IdentityList the list of identities starting from the second entry of PLMN Identities in the broadcast information;

1> if the ue-RxTxTimeDiffPeriodical is configured within the corresponding reportConfig for this measId;

2> set the ue-RxTxTimeDiffResult to the measurement result provided by lower layers;

2> set the currentSFN;

1> if the includeLocationInfo is configured in the corresponding reportConfig for this measId and detailed location information that has not been reported is available, set the content of the locationInfo as follows:

2> include the locationCoordinates;

2> if available, include the gnss-TOD-msec;

1> increment the numberOfReportsSent as defined within the VarMeasReportList for this measId by 1;

1> stop the periodical reporting timer, if running;

1> if the numberOfReportsSent as defined within the VarMeasReportList for this measId is less than the reportAmount as defined within the corresponding reportConfig for this measId:

2> start the periodical reporting timer with the value of reportInterval as defined within the corresponding reportConfig for this measId;

1> else:

2> if the triggerType is set to periodical:

3> remove the entry within the VarMeasReportList for this measId;

3> remove this measId from the measIdList within VarMeasConfig;

1> if the measured results are for CDMA2000 HRPD:

2> set the preRegistrationStatusHRPD to the UE's CDMA2000 upper layer's HRPD preRegistrationStatus;

1> if the measured results are for CDMA2000 1xRTT:

2> set the preRegistrationStatusHRPD to FALSE;

1> submit the MeasurementReport message to lower layers for transmission, upon which the procedure ends;

5.5.6 Measurement related actions

5.5.6.1 Actions upon handover and re-establishment

E-UTRAN applies the handover procedure as follows:
when performing the handover procedure, as specified in 5.3.5.4, ensure that a measObjectId corresponding to each handover target serving frequency is configured as a result of the procedures described in this sub-clause and in 5.3.5.4;

- when changing the band while the physical frequency remains unchanged, E-UTRAN releases the measObject corresponding to the source frequency and adds a measObject corresponding to the target frequency (i.e. it does not reconfigure the measObject);

E-UTRAN applies the re-establishment procedure as follows:

- when performing the connection re-establishment procedure, as specified in 5.3.7, ensure that a measObjectId corresponding each target serving frequency is configured as a result of the procedure described in this sub-clause and the subsequent connection reconfiguration procedure immediately following the re-establishment procedure;

- in the first reconfiguration following the re-establishment when changing the band while the physical frequency remains unchanged, E-UTRAN releases the measObject corresponding to the source frequency and adds a measObject corresponding to the target frequency (i.e. it does not reconfigure the measObject);

The UE shall:

1> for each measId included in the measIdList within VarMeasConfig:
 2> if the triggerType is set to periodical:
 3> remove this measId from the measIdList within VarMeasConfig:

1> if the procedure was triggered due to a handover or successful re-establishment and the procedure involves a change of primary frequency, update the measId values in the measIdList within VarMeasConfig as follows:

2> if a measObjectId value corresponding to the target primary frequency exists in the measObjectList within VarMeasConfig:
 3> for each measId value in the measIdList:
 4> if the measId value is linked to the measObjectId value corresponding to the source primary frequency:
 5> link this measId value to the measObjectId value corresponding to the target primary frequency;
 4> else if the measId value is linked to the measObjectId value corresponding to the target primary frequency:
 5> link this measId value to the measObjectId value corresponding to the source primary frequency;
 2> else:
 3> remove all measId values that are linked to the measObjectId value corresponding to the source primary frequency;

1> remove all measurement reporting entries within VarMeasReportList;

1> stop the periodical reporting timer or timer T321, whichever one is running, as well as associated information (e.g. timeToTrigger) for all measId;

1> release the measurement gaps, if activated;

NOTE: If the UE requires measurement gaps to perform inter-frequency or inter-RAT measurements, the UE resumes the inter-frequency and inter-RAT measurements after the E-UTRAN has setup the measurement gaps.

5.5.6.2 Speed dependant scaling of measurement related parameters

The UE shall adjust the value of the following parameter configured by the E-UTRAN depending on the UE speed: timeToTrigger. The UE shall apply 3 different levels, which are selected as follows:
The UE shall:

1> perform mobility state detection using the mobility state detection as specified in TS 36.304 [4] with the following modifications:

2> counting handovers instead of cell reselections;

2> applying the parameter applicable for RRC_CONNECTED as included in speedStatePars within VarMeasConfig;

1> if high mobility state is detected:

2> use the timeToTrigger value multiplied by sf-High within VarMeasConfig;

1> else if medium mobility state is detected:

2> use the timeToTrigger value multiplied by sf-Medium within VarMeasConfig;

1> else:

2> no scaling is applied;

5.5.7 Inter-frequency RSTD measurement indication

5.5.7.1 General

Figure 5.5.7.1-1: Inter-frequency RSTD measurement indication

The purpose of this procedure is to indicate to the network that the UE is going to start/stop OTDOA inter-frequency RSTD measurements which require measurement gaps as specified in [16, 8.1.2.6].

NOTE: It is a network decision to configure the measurement gap.

5.5.7.2 Initiation

The UE shall:

1> if and only if upper layers indicate to start performing inter-frequency RSTD measurements and the UE requires measurement gaps for these measurements while measurement gaps are either not configured or not sufficient:

2> initiate the procedure to indicate start;

NOTE 1: The UE verifies the measurement gap situation only upon receiving the indication from upper layers. If at this point in time sufficient gaps are available, the UE does not initiate the procedure. Unless it receives a new indication from upper layers, the UE is only allowed to further repeat the procedure in the same PCell once per frequency if the provided measurement gaps are insufficient.

1> if and only if upper layers indicate to stop performing inter-frequency RSTD measurements:

2> initiate the procedure to indicate stop;

NOTE 2: The UE may initiate the procedure to indicate stop even if it did not previously initiate the procedure to indicate start.
5.5.7.3 Actions related to transmission of InterFreqRSTDMeasurementIndication message

The UE shall set the contents of InterFreqRSTDMeasurementIndication message as follows:

1> set the rstd-InterFreqIndication as follows:
 2> if the procedure is initiated to indicate start of inter-frequency RSTD measurements:
 3> set the rstd-InterFreqInfoList according to the information received from upper layers;
 2> else if the procedure is initiated to indicate stop of inter-frequency RSTD measurements:
 3> set the rstd-InterFreqIndication to the value stop;
1> submit the InterFreqRSTDMeasurementIndication message to lower layers for transmission, upon which the procedure ends;

5.6 Other

5.6.1 DL information transfer

5.6.1.1 General

![Figure 5.6.1.1-1: DL information transfer](image)

The purpose of this procedure is to transfer NAS or (tunnelled) non-3GPP dedicated information from E-UTRAN to a UE in RRC_CONNECTED.

5.6.1.2 Initiation

E-UTRAN initiates the DL information transfer procedure whenever there is a need to transfer NAS or non-3GPP dedicated information. E-UTRAN initiates the DL information transfer procedure by sending the DLInformationTransfer message.

5.6.1.3 Reception of the DLInformationTransfer by the UE

Upon receiving DLInformationTransfer message, the UE shall:

1> if the dedicatedInfoType is set to dedicatedInfoNAS:
 2> forward the dedicatedInfoNAS to the NAS upper layers.
1> if the dedicatedInfoType is set to dedicatedInfoCDMA2000-1XRTT or to dedicatedInfoCDMA2000-HRPD:
 2> forward the dedicatedInfoCDMA2000 to the CDMA2000 upper layers;

ETS
5.6.2 UL information transfer

5.6.2.1 General

![ULInformationTransfer diagram]

The purpose of this procedure is to transfer NAS or (tunnelled) non-3GPP dedicated information from the UE to E-UTRAN.

5.6.2.2 Initiation

A UE in RRC_CONNECTED initiates the UL information transfer procedure whenever there is a need to transfer NAS or non-3GPP dedicated information, except at RRC connection establishment in which case the NAS information is piggybacked to the RRCConnectionSetupComplete message. The UE initiates the UL information transfer procedure by sending the ULInformationTransfer message. When CDMA2000 information has to be transferred, the UE shall initiate the procedure only if SRB2 is established.

5.6.2.3 Actions related to transmission of ULInformationTransfer message

The UE shall set the contents of the ULInformationTransfer message as follows:

1> if there is a need to transfer NAS information:
 2> set the dedicatedInfoType to include the dedicatedInfoNAS;

1> if there is a need to transfer CDMA2000 1XRTT information:
 2> set the dedicatedInfoType to include the dedicatedInfoCDMA2000-1XRTT;

1> if there is a need to transfer CDMA2000 HRPD information:
 2> set the dedicatedInfoType to include the dedicatedInfoCDMA2000-HRPD;

1> submit the ULInformationTransfer message to lower layers for transmission, upon which the procedure ends;

5.6.2.4 Failure to deliver ULInformationTransfer message

The UE shall:

1> if mobility (i.e. handover, RRC connection re-establishment) occurs before the successful delivery of ULInformationTransfer messages has been confirmed by lower layers:
 2> inform upper layers about the possible failure to deliver the information contained in the concerned ULInformationTransfer messages;
5.6.3 UE capability transfer

5.6.3.1 General

The purpose of this procedure is to transfer UE radio access capability information from the UE to E-UTRAN.

If the UE has changed its E-UTRAN radio access capabilities, the UE shall request higher layers to initiate the necessary NAS procedures (see TS 23.401 [41]) that would result in the update of UE radio access capabilities using a new RRC connection.

NOTE: Change of the UE's GERAN UE radio capabilities in RRC_IDLE is supported by use of Tracking Area Update.

5.6.3.2 Initiation

E-UTRAN initiates the procedure to a UE in RRC_CONNECTED when it needs (additional) UE radio access capability information.

5.6.3.3 Reception of the UECapabilityEnquiry by the UE

The UE shall:

1> set the contents of UECapabilityInformation message as follows:

2> if the ue-CapabilityRequest includes eutra:

3> include the UE-EUTRA-Capability within a ue-CapabilityRAT-Container and with the rat-Type set to eutra;

3> if the UE supports FDD and TDD:

4> set all fields of UECapabilityInformation, except field fdd-Add-UE-EUTRA-Capabilities and tdd-Add-UE-EUTRA-Capabilities (including their sub-fields), to include the values applicable for both FDD and TDD (i.e. functionality supported by both modes);

4> if (some of) the UE capability fields have a different value for FDD and TDD:

5> if for FDD, the UE supports additional functionality compared to what is indicated by the previous fields of UECapabilityInformation:

6> include field fdd-Add-UE-EUTRA-Capabilities and set it to include fields reflecting the additional functionality applicable for FDD;

5> if for TDD, the UE supports additional functionality compared to what is indicated by the previous fields of UECapabilityInformation:

6> include field tdd-Add-UE-EUTRA-Capabilities and set it to include fields reflecting the additional functionality applicable for TDD;
NOTE: The UE includes fields of XDD-Add-UE-EUTRA-Capabilities in accordance with the following:

- The field is included only if one or more of its sub-fields has a value that is different compared to the value signalled elsewhere within UE-EUTRA-Capability;
 (this value signalled elsewhere is also referred to as the Common value, that is supported for both XDD modes)
- For the fields that are included in XDD-Add-UE-EUTRA-Capabilities, the UE sets:
 - the sub-fields that are not allowed to be different the same as the Common value;
 - the sub-fields that are allowed to be different to a value indicating at least the same functionality as indicated by the Common value;

3> else (UE supports single xDD mode):

4> set all fields of UE-CapabilityInformation, except field fdd-Add-UE-EUTRA-Capabilities and tdd-Add-UE-EUTRA-Capabilities (including their sub-fields), to include the values applicable for the xDD mode supported by the UE;

3> if the UE-CapabilityEnquiry message includes requestedFrequencyBands and UE supports requestedFrequencyBands:

4> create a set of band combinations supported by the UE, including non-CA combinations, target for being included in supportedBandCombination while observing the following order (i.e. listed in order of decreasing priority):
 - include all non-CA bands, regardless of whether UE supports carrier aggregation, only:
 - if the UE includes ue-Category-v1020 (i.e. indicating category 6 to 8); or
 - if for at least one of the non-CA bands, the UE supports more MIMO layers with TM9 and TM10 than implied by the UE category; or
 - the UE supports TM10 with one or more CSI processes;
 - include all 2DL+1UL CA band combinations, only consisting of bands included in requestedFrequencyBands;
 - include all other 2DL+1UL CA band combinations;
 - include all other CA band combinations, only consisting of bands included in requestedFrequencyBands, and prioritized in the order of requestedFrequencyBands, (i.e. first include remaining band combinations containing the first-listed band, then include remaining band combinations containing the second-listed band, and so on);

4> include in supportedBandCombination as many of the target band combinations as possible, determined according to the above, while observing the priority order;

4> include in supportedBandCombinationAdd as many of the remaining target band combinations as possible, i.e. the target band combinations the UE was not able to include in supportedBandCombination, and limited to those consisting of bands included in requestedFrequencyBands, while observing the priority order;

4> indicate in requestedBands the same bands and in the same order as included in the received requestedFrequencyBands;

3> else

4> create a set of band combinations supported by the UE, including non-CA combinations, target for being included in supportedBandCombination:
 - include all non-CA bands, regardless of whether UE supports carrier aggregation, only:
 - if the UE includes ue-Category-v1020 (i.e. indicating category 6 to 8); or
 - if for at least one of the non-CA bands, the UE supports more MIMO layers with TM9 and TM10 than implied by the UE category; or
- the UE supports TM10 with one or more CSI processes;
- include all 2DL+1UL CA band combinations;
- include all other CA band combinations;
4> include in supportedBandCombination as many of the target band combinations as possible, determined according to the above;
4> if the number of non-CA and CA band combinations supported by UE exceeds the maximum number of band combinations of supportedBandCombination, the selection of subset of band combinations is up to UE implementation;

NOTE: If the UECapabilityEnquiry message does not include requestedFrequencyBands, UE does not include supportedBandCombinationAdd.

2> if the ue-CapabilityRequest includes geran-cs and if the UE supports GERAN CS domain:
 3> include the UE radio access capabilities for GERAN CS within a ue-CapabilityRAT-Container and with the rat-Type set to geran-cs;
2> if the ue-CapabilityRequest includes geran-ps and if the UE supports GERAN PS domain:
 3> include the UE radio access capabilities for GERAN PS within a ue-CapabilityRAT-Container and with the rat-Type set to geran-ps;
2> if the ue-CapabilityRequest includes utra and if the UE supports UTRA:
 3> include the UE radio access capabilities for UTRA within a ue-CapabilityRAT-Container and with the rat-Type set to utra;
2> if the ue-CapabilityRequest includes cdma2000-1XRTT and if the UE supports CDMA2000 1xRTT:
 3> include the UE radio access capabilities for CDMA2000 within a ue-CapabilityRAT-Container and with the rat-Type set to cdma2000-1XRTT;
1> submit the UECapabilityInformation message to lower layers for transmission, upon which the procedure ends;

5.6.4 CSFB to 1x Parameter transfer

5.6.4.1 General

![Figure 5.6.4.1-1: CSFB to 1x Parameter transfer](image)

The purpose of this procedure is to transfer the CDMA2000 1xRTT parameters required to register the UE in the CDMA2000 1xRTT network for CSFB support.
5.6.4.2 Initiation

A UE in RRC_CONNECTED initiates the CSFB to 1x Parameter transfer procedure upon request from the CDMA2000 upper layers. The UE initiates the CSFB to 1x Parameter transfer procedure by sending the CSFBParametersRequestCDMA2000 message.

5.6.4.3 Actions related to transmission of CSFBParametersRequestCDMA2000 message

The UE shall:

1> submit the CSFBParametersRequestCDMA2000 message to lower layers for transmission using the current configuration;

5.6.4.4 Reception of the CSFBParametersResponseCDMA2000 message

Upon reception of the CSFBParametersResponseCDMA2000 message, the UE shall:

1> forward the rand and the mobilityParameters to the CDMA2000 1xRTT upper layers;

5.6.5 UE Information

5.6.5.1 General

The UE information procedure is used by E-UTRAN to request the UE to report information.

5.6.5.2 Initiation

E-UTRAN initiates the procedure by sending the UEInformationRequest message.

5.6.5.3 Reception of the UEInformationRequest message

Upon receiving the UEInformationRequest message, the UE shall:

1> if rach-ReportReq is set to true, set the contents of the rach-Report in the UEInformationResponse message as follows:

2> set the numberOfPreamblesSent to indicate the number of preambles sent by MAC for the last successfully completed random access procedure;

2> if contention resolution was not successful as specified in TS 36.321 [6] for at least one of the transmitted preambles for the last successfully completed random access procedure:

3> set the contentionDetected to true;

2> else:

3> set the contentionDetected to false;
if rlf-ReportReq is set to true and the UE has radio link failure information or handover failure information available in VarRLF-Report and if the RPLMN is included in plmn-IdentityList stored in VarRLF-Report:

1> set timeSinceFailure in VarRLF-Report to the time that elapsed since the last radio link or handover failure in E-UTRA;
2> set the rlf-Report in the UEInformationResponse message to the value of rlf-Report in VarRLF-Report;
2> discard the rlf-Report from VarRLF-Report upon successful delivery of the UEInformationResponse message confirmed by lower layers;

if connEstFailReportReq is set to true and the UE has connection establishment failure information in VarConnEstFailReport and if the RPLMN is equal to plmn-Identity stored in VarConnEstFailReport:

1> set timeSinceFailure in VarConnEstFailReport to the time that elapsed since the last connection establishment failure in E-UTRA;
2> set the connEstFailReport in the UEInformationResponse message to the value of connEstFailReport in VarConnEstFailReport;
2> discard the connEstFailReport from VarConnEstFailReport upon successful delivery of the UEInformationResponse message confirmed by lower layers;

if the logMeasReportReq is present and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport:

1> if VarLogMeasReport includes one or more logged measurement entries, set the contents of the logMeasReport in the UEInformationResponse message as follows:

2> include the absTimeStamp and set it to the value of absTimeInfo in the VarLogMeasReport;
3> include the traceReference and set it to the value of traceReference in the VarLogMeasReport;
3> include the traceRecordingSessionRef and set it to the value of traceRecordingSessionRef in the VarLogMeasReport;
3> include the tce-Id and set it to the value of tce-Id in the VarLogMeasReport;
3> include the logMeasInfoList and set it to include one or more entries from VarLogMeasReport starting from the entries logged first;
3> if the VarLogMeasReport includes one or more additional logged measurement entries that are not included in the logMeasInfoList within the UEInformationResponse message:
4> include the logMeasAvailable;

if mobilityHistoryReportReq is set to true:

1> include the mobilityHistoryReport and set it to include entries from VarMobilityHistoryReport;
2> include in the mobilityHistoryReport, the global cell identity of the current cell as visitedCellId and field timeSpent to the time spent in the cell, possibly after removing the oldest entry if required;

if the logMeasReport is included in the UEInformationResponse:

1> submit the UEInformationResponse message to lower layers for transmission via SRB2;
2> discard the logged measurement entries included in the logMeasInfoList from VarLogMeasReport upon successful delivery of the UEInformationResponse message confirmed by lower layers;

else:

2> submit the UEInformationResponse message to lower layers for transmission via SRB1;
5.6.6 Logged Measurement Configuration

5.6.6.1 General

The purpose of this procedure is to configure the UE to perform logging of measurement results while in RRC_IDLE and to perform logging of measurement results for MBSFN in both RRC_IDLE and RRC_CONNECTED. The procedure applies to logged measurements capable UEs that are in RRC_CONNECTED.

NOTE E-UTRAN may retrieve stored logged measurement information by means of the UE Information procedure.

5.6.6.2 Initiation

E-UTRAN initiates the logged measurement configuration procedure to UE in RRC_CONNECTED by sending the \textit{LoggedMeasurementConfiguration} message.

5.6.6.3 Reception of the \textit{LoggedMeasurementConfiguration} by the UE

Upon receiving the \textit{LoggedMeasurementConfiguration} message the UE shall:

1> discard the logged measurement configuration as well as the logged measurement information as specified in 5.6.7;

1> store the received \textit{loggingDuration}, \textit{loggingInterval} and \textit{areaConfiguration}, if included, in \textit{VarLogMeasConfig};

1> if the \textit{LoggedMeasurementConfiguration} message includes \textit{plmn-IdentityList}:

2> set \textit{plmn-IdentityList} in \textit{VarLogMeasReport} to include the RPLMN as well as the PLMNs included in \textit{plmn-IdentityList};

1> else:

2> set \textit{plmn-IdentityList} in \textit{VarLogMeasReport} to include the RPLMN;

1> store the received \textit{absoluteTimeInfo}, \textit{traceReference}, \textit{traceRecordingSessionRef} and \textit{tce-Id} in \textit{VarLogMeasReport};

1> store the received \textit{targetMBSFN-AreaList}, if included, in \textit{VarLogMeasConfig};

1> start timer T330 with the timer value set to the \textit{loggingDuration};

5.6.6.4 T330 expiry

Upon expiry of T330 the UE shall:

1> release \textit{VarLogMeasConfig};
The UE is allowed to discard stored logged measurements, i.e. to release VarLogMeasReport, 48 hours after T330 expiry.

5.6.7 Release of Logged Measurement Configuration

5.6.7.1 General

The purpose of this procedure is to release the logged measurement configuration as well as the logged measurement information.

5.6.7.2 Initiation

The UE shall initiate the procedure upon receiving a logged measurement configuration in another RAT. The UE shall also initiate the procedure upon power off or detach.

The UE shall:

1> stop timer T330, if running;

1> if stored, discard the logged measurement configuration as well as the logged measurement information, i.e. release the UE variables VarLogMeasConfig and VarLogMeasReport;

5.6.8 Measurements logging

5.6.8.1 General

This procedure specifies the logging of available measurements by a UE in RRC_IDLE that has a logged measurement configuration and the logging of available measurements by a UE in both RRC_IDLE and RRC_CONNECTED if targetMBSFN-AreaList is included in VarLogMeasConfig.

5.6.8.2 Initiation

While T330 is running, the UE shall:

1> perform the logging in accordance with the following:

2> if targetMBSFN-AreaList is included in VarLogMeasConfig:

3> if the UE is camping normally on an E-UTRA cell or is connected to E-UTRA and, if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport and, if the PCell (in RRC_CONNECTED) or cell where the UE is camping (in RRC_IDLE) is part of the area indicated by areaConfiguration if configured in VarLogMeasConfig:

4> for MBSFN areas, indicated in targetMBSFN-AreaList, from which the UE is receiving MBMS service: perform MBSFN measurements in accordance with the performance requirements as specified in TS 36.133 [16];

NOTE 1: When configured to perform MBSFN measurement logging by targetMBSFN-AreaList, the UE is not required to receive additional MBSFN subframes, i.e. logging is based on the subframes corresponding to the MBMS services the UE is receiving.

4> perform logging at regular time intervals as defined by the loggingInterval in VarLogMeasConfig, but only for those intervals for which MBSFN measurement results are available.

2> else if the UE is camping normally on an E-UTRA cell and if the RPLMN is included in plmn-IdentityList stored in VarLogMeasReport and, if the cell is part of the area indicated by areaConfiguration if configured in VarLogMeasConfig:

3> perform the logging at regular time intervals, as defined by the loggingInterval in VarLogMeasConfig;

2> when adding a logged measurement entry in VarLogMeasReport, include the fields in accordance with the following:
3> set the relativeTimeStamp to indicate the elapsed time since the moment at which the logged measurement configuration was received;

3> if detailed location information became available during the last logging interval, set the content of the locationInfo as follows:

4> include the locationCoordinates;

3> if targetMBSFN-AreaList is included in VarLogMeasConfig:

4> for each MBSFN area, for which measurements results are available during the last logging interval:

5> set the rsrpResultMBSFN, rsrqResultMBSFN, signallingBLER-Result and dataBLER-MCH-ResultList to include measurement results that became available during the last logging interval;

5> set the mbsfn-AreaId and carrierFrequency to indicate the MBSFN area in which the UE is receiving MBSFN transmission.

4> if in RRC_CONNECTED:

5> set the servCellIdentity to indicate global cell identity of the PCell;

5> set the_measResultServCell to include the layer 3 filtered measured results of the PCell;

5> if available, set the_measResultNeighCells to include the layer 3 filtered measured results of SCell(s) and neighbouring cell(s) measurements that became available during the last logging interval, in order of decreasing RSRP, for at most the following number of cells: 6 intra-frequency and 3 inter-frequency cells per frequency and according to the following:

6> for each cell included, include the optional fields that are available;

5> if available, optionally set the_measResultNeighCells to include the layer 3 filtered measured results of neighbouring cell(s) measurements that became available during the last logging interval, in order of decreasing RSCP(UTRA)/RSSI(GERAN)/PilotStrength(cdma2000), for at most the following number of cells: 3 inter-RAT cells per frequency (UTRA, cdma2000)/set of frequencies (GERAN), and according to the following:

6> for each cell included, include the optional fields that are available;

4> if in RRC_IDLE:

5> set the servCellIdentity to indicate global cell identity of the serving cell;

5> set the_measResultServCell to include the quantities of the serving cell;

5> if available, set the_measResultNeighCells, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements that became available during the last logging interval for at most the following number of neighbouring cells: 6 intra-frequency and 3 inter-frequency neighbours per frequency and according to the following:

6> for each neighbour cell included, include the optional fields that are available;

5> if available, optionally set the_measResultNeighCells, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements that became available during the last logging interval, for at most the following number of cells: 3 inter-RAT cells per frequency (UTRA, cdma2000)/set of frequencies (GERAN), and according to the following:

6> for each cell included, include the optional fields that are available;

3> else:

4> set the servCellIdentity to indicate global cell identity of the cell the UE is camping on;

4> set the measResultServCell to include the quantities of the cell the UE is camping on;

4> if available, set the measResultNeighCells, in order of decreasing ranking-criterion as used for cell re-selection, to include neighbouring cell measurements that became available during the last logging
interval for at most the following number of neighbouring cells: 6 intra-frequency and 3 inter-frequency neighbours per frequency as well as 3 inter-RAT neighbours, per frequency/ set of frequencies (GERAN) per RAT and according to the following:

5> for each neighbour cell included, include the optional fields that are available;

NOTE 2: The UE includes the latest results of the available measurements as used for cell reselection evaluation in RRC_IDLE or as used for evaluation of reporting criteria or for measurement reporting according to 5.5.3 in RRC_CONNECTED, which are performed in accordance with the performance requirements as specified in TS 36.133 [16].

2> when the memory reserved for the logged measurement information becomes full, stop timer T330 and perform the same actions as performed upon expiry of T330, as specified in 5.6.6.4;

5.6.9 In-device coexistence indication

5.6.9.1 General

![Diagram of In-device coexistence indication](image)

Figure 5.6.9.1-1: In-device coexistence indication

The purpose of this procedure is to inform E-UTRAN about (a change of) the In-Device Coexistence (IDC) problems experienced by the UE in RRC_CONNECTED, as described in TS 36.300 [9], and to provide the E-UTRAN with information in order to resolve them.

5.6.9.2 Initiation

A UE capable of providing IDC indications may initiate the procedure when it is configured to provide IDC indications and upon change of IDC problem information.

Upon initiating the procedure, the UE shall:

1> if configured to provide IDC indications:

2> if the UE did not transmit an InDeviceCoexIndication message since it was configured to provide IDC indications:

3> if on one or more frequencies for which a measObjectEUTRA is configured, the UE is experiencing IDC problems that it cannot solve by itself:

4> initiate transmission of the InDeviceCoexIndication message in accordance with 5.6.9.3;

2> else:

3> if the set of frequencies, for which a measObjectEUTRA is configured and on which the UE is experiencing IDC problems that it cannot solve by itself, is different from the set indicated in the last transmitted InDeviceCoexIndication message; or

3> if for one or more of the frequencies in the previously reported set of frequencies, the interferenceDirection is different from the value indicated in the last transmitted InDeviceCoexIndication message; or
3> if the TDM assistance information is different from the assistance information included in the last transmitted InDeviceCoexIndication message:

4> initiate transmission of the InDeviceCoexIndication message in accordance with 5.6.9.3;

5.6.9.3 Actions related to transmission of InDeviceCoexIndication message

The UE shall set the contents of the InDeviceCoexIndication message as follows:

1> if there is at least one E-UTRA carrier frequency, for which a measurement object is configured, that is affected by IDC problems:

2> include the IE affectedCarrierFreqList with an entry for each affected E-UTRA carrier frequency for which a measurement object is configured;

2> for each E-UTRA carrier frequency included in the the IE affectedCarrierFreqList, include interferenceDirection and set it accordingly;

2> include Time Domain Multiplexing (TDM) based assistance information:

3> if the UE has DRX related assistance information that could be used to resolve the IDC problems:

4> include drx-CycleLength, drx-Offset and drx-ActiveTime;

3> else (the UE has desired subframe reservation patterns related assistance information that could be used to resolve the IDC problems):

4> include idc-SubframePatternList;

NOTE 1: When sending an InDeviceCoexIndication message to inform E-UTRAN the IDC problems, the UE includes all assistance information (rather than providing e.g. the changed part(s) of the assistance information).

The UE shall submit the InDeviceCoexIndication message to lower layers for transmission.

5.6.10 UE Assistance Information

5.6.10.1 General

![Figure 5.6.10.1-1: UE Assistance Information](image)

The purpose of this procedure is to inform E-UTRAN of the UE’s power saving preference. Upon configuring the UE to provide power preference indications E-UTRAN may consider that the UE does not prefer a configuration primarily optimised for power saving until the UE explicitly indicates otherwise.

5.6.10.2 Initiation

A UE capable of providing power preference indications in RRC_CONNECTED may initiate the procedure in several cases including upon being configured to provide power preference indications and upon change of power preference.

Upon initiating the procedure, the UE shall:
1> if configured to provide power preference indications:

2> if the UE did not transmit a \textit{UEAssistanceInformation} message since it was configured to provide power preference indications; or

2> if the current power preference is different from the one indicated in the last transmission of the \textit{UEAssistanceInformation} message and timer T340 is not running:

3> initiate transmission of the \textit{UEAssistanceInformation} message in accordance with 5.6.10.3;

5.6.10.3 Actions related to transmission of \textit{UEAssistanceInformation} message

The UE shall set the contents of the \textit{UEAssistanceInformation} message:

1> if the UE prefers a configuration primarily optimised for power saving:

2> set \textit{powerPrefIndication} to \textit{lowPowerConsumption};

1> else:

2> start or restart timer T340 with the timer value set to the \textit{powerPrefIndicationTimer};

2> set \textit{powerPrefIndication} to \textit{normal};

The UE shall submit the \textit{UEAssistanceInformation} message to lower layers for transmission.

5.6.11 Mobility history Information

5.6.11.1 General

This procedure specifies how the mobility history information is stored by the UE, covering RRC_CONNECTED and RRC_IDLE.

5.6.11.2 Initiation

If the UE supports storage of mobility history information, the UE shall:

1> Upon change of cell, consisting of PCell in RRC_CONNECTED or serving cell in RRC_IDLE, to another E-UTRA or inter-RAT cell or when entering out of service:

2> include an entry in variable \textit{VarMobilityHistoryReport} possibly after removing the oldest entry, if necessary, according to following:

3> if the global cell identity of the previous PCell/ serving cell is available:

4> include the global cell identity of that cell in the field \textit{visitedCellId} of the entry;

3> else:

4> include the the physical cell identity and carrier frequency of that cell in the field \textit{visitedCellId} of the entry;

3> set the field \textit{timeSpent} of the entry as the time spent in the previous PCell/ serving cell;

1> upon entering E-UTRA (in RRC_CONNECTED or RRC_IDLE) while previously out of service and/ or using another RAT:

2> include an entry in variable \textit{VarMobilityHistoryReport} possibly after removing the oldest entry, if necessary, according to following:

3> set the field \textit{timeSpent} of the entry as the time spent outside E-UTRA;
5.6.12 RAN-assisted WLAN interworking

5.6.12.1 General

The purpose of this procedure is to facilitate access network selection and traffic steering between E-UTRAN and WLAN.

5.6.12.2 Dedicated WLAN offload configuration

The UE shall:

1. if the received wlan-OffloadDedicated is set to release:
 2. release wlan-OffloadDedicated and inform upper layers about the release;
 2. if the wlan-OffloadConfigCommon corresponding to the RPLMN is broadcast by the cell:
 3. apply the wlan-OffloadConfigCommon corresponding to the RPLMN included in SystemInformationBlockType17;
 3. forward the wlan-OffloadConfigCommon corresponding to the RPLMN to upper layer;
1. else:
 2. if the received wlan-OffloadDedicated includes thresholdRSRP:
 3. apply the received thresholdRSRP;
 3. forward the received thresholdRSRP to upper layers;
 2. if the received wlan-OffloadDedicated includes thresholdRSRQ:
 3. apply the received thresholdRSRQ;
 3. forward the received thresholdRSRQ to upper layers;
 2. if the received wlan-OffloadDedicated includes thresholdChannelUtilization:
 3. apply the received thresholdChannelUtilization;
 3. forward the received thresholdChannelUtilization to upper layers;
 2. if the received wlan-OffloadDedicated includes thresholdBackhaul-Bandwidth:
 3. apply the received thresholdBackhaul-Bandwidth;
 3. forward the received thresholdBackhaul-Bandwidth to upper layers;
 2. if the received wlan-OffloadDedicated includes thresholdBeaconRSSI:
 3. apply the received thresholdBeaconRSSI;
 3. forward the received thresholdBeaconRSSI to upper layers;
 2. if the received wlan-OffloadDedicated includes offloadPreferenceIndicator:
 3. forward the received offloadPreferenceIndicator to upper layers;
 2. if the received wlan-OffloadDedicated includes t-SteeringWLAN:
 3. apply the received t-SteeringWLAN;
 2. if the received wlan-OffloadDedicated includes t350:
 3. apply the received t350;
5.6.12.3 WLAN offload RAN evaluation

The UE shall:
1. if the UE is configured with either wlan-OffloadConfigCommon or wlan-OffloadDedicated:
 2. provide measurement results required for the evaluation of the network selection and traffic steering rules as defined in TS 24.312 [66] to upper layers;
 2. evaluate the network selection and traffic steering rules as defined in TS 36.304 [4];

5.6.12.4 T350 expiry or stop

The UE shall:
1. if T350 expires or is stopped:
 2. release the wlan-OffloadDedicated and inform upper layers about the release;
 2. if the wlan-OffloadConfigCommon corresponding to the RPLMN is broadcast by the cell:
 3. apply the wlan-OffloadConfigCommon corresponding to the RPLMN included in SystemInformationBlockType17;
 3. forward the wlan-OffloadConfigCommon corresponding to the RPLMN to upper layer;

5.6.12.5 Cell re-selection while T350 is running

The UE shall:
1. if cell reselection occurs while T350 is running:
 2. stop timer T350;
 2. perform the actions as specified in 5.6.12.4;

5.7 Generic error handling

5.7.1 General

The generic error handling defined in the subsequent sub-clauses applies unless explicitly specified otherwise e.g. within the procedure specific error handling.

The UE shall consider a value as not comprehended when it is set:
- to an extended value that is not defined in the version of the transfer syntax supported by the UE.
- to a spare or reserved value unless the specification defines specific behaviour that the UE shall apply upon receiving the concerned spare/ reserved value.

The UE shall consider a field as not comprehended when it is defined:
- as spare or reserved unless the specification defines specific behaviour that the UE shall apply upon receiving the concerned spare/ reserved field.

5.7.2 ASN.1 violation or encoding error

The UE shall:
1. when receiving an RRC message on the BCCH, PCCH, CCCH, or MCCH for which the abstract syntax is invalid [13]:
 2. ignore the message;
NOTE This section applies in case one or more fields is set to a value, other than a spare, reserved or extended value, not defined in this version of the transfer syntax. E.g. in the case the UE receives value 12 for a field defined as INTEGER (1..11). In cases like this, it may not be possible to reliably detect which field is in the error hence the error handling is at the message level.

5.7.3 Field set to a not comprehended value

The UE shall, when receiving an RRC message on any logical channel:

1> if the message includes a field that has a value that the UE does not comprehend:
 2> if a default value is defined for this field:
 3> treat the message while using the default value defined for this field;
 2> else if the concerned field is optional:
 3> treat the message as if the field were absent and in accordance with the need code for absence of the concerned field;
 2> else:
 3> treat the message as if the field were absent and in accordance with sub-clause 5.7.4;

5.7.4 Mandatory field missing

The UE shall:

1> if the message includes a field that is mandatory to include in the message (e.g. because conditions for mandatory presence are fulfilled) and that field is absent or treated as absent:
 2> if the RRC message was received on DCCH or CCCH:
 3> ignore the message;
 2> else:
 3> if the field concerns a (sub-field of) an entry of a list (i.e. a SEQUENCE OF):
 4> treat the list as if the entry including the missing or not comprehended field was not present;
 3> else if the field concerns a sub-field of another field, referred to as the 'parent' field i.e. the field that is one nesting level up compared to the erroneous field:
 4> consider the 'parent' field to be set to a not comprehended value;
 4> apply the generic error handling to the subsequent 'parent' field(s), until reaching the top nesting level i.e. the message level;
 3> else (field at message level):
 4> ignore the message;

NOTE 1: The error handling defined in these sub-clauses implies that the UE ignores a message with the message type or version set to a not comprehended value.

NOTE 2: The nested error handling for messages received on logical channels other than DCCH and CCCH applies for errors in extensions also, even for errors that can be regarded as invalid E-UTRAN operation e.g. E-UTRAN not observing conditional presence.

The following ASN.1 further clarifies the levels applicable in case of nested error handling for errors in extension fields.

```
-- /example/ ASN1START
-- Example with extension addition group
```
The UE shall, apply the following principles regarding the levels applicable in case of nested error handling:

- an extension addition group is not regarded as a level on its own. E.g. in the ASN.1 extract in the previous, a error regarding the conditionality of `field3` would result in the entire itemInfo entry to be ignored (rather than just the extension addition group containing `field3` and `field4`)

- a traditional `nonCriticalExtension` is not regarded as a level on its own. E.g. in the ASN.1 extract in the previous, a error regarding the conditionality of `field3` would result in the entire `BroadcastInfoBlock1` to be ignored (rather than just the non critical extension containing `field3` and `field4`).

5.7.5 Not comprehended field

The UE shall, when receiving an RRC message on any logical channel:

1> if the message includes a field that the UE does not comprehend:

2> treat the rest of the message as if the field was absent;

NOTE: This section does not apply to the case of an extension to the value range of a field. Such cases are addressed instead by the requirements in section 5.7.3.

5.8 MBMS

5.8.1 Introduction

5.8.1.1 General

In general the control information relevant only for UEs supporting MBMS is separated as much as possible from unicast control information. Most of the MBMS control information is provided on a logical channel specific for MBMS common control information: the MCCH. E-UTRA employs one MCCH logical channel per MBSFN area. In case the network configures multiple MBSFN areas, the UE acquires the MBMS control information from the MCCHs that are configured to identify if services it is interested to receive are ongoing. The action applicable when the UE is unable to simultaneously receive MBMS and unicast services is up to UE implementation. In this release of the specification, an MBMS capable UE is only required to support reception of a single MBMS service at a time, and reception of more than one MBMS service (also possibly on more than one MBSFN area) in parallel is left for UE
The MCCH carries the *MBSFNAreaConfiguration* message, which indicates the MBMS sessions that are ongoing as well as the (corresponding) radio resource configuration. The MCCH may also carry the *MBMSCountingRequest* message, when E-UTRAN wishes to count the number of UEs in RRC_CONNECTED that are receiving or interested to receive one or more specific MBMS services.

A limited amount of MBMS control information is provided on the BCCH. This primarily concerns the information needed to acquire the MCCH. This information is carried by means of a single MBMS specific *SystemInformationBlock: SystemInformationBlockType13*. An MBSFN area is identified solely by the *mbsfn-AreaId* in *SystemInformationBlockType13*. At mobility, the UE considers that the MBSFN area is continuous when the source cell and the target cell broadcast the same value in the *mbsfn-AreaId*.

5.8.1.2 Scheduling

The MCCH information is transmitted periodically, using a configurable repetition period. Scheduling information is not provided for MCCH i.e. both the time domain scheduling as well as the lower layer configuration are semi-statically configured, as defined within *SystemInformationBlockType13*.

For MBMS user data, which is carried by the MTCH logical channel, E-UTRAN periodically provides MCH scheduling information (MSI) at lower layers (MAC). This MCH information only concerns the time domain scheduling i.e. the frequency domain scheduling and the lower layer configuration are semi-statically configured. The periodicity of the MSI is configurable and defined by the MCH scheduling period.

5.8.1.3 MCCH information validity and notification of changes

Change of MCCH information only occurs at specific radio frames, i.e. the concept of a modification period is used. Within a modification period, the same MCCH information may be transmitted a number of times, as defined by its scheduling (which is based on a repetition period). The modification period boundaries are defined by SFN values for which SFN mod m == 0, where m is the number of radio frames comprising the modification period. The modification period is configured by means of *SystemInformationBlockType13*.

When the network changes (some of) the MCCH information, it notifies the UEs about the change during a first modification period. In the next modification period, the network transmits the updated MCCH information. These general principles are illustrated in figure 5.8.1.3-1, in which different colours indicate different MCCH information.

Upon receiving a change notification, a UE interested to receive MBMS services acquires the new MCCH information immediately from the start of the next modification period. The UE applies the previously acquired MCCH information until the UE acquires the new MCCH information.

![Figure 5.8.1.3-1: Change of MCCH Information](image-url)

Indication of an MBMS specific RNTI, the M-RNTI (see TS 36.321 [6]), on PDCCH is used to inform UEs in RRC_IDLE and UEs in RRC_CONNECTED about an MCCH information change. When receiving an MCCH information change notification, the UE knows that the MCCH information will change at the next modification period boundary. The notification on PDCCH indicates which of the MCCHs will change, which is done by means of an 8-bit bitmap. Within this bitmap, the bit at the position indicated by the field *notificationIndicator* is used to indicate changes for that MBSFN area; if the bit is set to "1", the corresponding MCCH will change. No further details are provided e.g. regarding which MCCH information will change. The MCCH information change notification is used to inform the UE about a change of MCCH information upon session start or about the start of MBMS counting.

The MCCH information change notifications on PDCCH are transmitted periodically and are carried on MBSFN subframes only. These MCCH information change notification occasions are common for all MCCHs that are configured, and configurable by parameters included in *SystemInformationBlockType13*: a repetition coefficient, a radio
frame offset and a subframe index. These common notification occasions are based on the MCCH with the shortest modification period.

NOTE 1: E-UTRAN may modify the MBMS configuration information provided on MCCH at the same time as updating the MBMS configuration information carried on BCCH i.e. at a coinciding BCCH and MCCH modification period. Upon detecting that a new MCCH is configured on BCCH, a UE interested to receive one or more MBMS services should acquire the MCCH, unless it knows that the services it is interested in are not provided by the corresponding MBSFN area.

A UE that is receiving an MBMS service shall acquire the MCCH information from the start of each modification period. A UE that is not receiving an MBMS service, as well as UEs that are receiving an MBMS service but potentially interested to receive other services not started yet in another MBSFN area, shall verify that the stored MCCH information remains valid by attempting to find the MCCH information change notification at least notificationRepetitionCoeff times during the modification period of the applicable MCCH(s), if no MCCH information change notification is received.

NOTE 2: In case the UE is aware which MCCH(s) E-UTRAN uses for the service(s) it is interested to receive, the UE may only need to monitor change notifications for a subset of the MCCHs that are configured, referred to as the ‘applicable MCCH(s)’ in the above.

5.8.2 MCCH information acquisition

5.8.2.1 General

The UE applies the MCCH information acquisition procedure to acquire the MBMS control information that is broadcasted by the E-UTRAN. The procedure applies to MBMS capable UEs that are in RRC_IDLE or in RRC_CONNECTED.

5.8.2.2 Initiation

A UE interested to receive MBMS services shall apply the MCCH information acquisition procedure upon entering the corresponding MBSFN area (e.g. upon power on, following UE mobility) and upon receiving a notification that the MCCH information has changed. A UE that is receiving an MBMS service shall apply the MCCH information acquisition procedure to acquire the MCCH, that corresponds with the service that is being received, at the start of each modification period.

Unless explicitly stated otherwise in the procedural specification, the MCCH information acquisition procedure overwrites any stored MCCH information, i.e. delta configuration is not applicable for MCCH information and the UE discontinues using a field if it is absent in MCCH information unless explicitly specified otherwise.

5.8.2.3 MCCH information acquisition by the UE

An MBMS capable UE shall:

1> if the procedure is triggered by an MCCH information change notification:

2> start acquiring the MBSFNAreaConfiguration message and the MBMSCountingRequest message if present, from the beginning of the modification period following the one in which the change notification was received;
NOTE 1: The UE continues using the previously received MCCH information until the new MCCH information has been acquired.

1> if the UE enters an MBSFN area:
 2> acquire the MBSFNAreaConfiguration message and the MBMSCountingRequest message if present, at the next repetition period;

1> if the UE is receiving an MBMS service:
 2> start acquiring the MBSFNAreaConfiguration message and the MBMSCountingRequest message if present, that both concern the MBSFN area of the service that is being received, from the beginning of each modification period;

5.8.2.4 Actions upon reception of the MBSFNAreaConfiguration message

No UE requirements related to the contents of this MBSFNAreaConfiguration apply other than those specified elsewhere e.g. within procedures using the concerned system information, the corresponding field descriptions.

5.8.2.5 Actions upon reception of the MBMSCountingRequest message

Upon receiving MBMSCountingRequest message, the UE shall perform the MBMS Counting procedure as specified in section 5.8.4.

5.8.3 MBMS PTM radio bearer configuration

5.8.3.1 General

The MBMS PTM radio bearer configuration procedure is used by the UE to configure RLC, MAC and the physical layer upon starting and/or stopping to receive an MRB. The procedure applies to UEs interested to receive one or more MBMS services.

NOTE: In case the UE is unable to receive an MBMS service due to capability limitations, upper layers may take appropriate action e.g. terminate a lower priority unicast service.

5.8.3.2 Initiation

The UE applies the MRB establishment procedure to start receiving a session of a service it has an interest in. The procedure may be initiated e.g. upon start of the MBMS session, upon (re-)entry of the corresponding MBSFN service area, upon becoming interested in the MBMS service, upon removal of UE capability limitations inhibiting reception of the concerned service.

The UE applies the MRB release procedure to stop receiving a session. The procedure may be initiated e.g. upon stop of the MBMS session, upon leaving the corresponding MBSFN service area, upon losing interest in the MBMS service, when capability limitations start inhibiting reception of the concerned service.

5.8.3.3 MRB establishment

Upon MRB establishment, the UE shall:

1> establish an RLC entity in accordance with the configuration specified in 9.1.1.4;

1> configure an MTCH logical channel in accordance with the received logicalChannelIdentity, applicable for the MRB, as included in the MBSFNAreaConfiguration message;

1> configure the physical layer in accordance with the pmch-Config, applicable for the MRB, as included in the MBSFNAreaConfiguration message;

1> inform upper layers about the establishment of the MRB by indicating the corresponding tmgi and sessionId;
5.8.3.4 MRB release

Upon MRB release, the UE shall:
1> release the RLC entity as well as the related MAC and physical layer configuration;
1> inform upper layers about the release of the MRB by indicating the corresponding tmgi and sessionId.

5.8.4 MBMS Counting Procedure

5.8.4.1 General

![Figure 5.8.4.1-1: MBMS Counting procedure]

The MBMS Counting procedure is used by the E-UTRAN to count the number of RRC_CONNECTED mode UEs which are receiving via an MRB or interested to receive via an MRB the specified MBMS services.

The UE determines interest in an MBMS service, that is identified by the TMGI, by interaction with upper layers.

5.8.4.2 Initiation

E-UTRAN initiates the procedure by sending an MBMSCountingRequest message.

5.8.4.3 Reception of the MBMSCountingRequest message by the UE

Upon receiving the MBMSCountingRequest message, the UE in RRC_CONNECTED mode shall:
1> if the SystemInformationBlockType1, that provided the scheduling information for the SystemInformationBlockType13 that included the configuration of the MCCH via which the MBMSCountingRequest message was received, contained the identity of the Registered PLMN; and
1> if the UE is receiving via an MRB or interested to receive via an MRB at least one of the services in the received countingRequestList:
2> if more than one entry is included in the mbsfn-AreaInfoList received in the SystemInformationBlockType13 that included the configuration of the MCCH via which the MBMSCountingRequest message was received:
3> include the mbsfn-AreaIndex in the MBMSCountingResponse message and set it to the index of the entry in the mbsfn-AreaInfoList within the received SystemInformationBlockType13 that corresponds with the MBSFN area used to transfer the received MBMSCountingRequest message;
2> for each MBMS service included in the received countingRequestList:
3> if the UE is receiving via an MRB or interested to receive via an MRB this MBMS service:
4> include an entry in the countingResponseList within the MBMSCountingResponse message with countingResponseService set it to the index of the entry in the countingRequestList within the received
MBMSCountingRequest that corresponds with the MBMS service the UE is receiving or interested to receive;

2> submit the MBMSCountingResponse message to lower layers for transmission upon which the procedure ends;

NOTE 1: UEs that are receiving an MBMS User Service [56] by means of a Unicast Bearer Service [57] (i.e. via a DRB), but are interested to receive the concerned MBMS User Service [56] via an MBMS Bearer Service (i.e. via an MRB), respond to the counting request.

NOTE 2: If ciphering is used at upper layers, the UE does not respond to the counting request if it can not decipher the MBMS service for which counting is performed (see TS 22.146 [62, 5.3]).

NOTE 3: The UE treats the MBMSCountingRequest messages received in each modification period independently. In the unlikely case E-UTRAN would repeat an MBMSCountingRequest (i.e. including the same services) in a subsequent modification period, the UE responds again. The UE provides at most one MBMSCountingResponse message to multiple transmission attempts of an MBMSCountingRequest messages in a given modification period.

5.8.5 MBMS interest indication

5.8.5.1 General

The purpose of this procedure is to inform E-UTRAN that the UE is receiving or is interested to receive MBMS via an MRB, and if so, to inform E-UTRAN about the priority of MBMS versus unicast reception.

5.8.5.2 Initiation

An MBMS capable UE in RRC_CONNECTED may initiate the procedure in several cases including upon successful connection establishment, upon entering or leaving the service area, upon session start or stop, upon change of interest, upon change of priority between MBMS reception and unicast reception or upon change to a PCell broadcasting SystemInformationBlockType15.

Upon initiating the procedure, the UE shall:

1> if SystemInformationBlockType15 is broadcast by the PCell:

2> ensure having a valid version of SystemInformationBlockType15 for the PCell;

2> if the UE did not transmit an MBMSInterestIndication message since last entering RRC_CONNECTED state; or

2> if since the last time the UE transmitted an MBMSInterestIndication message, the UE connected to a PCell not broadcasting SystemInformationBlockType15;

3> if the set of MBMS frequencies of interest, determined in accordance with 5.8.5.3, is not empty:

4> initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;

2> else:
3> if the set of MBMS frequencies of interest, determined in accordance with 5.8.5.3, has changed since the last transmission of the MBMSInterestIndication message; or

3> if the prioritisation of reception of all indicated MBMS frequencies compared to reception of any of the established unicast bearers has changed since the last transmission of the MBMSInterestIndication message:

4> initiate transmission of the MBMSInterestIndication message in accordance with 5.8.5.4;

NOTE: The UE may send an MBMSInterestIndication even when it is able to receive the MBMS services it is interested in i.e. to avoid that the network allocates a configuration inhibiting MBMS reception.

5.8.5.3 Determine MBMS frequencies of interest

The UE shall:

1> consider a frequency to be part of the MBMS frequencies of interest if the following conditions are met:

2> at least one MBMS session the UE is receiving or interested to receive via an MRB is ongoing or about to start; and

NOTE 1: The UE may determine whether the session is ongoing from the start and stop time indicated in the User Service Description (USD), see 3GPP TS 36.300 [9] or 3GPP TS 26.346 [57].

2> for at least one of these MBMS sessions SystemInformationBlockType15 acquired from the PCell includes for the concerned frequency one or more MBMS SAI s as indicated in the USD for this session; and

NOTE 2: The UE considers a frequency to be part of the MBMS frequencies of interest even though E-UTRAN may (temporarily) not employ an MRB for the concerned session. I.e. the UE does not verify if the session is indicated on MCCH

NOTE 3: The UE considers the frequencies of interest independently of any synchronization state, e.g. [9, Annex J.1]

2> the UE is capable of simultaneously receiving the set of MBMS frequencies of interest, regardless of whether a serving cell is configured on each of these frequencies or not; and

2> the supportedBandCombination the UE included in UE-EUTRA-Capability contains at least one band combination including the set of MBMS frequencies of interest;

NOTE 4: Indicating a frequency implies that the UE supports SystemInformationBlockType13 acquisition for the concerned frequency i.e. the indication should be independent of whether a serving cell is configured on that frequency.

NOTE 5: When evaluating which frequencies it can receive simultaneously, the UE does not take into account the serving frequencies that are currently configured i.e. it only considers MBMS frequencies it is interested to receive.

NOTE 6: The set of MBMS frequencies of interest includes at most one frequency for a given physical frequency. The UE only considers a physical frequency to be part of the MBMS frequencies of interest if it supports at least one of the bands indicated for this physical frequency in SystemInformationBlockType1 (for serving frequency) or SystemInformationBlockType15 (for neighbouring frequencies). In this case, E-UTRAN may assume the UE supports MBMS reception on any of the bands supported by the UE (i.e. according to supportedBandCombination).

5.8.5.4 Actions related to transmission of MBMSInterestIndication message

The UE shall set the contents of the MBMSInterestIndication message as follows:

1> if the set of MBMS frequencies of interest, determined in accordance with 5.8.5.3, is not empty:

2> include mbms-FreqList and set it to include the MBMS frequencies of interest, using the EARFCN corresponding with freqBandIndicator included in SystemInformationBlockType1 (for serving frequency), if applicable, and the EARFCN(s) as included in SystemInformationBlockType15 (for neighbouring frequencies);
NOTE 1: The EARFCN included in mbms-FreqList is merely used to indicate a physical frequency the UE is interested to receive i.e. the UE may not support the band corresponding to the included EARFCN (but it does support at least one of the bands indicated in system information for the concerned physical frequency).

2> include mbms-Priority if the UE prioritises reception of all indicated MBMS frequencies above reception of any of the unicast bearers;

NOTE 2: If the UE prioritises MBMS reception and unicast data cannot be supported because of congestion on the MBMS carrier(s), E-UTRAN may initiate release of unicast bearers. It is up to E-UTRAN implementation whether all bearers or only GBR bearers are released. E-UTRAN does not initiate re-establishment of the released unicast bearers upon alleviation of the congestion.

The UE shall submit the MBMSInterestIndication message to lower layers for transmission.

5.9 RN procedures

5.9.1 RN reconfiguration

5.9.1.1 General

![Diagram of RN reconfiguration](image)

Figure 5.9.1.1-1: RN reconfiguration

The purpose of this procedure is to configure/reconfigure the RN subframe configuration and/or to update the system information relevant for the RN in RRC_CONNECTED.

5.9.1.2 Initiation

E-UTRAN may initiate the RN reconfiguration procedure to an RN in RRC_CONNECTED when AS security has been activated.

5.9.1.3 Reception of the RNReconfiguration by the RN

The RN shall:

1> if the rn-SystemInfo is included:

2> if the systemInformationBlockType1 is included:

3> act upon the received SystemInformationBlockType1 as specified in 5.2.2.7;

2> if the SystemInformationBlockType2 is included:

3> act upon the received SystemInformationBlockType2 as specified in 5.2.2.9;

1> if the rn-SubframeConfig is included:

2> reconfigure lower layers in accordance with the received subframeConfigPatternFDD or subframeConfigPatternTDD;
if the rpdcch-Config is included:

reconfigure lower layers in accordance with the received rpdcch-Config;

submit the RNReconfigurationComplete message to lower layers for transmission, upon which the procedure ends;

6 Protocol data units, formats and parameters (tabular & ASN.1)

6.1 General

The contents of each RRC message is specified in sub-clause 6.2 using ASN.1 to specify the message syntax and using tables when needed to provide further detailed information about the information elements specified in the message syntax. The syntax of the information elements that are defined as stand-alone abstract types is further specified in a similar manner in sub-clause 6.3.

The need for information elements to be present in a message or an abstract type, i.e., the ASN.1 fields that are specified as OPTIONAL in the abstract notation (ASN.1), is specified by means of comment text tags attached to the OPTIONAL statement in the abstract syntax. All comment text tags are available for use in the downlink direction only. The meaning of each tag is specified in table 6.1-1.

Table 6.1-1: Meaning of abbreviations used to specify the need for information elements to be present

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond conditionTag (Used in downlink only)</td>
<td>Conditionally present</td>
</tr>
<tr>
<td>Need OP (Used in downlink only)</td>
<td>Optionally present</td>
</tr>
<tr>
<td>Need ON (Used in downlink only)</td>
<td>Optionally present, No action</td>
</tr>
<tr>
<td>Need OR (Used in downlink only)</td>
<td>Optionally present, Release</td>
</tr>
</tbody>
</table>

Any IE with Need ON in system information shall be interpreted as Need OR.

Need codes may not be specified for a parent extension field/extension group, used in downlink, which includes one or more child extension fields. Upon absence of such a parent extension field/extension group, the UE shall:

- For each individual child extension field, including extensions that are mandatory to include in the optional group, act in accordance with the need code that is defined for the extension;

- Apply this behaviour not only for child extension fields included directly within the optional parent extension field/extension group, but also for extension fields defined at further nesting levels as long as for none of the fields in-between the concerned extension field and the parent extension field a need code is specified;
NOTE 1: The above applies for groups of non critical extensions using double brackets (referred to as extension groups), as well as non-critical extensions at the end of a message or at the end of a structure contained in a BIT STRING or OCTET STRING (referred to as parent extension fields).

Need codes, conditions and ASN.1 defaults specified for a particular (child) field only apply in case the (parent) field including the particular field is present. This rule does not apply for optional parent extension fields/ extension groups without need codes.

NOTE 2: The previous rule implies that E-UTRAN has to include such a parent extension field to release a child field that is either:
- Optional with need OR, or
- Conditional while the UE releases the child field when absent.

The handling of need codes as specified in the previous is illustrated by means of an example, as shown in the following ASN.1.

```
-- example/ ASN1START
RRCMessage-r8-IEs ::= SEQUENCE {
    field1  InformationElement1,
    field2  InformationElement2  OPTIONAL, -- Need ON
    nonCriticalExtension     RRCMessage-v8a0-IEs  OPTIONAL
}
RRCMessage-v8a0-IEs ::= SEQUENCE {
    field3  InformationElement3  OPTIONAL, -- Need ON
    nonCriticalExtension     RRCMessage-v940-IEs  OPTIONAL
}
RRCMessage-v940-IEs ::= SEQUENCE {
    field4  InformationElement4  OPTIONAL, -- Need OR
    nonCriticalExtension     SEQUENCE {}  OPTIONAL
}
InformationElement1 ::= SEQUENCE {
    field11 InformationElement11  OPTIONAL, -- Need ON
    field12 InformationElement12  OPTIONAL, -- Need OR
    ...
    [[ field13 InformationElement13  OPTIONAL, -- Need OR
      field14 InformationElement14  OPTIONAL -- Need OR
    ]]
}
InformationElement2 ::= SEQUENCE {
    field21 InformationElement11  OPTIONAL, -- Need OR
    ...
}
-- ASN1STOP
```

The handling of need codes as specified in the previous implies that:

- if `field2` in `RRCMessage-r8-IEs` is absent, the UE does not modify `field21`;
- if `field2` in `RRCMessage-r8-IEs` is present but does not include `field21`, the UE releases `field21`;
- if the extension group containing `field13` is absent, the UE releases `field13` and does not modify `field14`;
- if `nonCriticalExtension` defined by IE `RRCMessage-v8a0-IEs` is absent, the UE does not modify `field3` and releases `field4`;

6.2 RRC messages

NOTE: The messages included in this section reflect the current status of the discussions. Additional messages may be included at a later stage.
6.2.1 General message structure

EUTRA-RRC-Definitions

This ASN.1 segment is the start of the E-UTRA RRC PDU definitions.

BCCH-BCH-Message

The *BCCH-BCH-Message* class is the set of RRC messages that may be sent from the E-UTRAN to the UE via BCH on the BCCH logical channel.

BCCH-DL-SCH-Message

The *BCCH-DL-SCH-Message* class is the set of RRC messages that may be sent from the E-UTRAN to the UE via DL-SCH on the BCCH logical channel.

MCCH-Message

The *MCCH-Message* class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the MCCH logical channel.

PCCH-Message

The **PCCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the PCCH logical channel.

```
-- ASN1START
PCCH-Message ::= SEQUENCE {
    message     PCCH-MessageType
}
PCCH-MessageType ::= CHOICE {
    c1      CHOICE {
        paging         Paging
    },
    messageClassExtension SEQUENCE {}
}
-- ASN1STOP
```

DL-CCCH-Message

The **DL-CCCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE on the downlink CCCH logical channel.

```
-- ASN1START
DL-CCCH-Message ::= SEQUENCE {
    message     DL-CCCH-MessageType
}
DL-CCCH-MessageType ::= CHOICE {
    c1      CHOICE {
        rrcConnectionReestablishment   RRCConnectionReestablishment,
        rrcConnectionReestablishmentReject  RRCConnectionReestablishmentReject,
        rrcConnectionReject      RRCConnectionReject,
        rrcConnectionSetup      RRCConnectionSetup
    },
    messageClassExtension SEQUENCE {}
}
-- ASN1STOP
```

DL-DCCH-Message

The **DL-DCCH-Message** class is the set of RRC messages that may be sent from the E-UTRAN to the UE or from the E-UTRAN to the RN on the downlink DCCH logical channel.

```
-- ASN1START
DL-DCCH-Message ::= SEQUENCE {
    message     DL-DCCH-MessageType
}
DL-DCCH-MessageType ::= CHOICE {
    c1      CHOICE {
        csfbParametersResponseCDMA2000   CSFBParametersResponseCDMA2000,
        dlInformationTransfer  DLInformationTransfer,
        handoverFromEUTRAPreparationRequest  HandoverFromEUTRAPreparationRequest,
        mobilityFromEUTRACommand    MobilityFromEUTRACommand,
        rrcConnectionReconfiguration   RRCConnectionReconfiguration,
    }
}
-- ASN1STOP
```
-- ASN1STOP

-- UL-CCCH-Message

The **UL-CCCH-Message** class is the set of RRC messages that may be sent from the UE to the E-UTRAN on the uplink CCCH logical channel.

```asn1
UL-CCCH-Message ::= SEQUENCE {
  message     UL-CCCH-MessageType
}

UL-CCCH-MessageType ::= CHOICE {
  c1      CHOICE {
    rrcConnectionReestablishmentRequest  RRCConnectionReestablishmentRequest,
    rrcConnectionRequest     RRCConnectionRequest
  },
  messageClassExtension SEQUENCE {}  
}
-- ASN1STOP
```

-- UL-DCCCH-Message

The **UL-DCCCH-Message** class is the set of RRC messages that may be sent from the UE to the E-UTRAN or from the RN to the E-UTRAN on the uplink DCCH logical channel.

```asn1
UL-DCCCH-Message ::= SEQUENCE {
  message     UL-DCCCH-MessageType
}

UL-DCCCH-MessageType ::= CHOICE {
  c1      CHOICE {
    csfbParametersRequestCDMA2000   CSFBParametersRequestCDMA2000,
    measurementReport,            MeasurementReport,
    rrcConnectionReconfigurationComplete RRCConnectionReconfigurationComplete,
    rrcConnectionReestablishmentComplete RRCConnectionReestablishmentComplete,
    securityModeComplete     SecurityModeComplete,
    securityModeFailure      SecurityModeFailure,
    ueCapabilityInformation     UECapabilityInformation,
    ulHandoverPreparationTransfer   ULHandoverPreparationTransfer,
    ulInformationTransfer     ULInformationTransfer,
    counterCheckResponse     CounterCheckResponse,
    ueInformationResponse-r9     UEInformationResponse-r9,
    proximityIndication-r9      ProximityIndication-r9,
    rnReconfigurationComplete-r10   RNReconfigurationComplete-r10,
    mbmsCountingResponse-r10    MBMSCountingResponse-r10,
    interFreqRSTDMeasurementIndication-r10 InterFreqRSTDMeasurementIndication-r10
  },
  messageClassExtension CHOICE {
    c2       CHOICE {
      ueAssistanceInformation-r11   UEAssistanceInformation-r11,
      inDeviceCoexIndication-r11   InDeviceCoexIndication-r11,
      mbmsInterestIndication-r11   MBMSInterestIndication-r11,
      spare13 NULL,
    }
  }
-- ASN1STOP
```
6.2.2 Message definitions

– **CounterCheck**

The **CounterCheck** message is used by the E-UTRAN to indicate the current COUNT MSB values associated to each DRB and to request the UE to compare these to its COUNT MSB values and to report the comparison results to E-UTRAN.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

CounterCheck message

```asn1
CounterCheck ::=   SEQUENCE {
   rrc-TransactionIdentifier    RRC-TransactionIdentifier,
   criticalExtensions     CHOICE {
      c1         CHOICE {
         counterCheck-r8      CounterCheck-r8-IEs,
         spare3 NULL, spare2 NULL, spare1 NULL
      },
      criticalExtensionsFuture   SEQUENCE {}
   }

CounterCheck-r8-IEs ::= SEQUENCE {
   drb-CountMSB-InfoList    DRB-CountMSB-InfoList,
   nonCriticalExtension    CounterCheck-v8a0-IEs    OPTIONAL
}

CounterCheck-v8a0-IEs ::= SEQUENCE {
   lateNonCriticalExtension   OCTET STRING      OPTIONAL,
   nonCriticalExtension    SEQUENCE {}       OPTIONAL
}

DRB-CountMSB-InfoList ::=  SEQUENCE (SIZE (1..maxDRB)) OF DRB-CountMSB-Info

DRB-CountMSB-Info ::= SEQUENCE {
   drb-Identity    DRB-Identity,
   countMSB-Uplink    INTEGER(0..33554431),
   countMSB-Downlink    INTEGER(0..33554431)
}
```

-- ASN1STOP
CounterCheck field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count-MSB-Downlink</td>
<td>Indicates the value of 25 MSBs from downlink COUNT associated to this DRB.</td>
</tr>
<tr>
<td>count-MSB-Uplink</td>
<td>Indicates the value of 25 MSBs from uplink COUNT associated to this DRB.</td>
</tr>
<tr>
<td>drb-CountMSB-InfoList</td>
<td>Indicates the MSBs of the COUNT values of the DRBs.</td>
</tr>
</tbody>
</table>

CounterCheckResponse

The **CounterCheckResponse** message is used by the UE to respond to a **CounterCheck** message.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

CounterCheckResponse message

```asn
countercheckresponse ::= SEQUENCE {
  rrc-transactionidentifier RRC-TransactionIdentifier,
  criticalextensions CHOICE {
    countercheckresponse-r8 CounterCheckResponse-r8-IEs,
    criticalextensionsfuture SEQUENCE {}
  }
}
countercheckresponse-r8-IEs ::= SEQUENCE {
  drb-countinfoList DRB-CountInfoList,
  noncriticalextension CounterCheckResponse-v8a0-IEs OPTIONAL
}
countercheckresponse-v8a0-IEs ::= SEQUENCE {
  latecriticalextension OCTET STRING OPTIONAL,
  noncriticalextension SEQUENCE {} OPTIONAL
}
drb-countinfoList ::= SEQUENCE (SIZE (0..maxDRB)) OF DRB-CountInfo
drb-countinfo ::= SEQUENCE {
  drb-identity DRB-Identity,
  count-Uplink INTEGER(0..4294967295),
  count-Downlink INTEGER(0..4294967295)
}
```

CounterCheckResponse field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count-Downlink</td>
<td>Indicates the value of downlink COUNT associated to this DRB.</td>
</tr>
<tr>
<td>count-Uplink</td>
<td>Indicates the value of uplink COUNT associated to this DRB.</td>
</tr>
<tr>
<td>drb-CountInfoList</td>
<td>Indicates the COUNT values of the DRBs.</td>
</tr>
</tbody>
</table>

CSFBParametersRequestCDMA2000

The **CSFBParametersRequestCDMA2000** message is used by the UE to obtain the CDMA2000 1xRTT Parameters from the network. The UE needs these parameters to generate the CDMA2000 1xRTT Registration message used to register with the CDMA2000 1xRTT Network which is required to support CSFB to CDMA2000 1xRTT.
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

CSFBParametersRequestCDMA2000 message

```asn1
CSFBParametersRequestCDMA2000 ::= SEQUENCE {
  criticalExtensions     CHOICE {
    csfbParametersRequestCDMA2000-r8    CSFBParametersRequestCDMA2000-r8-IEs,
    criticalExtensionsFuture   SEQUENCE {}   
  }
}

CSFBParametersRequestCDMA2000-r8-IEs ::= SEQUENCE {
  nonCriticalExtension    CSFBParametersRequestCDMA2000-v8a0-IEs OPTIONAL }

CSFBParametersRequestCDMA2000-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
```

CSFBParametersResponseCDMA2000 message

The **CSFBParametersResponseCDMA2000** message is used to provide the CDMA2000 1xRTT Parameters to the UE so the UE can register with the CDMA2000 1xRTT Network to support CSFB to CDMA2000 1xRTT.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

```asn1
CSFBParametersResponseCDMA2000 ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,  
  criticalExtensions      CHOICE {
    csfbParametersResponseCDMA2000-r8  CSFBParametersResponseCDMA2000-r8-IEs,    
    criticalExtensionsFuture    SEQUENCE {}  
  }
}

CSFBParametersResponseCDMA2000-r8-IEs ::= SEQUENCE {
  rand        RAND-CDMA2000,    
  mobilityParameters     MobilityParametersCDMA2000,    
  noncriticalExtension   CSFBParametersResponseCDMA2000-v8a0-IEs OPTIONAL }

CSFBParametersResponseCDMA2000-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,    
  nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
```

-- DLInformationTransfer

The DLInformationTransfer message is used for the downlink transfer of NAS or non-3GPP dedicated information.

Signalling radio bearer: SRB2 or SRB1 (only if SRB2 not established yet. If SRB2 is suspended, E-UTRAN does not send this message until SRB2 is resumed.)

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

DLInformationTransfer message

```
DLInformationTransfer ::=   SEQUENCE {
   rrc-TransactionIdentifier   RRC-TransactionIdentifier,
   criticalExtensions     CHOICE {
      c1         CHOICE {
         dlInformationTransfer-r8   DLInformationTransfer-r8-IEs,
         spare3 NULL, spare2 NULL, spare1 NULL
      },
      criticalExtensionsFuture   SEQUENCE {}
   }
}

DLInformationTransfer-r8-IEs ::= SEQUENCE {
   dedicatedInfoType     CHOICE {
      dedicatedInfoNAS     DedicatedInfoNAS,
      dedicatedInfoCDMA2000-1XRTT   DedicatedInfoCDMA2000,
      dedicatedInfoCDMA2000-HRPD   DedicatedInfoCDMA2000
   },
   nonCriticalExtension    DLInformationTransfer-v8a0-IEs  OPTIONAL
}

DLInformationTransfer-v8a0-IEs ::= SEQUENCE {
   lateNonCriticalExtension   OCTET STRING      OPTIONAL,
   nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
```

-- ASN1STOP

-- HandoverFromEUTRAPreparationRequest (CDMA2000)

The HandoverFromEUTRAPreparationRequest message is used to trigger the handover preparation procedure with a CDMA2000 RAT. This message is also used to trigger a tunneled preparation procedure with a CDMA2000 1xRTT RAT to obtain traffic channel resources for the enhanced CS fallback to CDMA2000 1xRTT, which may also involve a concurrent preparation for handover to CDMA2000 HRPD. Also, this message is used to trigger the dual Rx/Tx redirection procedure with a CDMA2000 1xRTT RAT.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

HandoverFromEUTRAPreparationRequest message

```
HandoverFromEUTRAPreparationRequest ::= SEQUENCE {
   rrc-TransactionIdentifier   RRC-TransactionIdentifier,
   criticalExtensions     CHOICE {
      c1         CHOICE {
         handoverFromEUTRAPreparationRequest-r8   HandoverFromEUTRAPreparationRequest-r8-IEs,
      },
      criticalExtensionsFuture   SEQUENCE {}
   }
}
```

-- ASN1STOP
HandoverFromEUTRAPreparationRequest-r8-IEs ::= SEQUENCE {
 cdma2000-Type CDMA2000-Type,
 rand RAND-CDMA2000 OPTIONAL, -- Cond cdma2000-Type
 mobilityParameters MobilityParametersCDMA2000 OPTIONAL, -- Cond cdma2000-Type
 nonCriticalExtension HandoverFromEUTRAPreparationRequest-v890-IEs OPTIONAL
}

HandoverFromEUTRAPreparationRequest-v890-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL, -- Cond cdma2000-Type
 nonCriticalExtension HandoverFromEUTRAPreparationRequest-v920-IEs OPTIONAL
}

HandoverFromEUTRAPreparationRequest-v920-IEs ::= SEQUENCE {
 concurrPrepCDMA2000-HRPD-r9 BOOLEAN OPTIONAL, -- Cond cdma2000-Type
 nonCriticalExtension HandoverFromEUTRAPreparationRequest-v1020-IEs OPTIONAL
}

HandoverFromEUTRAPreparationRequest-v1020-IEs ::= SEQUENCE {
 dualRxTxRedirectIndicator-r10 ENUMERATED {true} OPTIONAL, -- Cond cdma2000-1XRTT
 redirectCarrierCDMA2000-1XRTT-r10 CarrierFreqCDMA2000 OPTIONAL, -- Cond dualRxTxRedirect
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

HandoverFromEUTRAPreparationRequest field descriptions

concurrPrepCDMA2000-HRPD
Value TRUE indicates that upper layers should initiate concurrent preparation for handover to CDMA2000 HRPD in addition to preparation for enhanced CS fallback to CDMA2000 1xRTT.

dualRxTxRedirectIndicator
Value TRUE indicates that the second radio of the dual Rx/Tx UE is being redirected to CDMA2000 1xRTT [51].

redirectCarrierCDMA2000-1XRTT
Used to indicate the CDMA2000 1xRTT carrier frequency where the UE is being redirected to.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdma2000-1XRTT</td>
<td>The field is optionally present, need ON, if the cdma2000-Type = type1XRTT; otherwise it is not present.</td>
</tr>
<tr>
<td>cdma2000-Type</td>
<td>The field is mandatory present if the cdma2000-Type = type1XRTT; otherwise it is not present.</td>
</tr>
<tr>
<td>dualRxTxRedirect</td>
<td>The field is optionally present, need ON, if dualRxTxRedirectIndicator is present; otherwise it is not present.</td>
</tr>
</tbody>
</table>

InDeviceCoexIndication

The **InDeviceCoexIndication** message is used to inform E-UTRAN about IDC problems which can not be solved by the UE itself, as well as to provide information that may assist E-UTRAN when resolving these problems.

- **Signalling radio bearer**: SRB1
- **RLC-SAP**: AM
- **Logical channel**: DCCH
- **Direction**: UE to E-UTRAN

InDeviceCoexIndication message

```
InDeviceCoexIndication-r11 ::= SEQUENCE {
  criticalExtensions CHOICE {
    c1
  }
}
```

InDeviceCoexIndication message

InDeviceCoexIndication-r11-IEs ::= SEQUENCE {
 affectedCarrierFreqList-r11 AffectedCarrierFreqList-r11 OPTIONAL,
 tdm-AssistanceInfo-r11 TDM-AssistanceInfo-r11 OPTIONAL,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

AffectedCarrierFreqList-r11 ::= SEQUENCE (SIZE (1..maxFreqIDC-r11)) OF AffectedCarrierFreq-r11

AffectedCarrierFreq-r11 ::= SEQUENCE {
 carrierFreq-r11 MeasObjectId,
 interferenceDirection-r11 ENUMERATED {eutra, other, both, spare}
}

TDM-AssistanceInfo-r11 ::= CHOICE {
 drx-AssistanceInfo-r11 SEQUENCE {
 drx-CycleLength-r11 ENUMERATED {sf40, sf64, sf80, sf128, sf160,
 sf256, spare2, spare1},
 drx-Offset-r11 INTEGER (0..255) OPTIONAL,
 drx-ActiveTime-r11 ENUMERATED {sf20, sf30, sf40, sf60, sf80,
 sf100, spare2, spare1}
 },
 idc-SubframePatternList-r11 IDC-SubframePatternList-r11,
 ...
}

IDC-SubframePatternList-r11 ::= SEQUENCE (SIZE (1..maxSubframePatternIDC-r11)) OF IDC-SubframePattern-r11

IDC-SubframePattern-r11 ::= CHOICE {
 subframePatternFDD-r11 BIT STRING (SIZE (4)),
 subframePatternTDD-r11 CHOICE {
 subframeConfig0-r11 BIT STRING (SIZE (70)),
 subframeConfig1-5-r11 BIT STRING (SIZE (10)),
 subframeConfig6-r11 BIT STRING (SIZE (60))
 },
 ...
}

-- ASN1STOP
InDeviceCoexIndication field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>affectedCarrierFreqList</td>
<td>List of E-UTRA carrier frequencies affected by IDC problems.</td>
</tr>
<tr>
<td>drx-ActiveTime</td>
<td>Indicates the desired active time that the E-UTRAN is recommended to configure. Value in number of subframes. Value sf20 corresponds to 20 subframes, sf30 corresponds to 30 subframes and so on.</td>
</tr>
<tr>
<td>drx-CycleLength</td>
<td>Indicates the desired DRX cycle length that the E-UTRAN is recommended to configure. Value in number of subframes. Value sf40 corresponds to 40 subframes, sf64 corresponds to 64 subframes and so on.</td>
</tr>
<tr>
<td>drx-Offset</td>
<td>Indicates the desired DRX starting offset that the E-UTRAN is recommended to configure. The UE shall set the value of drx-Offset smaller than the value of drx-CycleLength. The starting frame and subframe satisfy the relation: ([SFN \times 10 + \text{subframe number}}) modulo (drx-CycleLength) = drx-Offset.</td>
</tr>
<tr>
<td>idc-SubframePatternList</td>
<td>A list of one or more subframe patterns indicating which HARQ process E-UTRAN is requested to abstain from using. Value 0 indicates that E-UTRAN is requested to abstain from using the subframe. For FDD, the radio frame in which the pattern starts (i.e. the radio frame in which the first/leftmost bit of the subframePatternFDD corresponds to subframe #0) occurs when SFN mod 2 = 0. For TDD, the first/leftmost bit corresponds to the subframe #0 of the radio frame satisfying SFN mod x = 0, where x is the size of the bit string divided by 10. The UE shall indicate a subframe pattern that follows HARQ time line, as specified in TS 36.213 [23], i.e. if a subframe is set to 1 in the subframe pattern, also the corresponding subframes carrying the potential UL grant [23, 8.0], the UL HARQ retransmission [23, 8.0] and the DL/UL HARQ feedback [23, 7.3, 8.3 and 9.1.2] shall be set to 1.</td>
</tr>
<tr>
<td>interferenceDirection</td>
<td>Indicates the direction of IDC interference. Value eutra indicates that only E-UTRA is victim of IDC interference, value other indicates that only another radio is victim of IDC interference and value both indicates that both E-UTRA and another radio are victims of IDC interference. The other radio refers to either the ISM radio or GNSS (see 3GPP TR 36.816 [63]).</td>
</tr>
</tbody>
</table>

InterFreqRSTDMeasurementIndication

The InterFreqRSTDMeasurementIndication message is used to indicate that the UE is going to either start or stop OTDOA inter-frequency RSTD measurement which requires measurement gaps as specified in TS 36.133 [16, 8.1.2.6].

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

InterFreqRSTDMeasurementIndication message

-- ASN1START

InterFreqRSTDMeasurementIndication-r10 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 InterFreqRSTDMeasurementIndication-r10-IEs
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

InterFreqRSTDMeasurementIndication-r10-IEs ::= SEQUENCE {
 rstd-InterFreqIndication-r10 CHOICE {
 start SEQUENCE {
 rstd-InterFreqInfoList-r10 RSTD-InterFreqInfoList-r10
 },
 stop NULL
 },
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

RSTD-InterFreqInfoList-r10 ::= SEQUENCE (SIZE(1..maxRSTD-Freq-r10)) OF RSTD-InterFreqInfo-r10

RSTD-InterFreqInfo-r10 ::= SEQUENCE {
carrierFreq-r10 ARFCN-ValueEUTRA,
measPRS-Offset-r10 INTEGER (0..39),
...,
[[carrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL]]
-- ASN1STOP

InterFreqRSTDMeasurementIndication field descriptions

carrierFreq
The EARFCN value of the carrier received from upper layers for which the UE needs to perform the inter-frequency RSTD measurements. If the UE includes `carrierFreq-v1090`, it shall set `carrierFreq-r10` to `maxEARFCN`.

measPRS-Offset
Indicates the requested gap offset for performing inter-frequency RSTD measurements. It is the smallest subframe offset from the beginning of subframe 0 of SFN=0 of the serving cell of the requested gap for measuring PRS positioning occasions in the carrier frequency `carrierFreq` for which the UE needs to perform the inter-frequency RSTD measurements. The PRS positioning occasion information is received from upper layers. The value of `measPRS-Offset` is obtained by mapping the starting subframe of the PRS positioning occasion in the measured cell onto the corresponding subframe in the serving cell and is calculated as the serving cell’s number of subframes from SFN=0 mod 40. The UE shall take into account any additional time required by the UE to start PRS measurements on the other carrier when it does this mapping for determining the `measPRS-Offset`. NOTE: Figure 6.2.2-1 illustrates the `measPRS-Offset` field.

rstd-InterFreqIndication
Indicates the inter-frequency RSTD measurement action, i.e. the UE is going to start or stop inter-frequency RSTD measurement.

LoggedMeasurementConfiguration
The `LoggedMeasurementConfiguration` message is used by E-UTRAN to configure the UE to perform logging of measurement results while in RRC_IDLE and to perform logging of measurement results for MBSFN while in both RRC_IDLE and RRC_CONNECTED. It is used to transfer the logged measurement configuration for network performance optimisation, see TS 37.320 [60].

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE
LoggedMeasurementConfiguration message

-- ASN1START

LoggedMeasurementConfiguration-r10 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 loggedMeasurementConfiguration-r10 LoggedMeasurementConfiguration-r10-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

LoggedMeasurementConfiguration-r10-IEs ::= SEQUENCE {
 traceReference-r10 TraceReference-r10,
 traceRecordingSessionRef-r10 OCTET STRING {SIZE (2)},
 tce-Id-r10 OCTET STRING {SIZE (1)},
 absoluteTimeInfo-r10 AbsoluteTimeInfo-r10,
 areaConfiguration-r10 AreaConfiguration-r10 OPTIONAL, -- Need OR
 loggingDuration-r10 LoggingDuration-r10,
 loggingInterval-r10 LoggingInterval-r10,
 nonCriticalExtension LoggedMeasurementConfiguration-v1080-IEs OPTIONAL
}

LoggedMeasurementConfiguration-v1080-IEs ::= SEQUENCE {
 lateNonCriticalExtension-r10 OCTET STRING OPTIONAL,
 nonCriticalExtension LoggedMeasurementConfiguration-v1130-IEs OPTIONAL
}

LoggedMeasurementConfiguration-v1130-IEs ::= SEQUENCE {
 plmn-IdentityList-r11 PLMN-IdentityList3-r11 OPTIONAL, -- Need OR
 areaConfiguration-v1130 AreaConfiguration-v1130 OPTIONAL, -- Need OR
 nonCriticalExtension LoggedMeasurementConfiguration-v12xy-IEs OPTIONAL
}

LoggedMeasurementConfiguration-v12xy-IEs ::= SEQUENCE {
 targetMBSFN-AreaList-r12 TargetMBSFN-AreaList-r12 OPTIONAL, -- Need OR
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

TargetMBSFN-AreaList-r12 ::= SEQUENCE (SIZE (0..8)) OF TargetMBSFN-Area-r12

TargetMBSFN-Area-r12 ::= SEQUENCE {
 mbsfn-AreaId-r12 INTEGER (0..255) OPTIONAL, -- Need OR
 carrierFreq-r12 ARFCN-ValueEUTRA-r9
}

-- ASN1STOP

LoggedMeasurementConfiguration field descriptions

absoluteTimeInfo
Indicates the absolute time in the current cell.

areaConfiguration
Used to restrict the area in which the UE performs measurement logging to cells broadcasting either one of the included cell identities or one of the included tracking area codes/identities.

plmn-IdentityList
Indicates a set of PLMNs defining when the UE performs measurement logging as well as the associated status indication and information retrieval i.e. the UE performs these actions when the RPLMN is part of this set of PLMNs.

targetMBSFN-AreaList
Used to indicate logging of MBSFN measurements and further restrict the area and frequencies for which the UE performs measurement logging for MBSFN. If both MBSFN area id and carrier frequency are present, a specific MBSFN area is indicated. If only carrier frequency is present, all MBSFN areas on that carrier frequency are indicated. If there is no entry in the list, any MBSFN area is indicated.

tce-Id
Parameter Trace Collection Entity Id: See TS 32.422 [58].

traceRecordingSessionRef
Parameter Trace Recording Session Reference: See TS 32.422 [58].
MasterInformationBlock

The **MasterInformationBlock** includes the system information transmitted on BCH.

- **Signalling radio bearer:** N/A
- **RLC-SAP:** TM
- **Logical channel:** BCCH
- **Direction:** E-UTRAN to UE

MasterInformationBlock

MasterInformationBlock field descriptions

- **dl-Bandwidth**
 Parameter: transmission bandwidth configuration, NRB in downlink, see TS 36.101 [42, table 5.6-1]. n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on.

- **systemFrameNumber**
 Defines the 8 most significant bits of the SFN. As indicated in TS 36.211 [21, 6.6.1], the 2 least significant bits of the SFN are acquired implicitly in the P-BCH decoding, i.e. timing of 40ms P-BCH TTI indicates 2 least significant bits (within 40ms P-BCH TTI, the first radio frame: 00, the second radio frame: 01, the third radio frame: 10, the last radio frame: 11). One value applies for all serving cells (the associated functionality is common i.e. not performed independently for each cell).

MBMSCountingRequest

The **MBMSCountingRequest** message is used by E-UTRAN to count the UEs that are receiving or interested to receive specific MBMS services.

- **Signalling radio bearer:** N/A
- **RLC-SAP:** UM
- **Logical channel:** MCCH
- **Direction:** E-UTRAN to UE

MBMSCountingRequest message

- **MBMSCountingRequest-r10**
  ```
  MBMSCountingRequest-r10 ::=  SEQUENCE {
    countingRequestList-r10   CountingRequestList-r10,  
    lateNonCriticalExtension  OCTET STRING      OPTIONAL,  
    nonCriticalExtension   SEQUENCE {}       OPTIONAL
  }
  CountingRequestList-r10 ::= SEQUENCE {SIZE {1..maxServiceCount}) OF CountingRequestInfo-r10
  CountingRequestInfo-r10 ::=  SEQUENCE {
    tmgi-r10       TMGI-r9,  
    ...
  }
  ```
The **MBMSCountingResponse** message is used by the UE to respond to an **MBMSCountingRequest** message.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

MBMSCountingResponse message

```asn1
MBMSCountingResponse-r10 ::= SEQUENCE {
  criticalExtensions     CHOICE {
    c1         CHOICE {
      countingResponse-r10    MBMSCountingResponse-r10-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
}
MBMSCountingResponse-r10-IEs ::= SEQUENCE {
  mbsfn-AreaIndex-r10    INTEGER (0..maxMBSFN-Area-1)       OPTIONAL,
  countingResponseList-r10  CountingResponseList-r10   OPTIONAL,
  lateNonCriticalExtension  OCTET STRING      OPTIONAL,
  nonCriticalExtension   SEQUENCE {}       OPTIONAL
}
CountingResponseList-r10 ::=  SEQUENCE (SIZE (1..maxServiceCount)) OF CountingResponseInfo-r10
CountingResponseInfo-r10 ::=  SEQUENCE {
  countingResponseService-r10 INTEGER (0..maxServiceCount-1),
  ...
}
```

MBMSCountingResponse field descriptions

countingResponseList

List of MBMS services which the UE is receiving or interested to receive. Value 0 for field **countingResponseService** corresponds to the first entry in **countingRequestList** within **MBMSCountingRequest**, value 1 corresponds to the second entry in this list and so on.

mbsfn-AreaIndex

Index of the entry in field **mbsfn-AreaInfoList** within **SystemInformationBlockType13**. Value 0 corresponds to the first entry in **mbsfn-AreaInfoList** within **SystemInformationBlockType13**, value 1 corresponds to the second entry in this list and so on.
-- MBMSInterestIndication

The MBMSInterestIndication message is used to inform E-UTRAN that the UE is receiving/interested to receive or no longer receiving/interested to receive MBMS via an MRB.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

MBMSInterestIndication

field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mbms-FreqList</td>
<td>List of MBMS frequencies on which the UE is receiving or interested to receive MBMS via an MRB.</td>
</tr>
<tr>
<td>mbms-Priority</td>
<td>Indicates whether the UE prioritises MBMS reception above unicast reception. The field is present (i.e. value true), if the UE prioritises reception of all listed MBMS frequencies above reception of any of the unicast bearers. Otherwise the field is absent.</td>
</tr>
</tbody>
</table>

-- ASN1START

MBMSInterestIndication-r11 ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 interestIndication-r11 MBMSInterestIndication-r11-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

MBMSInterestIndication-r11-IEs ::= SEQUENCE {
 mbms-FreqList-r11 CarrierFreqListMBMS-r11 OPTIONAL,
 mbms-Priority-r11 ENUMERATED {true} OPTIONAL,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

-- MBMSAreaConfiguration

The MBMSAreaConfiguration message contains the MBMS control information applicable for an MBSFN area. E-UTRAN configures an MCCH for each MBSFN area i.e. the MCCH identifies the MBSFN area.

Signalling radio bearer: N/A

RLC-SAP: UM

Logical channel: MCCH

Direction: E-UTRAN to UE

MBMSAreaConfiguration

message

-- ASN1START

MBMSAreaConfiguration-r9 ::= SEQUENCE {
 commonSF-Alloc-r9, CommonSF-AllocPatternList-r9,
 commonSF-AllocPeriod-r9 ENUMERATED {
 rf4, rf8, rf16, rf32, rf64, rf128, rf256},
 pmch-InfoList-r9 PMCH-InfoList-r9,
 nonCriticalExtension MBMSAreaConfiguration-v930-IEs OPTIONAL
}

-- ASN1STOP
MBSFNAreaConfiguration-v930-IES ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension MBSFNAreaConfiguration-v12xy-IES OPTIONAL
}

MBSFNAreaConfiguration-v12xy-IES ::= SEQUENCE {
 pmch-InfoListExt-r12 PMCH-InfoListExt-r12 OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

CommonSF-AllocPatternList-r9 ::= SEQUENCE (SIZE (1..maxMBSFN-Allocations)) OF MBSFN-SubframeConfig

--- ASN1STOP

MBSFNAreaConfiguration field descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>commonSF-Alloc</td>
<td>Indicates the subframes allocated to the MBSFN area</td>
</tr>
<tr>
<td>commonSF-AllocPeriod</td>
<td>Indicates the period during which resources corresponding with field commonSF-Alloc are divided between the (P)MCH that are configured for this MBSFN area. The subframe allocation patterns, as defined by commonSF-Alloc, repeat continuously during this period. Value r4 corresponds to 4 radio frames, r8 corresponds to 8 radio frames and so on. The commonSF-AllocPeriod starts in the radio frames for which: SFN mod commonSF-AllocPeriod = 0.</td>
</tr>
</tbody>
</table>

--- MeasurementReport

The *MeasurementReport* message is used for the indication of measurement results.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: UE to E-UTRAN

--- MeasurementReport message

--- MobilityFromEUTRACommand

The *MobilityFromEUTRACommand* message is used to command handover or a cell change from E-UTRA to another RAT (3GPP or non-3GPP), or enhanced CS fallback to CDMA2000 1xRTT.
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

MobilityFromEUTRACommand message

```asn1
-- ASN1START

MobilityFromEUTRACommand ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,
  criticalExtensions CHOICE {
    c     CHOICE{
      mobilityFromEUTRACommand-r8 MobilityFromEUTRACommand-r8-IEs,
      mobilityFromEUTRACommand-r9 MobilityFromEUTRACommand-r9-IEs,
      spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture SEQUENCE {}
  }
}

MobilityFromEUTRACommand-r8-IEs ::= SEQUENCE {
  cs-FallbackIndicator BOOLEAN,
  purpose CHOICE{
    handover Handover,
    cellChangeOrder CellChangeOrder
  },
  nonCriticalExtension MobilityFromEUTRACommand-v8a0-IEs OPTIONAL
}

MobilityFromEUTRACommand-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension MobilityFromEUTRACommand-v8d0-IEs OPTIONAL
}

MobilityFromEUTRACommand-v8d0-IEs ::= SEQUENCE {
  bandIndicator BandIndicatorGERAN OPTIONAL, -- Cond GERAN
  nonCriticalExtension SEQUENCE {} OPTIONAL
}

MobilityFromEUTRACommand-r9-IEs ::= SEQUENCE {
  cs-FallbackIndicator BOOLEAN,
  purpose CHOICE{
    handover Handover,
    cellChangeOrder CellChangeOrder,
    e-CSFB-r9 E-CSFB-r9,
    ...
  },
  nonCriticalExtension MobilityFromEUTRACommand-v930-IEs OPTIONAL
}

MobilityFromEUTRACommand-v930-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  nonCriticalExtension MobilityFromEUTRACommand-v960-IEs OPTIONAL
}

MobilityFromEUTRACommand-v960-IEs ::= SEQUENCE {
  bandIndicator BandIndicatorGERAN OPTIONAL, -- Cond GERAN
  nonCriticalExtension SEQUENCE {} OPTIONAL
}

Handover ::= SEQUENCE {
  targetRAT-Type ENUMERATED {
    utra, geran, cdma2000-1XRTT, cdma2000-HRPD,
    spare4, spare3, spare2, spare1, ...},
  targetRAT-MessageContainer OCTET STRING,
  nas-SecurityParamFromEUTRA OCTET STRING (SIZE (1)) OPTIONAL, -- Cond UTRANGERAN
  systemInformation SI-OrPSI-GERAN OPTIONAL -- Cond PSHO
}

CellChangeOrder ::= SEQUENCE {
  t304 ENUMERATED {
    ms100, ms200, ms500, ms1000,
    ms200, ms4000, ms8000, spare1},
-- ASN1END
```
MobilityFromEUTRACommand field descriptions

bandIndicator
Indicates how to interpret the ARFCN of the BCCH carrier.

carrierFreq
contains the carrier frequency of the target GERAN cell.

cs-FallbackIndicator
Value true indicates that the CS Fallback procedure to UTRAN or GERAN is triggered.

messageContCDMA2000-1XRTT
This field contains a message specified in CDMA2000 1xRTT standard that either tells the UE to move to specific 1xRTT target cell(s) or indicates a failure to allocate resources for the enhanced CS fallback to CDMA2000 1xRTT.

messageContCDMA2000-HRPD
This field contains a message specified in CDMA2000 HRPD standard that either tells the UE to move to specific HRPD target cell(s) or indicates a failure to allocate resources for the handover to CDMA2000 HRPD.

mobilityCDMA2000-HRPD
This field indicates whether or not mobility to CDMA2000 HRPD is to be performed by the UE and it also indicates the type of mobility to CDMA2000 HRPD that is to be performed; If this field is not present the UE shall perform only the enhanced CS fallback to CDMA2000 1xRTT.

nas-SecurityParamFromEUTRA
Used to deliver the key synchronisation and Key freshness for the E-UTRAN to UTRAN handovers as specified in TS 33.401. The content of the parameter is defined in TS24.301.

networkControlOrder
Parameter NETWORK_CONTROL_ORDER in TS 44.060 [36].

purpose
Indicates which type of mobility procedure the UE is requested to perform. EUTRAN always applies value e-CSFB in case of enhanced CS fallback to CDMA2000 (e.g. also when that procedure results in handover to CDMA2000 1XRTT only, in handover to CDMA2000 HRPD only or in redirection to CDMA2000 HRPD only).

redirectCarrierCDMA2000-HRPD
The redirectCarrierCDMA2000-HRPD indicates a CDMA2000 carrier frequency and is used to redirect the UE to a HRPD carrier frequency.

SystemInfoListGERAN
If purpose = CellChangeOrder and if the field is not present, the UE has to acquire SI/PSI from the GERAN cell.

t304
Timer T304 as described in section 7.3. Value ms100 corresponds with 100 ms, ms200 corresponds with 200 ms and so on.

targetRAT-Type
Indicates the target RAT type.

targetRAT-MessageContainer
The field contains a message specified in another standard, as indicated by the targetRAT-Type, and carries information about the target cell identifier(s) and radio parameters relevant for the target radio access technology. NOTE 1.

A complete message is included, as specified in the other standard.
Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>concHO</td>
<td>The field is mandatory present if the <code>mobilityCDMA2000-HRPD</code> is set to "handover"; otherwise the field is optional present, need ON.</td>
</tr>
<tr>
<td>concRedir</td>
<td>The field is mandatory present if the <code>mobilityCDMA2000-HRPD</code> is set to "redirection"; otherwise the field is not present.</td>
</tr>
<tr>
<td>GERAN</td>
<td>The field should be present if the <code>purpose</code> is set to "handover" and the <code>targetRAT-Type</code> is set to "geran"; otherwise the field is not present.</td>
</tr>
<tr>
<td>PSHO</td>
<td>The field is mandatory present in case of PS handover toward GERAN; otherwise the field is optionally present, but not used by the UE.</td>
</tr>
<tr>
<td>UTRAGERAN</td>
<td>The field is mandatory present if the <code>targetRAT-Type</code> is set to "utra" or "geran"; otherwise the field is not present.</td>
</tr>
</tbody>
</table>

NOTE 1
The correspondence between the value of the `targetRAT-Type`, the standard to apply and the message contained within the `targetRAT-MessageContainer` is shown in the table below:

<table>
<thead>
<tr>
<th>targetRAT-Type</th>
<th>Standard to apply</th>
<th>targetRAT-MessageContainer</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdma2000-1XRTT</td>
<td>C.S0001 or later, C.S0007 or later, C.S0008 or later</td>
<td>HANOVER COMMAND</td>
</tr>
<tr>
<td>cdma2000-HRPD</td>
<td>C.S0024 or later</td>
<td>PS HANDOVER COMMAND</td>
</tr>
<tr>
<td>geran</td>
<td>GSM TS 04.18, version 8.5.0 or later, or 3GPP TS 44.018 (clause 9.1.15) 3GPP TS 44.060, version 6.13.0 or later (clause 11.2.43) 3GPP TS 44.060, version 7.6.0 or later (clause 11.2.46)</td>
<td>HANOVER COMMAND</td>
</tr>
<tr>
<td>utra</td>
<td>3GPP TS 25.331 (clause 10.2.16a)</td>
<td>HANOVER TO UTRAN COMMAND</td>
</tr>
</tbody>
</table>

Paging

The `Paging` message is used for the notification of one or more UEs.

- Signalling radio bearer: N/A
- RLC-SAP: TM
- Logical channel: PCCH
- Direction: E-UTRAN to UE

Paging message

```asn1
Paging ::= SEQUENCE {
  pagingRecordList    PagingRecordList      OPTIONAL, -- Need ON
  systemInfoModification   ENUMERATED (true)     OPTIONAL, -- Need ON
  etws-Indication     ENUMERATED (true)     OPTIONAL, -- Need ON
  nonCriticalExtension   Paging-v890-IEs      OPTIONAL
}

Paging-v890-IEs ::=   SEQUENCE {
  lateNonCriticalExtension  OCTET STRING       OPTIONAL,
  nonCriticalExtension   Paging-v920-IEs       OPTIONAL
}

Paging-v920-IEs ::=   SEQUENCE {
  cmas-Indication-r9    ENUMERATED (true)     OPTIONAL, -- Need ON
  nonCriticalExtension    Paging-v1130-IEs    OPTIONAL
}

Paging-v1130-IEs ::=   SEQUENCE {
  eab-ParamModification-r11  ENUMERATED (true)     OPTIONAL, -- Need ON
  noncriticalExtension   SEQUENCE ()       OPTIONAL
}

PagingRecordList ::=    SEQUENCE (SIZE (1..maxPageRec)) OF PagingRecord
```
PagingRecord ::= SEQUENCE {
 ue-Identity PagingUE-Identity,
 cn-Domain ENUMERATED {ps, cs},
 ...
}

PagingUE-Identity ::= CHOICE {
 s-TMSI S-TMSI,
 imsi IMSI,
 ...
}

IMSI ::= SEQUENCE (SIZE (6..21)) OF IMSI-Digit

IMSI-Digit ::= INTEGER (0..9)

Paging field descriptions

cmas-Indication
If present: indication of a CMAS notification.

cn-Domain
Indicates the origin of paging.

eab-ParamModification
If present: indication of an EAB parameters (SIB14) modification.

etws-Indication
If present: indication of an ETWS primary notification and/or ETWS secondary notification.

imsi
The International Mobile Subscriber Identity, a globally unique permanent subscriber identity, see TS 23.003 [27]. The first element contains the first IMSI digit, the second element contains the second IMSI digit and so on.

systemInfoModification
If present: indication of a BCCH modification other than SIB10, SIB11, SIB12 and SIB14.

ue-Identity
Provides the NAS identity of the UE that is being paged.

ProximityIndication

The **ProximityIndication** message is used to indicate that the UE is entering or leaving the proximity of one or more CSG member cell(s).

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: UE to E-UTRAN

ProximityIndication message

```asn1
ProximityIndication-r9 ::= SEQUENCE {
  criticalExtensions     CHOICE {
    c1                     CHOICE {
      proximityIndication-r9    ProximityIndication-r9-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
  type-r9                  ENUMERATED {entering, leaving},
  carrierFreq-r9           CHOICE {
    eutra-r9        ARFCN-ValueEUTRA,
    utra-r9         ARFCN-ValueUTRA,
    ...
    eutra2-v9e0     ARFCN-ValueEUTRA-v9e0
  },
...
```
ProximityIndication field descriptions

carrierFreq
Indicates the RAT and frequency of the CSG member cell(s), for which the proximity indication is sent. For E-UTRA and UTRA frequencies, the UE shall set the ARFCN according to a band it previously considered suitable for accessing (one of) the CSG member cell(s), for which the proximity indication is sent.

type
Used to indicate whether the UE is entering or leaving the proximity of CSG member cell(s).

RNReconfiguration

The **RNReconfiguration** is a command to modify the RN subframe configuration and/or to convey changed system information.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: E-UTRAN to RN

RNReconfiguration message

```asn1
RNReconfiguration-r10 ::= SEQUENCE {
  rrc-TransactionIdentifier  RRC-TransactionIdentifier,
  criticalExtensions    CHOICE {
    c1        CHOICE {
      rnReconfiguration-r10  RNReconfiguration-r10-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture  SEQUENCE {}\n  }
}
RNReconfiguration-r10-IEs ::= SEQUENCE {
  rn-SystemInfo-r10     RN-SystemInfo-r10   OPTIONAL, -- Need ON
  rn-SubframeConfig-r10    RN-SubframeConfig-r10   OPTIONAL, -- Need ON
  lateNonCriticalExtension   OCTET STRING     OPTIONAL,
  nonCriticalExtension    SEQUENCE {}      OPTIONAL
}
RN-SystemInfo-r10 ::= SEQUENCE {
  systemInformationBlockType1-r10  OCTET STRING (CONTAINING SystemInformationBlockType1) OPTIONAL, -- Need ON
  systemInformationBlockType2-r10  SystemInformationBlockType2   OPTIONAL, -- Need ON
  ...\n}
```

RNReconfigurationComplete

The **RNReconfigurationComplete** message is used to confirm the successful completion of an RN reconfiguration.
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: RN to E-UTRAN

RNReconfigurationComplete message

```asn1
RNReconfigurationComplete-r10 ::= SEQUENCE {
   rrc-TransactionIdentifier    RRC-TransactionIdentifier,
   criticalExtensions      CHOICE {
      c1          CHOICE{
         rnReconfigurationComplete-r10   RNReconfigurationComplete-r10-IEs,
         spare3 NULL, spare2 NULL, spare1 NULL
      },
      criticalExtensionsFuture    SEQUENCE {}
   }
}

RNReconfigurationComplete-r10-IEs ::= SEQUENCE {
   lateNonCriticalExtension    OCTET STRING    OPTIONAL,
   nonCriticalExtension     SEQUENCE {}     OPTIONAL
}
```

-- ASN1STOP

RRCConnectionReconfiguration

The `RRCConnectionReconfiguration` message is the command to modify an RRC connection. It may convey information for measurement configuration, mobility control, radio resource configuration (including RBs, MAC main configuration and physical channel configuration) including any associated dedicated NAS information and security configuration.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E-UTRAN to UE

RRCConnectionReconfiguration message

```asn1
RRCConnectionReconfiguration ::= SEQUENCE {
   rrc-TransactionIdentifier   RRC-TransactionIdentifier,
   criticalExtensions     CHOICE {
      c1         CHOICE{
         rrcConnectionReconfiguration-r8  RRCConnectionReconfiguration-r8-IEs,
         spare7 NULL,
         spare6 NULL, spare5 NULL, spare4 NULL,
         spare3 NULL, spare2 NULL, spare1 NULL
      },
      criticalExtensionsFuture   SEQUENCE {}
   }
}

RRCConnectionReconfiguration-r8-IEs ::= SEQUENCE {
   measConfig       MeasConfig      OPTIONAL, -- Need ON
   mobilityControlInfo     MobilityControlInfo    OPTIONAL, -- Cond HO
   dedicatedInfoNASList    SEQUENCE (SIZE(1..maxDRB)) OF
      DedicatedInfoNAS   OPTIONAL, -- Cond nonHO
   radioResourceConfigDedicated RadioResourceConfigDedicated OPTIONAL, -- Cond HO-toEUTRA
   securityConfigHO     SecurityConfigHO    OPTIONAL, -- Cond HO
   nonCriticalExtension    RRCConnectionReconfiguration-v890-IEs OPTIONAL
}
```

-- ASN1STOP
RRCConnectionReconfiguration-v890-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension RRCConnectionReconfiguration-v920-IEs OPTIONAL
}

RRCConnectionReconfiguration-v920-IEs ::= SEQUENCE {
 otherConfig-r9 OtherConfig-r9 OPTIONAL, -- Need ON
 fullConfig-r9 ENUMERATED {true} OPTIONAL, -- Cond HO-
 Reestab nonCriticalExtension RRCConnectionReconfiguration-v1020-IEs OPTIONAL
}

RRCConnectionReconfiguration-v1020-IEs ::= SEQUENCE {
 sCellToReleaseList-r10 SCellToReleaseList-r10 OPTIONAL, -- Need ON
 sCellToAddModList-r10 SCellToAddModList-r10 OPTIONAL, -- Need ON
 nonCriticalExtension RRCConnectionReconfiguration-v1130-IEs OPTIONAL
}

RRCConnectionReconfiguration-v1130-IEs ::= SEQUENCE {
 systemInformationBlockType1Dedicated-r11 OCTET STRING (CONTAINING SystemInformationBlockType1) OPTIONAL, -- Need ON
 nonCriticalExtension RRCConnectionReconfiguration-v12xy-IEs OPTIONAL -- Need ON
}

RRCConnectionReconfiguration-v12xy-IEs ::= SEQUENCE {
 wlan-OffloadDedicated-r12 CHOICE {
 release NULL,
 setup SEQUENCE {
 wlan-OffloadConfig-r12 WLAN-OffloadConfig-r12,
 t350-r12 ENUMERATED {min5, min10, min20, min30, min60,
 min120, min180, spare1} OPTIONAL -- Need ON
 }
 }
}

SCellToAddModList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellToAddMod-r10

SCellToAddMod-r10 ::= SEQUENCE {
 sCellIndex-r10 SCellIndex-r10,
 cellIdentification-r10 SEQUENCE {
 physCellId-r10 PhysCellId,
 dl-CarrierFreq-r10 ARFCN-ValueEUTRA OPTIONAL, -- Cond SCellAdd
 radioResourceConfigDedicatedSCell-r10 RadioResourceConfigDedicatedSCell-r10 OPTIONAL, -- Cond SCellAdd
 ...
 }
}

SCellToReleaseList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellIndex-r10

SecurityConfigHO ::= SEQUENCE {
 handoverType CHOICE {
 intraLTE SECURITY AlgorithmConfig OPTIONAL, -- Cond
 fullConfig keyChangeIndicator BOOLEAN,
 nextHopChainingCount NextHopChainingCount
 },
 interRAT SECURITY AlgorithmConfig,
 nas-SecurityParamToEUTRA OCTET STRING (SIZE(6))
}

-- ASN1STOP
RRConnectionReconfiguration field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dedicatedInfoNASList</code></td>
<td>This field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for each PDU in the list.</td>
</tr>
<tr>
<td><code>fullConfig</code></td>
<td>Indicates the full configuration option is applicable for the RRC Connection Reconfiguration message.</td>
</tr>
<tr>
<td><code>keyChangeIndicator</code></td>
<td>true is used only in an intra-cell handover when a KeNB key is derived from a KASME key taken into use through the latest successful NAS SMC procedure, as described in TS 33.401 [32] for KeNB re-keying. false is used in an intra-LTE handover when the new KfNB key is obtained from the current KfNB key or from the NH as described in TS 33.401 [32].</td>
</tr>
<tr>
<td><code>nas-securityParamToEUTRA</code></td>
<td>This field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for this field, although it affects activation of AS- security after inter-RAT handover to E-UTRA. The content is defined in TS 24.301.</td>
</tr>
<tr>
<td><code>nextHopChainingCount</code></td>
<td>Parameter NCC: See TS 33.401 [32]</td>
</tr>
<tr>
<td><code>t350</code></td>
<td>Timer T350 as described in section 7.3. Value minN corresponds to N minutes.</td>
</tr>
</tbody>
</table>

RRConnectionReconfigurationComplete

The `RRConnectionReconfigurationComplete` message is used to confirm the successful completion of an RRC connection reconfiguration.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

RRConnectionReconfigurationComplete message

```asn1
-- ASN1START
RRConnectionReconfigurationComplete ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,
  criticalExtensions     CHOICE {
    rrcConnectionReconfigurationComplete-r8 RRCConnectionReconfigurationComplete-r8-IEs,
    criticalExtensionsFuture   SEQUENCE {} }
}

RRCConnectionReconfigurationComplete-r8-IEs ::= SEQUENCE {
  nonCriticalExtension    RRCConnectionReconfigurationComplete-v8a0-IEs OPTIONAL }
```

RRCConnectionReestablishment

The **RRCConnectionReestablishment** message is used to re-establish SRB1.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: E-UTRAN to UE

RRCConnectionReestablishment message

```asn1
RRCConnectionReestablishment ::= SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier,  
    criticalExtensions     CHOICE {
        c1         CHOICE{
            rrcConnectionReestablishment-r8  RRCConnectionReestablishment-r8-IEs,
            spare7 NULL,
            spare6 NULL, spare5 NULL, spare4  NULL,
            spare3 NULL, spare2 NULL, spare1  NULL
        },
        criticalExtensionsFuture   SEQUENCE {}  
    }  
}
```

```asn1
RRCConnectionReestablishment-r8-IEs ::= SEQUENCE {
    radioResourceConfigDedicated RadioResourceConfigDedicated, 
    nextHopChainingCount    NextHopChainingCount, 
    nonCriticalExtension    RRCConnectionReestablishment-v8a0-IEs OPTIONAL 
}
```

```asn1
RRCConnectionReestablishment-v8a0-IEs ::= SEQUENCE {
    lateNonCriticalExtension   OCTET STRING OPTIONAL, 
    noncriticalExtension    SEQUENCE {}  
}
```

RRCConnectionReestablishmentComplete

The **RRCConnectionReestablishmentComplete** message is used to confirm the successful completion of an RRC connection reestablishment.
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

RRConnectionReestabishmentComplete message

```asn1
RRConnectionReestablishmentComplete ::= SEQUENCE {
    rrc-TransactionIdentifier   RRC-TransactionIdentifier,
    criticalExtensions     CHOICE {
        rrcConnectionReestablishmentComplete-r8
            ::= SEQUENCE {
                rlf-InfoAvailable-r9    ENUMERATED {true}    OPTIONAL,
            }
    }
}
```

RRConnectionReestablishmentComplete field descriptions

- **rlf-InfoAvailable**
 This field is used to indicate the availability of radio link failure or handover failure related measurements

-- **RRConnectionReestablishmentReject**

The **RRConnectionReestablishmentReject** message is used to indicate the rejection of an RRC connection reestablishment request.
Signalling radio bearer: SRB0
RLC-SAP: TM
Logical channel: CCCH
Direction: E-UTRAN to UE

RRCConnectionReestablishmentReject message

-- ASN1START
RRCConnectionReestablishmentReject ::= SEQUENCE {
criticalExtensions CHOICE {
 rrcConnectionReestablishmentReject-r8 RRCConnectionReestablishmentReject-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}}
}
RRCConnectionReestablishmentReject-r8-IEs ::= SEQUENCE {
 nonCriticalExtension RRCConnectionReestablishmentReject-v8a0-IEs OPTIONAL
}
RRCConnectionReestablishmentReject-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
-- ASN1STOP

RRCConnectionReestablishmentRequest

The RRCConnectionReestablishmentRequest message is used to request the reestablishment of an RRC connection.

Signalling radio bearer: SRB0
RLC-SAP: TM
Logical channel: CCCH
Direction: UE to E-UTRAN

RRCConnectionReestablishmentRequest message

-- ASN1START
RRCConnectionReestablishmentRequest ::= SEQUENCE {
criticalExtensions CHOICE {
 rrcConnectionReestablishmentRequest-r8 RRCConnectionReestablishmentRequest-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}}
}
RRCConnectionReestablishmentRequest-r8-IEs ::= SEQUENCE {
 ue-Identity ReestabUE-Identity,
 reestablishmentCause ReestablishmentCause,
 spare BIT STRING (SIZE (2))
}
ReestabUE-Identity ::= SEQUENCE {
c-RNTI C-RNTI,
physCellId PhysCellId,
shortMAC-I ShortMAC-I
}
ReestablishmentCause ::= ENUMERATED {
reconfigurationFailure, handoverFailure, otherFailure, spare1}
-- ASN1STOP
RRCConnectionReestablishmentRequest field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>physCellId</td>
<td>The Physical Cell Identity of the PCell the UE was connected to prior to the failure.</td>
</tr>
<tr>
<td>reestablishmentCause</td>
<td>Indicates the failure cause that triggered the re-establishment procedure.</td>
</tr>
<tr>
<td>ue-Identity</td>
<td>UE identity included to retrieve UE context and to facilitate contention resolution by lower layers.</td>
</tr>
</tbody>
</table>

RRCConnectionReject

The **RRCConnectionReject** message is used to reject the RRC connection establishment.

Signalling radio bearer: SRB0

RLC-SAP: TM

Logical channel: CCCH

Direction: E-UTRAN to UE

RRCConnectionReject message

```asn1
RRCConnectionReject ::= SEQUENCE {
    criticalExtensions     CHOICE {
        c1         CHOICE {
            rrcConnectionReject-r8    RRCConnectionReject-r8-IEs,
            spare3 NULL, spare2 NULL, spare1 NULL
        },
        criticalExtensionsFuture   SEQUENCE {}
    }
}

RRCConnectionReject-r8-IEs ::=  SEQUENCE {
    waitTime       INTEGER (1..16),
    nonCriticalExtension    RRCConnectionReject-v8a0-IEs OPTIONAL
}

RRCConnectionReject-v8a0-IEs ::= SEQUENCE {
    lateNonCriticalExtension   OCTET STRING OPTIONAL,
    nonCriticalExtension    RRCConnectionReject-v1020-IEs OPTIONAL
}

RRCConnectionReject-v1020-IEs ::= SEQUENCE {
    extendedWaitTime-r10    INTEGER (1..1800) OPTIONAL, -- Need ON
    nonCriticalExtension    RRCConnectionReject-v1130-IEs OPTIONAL
}

RRCConnectionReject-v1130-IEs ::= SEQUENCE {
    deprioritisationReq-r11   SEQUENCE {
        deprioritisationType-r11   ENUMERATED {frequency, e-utra},
        deprioritisationTimer-r11   ENUMERATED {min5, min10, min15, min30} OPTIONAL, -- Need ON
    }
    nonCriticalExtension    SEQUENCE {} OPTIONAL
}

-- ASN1STOP
```
RRCConnectionReject field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deprioritisationReq</td>
<td>Indicates whether the current frequency or RAT is to be de-prioritised. The UE shall be able to store a deprioritisation request for up to 8 frequencies (applicable when receiving another frequency specific deprioritisation request before T325 expiry).</td>
</tr>
<tr>
<td>deprioritisationTimer</td>
<td>Indicates the period for which either the current carrier frequency or E-UTRA is deprioritised. Value (\text{minN}) corresponds to (N) minutes.</td>
</tr>
<tr>
<td>extendedWaitTime</td>
<td>Value in seconds for the wait time for Delay Tolerant access requests.</td>
</tr>
<tr>
<td>waitTime</td>
<td>Wait time value in seconds.</td>
</tr>
</tbody>
</table>

RRCConnectionRelease

The **RRCConnectionRelease** message is used to command the release of an RRC connection.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: E-UTRAN to UE

RRCConnectionRelease message

```asn1
RRCConnectionRelease ::= SEQUENCE {
  rrc-TransactionIdentifier   RRC-TransactionIdentifier,  
  criticalExtensions     CHOICE {
    c1         CHOICE {
      rrcConnectionRelease-r8    RRCConnectionRelease-r8-IEs,  
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
}

RRCConnectionRelease-r8-IEs ::=  SEQUENCE {
  releaseCause      ReleaseCause,  
  redirectedCarrierInfo RedirectedCarrierInfo OPTIONAL, -- Need ON  
  idleModeMobilityControlInfo IdleModeMobilityControlInfo OPTIONAL, -- Need OP  
  nonCriticalExtension    RRCConnectionRelease-v890-IEs OPTIONAL
}

RRCConnectionRelease-v890-IEs ::= SEQUENCE {
  lateNonCriticalExtension OCTET STRING (CONTAINING RRCConnectionRelease-v9e0-IEs) OPTIONAL,  
  nonCriticalExtension    RRCConnectionRelease-v920-IEs OPTIONAL
}

-- Late non critical extensions
RRCConnectionRelease-v9e0-IEs ::= SEQUENCE {
  redirectedCarrierInfo-v9e0 RedirectedCarrierInfo-v9e0 OPTIONAL, -- Cond  
  NoRedirect-r8  
  idleModeMobilityControlInfo-v9e0 IdleModeMobilityControlInfo-v9e0 OPTIONAL, -- Cond  
  IdleInfoEUTRA nonCriticalExtension   SEQUENCE {} OPTIONAL
}

-- Regular non critical extensions
RRCConnectionRelease-v920-IEs ::= SEQUENCE {
  cellInfoList-r9     CHOICE {
    geran-r9      CellInfoListGERAN-r9,  
    utra-FDD-r9    CellInfoListUTRA-FDD-r9,  
    utra-TDD-r9    CellInfoListUTRA-TDD-r9,  
    ...  
    utra-TDD-r10    CellInfoListUTRA-TDD-r10
  },
  nonCriticalExtension    RRCConnectionRelease-v1020-IEs OPTIONAL
}
```
RRCConnectionRelease-v1020-IEs ::= SEQUENCE {
 extendedWaitTime-r10 INTEGER (1..1800) OPTIONAL, -- Need
 nonCriticalExtension SEQUENCE () OPTIONAL
}

ReleaseCause ::= ENUMERATED {
 loadBalancingTAUrequired,
 other, cs-FallbackHighPriority-v1020, spare1
}

RedirectedCarrierInfo ::= CHOICE {
 eutra ARFCN-ValueEUTRA,
 geran CarrierFreqsGERAN,
 utra-FDD ARFCN-ValueUTRA,
 utra-TDD ARFCN-ValueUTRA,
 cdma2000-HRPD CarrierFreqCDMA2000,
 cdma2000-1xRTT CarrierFreqCDMA2000,
 ...
 utra-TDD-r10 CarrierFreqListUTRA-TDD-r10
}

RedirectedCarrierInfo-v9e0 ::= SEQUENCE {
 eutra-v9e0 ARFCN-ValueEUTRA-v9e0
}

CarrierFreqListUTRA-TDD-r10 ::= SEQUENCE {
 ARFCN-ValueUTRA
}

IdleModeMobilityControlInfo ::= SEQUENCE {
 freqPriorityListEUTRA FreqPriorityListEUTRA OPTIONAL, -- Need
 freqPriorityListGERAN FreqsPriorityListGERAN OPTIONAL, -- Need
 freqPriorityListUTRA-FDD FreqPriorityListUTRA-FDD OPTIONAL, -- Need
 freqPriorityListUTRA-TDD FreqPriorityListUTRA-TDD OPTIONAL, -- Need
 bandClassPriorityListHRPD BandClassPriorityListHRPD OPTIONAL, -- Need
 bandClassPriorityList1XRTT BandClassPriorityList1XRTT OPTIONAL, -- Need
 t320 ENUMERATED {
 min5, min10, min20, min30, min60, min120, min180,
 spare1} OPTIONAL, -- Need OR
 ...
}

IdleModeMobilityControlInfo-v9e0 ::= SEQUENCE {
 freqPriorityListEUTRA-v9e0 FreqPriorityListEUTRA-v9e0 OPTIONAL
}

FreqPriorityListEUTRA ::= SEQUENCE {
 ARFCN-ValueEUTRA
}

FreqPriorityEUTRA ::= SEQUENCE {
 carrierFreq ARFCN-ValueEUTRA,
 cellReselectionPriority CellReselectionPriority
}

FreqPriorityEUTRA-v9e0 ::= SEQUENCE {
 carrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0 OPTIONAL -- Cond EARFCN-max
}

FreqsPriorityListGERAN ::= SEQUENCE {
 CarrierFreqsGERAN
}

FreqsPriorityGERAN ::= SEQUENCE {
 cellReselectionPriority
}

FreqPriorityListUTRA-FDD ::= SEQUENCE {
 ARFCN-ValueUTRA
}

FreqPriorityUTRA-FDD ::= SEQUENCE {
 carrierFreq ARFCN-ValueUTRA,
 cellReselectionPriority CellReselectionPriority
}

FreqPriorityListUTRA-TDD ::= SEQUENCE {
 ARFCN-ValueUTRA
}

FreqPriorityUTRA-TDD ::= SEQUENCE {
 carrierFreq ARFCN-ValueUTRA,
 cellReselectionPriority CellReselectionPriority
}

BandClassPriorityListHRPD ::= SEQUENCE {
 BandClassPriorityListHRPD
}

BandClassPriorityList1XRTT ::= SEQUENCE {
 BandClassPriorityList1XRTT
}
BandClassPriorityHRPD ::= SEQUENCE {
 bandClass BandclassCDMA2000,
 cellReselectionPriority CellReselectionPriority
}

BandClassPriority1XRTT ::= SEQUENCE {
 bandClass BandclassCDMA2000,
 cellReselectionPriority CellReselectionPriority
}

CellInfoListGERAN-r9 ::= SEQUENCE (SIZE (1..maxCellInfoGERAN-r9)) OF CellInfoGERAN-r9

CellInfoGERAN-r9 ::= SEQUENCE {
 physCellId-r9 PhysCellIdGERAN,
 carrierFreq-r9 CarrierFreqGERAN,
 systemInformation-r9 SystemInfoListGERAN
}

CellInfoListUTRA-FDD-r9 ::= SEQUENCE (SIZE (1..maxCellInfoUTRA-FDD-r9)) OF CellInfoUTRA-FDD-r9

CellInfoUTRA-FDD-r9 ::= SEQUENCE {
 physCellId-r9 PhysCellIdUTRA-FDD,
 ultra-BCCH-Container-r9 OCTET STRING
}

CellInfoListUTRA-TDD-r9 ::= SEQUENCE (SIZE (1..maxCellInfoUTRA-r9)) OF CellInfoUTRA-TDD-r9

CellInfoUTRA-TDD-r9 ::= SEQUENCE {
 physCellId-r9 PhysCellIdUTRA-TDD,
 ultra-BCCH-Container-r9 OCTET STRING
}

CellInfoListUTRA-TDD-r10 ::= SEQUENCE (SIZE (1..maxCellInfoUTRA-r9)) OF CellInfoUTRA-TDD-r10

CellInfoUTRA-TDD-r10 ::= SEQUENCE {
 physCellId-r10 PhysCellIdUTRA-TDD,
 carrierFreq-r10 ARFCN-ValueUTRA,
 ultra-BCCH-Container-r10 OCTET STRING
}

-- ASN1STOP
RRCConnectionRelease field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>carrierFreq or bandClass</td>
<td>The carrier frequency (UTRA and E-UTRA) and band class (HRPD and 1xRTT) for which the associated cellReselectionPriority is applied.</td>
</tr>
<tr>
<td>carrierFreqs</td>
<td>The list of GERAN carrier frequencies organised into one group of GERAN carrier frequencies.</td>
</tr>
<tr>
<td>cellInfoList</td>
<td>Used to provide system information of one or more cells on the redirected inter-RAT carrier frequency. The system information can be used if, upon redirection, the UE selects an inter-RAT cell indicated by the physCellId and carrierFreq (GERAN and UTRA TDD) or by the physCellId (other RATs). The choice shall match the redirectedCarrierInfo. In particular, E-UTRAN only applies valueutra-TDD-r10 in case redirectedCarrierInfo is set toutra-TDD-r10.</td>
</tr>
<tr>
<td>extendedWaitTime</td>
<td>Value in seconds for the wait time for Delay Tolerant access requests.</td>
</tr>
<tr>
<td>freqPriorityListX</td>
<td>Provides a cell reselection priority for each frequency, by means of separate lists for each RAT (including E-UTRA). The UE shall be able to store at least 3 occurrences ofFreqsPriorityGERAN. If E-UTRAN includesfreqPriorityListEUTRA-v9e0 it includes the same number of entries, and listed in the same order, as infreqPriorityListEUTRA (i.e. without suffix).</td>
</tr>
<tr>
<td>idleModeMobilityControlInfo</td>
<td>Provides dedicated cell reselection priorities. Used for cell reselection as specified in TS 36.304 [4]. For E-UTRA and UTRA frequencies, a UE that supports multi-band cells for the concerned RAT considers the dedicated priorities to be common for all overlapping bands (i.e. regardless of the ARFCN that is used).</td>
</tr>
<tr>
<td>redirectedCarrierInfo</td>
<td>The redirectedCarrierInfo indicates a carrier frequency (downlink for FDD) and is used to redirect the UE to an E-UTRA or an inter-RAT carrier frequency, by means of the cell selection upon leaving RRC_CONNECTED as specified in TS 36.304 [4].</td>
</tr>
<tr>
<td>releaseCause</td>
<td>The releaseCause is used to indicate the reason for releasing the RRC Connection. The cause value cs-FallbackHighPriority is only applicable when redirectedCarrierInfo is present with the value set toutra-FDD,utra-TDD orutra-TDD-r10. E-UTRAN should not set the releaseCause to loadBalancingTAURequired or tocs-FallbackHighPriority if the extendedWaitTime is present.</td>
</tr>
<tr>
<td>systemInformation</td>
<td>Container for system information of the GERAN cell i.e. one or more System Information (SI) messages as defined in TS 44.018 [45, table 9.1.1].</td>
</tr>
<tr>
<td>t320</td>
<td>Timer T320 as described in section 7.3. Value minN corresponds to N minutes.</td>
</tr>
<tr>
<td>utra-BCCH-Container</td>
<td>Contains System Information Container message as defined in TS 25.31 [19].</td>
</tr>
</tbody>
</table>

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARFCN-max</td>
<td>The field is mandatory present if the corresponding carrierFreq (i.e. without suffix) is set to maxEARFCN. Otherwise the field is not present.</td>
</tr>
<tr>
<td>IdleInfoEUTRA</td>
<td>The field is optionally present, need OP, if the IdleModeMobilityControlInfo (i.e. without suffix) is included and includes freqPriorityListEUTRA; otherwise the field is not present.</td>
</tr>
<tr>
<td>NoRedirect-r8</td>
<td>The field is optionally present, need OP, if the redirectedCarrierInfo (i.e. without suffix) is not included; otherwise the field is not present.</td>
</tr>
<tr>
<td>Redirection</td>
<td>The field is optionally present, need ON, if the redirectedCarrierInfo is included and set to geran,utra-FDD,utra-TDD orutra-TDD-r10; otherwise the field is not present.</td>
</tr>
</tbody>
</table>

RRCConnectionRequest

The RRCConnectionRequest message is used to request the establishment of an RRC connection.
Signal radio bearer: SRB0
RLC-SAP: TM
Logical channel: CCCH
Direction: UE to E-UTRAN

RRCConnectionRequest message

--- ASN1START

RRCConnectionRequest ::= SEQUENCE {
criticalExtensions CHOICE {
 rrcConnectionRequest-r8 RRCConnectionRequest-r8-IEs,
criticalExtensionsFuture SEQUENCE {}
}
}

RRCConnectionRequest-r8-IEs ::= SEQUENCE {
 ue-Identity InitialUE-Identity,
establishmentCause EstablishmentCause,
spare BIT STRING (SIZE (1))
}

InitialUE-Identity ::= CHOICE {
s-TMSI S-TMSI,
randomValue BIT STRING (SIZE (40))
}

EstablishmentCause ::= ENUMERATED {
equipment, highPriorityAccess, mt-Access, mo-Signalling,
mo-Data, delayTolerantAccess-v1020, spare2, spare1
}

--- ASN1STOP

RRCConnectionRequest field descriptions

establishmentCause
Provides the establishment cause for the RRC connection request as provided by the upper layers. W.r.t. the cause value names: highPriorityAccess concerns AC11..AC15, ‘mt’ stands for ‘Mobile Terminating’ and ‘mo’ for ‘Mobile Originating.

randomValue
Integer value in the range 0 to $2^{40} - 1$.

ue-Identity
UE identity included to facilitate contention resolution by lower layers.

RRCConnectionSetup

The **RRCConnectionSetup** message is used to establish SRB1.

Signal radio bearer: SRB0
RLC-SAP: TM
Logical channel: CCCH
Direction: E-UTRAN to UE

RRCConnectionSetup message

--- ASN1START

RRCConnectionSetup ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
criticalExtensions CHOICE {
 c1 CHOICE {
 rrcConnectionSetup-r8 RRCConnectionSetup-r8-IEs,
spare7 NULL,
spare6 NULL, spare5 NULL, spare4 NULL,

 spare8 NULL, spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
 }
}

--- ASN1STOP
The \textit{RRCConnectionSetupComplete} message is used to confirm the successful completion of an RRC connection establishment.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN
logMeasAvailableMBSFN-r12 ENUMERATED {true} OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

RegisteredMME ::= SEQUENCE {
 plmn-Identity PLMN-Identity OPTIONAL,
 mmegi BIT STRING (SIZE (16)),
 mmec MMEC
}
-- ASN1STOP

RRCConnectionSetupComplete field descriptions

gummei-Type
This field is used to indicate whether the GUMMEI included is native (assigned by EPC) or mapped (from 2G/3G identifiers).

mmegi
Provides the Group Identity of the registered MME within the PLMN, as provided by upper layers, see TS 23.003 [27].

mobilityState
This field indicates the UE mobility state (as defined in TS 36.304 5.2.4.3 [4]) just prior to UE going into RRC_CONNECTED state. The values of medium and high respectively correspond to the UE being in Medium-mobility and High-mobility states. Otherwise the UE is in normal state.

registeredMME
This field is used to transfer the GUMMEI of the MME where the UE is registered, as provided by upper layers.

rm-SubframeConfigReq
If present, this field indicates that the connection establishment is for an RN and whether a subframe configuration is requested or not.

selectedPLMN-Identity
Index of the PLMN selected by the UE from the plmn-IdentityList included in SIB1. 1 if the 1st PLMN is selected from the plmn-IdentityList included in SIB1, 2 if the 2nd PLMN is selected from the plmn-IdentityList included in SIB1 and so on.

SecurityModeCommand

The SecurityModeCommand message is used to command the activation of AS security.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: E-UTRAN to UE

SecurityModeCommand message

-- ASN1START

SecurityModeCommand ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE {
 securityModeCommand-r8 SecurityModeCommand-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

SecurityModeCommand-r8-IEs ::= SEQUENCE {
 securityConfigSMC SecurityConfigSMC,
 nonCriticalExtension SecurityModeCommand-v8a0-IEs OPTIONAL
}

SecurityModeCommand-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

SecurityConfigSMC ::= SEQUENCE {

ится ли GUMMEI включенное как native (назначенное EPC) или mapped (с 2G/3G идентификаторами).

mmegi
Определяет Групповой Идентификатор MME, зарегистрированного в PLMN, как предоставлено верхними слоями, см. TS 23.003 [27].

mobilityState
Этот поле указывает состояние мобильности UE (как определено в TS 36.304 5.2.4.3 [4]) перед UE перейти в состояние RRC_CONNECTED. Значения medium и high соответственно относятся к UE, находящемуся в состоянии Medium-mobility и High-mobility. В противном случае UE находится в состоянии normal.

registeredMME
Это поле используется для передачи GUMMEI MME, где находится UE, как предоставлено верхними слоями.

rm-SubframeConfigReq
Если присутствует, это поле указывает, что соединение устанавливается для RN и требуется ли изменение подфрейма.

selectedPLMN-Identity
Номер PLMN, выбранный UE из списка plmn-IdentityList в SIB1. 1 если 1-й PLMN выбран из plmn-IdentityList в SIB1, 2 если 2-й PLMN выбран из plmn-IdentityList в SIB1 и так далее.

SecurityModeCommand

Сообщение SecurityModeCommand используется для команды активации AS безопасности.

- Сигнальный радиоканал: SRB1
- RLC-SAP: AM
- Логический канал: DCCH
- Направление: E-UTRAN к UE

SecurityModeCommand message

-- ASN1START

SecurityModeCommand ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE {
 securityModeCommand-r8 SecurityModeCommand-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

SecurityModeCommand-r8-IEs ::= SEQUENCE {
 securityConfigSMC SecurityConfigSMC,
 nonCriticalExtension SecurityModeCommand-v8a0-IEs OPTIONAL
}

SecurityModeCommand-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

SecurityConfigSMC ::= SEQUENCE {

-- SecurityModeComplete

The SecurityModeComplete message is used to confirm the successful completion of a security mode command.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

SecurityModeComplete message

-- ASN1START

SecurityModeComplete ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 securityModeComplete-r8 SecurityModeComplete-r8-IEs,
 criticalExtensionsFuture SEQUENCE {} }
}

SecurityModeComplete-r8-IEs ::= SEQUENCE {
 nonCriticalExtension SecurityModeComplete-v8a0-IEs OPTIONAL
}

SecurityModeComplete-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

-- SecurityModeFailure

The SecurityModeFailure message is used to indicate an unsuccessful completion of a security mode command.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN

SecurityModeFailure message

-- ASN1START

SecurityModeFailure ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 securityModeFailure-r8 SecurityModeFailure-r8-IEs,
 criticalExtensionsFuture SEQUENCE {} }
}

SecurityModeFailure-r8-IEs ::= SEQUENCE {
 nonCriticalExtension SecurityModeFailure-v8a0-IEs OPTIONAL
}

-- ASN1STOP
SystemInformation

The SystemInformation message is used to convey one or more System Information Blocks. All the SIBs included are transmitted with the same periodicity.

Signalling radio bearer: N/A

RLC-SAP: TM

Logical channel: BCCH

Direction: E-UTRAN to UE

SystemInformation Block Type 1

SystemInformationBlockType1 contains information relevant when evaluating if a UE is allowed to access a cell and defines the scheduling of other system information.
Signalling radio bearer: N/A

RLC-SAP: TM

Logical channel: BCCH

Direction: E-UTRAN to UE

SystemInformationBlockType1 message

```plaintext
-- ASN1START

SystemInformationBlockType1 ::= SEQUENCE {
  cellAccessRelatedInfo  SEQUENCE {
    plmn-IdentityList  PLMN-IdentityList,
    trackingAreaCode  TrackingAreaCode,
    cellIdentity  CellIdentity,
    cellBarred  ENUMERATED {barred, notBarred},
    intraFreqReselection  ENUMERATED {allowed, notAllowed},
    csg-Indication  BOOLEAN,
    csg-Identity  CSG-Identity OPTIONAL -- Need OR,
  },
  cellSelectionInfo  SEQUENCE {
    q-RxLevMin  Q-RxLevMin,
    q-RxLevMinOffset  INTEGER (1..8) OPTIONAL -- Need OP,
  },
  p-Max  P-Max OPTIONAL, -- Need OP
  freqBandIndicator  FreqBandIndicator,
  schedulingInfoList  SchedulingInfoList,
  tdd-Config  TDD-Config OPTIONAL, -- Cond TDD
  si-WindowLength  ENUMERATED {ms1, ms2, ms5, ms10, ms15, ms20, ms40},
  systemInfoValueTag  INTEGER (0..31),
  nonCriticalExtension  SystemInformationBlockType1-v890-IEs OPTIONAL
},

SystemInformationBlockType1-v890-IEs ::= SEQUENCE {
  lateNonCriticalExtension  OCTET STRING (CONTAINING SystemInformationBlockType1-v8h0-IEs),
  nonCriticalExtension  SystemInformationBlockType1-v920-IEs OPTIONAL
} -- Late non critical extensions

SystemInformationBlockType1-v8h0-IEs ::= SEQUENCE {
  multiBandInfoList  MultiBandInfoList OPTIONAL, -- Need OR
  nonCriticalExtension  SystemInformationBlockType1-v9e0-IEs OPTIONAL
},

SystemInformationBlockType1-v9e0-IEs ::= SEQUENCE {
  freqBandIndicator-v9e0  FreqBandIndicator-v9e0 OPTIONAL, -- Cond FBI-max
  multiBandInfoList-v9e0  MultiBandInfoList-v9e0 OPTIONAL, -- Cond mFBI-max
  nonCriticalExtension  SEQUENCE {} OPTIONAL
} -- Regular non critical extensions

SystemInformationBlockType1-v920-IEs ::= SEQUENCE {
  ims-EmergencySupport-r9  ENUMERATED {true} OPTIONAL, -- Need OR
  cellSelectionInfo-v920  CellSelectionInfo-v920 OPTIONAL, -- Cond RSRQ
  nonCriticalExtension  SystemInformationBlockType1-v1130-IEs OPTIONAL
},

SystemInformationBlockType1-v1130-IEs ::= SEQUENCE {
  tdd-Config-v1130  TDD-Config-v1130 OPTIONAL, -- Cond TDD-OR
  cellSelectionInfo-v1130  CellSelectionInfo-v1130 OPTIONAL, -- Cond WB-RSRQ
  nonCriticalExtension  SystemInformationBlockType1-v12xy-IEs OPTIONAL
},

SystemInformationBlockType1-v12xy-IEs ::= SEQUENCE {
  cellAccessRelatedInfo-v12xy  SEQUENCE {
    category0Allowed-r12  ENUMERATED {true} OPTIONAL -- Need OR
  },
  nonCriticalExtension  SEQUENCE {} OPTIONAL
},

PLMN-IdentityList ::= SEQUENCE (SIZE (1..maxPLMN-r11)) OF PLMN-IdentityInfo

-- ASN1END
```
PLMN-IdentityInfo ::= SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellReservedForOperatorUse ENUMERATED {reserved, notReserved}
}

SchedulingInfoList ::= SEQUENCE (SIZE (1..maxSI-Message)) OF SchedulingInfo

SchedulingInfo ::= SEQUENCE {
 si-Periodicity ENUMERATED {rf8, rf16, rf32, rf64, rf128, rf256, rf512},
 sib-MappingInfo SIB-MappingInfo
}

SIB-MappingInfo ::= SEQUENCE (SIZE (0..maxSIB-1)) OF SIB-Type

SIB-Type ::= ENUMERATED {
 sibType3, sibType4, sibType5, sibType6,
 sibType7, sibType8, sibType9, sibType10,
 sibType11, sibType12-v920, sibType13-v920,
 sibType14-v1130, sibType15-v1130,
 sibType16-v1130, sibType17-v12xy, spare1, ...
}

CellSelectionInfo-v920 ::= SEQUENCE {
 q-QualMin-r9 Q-Qual-r9,
 q-QualMinOffset-r9 INTEGER (1..8) OPTIONAL -- Need OP
}

CellSelectionInfo-v1130 ::= SEQUENCE {
 q-QualMinWB-r11 Q-QualMin-r9
}

-- ASN1STOP
<table>
<thead>
<tr>
<th>SystemInformationBlockType1 field descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>category0Allowed</td>
</tr>
<tr>
<td>The presence of this field indicates category 0 UEs are allowed to access the cell.</td>
</tr>
<tr>
<td>cellBarred</td>
</tr>
<tr>
<td>barred means the cell is barred, as defined in TS 36.304 [4].</td>
</tr>
<tr>
<td>cellReservedForOperatorUse</td>
</tr>
<tr>
<td>As defined in TS 36.304 [4].</td>
</tr>
<tr>
<td>csg-Identity</td>
</tr>
<tr>
<td>Identity of the Closed Subscriber Group the cell belongs to.</td>
</tr>
<tr>
<td>csg-Indication</td>
</tr>
<tr>
<td>If set to TRUE the UE is only allowed to access the cell if it is a CSG member cell, if selected during manual CSG selection or to obtain limited service, see TS 36.304 [4].</td>
</tr>
<tr>
<td>ims-EmergencySupport</td>
</tr>
<tr>
<td>Indicates whether the cell supports IMS emergency bearer services for UEs in limited service mode. If absent, IMS emergency call is not supported by the network in the cell for UEs in limited service mode.</td>
</tr>
<tr>
<td>intraFreqReselection</td>
</tr>
<tr>
<td>Used to control cell reselection to intra-frequency cells when the highest ranked cell is barred, or treated as barred by the UE, as specified in TS 36.304 [4].</td>
</tr>
<tr>
<td>multiBandInfoList</td>
</tr>
<tr>
<td>A list of additional frequency band indicators, as defined in TS 36.101 [42, table 5.5-1] that the cell belongs to. If the UE supports the frequency band in the freqBandIndicator IE it shall apply that frequency band. Otherwise, the UE shall apply the first listed band which it supports in the multiBandInfoList IE. If E-UTRAN includes multiBandInfoList-v920 it includes the same number of entries, and listed in the same order, as in multiBandInfoList (i.e. without suffix). See Annex D for more descriptions.</td>
</tr>
<tr>
<td>plmn-IdentityList</td>
</tr>
<tr>
<td>List of PLMN identities. The first listed PLMN-Identity is the primary PLMN.</td>
</tr>
<tr>
<td>p-Max</td>
</tr>
<tr>
<td>Value applicable for the cell. If absent the UE applies the maximum power according to the UE capability.</td>
</tr>
<tr>
<td>q-QualMin</td>
</tr>
<tr>
<td>Parameter “Qqualmin” in TS 36.304 [4]. If cellSelectionInfo-v920 is not present, the UE applies the (default) value of negative infinity for Qqualmin.</td>
</tr>
<tr>
<td>q-QualMinOffset</td>
</tr>
<tr>
<td>Parameter “Qqualminoffset” in TS 36.304 [4]. Actual value Qqualminoffset = IE value [dB]. If cellSelectionInfo-v920 is not present or the field is not present, the UE applies the (default) value of 0 dB for Qqualminoffset. Affects the minimum required quality level in the cell.</td>
</tr>
<tr>
<td>q-QualMinWB</td>
</tr>
<tr>
<td>If this field is present, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [16] and apply the value of this field for the parameter “Qqualmin” in TS 36.304 [4]. Otherwise, the UE applies the value of q-QualMin instead.</td>
</tr>
<tr>
<td>q-RxLevMinOffset</td>
</tr>
<tr>
<td>Parameter Qrxlevminoffset in TS 36.304 [4]. Actual value Qrxlevminoffset = IE value * 2 [dB]. If absent, the UE applies the (default) value of 0 dB for Qrxlevminoffset. Affects the minimum required Rx level in the cell.</td>
</tr>
<tr>
<td>sib-MappingInfo</td>
</tr>
<tr>
<td>List of the SIBs mapped to this SystemInformation message. There is no mapping information of SIB2; it is always present in the first SystemInformation message listed in the schedulingInfoList list.</td>
</tr>
<tr>
<td>si-Periodicity</td>
</tr>
<tr>
<td>Periodicity of the SI-message in radio frames, such that rf8 denotes 8 radio frames, rf16 denotes 16 radio frames, and so on.</td>
</tr>
<tr>
<td>si-WindowLength</td>
</tr>
<tr>
<td>Common SI scheduling window for all SIs. Unit in milliseconds, where ms1 denotes 1 millisecond, ms2 denotes 2 milliseconds and so on.</td>
</tr>
<tr>
<td>systemInfoValueTag</td>
</tr>
<tr>
<td>Common for all SIBs other than MIB, SIB1, SIB10, SIB11, SIB12 and SIB14. Change of MIB and SIB1 is detected by acquisition of the corresponding message.</td>
</tr>
<tr>
<td>trackingAreaCode</td>
</tr>
<tr>
<td>A trackingAreaCode that is common for all the PLMNs listed.</td>
</tr>
<tr>
<td>Conditional presence</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>FBI-max</td>
</tr>
<tr>
<td>mFBI-max</td>
</tr>
<tr>
<td>RSRQ</td>
</tr>
<tr>
<td>TDD</td>
</tr>
<tr>
<td>TDD-OR</td>
</tr>
<tr>
<td>WB-RSRQ</td>
</tr>
</tbody>
</table>

UEAssistanceInformation

The **UEAssistanceInformation** message is used for the indication of UE assistance information to the eNB.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: UE to E-UTRAN

UEAssistanceInformation message

```asn1
UEAssistanceInformation-r11 ::= SEQUENCE {
  criticalExtensions     CHOICE {
    c1         CHOICE {
      ueAssistanceInformation-r11   UEAssistanceInformation-r11-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture   SEQUENCE {}
  }
}

UEAssistanceInformation-r11-IEs ::=  SEQUENCE {
  powerPrefIndication-r11    ENUMERATED {normal, lowPowerConsumption} OPTIONAL,
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
```

UEAssistanceInformation field descriptions

- **powerPrefIndication**
 - Value **lowPowerConsumption** indicates the UE prefers a configuration that is primarily optimised for power saving. Otherwise the value is set to **normal**.

UECapabilityEnquiry

The **UECapabilityEnquiry** message is used to request the transfer of UE radio access capabilities for E-UTRA as well as for other RATs.
UECapabilityEnquiry message

UECapabilityEnquiry ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 ueCapabilityEnquiry-r8 UECapabilityEnquiry-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
}

UECapabilityEnquiry-r8-IEs ::= SEQUENCE {
 ue-CapabilityRequest UECapabilityEnquiry-v8a0-IEs OPTIONAL
}

UECapabilityEnquiry-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension UECapabilityEnquiry-v1180-IEs OPTIONAL
}

UECapabilityEnquiry-v1180-IEs ::= SEQUENCE {
 requestedFrequencyBands-r11 SEQUENCE (SIZE (1..16)) OF FreqBandIndicator-r11 OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

UE-CapabilityRequest ::= SEQUENCE (SIZE (1..maxRAT-Capabilities)) OF RAT-Type

UECapabilityInformation message

UECapabilityInformation ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 ueCapabilityEnquiry-r8 UECapabilityEnquiry-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
}

UECapabilityEnquiry field descriptions

ue-CapabilityRequest
List of the RATs for which the UE is requested to transfer the UE radio access capabilities i.e. E-UTRA, UTRA, GERAN-CS, GERAN-PS, CDMA2000.

requestedFrequencyBands
List of frequency bands for which the UE is requested to provide supported CA band combinations and non CA bands.

UECapabilityInformation

The UECapabilityInformation message is used to transfer of UE radio access capabilities requested by the E-UTRAN.

Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E-UTRAN
UECapabilityInformation field descriptions

ue-RadioPagingInfo
This field contains information used for paging of category 0 UEs. The UE shall include this field when category 0 has been indicated by ue-Category-v12xy in UE-EUTRA-Capability.

The UEInformationRequest is the command used by E-UTRAN to retrieve information from the UE.

Signalling radio bearer: SRB1

RLC-SAP: AM

Logical channel: DCCH

Direction: E-UTRAN to UE

UEInformationRequest message

ETSI TS 136 331 V12.3.0 (2014-09)
UEInformationRequest field descriptions

rach-ReportReq
This field is used to indicate whether the UE shall report information about the random access procedure.

UEInformationResponse

The UEInformationResponse message is used by the UE to transfer the information requested by the E-UTRAN.

Signalling radio bearer: SRB1 or SRB2 (when logged measurement information is included)

RLC-SAP: AM

Logical channel: DCCH

Direction: UE to E-UTRAN

UEInformationResponse message

UEInformationRequest-v1130-IEs ::= SEQUENCE {
 connEstFailReportReq-r11 ENUMERATED {true} OPTIONAL, -- Need ON
 nonCriticalExtension UEInformationRequest-v12xy-IEs OPTIONAL
}

UEInformationRequest-v12xy-IEs ::= SEQUENCE {
 mobilityHistoryReportReq-r12 ENUMERATED {true} OPTIONAL, -- Need ON
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP
UEInformationResponse-v1130-IEs ::= SEQUENCE {
 connEstFailReport-r11 ConnEstFailReport-r11 OPTIONAL,
 nonCriticalExtension UEInformationResponse-v12xy-IEs OPTIONAL
}
UEInformationResponse-v12xy-IEs ::= SEQUENCE {
 mobilityHistoryReport-r12 MobilityHistoryReport-r12 OPTIONAL,
 nonCriticalExtension SEQUENCE () OPTIONAL
}

RLF-Report-r9 ::= SEQUENCE {
 measResultLastServCell-r9 SEQUENCE {
 rsrpResult-r9 RSRP-Range,
 rsrqResult-r9 RSRQ-Range OPTIONAL
 },
 measResultNeighCells-r9 SEQUENCE {
 measResultListEUTRA-r9 MeanResultList2UETRA-r9 OPTIONAL,
 measResultListUTRA-r9 MeanResultList2UETRA-r9 OPTIONAL,
 measResultListGERAN-r9 MeanResultList2GERAN OPTIONAL,
 measResultsCDMA2000-r9 MeanResultList2CDMA2000-r9 OPTIONAL
 } OPTIONAL,
 ...,
 locationInfo-r10 LocationInfo-r10 OPTIONAL,
 failedPCellId-r10 CHOICE {
 cellGlobalId-r10 CellGlobalIdEUTRA,
 pci-arfcn-r10 SEQUENCE {
 physCellId-r10 PhysCellId,
 carrierFreq-r10 ARFCN-ValueEUTRA
 } OPTIONAL,
 reestablishmentCellId-r10 CellGlobalIdEUTRA OPTIONAL,
 timeConnFailure-r10 INTEGER (0..1023) OPTIONAL,
 connectionFailureType-r10 ENUMERATED {rlf, hof} OPTIONAL,
 previousPCellId-r10 CellGlobalIdEUTRA OPTIONAL
 },
 failedPCellId-v1090 SEQUENCE {
 carrierFreq-v1090 ARFCN-ValueEUTRA-v9e0
 } OPTIONAL,
 basicFields-r11 SEQUENCE {
 c-RNTI-r11 C-RNTI,
 rlf-Cause-r11 ENUMERATED {
 t310-Expiry, randomAccessProblem,
 rlc-MaxNumRetx, t312-Expiry-r12},
 timeSinceFailure-r11 TimeSinceFailure-r11 OPTIONAL,
 previousUTRA-CellId-r11 ARFCN-ValueUTRA,
 physCellId-r11 CHOICE {
 fdd-r11 PhysCellIdUTRA-FDD,
 tdd-r11 PhysCellIdUTRA-TDD
 },
 carrierFreq-r11 ARFCN-ValueUTRA,
 physCellId-r11 CHOICE {
 fdd-r11 PhysCellIdUTRA-FDD,
 tdd-r11 PhysCellIdUTRA-TDD
 },
 cellGlobalId-r11 CellGlobalIdUTRA OPTIONAL
 },
 selectedUTRA-CellId-r11 ARFCN-ValueUTRA,
 physCellId-r11 CHOICE {
 fdd-r11 PhysCellIdUTRA-FDD,
 tdd-r11 PhysCellIdUTRA-TDD
 },
 failedPCellId-v12xy SEQUENCE {
 tac-FailedPCellId-r12 TrackingAreaCode
 } OPTIONAL
}

RLF-Report-v9e0 ::= SEQUENCE {
 measResultListEUTRA-v9e0 MeasResultList2UETRA-v9e0
}

MeasResultList2EUTRA-r9 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResult2EUTRA-r9
MeasResultList2EUTRA-v9e0 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResult2EUTRA-v9e0
MeasResult2EUTRA-r9 ::= SEQUENCE {
 carrierFreq-r9 ARFCN-ValueEUTRA,
 measResultList-r9 MeasResultListEUTRA
}

MeasResult2EUTRA-v9e0 ::= SEQUENCE {
 carrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0 OPTIONAL
}

MeasResultList2EUTRA-r9 ::= SEQUENCE (SIZE (1..Freq)) OF MeasResult2EUTRA-r9

MeasResult2UTRA-r9 ::= SEQUENCE {
 carrierFreq-r9 ARFCN-ValueUTRA,
 measResultList-r9 MeasResultListUTRA
}

MeasResultList2UTRA-r9 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResult2UTRA-r9

MeasResult2CDMA2000-r9 ::= SEQUENCE {
 carrierFreq-r9 CarrierFreqCDMA2000,
 measResultList-r9 MeasResultListCDMA2000
}

MeasResultList2CDMA2000-r9 ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResult2CDMA2000-r9

MeasResultListMBSFN-r12 ::= SEQUENCE (SIZE (1..8)) OF MeasResultMBSFN-r12

MeasResultMBSFN-r12 ::= SEQUENCE {
 mbsfn-Area-r12 SEQUENCE {
 mbsfn-AreaId-r12 INTEGER(0..255),
 carrierFreq-r12 ARFCN-ValueEUTRA-r9
 },
 rsrpResultMBSFN-r12 RSRP-Range,
 rsrqResultMBSFN-r12 RSRQ-Range,
 signallingBLER-Result-r12 BLER-Range-r12 OPTIONAL,
 dataBLER-MCH-ResultList-r12 DataBLER-MCH-ResultList-r12 OPTIONAL
}

DataBLER-MCH-ResultList-r12 ::= SEQUENCE (SIZE (1..maxPMCH-PerMBSFN)) OF DataBLER-MCH-Result-r12

DataBLER-MCH-Result-r12 ::= SEQUENCE {
 mch-Index-r12 INTEGER (1..maxPMCH-PerMBSFN),
 dataBLER-Result-r12 BLER-Range-r12
}
BLER-Range-r12 ::= INTEGER(0..31)
MeasResultList2GERAN-r10 ::= SEQUENCE (SIZE (1..maxCellListGERAN)) OF MeasResultListGERAN
ConnEstFailReport-r11 ::= SEQUENCE {
 failedCellId-r11 CellGlobalIdEUTRA,
 locationInfo-r11 LocationInfo-r10 OPTIONAL,
 measResultFailedCell-r11 SEQUENCE {
 rsrpResult-r11 RSRP-Range,
 rsrqResult-r11 RSRQ-Range OPTIONAL
 },
 measResultNeighCells-r11 SEQUENCE {
 measResultListEUTRA-r11 MeasResultList2EUTRA-r9 OPTIONAL,
 measResultListUTRA-r11 MeasResultList2UTRA-r9 OPTIONAL,
 measResultListGERAN-r11 MeasResultListGERAN OPTIONAL,
 measResultsCDMA2000-r11 MeasResultList2CDMA2000-r9 OPTIONAL
 },
 numberOfPreamblesSent-r11 NumberOfPreamblesSent-r11,
 contentionDetected-r11 BOOLEAN,
 maxTxPowerReached-r11 BOOLEAN,
 timeSinceFailure-r11 TimeSinceFailure-r11,
 measResultListEUTRA-v1130 MeasResultList2EUTRA-v9e0 OPTIONAL,
} OPTIONAL,
NumberOfPreamblesSent-r11 ::= INTEGER (1..200)
TimeSinceFailure-r11 ::= INTEGER (0..172800)
MobilityHistoryReport-r12 ::= VisitedCellInfoList-r12

-- ASN1STOP
UEInformationResponse field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>absoluteTimeStamp</td>
<td>Indicates the absolute time when the logged measurement configuration logging is provided, as indicated by E-UTRAN within absoluteTimeInfo.</td>
</tr>
<tr>
<td>BLER-Range</td>
<td>Indicates the measured BLER value. The coding of BLER value is FFS.</td>
</tr>
<tr>
<td>carrierFreq</td>
<td>In case the UE includes carrierFreq-v9e0 and/or carrierFreq-v1090, the UE shall set the corresponding entry of carrierFreq-r9 and/or carrierFreq-r10 respectively to maxEarfcn. For E-UTRA and UTRA frequencies, the UE sets the ARFCN according to the band used when obtaining the concerned measurement results.</td>
</tr>
<tr>
<td>connectionFailureType</td>
<td>This field is used to indicate whether the connection failure is due to radio link failure or handover failure.</td>
</tr>
<tr>
<td>contentionDetected</td>
<td>This field is used to indicate that contention was detected for at least one of the transmitted preambles, see TS 36.321 [6].</td>
</tr>
<tr>
<td>c-RNTI</td>
<td>This field indicates the C-RNTI used in the PCell upon detecting radio link failure or the C-RNTI used in the source PCell upon handover failure.</td>
</tr>
<tr>
<td>dataBLER-MCH-ResultList</td>
<td>Includes a BLER result per MCH, with the applicable MCH(s) listed in the same order as in pmch-InfoList within MBSFNAreaConfiguration.</td>
</tr>
<tr>
<td>failedCellId</td>
<td>This field is used to indicate the cell in which connection establishment failed.</td>
</tr>
<tr>
<td>failedPCellId</td>
<td>This field is used to indicate the PCell in which RLF is detected or the target PCell of the failed handover. The UE sets the EARFCN according to the band used for transmission/reception when the failure occurred.</td>
</tr>
<tr>
<td>maxTxPowerReached</td>
<td>This field is used to indicate whether or not the maximum power level was used for the last transmitted preamble, see TS 36.321 [6].</td>
</tr>
<tr>
<td>mch-Index</td>
<td>Indicates the MCH by referring to the entry as listed in pmch-InfoList within MBSFNAreaConfiguration.</td>
</tr>
<tr>
<td>measResultFailedCell</td>
<td>This field refers to the last measurement results taken in the cell, where connection establishment failure happened.</td>
</tr>
<tr>
<td>measResultLastServCell</td>
<td>This field refers to the last measurement results taken in the PCell, where radio link failure or handover failure happened.</td>
</tr>
<tr>
<td>measResultListEUTRA</td>
<td>If measResultListEUTRA-v9e0, measResultListEUTRA-v1090 or measResultListEUTRA-v1130 is included, the UE shall include the same number of entries, and listed in the same order, as in measResultListEUTRA-r9, measResultListEUTRA-r10 and/or measResultListEUTRA-r11 respectively.</td>
</tr>
<tr>
<td>mobilityHistoryReport</td>
<td>This field is used to indicate the time of stay in 16 most recently visited E-UTRA cells or of stay out of E-UTRA.</td>
</tr>
<tr>
<td>numberOfPreamblesSent</td>
<td>This field is used to indicate the number of RACH preambles that were transmitted. Corresponds to parameter PREAMBLE_TRANSMISSION_COUNTER in TS 36.321 [6].</td>
</tr>
<tr>
<td>previousPCellId</td>
<td>This field is used to indicate the source PCell of the last handover (source PCell when the last RRC-Connection-Reconfiguration message including mobilityControllInfo was received).</td>
</tr>
<tr>
<td>previousUTRA-CellId</td>
<td>This field is used to indicate the source UTRA cell of the last successful handover to E-UTRAN, when RLF occurred at the target PCell. The UE sets the ARFCN according to the band used for transmission/reception on the concerned cell.</td>
</tr>
<tr>
<td>reestablishmentCellId</td>
<td>This field is used to indicate the cell in which the re-establishment attempt was made after connection failure.</td>
</tr>
<tr>
<td>relativeTimeStamp</td>
<td>Indicates the time of logging measurement results, measured relative to the absoluteTimeStamp. Value in seconds.</td>
</tr>
<tr>
<td>rlf-Cause</td>
<td>This field is used to indicate the cause of the last radio link failure that was detected. In case of handover failure information reporting (i.e., the connectionFailureType is set to 'hof'), the UE is allowed to set this field to any value.</td>
</tr>
<tr>
<td>selectedUTRA-CellId</td>
<td>This field is used to indicate the UTRA cell that the UE selects after RLF is detected, while T311 is running. The UE sets the ARFCN according to the band selected for transmission/reception on the concerned cell.</td>
</tr>
<tr>
<td>tac-FailedPCell</td>
<td>This field is used to indicate the Tracking Area Code of the PCell in which RLF is detected.</td>
</tr>
<tr>
<td>tce-Id</td>
<td>Parameter Trace Collection Entity Id: See TS 32.422 [58].</td>
</tr>
</tbody>
</table>
UEInformationResponse field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeConnFailure</td>
<td>This field is used to indicate the time elapsed since the last HO initialization until connection failure. Actual value = IE value * 100ms. The maximum value 1023 means 102.3s or longer.</td>
</tr>
<tr>
<td>timeSinceFailure</td>
<td>This field is used to indicate the time that elapsed since the connection (establishment) failure. Value in seconds. The maximum value 172800 means 172800s or longer.</td>
</tr>
<tr>
<td>traceRecordingSessionRef</td>
<td>Parameter Trace Recording Session Reference: See TS 32.422 [58].</td>
</tr>
</tbody>
</table>

ULHandoverPreparationTransfer (CDMA2000)

The **ULHandoverPreparationTransfer** message is used for the uplink transfer of handover related CDMA2000 information when requested by the higher layers.

- Signalling radio bearer: SRB1
- RLC-SAP: AM
- Logical channel: DCCH
- Direction: UE to E-UTRAN

ULHandoverPreparationTransfer message

```asn1
ULHandoverPreparationTransfer ::= SEQUENCE {
  criticalExtensions     CHOICE {
    c1         CHOICE {
      ulHandoverPreparationTransfer-r8  ULHandoverPreparationTransfer-r8-IEs,
      spare3 NULL, spare2 NULL, spare1 NULL
    },
    criticalExtensionsFuture    SEQUENCE {} } 
}

ULHandoverPreparationTransfer-r8-IEs ::= SEQUENCE {
  cdma2000-Type      CDMA2000-Type,
  meid        BIT STRING (SIZE (56)) OPTIONAL,
  dedicatedInfo      DedicatedInfoCDMA2000,
  nonCriticalExtension    ULHandoverPreparationTransfer-v8a0-IEs OPTIONAL
}

ULHandoverPreparationTransfer-v8a0-IEs ::= SEQUENCE {
  lateNonCriticalExtension   OCTET STRING      OPTIONAL,
  nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
```

ULHandoverPreparationTransfer field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>meid</td>
<td>The 56 bit mobile identification number provided by the CDMA2000 Upper layers.</td>
</tr>
</tbody>
</table>

ULInformationTransfer

The **ULInformationTransfer** message is used for the uplink transfer of NAS or non-3GPP dedicated information.

- Signalling radio bearer: SRB2 or SRB1 (only if SRB2 not established yet). If SRB2 is suspended, the UE does not send this message until SRB2 is resumed
- RLC-SAP: AM
- Logical channel: DCCH
ULInformationTransfer message

-- ASN1START

ULInformationTransfer ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE {
 ulInformationTransfer-r8 ULInformationTransfer-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}

ULInformationTransfer-r8-IEs ::= SEQUENCE {
 dedicatedInfoType CHOICE {
 dedicatedInfoNAS DedicatedInfoNAS,
 dedicatedInfoCDMA2000-1XRTT DedicatedInfoCDMA2000,
 dedicatedInfoCDMA2000–HRPD DedicatedInfoCDMA2000
 },
 nonCriticalExtension ULInformationTransfer-v8a0-IEs
}

ULInformationTransfer-v8a0-IEs ::= SEQUENCE {
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP

6.3 RRC information elements

6.3.1 System information blocks

– SystemInformationBlockType2

The IE SystemInformationBlockType2 contains radio resource configuration information that is common for all UEs.

NOTE: UE timers and constants related to functionality for which parameters are provided in another SIB are included in the corresponding SIB.

SystemInformationBlockType2 information element

-- ASN1START

SystemInformationBlockType2 ::= SEQUENCE {
 ac-BarringInfo SEQUENCE {
 ac-BarringForEmergency BOOLEAN, -- Need OP
 ac-BarringForMO-Signalling AC-BarringConfig OPTIONAL, -- Need OP
 ac-BarringForMO-Data AC-BarringConfig OPTIONAL, -- Need OP
 },
 radioResourceConfigCommon RadioResourceConfigCommonSIB,
 ue-TimersAndConstants UE-TimersAndConstants,
 freqInfo SEQUENCE {
 ul-CarrierFreq ARFCN-ValueEUTRA OPTIONAL, -- Need OP
 ul-Bandwidth ENUMERATED {n6, n15, n25, n50, n75, n100} OPTIONAL, -- Need OP
 additionalSpectrumEmission AdditionalSpectrumEmission
 },
 mbsfn-SubframeConfigList MBSFN-SubframeConfigList OPTIONAL, -- Need OR
 timeAlignmentTimerCommon TimeAlignmentTimer,
 lateNonCriticalExtension OCTET STRING (CONTAINING SystemInformationBlockType2-v8h0-IEs) OPTIONAL,
 [ssac-BarringForMMTEL-Voice-r9 AC-BarringConfig OPTIONAL, -- Need OP
 ssac-BarringForMMTEL-Video-r9 AC-BarringConfig OPTIONAL, -- Need OP
],
}
SystemInformationBlockType2 field descriptions

ac-BarringFactor
If the random number drawn by the UE is lower than this value, access is allowed. Otherwise the access is barred. The values are interpreted in the range [0, 1): p00 = 0, p05 = 0.05, p10 = 0.10, ..., p95 = 0.95. Values other than p00 can only be set if all bits of the corresponding **ac-BarringForSpecialAC** are set to 0.

ac-BarringForCSFB
Access class barring for mobile originating CS fallback.

ac-BarringForEmergency
Access class barring for AC 10.

ac-BarringForMO-Data
Access class barring for mobile originating calls.

ac-BarringForMO-Signalling
Access class barring for mobile originating signalling.

ac-BarringForSpecialAC
Access class barring for AC 11-15. The first/ leftmost bit is for AC 11, the second bit is for AC 12, and so on.

ac-BarringTime
Mean access barring time value in seconds.

additionalSpectrumEmission
The UE requirements related to IE **additionalSpectrumEmission** are defined in TS 36.101 [42, table 6.2.4.1].

mbsfn-SubframeConfigList
Defines the subframes that are reserved for MBSFN in downlink.

multiBandInfoList
A list of **additionalSpectrumEmission** i.e. one for each additional frequency band included in **multiBandInfoList** in SystemInformationBlockType1, listed in the same order.

ssac-BarringForMMTEL-Video
Service specific access class barring for MMTEL video originating calls.

ssac-BarringForMMTEL-Voice
Service specific access class barring for MMTEL voice originating calls.

ul-Bandwidth
Parameter: transmission bandwidth configuration, N_RB, in uplink, see TS 36.101 [42, table 5.6-1]. Value n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on. If for FDD this parameter is absent, the uplink bandwidth is equal to the downlink bandwidth. For TDD this parameter is absent and it is equal to the downlink bandwidth.

ul-CarrierFreq
For FDD: If absent, the (default) value determined from the default TX-RX frequency separation defined in TS 36.101 [42, table 5.7.3-1] applies.
For TDD: This parameter is absent and it is equal to the downlink frequency.
Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ul-FreqMax</td>
<td>The field is mandatory present if ul-CarrierFreq (i.e. without suffix) is present and set to maxEARFCN. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

SystemInformationBlockType3

The IE **SystemInformationBlockType3** contains cell re-selection information common for intra-frequency, inter-frequency and/or inter-RAT cell re-selection (i.e. applicable for more than one type of cell re-selection but not necessarily all) as well as intra-frequency cell re-selection information other than neighbouring cell related.

SystemInformationBlockType3 information element

```asn1
-- ASN1START

SystemInformationBlockType3 ::= SEQUENCE {
  cellReselectionInfoCommon  SEQUENCE {
    q-Hyst                ENUMERATED {
      dB0, dB1, dB2, dB3, dB4, dB5, dB6, dB8, dB10,
      dB12, dB14, dB16, dB18, dB20, dB22, dB24},
    speedStateReselectionPars SEQUENCE {
      mobilityStateParameters MobilityStateParameters,
      q-HystSF
    }
  },
  cellReselectionServingFreqInfo SEQUENCE {
    s-NonIntraSearch   ReselectionThreshold OPTIONAL, -- Need OP
    threshServingLow   ReselectionThreshold,
    cellReselectionPriority CellReselectionPriority
  },
  intraFreqCellReselectionInfo  SEQUENCE {
    q-RxLevMin        Q-RxLevMin,
    p-Max             P-Max,             OPTIONAL, -- Need OP
    s-IntraSearch     ReselectionThreshold OPTIONAL, -- Need OP
    allowedMeasBandwidth AllowedMeasBandwidth OPTIONAL, -- Need OP
    presenceAntennaPort1 PresenceAntennaPort1,  
    neighCellConfig   NeighCellConfig,
    t-ReselectionEUTRA T-Reselection,
    t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL -- Need OP
  },
  ...,
  lateNonCriticalExtension OCTET STRING OPTIONAL,
  [[ s-IntraSearch-v920 SEQUENCE {
      s-IntraSearchP-r9 ReselectionThreshold, 
      s-IntraSearchQ-r9 ReselectionThresholdQ-r9
    } OPTIONAL, -- Need OP
  }],
  [[ s-NonIntraSearch-v920 SEQUENCE {
      s-NonIntraSearchP-r9 ReselectionThreshold, 
      s-NonIntraSearchQ-r9 ReselectionThresholdQ-r9
    } OPTIONAL, -- Need OP
  }],
  q-QualMin-r9    Q-QualMin-r9,
  threshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL -- Cond WB-RSRQ
}
-- ASN1STOP
```
SystemInformationBlockType3 field descriptions

<table>
<thead>
<tr>
<th>allowedMeasBandwidth</th>
<th>If absent, the value corresponding to the downlink bandwidth indicated by the dl-Bandwidth included in MasterInformationBlock applies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellReselectionInfoCommon</td>
<td>Cell re-selection information common for cells.</td>
</tr>
<tr>
<td>cellReselectionServingFreqInfo</td>
<td>Information common for Cell re-selection to inter-frequency and inter-RAT cells.</td>
</tr>
<tr>
<td>intraFreqcellReselectionInfo</td>
<td>Cell re-selection information common for intra-frequency cells.</td>
</tr>
<tr>
<td>p-Max</td>
<td>Value applicable for the intra-frequency neighbouring E-UTRA cells. If absent the UE applies the maximum power according to the UE capability.</td>
</tr>
<tr>
<td>q-Hyst</td>
<td>Parameter Q_{hyst} in 36.304 [4], Value in dB. Value dB1 corresponds to 1 dB, dB2 corresponds to 2 dB and so on.</td>
</tr>
<tr>
<td>q-HystSF</td>
<td>Parameter “Speed dependent ScalingFactor for Q_{hyst}” in TS 36.304 [4]. The sf-Medium and sf-High concern the additional hysteresis to be applied, in Medium and High Mobility state respectively, to Q_{hyst} as defined in TS 36.304 [4]. In dB. Value dB-6 corresponds to -6 dB, dB-4 corresponds to -4 dB and so on.</td>
</tr>
<tr>
<td>q-QualMin</td>
<td>Parameter “$Q_{qualmin}$” in TS 36.304 [4], applicable for intra-frequency neighbour cells. If the field is not present, the UE applies the (default) value of negative infinity for $Q_{qualmin}$.</td>
</tr>
<tr>
<td>q-QualMinWB</td>
<td>If this field is present, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [16] and apply the value of this field for the parameter “$Q_{qualmin}$” in TS 36.304 [4]. Otherwise, the UE applies the value of $q-QualMin$ instead.</td>
</tr>
<tr>
<td>q-RxLevMin</td>
<td>Parameter “Q_{levmin}” in TS 36.304 [4], applicable for intra-frequency neighbour cells.</td>
</tr>
<tr>
<td>s-IntraSearch</td>
<td>Parameter “$S_{IntraSearchP}$” in TS 36.304 [4]. If the field $s-IntraSearchP$ is present, the UE applies the value of $s-IntraSearchP$ instead. Otherwise if neither $s-IntraSearch$ nor $s-IntraSearchP$ is present, the UE applies the (default) value of infinity for $S_{IntraSearchP}$.</td>
</tr>
<tr>
<td>s-IntraSearchQ</td>
<td>Parameter “$S_{IntraSearchQ}$” in TS 36.304 [4]. If the field is not present, the UE applies the (default) value of 0 dB for $S_{IntraSearchQ}$.</td>
</tr>
<tr>
<td>s-NonIntraSearch</td>
<td>Parameter “$S_{NonIntraSearchP}$” in TS 36.304 [4]. If the field $s-NonIntraSearchP$ is present, the UE applies the value of $s-NonIntraSearchP$ instead. Otherwise if neither $s-NonIntraSearch$ nor $s-NonIntraSearchP$ is present, the UE applies the (default) value of infinity for $S_{NonIntraSearchP}$.</td>
</tr>
<tr>
<td>s-NonIntraSearchQ</td>
<td>Parameter “$S_{NonIntraSearchQ}$” in TS 36.304 [4]. If the field is not present, the UE applies the (default) value of 0 dB for $S_{NonIntraSearchQ}$.</td>
</tr>
<tr>
<td>speedStateReselectionPars</td>
<td>Speed dependent reselection parameters, see TS 36.304 [4]. If this field is absent, i.e., mobilityStateParameters is also not present, UE behaviour is specified in TS 36.304 [4].</td>
</tr>
<tr>
<td>threshServingLow</td>
<td>Parameter “$ThreshServing, LowP$” in TS 36.304 [4].</td>
</tr>
<tr>
<td>threshServingLowQ</td>
<td>Parameter “$ThreshServing, LowQ$” in TS 36.304 [4].</td>
</tr>
<tr>
<td>l-ReselectionEUTRA</td>
<td>Parameter “$Treselection_{EUTRA}$” in TS 36.304 [4].</td>
</tr>
<tr>
<td>l-ReselectionEUTRA-SF</td>
<td>Parameter “Speed dependent ScalingFactor for $Treselection_{EUTRA}$” in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB-RSRQ</td>
<td>The field is optionally present, need OP if the measurement bandwidth indicated by allowedMeasBandwidth is 50 resource blocks or larger; otherwise it is not present.</td>
</tr>
</tbody>
</table>
SystemInformationBlockType4

The IE SystemInformationBlockType4 contains neighbouring cell related information relevant only for intra-frequency cell re-selection. The IE includes cells with specific re-selection parameters as well as blacklisted cells.

SystemInformationBlockType4 information element

SystemInformationBlockType4 ::= SEQUENCE {
 intraFreqNeighCellList IntraFreqNeighCellList OPTIONAL, -- Need OR
 intraFreqBlackCellList IntraFreqBlackCellList OPTIONAL, -- Need OR
 csg-PhysCellIdRange PhysCellIdRange OPTIONAL, -- Cond CSG
 ...,
 lateNonCriticalExtension OCTET STRING OPTIONAL
}

IntraFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellIntra)) OF IntraFreqNeighCellInfo

IntraFreqNeighCellInfo ::= SEQUENCE {
 physCellId PhysCellId,
 q-OffsetCell Q-OffsetRange,
 ...
}

IntraFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange

SystemInformationBlockType4 field descriptions

csg-PhysCellIdRange
Set of physical cell identities reserved for CSG cells on the frequency on which this field was received. The received csg-PhysCellIdRange applies if less than 24 hours has elapsed since it was received and the UE is camped on a cell of the same primary PLMN where this field was received. The 3 hour validity restriction (section 5.2.1.3) does not apply to this field. The UE shall not apply any stored csg-PhysCellIdRange when it is in any cell selection state defined in TS 36.304 [4].

intraFreqBlackCellList
List of blacklisted intra-frequency neighbouring cells.

intraFreqNeighCellList
List of intra-frequency neighbouring cells with specific cell re-selection parameters.

q-OffsetCell
Parameter “Qoffset$_{s,n}$” in TS 36.304 [4].

SystemInformationBlockType5

The IE SystemInformationBlockType5 contains information relevant only for inter-frequency cell re-selection i.e. information about other E-UTRA frequencies and inter-frequency neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency as well as cell specific re-selection parameters.

SystemInformationBlockType5 information element

SystemInformationBlockType5 ::= SEQUENCE {
 interFreqCarrierFreqList InterFreqCarrierFreqList,
 ...,
 lateNonCriticalExtension OCTET STRING OPTIONAL
}

interFreqCarrierFreqList-v8h0-IEs ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v8h0-IEs

SystemInformationBlockType5-v9e0-IEs ::= SEQUENCE {
 interFreqCarrierFreqList-v9e0 SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo-v9e0 OPTIONAL, -- Need OR
 nonCriticalExtension SEQUENCE () OPTIONAL
}

InterFreqCarrierFreqList ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo

InterFreqCarrierFreqInfo ::= SEQUENCE {
 dl-CarrierFreq ARFCN-ValueEUTRA,
 q-RxLevMin Q-RxLevMin,
 p-Max P-Max OPTIONAL, -- Need OP
 t-ReselectionEUTRA T-Reselection,
 t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL, -- Need OP
 threshX-High ReselectionThreshold, threshX-Low ReselectionThreshold,
 allowedMeasBandwidth AllowedMeasBandwidth,
 presenceAntennaPort1 PresenceAntennaPort1,
 cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OP
 neighCellConfig NeighCellConfig,
 q-OffsetFreq Q-OffsetRange DEFAULT dB0,
 interFreqNeighCellList InterFreqNeighCellList OPTIONAL, -- Need OR
 interFreqBlackCellList InterFreqBlackCellList OPTIONAL, -- Need OR
 ...,
 [[q-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OP
 threshX-HighQ-r9 ReselectionThresholdQ-r9,
 threshX-LowQ-r9 ReselectionThresholdQ-r9
]]
],
 [[q-QualMinWB-r11 Q-QualMin-r9 OPTIONAL -- Cond WB-RSRQ
]]
}

InterFreqCarrierFreqInfo-v8h0 ::= SEQUENCE {
 multiBandInfoList MultiBandInfoList OPTIONAL -- Need OR
}

InterFreqCarrierFreqInfo-v9e0 ::= SEQUENCE {
 dl-CarrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0 OPTIONAL, -- Cond dl-FreqMax
 multiBandInfoList-v9e0 MultiBandInfoList-v9e0 OPTIONAL -- Need OR
}

InterFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellInter)) OF InterFreqNeighCellInfo

InterFreqNeighCellInfo ::= SEQUENCE {
 physCellId PhysCellId,
 q-OffsetCell Q-OffsetRange
}

InterFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange

-- ASN1STOP
SystemInformationBlockType5 field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interFreqBlackCellList</td>
<td>List of blacklisted inter-frequency neighbouring cells.</td>
</tr>
<tr>
<td>interFreqCarrierFreqList</td>
<td>List of neighbouring inter-frequencies. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the E-ARFCN used to indicate this. If E-UTRAN includes <code>interFreqCarrierFreqList-v8h0</code> and/or <code>interFreqCarrierFreqList-v9e0</code> it includes the same number of entries, and listed in the same order, as in <code>interFreqCarrierFreqList</code> (i.e. without suffix). See Annex D for more descriptions.</td>
</tr>
<tr>
<td>interFreqNeighCellList</td>
<td>List of inter-frequency neighbouring cells with specific cell re-selection parameters.</td>
</tr>
<tr>
<td>multiBandInfoList</td>
<td>Indicates the list of frequency bands in addition to the band represented by <code>dl-CarrierFreq</code> for which cell re-selection parameters are common. E-UTRAN indicates at most <code>maxMultiBands</code> frequency bands (i.e. the total number of entries across both <code>multiBandInfoList</code> and <code>multiBandInfoList-v9e0</code> is below this limit).</td>
</tr>
</tbody>
</table>

p-Max

Value applicable for the neighbouring E-UTRA cells on this carrier frequency. If absent the UE applies the maximum power according to the UE capability.

q-OffsetCell

Parameter “OffsetS,n” in TS 36.304 [4].

q-OffsetFreq

Parameter “Offsetfrequency” in TS 36.304 [4].

q-QualMin

Parameter “Qqualmin” in TS 36.304 [4]. If the field is not present, the UE applies the (default) value of negative infinity for `Qqualmin`.

q-QualMinWB

If this field is present, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [16] and apply the value of this field for the parameter “Qqualmin” in TS 36.304 [4]. Otherwise, the UE applies the value of `q-Qualmin` instead.

threshX-High

threshX-HighQ

Parameter “ThreshX, HighQ” in TS 36.304 [4].

threshX-Low

threshX-LowQ

Parameter “ThreshX, LowQ” in TS 36.304 [4].

t-ReselectionEUTRA

Parameter “TreselectionEUTRA” in TS 36.304 [4].

t-ReselectionEUTRA-SF

Parameter “Speed dependent ScalingFactor for TreselectionEUTRA” in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].

SystemInformationBlockType6

The IE `SystemInformationBlockType6` contains information relevant only for inter-RAT cell re-selection i.e. information about UTRA frequencies and UTRA neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency.

SystemInformationBlockType6 information element

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>dl-FreqMax</td>
<td>The field is mandatory present if, for the corresponding entry in <code>InterFreqCarrierFreqList</code> (i.e. without suffix), <code>dl-CarrierFreq</code> (i.e. without suffix) is set to <code>maxEARFCN</code>. Otherwise the field is not present.</td>
</tr>
<tr>
<td>RSRQ</td>
<td>The field is mandatory present if <code>threshServingLowQ</code> is present in <code>systemInformationBlockType3</code>; otherwise it is not present.</td>
</tr>
<tr>
<td>WB-RSRQ</td>
<td>The field is optionally present, need OP if the measurement bandwidth indicated by <code>allowedMeasBandwidth</code> is 50 resource blocks or larger; otherwise it is not present.</td>
</tr>
</tbody>
</table>
SystemInformationBlockType6-v8h0-IEs ::= SEQUENCE {
carrierFreqListUTRA-FDD-v8h0 SEQUENCE (SIZE (1..maxUTRA-FDD-Carrier)) OF CarrierFreqInfoUTRA-FDD-v8h0 OPTIONAL, -- Cond UTRA-FDD
nonCriticalExtension SEQUENCE () OPTIONAL
}

CarrierFreqListUTRA-FDD ::= SEQUENCE (SIZE (1..maxUTRA-FDD-Carrier)) OF CarrierFreqUTRA-FDD

CarrierFreqUTRA-FDD ::= SEQUENCE {
carrierFreq ARFCN-ValueUTRA,
cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OP
threshX-High ReselectionThreshold,
threshX-Low ReselectionThreshold,
q-RxLevMin INTEGER (-60..-13),
p-MaxUTRA INTEGER (-50..33),
q-QualMin INTEGER (-24..0),
...,
 [[threshX-Q-r9 SEQUENCE {
 threshX-HighQ-r9 ReselectionThresholdQ-r9,
threshX-LowQ-r9 ReselectionThresholdQ-r9
 } OPTIONAL -- Cond RSRQ
]]
}

CarrierFreqInfoUTRA-FDD-v8h0 ::= SEQUENCE {
multiBandInfoList SEQUENCE (SIZE (1..maxMultiBands)) OF FreqBandIndicator-UTRA-FDD OPTIONAL -- Need OR
}

CarrierFreqListUTRA-TDD ::= SEQUENCE (SIZE (1..maxUTRA-TDD-Carrier)) OF CarrierFreqUTRA-TDD

CarrierFreqUTRA-TDD ::= SEQUENCE {
carrierFreq ARFCN-ValueUTRA,
cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OP
threshX-High ReselectionThreshold,
threshX-Low ReselectionThreshold,
q-RxLevMin INTEGER (-60..-13),
p-MaxUTRA INTEGER (-50..33),
...,
FreqBandIndicator-UTRA-FDD ::= INTEGER (1..86)

-- ASN1STOP
SystemInformationBlockType6 field descriptions

carrierFreqListUTRA-FDD
List of carrier frequencies of UTRA FDD. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the ARFCN used to indicate this. If E-UTRAN includes carrierFreqListUTRA-FDD-v8h0 it includes the same number of entries, and listed in the same order, as in carrierFreqListUTRA-FDD (i.e. without suffix). See Annex D for more descriptions.

carrierFreqListUTRA-TDD
List of carrier frequencies of UTRA TDD. E-UTRAN does not configure more than one entry for the same physical frequency regardless of the ARFCN used to indicate this.

multiBandInfoList
Indicates the list of frequency bands in addition to the band represented by carrierFreq in the CarrierFreqUTRA-FDD for which UTRA cell reselection parameters are common.

p-MaxUTRA
The maximum allowed transmission power on the (uplink) carrier frequency, see TS 25.304 [40]. In dBm

q-QualMin
Parameter “Qqualmin” in TS 25.304 [40]. Actual value = IE value [dB].

q-RxLevMin
Parameter “Qrxlevmin” in TS 25.304 [40]. Actual value = IE value * 2+1 [dBm].

t-ReselectionUTRA
Parameter “TreselectionUTRAN” in TS 36.304 [4].

t-ReselectionUTRA-SF
Parameter “Speed dependent ScalingFactor for TreselectionUTRA” in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].

threshX-High

threshX-HighQ
Parameter “ThreshX, HighQ” in TS 36.304 [4].

threshX-Low

threshX-LowQ
Parameter “ThreshX, LowQ” in TS 36.304 [4].

Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSRQ</td>
<td>The field is mandatory present if the threshServingLowQ is present in SystemInformationBlockType3; otherwise it is not present.</td>
</tr>
<tr>
<td>UTRA-FDD</td>
<td>The field is optionally present, need OR, if the carrierFreqListUTRA-FDD is present. Otherwise it is not present.</td>
</tr>
</tbody>
</table>

SystemInformationBlockType7

The IE SystemInformationBlockType7 contains information relevant only for inter-RAT cell re-selection i.e. information about GERAN frequencies relevant for cell re-selection. The IE includes cell re-selection parameters for each frequency.

SystemInformationBlockType7 information element

-- ASN1START
SystemInformationBlockType7 ::= SEQUENCE {
 t-ReselectionGERAN T-Reselection, OPTIONAL, -- Need OR
 t-ReselectionGERAN-SF SpeedStateScaleFactors OPTIONAL, -- Need OR
 carrierFreqsInfoListGERAN CarrierFreqsInfoListGERAN OPTIONAL, -- Need OR
 ...,
 lateNonCriticalExtension OCTET STRING OPTIONAL
}
CarrierFreqsInfoListGERAN ::= SEQUENCE (SIZE (1..maxGNFG)) OF CarrierFreqsInfoGERAN
CarrierFreqsInfoGERAN ::= SEQUENCE {
 carrierFreqs CarrierFreqsGERAN, OPTIONAL, -- Need OP
 commonInfo SEQUENCE {
 cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OP
 ncc-Permitted BIT STRING (SIZE (8)),
 q-RxLevMin INTEGER (0..127) OPTIONAL, -- Need OP
 p-MaxGERAN INTEGER (0..127) OPTIONAL, -- Need OP
 threshX-High ReselectionThreshold, OPTIONAL, -- Need OP
 threshX-Low ReselectionThreshold
 }
SystemInformationBlockType7 field descriptions

carrierFreqs
The list of GERAN carrier frequencies organised into one group of GERAN carrier frequencies.

carrierFreqsInfoList
Provides a list of neighbouring GERAN carrier frequencies, which may be monitored for neighbouring GERAN cells. The GERAN carrier frequencies are organised in groups and the cell reselection parameters are provided per group of GERAN carrier frequencies.

commonInfo
Defines the set of cell reselection parameters for the group of GERAN carrier frequencies.

ncc-Permitted
Field encoded as a bit map, where bit N is set to “0” if a BCCH carrier with NCC = N-1 is not permitted for monitoring and set to “1” if the BCCH carrier with NCC = N-1 is permitted for monitoring; N = 1 to 8; bit 1 of the bitmap is the leading bit of the bit string.

p-MaxGERAN
Maximum allowed transmission power for GERAN on an uplink carrier frequency, see TS 45.008 [28]. Value in dBm. Applicable for the neighbouring GERAN cells on this carrier frequency. If pmaxGERAN is absent, the maximum power according to the UE capability is used.

q-RxLevMin
Parameter “Q_{rxlevmin}” in TS 36.304 [1], minimum required RX level in the GSM cell. The actual value of Q_{rxlevmin} in dBm = (IE value * 2) – 115.

threshX-High
Parameter “Thresh_{X, HighP}” in TS 36.304 [4].

threshX-Low
Parameter “Thresh_{X, LowP}” in TS 36.304 [4].

t-ReselectionGERAN
Parameter “T_{reselection,GERAN}” in TS 36.304 [4].

t-ReselectionGERAN-SF
Parameter “Speed dependent ScalingFactor for T_{reselection,GERAN}” in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].

SystemInformationBlockType8

The IE SystemInformationBlockType8 contains information relevant only for inter-RAT cell re-selection i.e. information about CDMA2000 frequencies and CDMA2000 neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency as well as cell specific re-selection parameters.

SystemInformationBlockType8 information element

SystemInformationBlockType8 ::= SEQUENCE {
 systemTimeInfo SystemTimeInfoCDMA2000 OPTIONAL, -- Need OR
 searchWindowSize INTEGER (0..15) OPTIONAL, -- Need OR
 parametersHRPD SEQUENCE {
 preRegistrationInfoHRPD PreRegistrationInfoHRPD, OPTIONAL, -- Need OR
 cellReselectionParametersHRPD CellReselectionParametersCDMA2000 OPTIONAL -- Need OR
 },
 parameters1XRTT SEQUENCE {
 csfb-RegistrationParam1XRTT CSFB-RegistrationParam1XRTT OPTIONAL, -- Need OR
 longCodeState1XRTT BIT STRING (SIZE (42)) OPTIONAL, -- Need OR
 cellReselectionParameters1XRTT CellReselectionParametersCDMA2000 OPTIONAL -- Need OR
 },
 ...,
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 csfb-SupportForDualRxUEs-r9 BOOLEAN OPTIONAL, -- Need OR
 cellReselectionParametersHRPD-v920 CellReselectionParametersCDMA2000-v920 OPTIONAL, -- Cond NCL-HPRPD
 cellReselectionParameters1XRTT-v920 CellReselectionParametersCDMA2000-v920 OPTIONAL, -- Cond NCL-1XRTT
 csfb-RegistrationParam1XRTT-v920 CSFB-RegistrationParam1XRTT-v920 OPTIONAL, -- Cond REG-1XRTT
}

ac-BarringConfig1XRTT-r9 AC-BarringConfig1XRTT-r9 OPTIONAL -- Cond REG-1XRTT
]],[[csfb-DualRxTxSupport-r10 ENUMERATED {true} OPTIONAL -- Cond REG-1XRTT
]],[[sib8-PerPLMN-List-r11 SIB8-PerPLMN-List-r11 OPTIONAL -- Need OR

CellReselectionParametersCDMA2000 ::= SEQUENCE {
 bandClassList BandClassListCDMA2000,
 neighCellList NeighCellListCDMA2000,
 t-ReselectionCDMA2000 T-Reselection,
 t-ReselectionCDMA2000-SF SpeedStateScaleFactors OPTIONAL -- Need OP
}

CellReselectionParametersCDMA2000-r11 ::= SEQUENCE {
 bandClassList BandClassListCDMA2000,
 neighCellList-r11 SEQUENCE (SIZE (1..16)) OF NeighCellCDMA2000-r11,
 t-ReselectionCDMA2000 T-Reselection,
 t-ReselectionCDMA2000-SF SpeedStateScaleFactors OPTIONAL -- Need OP
}

CellReselectionParametersCDMA2000-v920 ::= SEQUENCE {
 neighCellList-v920 NeighCellListCDMA2000-v920
}

NeighCellListCDMA2000 ::= SEQUENCE (SIZE (1..16)) OF NeighCellCDMA2000

NeighCellCDMA2000 ::= SEQUENCE {
 bandClass BandclassCDMA2000,
 neighCellsPerFreqList NeighCellsPerBandclassListCDMA2000
}

NeighCellCDMA2000-r11 ::= SEQUENCE {
 bandClass BandclassCDMA2000,
 neighFreqInfoList-r11 SEQUENCE (SIZE (1..16)) OF NeighCellsPerBandclassCDMA2000-r11
}

NeighCellsPerBandclassListCDMA2000 ::= SEQUENCE (SIZE (1..16)) OF NeighCellsPerBandclassCDMA2000

NeighCellsPerBandclassCDMA2000 ::= SEQUENCE {
 arfcn ARFCN-ValueCDMA2000,
 physCellIdList PhysCellIdListCDMA2000
}

NeighCellsPerBandclassCDMA2000-r11 ::= SEQUENCE {
 arfcn ARFCN-ValueCDMA2000,
 physCellIdList-r11 SEQUENCE (SIZE (1..40)) OF PhysCellIdCDMA2000
}

NeighCellListCDMA2000-v920 ::= SEQUENCE (SIZE (1..16)) OF NeighCellCDMA2000-v920

NeighCellCDMA2000-v920 ::= SEQUENCE {
 neighCellsPerFreqList-v920 NeighCellsPerBandclassListCDMA2000-v920
}

NeighCellsPerBandclassListCDMA2000-v920 ::= SEQUENCE (SIZE (1..16)) OF NeighCellsPerBandclassCDMA2000-v920

NeighCellsPerBandclassCDMA2000-v920 ::= SEQUENCE {
 physCellIdList-v920 PhysCellIdListCDMA2000-v920
}

PhysCellIdListCDMA2000 ::= SEQUENCE (SIZE (1..16)) OF PhysCellIdCDMA2000

PhysCellIdListCDMA2000-v920 ::= SEQUENCE (SIZE (0..24)) OF PhysCellIdCDMA2000

BandClassListCDMA2000 ::= SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandClassInfoCDMA2000

BandClassInfoCDMA2000 ::= SEQUENCE {
 bandClass BandclassCDMA2000,
 cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OP
 threshX-High INTEGER (0..63),
 threshX-Low INTEGER (0..63),
 ...
AC-BarringConfig1XRTT-r9 ::= SEQUENCE {
 ac-Barring0to9-r9 INTEGER (0..63),
 ac-Barring10-r9 INTEGER (0..7),
 ac-Barring11-r9 INTEGER (0..7),
 ac-Barring12-r9 INTEGER (0..7),
 ac-Barring13-r9 INTEGER (0..7),
 ac-Barring14-r9 INTEGER (0..7),
 ac-Barring15-r9 INTEGER (0..7),
 ac-BarringMsg-r9 INTEGER (0..7),
 ac-BarringReg-r9 INTEGER (0..7),
 ac-BarringEmg-r9 INTEGER (0..7)
}

SIB8-PerPLMN-List-r11 ::= SEQUENCE (SIZE (1..maxPLMN-r11)) OF SIB8-PerPLMN-r11

SIB8-PerPLMN-r11 ::= SEQUENCE {
 plmn-Identity-r11 INTEGER (1..maxPLMN-r11),
 parametersCDMA2000-r11 CHOICE {
 explicitValue ParametersCDMA2000-r11,
 defaultValue NULL
 }
}

ParametersCDMA2000-r11 ::= SEQUENCE {
 systemTimeInfo-r11 CHOICE {
 explicitValue SystemTimeInfoCDMA2000,
 defaultValue NULL
 } OPTIONAL, -- Need OR
 searchWindowSize-r11 INTEGER (0..15),
 parametersHRPD-r11 SEQUENCE {
 preRegistrationInfoHRPD-r11 PreRegistrationInfoHRPD,
 cellReselectionParametersHRPD-r11 CellReselectionParametersCDMA2000-r11 OPTIONAL -- Need OR
 } OPTIONAL, -- Need OR
 parameters1XRTT-r11 SEQUENCE {
 csfb-RegistrationParam1XRTT-r11 CSFB-RegistrationParam1XRTT OPTIONAL, -- Need OR
 csfb-RegistrationParam1XRTT-Ext-r11 CSFB-RegistrationParam1XRTT-v920 OPTIONAL, -- Cond REG-1XRTT-PerPLMN
 } OPTIONAL, -- Cond REG-1XRTT-PerPLMN
 longCodeState1XRTT-r11 BIT STRING (SIZE (42)) OPTIONAL, -- Cond PerPLMN-LC
 cellReselectionParameters1XRTT-r11 CellReselectionParametersCDMA2000-r11 OPTIONAL, -- Need OR
 ac-BarringConfig1XRTT-r11 AC-BarringConfig1XRTT-r9 OPTIONAL, -- Cond REG-1XRTT-PerPLMN
 csfb-SupportForDualRxUEs-r11 BOOLEAN OPTIONAL, -- Need OR
 csfb-DualRxTxSupport-r11 ENUMERATED {true} OPTIONAL -- Cond REG-1XRTT-PerPLMN
} OPTIONAL, -- Need OR
...

-- ASN1STOP
SystemInformationBlockType8 field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac-BarringConfig1XRTT</td>
<td>Contains the access class barring parameters the UE uses to calculate the access class barring factor, see C.S0097 [53].</td>
</tr>
<tr>
<td>ac-Barring0to9</td>
<td>Parameter used for calculating the access class barring factor for access overload classes 0 through 9. It is the parameter “PSIST” in C.S0004 [34] for access overload classes 0 through 9.</td>
</tr>
<tr>
<td>ac-Barring0to9</td>
<td>Parameter used for calculating the access class barring factor for access overload classes 0 through 9. It is the parameter “PSIST” in C.S0004 [34] for access overload classes 0 through 9.</td>
</tr>
<tr>
<td>ac-Barring0to9</td>
<td>Parameter used for calculating the access class barring factor for access overload classes 0 through 9. It is the parameter “PSIST_EMG” in C.S0004 [34].</td>
</tr>
<tr>
<td>ac-Barring0to9</td>
<td>Parameter used for modifying the access class barring factor for message transmissions. It is the parameter “MSG_PSIST” in C.S0004 [34].</td>
</tr>
<tr>
<td>ac-BarringN</td>
<td>Parameter used for calculating the access class barring factor for access overload class N (N = 10 to 15). It is the parameter “PSIST” in C.S0004 [34] for access overload class N.</td>
</tr>
<tr>
<td>ac-BarringReg</td>
<td>Parameter used for modifying the access class barring factor for autonomous registrations. It is the parameter “REG_PSIST” in C.S0004 [34].</td>
</tr>
<tr>
<td>bandClass</td>
<td>Identifies the Frequency Band in which the Carrier can be found. Details can be found in C.S0057 [24, Table 1.5].</td>
</tr>
<tr>
<td>bandClassList</td>
<td>List of CDMA2000 frequency bands.</td>
</tr>
<tr>
<td>cellReselectionParameters1XRTT</td>
<td>Cell reselection parameters applicable only to CDMA2000 1xRTT system.</td>
</tr>
<tr>
<td>cellReselectionParameters1XRTT-Ext</td>
<td>Cell reselection parameters applicable for cell reselection to CDMA2000 1XRTT system.</td>
</tr>
<tr>
<td>cellReselectionParameters1XRTT-v920</td>
<td>Cell reselection parameters applicable for cell reselection to CDMA2000 1XRTT system. The field is not present if cellReselectionParameters1XRTT is not present; otherwise it is optionally present.</td>
</tr>
<tr>
<td>cellReselectionParametersHRPD</td>
<td>Cell reselection parameters applicable for cell reselection to CDMA2000 HRPD system.</td>
</tr>
<tr>
<td>cellReselectionParametersHRPD-Ext</td>
<td>Cell reselection parameters applicable for cell reselection to CDMA2000 HRPD system.</td>
</tr>
<tr>
<td>cellReselectionParametersHRPD-v920</td>
<td>Cell reselection parameters applicable for cell reselection to CDMA2000 HRPD system. The field is not present if cellReselectionParametersHRPD is not present; otherwise it is optionally present.</td>
</tr>
<tr>
<td>csfb-DualRxTxSupport</td>
<td>Value TRUE indicates that the network supports dual Rx/Tx enhanced 1xCSFB, which enables UEs capable of dual Rx/Tx enhanced 1xCSFB to switch off their 1xRTT receiver/transmitter while camped in E-UTRAN [51].</td>
</tr>
<tr>
<td>csfb-RegistrationParam1XRTT</td>
<td>Contains the parameters the UE will use to determine if it should perform a CDMA2000 1xRTT Registration/Re-Registration. This field is included if either CSFB or enhanced CS fallback to CDMA2000 1xRTT is supported.</td>
</tr>
<tr>
<td>csfb-SupportForDualRxUEs</td>
<td>Value TRUE indicates that the network supports dual Rx CSFB [51].</td>
</tr>
<tr>
<td>longCodeState1XRTT</td>
<td>The state of long code generation registers in CDMA2000 1XRTT system as defined in C.S0002 [12, Section 1.3] at $\left\lfloor \frac{t}{10} \right\rfloor \times 10 + 320$ ms, where t equals to the cdma-SystemTime. This field is required for SRVCC handover and enhanced CS fallback to CDMA2000 1xRTT operation. Otherwise this IE is not needed. This field is excluded when estimating changes in system information, i.e. changes of longCodeState1XRTT should neither result in system information change notifications nor in a modification of systemInfoValueTag in SIB1.</td>
</tr>
<tr>
<td>neighCellList</td>
<td>List of CDMA2000 neighbouring cells. The total number of neighbouring cells in neighCellList for each RAT (1XRTT or HRPD) is limited to 32.</td>
</tr>
<tr>
<td>neighCellList-v920</td>
<td>Extended List of CDMA2000 neighbouring cells. The combined total number of CDMA2000 neighbouring cells in both neighCellList and neighCellList-v920 is limited to 32 for HRPD and 40 for 1xRTT.</td>
</tr>
</tbody>
</table>
SystemInformationBlockType8 field descriptions

neighCellsPerFreqList
List of carrier frequencies and neighbour cell ids in each frequency within a CDMA2000 Band, see C.S0002 [12] or C.S0024 [26].

neighCellsPerFreqList-v920
Extended list of neighbour cell ids, in the same CDMA2000 Frequency Band as the corresponding instance in “NeighCellListCDMA2000”.

parameters1XRTT
Parameters applicable for interworking with CDMA2000 1XRTT system.

parametersCDMA2000
Provides the corresponding SIB8 parameters for the CDMA2000 network associated with the PLMN indicated in plmn-Identity. A choice is used to indicate whether for this PLMN the parameters are signalled explicitly or set to the (default) values common for all PLMNs i.e. the values not included in sib8-PerPLMN-List.

parametersHRPD
Parameters applicable only for interworking with CDMA2000 HRPD systems.

physCellIdList
Identifies the list of CDMA2000 cell ids, see C.S0002 [12] or C.S0024 [26].

physCellIdList-v920
Extended list of CDMA2000 cell ids, in the same CDMA2000 ARFCN as the corresponding instance in “NeighCellsPerBandclassCDMA2000”.

plmn-Identity
Indicates the PLMN associated with this CDMA2000 network. Value 1 indicates the PLMN listed 1st in plmn-IdentityList included in SIB1, value 2 indicates the PLMN listed 2nd in plmn-IdentityList included in SIB1 and so on. A PLMN which identity is not indicated in the sib8-PerPLMN-List, does not support inter-working with CDMA2000.

preRegistrationInfoHRPD
The CDMA2000 HRPD Pre-Registration Information tells the UE if it should pre-register with the CDMA2000 HRPD network and identifies the Pre-registration zone to the UE.

searchWindowSize
The search window size is a CDMA2000 parameter to be used to assist in searching for the neighbouring pilots. For values see C.S0005 [25, Table 2.6.6.2.1-1] and C.S0024 [26, Table 8.7.6.2-4]. This field is required for a UE with rx-ConfigHRPD= single and/or rx-Config1XRTT= single to perform handover, cell re-selection, UE measurement based redirection and enhanced 1xRTT CS fallback from E-UTRAN to CDMA2000 according to this specification and TS 36.304 [4].

sib8-PerPLMN-List
This field provides the values for the interworking CDMA2000 networks corresponding, if any, to the UE’s RPLMN.

systemInfo
Information on CDMA2000 system time. This field is required for a UE with rx-ConfigHRPD= single and/or rx-Config1XRTT= single to perform handover, cell re-selection, UE measurement based redirection and enhanced 1xRTT CS fallback from E-UTRAN to CDMA2000 according to this specification and TS 36.304 [4]. This field is excluded when estimating changes in system information, i.e. changes of systemInfo should neither result in system information change notifications nor in a modification of systemInfoValueTag in SIB1. For the field included in ParametersCDMA2000, a choice is used to indicate whether for this PLMN the parameters are signalled explicitly or set to the (default) value common for all PLMNs i.e. the values not included in sib8-PerPLMN-List.

threshX-High
Parameter “ThreshX, HighP” in TS 36.304 [4]. This specifies the high threshold used in reselection towards this CDMA2000 band class expressed as an unsigned binary number equal to FLOOR (-2 x 10 x log10 E_c/I_o) in units of 0.5 dB, as defined in C.S0005 [25].

threshX-Low
Parameter “ThreshX, LowP” in TS 36.304 [4]. This specifies the low threshold used in reselection towards this CDMA2000 band class expressed as an unsigned binary number equal to FLOOR (-2 x 10 x log10 E_c/I_o) in units of 0.5 dB, as defined in C.S0005 [25].

t-ReselectionCDMA2000
Parameter “TreselectionCDMA, HRPD” or “TreselectionCDMA, 1XRTT” in TS 36.304 [4].

t-ReselectionCDMA2000-SF
Parameter “Speed dependent ScalingFactor for TreselectionCDMA, HRPD” or TreselectionCDMA, 1XRTT” in TS 36.304 [4]. If the field is not present, the UE behaviour is specified in TS 36.304 [4].
Conditional presence and Explanation

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCL-1XRTT</td>
<td>The field is optional present, need OR, if <code>cellReselectionParameters1xRTT</code> is present; otherwise it is not present.</td>
</tr>
<tr>
<td>NCL-HRPD</td>
<td>The field is optional present, need OR, if <code>cellReselectionParametersHRPD</code> is present; otherwise it is not present.</td>
</tr>
<tr>
<td>PerPLMN-LC</td>
<td>The field is optional present, need OR, if <code>systemTimeInfo</code> is included in <code>SIB8PerPLMN</code> for this CDMA2000 network; otherwise it is not present.</td>
</tr>
<tr>
<td>REG-1XRTT</td>
<td>The field is optional present, need OR, if <code>csfb-RegistrationParam1XRTT</code> is present; otherwise it is not present.</td>
</tr>
<tr>
<td>REG-1XRTT-PerPLMN</td>
<td>The field is optional present, need OR, if <code>csfb-RegistrationParam1XRTT</code> is included in <code>SIB8PerPLMN</code> for this CDMA2000 network; otherwise it is not present.</td>
</tr>
</tbody>
</table>

SystemInformationBlockType9

The IE `SystemInformationBlockType9` contains a home eNB name (HNB Name).

SystemInformationBlockType9 information element

```mermaid
SystemInformationBlockType9 ::= SEQUENCE {
  hnb-Name       OCTET STRING (SIZE(1..48))  OPTIONAL, -- Need OR
  ...
  lateNonCriticalExtension    OCTET STRING    OPTIONAL
}
```

SystemInformationBlockType9 field descriptions

- **hnb-Name**

 Carries the name of the home eNB, coded in UTF-8 with variable number of bytes per character, see TS 22.011 [10].

SystemInformationBlockType10

The IE `SystemInformationBlockType10` contains an ETWS primary notification.

SystemInformationBlockType10 information element

```mermaid
SystemInformationBlockType10 ::= SEQUENCE {
  messageIdentifier     BIT STRING (SIZE (16)),
  serialNumber      BIT STRING (SIZE (16)),
  warningType       OCTET STRING (SIZE (2)),
  dummy        OCTET STRING (SIZE (50)) OPTIONAL,  -- Need OP
  ...
  lateNonCriticalExtension   OCTET STRING    OPTIONAL
}
```

SystemInformationBlockType10 field descriptions

messageIdentifier
Identifies the source and type of ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.44]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.1], while the trailing bit contains bit 0 of the second octet of the same equivalent IE.

serialNumber
Identifies variations of an ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.45]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.2], while the trailing bit contains bit 0 of the second octet of the same equivalent IE.

dummy
This field is not used in the specification. If received it shall be ignored by the UE.

warningType
Identifies the warning type of the ETWS primary notification and provides information on emergency user alert and UE popup. The first octet (which is equivalent to the first octet of the equivalent IE defined in TS 36.413 [39, 9.2.1.50]) contains the first octet of the equivalent IE defined in and encoded according to TS 23.041 [37, 9.3.24], and so on.

SystemInformationBlockType11
The IE `SystemInformationBlockType11` contains an ETWS secondary notification.

SystemInformationBlockType11 information element

```plaintext
-- ASN1START
SystemInformationBlockType11 ::= SEQUENCE { 
  messageIdentifier     BIT STRING (SIZE (16)),
  serialNumber      BIT STRING (SIZE (16)),
  warningMessageSegmentType   ENUMERATED {notLastSegment, lastSegment},
  warningMessageSegmentNumber   INTEGER (0..63),
  warningMessageSegment    OCTET STRING,
  dataCodingScheme     OCTET STRING (SIZE (1)) OPTIONAL,  -- Cond Segment1
  ...,
  lateNonCriticalExtension    OCTET STRING OPTIONAL
}
-- ASN1STOP
```

SystemInformationBlockType11 field descriptions

dataCodingScheme
Identifies the alphabet/coding and the language applied variations of an ETWS notification. The octet (which is equivalent to the octet of the equivalent IE defined in TS 36.413 [39, 9.2.1.52]) contains the octet of the equivalent IE defined in TS 23.041 [37, 9.4.3.2.3] and encoded according to TS 23.038 [38].

messageIdentifier
Identifies the source and type of ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.44]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.1], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

serialNumber
Identifies variations of an ETWS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.45]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.2], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

warningMessageSegment
Carries a segment of the Warning Message Contents IE defined in TS 36.413 [39, 9.2.1.53]. The first octet of the Warning Message Contents IE is equivalent to the first octet of the CB data IE defined in and encoded according to TS 23.041 [37, 9.4.2.2.5] and so on.

warningMessageSegmentNumber
Segment number of the ETWS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, one corresponds to the second segment, and so on.

warningMessageSegmentType
Indicates whether the included ETWS warning message segment is the last segment or not.
Conditional presence	Explanation
Segment1 | The field is mandatory present in the first segment of SIB11, otherwise it is not present.

SystemInformationBlockType12

The IE `SystemInformationBlockType12` contains a CMAS notification.

SystemInformationBlockType12 information element

```
-- ASN1START
SystemInformationBlockType12-r9 ::= SEQUENCE {
  messageIdentifier-r9    BIT STRING (SIZE (16)),
  serialNumber-r9      BIT STRING (SIZE (16)),
  warningMessageSegmentType-r9  ENUMERATED {notLastSegment, lastSegment},
  warningMessageSegmentNumber-r9  INTEGER (0..63),
  warningMessageSegment-r9   OCTET STRING,  -- Cond Segment1
  dataCodingScheme-r9     OCTET STRING (SIZE (1))   OPTIONAL,  -- Cond Segment1
  lateNonCriticalExtension   OCTET STRING     OPTIONAL,
  ...
}
-- ASN1STOP
```

SystemInformationBlockType12 field descriptions

- **dataCodingScheme**
 Identifies the alphabet/coding and the language applied variations of a CMAS notification. The octet (which is equivalent to the octet of the equivalent IE defined in TS 36.413 [39, 9.2.1.52]) contains the octet of the equivalent IE defined in TS 23.041 [37, 9.4.3.2.3] and encoded according to TS 23.038 [38].

- **messageIdentifier**
 Identifies the source and type of CMAS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.44]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.1], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

- **serialNumber**
 Identifies variations of a CMAS notification. The leading bit (which is equivalent to the leading bit of the equivalent IE defined in TS 36.413 [39, 9.2.1.45]) contains bit 7 of the first octet of the equivalent IE, defined in and encoded according to TS 23.041 [37, 9.4.3.2.2], while the trailing bit contains bit 0 of second octet of the same equivalent IE.

- **warningMessageSegment**
 Carries a segment of the Warning Message Contents IE defined in TS 36.413 [39]. The first octet of the Warning Message Contents IE is equivalent to the first octet of the CB data IE defined in and encoded according to TS 23.041 [37, 9.4.2.2.5] and so on.

- **warningMessageSegmentNumber**
 Segment number of the CMAS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, one corresponds to the second segment, and so on.

- **warningMessageSegmentType**
 Indicates whether the included CMAS warning message segment is the last segment or not.

SystemInformationBlockType13

The IE `SystemInformationBlockType13` contains the information required to acquire the MBMS control information associated with one or more MBSFN areas.

SystemInformationBlockType13 information element

```
-- ASN1START
SystemInformationBlockType13-r9 ::= SEQUENCE {
  mbsfn-AreaInfoList-r9   MBSFN-AreaInfoList-r9,
}
-- ASN1STOP
```
SystemInformationBlockType14

The IE SystemInformationBlockType14 contains the EAB parameters.

SystemInformationBlockType14 information element

SystemInformationBlockType14 field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eab-BarringBitmap</td>
<td>Extended access class barring for AC 0-9. The first/ leftmost bit is for AC 0, the second bit is for AC 1, and so on.</td>
</tr>
<tr>
<td>eab-Category</td>
<td>Indicates the category of UEs for which EAB applies. Value a corresponds to all UEs, value b corresponds to the UEs that are neither in their HPLMN nor in a PLMN that is equivalent to it, and value c corresponds to the UEs that are neither in the PLMN listed as most preferred PLMN of the country where the UEs are roaming in the operator-defined PLMN selector list on the USIM, nor in their HPLMN nor in a PLMN that is equivalent to their HPLMN, see TS 22.011 [10].</td>
</tr>
<tr>
<td>eab-Common</td>
<td>The EAB parameters applicable for all PLMN(s).</td>
</tr>
<tr>
<td>eab-PerPLMN-List</td>
<td>The EAB parameters per PLMN, listed in the same order as the PLMN(s) occur in plmn-IdentityList in SystemInformationBlockType1.</td>
</tr>
</tbody>
</table>

SystemInformationBlockType15

The IE SystemInformationBlockType15 contains the MBMS Service Area Identities (SAI) of the current and/ or neighbouring carrier frequencies.

SystemInformationBlockType15 information element
MBMS-SAI-List-r11 ::= SEQUENCE (SIZE (1..maxSAI-MBMS-r11)) OF MBMS-SAI-r11
MBMS-SAI-r11 ::= INTEGER (0..65535)
MBMS-SAI-InterFreqList-r11 ::= SEQUENCE (SIZE (1..maxFreq)) OF MBMS-SAI-InterFreq-r11
MBMS-SAI-InterFreq-List-v1140 ::= SEQUENCE (SIZE (1..maxFreq)) OF MBMS-SAI-InterFreq-v1140
MBMS-SAI-InterFreq-r11 ::= SEQUENCE {
 dl-CarrierFreq-r11 ARFCN-ValueEUTRA-r9,
 mbms-SAI-List-r11 MBMS-SAI-List-r11
}
MBMS-SAI-InterFreq-v1140 ::= SEQUENCE {
 multiBandInfoList-r11 MultiBandInfoList-r11 OPTIONAL -- Need OR
}

-- ASN1STOP

SystemInformationBlockType15 field descriptions

mbms-SAI-InterFreqList
Contains a list of neighboring frequencies including additional bands, if any, that provide MBMS services and the corresponding MBMS SAI.

mbms-SAI-IntraFreq
Contains the list of MBMS SAI for the current frequency. A duplicate MBMS SAI indicates that this and all following SAI's are not offered by this cell but only by neighbour cells on the current frequency. For MBMS service continuity, the UE shall use all MBMS SAI's listed in mbms-SAI-IntraFreq to derive the MBMS frequencies of interest.

mbms-SAI-List
Contains a list of MBMS SAI's for a specific frequency.

multiBandInfoList
A list of additional frequency bands applicable for the cells participating in the MBSFN transmission.

SystemInformationBlockType16

The IE SystemInformationBlockType16 contains information related to GPS time and Coordinated Universal Time (UTC). The UE may use the parameters provided in this system information block to obtain the UTC, the GPS and the local time.

NOTE: The UE may use the time information for numerous purposes, possibly involving upper layers e.g. to assist GPS initialisation, to synchronise the UE clock (a.o. to determine MBMS session start/stop).

SystemInformationBlockType16 information element

-- ASN1START
SystemInformationBlockType16-r11 ::= SEQUENCE {
 timeInfo-r11 SEQUENCE {
 timeInfoUTC-r11 INTEGER (0..549755813887),
 dayLightSavingTime-r11 BIT STRING (SIZE (2)) OPTIONAL, -- Need OR
 leapSeconds-r11 INTEGER (-127..128) OPTIONAL, -- Need OR
 localTimeOffset-r11 INTEGER (-63..64) OPTIONAL, -- Need OR
 } OPTIONAL, -- Need OR
 lateNonCriticalExtension OCTET STRING OPTIONAL,
 ...
}

-- ASN1STOP
dayLightSavingTime

It indicates if and how daylight saving time (DST) is applied to obtain the local time. The semantics is the same as the semantics of the Daylight Saving Time IE in TS 24.301 [35] and TS 24.008 [49]. The first/leftmost bit of the bit string contains the b2 of octet 3, i.e. the value part of the Daylight Saving Time IE, and the second bit of the bit string contains b1 of octet 3.

leapSeconds

Number of leap seconds offset between GPS Time and UTC. UTC and GPS time are related i.e. GPS time - leapSeconds = UTC time.

localTimeOffset

Offset between UTC and local time in units of 15 minutes. Actual value = IE value * 15 minutes. Local time of the day is calculated as UTC time + localTimeOffset.

timeInfoUTC

Coordinated Universal Time corresponding to the SFN boundary at or immediately after the ending boundary of the SI-window in which SystemInformationBlockType16 is transmitted. The field counts the number of UTC seconds in 10 ms units since 00:00:00 on Gregorian calendar date 1 January, 1900 (midnight between Sunday, December 31, 1899 and Monday, January 1, 1900), including leap seconds and other additions prior to 1972. NOTE 1. This field is excluded when estimating changes in system information, i.e. changes of timeInfoUTC should neither result in system information change notifications nor in a modification of systemInfoValueTag in SIB1.

NOTE 1: For the sake of the field definition, it is assumed UTC existed prior to 1 January 1972. As this field counts total elapsed time, conversion to calendar UTC time needs to allow for leap second and other calendar adjustments since 1 January 1900. For example, time 00:00 on 1 January 1972 UTC corresponds to a timeInfoUTC of 2,272,060,800 seconds.

-- SystemInformationBlockType17

The IE SystemInformationBlockType17 contains information relevant for traffic steering between E-UTRAN and WLAN.

SystemInformationBlockType17 field descriptions

bssid

Basic Service Set Identifier (BSSID) defined in IEEE 802.11-2012 [67].

hessid

Homogenous Extended Service Set Identifier (HESSID) defined in IEEE 802.11-2012 [67].
SystemInformationBlockType17 field descriptions

plmn-Identity
RAN assistance parameters per PLMN. Value 1 indicates the PLMN listed 1st in plmn-IdentityList included in SIB1, value 2 indicates the PLMN listed 2nd in plmn-IdentityList included in SIB1 and so on.

ssid
Service Set Identifier (SSID) defined in IEEE 802.11-2012 [67].

6.3.2 Radio resource control information elements

– AntennaInfo

The IE AntennaInfoCommon and the AntennaInfoDedicated are used to specify the common and the UE specific antenna configuration respectively.

AntennaInfo information elements

```asn1
AntennaInfoCommon ::= SEQUENCE {
  antennaPortsCount ENUMERATED {an1, an2, an4, spare1}
}

AntennaInfoDedicated ::= SEQUENCE {
  transmissionMode ENUMERATED {
    tm1, tm2, tm3, tm4, tm5, tm6,
    tm7, tm8-v920},
  codebookSubsetRestriction CHOICE {
    n2TxAntenna-tm3 BIT STRING (SIZE (2)),
    n4TxAntenna-tm3 BIT STRING (SIZE (4)),
    n2TxAntenna-tm4 BIT STRING (SIZE (6)),
    n4TxAntenna-tm4 BIT STRING (SIZE (64)),
    n2TxAntenna-tm5 BIT STRING (SIZE (4)),
    n4TxAntenna-tm5 BIT STRING (SIZE (16)),
    n2TxAntenna-tm6 BIT STRING (SIZE (4)),
    n4TxAntenna-tm6 BIT STRING (SIZE (16))
  } OPTIONAL,
  ue-TransmitAntennaSelection CHOICE {
    release NULL,
    setup ENUMERATED {closedLoop, openLoop}
  }
}

AntennaInfoDedicated-v920 ::= SEQUENCE {
  codebookSubsetRestriction-v920 CHOICE {
    n2TxAntenna-tm8-r9 BIT STRING (SIZE (6)),
    n4TxAntenna-tm8-r9 BIT STRING (SIZE (32))
  } OPTIONAL -- Cond TM8
}

AntennaInfoDedicated-r10 ::= SEQUENCE {
  transmissionMode-r10 ENUMERATED {
    tm1, tm2, tm3, tm4, tm5, tm6, tm7, tm8-v920,
    tm9-v1020, tm10-v1130, spare6, spare5, spare4,
    spare3, spare2, spare1},
  codebookSubsetRestriction-r10 BIT STRING OPTIONAL, -- Cond TMX
  ue-TransmitAntennaSelection CHOICE {
    release NULL,
    setup ENUMERATED {closedLoop, openLoop}
  }
}

AntennaInfoDedicated-v12xx ::= SEQUENCE {
  alternativeCodebookEnabledFor4TX-r12 ENUMERATED {true} OPTIONAL -- Cond TMY
}
```

-- ASN1STOP
AntennaInfo field descriptions

alternativeCodebookEnabledFor4TX
Indicates whether code book in TS 36.213 [23] Table 7.2.4-0A to Table 7.2.4-0D is being used for deriving CSI feedback and reporting. If the UE is configured with `transmissionMode` tm8, E-UTRAN only configures the field `alternativeCodebookEnabledFor4TX` if PMI/RI reporting is configured and if number of CRS ports is 4. If the UE is configured with `transmissionMode` tm9, E-UTRAN only configures the field `alternativeCodebookEnabledFor4TX` if PMI/RI reporting is configured and if the number of CSI-RS ports is 4.

antennaPortsCount
Parameter represents the number of cell specific antenna ports where a1 corresponds to 1, a2 to 2 antenna ports etc. see TS 36.211 [21, 6.2.1].

codebookSubsetRestriction
Parameter: `codebookSubsetRestriction`, see TS 36.213 [23, 7.2] and TS 36.211 [21, 6.3.4.2.3]. The number of bits in the `codebookSubsetRestriction` for applicable transmission modes is defined in TS 36.213 [23, Table 7.2-1b]. If the UE is configured with `transmissionMode` tm8, E-UTRAN only configures the field `codebookSubsetRestriction` if PMI/RI reporting is configured. If the UE is configured with `transmissionMode` tm9, E-UTRAN only configures the field `codebookSubsetRestriction` if PMI/RI reporting is configured and if the number of CSI-RS ports is greater than 1.

transmissionMode
Points to one of Transmission modes defined in TS 36.213 [23, 7.1] where tm1 refers to transmission mode 1, tm2 to transmission mode 2 etc.

ue-TransmitAntennaSelection
For value `setup` the field indicates whether UE transmit antenna selection control is closed-loop or open-loop as described in TS 36.213 [23, 8.7]. EUTRAN configures the same value for all serving cells.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>The field is mandatory present if the <code>transmissionMode</code> is set to tm3, tm4, tm5 or tm6. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>TM8</td>
<td>The field is optional present, need OR, if <code>AntennaInfoDedicated</code> is included and <code>transmissionMode</code> is set to tm8. If <code>AntennaInfoDedicated</code> is included and <code>transmissionMode</code> is set to a value other than tm8, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
<tr>
<td>TMX</td>
<td>The field is mandatory present if the <code>transmissionMode-r10</code> is set to tm3, tm4, tm5 or tm6. The field is optionally present, need OR, if the <code>transmissionMode-r10</code> is set to tm8 or tm9. Otherwise the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
<tr>
<td>TMY</td>
<td>The field is optional present, need OR, if <code>transmissionMode-r10</code> is set to tm8 or tm9. Otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

AntennaInfoUL

The IE `AntennaInfoUL` is used to specify the UL antenna configuration.

AntennaInfoUL information elements

```asn1
-- ASN1START
AntennaInfoUL-r10 ::= SEQUENCE {
    transmissionModeUL-r10 ENUMERATED {tm1, tm2, spare6, spare5, spare4, spare3, spare2, spare1} OPTIONAL, -- Need OR
    fourAntennaPortActivated-r10 ENUMERATED {setup} OPTIONAL -- Need OR
}
-- ASN1STOP
```

AntennaInfoUL field descriptions

fourAntennaPortActivated
Parameter indicates if four antenna ports are activated. See TS 36.213 [23, 8.2]. E-UTRAN optionally configures `fourAntennaPortActivated` only if `transmissionModeUL` is set to tm2.

transmissionModeUL
Points to one of UL Transmission modes defined in TS 36.213 [23, 8.0] where tm1 refers to transmission mode 1, tm2 to transmission mode 2 etc.
The IE **CQI-ReportConfig** is used to specify the CQI reporting configuration.

CQI-ReportConfig information elements

ASN1START

```asn1
cqi-ReportConfig ::= SEQUENCE {
cqi-ReportModeAperiodic CQI-ReportModeAperiodic OPTIONAL, -- Need OR
nomPDSCH-RS-EPRE-Offset INTEGER (-1..6),
cqi-ReportPeriodic CQI-ReportPeriodic OPTIONAL -- Need ON
}
```

CQI-ReportConfig-v920

```asn1
cqi-ReportConfig-v920 ::= SEQUENCE {
cqi-Mask-r9 ENUMERATED (setup) OPTIONAL, -- Cond cqi-Setup
pmi-RI-Report-r9 ENUMERATED (setup) OPTIONAL -- Cond PMIRI
}
```

CQI-ReportConfig-r10

```asn1
cqi-ReportConfig-r10 ::= SEQUENCE {
cqi-ReportAperiodic-r10 CQI-ReportAperiodic-r10 OPTIONAL, -- Need ON
nomPDSCH-RS-EPRE-Offset INTEGER (-1..6),
cqi-ReportPeriodic-r10 CQI-ReportPeriodic-r10 OPTIONAL, -- Need ON
pmi-RI-Report-r9 ENUMERATED (setup) OPTIONAL, -- Cond
}
```

PMIRICell

```asn1
csi-SubframePatternConfig-r10 CHOICE {
release NULL,
setup SEQUENCE {
csi-MeasSubframeSet1-r10 MeasSubframePattern-r10,
csi-MeasSubframeSet2-r10 MeasSubframePattern-r10
} OPTIONAL -- Need ON
}
```

CQI-ReportConfig-v1130

```asn1
cqi-ReportPeriodic-v1130 CQI-ReportPeriodic-v1130,
cqi-ReportBoth-r11 CQI-ReportBoth-r11
```

CQI-ReportConfig-v12x0

```asn1
cqi-ReportPeriodic-v12x0 CQI-ReportPeriodic-v12x0 OPTIONAL -- Need ON
```

PMIRISCell

```asn1
csi-SubframePatternConfig-r12 CHOICE {
release NULL,
setup SEQUENCE {
csi-MeasSubframeSet-r12 BIT STRING (SIZE (10))
} OPTIONAL, -- Need ON
}
```

CQI-ReportConfigSCell-r10

```asn1
cqi-ReportModeAperiodic-r10 CQI-ReportModeAperiodic OPTIONAL, -- Need OR
nomPDSCH-RS-EPRE-Offset-r10 INTEGER (-1..6),
cqi-ReportPeriodicSCell-r10 CQI-ReportPeriodic-r10 OPTIONAL, -- Need ON
pmi-RI-Report-r10 ENUMERATED (setup) OPTIONAL -- Cond
}
```

CQI-ReportPeriodic

```asn1
cqi-ReportAPeriodic-r10 CQI-ReportAPeriodic-r10 OPTIONAL, -- Need ON
nomPDSCH-RS-EPRE-Offset-r10 INTEGER (-1..6),
cqi-ReportPeriodic-r10 CQI-ReportPeriodic-r10 OPTIONAL, -- Need ON
pmi-RI-Report-r10 ENUMERATED (setup) OPTIONAL -- Cond
}
```

PMIRISCell

```asn1
cqi-PUCH-ResourceIndex INTEGER (0..1185),
cqi-pmi-ConfigIndex INTEGER (0..1023),
cqi-FormatIndicatorPeriodic CHOICE {
widebandCQI NULL,
subbandCQI SEQUENCE {
k INTEGER (1..4)
},
ri-ConfigIndex INTEGER (0..1023) OPTIONAL, -- Need OR
simultaneousAckNackAndCQI BOOLEAN
}
```

CQI-ReportPeriodic-r10

```asn1
cqi-ReportAPeriodic-v12x0 CQI-ReportAPeriodic-v12x0 OPTIONAL -- Need ON
```

ASN1END
cqi-PUCCH-ResourceIndex-r10 INTEGER (0..1184),
cqi-PUCCH-ResourceIndex1-r10 INTEGER (0..1184) OPTIONAL, -- Need OR
cqi-pmi-ConfigIndex INTEGER (0..1023),
cqi-FormatIndicatorPeriodic-r10 CHOICE {
 widebandCQI-r10 SEQUENCE {
 csi-ReportMode-r10 ENUMERATED {submode1, submode2} OPTIONAL -- Need OR
 ri-ConfigIndex INTEGER (0..1023) OPTIONAL, -- Need OR
 simultaneousAckNackAndCQI BOOLEAN,
 cqi-Mask-r9 ENUMERATED {setup} OPTIONAL, -- Need OR
 },
 subbandCQI-r10 SEQUENCE {
 k INTEGER (1..4),
 periodicityFactor-r10 ENUMERATED {n2, n4}
 }
}, ri-ConfigIndex INTEGER (0..1023) OPTIONAL, -- Need OR
simultaneousAckNackAndCQI BOOLEAN,
cqi-ConfigIndex-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-pmi-ConfigIndex2-r10 INTEGER (0..1023),
 ri-ConfigIndex2-r10 INTEGER (0..1023) OPTIONAL -- Need OR
 } OPTIONAL, -- Need ON
}
CQI-ReportPeriodic-v1130 ::= SEQUENCE {
simultaneousAckNackAndCQI-Format3-r11 ENUMERATED {setup} OPTIONAL, -- Need OR
CQI-ReportPeriodicProcExtToReleaseList-r11 CQI-ReportPeriodicProcExtToReleaseList-r11 OPTIONAL, -- Need ON
CQI-ReportPeriodicProcExtToAddModList-r11 CQI-ReportPeriodicProcExtToAddModList-r11 OPTIONAL, -- Need ON
}
CQI-ReportPeriodicProcExtToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCQI-ProcExt-r11)) OF CQI-ReportPeriodicProcExt-r11
CQI-ReportPeriodicProcExtToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCQI-ProcExt-r11)) OF CQI-ReportPeriodicProcExtId-r11
CQI-ReportPeriodicProcExt-r11 ::= SEQUENCE {
cqi-ReportPeriodicProcExtId-r11 CQI-ReportPeriodicProcExtId-r11,
cqi-pmi-ConfigIndex-r11 INTEGER (0..1023),
cqi-FormatIndicatorPeriodic-r11 CHOICE {
 widebandCQI-r11 SEQUENCE {
 csi-ReportMode-r11 ENUMERATED {submode1, submode2} OPTIONAL -- Need OR
 },
 subbandCQI-r11 SEQUENCE {
 k INTEGER (1..4),
 periodicityFactor-r11 ENUMERATED {n2, n4}
 }
 },
 ri-ConfigIndex-r11 INTEGER (0..1023) OPTIONAL, -- Need OR
 cqi-ConfigIndex-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-pmi-ConfigIndex2-r11 INTEGER (0..1023),
 ri-ConfigIndex2-r11 INTEGER (0..1023) OPTIONAL -- Need OR
 } OPTIONAL, -- Need ON
 }
}, ri-ConfigIndex-r11 INTEGER (0..1023) OPTIONAL, -- Need OR
cqi-ReportAperiodic-r10 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 cqi-ReportModeAperiodic-r10 CQI-ReportModeAperiodic,
 aperiodicCSI-Trigger-r10 SEQUENCE {
 trigger1-r10 BIT STRING (SIZE (8)),
 trigger2-r10 BIT STRING (SIZE (8))
 } OPTIONAL -- Need OR
 }
}, aperiodicCSI-Trigger-r12 SEQUENCE {
 trigger-SubframeSetIndicator-r12 ENUMERATED {s1, s2},
...
trigger1-SubframeSetIndicator-r12 BIT STRING (SIZE (8)),
trigger2-SubframeSetIndicator-r12 BIT STRING (SIZE (8))
}
}

CQI-ReportAperiodicProc-r11 ::= SEQUENCE {
cqi-ReportModeAperiodic-r11 CQI-ReportModeAperiodic,
trigger01-r11 BOOLEAN,
trigger10-r11 BOOLEAN,
trigger11-r11 BOOLEAN
}

CQI-ReportModeAperiodic ::= ENUMERATED {
rml2, rml20, rml22, rml30, rml31,
rml32-v12xx, spare2, spare1
}

CQI-ReportBoth-r11 ::= SEQUENCE {
csi-IM-ConfigToReleaseList-r11 CSI-IM-ConfigToReleaseList-r11 OPTIONAL, -- Need ON
csi-IM-ConfigToAddModList-r11 CSI-IM-ConfigToAddModList-r11 OPTIONAL, -- Need ON
csi-ProcessToReleaseList-r11 CSI-ProcessToReleaseList-r11 OPTIONAL, -- Need ON
csi-ProcessToAddModList-r11 CSI-ProcessToAddModList-r11 OPTIONAL -- Need ON
}

CQI-ReportBoth-r12 ::= SEQUENCE {
csi-IM-ConfigToReleaseList-r12 CSI-IM-ConfigToReleaseList-r12 OPTIONAL, -- Need ON
csi-IM-ConfigToAddModList-r12 CSI-IM-ConfigToAddModList-r12 OPTIONAL -- Need ON
}

CSI-IM-ConfigToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-IM-r11)) OF CSI-IM-Config-r11

CSI-IM-ConfigToAddModList-r12 ::= SEQUENCE (SIZE (1..maxCSI-IM-r12)) OF CSI-IM-Config-r12

CSI-IM-ConfigToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-IM-r11)) OF CSI-IM-ConfigId-r11

CSI-IM-ConfigToReleaseList-r12 ::= SEQUENCE (SIZE (1..maxCSI-IM-r12)) OF CSI-IM-ConfigId-r12

CSI-ProcessToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-Proc-r11)) OF CSI-Process-r11

CSI-ProcessToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-Proc-r11)) OF CSI-ProcessId-r11

CQI-ReportBothProc-r11 ::= SEQUENCE {
ri-Ref-CSI-ProcessId-r11 CSI-ProcessId-r11 OPTIONAL, -- Need OR
pmi-R1-Report-r11 ENUMERATED {setup} OPTIONAL -- Need OR
}

-- ASN1STOP
CQI-ReportConfig field descriptions

aperiodicCSI-Trigger
Indicates for which serving cell(s) the aperiodic CSI report is triggered when one or more SCells are configured. `trigger1` corresponds to the CSI request field 10 and `trigger2` corresponds to the CSI request field 11, see TS 36.213 [23, table 7.2.1-1A]. The leftmost bit, bit 0 in the bit string corresponds to the cell with `ServCellIndex`=0 and bit 1 in the bit string corresponds to the cell with `ServCellIndex`=1 etc. Each bit has either value 0 (means no aperiodic CSI report is triggered) or value 1 (means the aperiodic CSI report is triggered). At most 5 bits can be set to value 1 in the bit string. E-UTRAN configures value 1 only for cells configured with `transmissionMode` set in range `tm1` to `tm9`. One value applies for all serving cells configured with `transmissionMode` set in range `tm1` to `tm9` (the associated functionality is common i.e. not performed independently for each cell).

cqi-Mask
Limits CQI/PMI/PTI/RI reports to the on-duration period of the DRX cycle, see TS 36.321 [6]. One value applies for all CSI processes and all serving cells (the associated functionality is common i.e. not performed independently for each cell).

cqi-FormatIndicatorPeriodic
Parameter: `PUCCH CQI Feedback Type`, see TS 36.213 [23, table 7.2.2-1]. Depending on `transmissionMode`, reporting mode is implicitly given from the table.

cqi-pmi-ConfigIndex
Parameter: `CQI/PMI Periodicity and Offset Configuration Index l_{CQI/PMI}`, see TS 36.213 [23, tables 7.2.2-1A and 7.2.2-1C]. If subframe patterns for CSI (CQI/PMI/PTI/RI) reporting are configured (i.e. `csi-SubframePatternConfig` is configured), the parameter applies to the subframe pattern corresponding to `csi-MeasSubframeSet1`.

cqi-pmi-ConfigIndex2
Parameter: `CQI/PMI Periodicity and Offset Configuration Index l_{CQI/PMI}`, see TS 36.213 [23, tables 7.2.2-1A and 7.2.2-1C]. The parameter applies to the subframe pattern corresponding to `csi-MeasSubframeSet2` or corresponding to the CSI subframe set 2 indicated by `csi-MeasSubframeSet-r12`.

cqi-PUCCH-ResourceIndex, cqi-PUCCH-ResourceIndexP1
Parameter \((n, p)^{(2, p)}_{\text{PUCCH}}\) for antenna port P0 and for antenna port P1 respectively, see TS 36.213 [23, 7.2]. E-UTRAN does not apply value 1185. One value applies for all CSI processes.

cqi-ReportAperiodic
E-UTRAN does not configure `CQI-ReportAperiodic` when transmission mode 10 is configured for all serving cells. E-UTRAN does not configure `cqi-ReportAperiodic-v12x0` if `cqi-ReportAperiodic-r10` is not configured. E-UTRAN enables `cqi-ReportAperiodic-v12x0` field only when `csi-MeasSubframeSet-r12` is configured.

cqi-ReportModeAperiodic
Parameter: `reporting mode`. Value rm12 corresponds to Mode 1-2, rm20 corresponds to Mode 2-0, rm22 corresponds to Mode 2-2 etc. PUSCH reporting modes are described in TS 36.213 [23, 7.2.1]. The UE shall ignore `cqi-ReportModeAperiodic-r10` when transmission mode 10 is configured for the serving cell on this carrier frequency.

CQI-ReportPeriodicProcExt
A set of periodic CQI related parameters for which E-UTRAN may configure different values for each CSI process. For a serving frequency E-UTRAN configures one or more `CQI-ReportPeriodicProcExt` only when transmission mode 10 is configured for the serving cell on this carrier frequency.

csi-ConfigIndex
E-UTRAN configures `csi-ConfigIndex` only for PCell and only if `csi-SubframePatternConfig` is configured. The UE shall release `csi-ConfigIndex` if `csi-SubframePatternConfig` is released.

csi-IM-ConfigToAddModList
For a serving frequency E-UTRAN configures one or more `CSI-IM-Config` only when transmission mode 10 is configured for the serving cell on this carrier frequency. The UE shall ignore `csi-IM-ConfigToAddModList-r11` if `csi-IM-ConfigToAddModList-r12` is configured.

csi-MeasSubframeSet
Indicates the two CSI subframe sets. Each bit has either value 0 or value1. Value 0 means the subframe belongs to CSI subframe set 1 and value 1 means the subframe belongs to CSI subframe set 2. For a serving frequency EUTRAN does not configure `csi-MeasSubframeSet1-r10` and `csi-MeasSubframeSet2-r10` if `csi-MeasSubframeSet-r12` is configured.

csi-ProcessToAddModList
For a serving frequency E-UTRAN configures one or more `CSI-Process` only when transmission mode 10 is configured for the serving cell on this carrier frequency.

csi-ReportMode
Parameter: `PUCCH_format1-1_CSI_reporting_mode`, see TS 36.213 [23, 7.2.2].

K
Parameter: `K`, see TS 36.213 [23, 7.2.2].

nomPDSCH-RS-EPRE-Offset
Parameter: `\Delta_{\text{offset}}`, see TS 36.213 [23, 7.2.3]. Actual value = IE value * 2 [dB].

periodicityFactor
Parameter: \(H^t\), see TS 36.213 [23, 7.2.2].
CQI-ReportConfig field descriptions

pmi-RI-Report
See TS 36.213 [23, 7.2]. The presence of this field means PMI/RI reporting is configured; otherwise the PMI/RI reporting is not configured. EUTRAN configures this field only when transmissionMode is set to tm8, tm9 or tm10. The UE shall ignore pmi-RI-Report-r9/ pmi-RI-Report-r10 when transmission mode 10 is configured for the serving cell on this carrier frequency.

ri-ConfigIndex
Parameter: RI Config Index I_{RI}, see TS 36.213 [23, 7.2.2-1B]. If subframe patterns for CSI (CQI/PMI/PTI/RI) reporting are configured (i.e. csi-SubframePatternConfig is configured), the parameter applies to the subframe pattern corresponding to csi-MeasSubframeSet1.

ri-ConfigIndex2
Parameter: RI Config Index I_{RI}, see TS 36.213 [23, 7.2.2-1B]. The parameter applies to the subframe pattern corresponding to csi-MeasSubframeSet2 or corresponding to the CSI subframe set 2 indicated by csi-MeasSubframeSet-r12. E-UTRAN configures ri-ConfigIndex2 only if ri-ConfigIndex is configured.

ri-Ref-CSI-ProcessId
CSI process whose RI value the UE inherits when reporting RI, in the same subframe, for CSI reporting. E-UTRAN ensures that the CSI process that inherits the RI value is configured in accordance with the conditions specified in 36.213 [23, 7.2.1, 7.2.2].

simultaneousAckNackAndCQI
Parameter: Simultaneous-AN-and-CQI. see TS 36.213 [23, 10.1] TRUE indicates that simultaneous transmission of ACK/NACK and CQI is allowed. One value applies for all CSI processes. For SCells this field is not applicable and the UE shall ignore the value.

simultaneousAckNackAndCQI-Format3
Indicates that the UE shall perform simultaneous transmission of HARQ A/N and periodic CQI report multiplexing on PUCCH format 3, see TS 36.213 [23, 7.2, 10.1.1]. E-UTRAN configures this information only when pucch-Format is set to format3. One value applies for all CSI processes. For SCells this field is not applicable and the UE shall ignore the value.

trigger01
Indicates whether or not reporting for this CSI-process or reporting for this CSI-process corresponding to a CSI subframe set is triggered by CSI request field set to 01, for a CSI request applicable for the serving cell on the same frequency as the CSI process, see TS 36.213 [23, table 7.2.1-1B].

trigger10, trigger11
Indicates whether or not reporting for this CSI-process or reporting for this CSI-process corresponding to a CSI subframe set is triggered by CSI request field set to 10 or 11, see TS 36.213 [23, table 7.2.1-1B]. EUTRAN configures at most 5 CSI processes, across all serving frequencies, to be triggered by a CSI request field set to value 10. The same restriction applies for value 11.

trigger-SubframeSetIndicator
For a serving cell configured with csi-MeasSubframeSet-r12, indicates for which CSI subframe set the aperiodic CSI report is triggered for the serving cell if the aperiodic CSI is triggered by the CSI request field 01, see TS 36.213 [23, table 7.2.1-1A]. Value s1 corresponds to CSI subframe set 1 and value s2 corresponds to CSI subframe set 2.

trigger1-SubframeSetIndicator
Indicates for which CSI subframe set the aperiodic CSI report is triggered when aperiodic CSI is triggered by the CSI request field 10, see TS 36.213 [23, table 7.2.1-1A]. The leftmost bit, bit 0 in the bit string corresponds to the cell with ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0 (means that aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is triggered for CSI subframe set 2).

trigger2-SubframeSetIndicator
Indicates for which CSI subframe set the aperiodic CSI report is triggered when aperiodic CSI is triggered by the CSI request field 11, see TS 36.213 [23, table 7.2.1-1A]. The leftmost bit, bit 0 in the bit string corresponds to the cell with ServCellIndex=0 and bit 1 in the bit string corresponds to the cell with ServCellIndex=1 etc. Each bit has either value 0 (means that aperiodic CSI report is triggered for CSI subframe set 1) or value 1 (means that aperiodic CSI report is triggered for CSI subframe set 2).
Conditional presence

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cqi-Setup</td>
<td>This field is not present for an Scell, while it is conditionally present for the Pcell according to the following. The field is optional present, need OR, if the cqi-ReportPeriodic in the cqi-ReportConfig is set to setup. If the field cqi-ReportPeriodic is present and set to release, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
<tr>
<td>PMIRI</td>
<td>The field is optional present, need OR, if cqi-ReportPeriodic is included and set to setup, or cqi-ReportModeAperiodic is included. If the field cqi-ReportPeriodic is present and set to release and cqi-ReportModeAperiodic is absent, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
<tr>
<td>PMIRIPCell</td>
<td>The field is optional present, need OR, if cqi-ReportPeriodic is included in the CQI-ReportConfig-r10 and set to setup, or cqi-ReportAperiodic is included in the CQI-ReportConfig-r10 and set to setup. If the field cqi-ReportPeriodic is present in the CQI-ReportConfig-r10 and set to release and cqi-ReportAperiodic is included in the CQI-ReportConfig-r10 and set to release, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
<tr>
<td>PMIRISCell</td>
<td>The field is optional present, need OR, if cqi-ReportPeriodicSCell is included and set to setup, or cqi-ReportModeAperiodic-r10 is included in the CQI-ReportConfigSCell. If the field cqi-ReportPeriodicSCell is present and set to release and cqi-ReportModeAperiodic-r10 is absent in the CQI-ReportConfigSCell, the field is not present and the UE shall delete any existing value for this field. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

CQI-ReportPeriodicProcExtId

The IE `CQI-ReportPeriodicProcExtId` is used to identify a periodic CQI reporting configuration that E-UTRAN may configure in addition to the configuration specified by the IE `CQI-ReportPeriodic-r10`. These additional configurations are specified by the IE `CQI-ReportPeriodicProcExt-r11`. The identity is unique within the scope of a carrier frequency.

CQI-ReportPeriodicProcExtId information elements

```asn1
-- ASN1START

CQI-ReportPeriodicProcExtId-r11 ::= INTEGER (1..maxCQI-ProcExt-r11)

-- ASN1STOP
```

CrossCarrierSchedulingConfig

The IE `CrossCarrierSchedulingConfig` is used to specify the configuration when the cross carrier scheduling is used in a cell.

CrossCarrierSchedulingConfig information elements

```asn1
-- ASN1START

CrossCarrierSchedulingConfig-r10 ::= SEQUENCE {
  schedulingCellInfo-r10    CHOICE {
    own-r10        SEQUENCE {     -- No cross carrier
      cif-Presence-r10      BOOLEAN
    },
    other-r10        SEQUENCE {
      schedulingCellId-r10    ServCellIndex-r10,
      pdsch-Start-r10      INTEGER (1..4)
    }
  }
}

-- ASN1STOP
```
CrossCarrierSchedulingConfig field descriptions

- **cif-Presence**
 The field is used to indicate whether carrier indicator field is present (value TRUE) or not (value FALSE) in PDCCH/EPDCCH DCI formats, see TS 36.212 [22, 5.3.3.1].

- **pdsch-Start**
 The starting OFDM symbol of PDSCH for the concerned SCell, see TS 36.213 [23, 7.1.6.4]. Values 1, 2, 3 are applicable when dl-Bandwidth for the concerned SCell is greater than 10 resource blocks, values 2, 3, 4 are applicable when dl-Bandwidth for the concerned SCell is less than or equal to 10 resource blocks, see TS 36.211 [21, Table 6.7-1].

- **schedulingCellId**
 Indicates which cell signals the downlink allocations and uplink grants, if applicable, for the concerned SCell.

CSI-IM-Config

The IE CSI-IM-Config is the CSI Interference Measurement (IM) configuration that E-UTRAN may configure on a serving frequency, see TS 36.213 [23, 7.2.6].

CSI-IM-Config information elements

CSI-IM-Config field descriptions

- **resourceConfig**
 Parameter: CSI reference signal configuration, see TS 36.213 [23, 7.2.6] and TS 36.211 [21, table 6.10.5.2-1 and 6.10.5.2-2] for 4 REs.

- **subframeConfig**
 Parameter: l_{CSI-RS}, see TS 36.213 [23, 7.2.6] and TS 36.211 [21, table 6.10.5.3-1].

CSI-IM-ConfigId

The IE CSI-IM-ConfigId is used to identify a CSI-IM configuration that is configured by the IE CSI-IM-Config. The identity is unique within the scope of a carrier frequency.

CSI-IM-ConfigId information elements

CSI-Process

The IE CSI-Process is the CSI process configuration that E-UTRAN may configure on a serving frequency.
CSI-Process information elements

CSI-Process-r11 ::= SEQUENCE {
 csi-ProcessId-r11 CSI-ProcessId-r11,
 csi-RS-ConfigNZPId-r11 CSI-RS-ConfigNZPId-r11,
 csi-IM-ConfigId-r11 CSI-IM-ConfigId-r11,
 p-C-AndCBSRList-r11 SEQUENCE (SIZE (1..2)) OF P-C-AndCBSR-r11,
 cqi-ReportBothProc-r11 CQI-ReportBothProc-r11 OPTIONAL, -- Need OR
 cqi-ReportBothProc-r11 CQI-ReportBothProc-r11 OPTIONAL, -- Need OR
 ...,
 [alternativeCodebookEnabledFor4TXProc-r12 ENUMERATED {true} OPTIONAL, -- Need OR
 cqi-ReportPeriodicProc-r11 CQI-ReportPeriodicProc-r11 OPTIONAL, -- Need OR
]
} }

P-C-AndCBSR-r11 ::= SEQUENCE {
 p-C-r11 INTEGER (-8..15),
 codebookSubsetRestriction-r11 BIT STRING
}

CSI-Process field descriptions

alternativeCodebookEnabledFor4TXProc
Indicates whether code book in TS 36.213 [23] Table 7.2.4-0A to Table 7.2.4-0D is being used for deriving CSI feedback and reporting for a CSI process. EUTRAN may configure the field only if the number of CSI-RS ports for non-zero power transmission CSI-RS configuration is 4.

cqi-ReportBothProc
Includes CQI configuration parameters applicable for both aperiodic and periodic CSI reporting, for which CSI process specific values may be configured. E-UTRAN configures the field if and only if cqi-ReportPeriodicProcId is included and/or if cqi-ReportAperiodicProc is included.

cqi-ReportAperiodicProc
If csi-MeasSubframeSet-r12 is configured for the same frequency as the CSI process, cqi-ReportAperiodicProc is for CSI subframe set 1.

cqi-ReportAperiodicProcSecond

cqi-ReportPeriodicProcId
Refers to a periodic CQI reporting configuration that is configured for the same frequency as the CSI process. Value 0 refers to the set of parameters defined by the REL-10 CQI reporting configuration fields, while the other values refer to the additional configurations E-UTRAN assigns by CQI-ReportPeriodicProcExt-r11 (and as covered by CQI-ReportPeriodicProcExtId).

csi-IM-ConfigId
Refers to a CSI-IM configuration that is configured for the same frequency as the CSI process.

csi-IM-ConfigIdList
Refers to one or two CSI-IM configurations that are configured for the same frequency as the CSI process. csi-IM-ConfigIdList can include 2 entries only if csi-MeasSubframeSet-r12 is configured for the same frequency as the CSI process. UE shall ignore csi-IM-ConfigId-r11 if csi-IM-ConfigIdList-r12 is configured.

csi-RS-ConfigNZPid
Refers to a CSI RS configuration using non-zero power transmission that is configured for the same frequency as the CSI process.

p-C
Parameter: P_c, see TS 36.213 [23, 7.2.5].

p-C-AndCBSRList
A p-C-AndCBSRList including 2 entries indicates that the subframe patterns configured for CSI (CQI/PMI/PTI/RI) reporting (i.e. as defined by field csi-MeasSubframeSet1 and csi-MeasSubframeSet2, or as defined by csi-MeasSubframeSet-r12) are to be used for this CSI process, while a single entry indicates that the subframe patterns are not to be used for this CSI process. E-UTRAN does not include 2 entries in p-C-AndCBSRlist with csi-MeasSubframeSet1 and csi-MeasSubframeSet2 for CSI processes concerning a secondary frequency. E-UTRAN includes 2 entries in p-C-AndCBSRList when configuring both cqi-pmi-ConfigIndex and cqi-pmi-ConfigIndex2.
Conditional presence	Explanation
CSIIMREL12 | This field is mandatory present if csi-IM-ConfigToAddModList-r12 is configured for the same frequency as the CSI process. Otherwise the field is not present.

CSI-ProcessId

The IE **CSI-ProcessId** is used to identify a CSI process that is configured by the IE **CSI-Process**. The identity is unique within the scope of a carrier frequency.

CSI-ProcessId information elements

```asn1
CSI-ProcessId-r11 ::= INTEGER (1..maxCSI-Proc-r11)
```

CSI-RS-Config

The IE **CSI-RS-Config** is used to specify the CSI (Channel-State Information) reference signal configuration.

CSI-RS-Config information elements

```asn1
CSI-RS-Config-r10 ::= SEQUENCE {
    csi-RS-r10     CHOICE {
        release      NULL,
        setup        SEQUENCE {
            antennaPortsCount-r10   ENUMERATED {an1, an2, an4, an8},
            resourceConfig-r10      INTEGER (0..31),
            subframeConfig-r10      INTEGER (0..154),
            p-C-r10       INTEGER (-8..15)
        }
    }                OPTIONAL,   -- Need ON
    zeroTxPowerCSI-RS-r10  CHOICE {
        release      NULL,
        setup        SEQUENCE {
            zeroTxPowerResourceConfigList-r10 BIT STRING (SIZE (16)),
            zeroTxPowerSubframeConfig-r10  INTEGER (0..154)
        }
    }                OPTIONAL   -- Need ON
}

CSI-RS-Config2-r12 ::= SEQUENCE {
    zeroTxPowerCSI-RS-r12  CHOICE {
        release      NULL,
        setup        SEQUENCE {
            zeroTxPowerResourceConfigList-r12 BIT STRING (SIZE (16)),
            zeroTxPowerSubframeConfig-r12  INTEGER (0..154)
        }
    }                OPTIONAL   -- Need ON
}
```

CSI-RS-Config field descriptions

antennaPortsCount
Parameter represents the number of antenna ports used for transmission of CSI reference signals where value an1 corresponds to 1 antenna port, an2 to 2 antenna ports and so on, see TS 36.211 [21, 6.10.5].

CSI-RS-Config2
Parameter for additional zeroTxPowerCSI-RS for a serving cell, when csi-MeasSubframeSet-r12 and TM 1 – 9 are configured for the serving cell.

p-C
Parameter: \(P_c \), see TS 36.213 [23, 7.2.5].

resourceConfig
Parameter: CSI reference signal configuration, see TS 36.211 [21, table 6.10.5.2-1 and 6.10.5.2-2].

subframeConfig
Parameter: \(I_{CSI-RS} \), see TS 36.211 [21, table 6.10.5.3-1].

zeroTxPowerResourceConfigList
Parameter: ZeroPowerCSI-RS, see TS 36.213 [23, 7.2.7].

zeroTxPowerSubframeConfig
Parameter: \(I_{CSI-RS} \), see TS 36.211 [21, table 6.10.5.3-1].

-- CSI-RS-ConfigNZP

The IE CSI-RS-ConfigNZP is the CSI-RS resource configuration using non-zero power transmission that E-UTRAN may configure on a serving frequency.

CSI-RS-ConfigNZP information elements

-- ASN1START

CSIRScfgNZP-r11 ::= SEQUENCE {
 csi-RScfgNZPId-r11 CSI-RScfgNZPId-r11,
 antennaPortsCount-r11 ENUMERATED (an1, an2, an4, an8),
 resourceConfig-r11 INTEGER (0..31),
 subframeConfig-r11 INTEGER (0..154),
 scramblingIdentity-r11 INTEGER (0..503),
 qcl-CRS-Info-r11 SEQUENCE {
 qcl-ScramblingIdentity-r11 INTEGER (0..503),
 crs-PortsCount-r11 ENUMERATED (n1, n2, n4, spare1),
 mbsfn-SubframeConfigList-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 subframeConfigList MBSFN-SubframeConfigList
 }
 }
 }
}

-- ASN1STOP

CSI-RS-ConfigNZP field descriptions

antennaPortsCount
Parameter represents the number of antenna ports used for transmission of CSI reference signals where an1 corresponds to 1, an2 to 2 antenna ports etc. see TS 36.211 [21, 6.10.5].

qcl-CRS-Info
Indicates CRS antenna ports that is quasi co-located with the CSI-RS antenna ports, see TS 36.213 [23, 7.2.5]. EUTRAN configures this field if and only if the UE is configured with qcl-Operation set to typeB.

resourceConfig
Parameter: CSI reference signal configuration, see TS 36.211 [21, table 6.10.5.2-1 and 6.10.5.2-2].

subframeConfig
Parameter: \(I_{CSI-RS} \), see TS 36.211 [21, table 6.10.5.3-1].

scramblingIdentity
Parameter: Pseudo-random sequence generator parameter, \(h_{ID} \), see TS 36.213 [23, 7.2.5].
CSI-RS-ConfigNZPId

The IE CSI-RS-ConfigNZPId is used to identify a CSI-RS resource configuration using non-zero transmission power, as configured by the IE CSI-RS-ConfigNZP. The identity is unique within the scope of a carrier frequency.

CSI-RS-ConfigNZPId information elements

```asn1
CSI-RS-ConfigNZPId-r11 ::= INTEGER (1..maxCSI-RS-NZP-r11)
```

CSI-RS-ConfigZP

The IE CSI-RS-ConfigZP is the CSI-RS resource configuration, for which UE assumes zero transmission power, that E-UTRAN may configure on a serving frequency.

CSI-RS-ConfigZP information elements

```asn1
CSI-RS-ConfigZP-r11 ::= SEQUENCE {
  csi-RS-ConfigZPId-r11  CSI-RS-ConfigZPId-r11,
  resourceConfigList-r11  BIT STRING (SIZE (16)),
  subframeConfig-r11   INTEGER (0..154),
  ...                   ...
}
```

CSI-RS-ConfigZPId field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resourceConfigList</td>
<td>Parameter: ZeroPowerCSI-RS, see TS 36.213 [23, 7.2.7].</td>
</tr>
<tr>
<td>subframeConfig</td>
<td>Parameter: I_{CSI-RS}, see TS 36.211 [21, table 6.10.5.3-1].</td>
</tr>
</tbody>
</table>

DMRS-Config

The IE DMRS-Config is the DMRS configuration that E-UTRAN may configure on a serving frequency.

DMRS-Config information elements

```asn1
DMRS-Config-r11 ::= CHOICE {
  release      NULL,
  setup        SEQUENCE {
    scramblingIdentity-r11  INTEGER (0..503),
  }
}
```
DMRS-Config field descriptions

<table>
<thead>
<tr>
<th>Parameter:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scramblingIdentity, scramblingIdentity2</td>
<td>DRB-Identity information elements</td>
</tr>
</tbody>
</table>

DRB-Identity

The IE **DRB-Identity** is used to identify a DRB used by a UE.

DRB-Identity information elements

```asn1
DRB-Identity ::= INTEGER (1..32)
```

EPDCCH-Config

The IE EPDCCH-Config specifies the subframes and resource blocks for EPDCCH monitoring that E-UTRAN may configure for a serving cell.

EPDCCH-Config information element

```asn1
EPDCCH-Config-r11 ::= SEQUENCE{
  config-r11 CHOICE {
    release NULL,
    setup SUBFRAMEPATTERNCONFIG-r11 CHOICE {
      release NULL,
      setup MeasSubframePattern-r10 }
  },
  startSymbol-r11 INTEGER (1..4) OPTIONAL, -- Need ON
  setConfigToReleaseList-r11 EPDCCH-SetConfigToReleaseList-r11 OPTIONAL, -- Need ON
  setConfigToAddModList-r11 EPDCCH-SetConfigToAddModList-r11 OPTIONAL -- Need ON
}

EPDCCH-SetConfigToAddModList-r11 ::= SEQUENCE (SIZE(1..maxEPDCCH-Set-r11)) OF EPDCCH-SetConfig-r11

EPDCCH-SetConfigToReleaseList-r11 ::= SEQUENCE (SIZE(1..maxEPDCCH-Set-r11)) OF EPDCCH-SetConfigId-r11

EPDCCH-SetConfig-r11 ::= SEQUENCE{
  setConfigId-r11 EPDCCH-SetConfigId-r11,
  transmissionType-r11 ENUMERATED (localised, distributed),
  resourceBlockAssignment-r11 SEQUENCE{
    numberPRB-Pairs-r11 ENUMERATED {n2, n4, n8},
    resourceBlockAssignment-r11 BIT STRING (SIZE(4..38))
  },
  dmrs-ScramblingSequenceInt-r11 INTEGER (0..503),
  pucch-ResourceStartOffset-r11 INTEGER (0..2047),
  re-MappingQCL-ConfigId-r11 PDSCH-RE-MappingQCL-ConfigId-r11 OPTIONAL, -- Need OR
  ..., CSI-RS-Config2PId-Second-r12 CSI-RS-Config2PId-r11 OPTIONAL -- Need OR
}
```

ETSI-Config field descriptions

csi-RS-ConfigZPId-Second
Indicates the rate matching parameters in addition to those indicated by re-MappingQCL-Configld. E-UTRAN configures this field only when tm10 is configured.
dmrs-ScramblingSequenceInt
The DMRS scrambling sequence initialization parameter \(n^{EPDCCH}_{D,j} \) defined in TS 36.211[21, 6.10.3A.1].

EPDCCH-SetConfig
Provides EPDCCH configuration set. See TS 36.213 [23, 9.1.4]. E-UTRAN configures at least one EPDCCH-SetConfig when EPDCCH-Config is configured.

numberPRB-Pairs
Indicates the number of physical resource-block pairs used for the EPDCCH set. Value n2 corresponds to 2 physical resource-block pairs; n4 corresponds to 4 physical resource-block pairs and so on. Value n8 is not supported if dl-Bandwidth is set to 6 resource blocks.

pucch-ResourceStartOffset
PUCCH format 1a and 1b resource starting offset for the EPDCCH set. See TS 36.213 [23, 10.1.1.2].

re-MappingQCL-Configld
Indicates the starting OFDM symbol, the related rate matching parameters and quasi co-location assumption for EPDCCH when the UE is configured with tm10. This field provides the identity of a configured PDSCH-RE-MappingQCL-Config. E-UTRAN configures this field only when tm10 is configured.

resourceBlockAssignment
Indicates the index to a specific combination of physical resource-block pair for EPDCCH set. See TS 36.213 [23, 9.1.4.4]. The size of resourceBlockAssignment is specified in TS 36.213 [23, 9.1.4.4] and based on numberPRB-Pairs and the signalled value of dl-Bandwidth.

setConfigId
Indicates the identity of the EPDCCH configuration set.

startSymbol
Indicates the OFDM starting symbol for any EPDCCH and PDSCH scheduled by EPDCCH on the same cell, see TS 36.213 [23, 9.1.4.1]. If not present, the UE shall release the configuration and shall derive the starting OFDM symbol of EPDCCH and PDSCH scheduled by EPDCCH from PCFICH. Values 1, 2, and 3 are applicable for dl-Bandwidth greater than 10 resource blocks. Values 2, 3, and 4 are applicable otherwise. E-UTRAN does not configure the field for UEs configured with tm10.

subframePatternConfig
Configures the subframes which the UE shall monitor the UE-specific search space on EPDCCH, except for pre-defined rules in TS 36.213 [23, 9.1.4]. If the field is not configured when EPDCCH is configured, the UE shall monitor the UE-specific search space on EPDCCH in all subframes except for pre-defined rules in TS 36.213 [23, 9.1.4].

transmissionType
Indicates whether distributed or localized EPDCCH transmission mode is used as defined in TS 36.211 [21, 6.8A.1].

EIMTA-MainConfig

The IE EIMTA-MainConfig is used to specify the RNTI used for eIMTA and the subframes used for eIMTA reconfiguration command transmission.

EIMTA-MainConfig information element

-- ASN1START
EIMTA-MainConfig-r12 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 eimta-RNTI-r12 C-RNTI,
 eimta-CommandPeriodicity-r12 ENUMERATED {sf10, sf20, sf40, sf80},
 eimta-CommandSubframeSet-r12 BIT STRING (SIZE(10))
 }
}

EIMTA-MainConfigServCell-r12 ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 eimta-ReConfigIndex-r12 INTEGER (1..5),
 eimta-HarqReferenceConfig-r12 ENUMERATED {sa2,sa4,sa5},
 mbsfn-SubframeConfigList-v12x0 CHOICE {
 release NULL,
 setup SEQUENCE {
 ...
 }}
}
EIMTA-Config field descriptions

eimta-CommandPeriodicity
Configures the periodicity to monitor PDCCH with eIMTA-RNTI. See TS 36.213 [23,13.1]. Value sf10 corresponds to 10 subframes, sf20 corresponds to 20 subframes and so on.

eimta-CommandSubframeSet
Configures the subframe(s) to monitor PDCCH with eIMTA-RNTI within the periodicity configured by *eimta-CommandPeriodicity*. The 10 bits correspond to all subframes in the last radio frame within each periodicity. The leftmost bit is for subframe 0 and so on. Each bit can be of value 0 or 1. The value of 1 means that the corresponding subframe is configured for monitoring PDCCH with eIMTA-RNTI, and the value of 0 means otherwise. In case of TDD as PCell, only the downlink subframes indicated by the DL/UL subframe configuration in SIB1 can be configured for monitoring PDCCH with eIMTA-RNTI. In case of FDD as PCell, any of the ten subframes can be configured for monitoring PDCCH with eIMTA-RNTI.

eimta-ReConfigIndex
Index of I, see TS 36.212 [22, 5.3.3.1.4]. E-UTRAN configures the same value for all serving cells residing on same frequency band.

eimta-HarqReferenceConfig
Indicates DL/UL subframe configuration used as the DL HARQ reference configuration for this serving cell. Value sa2 corresponds to Configuration2, sa4 to Configuration4 etc, as specified in TS 36.211 [21, table 4.2-2]. E-UTRAN configures the same value for all serving cells residing on same frequency band.

mbsfn-SubframeConfigList
Configure the MBSFN subframes for the UE on this serving cell. An uplink subframe indicated by the DL/UL subframe configuration in SIB1 can be configured as MBSFN subframe.

LogicalChannelConfig

The IE *LogicalChannelConfig* is used to configure the logical channel parameters.

LogicalChannelConfig information element

```
LogicalChannelConfig ::= SEQUENCE {  ul-SpecificParameters     SEQUENCE { priority       INTEGER (1..16), prioritisedBitRate     ENUMERATED { kBps0, kBps8, kBps16, kBps32, kBps64, kBps128, kBps256, infinity, kBps512-v1020, kBps1024-v1020, kBps2048-v1020, spare5, spare4, spare3, spare2, spare1}, bucketSizeDuration     ENUMERATED { ms50, ms100, ms150, ms300, ms500, ms1000, spare2, spare1}, logicalChannelGroup     INTEGER (0..3)   OPTIONAL  -- Need OR }, logicalChannelSR-Mask-r9     ENUMERATED { setup}  OPTIONAL  -- Cond SRmask }  -- Need OR }}
```

LogicalChannelConfig field descriptions

bucketSizeDuration
Bucket Size Duration for logical channel prioritization in TS 36.321 [6]. Value in milliseconds. Value ms50 corresponds to 50 ms, ms100 corresponds to 100 ms and so on.

logicalChannelGroup
Mapping of logical channel to logical channel group for BSR reporting in TS 36.321 [6].

logicalChannelSR-Mask
Controlling SR triggering on a logical channel basis when an uplink grant is configured. See TS 36.321 [6].

prioritisedBitRate
Prioritized Bit Rate for logical channel prioritization in TS 36.321 [6]. Value in kilobytes/second. Value kBps0 corresponds to 0 kB/second, kBps8 corresponds to 8 kB/second, kBps16 corresponds to 16 kB/second and so on. Infinity is the only applicable value for SRB1 and SRB2.

priority
Logical channel priority in TS 36.321 [6]. Value is an integer.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRmask</td>
<td>The field is optionally present if ul-SpecificParameters is present, need OR; otherwise it is not present.</td>
</tr>
<tr>
<td>UL</td>
<td>The field is mandatory present for UL logical channels; otherwise it is not present.</td>
</tr>
</tbody>
</table>

MAC-MainConfig

The IE MAC-MainConfig is used to specify the MAC main configuration for signalling and data radio bearers.

MAC-MainConfig information element

```asn1
MAC-MainConfig ::= SEQUENCE {
  ul-SCH-Config       SEQUENCE {
    maxHARQ-Tx          ENUMERATED {n1, n2, n3, n4, n5, n6, n7, n8,
                                  n10, n12, n16, n20, n24, n28,
                                  spare2, spare1} OPTIONAL, -- Need ON
    periodicBSR-Timer    ENUMERATED {sf5, sf10, sf16, sf20, sf32, sf40, sf64, sf80,
                                  sf128, sf160, sf320, sf640, sf1280, sf2560,
                                  infinity, spare1} OPTIONAL, -- Need ON
    retxBSR-Timer       ENUMERATED {sf320, sf640, sf1280, sf2560, sf5120,
                                  sf10240, spare2, spare1},
    ttiBundling         BOOLEAN OPTIONAL, -- Need ON
  } OPTIONAL, -- Need ON
  drx-Config          DRX-Config OPTIONAL, -- Need ON
  timeAlignmentTimerDedicated    TimeAlignmentTimer OPTIONAL, -- Need ON
  phr-Config          CHOICE {
    release            NULL,
    setup              NULL,
    periodicPHR-Timer  ENUMERATED {sf10, sf20, sf50, sf100, sf200,
                                   sf500, sf1000, infinity},
    prohibitPHR-Timer  ENUMERATED {sf0, sf10, sf20, sf50, sf100,
                                   sf200, sf500, sf1000},
    dl-PathlossChange  ENUMERATED {dB1, dB3, dB6, infinity}
  } OPTIONAL, -- Need ON
}
```

ETSI
MAC-MainConfigSCell-r11 ::= SEQUENCE {
 stag-id-r11 STAG-Id-r11 OPTIONAL, -- Need OP
 ...
}

DRX-Config ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 onDurationTimer ENUMERATED {
 psf1, psf2, psf3, psf4, psf5, psf6,
 psf8, psf10, psf20, psf30, psf40,
 psf50, psf60, psf80, psf100,
 psf200},
 drx-InactivityTimer ENUMERATED {
 psf1, psf2, psf3, psf4, psf5, psf6,
 psf8, psf10, psf20, psf30, psf40,
 psf50, psf60, psf80, psf100,
 psf200, psf300, psf500, psf750,
 psf1280, psf1920, psf2560, psf0-v1020,
 spare9, spare8, spare7, spare6,
 spare5, spare4, spare3, spare2,
 spare1},
 drx-RetransmissionTimer ENUMERATED {
 psf1, psf2, psf4, psf6, psf8, psf16,
 psf24, psf33},
 longDRX-CycleStartOffset CHOICE {
 sf10 INTEGER(0..9),
 sf20 INTEGER(0..19),
 sf32 INTEGER(0..31),
 sf40 INTEGER(0..39),
 sf64 INTEGER(0..63),
 sf80 INTEGER(0..79),
 sf128 INTEGER(0..127),
 sf160 INTEGER(0..159),
 sf256 INTEGER(0..255),
 sf320 INTEGER(0..319),
 sf512 INTEGER(0..511),
 sf640 INTEGER(0..639),
 sf1024 INTEGER(0..1023),
 sf1280 INTEGER(0..1279),
 sf2048 INTEGER(0..2047),
 sf2560 INTEGER(0..2559)
 },
 shortDRX SEQUENCE {
 shortDRX-Cycle ENUMERATED {
 sf2, sf5, sf8, sf10, sf16, sf20,
 sf32, sf40, sf64, sf80, sf128, sf160,
 sf256, sf320, sf512, sf640},
 drxShortCycleTimer INTEGER (1..16)
 } OPTIONAL -- Need OR
 }
}

DRX-Config-v1130 ::= SEQUENCE {
 drx-RetransmissionTimer-v1130 ENUMERATED {psf0-v1130} OPTIONAL, -- Need OR
 longDRX-CycleStartOffset-v1130 CHOICE {
 sf60-v1130 INTEGER(0..59),
 sf70-v1130 INTEGER(0..69)
 } OPTIONAL -- Need OR
 shortDRX-Cycle-v1130 ENUMERATED {sf4-v1130} OPTIONAL -- Need OR
}

STAG-ToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxSTAG-r11)) OF STAG-Id-r11
STAG-ToAddModList-r11 ::= SEQUENCE (SIZE (1..maxSTAG-r11)) OF STAG-ToAddMod-r11
STAG-ToAddMod-r11 ::= SEQUENCE {
 stag-id-r11 STAG-Id-r11,
 timeAlignmentTimerSTAG-r11 TimeAlignmentTimer,
 ...
}

STAG-Id-r11 ::= INTEGER (1..maxSTAG-r11)
MAC-MainConfig field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dl-PathlossChange</td>
<td>DL Pathloss Change and the change of the required power backoff due to power management (as allowed by P-MPRc [42]) for PHR reporting in TS 36.321 [6]. Value in dB. Value dB1 corresponds to 1 dB, dB3 corresponds to 3 dB and so on. The same value applies for each serving cell (although the associated functionality is performed independently for each cell).</td>
</tr>
<tr>
<td>drx-Config</td>
<td>Used to configure DRX as specified in TS 36.321 [6]. E-UTRAN configures the values in DRX-Config-v1130 only if the UE indicates support for IDC indication. E-UTRAN configures drx-Config-v1130 only if drx-Config (without suffix) is configured.</td>
</tr>
<tr>
<td>drx-InactivityTimer</td>
<td>Timer for DRX in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on.</td>
</tr>
<tr>
<td>drx-RetransmissionTimer</td>
<td>Timer for DRX in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on. In case drx-RetransmissionTimer-v1130 is signalled, the UE shall ignore drx-RetransmissionTimer (i.e. without suffix).</td>
</tr>
<tr>
<td>drxShortCycleTimer</td>
<td>Timer for DRX in TS 36.321 [6]. Value in multiples of shortDRX-Cycle. A value of 1 corresponds to shortDRX-Cycle, a value of 2 corresponds to 2 * shortDRX-Cycle and so on.</td>
</tr>
<tr>
<td>e-HARQ-Pattern</td>
<td>TRUE indicates that enhanced HARQ pattern for TTI bundling is enabled for FDD. E-UTRAN enables this field only whenttiBundling is set to TRUE.</td>
</tr>
<tr>
<td>extendedBSR-Sizes</td>
<td>If value setup is configured, the BSR index indicates extended BSR size levels as defined in TS 36.321 [6, Table 6.1.3.1-2].</td>
</tr>
<tr>
<td>extendedPHR</td>
<td>Indicates if power headroom shall be reported using the Extended Power Headroom Report MAC control element defined in TS 36.321 [6] (value setup). Otherwise the power headroom shall be reported using the Power Headroom Report MAC control element defined in TS 36.321 [6]. E-UTRAN always configures the value setup if more than one Serving Cell with uplink is configured. E-UTRAN configures extendedPHR only if phr-Config is configured. The UE shall release extendedPHR if phr-Config is released.</td>
</tr>
<tr>
<td>longDRX-CycleStartOffset</td>
<td>longDRX-Cycle and drxStartOffset in TS 36.321 [6]. The value of longDRX-Cycle is in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. If shortDRX-Cycle is configured, the value of longDRX-Cycle shall be a multiple of the shortDRX-Cycle value. The value of drxStartOffset value is in number of sub-frames. In case longDRX-CycleStartOffset-v1130 is signalled, the UE shall ignore longDRX-CycleStartOffset (i.e. without suffix).</td>
</tr>
<tr>
<td>maxHARQ-Tx</td>
<td>Maximum number of transmissions for UL HARQ in TS 36.321 [6].</td>
</tr>
<tr>
<td>onDurationTimer</td>
<td>Timer for DRX in TS 36.321 [6]. Value in number of PDCCH sub-frames. Value psf1 corresponds to 1 PDCCH sub-frame, psf2 corresponds to 2 PDCCH sub-frames and so on.</td>
</tr>
<tr>
<td>periodicBSR-Timer</td>
<td>Timer for BSR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on.</td>
</tr>
<tr>
<td>periodicPHR-Timer</td>
<td>Timer for PHR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 subframes, sf20 corresponds to 20 subframes and so on.</td>
</tr>
<tr>
<td>prohibitPHR-Timer</td>
<td>Timer for PHR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf0 corresponds to 0 subframes, sf100 corresponds to 100 subframes and so on.</td>
</tr>
<tr>
<td>retxBSR-Timer</td>
<td>Timer for BSR reporting in TS 36.321 [6]. Value in number of sub-frames. Value sf640 corresponds to 640 sub-frames, sf1280 corresponds to 1280 sub-frames and so on.</td>
</tr>
<tr>
<td>sCellDeactivationTimer</td>
<td>SCell deactivation timer in TS 36.321 [6]. Value in number of radio frames. Value rf4 corresponds to 4 radio frames, value rf8 corresponds to 8 radio frames and so on. E-UTRAN only configures the field if the UE is configured with one or more SCells. If the field is absent, the UE shall delete any existing value for this field and assume the value to be set to infinity. The same value applies for each SCell (although the associated functionality is performed independently for each SCell).</td>
</tr>
<tr>
<td>shortDRX-Cycle</td>
<td>Short DRX cycle in TS 36.321 [6]. Value in number of sub-frames. Value sf2 corresponds to 2 sub-frames, sf5 corresponds to 5 subframes and so on. In case shortDRX-Cycle-v1130 is signalled, the UE shall ignore shortDRX-Cycle (i.e. without suffix).</td>
</tr>
</tbody>
</table>
MAC-MainConfig field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sr-ProhibitTimer</td>
<td>Timer for SR transmission on PUCCH in TS 36.321 [6]. Value in number of SR period(s). Value 0 means no timer for SR transmission on PUCCH is configured. Value 1 corresponds to one SR period, Value 2 corresponds to 2*SR periods and so on. SR period is defined in TS 36.213 [23, table 10.1.5-1].</td>
</tr>
<tr>
<td>stag-Id</td>
<td>Indicates the TAG of an SCell, see TS 36.321 [6]. If the field is not configured for an SCell (e.g. absent in MAC-MainConfigSCell), the SCell is part of the PTAG.</td>
</tr>
<tr>
<td>stag-ToAddModList, stag-ToReleaseList</td>
<td>Used to configure one or more STAGs. E-UTRAN ensures that a STAG contains at least one SCell with configured uplink. If, due to SCELL release a reconfiguration would result in an ‘empty’ TAG, E-UTRAN includes release of the concerned TAG.</td>
</tr>
<tr>
<td>timeAlignmentTimerSTAG</td>
<td>Indicates the value of the time alignment timer for an STAG, see TS 36.321 [6].</td>
</tr>
<tr>
<td>ttiBundling</td>
<td>TRUE indicates that TTI bundling TS 36.321 [6] is enabled while FALSE indicates that TTI bundling is disabled. TTI bundling can be enabled for FDD and for TDD only for configurations 0, 1 and 6. For TDD, E-UTRAN does not simultaneously enable TTI bundling and semi-persistent scheduling in this release of specification. Furthermore, E-UTRAN does not simultaneously configure TTI bundling and SCells with configured uplink, and E-UTRAN does not simultaneously configure TTI bundling and eIMTA.</td>
</tr>
</tbody>
</table>

PDCP-Config

The IE *PDCP-Config* is used to set the configurable PDCP parameters for data radio bearers.

PDCP-Config information element

```
-- ASN1START

PDCP-Config ::= SEQUENCE {
  discardTimer      ENUMERATED {
    ms50, ms100, ms150, ms300, ms500,
    ms750, ms1500, infinity
  } OPTIONAL,   -- Cond Setup
  rlc-AM        SEQUENCE {
    statusReportRequired    BOOLEAN OPTIONAL,   -- Cond Rlc-AM
  }
  rlc-UM        SEQUENCE {
    pdcp-SN-Size      ENUMERATED {len7bits, len12bits} OPTIONAL,   -- Cond Rlc-UM
  }
  headerCompression     CHOICE {
    notUsed        NULL,   -- Cond Rlc-AM
    rohc        SEQUENCE {
      maxCID      INTEGER (1..16383) DEFAULT 15,
      profiles      SEQUENCE {
        profile0x0001 BOOLEAN,
        profile0x0002 BOOLEAN,
        profile0x0003 BOOLEAN,
        profile0x0004 BOOLEAN,
        profile0x0006 BOOLEAN,
        profile0x0101 BOOLEAN,
        profile0x0102 BOOLEAN,
        profile0x0103 BOOLEAN,
        profile0x0104 Boolean
      },
    },
    ...,  
    [[ rn-IntegrityProtection-r10 ENUMERATED {enabled} OPTIONAL -- Cond RN ]],
    [[ pdcp-SN-Size-v1130 ENUMERATED {len15bits} OPTIONAL -- Cond Rlc-AM2 ]]
  }

-- ASN1STOP
```
PDCP-Config field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>discardTimer</td>
<td>Indicates the discard timer value specified in TS 36.323 [8]. Value in milliseconds. Value ms50 means 50 ms, ms100 means 100 ms and so on.</td>
</tr>
<tr>
<td>maxCID</td>
<td>Indicates the value of the MAX_CID parameter as specified in TS 36.323 [8]. The total value of MAX_CIDs across all bearers for the UE should be less than or equal to the value of maxNumberROHC-ContextSessions parameter as indicated by the UE.</td>
</tr>
<tr>
<td>pdcp-SN-Size</td>
<td>Indicates the PDCP Sequence Number length in bits. For RLC UM: value len7bits means that the 7-bit PDCP SN format is used and len12bits means that the 12-bit PDCP SN format is used. For RLC AM: value len15bits means that the 15-bit PDCP SN format is used, otherwise if the field is not included upon setup of the PCDP entity 12-bit PDCP SN format is used, as specified in TS 36.323 [8].</td>
</tr>
<tr>
<td>profiles</td>
<td>The profiles used by both compressor and decompressor in both UE and E-UTRAN. The field indicates which of the ROHC profiles specified in TS 36.323 [8] are supported, i.e. value true indicates that the profile is supported. Profile 0x0000 shall always be supported when the use of ROHC is configured. If support of two ROHC profile identifiers with the same 8 LSB’s is signalled, only the profile corresponding to the highest value shall be applied.</td>
</tr>
<tr>
<td>rn-IntegrityProtection</td>
<td>Indicates that integrity protection or verification shall be applied for all subsequent packets received and sent by the RN on the DRB.</td>
</tr>
<tr>
<td>statusReportRequired</td>
<td>Indicates whether or not the UE shall send a PDCP Status Report upon re-establishment of the PDCP entity as specified in TS 36.323 [8].</td>
</tr>
</tbody>
</table>

PDSCH-Config

The IE PDSCH-ConfigCommon and the IE PDSCH-ConfigDedicated are used to specify the common and the UE specific PDSCH configuration respectively.

PDSCH-Config information element

```asn1
-- ASN1START
PDSCH-ConfigCommon ::= SEQUENCE {
    referenceSignalPower INTEGER (-60..50),
    p-b INTEGER (0..3)
}
PDSCH-ConfigDedicated ::= SEQUENCE {
    p-a ENUMERATED {
        dB-6, dB-4dot77, dB-3, dB-1dot77,
        dB0, dB1, dB2, dB3
    }
}
PDSCH-ConfigDedicated-v1130 ::= SEQUENCE {
    dmrs-ConfigPDSCH-r11 DMRS-Config-r11 OPTIONAL, -- Need ON
    qcl-Operation ENUMERATED {typeA, typeB} OPTIONAL, -- Need OR
}
```
PDSCH-RE-MappingQCL-ConfigId

The IE PDSCH-RE-MappingQCL-ConfigId is used to identify a set of PDSCH parameters related to resource element mapping and quasi co-location, as configured by the IE PDSCH-RE-MappingQCL-Config. The identity is unique within the scope of a carrier frequency.

-- ASN1START

PHICH-Config

The IE PHICH-Config is used to specify the PHICH configuration.

PHICH-Config information element

PHICH-Config ::= SEQUENCE {
 phich-Duration ENUMERATED {normal, extended},
 phich-Resource ENUMERATED {oneSixth, half, one, two}
}

PHICH-Config field descriptions

phich-Duration
Parameter: PHICH-Duration, see TS 36.211 [21, Table 6.9.3-1].

phich-Resource
Parameter: Ng, see TS 36.211 [21, 6.9]. Value oneSixth corresponds to 1/6, half corresponds to 1/2 and so on.

PhysicalConfigDedicated

The IE PhysicalConfigDedicated is used to specify the UE specific physical channel configuration.

PhysicalConfigDedicated information element

PhysicalConfigDedicated ::= SEQUENCE {
 pdsch-ConfigDedicated PDSCH-ConfigDedicated OPTIONAL, -- Need ON
 pucch-ConfigDedicated PUCCH-ConfigDedicated OPTIONAL, -- Need ON
 pusch-ConfigDedicated PUSCH-ConfigDedicated OPTIONAL, -- Need ON
 uplinkPowerControlDedicated UplinkPowerControlDedicated OPTIONAL, -- Need ON
 tpc-PDCCH-ConfigPUCCH TPC-PDCCH-Config OPTIONAL, -- Need ON
 tpc-PDCCH-ConfigPUSCH TPC-PDCCH-Config OPTIONAL, -- Need ON
 cqi-ReportConfig CQI-ReportConfig OPTIONAL, -- Cond CQI-
 antennaInfo CHOICE {
 explicitValue AntennaInfoDedicated,
 defaultValue NULL
 } OPTIONAL, -- Cond AI-r8
 schedulingRequestConfig SchedulingRequestConfig OPTIONAL, -- Need ON
 cqi-ReportConfig-v920 CQI-ReportConfig-v920 OPTIONAL, -- Cond CQI-
 antennaInfo-v920 AntennaInfoDedicated-v920 OPTIONAL -- Cond AI-
 csi-RS-Config-r10 CSI-RS-Config-r10 OPTIONAL, -- Need ON
 antennaInfoUL-r10 AntennaInfoUL-r10 OPTIONAL, -- Need ON
 cif-Presence-r10 BOOLEAN OPTIONAL, -- Need ON
 cqi-ReportConfig-r10 CQI-ReportConfig-r10 OPTIONAL, -- Cond CQI-
 pucch-ConfigDedicated-v1020 PUCCH-ConfigDedicated-v1020 OPTIONAL, -- Need ON
 pusch-ConfigDedicated-v1020 PUSCH-ConfigDedicated-v1020 OPTIONAL, -- Need ON
 schedulingRequestConfig-v1020 SchedulingRequestConfig-v1020 OPTIONAL, -- Need ON
 soundingRS-UL-ConfigDedicated-v1020 SoundingRS-UL-ConfigDedicated-v1020 OPTIONAL, -- Need ON
 soundingRS-UL-ConfigDedicatedAperiodic-r10 SoundingRS-UL-ConfigDedicatedAperiodic-r10 OPTIONAL, -- Need ON
}

...
PhysicalConfigDedicatedSCell-r10

```
| PhysicalConfigDedicatedSCell-r10 ::= SEQUENCE {
|    -- DL configuration as well as configuration applicable for DL and UL
|    nonUL-Configuration-r10    SEQUENCE {
|        -- DL configuration as well as configuration applicable for DL and UL
|        csi-RS-ConfigNZPToReleaseList-r11    CSI-RS-ConfigNZPToReleaseList-r11 OPTIONAL, -- Need ON
|        csi-RS-ConfigNZPToAddModList-r11    CSI-RS-ConfigNZPToAddModList-r11 OPTIONAL, -- Need ON
|        epdcch-Config-r11    EPDCCH-Config-r11 OPTIONAL, -- Need ON
|        pdsch-ConfigDedicated-r10    PDSCH-ConfigDedicated-r10 OPTIONAL, -- Need ON
|        -- UL configuration
|        cqi-ReportConfig-r11    CQI-ReportConfig-r11 OPTIONAL, -- Need ON
|        pusch-ConfigDedicated-r11    PUSCH-ConfigDedicated-r11 OPTIONAL, -- Need ON
|        uplinkPowerControlDedicatedSCell-r10 UplinkPowerControlDedicatedSCell-r10 OPTIONAL, -- Need ON
|    }                OPTIONAL, -- Cond CommonUL
|    \}
|}
```
cqi-ReportConfig-v1130 CQI-ReportConfig-v1130 OPTIONAL, -- Need ON
pusch-ConfigDedicated-v1130 PUSCH-ConfigDedicated-v1130 OPTIONAL, -- Need ON
uplinkPowerControlDedicatedSCell-v1130 UplinkPowerControlDedicated-v1130 OPTIONAL --
Need ON

][

antennaInfo-v12xx AntennaInfoDedicated-v12xx OPTIONAL, -- Need ON

]

[[eimta

cqi-ReportConfigSCell-v12x0 CQI-ReportConfig-v12x0 OPTIONAL, -- Need ON
uplinkPowerControlDedicatedSCell-v12x0 UplinkPowerControlDedicated-v12x0 OPTIONAL, --
Need ON

csi-RS-Config2-r12 CSI-RS-Config2-r12 OPTIONAL -- Need OR
]]

CSI-RS-ConfigNZPToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-r11)) OF CSI-RS-ConfigNZP-r11
CSI-RS-ConfigNZPToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-NZP-r11)) OF CSI-RS-ConfigNZPId-r11
CSI-RS-ConfigZPToAddModList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-ZP-r11)) OF CSI-RS-ConfigZP-r11
CSI-RS-ConfigZPToReleaseList-r11 ::= SEQUENCE (SIZE (1..maxCSI-RS-ZP-r11)) OF CSI-RS-ConfigZPId-r11
-- ASN1STOP

PhysicalConfigDedicated field descriptions

additionalSpectrumEmissionPCell
The UE requirements related to IE AdditionalSpectrumEmissionPCell are defined in TS 36.101 [42], E-UTRAN does not configure AdditionalSpectrumEmissionPCell if there are no other serving cells configured. E-UTRAN does not configure the field in case of contiguous intra-band carrier aggregation.

antennaInfo
A choice is used to indicate whether the antennaInfo is signalled explicitly or set to the default antenna configuration as specified in section 9.2.4.

csi-RS-Config
For a serving frequency E-UTRAN does not configure csi-RS-Config (includes zeroTxPowerCSI-RS) when transmission mode 10 is configured for the serving cell on this carrier frequency.

csi-RS-ConfigNZPToAddModList
For a serving frequency E-UTRAN configures one or more CSI-RS-ConfigNZP only when transmission mode 10 is configured for the serving cell on this carrier frequency. E-UTRAN configures a maximum of one CSI-RS-ConfigNZP for a serving frequency on which the UE supports only one CSI process (i.e. supportedCSI-Proc is indicated as n1).

csi-RS-ConfigNZPToAddModList
For a serving frequency E-UTRAN configures one or more CSI-RS-ConfigNZP only when transmission mode 10 is configured for the serving cell on this carrier frequency.

csi-RS-ConfigZPToAddModList
For a serving frequency E-UTRAN configures one or more CSI-RS-ConfigZP only when transmission mode 10 is configured for the serving cell on this carrier frequency.

eimta-MainConfigPCell, eimta-MainConfigSCell
If E-UTRAN configures eimta-MainConfigPCell or eimta-MainConfigSCell for one serving cell in a frequency band, E-UTRAN configures eimta-MainConfigPCell or eimta-MainConfigSCell for all serving cells residing on the frequency band.

epdcch-Config
indicates the EPDCCH-Config for the cell. E-UTRAN does not configure EPDCCH-Config for an SCell that is configured with value other for schedulingCellInfo in CrossCarrierSchedulingConfig.

pdsch-ConfigDedicated-v1130
For a serving frequency E-UTRAN configures pdsch-ConfigDedicated-v1130 only when transmission mode 10 is configured for the serving cell on this carrier frequency.

tpc-PDCCH-ConfigPUSCH
PDCCH configuration for power control of PUSCH using format 3/3A, see TS 36.212 [22].

uplinkPowerControlDedicated
E-UTRAN configures uplinkPowerControlDedicated-v1130 only if uplinkPowerControlDedicated (without suffix) is configured.
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-r8</td>
<td>The field is optionally present, need ON, if antennaInfoDedicated-r10 is absent. Otherwise the field is not present.</td>
</tr>
<tr>
<td>A1-r10</td>
<td>The field is optionally present, need ON, if antennaInfoDedicated is absent. Otherwise the field is not present.</td>
</tr>
<tr>
<td>CommonUL</td>
<td>The field is mandatory present if ul-Configuration of RadioResourceConfigCommonSCell-r10 is present; otherwise it is optional, need ON.</td>
</tr>
<tr>
<td>CQI-r8</td>
<td>The field is optionally present, need ON, if cqi-ReportConfig-r10 is absent. Otherwise the field is not present.</td>
</tr>
<tr>
<td>CQI-r10</td>
<td>The field is optionally present, need ON, if cqi-ReportConfig is absent. Otherwise the field is not present.</td>
</tr>
<tr>
<td>SCellAdd</td>
<td>The field is mandatory present if cellIdentification is present; otherwise it is optional, need ON.</td>
</tr>
<tr>
<td>eimta</td>
<td>The field is optional present, need ON, if the field eimta-MainConfig-r12 is configured. Otherwise the field is not present.</td>
</tr>
<tr>
<td>TwoSetsUL</td>
<td>The field is optional present, need ON, if the field tpc-SubframeSet-r12 is configured. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

NOTE 1: During handover, the UE performs a MAC reset, which involves reverting to the default CQI/ SRS/ SR configuration in accordance with subclause 5.3.13 and TS 36.321 [6, 5.9 & 5.2]. Hence, for these parts of the dedicated radio resource configuration, the default configuration (rather than the configuration used in the source PCell) is used as the basis for the delta signalling that is included in the message used to perform handover.

NOTE 2: Since delta signalling is not supported for the common SCell configuration, E-UTRAN can only add or release the uplink of an SCell by releasing and adding the concerned SCell.

P-Max

The IE *P-Max* is used to limit the UE’s uplink transmission power on a carrier frequency and is used to calculate the parameter *Pcompensation* defined in TS 36.304 [4]. Corresponds to parameter *P_{MAX} or P_{MAX,c}* in TS 36.101 [42]. The UE transmit power on one serving cell shall not exceed the configured maximum UE output power of the serving cell determined by this value as specified in TS 36.101 [42, 6.2.5 or 6.2.5A].

P-Max information element

```
-- ASN1START
P-Max ::= INTEGER (-30..33)
-- ASN1STOP
```

PRACH-Config

The IE PRACH-ConfigSIB and IE PRACH-Config are used to specify the PRACH configuration in the system information and in the mobility control information, respectively.

PRACH-Config information elements

```
-- ASN1START
PRACH-ConfigSIB ::= SEQUENCE {
  rootSequenceIndex     INTEGER (0..837),
  prach-ConfigInfo     PRACH-ConfigInfo
}
PRACH-Config ::= SEQUENCE {
  rootSequenceIndex     INTEGER (0..837),
  prach-ConfigInfo     PRACH-ConfigInfo
}
PRACH-ConfigSCell-r10 ::= SEQUENCE {
  prach-ConfigIndex-r10     INTEGER (0..63)
}
PRACH-ConfigInfo ::= SEQUENCE {

```
prach-ConfigIndex INTEGER (0..63),
highSpeedFlag BOOLEAN,
zeroCorrelationZoneConfig INTEGER (0..15),
prach-FreqOffset INTEGER (0..94)
}-- ASN1STOP

PRACH-Config field descriptions

highSpeedFlag
Parameter: High-speed-flag, see TS 36.211, [21, 5.7.2]. TRUE corresponds to Restricted set and FALSE to Unrestricted set.

prach-ConfigIndex
Parameter: prach-ConfigurationIndex, see TS 36.211 [21, 5.7.1].

prach-FreqOffset
Parameter: prach-FrequencyOffset, see TS 36.211, [21, 5.7.1]. For TDD the value range is dependent on the value of prach-ConfigIndex.

rootSequenceIndex
Parameter: RACH_ROOT_SEQUENCE, see TS 36.211 [21, 5.7.1].

zeroCorrelationZoneConfig
Parameter: Ncs configuration, see TS 36.211, [21, 5.7.2: table 5.7.2-2] for preamble format 0..3 and TS 36.211, [21, 5.7.2: table 5.7.2-3] for preamble format 4.

PresenceAntennaPort1

The IE PresenceAntennaPort1 is used to indicate whether all the neighbouring cells use Antenna Port 1. When set to TRUE, the UE may assume that at least two cell-specific antenna ports are used in all neighbouring cells.

PresenceAntennaPort1 information element

-- ASN1START
PresenceAntennaPort1 ::= BOOLEAN
-- ASN1STOP

-- PUCCH-Config

The IE PUCCH-ConfigCommon and IE PUCCH-ConfigDedicated are used to specify the common and the UE specific PUCCH configuration respectively.

PUCCH-Config information elements

-- ASN1START
PUCCH-ConfigCommon ::= SEQUENCE {
 deltaPUCCH-Shift ENUMERATED {ds1, ds2, ds3},
 nRB-CQI INTEGER (0..98),
 nCS-AN INTEGER (0..7),
 n1PUCCH-AN INTEGER (0..2047)
}
PUCCH-ConfigDedicated ::= SEQUENCE {
 ackNackRepetition CHOICE{
 release NULL,
 setup SEQUENCE {
 repetitionFactor ENUMERATED {n2, n4, n6, spare1},
 n1PUCCH-AN-Rep INTEGER (0..2047)
 }
 },
 tdd-AckNackFeedbackMode ENUMERATED {bundling, multiplexing} OPTIONAL -- Cond TDD
}
PUCCH-ConfigDedicated-v1020 ::= SEQUENCE {
 pucch-Format-r10 CHOICE {
 format3-r10 SEQUENCE {
 n3PUCCH-AN-List-r10 SEQUENCE (SIZE (1..4)) OF INTEGER (0..549) OPTIONAL, -- Need ON twoAntennaPortActivatedPUCCH-Format3-r10 CHOICE {
}}
release NULL,
setup SEQUENCE {
 n3PUCCH-AN-ListP1-r10 SEQUENCE (SIZE (1..4)) OF INTEGER (0..549)
} OPTIONAL \(\text{-- Need ON}\)
},
channelSelection-r10 SEQUENCE {
 n1PUCCH-AN-CS-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 n1PUCCH-AN-CS-List-r10 SEQUENCE (SIZE (1..2)) OF N1PUCCH-AN-CS-r10
 } OPTIONAL \(\text{-- Need ON}\)
 }
},
twoAntennaPortActivatedPUCCH-Format1alb-r10 ENUMERATED {true} OPTIONAL, \(\text{-- Need OR}\)
simultaneousPUCCH-PUSCH-r10 ENUMERATED {true} OPTIONAL, \(\text{-- Need OR}\)
n1PUCCH-AN-RepP1-r10 INTEGER (0..2047) OPTIONAL \(\text{-- Need OR}\)
}
PUCCH-ConfigDedicated-v1130 ::= SEQUENCE {
 n1PUCCH-AN-CS-v1130 CHOICE {
 release NULL,
 setup SEQUENCE {
 n1PUCCH-AN-CS-ListP1-r11 SEQUENCE (SIZE (2..4)) OF INTEGER (0..2047)
 } OPTIONAL, \(\text{-- Need ON}\)
 }
},
nPUCCH-Param-r11 CHOICE {
 release NULL,
 setup SEQUENCE {
 nPUCCH-Identity-r11 INTEGER (0..503),
 n1PUCCH-AN-r11 INTEGER (0..2047)
 } OPTIONAL \(\text{-- Need ON}\)
}
PUCCH-ConfigDedicated-v12x0 ::= SEQUENCE {
 n1PUCCH-Param-r12 CHOICE {
 release NULL,
 setup SEQUENCE {
 n1PUCCH-AN-r12 INTEGER (0..2047)
 }
 }
},
n1PUCCH-AN-CS-r10 ::= SEQUENCE (SIZE (1..4)) OF INTEGER (0..2047)

\text{-- ASN1STOP}
PUCCH-Config field descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ackNackRepetition</td>
<td>Parameter indicates whether ACK/NACK repetition is configured, see TS 36.213 [23, 10.1].</td>
</tr>
<tr>
<td>deltaPUCCH-Shift</td>
<td>Parameter: $N_{\text{shift}}^{(\text{PUCCH})}$, see 36.211 [21, 5.4.1], where ds1 corresponds to value 1 ds2 to 2 etc.</td>
</tr>
<tr>
<td>n1PUCCH-AN</td>
<td>Parameter: $N_{\text{PUCCH}}^{(i)}$, see TS 36.213 [23, 10.1].</td>
</tr>
<tr>
<td>n1PUCCH-AN-r11</td>
<td>Indicates UE-specific PUCCH AN resource offset, see TS 36.213 [23, 10.1].</td>
</tr>
<tr>
<td>n1PUCCH-AN-r12</td>
<td>Indicates PUCCH format 1a/1b starting offset for the subframe set K2, see TS 36.213 [23, 10.1.3].</td>
</tr>
<tr>
<td>n1PUCCH-AN-CS-List</td>
<td>Parameter: $n_{\text{PUCCH}}^{(i)}$, for antenna port p_0 for PUCCH format 1b with channel selection, see TS 36.213 [23, 10.1.2.2.1, 10.1.3.2.1].</td>
</tr>
<tr>
<td>n1PUCCH-AN-CS-ListP1</td>
<td>Parameter: $n_{\text{PUCCH}}^{(i,p)}$, for antenna port p_1 for PUCCH format 1b with channel selection, see TS 36.213 [23, 10.1]. E-UTRAN configures this field only when $\text{pucch-Format}=\text{channelSelection}$.</td>
</tr>
<tr>
<td>n1PUCCH-AN-Rep, n1PUCCH-AN-RepP1</td>
<td>Parameter: $n_{\text{PUCCH,ANRep}}^{(i,p)}$, for antenna port p_0 and for antenna port p_1 respectively, see TS 36.213 [23, 10.1].</td>
</tr>
<tr>
<td>n3PUCCH-AN-List, n3PUCCH-AN-ListP1</td>
<td>Parameter: $n_{\text{PUCCH}}^{(3,p)}$, for antenna port p_0 and for antenna port p_1 respectively, see TS 36.213 [23, 10.1].</td>
</tr>
<tr>
<td>nCS-An</td>
<td>Parameter: $N_{\text{cs}}^{(i)}$, see TS 36.211 [21, 5.4].</td>
</tr>
<tr>
<td>nPUCCH-Identity</td>
<td>Parameter: $n_{\text{PUCCH}}^{(ID)}$, see TS 36.211 [21, 5.5.1.5].</td>
</tr>
<tr>
<td>nRB-CQI</td>
<td>Parameter: $N_{\text{RB}}^{(\text{CQI})}$, see TS 36.211 [21, 5.4].</td>
</tr>
<tr>
<td>pucch-Format</td>
<td>Parameter indicates one of the PUCCH formats for transmission of HARQ-ACK, see TS 36.213 [23, 10.1]. For TDD, if the UE is configured with PCell only, the channelSelection indicates the transmission of HARQ-ACK multiplexing as defined in Tables 10.1.3-5, 10.1.3-6, and 10.1.3-7 in TS 36.213 [23] for PUCCH, and in 7.3 in TS 36.213 [23] for PUSCH.</td>
</tr>
<tr>
<td>repetitionFactor</td>
<td>Parameter $N_{\text{ANRep}}^{(n)}$, see TS 36.213 [23, 10.1] where n_2 corresponds to repetition factor 2, n_4 to 4.</td>
</tr>
<tr>
<td>simultaneousPUCCH-PUSCH</td>
<td>Parameter indicates whether simultaneous PUCCH and PUSCH transmissions is configured, see TS 36.213 [23, 10.1 and 5.1.1]. E-UTRAN configures this field, only when the $\text{nonContiguousUL-RA-WithinCC-Info}$ is set to supported in the band on which PCell is configured.</td>
</tr>
<tr>
<td>tdd-AckNackFeedbackMode</td>
<td>Parameter indicates one of the TDD ACK/NACK feedback modes used, see TS 36.213 [23, 7.3 and 10.1.3]. The value bundling corresponds to use of ACK/NACK bundling whereas, the value multiplexing corresponds to ACK/NACK multiplexing as defined in Tables 10.1.3-2, 10.1.3-3, and 10.1.3-4 in TS 36.213 [23]. The same value applies to both ACK/NACK feedback modes on PUCCH as well as on PUSCH.</td>
</tr>
<tr>
<td>twoAntennaPortActivatedPUCCH-Format1a1b</td>
<td>Indicates whether two antenna ports are configured for PUCCH format 1a/1b for HARQ-ACK, see TS 36.213 [23, 10.1]. The field also applies for PUCCH format 1a/1b transmission when format3 is configured, see TS 36.213 [23, 10.1.2.2.2, 10.1.3.2.2].</td>
</tr>
<tr>
<td>twoAntennaPortActivatedPUCCH-Format3</td>
<td>Indicates whether two antenna ports are configured for PUCCH format 3 for HARQ-ACK, see TS 36.213 [23, 10.1].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>The field is mandatory present for TDD if the pucch-Format is not present. If the pucch-Format is present, the field is not present and the UE shall delete any existing value for this field. It is not present for FDD and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>
-- PUSCH-Config

The IE PUSCH-ConfigCommon is used to specify the common PUSCH configuration and the reference signal configuration for PUSCH and PUCCH. The IE PUSCH-ConfigDedicated is used to specify the UE specific PUSCH configuration.

PUSCH-Config information element

```asn1
PUSCH-ConfigCommon ::= SEQUENCE {
  pusch-ConfigBasic    SEQUENCE {
    n-SB        INTEGER (1..4),
    hoppingMode       ENUMERATED {interSubFrame, intraAndInterSubFrame},
    pusch-HoppingOffset     INTEGER (0..98),
    enable64QAM       BOOLEAN
  },
  ul-ReferenceSignalsPUSCH   UL-ReferenceSignalsPUSCH
}

PUSCH-ConfigDedicated ::= SEQUENCE {
  betaOffset-ACK-Index    INTEGER (0..15),
  betaOffset-RI-Index     INTEGER (0..15),
  betaOffset-CQI-Index    INTEGER (0..15)
}

PUSCH-ConfigDedicated-v1020 ::= SEQUENCE {
  betaOffsetMC-r10     SEQUENCE {
    betaOffset-ACK-Index-MC-r10   INTEGER (0..15),
    betaOffset-RI-Index-MC-r10   INTEGER (0..15),
    betaOffset-CQI-Index-MC-r10   INTEGER (0..15)
  }                OPTIONAL, -- Need OR
  groupHoppingDisabled-r10   ENUMERATED {true}     OPTIONAL, -- Need OR
  dmrs-WithOCC-Activated-r10 ENUMERATED {true}     OPTIONAL -- Need OR
}

PUSCH-ConfigDedicated-v1130 ::=  SEQUENCE {
  pusch-DMRS-r11      CHOICE {
    release        NULL,
    setup        SEQUENCE {
      nPUSCH-Identity-r11     INTEGER (0..509),
      nDMRS-CSH-Identity-r11    INTEGER (0..509)
    }
  }
}

PUSCH-ConfigDedicated-v12x0 ::=   SEQUENCE {
  uciOnPUSCH    CHOICE {
    release     NULL,
    setup     SEQUENCE {
      betaOffset-ACK-Index-SubframeSet2-r12    INTEGER (0..15),
      betaOffset-RI-Index-SubframeSet2-r12    INTEGER (0..15),
      betaOffset-CQI-Index-SubframeSet2-r12    INTEGER (0..15),
      betaOffsetMC-r12     SEQUENCE {
        betaOffset-ACK-Index-MC-SubframeSet2-r12   INTEGER (0..15),
        betaOffset-RI-Index-MC-SubframeSet2-r12   INTEGER (0..15),
        betaOffset-CQI-Index-MC-SubframeSet2-r12   INTEGER (0..15)
      }                OPTIONAL -- Need OR
    }
  }
}

PUSCH-ConfigDedicatedSCell-r10 ::=  SEQUENCE {
  groupHoppingDisabled-r10    ENUMERATED {true}    OPTIONAL, -- Need OR
  dmrs-WithOCC-Activated-r10    ENUMERATED {true}    OPTIONAL -- Need OR
}

UL-ReferenceSignalsPUSCH ::=  SEQUENCE {
  groupHoppingEnabled       BOOLEAN,
  groupAssignmentPUSCH     INTEGER (0..29),
  sequenceHoppingEnabled   BOOLEAN,
  cyclicShift              INTEGER (0..7)
}
```

-- ASN1STOP
PUSCH-Config field descriptions

betaOffset-ACK-Index, betaOffset-ACK-Index-MC

Parameter: $I^{\text{HARQ-ACK}}_{\text{offset}}$, for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-1]. One value applies for all serving cells with an uplink and not configured with uplink power control subframe sets, and the same value applies for subframe set 1 of all serving cells with an uplink and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell).

betaOffset-ACK-Index-SubframeSet2, betaOffset-ACK-Index-MC-SubframeSet2

Parameter: $I^{\text{HARQ-ACK}}_{\text{offset}}$, for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-1]. One value applies for subframe set 2 of all serving cells with an uplink and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell configured with uplink power control subframe sets).

betaOffset-CQI-Index, betaOffset-CQI-Index-MC

Parameter: $I^{\text{CQI}}_{\text{offset}}$, for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-3]. One value applies for all serving cells with an uplink and not configured with uplink power control subframe sets, and the same value applies for subframe set 1 of all serving cells with an uplink and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell).

betaOffset-CQI-Index-SubframeSet2, betaOffset-CQI-Index-MC-SubframeSet2

Parameter: $I^{\text{CQI}}_{\text{offset}}$, for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-3]. One value applies for subframe set 2 of all serving cells with an uplink and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell configured with uplink power control subframe sets).

betaOffset-RI-Index, betaOffset-RI-Index-MC

Parameter: $I^{\text{RI}}_{\text{offset}}$, for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-2]. One value applies for all serving cells with an uplink and not configured with uplink power control subframe sets, and the same value applies for subframe set 1 of all serving cells with an uplink and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell).

betaOffset-RI-Index-SubframeSet2, betaOffset-RI-Index-MC-SubframeSet2

Parameter: $I^{\text{RI}}_{\text{offset}}$, for single- and multiple-codeword respectively, see TS 36.213 [23, Table 8.6.3-2]. One value applies for subframe set 2 of all serving cells with an uplink and configured with uplink power control subframe sets (the associated functionality is common i.e. not performed independently for each cell configured with uplink power control subframe sets).

cyclicShift

Parameters: cyclicShift, see TS 36.211 [21, Table 5.5.2.1.1-2].

dmrs-WithOCC-Activated

Parameter: Activate-DMRS-with OCC, see TS 36.211 [21, 5.5.2.1].

enable64QAM

See TS 36.213 [23, 8.6.1]. TRUE indicates that 64QAM is allowed while FALSE indicates that 64QAM is not allowed.

groupAssignmentPUSCH

Parameter: ΔSS See TS 36.211 [21, 5.5.1.3].

groupHoppingDisabled

Parameter: Disable-sequence-group-hopping, see TS 36.211 [21, 5.5.1.3].

groupHoppingEnabled

Parameter: Group-hopping-enabled, see TS 36.211 [21, 5.5.1.3].

hoppingMode

Parameter: Hopping-mode, see TS 36.211 [21, 5.3.4].

nDMRS-CSH-Identity

Parameter: $N^{\text{DMRS}}_{\text{ID}}$, see TS 36.211 [21, 5.5.2.1.1].

nPUSCH-Identity

Parameter: $N^{\text{PUSCH}}_{\text{ID}}$, see TS 36.211 [21, 5.5.1.5].

n-SB

Parameter: Nsb see TS 36.211 [21, 5.3.4].

pusch-hoppingOffset

Parameter: $N^{\text{RB}}_{\text{HO}}$, see TS 36.211 [21, 5.3.4].

sequenceHoppingEnabled

Parameter: Sequence-hopping-enabled, see TS 36.211 [21, 5.5.1.4].

ul-ReferenceSignalsPUSCH

Used to specify parameters needed for the transmission on PUSCH (or PUCCH).
The IE RACH-ConfigCommon is used to specify the generic random access parameters.

RACH-ConfigCommon information element

```asn1
RACH-ConfigCommon ::= SEQUENCE {
  preambleInfo
    SEQUENCE {
      numberOfRA-Preambles ENUMERATED {
        n4, n8, n12, n16 ,n20, n24, n28,
        n32, n36, n40, n44, n48, n52, n56,
        n60, n64},
      preamblesGroupAConfig
        SEQUENCE {
          sizeOfRA-PreamblesGroupA ENUMERATED {
            n4, n8, n12, n16 ,n20, n24, n28,
            n32, n36, n40, n44, n48, n52, n56,
            n60},
          messageSizeGroupA ENUMERATED {b56, b144, b208, b256},
          messagePowerOffsetGroupB ENUMERATED {
            minusinfinity, dB0, dB5, dB8, dB10, dB12, dB15, dB18},
          ... OPTIONAL -- Need OP
        },
      powerRampingParameters PowerRampingParameters,
      ra-SupervisionInfo
        SEQUENCE {
          preambleTransMax PreambleTransMax,
          ra-ResponseWindowSize ENUMERATED {
            sf2, sf3, sf4, sf5, sf6, sf7,
            sf8, sf10},
          mac-ContentionResolutionTimer ENUMERATED {
            sf8, sf16, sf24, sf32, sf40, sf48,
            sf56, sf64}
        },
      maxHARQ-Msg3Tx INTEGER (1..8),
      ...}

RACH-ConfigCommon-v12xy ::= SEQUENCE {
  txFailParams-r12 SEQUENCE {
    connEstFailCount-r12 ENUMERATED {n1, n2, n3, n4},
    connEstFailOffsetValidity-r12 ENUMERATED {s30, s60, s120, s240,
      s300, s420, s600, s900},
    connEstFailOffset-r12 INTEGER (0..15) OPTIONAL -- Need OP
  }
}

RACH-ConfigCommonSCell-r11 ::= SEQUENCE {
  powerRampingParameters-r11 PowerRampingParameters,
  ra-SupervisionInfo-r11
    SEQUENCE {
      preambleTransMax-r11 PreambleTransMax
    },
  ...}

PowerRampingParameters ::= SEQUENCE {
  powerRampingStep ENUMERATED {dB0, dB2,dB4, dB6},
  preambleInitialReceivedTargetPower ENUMERATED {
    dBm-120, dBm-118, dBm-116, dBm-114, dBm-112, dBm-110, dBm-108, dBm-106, dBm-104, dBm-102, dBm-100, dBm-98, dBm-96, dBm-94, dBm-92, dBm-90}
}

PreambleTransMax ::= ENUMERATED {
  n3, n4, n5, n6, n7, n8, n10, n20, n50, n100, n200}
```
RACH-ConfigCommon field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connEstFailCount</td>
<td>Number of times that the UE detects T300 expiry on the same cell before applying connEstFailOffset.</td>
</tr>
<tr>
<td>connEstFailOffset</td>
<td>Parameter “QoffsetTemp” in TS 36.304 [4]. If the field is not present the value of infinity shall be used for “QoffsetTemp”.</td>
</tr>
<tr>
<td>connEstFailOffsetValidity</td>
<td>Amount of time that the UE applies connEstFailOffset before removing the offset from evaluation of the cell. Value s30 corresponds to 30 seconds, s60 corresponds to 60 seconds, and so on.</td>
</tr>
<tr>
<td>mac-ContentionResolutionTimer</td>
<td>Timer for contention resolution in TS 36.321 [6]. Value in subframes. Value sf8 corresponds to 8 subframes, sf16 corresponds to 16 subframes and so on.</td>
</tr>
<tr>
<td>maxHARQ-Msg3Tx</td>
<td>Maximum number of Msg3 HARQ transmissions in TS 36.321 [6], used for contention based random access. Value is an integer.</td>
</tr>
<tr>
<td>connEstFailOffsetValidity</td>
<td>Parameter “QoffsetTemp” in TS 36.304 [4]. If the field is not present the value of infinity shall be used for “QoffsetTemp”.</td>
</tr>
<tr>
<td>messagePowerOffsetGroupB</td>
<td>Threshold for preamble selection in TS 36.321 [6]. Value in dB. Value minusinfinity corresponds to –infinity. Value dB0 corresponds to 0 dB, dB5 corresponds to 5 dB and so on.</td>
</tr>
<tr>
<td>messageSizeGroupA</td>
<td>Threshold for preamble selection in TS 36.321 [6]. Value in bits. Value b56 corresponds to 56 bits, b144 corresponds to 144 bits and so on.</td>
</tr>
<tr>
<td>numberOfRA-Preambles</td>
<td>Number of non-dedicated random access preambles in TS 36.321 [6]. Value is an integer. Value n4 corresponds to 4, n8 corresponds to 8 and so on.</td>
</tr>
<tr>
<td>powerRampingStep</td>
<td>Power ramping factor in TS 36.321 [6]. Value in dB. Value dB0 corresponds to 0 dB, dB2 corresponds to 2 dB and so on.</td>
</tr>
<tr>
<td>preambleInitialReceivedTargetPower</td>
<td>Initial preamble power in TS 36.321 [6]. Value in dBm. Value dBm-120 corresponds to -120 dBm, dBm-118 corresponds to -118 dBm and so on.</td>
</tr>
<tr>
<td>preambleTransMax</td>
<td>Maximum number of preamble transmission in TS 36.321 [6]. Value is an integer. Value n3 corresponds to 3, n4 corresponds to 4 and so on.</td>
</tr>
<tr>
<td>ra-ResponseWindowSize</td>
<td>Duration of the RA response window in TS 36.321 [6]. Value in subframes. Value sf2 corresponds to 2 subframes, sf3 corresponds to 3 subframes and so on. The same value applies for each serving cell (although the associated functionality is performed independently for each cell).</td>
</tr>
<tr>
<td>sizeOfRA-PreamblesGroupA</td>
<td>Size of the random access preambles group A in TS 36.321 [6]. Value is an integer. Value n4 corresponds to 4, n8 corresponds to 8 and so on.</td>
</tr>
</tbody>
</table>

RACH-ConfigDedicated

The IE RACH-ConfigDedicated is used to specify the dedicated random access parameters.

RACH-ConfigDedicated information element

```asn1
RACH-ConfigDedicated ::= SEQUENCE {
  ra-PreambleIndex        INTEGER (0..63),
  ra-PRACH-MaskIndex      INTEGER (0..15)
}
```

RACH-ConfigDedicated field descriptions

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ra-PRACH-MaskIndex</td>
<td>Explicitly signalled PRACH Mask Index for RA Resource selection in TS 36.321 [6].</td>
</tr>
</tbody>
</table>
RadioResourceConfigCommon

The IE RadioResourceConfigCommonSIB and IE RadioResourceConfigCommon are used to specify common radio resource configurations in the system information and in the mobility control information, respectively, e.g., the random access parameters and the static physical layer parameters.

RadioResourceConfigCommon information element

```asn1
RadioResourceConfigCommonSIB ::= SEQUENCE {
  rach-ConfigCommon     RACH-ConfigCommon,
  bch-Config       BCCH-Config,
  pcch-Config       PCCH-Config,
  prach-Config     PRACH-ConfigSIB,
  pdsch-ConfigCommon     PDSCH-ConfigCommon,
  pucch-ConfigCommon     PUCCH-ConfigCommon,
  soundingRS-UL-ConfigCommon   SoundingRS-UL-ConfigCommon,
  ul-CyclicPrefixLength    UL-CyclicPrefixLength,
  ...
};

RadioResourceConfigCommon ::=  SEQUENCE {
  rach-ConfigCommon     RACH-ConfigCommon     OPTIONAL, -- Need ON
  prach-Config      PRACH-Config,
  pdsch-ConfigCommon     PDSCH-ConfigCommon     OPTIONAL, -- Need ON
  phich-Config      PHICH-Config      OPTIONAL, -- Need ON
  pucch-ConfigCommon     PUCCH-ConfigCommon     OPTIONAL, -- Need ON
  soundingRS-UL-ConfigCommon   SoundingRS-UL-ConfigCommon   OPTIONAL, -- Need ON
  uplinkPowerControlCommon   UplinkPowerControlCommon   OPTIONAL, -- Need ON
  antennaInfoCommon     AntennaInfoCommon   OPTIONAL, -- Need ON
  p-Max        P-Max        OPTIONAL, -- Need ON
  tdd-Config       TDD-Config       OPTIONAL -- Cond TDD
  ul-CyclicPrefixLength    UL-CyclicPrefixLength,
  ...
};

RadioResourceConfigCommonSCell-r10 ::= SEQUENCE {
  -- DL configuration as well as configuration applicable for DL and UL
  nonUL-Configuration-r10     SEQUENCE {
    -- 1: Cell characteristics
    dl-Bandwidth-r10      ENUMERATED {n6, n15, n25, n50, n75, n100},
    -- 2: Physical configuration, general
    antennaInfoCommon-r10     AntennaInfoCommon,
    mbsfn-SubframeConfigList-r10   MBSFN-SubframeConfigList OPTIONAL, -- Need OR
    -- 3: Physical configuration, control
    phich-Config-r10      PHICH-Config,
    -- 4: Physical configuration, physical channels
    pdsch-ConfigCommon-r10     PDSCH-ConfigCommon,
    tdd-Config-r10      TDD-Config     OPTIONAL -- Cond TDDSCell
  },
  -- UL configuration
  ul-Configuration-r10      SEQUENCE {
    ul-FreqInfo-r10      SEQUENCE {
      ul-CarrierFreq-r10     ARFCN-ValueEUTRA   OPTIONAL, -- Need OP
      ul-Bandwidth-r10     ENUMERATED {n6, n15, n25, n50, n75, n100} OPTIONAL, -- Need OP
      additionalSpectrumEmissionSCell-r10  AdditionalSpectrumEmission
    },
    p-Max-r10       P-Max        OPTIONAL, -- Need OP
    uplinkPowerControlCommonSCell-r10   UplinkPowerControlCommonSCell-r10,
    -- A special version of IE UplinkPowerControlCommon may be introduced
    -- 3: Physical configuration, control
    soundingRS-UL-ConfigCommon-r10     SoundingRS-UL-ConfigCommon,
  }
}```
RadioResourceConfigCommon field descriptions

additionalSpectrumEmissionSCell
The UE requirements related to IE AdditionalSpectrumEmissionSCell are defined in TS 36.101 [42].

defaultPagingCycle
Default paging cycle, used to derive ‘T’ in TS 36.304 [4]. Value rf32 corresponds to 32 radio frames, rf64 corresponds to 64 radio frames and so on.

modificationPeriodCoeff
Actual modification period, expressed in number of radio frames= modificationPeriodCoeff * defaultPagingCycle. n2 corresponds to value 2, n4 corresponds to value 4, n8 corresponds to value 8 and n16 corresponds to value 16.

nB
Parameter: nB is used as one of parameters to derive the Paging Frame and Paging Occasion according to TS 36.304 [4]. Value in multiples of ‘T’ as defined in TS 36.304 [4]. A value of fourT corresponds to 4 * T, a value of twoT corresponds to 2 * T and so on.

p-Max
Power to be used in the target cell. If absent the UE applies the maximum power according to the UE capability.

ul-Bandwidth
Parameter: transmission bandwidth configuration, NRB, in uplink, see TS 36.101 [42, table 5.6-1]. Value n6 corresponds to 6 resource blocks, n15 to 15 resource blocks and so on. If for FDD this parameter is absent, the uplink bandwidth is equal to the downlink bandwidth. For TDD this parameter is absent and it is equal to the downlink bandwidth.

ul-CarrierFreq
For FDD: If absent, the (default) value determined from the default TX-RX frequency separation defined in TS 36.101 [42, table 5.7.3-1] applies.
For TDD: This parameter is absent and it is equal to the downlink frequency.

UL-CyclicPrefixLength
Parameter: Uplink cyclic prefix length see 36.211 [21, 5.2.1] where len1 corresponds to normal cyclic prefix and len2 corresponds to extended cyclic prefix.
Conditional presence | Explanation
--- | ---
**TDD** | The field is optional for TDD. Need ON; it is not present for FDD and the UE shall delete any existing value for this field.

**TDD2** | If tdd-Config-r10 is present, the field is optional, Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.

**TDD3** | If tdd-Config is present, the field is optional, Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.

**TDD-OR-NoR11** | If prach-ConfigSCell-r11 is absent, the field is optional for TDD. Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.

**TDDSCell** | This field is mandatory present for TDD; it is not present for FDD and the UE shall delete any existing value for this field.

**UL** | If the SCell is part of the STAG and if ul-Configuration is included, the field is optional. Need OR. Otherwise the field is not present and the UE shall delete any existing value for this field.

---

**RadioResourceConfigDedicated**

The IE *RadioResourceConfigDedicated* is used to setup/modify/release RBs, to modify the MAC main configuration, to modify the SPS configuration and to modify dedicated physical configuration.

**RadioResourceConfigDedicated** information element

```asn1
RadioResourceConfigDedicated ::= SEQUENCE {
 srb-ToAddModList SRB-ToAddModList OPTIONAL, -- Cond HO-Conn
 drb-ToAddModList DRB-ToAddModList OPTIONAL, -- Cond HO-
toEUTRA
 drb-ToReleaseList DRB-ToReleaseList OPTIONAL, -- Need ON
 mac-MainConfig CHOICE {
 explicitValue MAC-MainConfig,
 defaultValue NULL
 } OPTIONAL, -- Cond HO-
toEUTRA2
 sps-Config SPS-Config OPTIONAL, -- Need ON
 physicalConfigDedicated PhysicalConfigDedicated OPTIONAL, -- Need ON
 ..., ''
[[rlf-TimersAndConstants-r9 RLF-TimersAndConstants-r9 OPTIONAL -- Need ON]],
[[measSubframePatternPCell-r10 MeasSubframePatternPCell-r10 OPTIONAL -- Need ON]],
[[neighCellsCRS-Info-r11 NeighCellsCRS-Info-r11 OPTIONAL -- Need ON]]
}

RadioResourceConfigDedicatedSCell-r10 ::= SEQUENCE {
 -- UE specific configuration extensions applicable for an SCell
 physicalConfigDedicatedSCell-r10 PhysicalConfigDedicatedSCell-r10 OPTIONAL, -- Need ON
 ..., ''
[[mac-MainConfigSCell-r11 MAC-MainConfigSCell-r11 OPTIONAL -- Cond SCellAdd]]
}

SRB-ToAddModList ::= SEQUENCE (SIZE (1..2)) OF SRB-ToAddMod

SRB-ToAddMod ::= SEQUENCE {
 srb-Identity INTEGER (1..2),
 rlc-Config CHOICE {
 explicitValue RLC-Config,
 defaultValue NULL
 } OPTIONAL, -- Cond Setup
 logicalChannelConfig CHOICE {
 explicitValue LogicalChannelConfig,
 defaultValue NULL
 } OPTIONAL, -- Cond Setup
 ...
}

DRB-ToAddModList ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-ToAddMod

DRB-ToAddMod ::= SEQUENCE {
 ...,
}
RadioResourceConfigDedicated field descriptions

logicalChannelConfig
For SRBs a choice is used to indicate whether the logical channel configuration is signalled explicitly or set to the default logical channel configuration for SRB1 as specified in 9.2.1.1 or for SRB2 as specified in 9.2.1.2.

logicalChannelIdentity
The logical channel identity for both UL and DL.

mac-MainConfig
Although the ASN.1 includes a choice that is used to indicate whether the mac-MainConfig is signalled explicitly or set to the default MAC main configuration as specified in 9.2.2, EUTRAN does not apply "defaultValue".

measSubframePatternPCell
Time domain measurement resource restriction pattern for the PCell measurements (RSRP, RSRQ and the radio link monitoring).

neighCellsCRS-Info
This field contains assistance information, concerning the primary frequency, used by the UE to mitigate interference from CRS while performing RRM/RLM/CSI1 measurement or data demodulation. When the received CRS assistance information is for a cell with CRS colliding with that of the CRS of the cell to measure, the UE may use the CRS assistance information to mitigate CRS interference (as specified in TS 36.101 [42]) on the subframes indicated by measSubframePatternPCell, measSubframePatternConfigNeigh and csi-MeasSubframeSet1. Furthermore, the UE may use CRS assistance information to mitigate CRS interference from the cells in the IE for the demodulation purpose as specified in TS 36.101 [42].

physicalConfigDedicated
The default dedicated physical configuration is specified in 9.2.4.

rlc-Config
For SRBs a choice is used to indicate whether the RLC configuration is signalled explicitly or set to the values defined in the default RLC configuration for SRB1 in 9.2.1.1 or for SRB2 in 9.2.1.2. RLC AM is the only applicable RLC mode for SRB1 and SRB2. E-UTRAN does not reconfigure the RLC mode of DRBs except when a full configuration option is used, and may reconfigure the UM RLC SN field size and the AM RLC LI field size only upon handover within E-UTRA or upon the first reconfiguration after RRC connection re-establishment.

sps-Config
The default SPS configuration is specified in 9.2.3. Except for handover or releasing SPS, E-UTRAN does not reconfigure sps-Config when there is a configured downlink assignment or a configured uplink grant (see 36.321 [6]).

srb-Identity
Value 1 is applicable for SRB1 only.
Value 2 is applicable for SRB2 only.
<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB-Setup</td>
<td>The field is mandatory present if the corresponding DRB is being set up; otherwise it is not present.</td>
</tr>
<tr>
<td>HO-Conn</td>
<td>The field is mandatory present in case of handover to E-UTRA or when the <code>fullConfig</code> is included in the <code>RRCConnectionReconfiguration</code> message or in case of RRC connection establishment; otherwise the field is optionally present, need ON. Upon connection establishment/re-establishment only SRB1 is applicable.</td>
</tr>
<tr>
<td>HO-toEUTRA</td>
<td>The field is mandatory present in case of handover to E-UTRA or when the <code>fullConfig</code> is included in the <code>RRCConnectionReconfiguration</code> message; in case of RRC connection establishment and RRC connection re-establishment the field is not present; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>HO-toEUTRA2</td>
<td>The field is mandatory present in case of handover to E-UTRA or when the <code>fullConfig</code> is included in the <code>RRCConnectionReconfiguration</code> message; in case of RRC connection establishment and RRC connection re-establishment the field is not present; otherwise the field is optionally present, need ON.</td>
</tr>
<tr>
<td>PDCP</td>
<td>The field is mandatory present if the corresponding DRB is being setup; the field is optionally present, need ON, upon handover within E-UTRA and upon the first reconfiguration after re-establishment but in both these cases only when fullConfig is not included in the RRCConnectionReconfiguration message; otherwise it is not present.</td>
</tr>
<tr>
<td>SCellAdd</td>
<td>The field is optionally present, need ON, upon SCell addition; otherwise it is not present.</td>
</tr>
<tr>
<td>Setup</td>
<td>The field is mandatory present if the corresponding SRB/DRB is being setup; otherwise the field is optionally present, need ON.</td>
</tr>
</tbody>
</table>

RLC-Config

The IE `RLC-Config` is used to specify the RLC configuration of SRBs and DRBs.

RLC-Config information element

```asn1
-- ASN1START

RLC-Config ::= CHOICE {
  am                SEQUENCE {
    ul-AM-RLC       UL-AM-RLC,
    dl-AM-RLC       DL-AM-RLC
  },
  um-Bi-Directional SEQUENCE {
    ul-UM-RLC       UL-UM-RLC,
    dl-UM-RLC       DL-UM-RLC
  },
  um-Uni-Directional-UL  SEQUENCE {
    ul-UM-RLC       UL-UM-RLC
  },
  um-Uni-Directional-DL  SEQUENCE {
    dl-UM-RLC       DL-UM-RLC
  },
  ..., am-v12xy       SEQUENCE {
    ul-AM-RLC-r12    UL-AM-RLC-r12,
    dl-AM-RLC-r12    DL-AM-RLC-r12
  },
  am-v12xy       SEQUENCE {
    ul-AM-RLC-r12    UL-AM-RLC-r12,
    dl-AM-RLC-r12    DL-AM-RLC-r12
  },
  ...}

UL-AM-RLC ::= SEQUENCE {
  t-PollRetransmit  T-PollRetransmit,
  pollPDU          PollPDU,
  pollByte         PollByte,
  maxRetxThreshold ENUMERATED {
    t1, t2, t3, t4, t6, t8, t16, t32
  }
}

UL-AM-RLC-r12 ::= SEQUENCE {
  ul-AM-RLC          UL-AM-RLC,
  extended-RLC-LI-Field-r12 BOOLEAN
}

DL-AM-RLC ::= SEQUENCE {
  t-Reordering       T-Reordering,
  t-StatusProhibit   T-StatusProhibit
}

DL-AM-RLC-r12 ::= SEQUENCE {
  ...}

-- ASN1END
```
dl-AM-RLC-r12 ::= DL-AM-RLC, BOOLEAN
extended-RLC-LI-Field-r12

UL-UM-RLC ::= SEQUENCE {
 sn-FieldLength SN-FieldLength
}

DL-UM-RLC ::= SEQUENCE {
 sn-FieldLength SN-FieldLength,
 t-Reordering T-Reordering
}

SN-FieldLength ::= ENUMERATED {size5, size10}

T-PollRetransmit ::= ENUMERATED {
 m5, m10, m15, m20, m25, m30, m35,
 m40, m45, m50, m55, m60, m65, m70,
 m75, m80, m85, m90, m95, m100, m105,
 m110, m115, m120, m125, m130, m135,
 m140, m145, m150, m155, m160, m165,
 m170, m175, m180, m185, m190, m195,
 m200, m205, m210, m215, m220, m225,
 m230, m235, m240, m245, m250, m300,
 m350, m400, m450, m500, spare9, spare8,
 spare7, spare6, spare5, spare4, spare3,
 spare2, spare1}

PollPDU ::= ENUMERATED {
 p4, p8, p16, p32, p64, p128, p256, pInfinity}

PollByte ::= ENUMERATED {
 kB25, kB50, kB75, kB100, kB125, kB250, kB375,
 kB500, kB750, kB1000, kB1250, kB1500, kB2000,
 kB3000, kBinfinity, spare1}

T-Reordering ::= ENUMERATED {
 m0, m5, m10, m15, m20, m25, m30, m35,
 m40, m45, m50, m55, m60, m65, m70,
 m75, m80, m85, m90, m95, m100, m105,
 m110, m115, m120, m125, m130, m135,
 m140, m145, m150, m155, m160, m165,
 m170, m175, m180, m185, m190, m195,
 m200, m205, m210, m215, m220, m225,
 m230, m235, m240, m245, m250, m300,
 m350, m400, m450, m500, spare8, spare7,
 spare6, spare5, spare4, spare3, spare2,
 spare1}

T-StatusProhibit ::= ENUMERATED {
 m0, m5, m10, m15, m20, m25, m30, m35,
 m40, m45, m50, m55, m60, m65, m70,
 m75, m80, m85, m90, m95, m100, m105,
 m110, m115, m120, m125, m130, m135,
 m140, m145, m150, m155, m160, m165,
 m170, m175, m180, m185, m190, m195,
 m200, m205, m210, m215, m220, m225,
 m230, m235, m240, m245, m250, m300,
 m350, m400, m450, m500, spare8, spare7,
 spare6, spare5, spare4, spare3, spare2,
 spare1}

-- ASN1STOP
RLC-Config field descriptions

extended-RLC-LI-Field
Indicates the RLC LI field size. Value true means that 15 bit LI length shall be used, otherwise 11 bit LI length shall be used; see TS 36.322 [7].

maxRetxThreshold
Parameter for RLC AM in TS 36.322 [7]. Value t1 corresponds to 1 retransmission, t2 to 2 retransmissions and so on.

pollByte
Parameter for RLC AM in TS 36.322 [7]. Value kB25 corresponds to 25 kBytes, kB50 to 50 kBytes and so on. kBInfinity corresponds to an infinite amount of kBytes.

pollPDU
Parameter for RLC AM in TS 36.322 [7]. Value p4 corresponds to 4 PDUs, p8 to 8 PDUs and so on. pInfinity corresponds to an infinite number of PDUs.

sn-FieldLength
Indicates the UM RLC SN field size, see TS 36.322 [7], in bits. Value size5 means 5 bits, size10 means 10 bits.

t-PollRetransmit
Timer for RLC AM in TS 36.322 [7], in milliseconds. Value ms5 means 5ms, ms10 means 10ms and so on.

t-Reordering
Timer for reordering in TS 36.322 [7], in milliseconds. Value ms0 means 0ms, ms5 means 5ms and so on.

t-StatusProhibit
Timer for status reporting in TS 36.322 [7], in milliseconds. Value ms0 means 0ms, ms5 means 5ms and so on.

RLF-TimersAndConstants

The IE **RLF-TimersAndConstants** contains UE specific timers and constants applicable for UEs in **RRC_CONNECTED**.

RLF-TimersAndConstants information element

```asn1
RLF-TimersAndConstants-r9 ::=   CHOICE {
   release         NULL,
   setup         SEQUENCE {
      t301-r9        ENUMERATED {
                       ms100, ms200, ms300, ms400, ms600, ms1000, ms1500, ms2000),
      t310-r9        ENUMERATED {
                       ms0, ms50, ms100, ms500, ms1000, ms2000),
      n310-r9        ENUMERATED {
                       n1, n2, n3, n4, n6, n8, n10, n20),
      t311-r9        ENUMERATED {
                       ms1000, ms3000, ms5000, ms10000, ms15000, ms20000, ms30000),
      n311-r9        ENUMERATED {
                       n1, n2, n3, n4, n5, n6, n8, n10),
      ...                }
   }             }
}
```

RLF-TimersAndConstants field descriptions

n3xy
Constants are described in section 7.4. n1 corresponds with 1, n2 corresponds with 2 and so on.

t3xy
Timers are described in section 7.3. Value ms0 corresponds with 0 ms, ms50 corresponds with 50 ms and so on.

RN-SubframeConfig

The IE **RN-SubframeConfig** is used to specify the subframe configuration for an RN.

RN-SubframeConfig information element

```asn1
RN-SubframeConfig-r10 ::=  SEQUENCE {
```

ETSI
subframeConfigPattern-r10
subframeConfigPatternFDD-r10
subframeConfigPatternTDD-r10
)

rpdcch-Config-r10
 resourceAllocationType-r10
 resourceBlockAssignment-r10
 type01-r10
 nrb6-r10
 nrb15-r10
 nrb25-r10
 nrb50-r10
 nrb75-r10
 nrb100-r10
 },
 type2-r10
 nrb6-r10
 nrb15-r10
 nrb25-r10
 nrb50-r10
 nrb75-r10
 nrb100-r10
 ...
 },
 demodulationRS-r10
 interleaving-r10
 noInterleaving-r10
 },
 pdsch-Start-r10
 pucch-Config-r10
 tdd
 channelSelectionMultiplexingBundling
 n1PUCCH-AN-List-r10
 SEQUENCE (SIZE (1..4)) OF INTEGER (0..2047)
 },
 fallbackForFormat3
 n1PUCCH-AN-P0-r10
 n1PUCCH-AN-P1-r10
 INTEGER (0..2047)
 INTEGER (0..2047)
 },
 fdd
 n1PUCCH-AN-P0-r10
 n1PUCCH-AN-P1-r10
 INTEGER (0..2047)
 INTEGER (0..2047)
 }
 ...
}
OPTIONAL, -- Need ON
}
-- ASN1STOP
RN-SubframeConfig field descriptions

demodulationRS
Indicates which reference signals are used for R-PDCCH demodulation according to TS 36.216 [55, 7.4.1]. Value interleaving corresponds to cross-interleaving and value noInterleaving corresponds to no cross-interleaving according to TS 36.216 [55, 7.4.2 and 7.4.3].

n1PUCCH-AN-List
Parameter: \(n^{(l)}_{\text{PUCCH}} \), see TS 36.216, [55, 7.5.1]. This parameter is only applicable for TDD. Configures PUCCH HARQ-ACK resources if the RN is configured to use HARQ-ACK channel selection, HARQ-ACK multiplexing or HARQ-ACK bundling.

n1PUCCH-AN-P0, n1PUCCH-AN-P1
Parameter: \(n^{(l)}_{\text{PUCCH}} \) for antenna port P0 and for antenna port P1 respectively, see TS 36.216, [55, 7.5.1] for FDD and [55, 7.5.2] for TDD.

pdsch-Start
Parameter: DL-StartSymbol, see TS 36.216 [55, Table 5.4-1].

resourceAllocationType
Represents the resource allocation used: type 0, type 1 or type 2 according to TS 36.213 [23, 7.1.6]. Value type0 corresponds to type 0, value type1 corresponds to type 1, value type2Localized corresponds to type 2 with localized virtual resource blocks and value type2Distributed corresponds to type 2 with distributed virtual resource blocks.

resourceBlockAssignment
Indicates the resource block assignment bits according to TS 36.213 [23, 7.1.6]. Value type0 corresponds to type 0 and type 1, and the value type2 corresponds to type 2. Value nrb6 corresponds to a downlink system bandwidth of 6 resource blocks, value nrb15 corresponds to a downlink system bandwidth of 15 resource blocks, and so on.

subframeConfigPatternFDD
Parameter: SubframeConfigurationFDD, see TS 36.216 [55, Table 5.2-1]. Defines the DL subframe configuration for eNB-to-RN transmission, i.e. those subframes in which the eNB may indicate downlink assignments for the RN. The radio frame in which the pattern starts (i.e. the radio frame in which the first bit of the subframeConfigPatternFDD corresponds to subframe #0) occurs when SFN mod 4 = 0.

subframeConfigPatternTDD
Parameter: SubframeConfigurationTDD, see TS 36.216 [55, Table 5.2-2]. Defines the DL and UL subframe configuration for eNB-RN transmission.

SchedulingRequestConfig

The IE SchedulingRequestConfig is used to specify the Scheduling Request related parameters

SchedulingRequestConfig information element

```
-- ASN1START
SchedulingRequestConfig ::= CHOICE {
  release          NULL,
  setup            SEQUENCE {
    sr-PUCCH-ResourceIndex    INTEGER (0..2047),
    sr-ConfigIndex      INTEGER (0..157),
    dsr-TransMax      ENUMERATED {
          n4, n8, n16, n32, n64, spare3, spare2, spare1}
  }
}
SchedulingRequestConfig-v1020 ::= SEQUENCE {
  sr-PUCCH-ResourceIndexP1-r10  INTEGER (0..2047) OPTIONAL -- Need OR
}
-- ASN1STOP
```
SchedulingRequestConfig field descriptions

dsr-TransMax
Parameter for SR transmission in TS 36.321 [6, 5.4.4]. The value n4 corresponds to 4 transmissions, n8 corresponds to 8 transmissions and so on.

sr-ConfigIndex
Parameter \(I_{sp} \). See TS 36.213 [23,10.1]. The values 156 and 157 are not applicable for Release 8.

sr-\(P_{\text{UCCH}} \)-ResourceIndex, sr-\(P_{\text{UCCH}} \)-ResourceIndexP1
Parameter: \(n_{(p)}^{(l,p)}_{\text{PUCCH.SRI}} \) for antenna port P0 and for antenna port P1 respectively, see TS 36.213 [23, 10.1]. E-UTRAN configures sr-\(P_{\text{UCCH}} \)-ResourceIndexP1 only if sr-\(P_{\text{UCCH}} \)-ResourceIndex is configured.

SoundingRS-UL-Config

The IE SoundingRS-UL-Config is used to specify the uplink Sounding RS configuration for periodic and aperiodic sounding.

SoundingRS-UL-Config information element

```asn1
SoundingRS-UL-ConfigCommon ::= CHOICE {
    release NULL,
    setup SEQUENCE {
        srs-BandwidthConfig ENUMERATED {bw0, bw1, bw2, bw3, bw4, bw5, bw6, bw7},
        srs-SubframeConfig ENUMERATED {
            sc0, sc1, sc2, sc3, sc4, sc5, sc6, sc7,
            sc8, sc9, sc10, sc11, sc12, sc13, sc14, sc15},
        ackNackRS-SimultaneousTransmission BOOLEAN,
        srs-MaxUpPts ENUMERATED (true) OPTIONAL -- Cond TDD
    }
}

SoundingRS-UL-ConfigDedicated ::= CHOICE{
    release NULL,
    setup SEQUENCE {
        srs-Bandwidth ENUMERATED {bw0, bw1, bw2, bw3},
        srs-HoppingBandwidth ENUMERATED {hbw0, hbw1, hbw2, hbw3},
        freqDomainPosition INTEGER (0..23),
        duration BOOLEAN,
        srs-ConfigIndex INTEGER (0..1023),
        transmissionComb INTEGER (0..1),
        cyclicShift ENUMERATED {cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7}
    }
}

SoundingRS-UL-ConfigDedicated-v1020 ::= SEQUENCE {
    srs-AntennaPort-r10 SRS-AntennaPort
}

SoundingRS-UL-ConfigDedicatedAperiodic-r10 ::= CHOICE{
    release NULL,
    setup SEQUENCE {
        srs-ConfigIndexAp-r10 INTEGER (0..31),
        srs-ConfigApDCI-Format4-r10 SEQUENCE (SIZE (1..3)) OF SRS-ConfigAp-r10 OPTIONAL,-- Need ON
        srs-ActivateAp-r10 CHOICE {
            release NULL,
            setup SEQUENCE {
                srs-ConfigApDCI-Format0-r10 SRS-ConfigAp-r10,
                srs-ConfigApDCI-Format1a2b2c-r10 SRS-ConfigAp-r10,
                ...
            }
        }
    }
}

SRS-ConfigAp-r10 ::= SEQUENCE {
    srs-AntennaPortAp-r10 SRS-AntennaPort,
    srs-BandwidthAp-r10 ENUMERATED {bw0, bw1, bw2, bw3},
    freqDomainPositionAp-r10 INTEGER (0..23),
    transmissionCombAp-r10 INTEGER (0..1),
    cyclicShiftAp-r10 ENUMERATED {cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7}
}
```
SoundingRS-UL-Config field descriptions

ackNackSRS-SimultaneousTransmission
Parameter: Simultaneous-AN-and-SRS, see TS 36.213 [23, 8.2]. For SCells this field is not applicable and the UE shall ignore the value.

cyclicShift, cyclicShiftAp
Parameter: n_SRS for periodic and aperiodic sounding reference signal transmission respectively. See TS 36.211 [21, 5.5.3.1], where cs0 corresponds to 0 etc.

duration
Parameter: Duration for periodic sounding reference signal transmission. See TS 36.213 [21, 8.2]. FALSE corresponds to “single” and value TRUE to “indefinite”.

cyclicShift, cyclicShiftAp
Parameter: n_SRS for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, 5.5.3.2].

srs-AntennaPort, srs-AntennaPortAp
Indicates the number of antenna ports used for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, 5.5.3]. UE shall release srs-AntennaPort if SoundingRS-UL-ConfigDedicated is released.

srs-Bandwidth, srs-BandwidthAp
Parameter: B_SRS for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, tables 5.5.3.2-1, 5.5.3.2-2, 5.5.3.2-3 and 5.5.3.2-4].

srs-BandwidthConfig
Parameter: SRS Bandwidth Configuration. See TS 36.211, [21, table 5.5.3.2-1, 5.5.3.2-2, 5.5.3.2-3 and 5.5.3.2-4]. Actual configuration depends on UL bandwidth. bw0 corresponds to value 0, bw1 to value 1 and so on.

Parameters indicate the resource configurations for aperiodic sounding reference signal transmissions triggered by DCI formats 0, 1A, 2B, 2C, 4. See TS 36.213 [23, 8.2].

srs-ConfigIndex, srs-ConfigIndexAp

srs-HoppingBandwidth
Parameter: SRS hopping bandwidth \(b_{\text{hop}} \in \{0,1,2,3\} \) for periodic sounding reference signal transmission, see TS 36.211 [21, 5.5.3.2] where hbw0 corresponds to value 0, hbw1 to value 1 and so on.

srs-MaxUpPts
Parameter: srsMaxUpPts, see TS 36.211 [21, 5.5.3.2]. If this field is present, reconfiguration of \(n_{\text{SRS}}^{\text{max}} \) applies for UpPts, otherwise reconfiguration does not apply.

srs-SubframeConfig
Parameter: SRS SubframeConfiguration. See TS 36.211, [21, table 5.5.3.3-1] applies for FDD whereas TS 36.211, [21, table 5.5.3.3-2] applies for TDD. sc0 corresponds to value 0, sc1 to value 1 and so on.

transmissionComb, transmissionCombAp
Parameter: \(\bar{k}_{TC} \in \{0,1\} \) for periodic and aperiodic sounding reference signal transmission respectively, see TS 36.211 [21, 5.5.3.2].

Conditional presence

| TDD | This field is optional present for TDD, need OR; it is not present for FDD and the UE shall delete any existing value for this field. |

--- SPS-Config

The IE SPS-Config is used to specify the semi-persistent scheduling configuration.

SPS-Config information element

-- ASN1START

SPS-Config ::= SEQUENCE {
semiPersistSchedC-RNTI C-RNTI OPTIONAL, -- Need OR
sps-ConfigDL SPS-ConfigDL OPTIONAL, -- Need ON
sps-ConfigUL SPS-ConfigUL OPTIONAL -- Need ON
}

SPS-ConfigDL ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 semiPersistSchedIntervalDL ENUMERATED {
 sf10, sf20, sf32, sf40, sf64, sf80,
 sf128, sf160, sf320, sf640, spare6,
 spare5, spare4, spare3, spare2,
 spare1},
 numberOfConfSPS-Processes INTEGER (1..8),
 n1PUCCH-AN-PersistentList N1PUCCH-AN-PersistentList,
 },
 [twoAntennaPortActivated-r10 CHOICE {
 release NULL,
 setup SEQUENCE {
 n1PUCCH-AN-PersistentListP1-r10 N1PUCCH-AN-PersistentList
 }
 }]
}

SPS-ConfigUL ::= CHOICE {
 release NULL,
 setup SEQUENCE {
 semiPersistSchedIntervalUL ENUMERATED {
 sf10, sf20, sf32, sf40, sf64, sf80,
 sf128, sf160, sf320, sf640, spare6,
 spare5, spare4, spare3, spare2,
 spare1},
 implicitReleaseAfter ENUMERATED {e2, e3, e4, e8},
 p0-Persistent SEQUENCE {
 p0-NominalPUSCH-Persistent INTEGER (-126..24),
 p0-UE-PUSCH-Persistent INTEGER (-8..7)
 } OPTIONAL, -- Need OP
 twoIntervalsConfig ENUMERATED {true} OPTIONAL, -- Cond TDD
 },
 [p0-Persistent-SubframeSet2-r12 SEQUENCE {
 p0-NominalPUSCH-Persistent-SubframeSet2-r12 INTEGER (-126..24),
 p0-UE-PUSCH-Persistent-SubframeSet2-r12 INTEGER (-8..7)
 }]
 TwoSetsUL
}

N1PUCCH-AN-PersistentList ::= SEQUENCE (SIZE (1..4)) OF INTEGER (0..2047)

-- ASN1STOP
SPS-Config field descriptions

implicitReleaseAfter
Number of empty transmissions before implicit release, see TS 36.321 [6, 5.10.2]. Value e2 corresponds to 2 transmissions, e3 corresponds to 3 transmissions and so on.

n1PUCCH-AN-PersistentListP1
List of parameter: $n_1^{(1/p)}$ for antenna port P0 and for antenna port P1 respectively, see TS 36.213 [23, 10.1]. Field n1PUCCH-AN-PersistentListP1 is applicable only if the twoAntennaPortActivatedPUCCH-Format1a1b in PUCCH-ConfigDedicated-v1020 is set to true. Otherwise the field is not configured.

numberOfConfSPS-Processes
The number of configured HARQ processes for Semi-Persistent Scheduling, see TS 36.321 [6].

p0-NominalPUSCH-Persistent
Parameter: $P_{O,NOMINAL,PUSCH}(0)$. See TS 36.213 [23, 5.1.1.1], unit dBm step 1. This field is applicable for persistent scheduling, only. If choice setup is used and p0-Persistent is absent, apply the value of p0-NominalPUSCH for p0-NominalPUSCH-Persistent. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured.

p0-UE-PUSCH-Persistent
Parameter: $P_{O,UE,PUSCH}(0)$. See TS 36.213 [23, 5.1.1.1], unit dB. This field is applicable for persistent scheduling, only. If choice setup is used and p0-Persistent is absent, apply the value of p0-UE-PUSCH for p0-UE-PUSCH-Persistent. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured.

semiPersistSchedC-RNTI
Semi-persistent Scheduling C-RNTI, see TS 36.321 [6].

semiPersistSchedIntervalDL
Semi-persistent scheduling interval in downlink, see TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. For TDD, the UE shall round this parameter down to the nearest integer (of 10 sub-frames), e.g. sf10 corresponds to 10 sub-frames, sf32 corresponds to 30 sub-frames, sf128 corresponds to 120 sub-frames.

semiPersistSchedIntervalUL
Semi-persistent scheduling interval in uplink, see TS 36.321 [6]. Value in number of sub-frames. Value sf10 corresponds to 10 sub-frames, sf20 corresponds to 20 sub-frames and so on. For TDD, the UE shall round this parameter down to the nearest integer (of 10 sub-frames), e.g. sf10 corresponds to 10 sub-frames, sf32 corresponds to 30 sub-frames, sf128 corresponds to 120 sub-frames.

twoIntervalsConfig
Trigger of two-intervals-Semi-Persistent Scheduling in uplink. See TS 36.321 [6, 5.10]. If this field is present, two-intervals-SPS is enabled for uplink. Otherwise, two-intervals-SPS is disabled.

Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD</td>
<td>This field is optional present for TDD, need OR; it is not present for FDD and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>TwoSetsUL</td>
<td>The field is optional present, need ON, if the field tpc-SubframeSet-r12 is configured. Otherwise the field is not present.</td>
</tr>
</tbody>
</table>

TDD-Config

The IE TDD-Config is used to specify the TDD specific physical channel configuration.

TDD-Config information element

```
-- ASN1START
TDD-Config ::= SEQUENCE {
  subframeAssignment ENUMERATED {
    sa0, sa1, sa2, sa3, sa4, sa5, sa6},
  specialSubframePatterns ENUMERATED {
    ssp0, ssp1, ssp2, ssp3, ssp4,ssp5, ssp6, ssp7, ssp8}
}
TDD-Config-v1130 ::= SEQUENCE {
  specialSubframePatterns-v1130 ENUMERATED {ssp7,ssp9}
}
-- ASN1STOP
```
TDD-Config field descriptions

specialSubframePatterns
Indicates Configuration as in TS 36.211 [21, table 4.2-1] where ssp0 points to Configuration 0, ssp1 to Configuration 1 etc. Value ssp7 points to Configuration 7 for extended cyclic prefix and value ssp9 points to Configuration 9 for normal cyclic prefix. E-UTRAN signals ssp7 only when setting specialSubframePatterns (without suffix i.e. the version defined in REL-8) to ssp4. E-UTRAN signals value ssp9 only when setting specialSubframePatterns (without suffix) to ssp5. If specialSubframePatterns-v1130 is present, the UE shall ignore specialSubframePatterns (without suffix).

subframeAssignment
Indicates DL/UL subframe configuration where sa0 point to Configuration 0, sa1 to Configuration 1 etc. as specified in TS 36.211 [21, table 4.2-2]. E-UTRAN configures the same value for serving cells residing on same frequency band.

– TimeAlignmentTimer

The IE TimeAlignmentTimer is used to control how long the UE considers the serving cells belonging to the associated TAG to be uplink time aligned. Corresponds to the Timer for time alignment in TS 36.321 [6]. Value in number of sub-frames. Value sf500 corresponds to 500 sub-frames, sf750 corresponds to 750 sub-frames and so on.

TimeAlignmentTimer information element

```asn1
TimeAlignmentTimer ::= ENUMERATED {
    sf500, sf750, sf1280, sf1920, sf2560, sf5120, sf10240, infinity}
```

– TPC-PDCCH-Config

The IE TPC-PDCCH-Config is used to specify the RNTIs and indexes for PUCCH and PUSCH power control according to TS 36.212 [22]. The power control function can either be setup or released with the IE.

TPC-PDCCH-Config information element

```asn1
TPC-PDCCH-Config ::= CHOICE {
    release        NULL,
    setup        SEQUENCE {
        tpc-RNTI       BIT STRING (SIZE (16)),
        tpc-index       TPC-Index
    }
}

TPC-Index ::= CHOICE {
    indexOfFormat3       INTEGER (1..15),
    indexOfFormat3A       INTEGER (1..31)
}
```

TPC-PDCCH-Config field descriptions

indexOfFormat3
Index of N when DCI format 3 is used. See TS 36.212 [22, 5.3.3.1.6].

IndexOfFormat3A
Index of M when DCI format 3A is used. See TS 36.212 [22, 5.3.3.1.7].

tpc-Index
Index of N or M, see TS 36.212 [22, 5.3.3.1.6 and 5.3.3.1.7], where N or M is dependent on the used DCI format (i.e. format 3 or 3a).

tpc-RNTI
RNTI for power control using DCI format 3/3A, see TS 36.212 [22].
UplinkPowerControl

The IE UplinkPowerControlCommon and IE UplinkPowerControlDedicated are used to specify parameters for uplink power control in the system information and in the dedicated signalling, respectively.

UplinkPowerControl information elements

-- ASN1START

UplinkPowerControlCommon ::= SEQUENCE {
 p0-NominalPUSCH INTEGER (-126..24),
 alpha ENUMERATED {al0, al04, al05, al06, al07, al08, al09, a11},
 p0-NominalPUCCH INTEGER (-127...-96),
 deltaFList-PUCCH DeltaFList-PUCCH,
 deltaF-PreambleMsg3 INTEGER (-1..6)
}

UplinkPowerControlCommon-v1020 ::= SEQUENCE {
 deltaF-PUCCH-Format3-r10 ENUMERATED {deltaF-1, deltaF0, deltaF2, deltaF3, deltaF4, deltaF5, deltaF6, deltaF7},
 deltaF-PUCCH-Format1bCS-r10 ENUMERATED {deltaF1, deltaF2, spare2, spare1}
}

UplinkPowerControlCommonSCell-r10 ::= SEQUENCE {
 p0-NominalPUSCH-r10 INTEGER (-126..24),
 alpha-r10 ENUMERATED {al0, al04, al05, al06, al07, al08, al09, a11}
}

UplinkPowerControlCommonSCell-v1130 ::= SEQUENCE {
 deltaF-PreambleMsg3-r11 INTEGER (-1..6)
}

UplinkPowerControlDedicated ::= SEQUENCE {
 p0-UE-PUSCH INTEGER (-8..7),
 deltaMCS-Enabled ENUMERATED {en0, en1},
 accumulationEnabled BOOLEAN,
 p0-UE-PUCCH INTEGER (-8..7),
 pSRS-Offset FILTERCoefficient DEFAULT fc4
}

UplinkPowerControlDedicated-v1020 ::= SEQUENCE {
 deltaTxD-OffsetListPUCCH-r10 DeltaTxD-OffsetListPUCCH-r10 OPTIONAL, -- Need OR
 pSRS-OffsetAp-r10 INTEGER (0..15) OPTIONAL -- Need OR
}

UplinkPowerControlDedicated-v1130 ::= SEQUENCE {
 pSRS-Offset-v1130 INTEGER (16..31) OPTIONAL, -- Need OR
 pSRS-OffsetAp-v1130 INTEGER (16..31) OPTIONAL, -- Need OR
 deltaTxD-OffsetListPUCCH-v1130 DeltaTxD-OffsetListPUCCH-v1130 OPTIONAL -- Need OR
}

UplinkPowerControlDedicated-v12x0 ::= SEQUENCE {
 set2PowerControlParameter CHOICE {
 release NULL,
 setup SEQUENCE {
 tpc-SubframeSet-r12 BIT STRING (SIZE(10)),
 p0-NominalPUSCH-SubframeSet2-r12 INTEGER (-126..24),
 alpha-SubframeSet2-r12 ENUMERATED {a10, a104, a105, a106, a107, a108, a109, a11},
 p0-UE-PUSCH-SubframeSet2-r12 INTEGER (-8..7)
 }
 }
}

UplinkPowerControlDedicatedSCell-r10 ::= SEQUENCE {
 p0-UE-PUSCH-r10 INTEGER (-8..7),
 deltaMCS-Enabled-r10 ENUMERATED {en0, en1},
 accumulationEnabled-r10 BOOLEAN,
 pSRS-Offset-r10 INTEGER (0..15),
 pSRS-OffsetAp-r10 INTEGER (0..15) OPTIONAL, -- Need OR
 filterCoefficient-r10 FILTERCoefficient DEFAULT fc4,
 pathlossReferenceLinking-r10 ENUMERATED {pCell, sCell}
}

DeltaFList-PUCCH ::= SEQUENCE {
 deltaF-PUCCH-Format1 ENUMERATED {deltaF-2, deltaF0, deltaF2},
 ...
deltaF-PUCCH-Format1b ENUMERATED {deltaF1, deltaF3, deltaF5},
deltaF-PUCCH-Format2 ENUMERATED {deltaF-2, deltaF0, deltaF1, deltaF2},
deltaF-PUCCH-Format2a ENUMERATED {deltaF-2, deltaF0, deltaF2},
deltaF-PUCCH-Format2b ENUMERATED {deltaF-2, deltaF0, deltaF2}

DeltaTxD-OffsetListPUCCH-r10 ::= SEQUENCE {
 deltaTxD-OffsetPUCCH-Format1-r10 ENUMERATED {dB0, dB-2},
 deltaTxD-OffsetPUCCH-Format1a1b-r10 ENUMERATED {dB0, dB-2},
 deltaTxD-OffsetPUCCH-Format22a2b-r10 ENUMERATED {dB0, dB-2},
 deltaTxD-OffsetPUCCH-Format3-r10 ENUMERATED {dB0, dB-2},
 ...
}

DeltaTxD-OffsetListPUCCH-v1130 ::= SEQUENCE {
 deltaTxD-OffsetPUCCH-Format1bCS-r11 ENUMERATED {dB0, dB-1}
}

-- ASN1STOP
UplinkPowerControl field descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accumulationEnabled</td>
<td>Parameter: Accumulation-enabled, see TS 36.213 [23, 5.1.1.1]. TRUE corresponds to “enabled” whereas FALSE corresponds to “disabled”.</td>
</tr>
<tr>
<td>alpha</td>
<td>Parameter: See TS 36.213 [23, 5.1.1.1] where a0 corresponds to 0, a04 corresponds to value 0.4, a05 to 0.5, a06 to 0.6, a07 to 0.7, a08 to 0.8, a09 to 0.9 and a1 corresponds to 1. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured.</td>
</tr>
<tr>
<td>deltaF-PUCCH-FormatX</td>
<td>Parameter: ΔF_{PUCCH} for the PUCCH formats 1, 1b, 2, 2a, 2b, 3 and 1b with channel selection. See TS 36.213 [23, 5.1.2] where deltaF-2 corresponds to -2 dB, deltaF0 corresponds to 0 dB and so on.</td>
</tr>
<tr>
<td>deltaMCS-Enabled</td>
<td>Parameter: Ks See TS 36.213 [23, 5.1.1.1]. en0 corresponds to value 0 corresponding to state “disabled”. en1 corresponds to value 1 corresponding to “enabled”.</td>
</tr>
<tr>
<td>deltaPreambleMsg3</td>
<td>Parameter: $\Delta _{PREAMBLE _ Msg3}$ see TS 36.213 [23, 5.1.1.1]. Actual value = IE value * 2 [dB].</td>
</tr>
<tr>
<td>deltaTxn-OffsetPUCCH-FormatX</td>
<td>Parameter: $\Delta T_{x,n}$ for the PUCCH formats 1, 1a/1b, 1b with channel selection, 2/2a/2b and 3 when two antenna ports are configured for PUCCH transmission. See TS 36.213 [23, 5.1.2.1] where dB0 corresponds to 0 dB, dB-1 corresponds to -1 dB, dB-2 corresponds to -2 dB.</td>
</tr>
<tr>
<td>filterCoefficient</td>
<td>Specifies the filtering coefficient for RSRP measurements used to calculate path loss, as specified in TS 36.213 [23, 5.1.1.1]. The same filtering mechanism applies as for quantityConfig described in 5.5.3.2.</td>
</tr>
<tr>
<td>p0-NominalPUCCH</td>
<td>Parameter: $P_{O_NOMINAL_ PUCCH}$ See TS 36.213, 5.1.2.1, unit dB.</td>
</tr>
<tr>
<td>p0-NominalPUSCH</td>
<td>Parameter: $P_{O_NOMINAL_ PUSCH}$ See TS 36.213, 5.1.1.1, unit dB. This field is applicable for non-persistent scheduling only. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured.</td>
</tr>
<tr>
<td>p0-UE-PUCCH</td>
<td>Parameter: $P_{O_UE_PUCCH}$ See TS 36.213 [23, 5.1.2.1]. Unit dB</td>
</tr>
<tr>
<td>p0-UE-PUSCH</td>
<td>Parameter: $P_{O_UE_PUSCH}$ See TS 36.213 [23, 5.1.1.1], unit dB. This field is applicable for non-persistent scheduling only. This field applies for uplink power control subframe set 1 if uplink power control subframe sets are configured.</td>
</tr>
<tr>
<td>pathlossReferenceLinking</td>
<td>Indicates whether the UE shall apply as pathloss reference either the downlink of the PCell or of the SCell that corresponds with this uplink (i.e. according to the cellIdentification within the field sCellToAddMod). For SCells part of an STAG E-UTRAN sets the value to sCell.</td>
</tr>
<tr>
<td>pSRS-Offset, pSRS-OffsetAp</td>
<td>Parameter: $PSRS_OFFSET$ for periodic and aperiodic sounding reference signal transmission repectively. See TS 36.213 [23, 5.1.3.1]. For Ks=1.25, the actual parameter value is pSRS-Offset value – 3. For Ks=0, the actual parameter value is -10.5 + 1.5*pSRS-Offset value. If pSRS-Offset-v1130 is included, the UE ignores pSRS-Offset (i.e., without suffix). Likewise, if pSRS-OffsetAp-v1130 is included, the UE ignores pSRS-OffsetAp-v1130. For Ks=0, E-UTRAN does not set values larger than 26.</td>
</tr>
</tbody>
</table>

6.3.3 Security control information elements

- **NextHopChainingCount**

The IE NextHopChainingCount is used to update the K_{NH} key and corresponds to parameter NCC: See TS 33.401 [32, 7.2.8.4].
NextHopChainingCount information element

```asn1
NextHopChainingCount ::= INTEGER (0..7)
```

SecurityAlgorithmConfig

The IE SecurityAlgorithmConfig is used to configure AS integrity protection algorithm (SRBs) and AS ciphering algorithm (SRBs and DRBs). For RNs, the IE SecurityAlgorithmConfig is also used to configure AS integrity protection algorithm for DRBs between the RN and the E-UTRAN.

SecurityAlgorithmConfig information element

```asn1
SecurityAlgorithmConfig ::= SEQUENCE {
  cipheringAlgorithm     ENUMERATED {
    eea0, eea1, eea2, eea3-v1130, spare4, spare3,
    spare2, spare1, ...},
  integrityProtAlgorithm    ENUMERATED {
    eia0-v920, eia1, eia2, eia3-v1130, spare4, spare3,
    spare2, spare1, ...}
}
```

SecurityAlgorithmConfig field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cipheringAlgorithm</td>
<td>Indicates the ciphering algorithm to be used for SRBs and DRBs, as specified in TS 33.401 [32, 5.1.3.2].</td>
</tr>
<tr>
<td>integrityProtAlgorithm</td>
<td>Indicates the integrity protection algorithm to be used for SRBs, as specified in TS 33.401 [32, 5.1.4.2]. For RNs, also indicates the integrity protection algorithm to be used for integrity protection-enabled DRB(s).</td>
</tr>
</tbody>
</table>

ShortMAC-I

The IE ShortMAC-I is used to identify and verify the UE at RRC connection re-establishment. The 16 least significant bits of the MAC-I calculated using the security configuration of the source PCell, as specified in 5.3.7.4.

ShortMAC-I information element

```asn1
ShortMAC-I ::= BIT STRING (SIZE (16))
```

6.3.4 Mobility control information elements

AdditionalSpectrumEmission

AdditionalSpectrumEmission information element

```asn1
AdditionalSpectrumEmission ::= INTEGER (1..32)
```
ARFCN-ValueCDMA2000

The IE **ARFCN-ValueCDMA2000** used to indicate the CDMA2000 carrier frequency within a CDMA2000 band, see C.S0002 [12].

ARFCN-ValueCDMA2000 information element

```
ARFCN-ValueCDMA2000 ::= INTEGER (0..2047)
```

ARFCN-ValueEUTRA

The IE **ARFCN-ValueEUTRA** is used to indicate the ARFCN applicable for a downlink, uplink or bi-directional (TDD) E-UTRA carrier frequency, as defined in TS 36.101 [42]. If an extension is signalled using the extended value range (as defined by IE **ARFCN-ValueEUTRA-v9e0**), the UE shall only consider this extension (and hence ignore the corresponding original field, using the value range as defined by IE **ARFCN-ValueEUTRA** i.e. without suffix, if signalled). In dedicated signalling, E-UTRAN only provides an EARFCN corresponding to an E-UTRA band supported by the UE.

ARFCN-ValueEUTRA information element

```
ARFCN-ValueEUTRA ::= INTEGER (0..maxEARFCN)
ARFCN-ValueEUTRA-v9e0 ::= INTEGER (maxEARFCN-Plus1..maxEARFCN2)
ARFCN-ValueEUTRA-r9 ::= INTEGER (0..maxEARFCN2)
```

NOTE: For fields using the original value range, as defined by IE **ARFCN-ValueEUTRA** i.e. without suffix, value **maxEARFCN** indicates that the E-UTRA carrier frequency is indicated by means of an extension. In such a case, UEs not supporting the extension consider the field to be set to a not supported value.

ARFCN-ValueGERAN

The IE **ARFCN-ValueGERAN** is used to specify the ARFCN value applicable for a GERAN BCCH carrier frequency, see TS 45.005 [20].

ARFCN-ValueGERAN information element

```
ARFCN-ValueGERAN ::= INTEGER (0..1023)
```

ARFCN-ValueUTRA

The IE **ARFCN-ValueUTRA** is used to indicate the ARFCN applicable for a downlink (Nd, FDD) or bi-directional (Nt, TDD) UTRA carrier frequency, as defined in TS 25.331 [19].

ARFCN-ValueUTRA information element

```
ARFCN-ValueUTRA ::= INTEGER (0..16383)
```
The IE `BandclassCDMA2000` is used to define the CDMA2000 band in which the CDMA2000 carrier frequency can be found, as defined in C.S0057 [24, table 1.5-1].

BandclassCDMA2000 information element

```
BandclassCDMA2000 ::= ENumerated {
  bc0, bc1, bc2, bc3, bc4, bc5, bc6, bc7, bc8,
  bc9, bc10, bc11, bc12, bc13, bc14, bc15, bc16,
  bc17, bc18-v9a0, bc19-v9a0, bc20-v9a0, bc21-v9a0,
  spare10, spare9, spare8, spare7, spare6, spare5, spare4,
  spare3, spare2, spare1, ...}
```

The IE `BandIndicatorGERAN` indicates how to interpret an associated GERAN carrier ARFCN, see TS 45.005 [20]. More specifically, the IE indicates the GERAN frequency band in case the ARFCN value can concern either a DCS 1800 or a PCS 1900 carrier frequency. For ARFCN values not associated with one of these bands, the indicator has no meaning.

BandIndicatorGERAN information element

```
BandIndicatorGERAN ::= ENumerated {dcs1800, pcs1900}
```

The IE `CarrierFreqCDMA2000` is used to provide the CDMA2000 carrier information.

CarrierFreqCDMA2000 information element

```
CarrierFreqCDMA2000 ::= SEQUENCE {
  bandClass       BandclassCDMA2000,
  arfcn       ARFCN-ValueCDMA2000
}
```

The IE `CarrierFreqGERAN` is used to provide an unambiguous carrier frequency description of a GERAN cell.

CarrierFreqGERAN information element

```
CarrierFreqGERAN ::= SEQUENCE {
  arfcn       ARFCN-ValueGERAN,
  bandIndicator     BandIndicatorGERAN
}
```
CarrierFreqsGERAN field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arfcn</td>
<td>GERAN ARFCN of BCCH carrier.</td>
</tr>
<tr>
<td>bandIndicator</td>
<td>Indicates how to interpret the ARFCN of the BCCH carrier.</td>
</tr>
</tbody>
</table>

CarrierFreqsGERAN

The IE CarrierFreqListGERAN is used to provide one or more GERAN ARFCN values, as defined in TS 44.005 [43], which represents a list of GERAN BCCH carrier frequencies.

CarrierFreqsGERAN information element

```
CarrierFreqsGERAN ::= SEQUENCE {
  startingARFCN      ARFCN-ValueGERAN,
  bandIndicator      BandIndicatorGERAN,
  followingARFCNs     CHOICE {
    explicitListOfARFCNs    ExplicitListOfARFCNs,
    equallySpacedARFCNs     SEQUENCE {
      arfcn-Spacing      INTEGER (1..8),
      numberOfFollowingARFCNs    INTEGER (0..31)
    },
    variableBitMapOfARFCNs    OCTET STRING (SIZE (1..16))
  }
  ExplicitListOfARFCNs ::= SEQUENCE (SIZE (0..31)) OF ARFCN-ValueGERAN
```

CarrierFreqsGERAN field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arfcn-Spacing</td>
<td>Space, d, between a set of equally spaced ARFCN values.</td>
</tr>
<tr>
<td>bandIndicator</td>
<td>Indicates how to interpret the ARFCN of the BCCH carrier.</td>
</tr>
<tr>
<td>explicitListOfARFCNs</td>
<td>The remaining ARFCN values in the set are explicitly listed one by one.</td>
</tr>
<tr>
<td>equallySpacedARFCNs</td>
<td>The number, n, of the remaining equally spaced ARFCN values in the set. The complete set of (n+1) ARFCN values is defined as: {s, ((s + d) mod 1024), ((s + 2d) mod 1024) ... ((s + nd) mod 1024)}.</td>
</tr>
<tr>
<td>startingARFCN</td>
<td>The first ARFCN value, s, in the set.</td>
</tr>
<tr>
<td>variableBitMapOfARFCNs</td>
<td>Bitmap field representing the remaining ARFCN values in the set. The leading bit of the first octet in the bitmap corresponds to the ARFCN = ((s + 1) mod 1024), the next bit to the ARFCN = ((s + 2) mod 1024), and so on. If the bitmap consist of N octets, the trailing bit of octet N corresponds to ARFCN = ((s + 8*N) mod 1024). The complete set of ARFCN values consists of ARFCN = s and the ARFCN values, where the corresponding bit in the bitmap is set to “1”.</td>
</tr>
</tbody>
</table>

CarrierFreqListMBMS

The IE CarrierFreqListMBMS is used to indicate the E-UTRA ARFCN values of the one or more MBMS frequencies the UE is interested to receive.

CarrierFreqListMBMS information element

```
CarrierFreqListMBMS-r11 ::= SEQUENCE (SIZE (1..maxFreqMBMS-r11)) OF ARFCN-ValueEUTRA-r9
```
– **CDMA2000-Type**

The IE *CDMA2000-Type* is used to describe the type of CDMA2000 network.

CDMA2000-Type information element

```asn1
CDMA2000-Type ::= ENUMERATED {type1XRTT, typeHRPD}
```

– **CellIdentity**

The IE *CellIdentity* is used to unambiguously identify a cell within a PLMN.

CellIdentity information element

```asn1
CellIdentity ::= BIT STRING (SIZE (28))
```

– **CellIndexList**

The IE *CellIndexList* concerns a list of cell indices, which may be used for different purposes.

CellIndexList information element

```asn1
CellIndexList ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CellIndex

CellIndex ::= INTEGER (1..maxCellMeas)
```

– **CellReselectionPriority**

The IE *CellReselectionPriority* concerns the absolute priority of the concerned carrier frequency/ set of frequencies (GERAN)/ bandclass (CDMA2000), as used by the cell reselection procedure. Corresponds with parameter "priority" in TS 36.304 [4]. Value 0 means: lowest priority. The UE behaviour for the case the field is absent, if applicable, is specified in TS 36.304 [4].

CellReselectionPriority information element

```asn1
CellReselectionPriority ::= INTEGER (0..7)
```

– **CSFB-RegistrationParam1XRTT**

The IE *CSFB-RegistrationParam1XRTT* is used to indicate whether or not the UE shall perform a CDMA2000 1xRTT pre-registration if the UE does not have a valid / current pre-registration.
-- ASN1START

CSFB-RegistrationParam1XRTT ::= SEQUENCE {
 sid BIT STRING (SIZE (15)),
 nid BIT STRING (SIZE (16)),
 multipleSID BOOLEAN,
 multipleNID BOOLEAN,
 homeReg BOOLEAN,
 foreignSIDReg BOOLEAN,
 foreignNIDReg BOOLEAN,
 parameterReg BOOLEAN,
 powerUpReg BOOLEAN,
 registrationPeriod BIT STRING (SIZE (7)),
 registrationZone BIT STRING (SIZE (12)),
 totalZone BIT STRING (SIZE (3)),
 zoneTimer BIT STRING (SIZE (3))
}

CSFB-RegistrationParam1XRTT-v920 ::= SEQUENCE {
 powerDownReg-r9 ENUMERATED {true}
}

-- ASN1STOP

CSFB-RegistrationParam1XRTT field descriptions

- **foreignNIDReg**
The CDMA2000 1xRTT NID roamer registration indicator.

- **foreignSIDReg**
The CDMA2000 1xRTT SID roamer registration indicator.

- **homeReg**
The CDMA2000 1xRTT Home registration indicator.

- **multipleNID**
The CDMA2000 1xRTT Multiple NID storage indicator.

- **multipleSID**
The CDMA2000 1xRTT Multiple SID storage indicator.

- **nid**
Used along with the `sid` as a pair to control when the UE should Register or Re-Register with the CDMA2000 1xRTT network.

- **parameterReg**
The CDMA2000 1xRTT Parameter-change registration indicator.

- **powerDownReg**
The CDMA2000 1xRTT Power-down registration indicator. If set to TRUE, the UE that has a valid / current CDMA2000 1xRTT pre-registration will perform a CDMA2000 1xRTT power down registration when it is switched off.

- **powerUpReg**
The CDMA2000 1xRTT Power-up registration indicator.

- **registrationPeriod**
The CDMA2000 1xRTT Registration period.

- **registrationZone**
The CDMA2000 1xRTT Registration zone.

- **sid**
Used along with the `nid` as a pair to control when the UE should Register or Re-Register with the CDMA2000 1xRTT network.

- **totalZone**
The CDMA2000 1xRTT Number of registration zones to be retained.

- **zoneTimer**
The CDMA2000 1xRTT Zone timer length.

CellGlobalIdEUTRA

The IE `CellGlobalIdEUTRA` specifies the Evolved Cell Global Identifier (ECGI), the globally unique identity of a cell in E-UTRA.

CellGlobalIdEUTRA information element

-- ASN1START

ETSI
CellGlobalIdEUTRA ::= SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellIdentity CellIdentity
}

-- ASN1STOP

CellGlobalIdEUTRA field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellIdentity</td>
<td>Identity of the cell within the context of the PLMN.</td>
</tr>
<tr>
<td>plmn-Identity</td>
<td>Identifies the PLMN of the cell as given by the first PLMN entry in the plmn-IdentityList in SystemInformationBlockType1.</td>
</tr>
</tbody>
</table>

-- CellGlobalIdUTRA

The IE CellGlobalIdUTRA specifies the global UTRAN Cell Identifier, the globally unique identity of a cell in UTRA.

CellGlobalIdUTRA information element

CellGlobalIdUTRA ::= SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellIdentity BIT STRING (SIZE (28))
}

-- ASN1STOP

CellGlobalIdUTRA field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellIdentity</td>
<td>UTRAN Cell Identifier which is unique within the context of the identified PLMN as defined in TS 25.331 [19].</td>
</tr>
<tr>
<td>plmn-Identity</td>
<td>Identifies the PLMN of the cell as given by the common PLMN broadcast in the MIB, as defined in TS 25.331 [19].</td>
</tr>
</tbody>
</table>

-- CellGlobalIdGERAN

The IE CellGlobalIdGERAN specifies the Cell Global Identification (CGI), the globally unique identity of a cell in GERAN.

CellGlobalIdGERAN information element

CellGlobalIdGERAN ::= SEQUENCE {
 plmn-Identity PLMN-Identity,
 locationAreaCode BIT STRING (SIZE (16)),
 cellIdentity BIT STRING (SIZE (16))
}

-- ASN1STOP

CellGlobalIdGERAN field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellIdentity</td>
<td>Cell Identifier which is unique within the context of the GERAN location area as defined in TS 23.003 [27].</td>
</tr>
<tr>
<td>locationAreaCode</td>
<td>A fixed length code identifying the location area within a PLMN as defined in TS 23.003 [27].</td>
</tr>
<tr>
<td>plmn-Identity</td>
<td>Identifies the PLMN of the cell, as defined in TS 23.003 [27].</td>
</tr>
</tbody>
</table>
The IE CellGlobalIdCDMA2000 specifies the Cell Global Identification (CGI), the globally unique identity of a cell in CDMA2000.

CellGlobalIdCDMA2000 information element

```
CellGlobalIdCDMA2000 ::=    CHOICE {
    cellGlobalId1XRTT       BIT STRING (SIZE (47)),
    cellGlobalIdHRPD       BIT STRING (SIZE (128))
}
```

CellGlobalIdCDMA2000 field descriptions

- **cellGlobalId1XRTT**: Unique identifier for a CDMA2000 1xRTT cell, corresponds to BASEID, SID and NID parameters (in that order) defined in C.S0005 [25].
- **cellGlobalIdHRPD**: Unique identifier for a CDMA2000 HRPD cell, corresponds to SECTOR ID parameter defined in C.S0024 [26, 14.9].

The IE CSG-Identity is used to identify a Closed Subscriber Group.

CSG-Identity information element

```
CSG-Identity ::=     BIT STRING (SIZE (27))
```

FreqBandIndicator

The IE FreqBandIndicator indicates the E-UTRA operating band as defined in TS 36.101 [42, table 5.5-1]. If an extension is signalled using the extended value range (as defined by IE FreqBandIndicator-v9e0), the UE shall only consider this extension (and hence ignore the corresponding original field, using the value range as defined by IE FreqBandIndicator i.e. without suffix, if signalled).

FreqBandIndicator information element

```
FreqBandIndicator ::=     INTEGER (1..maxFBI)
FreqBandIndicator-v9e0 ::=    INTEGER (maxFBI-Plus1..maxFBI2)
FreqBandIndicator-r11 ::=    INTEGER (1..maxFBI2)
```

NOTE: For fields using the original value range, as defined by IE FreqBandIndicator i.e. without suffix, value `maxFBI` indicates that the frequency band is indicated by means of an extension. In such a case, UEs not supporting the extension consider the field to be set to a not supported value.

MobilityControlInfo

The IE MobilityControlInfo includes parameters relevant for network controlled mobility to/within E-UTRA.
MobilityControlInfo information element

-- ASN1START

MobilityControlInfo ::= SEQUENCE {
 targetPhysCellId PhysCellId,
 carrierFreq CarrierFreqEUTRA OPTIONAL, -- Cond HO-
toEUTRA2
 carrierBandwidth CarrierBandwidthEUTRA OPTIONAL, -- Cond HO-
toEUTRA
 additionalSpectrumEmission AdditionalSpectrumEmission OPTIONAL, -- Cond HO-
toEUTRA
 t304 ENUMERATED {
 ms50, ms100, ms150, ms200, ms500, ms1000,
 ms2000, spare1},
 newUE-Identity C-RNTI,
 radioResourceConfigCommon RadioResourceConfigCommon,
 rach-ConfigDedicated RACH-ConfigDedicated OPTIONAL, -- Need OP
 ...,
 [[carrierFreq-v9e0 CarrierFreqEUTRA-v9e0 OPTIONAL -- Need ON
]],
 [[drb-ContinueROHC-r11 ENUMERATED {true} OPTIONAL -- Cond HO
]]}

CarrierBandwidthEUTRA ::= SEQUENCE {
 dl-Bandwidth ENUMERATED {
 n6, n15, n25, n50, n75, n100, spare10,
 spare9, spare8, spare7, spare6, spare5,
 spare4, spare3, spare2, spare1},
 ul-Bandwidth ENUMERATED {
 n6, n15, n25, n50, n75, n100, spare10,
 spare9, spare8, spare7, spare6, spare5,
 spare4, spare3, spare2, spare1} OPTIONAL -- Need OP
}

CarrierFreqEUTRA ::= SEQUENCE {
 dl-CarrierFreq ARFCN-ValueEUTRA,
 ul-CarrierFreq ARFCN-ValueEUTRA OPTIONAL -- Cond FDD
}

CarrierFreqEUTRA-v9e0 ::= SEQUENCE {
 dl-CarrierFreq-v9e0 ARFCN-ValueEUTRA-r9,
 ul-CarrierFreq-v9e0 ARFCN-ValueEUTRA-r9 OPTIONAL -- Cond FDD
}

-- ASN1STOP

MobilityControlInfo field descriptions

additionalSpectrumEmission
The UE requirements related to IE AdditionalSpectrumEmission are defined in TS 36.101 [42, table 6.2.4.1].
carrierBandwidth
Provides the parameters Downlink bandwidth, and Uplink bandwidth, see TS 36.101 [42].
carrierFreq
Provides the EARFCN to be used by the UE in the target cell.
dl-Bandwidth
Parameter: Downlink bandwidth, see TS 36.101 [42].
drb-ContinueROHC
This field indicates whether to continue or reset, for this handover, the header compression protocol context for the RLC UM bearers configured with the header compression protocol. Presence of the field indicates that the header compression protocol context continues while absence indicates that the header compression protocol context is reset. E-UTRAN includes the field only in case of a handover within the same eNB.
rach-ConfigDedicated
The dedicated random access parameters. If absent the UE applies contention based random access as specified in TS 36.321 [6].
t304
Timer T304 as described in section 7.3. ms50 corresponds with 50 ms, ms100 corresponds with 100 ms and so on.
ul-Bandwidth
Parameter: Uplink bandwidth, see TS 36.101 [42, table 5.6-1]. For TDD, the parameter is absent and it is equal to downlink bandwidth. If absent for FDD, apply the same value as applies for the downlink bandwidth.
Conditional presence	Explanation
FDD | The field is mandatory with default value (the default duplex distance defined for the concerned band, as specified in TS 36.101 [42]) in case of “FDD”; otherwise the field is not present.

HO | This field is optionally present, need OP, in case of handover within E-UTRA when the fullConfig is not included; otherwise the field is not present.

HO-toEUTRA | The field is mandatory present in case of inter-RAT handover to E-UTRA; otherwise the field is optionally present, need ON.

HO-toEUTRA2 | The field is absent if carrierFreq-v9e0 is present. Otherwise it is mandatory present in case of inter-RAT handover to E-UTRA and optionally present, need ON, in all other cases.

MobilityParametersCDMA2000 (1xRTT)

The MobilityParametersCDMA2000 contains the parameters provided to the UE for handover and (enhanced) CSFB to 1xRTT support, as defined in C.S0097 [53].

MobilityParametersCDMA2000 information element

```asn1
MobilityParametersCDMA2000 ::= OCTET STRING
```

MobilityStateParameters

The IE MobilityStateParameters contains parameters to determine UE mobility state.

MobilityStateParameters information element

```asn1
MobilityStateParameters ::= SEQUENCE {
  t-Evaluation      ENUMERATED {
    s30, s60, s120, s180, s240, spare3, spare2, spare1},
  t-HystNormal      ENUMERATED {
    s30, s60, s120, s180, s240, spare3, spare2, spare1},
  n-CellChangeMedium     INTEGER (1..16),
  n-CellChangeHigh     INTEGER (1..16)
}
```

MobilityStateParameters field descriptions

- **n-CellChangeHigh**
 The number of cell changes to enter high mobility state. Corresponds to N_{CR_H} in TS 36.304 [4].

- **n-CellChangeMedium**
 The number of cell changes to enter medium mobility state. Corresponds to N_{CR_M} in TS 36.304 [4].

- **t-Evaluation**
 The duration for evaluating criteria to enter mobility states. Corresponds to T_{CRmax} in TS 36.304 [4]. Value in seconds, s30 corresponds to 30 s and so on.

- **t-HystNormal**
 The additional duration for evaluating criteria to enter normal mobility state. Corresponds to T_{CRmaxHyst} in TS 36.304 [4]. Value in seconds, s30 corresponds to 30 s and so on.

MultiBandInfoList

MultiBandInfoList information element

```asn1
MultiBandInfoList ::= SEQUENCE (SIZE (1..maxMultiBands)) OF FreqBandIndicator
```
PhysCellId

The IE PhysCellId is used to indicate the physical layer identity of the cell, as defined in TS 36.211 [21].

PhysCellId information element

PhysCellId ::= INTEGER (0..503)

PhysCellIdRange

The IE PhysCellIdRange is used to encode either a single or a range of physical cell identities. The range is encoded by using a start value and by indicating the number of consecutive physical cell identities (including start) in the range. For fields comprising multiple occurrences of PhysCellIdRange, E-UTRAN may configure overlapping ranges of physical cell identities.

PhysCellIdRange information element

PhysCellIdRange ::= SEQUENCE {
 start PhysCellId,
 range ENUMERATED {
 n4, n8, n12, n16, n24, n32, n48, n64, n84,
 n96, n128, n168, n252, n504, spare2, spare1
 } OPTIONAL -- Need OP
}

PhysCellIdRange field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>Indicates the number of physical cell identities in the range (including start). Value n4 corresponds with 4, n8 corresponds with 8 and so on. The UE shall apply value 1 in case the field is absent, in which case only the physical cell identity value indicated by start applies.</td>
</tr>
<tr>
<td>start</td>
<td>Indicates the lowest physical cell identity in the range.</td>
</tr>
</tbody>
</table>

PhysCellIdRangeUTRA-FDDList

The IE PhysCellIdRangeUTRA-FDDList is used to encode one or more of PhysCellIdRangeUTRA-FDD. While the IE PhysCellIdRangeUTRA-FDD is used to encode either a single physical layer identity or a range of physical layer identities, i.e. primary scrambling codes. Each range is encoded by using a start value and by indicating the number of consecutive physical cell identities (including start) in the range.

PhysCellIdRangeUTRA-FDDList information element

PhysCellIdRangeUTRA-FDDList field descriptions

range
Indicates the number of primary scrambling codes in the range (including **start**). The UE shall apply value 1 in case the field is absent, in which case only the primary scrambling code value indicated by **start** applies.

start
Indicates the lowest primary scrambling code in the range.

PhysCellIdCDMA2000

The IE *PhysCellIdCDMA2000* identifies the PNOffset that represents the "Physical cell identity" in CDMA2000.

PhysCellIdCDMA2000 information element

```
-- ASN1START
PhysCellIdCDMA2000 ::= INTEGER (0..maxPNOffset)
-- ASN1STOP
```

PhysCellIdGERAN

The IE *PhysCellIdGERAN* contains the Base Station Identity Code (BSIC).

PhysCellIdGERAN information element

```
-- ASN1START
PhysCellIdGERAN ::= SEQUENCE {
    networkColourCode     BIT STRING (SIZE (3)),
    baseStationColourCode    BIT STRING (SIZE (3))
}
-- ASN1STOP
```

PhysCellIdGERAN field descriptions

baseStationColourCode
Base station Colour Code as defined in TS 23.003 [27].

networkColourCode
Network Colour Code as defined in TS 23.003 [27].

PhysCellIdUTRA-FDD

The IE *PhysCellIdUTRA-FDD* is used to indicate the physical layer identity of the cell, i.e. the primary scrambling code, as defined in TS 25.331 [19].

PhysCellIdUTRA-FDD information element

```
-- ASN1START
PhysCellIdUTRA-FDD ::= INTEGER (0..511)
-- ASN1STOP
```
The IE \textit{PhysCellIdUTRA-TDD} is used to indicate the physical layer identity of the cell, i.e. the cell parameters ID (TDD), as specified in TS 25.331 [19]. Also corresponds to the Initial Cell Parameter Assignment in TS 25.223 [46].

\textbf{PhysCellIdUTRA-TDD information element}

\begin{verbatim}
PhysCellIdUTRA-TDD ::= INTEGER (0..127)
\end{verbatim}

The IE \textit{PLMN-Identity} identifies a Public Land Mobile Network. Further information regarding how to set the IE are specified in TS 23.003 [27].

\textbf{PLMN-Identity information element}

\begin{verbatim}
PLMN-Identity ::= SEQUENCE {
mcc MCC OPTIONAL, -- Cond MCC
mnc MNC
}
MCC ::= SEQUENCE (SIZE (3)) OF MCC-MNC-Digit
MNC ::= SEQUENCE (SIZE (2..3)) OF MCC-MNC-Digit
MCC-MNC-Digit ::= INTEGER (0..9)
\end{verbatim}

\textbf{PLMN-Identity field descriptions}

\begin{itemize}
\item \textit{mcc} The first element contains the first MCC digit, the second element the second MCC digit and so on. If the field is absent, it takes the same value as the \textit{mcc} of the immediately preceding IE PLMN-Identity. See TS 23.003 [27].
\item \textit{mnc} The first element contains the first MNC digit, the second element the second MNC digit and so on. See TS 23.003 [27].
\end{itemize}

Conditional presence

<table>
<thead>
<tr>
<th>MCC</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>This IE is mandatory when \textit{PLMN-Identity} is included in \textit{CellGlobalIdEUTRA}, in \textit{CellGlobalIdUTRA}, in \textit{CellGlobalIdGERAN} or in \textit{RegisteredMME}. This IE is also mandatory in the first occurrence of the IE \textit{PLMN-Identity} within the IE \textit{PLMN-IdentityList}. Otherwise it is optional, need OP.</td>
<td></td>
</tr>
</tbody>
</table>

\textbf{PLMN-IdentityList3}

Includes a list of PLMN identities.

\textbf{PLMN-IdentityList3 information element}

\begin{verbatim}
PLMN-IdentityList3-r11 ::= SEQUENCE (SIZE (1..16)) OF PLMN-Identity
\end{verbatim}
PreRegistrationInfoHRPD

PreRegistrationInfoHRPD ::= SEQUENCE {
 preRegistrationAllowed BOOLEAN,
 preRegistrationZoneIdId PreRegistrationZoneIdIdHRPD OPTIONAL, -- cond PreRegAllowed
 secondaryPreRegistrationZoneIdList SecondaryPreRegistrationZoneIdListHRPD OPTIONAL -- Need OR
}

SecondaryPreRegistrationZoneIdListHRPD ::= SEQUENCE (SIZE (1..2)) OF PreRegistrationZoneIdHRPD

PreRegistrationZoneIdHRPD ::= INTEGER (0..255)

PreRegistrationInfoHRPD field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>preRegistrationAllowed</td>
<td>TRUE indicates that a UE shall perform a CDMA2000 HRPD pre-registration if the UE does not have a valid / current pre-registration. FALSE indicates that the UE is not allowed to perform CDMA2000 HRPD pre-registration in the current cell.</td>
</tr>
<tr>
<td>preRegistrationZoneID</td>
<td>ColorCode (see C.S0024 [26], C.S0087 [44]) of the CDMA2000 Reference Cell corresponding to the HRPD sector under the HRPD AN that is configured for this LTE cell. It is used to control when the UE should register or re-register.</td>
</tr>
<tr>
<td>secondaryPreRegistrationZoneIdList</td>
<td>List of SecondaryColorCodes (see C.S0024 [26], C.S0087 [44]) of the CDMA2000 Reference Cell corresponding to the HRPD sector under the HRPD AN that is configured for this LTE cell. They are used to control when the UE should re-register.</td>
</tr>
</tbody>
</table>

Conditional presence	Explanation
PreRegAllowed | The field is mandatory in case the preRegistrationAllowed is set to true. Otherwise the field is not present and the UE shall delete any existing value for this field.

Q-QualMin

The IE *Q-QualMin* is used to indicate for cell selection/ re-selection the required minimum received RSRQ level in the (E-UTRA) cell. Corresponds to parameter $Q_{qualmin}$ in 36.304 [4]. Actual value $Q_{qualmin} = IE$ value [dB].

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-QualMin-r9</td>
<td>INTEGER (-34..-3)</td>
</tr>
</tbody>
</table>

Q-RxLevMin

The IE *Q-RxLevMin* is used to indicate for cell selection/ re-selection the required minimum received RSRP level in the (E-UTRA) cell. Corresponds to parameter $Q_{rxlevmin}$ in 36.304 [4]. Actual value $Q_{rxlevmin} = IE$ value * 2 [dBm].

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-RxLevMin</td>
<td>INTEGER (-70..-22)</td>
</tr>
</tbody>
</table>
The IE Q-OffsetRange is used to indicate a cell or frequency specific offset to be applied when evaluating candidates for cell re-selection or when evaluating triggering conditions for measurement reporting. The value in dB. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.

Q-OffsetRange information element

```
-- ASN1START
Q-OffsetRange ::=     ENUMERATED {
  dB-24, dB-22, dB-20, dB-18, dB-16, dB-14,
  dB-12, dB-10, dB-8, dB-6, dB-5, dB-4, dB-3,
  dB-2, dB-1, dB0, dB1, dB2, dB3, dB4, dB5,
  dB6, dB8, dB10, dB12, dB14, dB16, dB18,
  dB20, dB22, dB24}
-- ASN1STOP
```

The IE Q-OffsetRangeInterRAT is used to indicate a frequency specific offset to be applied when evaluating triggering conditions for measurement reporting. The value in dB.

Q-OffsetRangeInterRAT information element

```
-- ASN1START
Q-OffsetRangeInterRAT ::=     INTEGER (-15..15)
-- ASN1STOP
```

The IE ReselectionThreshold is used to indicate an Rx level threshold for cell reselection. Actual value of threshold = IE value * 2 [dB].

ReselectionThreshold information element

```
-- ASN1START
ReselectionThreshold ::=    INTEGER (0..31)
-- ASN1STOP
```

The IE ReselectionThresholdQ is used to indicate a quality level threshold for cell reselection. Actual value of threshold = IE value [dB].

ReselectionThresholdQ information element

```
-- ASN1START
ReselectionThresholdQ-r9 ::=   INTEGER (0..31)
-- ASN1STOP
```

The IE SCellIndex concerns a short identity, used to identify an SCell.
SCellIndex information element

SCellIndex-r10 ::= INTEGER (1..7)

ServCellIndex

The IE *ServCellIndex* concerns a short identity, used to identify a serving cell (i.e. the PCell or an SCell). Value 0 applies for the PCell, while the *SCellIndex* that has previously been assigned applies for SCells.

ServCellIndex information element

ServCellIndex-r10 ::= INTEGER (0..7)

SpeedStateScaleFactors

The IE *SpeedStateScaleFactors* concerns factors, to be applied when the UE is in medium or high speed state, used for scaling a mobility control related parameter.

SpeedStateScaleFactors information element

SpeedStateScaleFactors ::= SEQUENCE {
 sf-Medium ENUMERATED {oDot25, oDot5, oDot75, lDot0},
 sf-High ENUMERATED {oDot25, oDot5, oDot75, lDot0}
}

SpeedStateScaleFactors field descriptions

- **sf-High**
The concerned mobility control related parameter is multiplied with this factor if the UE is in High Mobility state as defined in TS 36.304 [4]. Value oDot25 corresponds to 0.25, oDot5 corresponds to 0.5, oDot75 corresponds to 0.75 and so on.

- **sf-Medium**
The concerned mobility control related parameter is multiplied with this factor if the UE is in Medium Mobility state as defined in TS 36.304 [4]. Value oDot25 corresponds to 0.25, oDot5 corresponds to 0.5, oDot75 corresponds to 0.75 and so on.

SystemInfoListGERAN

The IE *SystemInfoListGERAN* contains system information of a GERAN cell.

SystemInfoListGERAN information element

SystemInfoListGERAN ::= SEQUENCE (SIZE (1..maxGERAN-SI)) OF OCTET STRING (SIZE (1..23))
SystemInfoListGERAN field descriptions

Each OCTET STRING contains one System Information (SI) message as defined in TS 44.018 [45, table 9.1.1] excluding the L2 Pseudo Length, the RR management Protocol Discriminator and the Skip Indicator or a complete Packet System Information (PSI) message as defined in TS 44.060 [36, table 11.2.1].

– SystemTimeInfoCDMA2000

The IE SystemTimeInfoCDMA2000 informs the UE about the absolute time in the current cell. The UE uses this absolute time knowledge to derive the CDMA2000 Physical cell identity, expressed as PNOffset, of neighbour CDMA2000 cells.

NOTE: The UE needs the CDMA2000 system time with a certain level of accuracy for performing measurements as well as for communicating with the CDMA2000 network (HRPD or 1xRTT).

SystemTimeInfoCDMA2000 information element

-- ASN1START

SystemTimeInfoCDMA2000 ::= SEQUENCE {
 cdma-EUTRA-Synchronisation BOOlean,
 cdma-SystemTime CHOICE {
 synchronousSystemTime BIT STRING (SIZE (39)),
 asynchronousSystemTime BIT STRING (SIZE (49))
 }
}

-- ASN1STOP

SystemTimeInfoCDMA2000 field descriptions

asynchronousSystemTime
The CDMA2000 system time corresponding to the SFN boundary at or after the ending boundary of the SI-Window in which SystemInformationBlockType8 is transmitted. E-UTRAN includes this field if the E-UTRA frame boundary is not aligned to the start of CDMA2000 system time. This field size is 49 bits and the unit is 8 CDMA chips based on 1.2288 Mcps.

cdma-EUTRA-Synchronisation
TRUE indicates that there is no drift in the timing between E-UTRA and CDMA2000. FALSE indicates that the timing between E-UTRA and CDMA2000 can drift. NOTE 1

synchronousSystemTime
CDMA2000 system time corresponding to the SFN boundary at or after the ending boundary of the SI-window in which SystemInformationBlockType8 is transmitted. E-UTRAN includes this field if the E-UTRA frame boundary is aligned to the start of CDMA2000 system time. This field size is 39 bits and the unit is 10 ms based on a 1.2288 Mcps chip rate.

NOTE 1: The following table shows the recommended combinations of the cdma-EUTRA-Synchronisation field and the choice of cdma-SystemTime included by E-UTRAN for FDD and TDD:

<table>
<thead>
<tr>
<th>FDD/TDD</th>
<th>cdma-EUTRA-Synchronisation</th>
<th>synchronousSystemTime</th>
<th>asynchronousSystemTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD</td>
<td>FALSE</td>
<td>Not Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>FDD</td>
<td>TRUE</td>
<td>Recommended</td>
<td>Not Recommended</td>
</tr>
<tr>
<td>TDD</td>
<td>FALSE</td>
<td>Not Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>TDD</td>
<td>TRUE</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

– TrackingAreaCode

The IE TrackingAreaCode is used to identify a tracking area within the scope of a PLMN, see TS 24.301 [35].

TrackingAreaCode information element

-- ASN1START
TrackingAreaCode ::= BIT STRING (SIZE (16))

-- ASN1STOP

– T-Reselection

The IE T-Reselection concerns the cell reselection timer TreselectionRAT for E-UTRA, UTRA, GERAN or CDMA2000. Value in seconds.

T-Reselection information element

-- ASN1START
T-Reselection ::= INTEGER (0..7)
-- ASN1STOP

6.3.5 Measurement information elements

– AllowedMeasBandwidth

The IE AllowedMeasBandwidth is used to indicate the maximum allowed measurement bandwidth on a carrier frequency as defined by the parameter Transmission Bandwidth Configuration ”N_RB” TS 36.104 [47]. The values mbw6, mbw15, mbw25, mbw50, mbw75, mbw100 indicate 6, 15, 25, 50, 75 and 100 resource blocks respectively.

AllowedMeasBandwidth information element

-- ASN1START
AllowedMeasBandwidth ::= ENUMERATED {mbw6, mbw15, mbw25, mbw50, mbw75, mbw100}
-- ASN1STOP

– Hysteresis

The IE Hysteresis is a parameter used within the entry and leave condition of an event triggered reporting condition. The actual value is IE value * 0.5 dB.

Hysteresis information element

-- ASN1START
Hysteresis ::= INTEGER (0..30)
-- ASN1STOP

– LocationInfo

The IE LocationInfo is used to transfer detailed location information available at the UE to correlate measurements and UE position information.

LocationInfo information element

-- ASN1START
LocationInfo-r10 ::= SEQUENCE {
 locationCoordinates-r10 CHOICE {
 ellipsoid-Point-r10 OCTET STRING,
 ellipsoidPointWithAltitude-r10 OCTET STRING,
 ,
 ellipsoidPointWithUncertaintyCircle-r11 OCTET STRING,
 }
}
LocationInfo field descriptions

ellipsoidArc
Parameter *EllipsoidArc* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoid-Point
Parameter *Ellipsoid-Point* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithAltitude
Parameter *EllipsoidPointWithAltitude* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithAltitudeAndUncertaintyEllipsoid
Parameter *EllipsoidPointWithAltitudeAndUncertaintyEllipsoid* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithUncertaintyCircle
Parameter *EllipsoidPointWithUncertaintyCircle* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

ellipsoidPointWithUncertaintyEllipse
Parameter *EllipsoidPointWithUncertaintyEllipse* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

gnss-TOD-msec
Parameter *Gnss-TOD-msec* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

horizontalVelocity
Parameter *HorizontalVelocity* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

polygon
Parameter *Polygon* defined in TS36.355 [54]. The first/leftmost bit of the first octet contains the most significant bit.

MeasConfig

The IE *MeasConfig* specifies measurements to be performed by the UE, and covers intra-frequency, inter-frequency and inter-RAT mobility as well as configuration of measurement gaps.

MeasConfig information element

```asn1
MeasConfig ::= SEQUENCE {
  -- Measurement objects
  measObjectToRemoveList  MeasObjectToRemoveList OPTIONAL, -- Need ON
  measObjectToAddModList  MeasObjectToAddModList OPTIONAL, -- Need ON
  -- Reporting configurations
  reportConfigToRemoveList  ReportConfigToRemoveList OPTIONAL, -- Need ON
  reportConfigToAddModList  ReportConfigToAddModList OPTIONAL, -- Need ON
  -- Measurement identities
  measIdToRemoveList  MeasIdToRemoveList OPTIONAL, -- Need ON
  measIdToAddModList  MeasIdToAddModList OPTIONAL, -- Need ON
  -- Other parameters
  quantityConfig  QuantityConfig OPTIONAL, -- Need ON
  measGapConfig  MeasGapConfig OPTIONAL, -- Need ON
  s-Measure  RSRP-Range OPTIONAL, -- Need ON
  preRegistrationInfoHRPD  PreRegistrationInfoHRPD OPTIONAL, -- Need ON
  speedStatePars  CHOICE {
    release NULL,
    setup SEQUENCE {
      mobilityStateParameters  MobilityStateParameters,
      timeToTrigger-SF  SpeedStateScaleFactors
    }
  }
}
```
MeasConfig field descriptions

measGapConfig
Used to setup and release measurement gaps.

measObjectToAddModList
If E-UTRAN includes measObjectToAddModList-v9e0 it includes the same number of entries, and listed in the same order, as in measObjectToAddModList (i.e. without suffix).

measIdToRemoveList
List of measurement identities to remove.

measObjectToRemoveList
List of measurement objects to remove.

PreRegistrationInfoHRPD
The CDMA2000 HRPD Pre-Registration Information tells the UE if it should pre-register with the CDMA2000 HRPD network and identifies the Pre-registration zone to the UE.

reportConfigToRemoveList
List of measurement reporting configurations to remove.

s-Measure
PCell quality threshold controlling whether or not the UE is required to perform measurements of intra-frequency, inter-frequency and inter-RAT neighbouring cells. Value “0” indicates to disable s-Measure.

timeToTrigger-SF
The timeToTrigger in ReportConfigEUTRA and in ReportConfigInterRAT are multiplied with the scaling factor applicable for the UE’s speed state.

MeasGapConfig
The IE MeasGapConfig specifies the measurement gap configuration and controls setup/ release of measurement gaps.

MeasGapConfig information element

MeasGapConfig field descriptions
gapOffset
Value gapOffset of gp0 corresponds to gap offset of Gap Pattern Id “0” with MGRP = 40ms, gapOffset of gp1 corresponds to gap offset of Gap Pattern Id “1” with MGRP = 80ms. Also used to specify the measurement gap pattern to be applied, as defined in TS 36.133 [16].
MeasId

The IE MeasId is used to identify a measurement configuration, i.e., linking of a measurement object and a reporting configuration.

MeasId information element

```
-- ASN1START
MeasId ::= INTEGER (1..maxMeasId)
-- ASN1STOP
```

MeasIdToAddModList

The IE MeasIdToAddModList concerns a list of measurement identities to add or modify, with for each entry the measId, the associated measObjectId and the associated reportConfigId.

MeasIdToAddModList information element

```
-- ASN1START
MeasIdToAddModList ::= SEQUENCE (SIZE (1..maxMeasId)) OF MeasIdToAddMod
MeasIdToAddMod ::= SEQUENCE {
  measId        MeasId,
  measObjectId      MeasObjectId,
  reportConfigId      ReportConfigId
}
-- ASN1STOP
```

MeasObjectCDMA2000

The IE MeasObjectCDMA2000 specifies information applicable for inter-RAT CDMA2000 neighbouring cells.

MeasObjectCDMA2000 information element

```
-- ASN1START
MeasObjectCDMA2000 ::= SEQUENCE {
  cdma2000-Type      CDMA2000-Type,
  carrierFreq       CarrierFreqCDMA2000,
  searchWindowSize     INTEGER (0..15)      OPTIONAL, -- Need ON
  offsetFreq       Q-OffsetRangeInterRAT    DEFAULT 0,
  cellsToRemoveList     CellIndexList      OPTIONAL, -- Need ON
  cellsToAddModList     CellsToAddModListCDMA2000   OPTIONAL, -- Need ON
  cellForWhichToReportCGI    PhysCellIdCDMA2000     OPTIONAL, -- Need ON
  ... }
CellsToAddModListCDMA2000 ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CellsToAddModCDMA2000
CellsToAddModCDMA2000 ::= SEQUENCE {
  cellIndex       INTEGER (1..maxCellMeas),
  physCellId       PhysCellIdCDMA2000
}
-- ASN1STOP
---  

### MeasObjectCDMA2000 field descriptions

**carrierInfo**
Identifies CDMA2000 carrier frequency for which this configuration is valid.

**cdma2000-Type**
The type of CDMA2000 network: CDMA2000 1xRTT or CDMA2000 HRPD.

**cellIndex**
Enter index in the neighbouring cell list.

**cellsToAddModList**
List of cells to add/ modify in the neighbouring cell list.

**cellsToRemoveList**
List of cells to remove from the neighbouring cell list.

**physCellIds**
CDMA2000 Physical cell identity of a cell in neighbouring cell list expressed as PNOffset.

**searchWindowSize**
Provides the search window size to be used by the UE for the neighbouring pilot, see C.S0005[25].

---  

### MeasObjectEUTRA

The IE MeasObjectEUTRA specifies information applicable for intra-frequency or inter-frequency E-UTRA cells.

#### MeasObjectEUTRA information element

```
-- ASN1START
MeasObjectEUTRA ::= SEQUENCE {
 carrierFreq ARFCN-ValueEUTRA,
 allowedMeasBandwidth AllowedMeasBandwidth,
 presenceAntennaPort1 PresenceAntennaPort1,
 neighCellConfig NeighCellConfig,
 offsetFreq Q-OffsetRange DEFAULT dB0,
 -- Cell list
 cellsToRemoveList CellIndexList OPTIONAL, -- Need ON
 cellsToAddModList CellsToAddModList OPTIONAL, -- Need ON
 -- Black list
 blackCellsToRemoveList CellIndexList OPTIONAL, -- Need ON
 blackCellsToAddModList BlackCellsToAddModList OPTIONAL, -- Need ON
 cellForWhichToReportCGI PhysCellId OPTIONAL, -- Need ON
 ...,
 [measCycleSCell-r10 MeasCycleSCell-r10 OPTIONAL, -- Need ON
 measSubframePatternConfigNeigh-r10 MeasSubframePatternConfigNeigh-r10 OPTIONAL
 -- Need ON
],,
 [widebandRSRQ-Meas-r11 BOOLEAN OPTIONAL -- Cond WB-RSRQ
],,
 [altTTT-CellsToRemoveList-r12 CellIndexList OPTIONAL, -- Need ON
 altTTT-CellsToAddModList-r12 AltTTT-CellsToAddModList-r12 OPTIONAL -- Need ON
],,
 [t312-r12 ENUMERATED {ms0, ms50, ms100, ms200, ms300, ms400, ms500,
 ms1000} OPTIONAL -- Need ON
]
}

MeasObjectEUTRA-v9e0 ::= SEQUENCE {
 carrierFreq-v9e0 ARFCN-ValueEUTRA-v9e0
}

CellsToAddModList ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CellsToAddMod

CellsToAddMod ::= SEQUENCE {
 cellIndex INTEGER (1..maxCellMeas),
 physCellId PhysCellId,
 cellIndividualOffset Q-OffsetRange
}

BlackCellsToAddModList ::= SEQUENCE (SIZE (1..maxCellMeas)) OF BlackCellsToAddMod

BlackCellsToAddMod ::= SEQUENCE {
 cellIndex INTEGER (1..maxCellMeas),
 physCellIdRange PhysCellIdRange
}
```

---
MeasCycleSCell-r10 ::= ENUMERATED {sf160, sf256, sf320, sf512, sf640, sf1024, sf1280, spare1}

MeasSubframePatternConfigNeigh-r10 ::= CHOICE {
  release          NULL,
  setup             SEQUENCE {
    measSubframePatternNeigh-r10 MeasSubframePattern-r10,
    measSubframeCellList-r10    MeasSubframeCellList-r10 OPTIONAL -- Cond
  always
  } }

MeasSubframeCellList-r10 ::= SEQUENCE {SIZE (1..maxCellMeas)} OF PhysCellIdRange

AltTTT-CellsToAddModList-r12 ::= SEQUENCE {SIZE (1..maxCellMeas)} OF AltTTT-CellsToAddMod-r12

AltTTT-CellsToAddMod-r12 ::= SEQUENCE {
  cellIndex       INTEGER (1..maxCellMeas),
  physCellIdRange      PhysCellIdRange
}

-- ASN1STOP
### MeasObjectEUTRA field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>altTTT-CellsToAddModList</td>
<td>List of cells to add/modify in the cell list for which the alternative time to trigger specified by alternativeTimeToTrigger in reportConfigEUTRA, if configured, applies.</td>
</tr>
<tr>
<td>altTTT-CellsToRemoveList</td>
<td>List of cells to remove from the list of cells for alternative time to trigger.</td>
</tr>
<tr>
<td>blackCellsToAddModList</td>
<td>List of cells to add/modify in the black list of cells.</td>
</tr>
<tr>
<td>blackCellsToRemoveList</td>
<td>List of cells to remove from the black list of cells.</td>
</tr>
<tr>
<td>carrierFreq</td>
<td>Identifies E-UTRA carrier frequency for which this configuration is valid. E-UTRAN does not configure more than one measurement object for the same physical frequency regardless of the E-ARFCN used to indicate this.</td>
</tr>
<tr>
<td>cellIndex</td>
<td>Entry index in the cell list. An entry may concern a range of cells, in which case this value applies to the entire range.</td>
</tr>
<tr>
<td>cellIndividualOffset</td>
<td>Cell individual offset applicable to a specific cell. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.</td>
</tr>
<tr>
<td>cellsToAddModList</td>
<td>List of cells to add/modify in the cell list.</td>
</tr>
<tr>
<td>cellsToRemoveList</td>
<td>List of cells to remove from the cell list.</td>
</tr>
<tr>
<td>measCycleSCell</td>
<td>The parameter is used only when an SCell is configured on the frequency indicated by the measObject and is in deactivated state, see TS 36.133 [16, 8.3.3]. E-UTRAN configures the parameter whenever an SCell is configured on the frequency indicated by the measObject, but the field may also be signalled when an SCell is not configured. Value sf160 corresponds to 160 sub-frames, sf256 corresponds to 256 sub-frames and so on.</td>
</tr>
<tr>
<td>measSubframeCellList</td>
<td>List of cells for which measSubframePatternNeigh is applied.</td>
</tr>
<tr>
<td>measSubframePatternNeigh</td>
<td>Time domain measurement resource restriction pattern applicable to neighbour cell RSRP and RSRQ measurements on the carrier frequency indicated by carrierFreq. For cells in measSubframeCellList the UE shall assume that the subframes indicated by measSubframePatternNeigh are non-MBSFN subframes, and have the same special subframe configuration as PCell.</td>
</tr>
<tr>
<td>offsetFreq</td>
<td>Offset value applicable to the carrier frequency. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.</td>
</tr>
<tr>
<td>physCellId</td>
<td>Physical cell identity of a cell in the cell list.</td>
</tr>
<tr>
<td>physCellIdRange</td>
<td>Physical cell identity or a range of physical cell identities.</td>
</tr>
<tr>
<td>t312</td>
<td>The value of timer T312. Value ms0 represents 0 ms, ms50 represents 50 ms and so on.</td>
</tr>
<tr>
<td>widebandRSRQ-Meas</td>
<td>If this field is set to TRUE, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [16].</td>
</tr>
</tbody>
</table>

---

### MeasObjectGERAN

The IE MeasObjectGERAN specifies information applicable for inter-RAT GERAN neighbouring frequencies.

### MeasObjectGERAN information element

```asn1
MeasObjectGERAN ::= SEQUENCE {
 carrierFreqs CarrierFreqsGERAN,
 offsetFreq Q-OffsetRangeInterRAT DEFAULT 0,
 ncc-Permitted BIT STRING(SIZE (8)) DEFAULT '11111111'B,
}
```
MeasObjectGERAN field descriptions

ncc-Permitted
Field encoded as a bit map, where bit N is set to "0" if a BCCH carrier with NCC = N-1 is not permitted for monitoring and set to "1" if a BCCH carrier with NCC = N-1 is permitted for monitoring; N = 1 to 8; bit 1 of the bitmap is the leading bit of the bit string.

carrierFreqs
If E-UTRAN includes cellForWhichToReportCGI, it includes only one GERAN ARFCN value in carrierFreqs.

MeasObjectId
The IE MeasObjectId used to identify a measurement object configuration.

MeasObjectId information element

MeasObjectToAddModList
The IE MeasObjectToAddModList concerns a list of measurement objects to add or modify

MeasObjectToAddModList information element

Conditional presence

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| eutra                | The field is optional present, need OR, if for the corresponding entry in MeasObjectToAddModList field measObject is set to measObjectEUTRA and its sub-field carrierFreq is set to maxEARFCN. Otherwise the field is not present and the UE shall delete any existing value for this field.

MeasObjectUTRA
The IE MeasObjectUTRA specifies information applicable for inter-RAT UTRA neighbouring cells.
MeasObjectUTRA information element

carrierFreq
Identifies UTRA carrier frequency for which this configuration is valid. E-UTRAN does not configure more than one measurement object for the same physical frequency regardless of the ARFCN used to indicate this.

cellIndex
Entry index in the neighbouring cell list.

cellsToAddModListUTRA-FDD
List of UTRA FDD cells to add/modify in the neighbouring cell list.

cellsToAddModListUTRA-TDD
List of UTRA TDD cells to add/modify in the neighbouring cell list.

cellsToRemoveList
List of cells to remove from the neighbouring cell list.

csg-allowedReportingCells
One or more ranges of physical cell identities for which UTRA-FDD reporting is allowed.

MeasResults

The IE MeasResults covers measured results for intra-frequency, inter-frequency and inter-RAT mobility.

MeasResults information element

MeasObjectUTRA field descriptions

-- ASN1START
MeasObjectUTRA ::= SEQUENCE {
carrierFreq             ARFCN-ValueUTRA,
offsetFreq              Q-OffsetRangeInterRAT DEFAULT 0,
cellsToRemoveList       CellIndexList OPTIONAL,   -- Need ON
cellsToAddModList       CHOICE {
cellsToAddModListUTRA-FDD CellsToAddModListUTRA-FDD,
cellsToAddModListUTRA-TDD CellsToAddModListUTRA-TDD
} OPTIONAL,   -- Need ON
cellForWhichToReportCGI CHOICE {
utra-FDD                 PhysCellIdUTRA-FDD,
utra-TDD                 PhysCellIdUTRA-TDD
} OPTIONAL,  -- Need ON
...,
[ [ csg-allowedReportingCells-v930 CSG-AllowedReportingCells-r9 OPTIONAL -- Need ON ] ]
}

CellsToAddModListUTRA-FDD ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CellsToAddModUTRA-FDD

CellsToAddModUTRA-FDD ::= SEQUENCE {
cellIndex       INTEGER (1..maxCellMeas),
physCellId       PhysCellIdUTRA-FDD
}

CellsToAddModListUTRA-TDD ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CellsToAddModUTRA-TDD

CellsToAddModUTRA-TDD ::= SEQUENCE {
cellIndex       INTEGER (1..maxCellMeas),
physCellId       PhysCellIdUTRA-TDD
}

CSG-AllowedReportingCells-r9 ::= SEQUENCE {
physCellIdRangeUTRA-FDDList-r9 OPTIONAL -- Need OR
}
-- ASN1STOP

MeasResults

The IE MeasResults covers measured results for intra-frequency, inter-frequency and inter-RAT mobility.

MeasResults information element

-- ASN1START
MeasResults ::= SEQUENCE {
measId        MeasId,
measResultPCell     SEQUENCE {
rsrpResult       RSRP-Range,
rsrqResult       RSRQ-Range
},
measResultNeighCells CHOICE {

-- ASN1STOP
```plaintext
MeasResultListEUTRA ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultEUTRA

MeasResultEUTRA ::= SEQUENCE {
 physCellId PhysCellId,
 cgi-Info SEQUENCE {
 cellGlobalId CellGlobalIdEUTRA,
 trackingAreaCode TrackingAreaCode,
 plmn-IdentityList PLMN-IdentityList2 OPTIONAL
 } OPTIONAL,
 measResult SEQUENCE {
 rsrpResult RSRP-Range OPTIONAL,
 rsrqResult RSRQ-Range OPTIONAL,
 ...,
 [[additionalSI-Info-r9 AdditionalSI-Info-r9 OPTIONAL
]]
 [[primaryPLMN-Suitable-r12 ENUMERATED {true} OPTIONAL
]]
 }
}

MeasResultServFreqList-r10 ::= SEQUENCE (SIZE (1..maxServCell-r10)) OF MeasResultServFreq-r10

MeasResultServFreq-r10 ::= SEQUENCE {
 servFreqId-r10 ServCellIndex-r10,
 measResultSCell-r10 SEQUENCE {
 rsrpResultSCell-r10 RSRP-Range,
 rsrqResultSCell-r10 RSRQ-Range
 } OPTIONAL,
 measResultBestNeighCell-r10 SEQUENCE {
 physCellId-r10 PhysCellId,
 rsrpResultNCell-r10 RSRP-Range,
 rsrqResultNCell-r10 RSRQ-Range
 } OPTIONAL,
 ... } OPTIONAL,
}

MeasResultListUTRA ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultUTRA

MeasResultUTRA ::= SEQUENCE {
 physCellId CHOICE {
 fdd PhysCellIdUTRA-FDD,
 tdd PhysCellIdUTRA-TDD
 },
 cgi-Info SEQUENCE {
 cellGlobalId CellGlobalIdUTRA,
 locationAreaCode BIT STRING (SIZE (16)) OPTIONAL,
 routingAreaCode BIT STRING (SIZE (8)) OPTIONAL,
 plmn-IdentityList PLMN-IdentityList2 OPTIONAL
 } OPTIONAL,
 measResult SEQUENCE {
 utra-RSCP INTEGER (-5..91) OPTIONAL,
 utra-EcNO INTEGER (0..49) OPTIONAL,
 ...,
 [[additionalSI-Info-r9 AdditionalSI-Info-r9 OPTIONAL
]]
 [[primaryPLMN-Suitable-r12 ENUMERATED {true} OPTIONAL
]]
 }
}

MeasResultListGERAN ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultGERAN

MeasResultGERAN ::= SEQUENCE {
 carrierFreq CarrierFreqGERAN,
 ... } OPTIONAL,
```

physCellId       PhysCellIdGERAN,
cgi-Info       SEQUENCE {
cellGlobalId      CellGlobalIdGERAN,
routingAreaCode      BIT STRING (SIZE (8))   OPTIONAL,
}               OPTIONAL,
measResult       SEQUENCE {  rssi        INTEGER (0..63),
...                }
}
MeasResultsCDMA2000 ::=    SEQUENCE {
preRegistrationStatusHRPD   BOOLEAN,
measResultListCDMA2000    MeasResultListCDMA2000
}
MeasResultListCDMA2000 ::=   SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultCDMA2000
MeasResultCDMA2000 ::= SEQUENCE {
physCellId       PhysCellIdCDMA2000,
cgi-Info       CellGlobalIdCDMA2000     OPTIONAL,
measResult       SEQUENCE {
pilotPnPhase      INTEGER (0..32767)    OPTIONAL,
pilotStrength      INTEGER (0..63),
...                }
}
MeasResultForECID-r9 ::=  SEQUENCE {
ue-RxTxTimeDiffResult-r9    INTEGER (0..4095),
currentSFN-r9       BIT STRING (SIZE (10))
}
PLMN-IdentityList2 ::=    SEQUENCE (SIZE (1..5)) OF PLMN-Identity
AdditionalSI-Info-r9 ::=   SEQUENCE {
csg-MemberStatus-r9    ENUMERATED {member}    OPTIONAL,
csg-Identity-r9      CSG-Identity      OPTIONAL
}
-- ASN1STOP

MeasResults field descriptions

csg-MemberStatus
Indicates whether or not the UE is a member of the CSG of the neighbour cell.
currentSFN
Indicates the current system frame number when receiving the UE Rx-Tx time difference measurement results from lower layer.
locationAreaCode
A fixed length code identifying the location area within a PLMN, as defined in TS 23.003 [27].
measId
Identifies the measurement identity for which the reporting is being performed.
measResult
Measured result of an E-UTRA cell;
Measured result of a UTRA cell;
Measured result of a GERAN cell or frequency; or
Measured result of a CDMA2000 cell.
Measured result of UE Rx–Tx time difference.
measResultListCDMA2000
List of measured results for the maximum number of reported best cells for a CDMA2000 measurement identity.
measResultListEUTRA
List of measured results for the maximum number of reported best cells for an E-UTRA measurement identity.
measResultListGERAN
List of measured results for the maximum number of reported best cells or frequencies for a GERAN measurement identity.
measResultListUTRA
List of measured results for the maximum number of reported best cells for a UTRA measurement identity.
measResultPCell
Measured result of the PCell.
measResultsCDMA2000
Contains the CDMA2000 HRPD pre-registration status and the list of CDMA2000 measurements.
**MeasResults field descriptions**

**MeasResultServFreqList**
Measured results of the serving frequencies: the measurement result of each SCell, if any, and of the best neighbouring cell on each serving frequency.

**pilotPnPhase**
Indicates the arrival time of a CDMA2000 pilot, measured relative to the UE’s time reference in units of PN chips, see C.S0005 [25]. This information is used in either SRVCC handover or enhanced 1xRTT CS fallback procedure to CDMA2000 1xRTT.

**pilotStrength**

**plmn-IdentityList**
The list of PLMN Identity read from broadcast information when the multiple PLMN Identities are broadcast.

**preRegistrationStatusHRPD**
Set to TRUE if the UE is currently pre-registered with CDMA2000 HRPD. Otherwise set to FALSE. This can be ignored by the eNB for CDMA2000 1xRTT.

**routingAreaCode**
The RAC identity read from broadcast information, as defined in TS 23.003 [27].

**rsrpResult**
Measured RSRP result of an E-UTRA cell. The rsrpResult is only reported if configured by the eNB.

**rsrqResult**
Measured RSRQ result of an E-UTRA cell. The rsrqResult is only reported if configured by the eNB.

**rssi**
GERAN Carrier RSSI. RXLEV is mapped to a value between 0 and 63. TS 45.008 [28]. When mapping the RXLEV value to the RLSI bit string, the first/leftmost bit of the bit string contains the most significant bit.

**ue-RxTxTimeDiffResult**
UE Rx-Tx time difference measurement result of the PCell, provided by lower layers. According to UE Rx-Tx time difference report mapping in TS 36.133 [16].

**utra-EcN0**
According to CPICH_Ec/No in TS 25.133 [29] for FDD. Fourteen spare values. The field is not present for TDD.

**utra-RSCP**

---

**QuantityConfig**

The IE QuantityConfig specifies the measurement quantities and layer 3 filtering coefficients for E-UTRA and inter-RAT measurements.

---

**QuantityConfig information element**

```asn1
-- ASN1START
QuantityConfig ::= SEQUENCE {
 quantityConfigEUTRA QuantityConfigEUTRA OPTIONAL, -- Need ON
 quantityConfigUTRA QuantityConfigUTRA OPTIONAL, -- Need ON
 quantityConfigGERAN QuantityConfigGERAN OPTIONAL, -- Need ON
 quantityConfigCDMA2000 QuantityConfigCDMA2000 OPTIONAL, -- Need ON
 ...,
 [[quantityConfigUTRA-v1020 QuantityConfigUTRA-v1020 OPTIONAL -- Need ON
]]
}

QuantityConfigEUTRA ::= SEQUENCE {
 filterCoefficientRSRP FilterCoefficient DEFAULT fc4,
 filterCoefficientRSRQ FilterCoefficient DEFAULT fc4
}

QuantityConfigUTRA ::= SEQUENCE {
 measQuantityUTRA-FDD ENUMERATED {cpich-RSCP, cpich-EcN0},
 measQuantityUTRA-TDD ENUMERATED {pccpch-RSCP},
 filterCoefficient FilterCoefficient DEFAULT fc4
}

QuantityConfigUTRA-v1020 ::= SEQUENCE {
 filterCoefficient2-FDD-r10 FilterCoefficient DEFAULT fc4
-- ASN1END
```
QuantityConfig field descriptions

- `filterCoefficient2-FDD` Specifies the filtering coefficient used for the UTRAN FDD measurement quantity, which is not included in `measQuantityUTRA-FDD`, when `reportQuantityUTRA-FDD` is present in `ReportConfigInterRAT`.
- `filterCoefficientRSRP` Specifies the filtering coefficient used for RSRP.
- `filterCoefficientRSRQ` Specifies the filtering coefficient used for RSRQ.
- `measQuantityCDMA2000` Measurement quantity used for CDMA2000 measurements. `pilotPnPhaseAndPilotStrength` is only applicable for `MeasObjectCDMA2000` of `cdma2000-Type = type1XRTT`.
- `measQuantityGERAN` Measurement quantity used for GERAN measurements.
- `measQuantityUTRA` Measurement quantity used for UTRA measurements.
- `quantityConfigEUTRA` Specifies filter configurations for E-UTRA measurements.
- `quantityConfigGERAN` Specifies quantity and filter configurations for GERAN measurements.
- `quantityConfigUTRA` Specifies quantity and filter configurations for UTRA measurements. Field `quantityConfigUTRA-v1020` is applicable only when `reportQuantityUTRA-FDD` is configured.

---

**ReportConfigEUTRA**

The IE `ReportConfigEUTRA` specifies criteria for triggering of an E-UTRA measurement reporting event. The E-UTRA measurement reporting events are labelled AN with N equal to 1, 2 and so on.

- Event A1: Serving becomes better than absolute threshold;
- Event A2: Serving becomes worse than absolute threshold;
- Event A3: Neighbour becomes amount of offset better than PCell;
- Event A4: Neighbour becomes better than absolute threshold;
- Event A5: PCell becomes worse than absolute threshold AND Neighbour becomes better than another absolute threshold.
- Event A6: Neighbour becomes amount of offset better than SCell.

---

**ReportConfigEUTRA**

**ReportConfigEUTRA information element**
ThresholdEUTRA ::= CHOICE{
  threshold-RSRP     RSRP-Range,
  threshold-RSRQ     RSRQ-Range
}

-- ASN1STOP
### ReportConfigEUTRA field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a3-Offset/ a6-Offset</strong></td>
<td>Offset value to be used in EUTRA measurement report triggering condition for event a3/ a6. The actual value is IE value * 0.5 dB.</td>
</tr>
<tr>
<td><strong>alternativeTimeToTrigger</strong></td>
<td>Indicates the time to trigger applicable for cells specified in altTTT-CellsToAddModList of the associated measurement object, if configured</td>
</tr>
<tr>
<td><strong>aN-ThresholdM</strong></td>
<td>Threshold to be used in EUTRA measurement report triggering condition for event number aN. If multiple thresholds are defined for event number aN, the thresholds are differentiated by M.</td>
</tr>
<tr>
<td><strong>eventId</strong></td>
<td>Choice of E-UTRA event triggered reporting criteria.</td>
</tr>
<tr>
<td><strong>maxReportCells</strong></td>
<td>Max number of cells, excluding the serving cell, to include in the measurement report.</td>
</tr>
<tr>
<td><strong>reportAmount</strong></td>
<td>Number of measurement reports applicable for triggerType event as well as for triggerType periodical. In case purpose is set to reportCGI only value 1 applies.</td>
</tr>
<tr>
<td><strong>reportOnLeave/ a6-ReportOnLeave</strong></td>
<td>Indicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.</td>
</tr>
<tr>
<td><strong>reportQuantity</strong></td>
<td>The quantities to be included in the measurement report. The value both means that both the rsrp and rsrq quantities are to be included in the measurement report.</td>
</tr>
<tr>
<td><strong>si-RequestForHO</strong></td>
<td>The field applies to the reportCGI functionality, and when the field is included, the UE is allowed to use autonomous gaps in acquiring system information from the neighbour cell, applies a different value for T321, and includes different fields in the measurement report.</td>
</tr>
<tr>
<td><strong>ThresholdEUTRA</strong></td>
<td>For RSRP: RSRP based threshold for event evaluation. The actual value is IE value – 140 dBm. For RSRQ: RSRQ based threshold for event evaluation. The actual value is (IE value – 40)/2 dB. EUTRAN configures the same threshold quantity for all the thresholds of an event.</td>
</tr>
<tr>
<td><strong>timeToTrigger</strong></td>
<td>Time during which specific criteria for the event needs to be met in order to trigger a measurement report.</td>
</tr>
<tr>
<td><strong>triggerQuantity</strong></td>
<td>The quantity used to evaluate the triggering condition for the event. EUTRAN sets the value according to the quantity of the ThresholdEUTRA for this event. The values rsrp and rsrq correspond to Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ), see TS 36.214 [48].</td>
</tr>
<tr>
<td><strong>useT312</strong></td>
<td>This field applies to the event functionality, and when this field is included, the UE shall use the timer T312 with the value t312-r12 as specified in the corresponding measObject. If the corresponding measObject does not include the timer T312 then the timer T312 is considered as not configured.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>reportCGI</td>
<td>The field is optional, need OR, in case purpose is included and set to reportCGI; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
<tr>
<td>event</td>
<td>The field is optional, need OR, in case triggerType is set to event; otherwise the field is not present.</td>
</tr>
</tbody>
</table>

---

**ReportConfigId**

The IE ReportConfigId is used to identify a measurement reporting configuration.

**ReportConfigId information element**

```plaintext
-- ASN1START
ReportConfigId ::= INTEGER (1..maxReportConfigId)
-- ASN1STOP
```
The IE `ReportConfigInterRAT` specifies criteria for triggering of an inter-RAT measurement reporting event. The inter-RAT measurement reporting events are labelled B\text{N} with \textit{N} equal to 1, 2 and so on.

**Event B1:** Neighbour becomes better than absolute threshold;

**Event B2:** PCell becomes worse than absolute threshold1 AND Neighbour becomes better than another absolute threshold2.

The \textit{b1} and \textit{b2} event thresholds for CDMA2000 are the CDMA2000 pilot detection thresholds are expressed as an unsigned binary number equal to \([-2 \times 10 \log_{10} \frac{E_c}{I_o}\]) in units of 0.5dB, see C.S0005 [25] for details.

### ReportConfigInterRAT information element

```plaintext
ReportConfigInterRAT ::= SEQUENCE {
 triggerType CHOICE {
 event SEQUENCE {
 eventId CHOICE {
 eventB1 SEQUENCE {
 b1-Threshold CHOICE {
 b1-ThresholdUTRA ThresholdUTRA,
 b1-ThresholdGERAN ThresholdGERAN,
 b1-ThresholdCDMA2000 ThresholdCDMA2000
 }
 },
 eventB2 SEQUENCE {
 b2-Threshold1 ThresholdEUTRA,
 b2-Threshold2 CHOICE {
 b2-Threshold2UTRA ThresholdUTRA,
 b2-Threshold2GERAN ThresholdGERAN,
 b2-Threshold2CDMA2000 ThresholdCDMA2000
 }
 }
 }
 },
 hysteresis Hysteresis,
 timeToTrigger TimeToTrigger
 },
 periodical SEQUENCE {
 purpose ENUMERATED {
 reportStrongestCells,
 reportStrongestCellsForSON,
 reportCGI
 }
 },
 maxReportCells INTEGER (1..maxCellReport),
 reportInterval ReportInterval,
 reportAmount ENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity},
 ...,
 [[si-RequestForHO-r9 ENUMERATED {setup} OPTIONAL -- Cond reportCGI]],
 [[reportQuantityUTRA-FDD-r10 ENUMERATED {both} OPTIONAL -- Need OR]],
 [[includeLocationInfo-r11 BOOLEAN OPTIONAL -- Need ON]]
}
ThresholdUTRA ::= CHOICE{
 utra-RSCP INTEGER (-5..91),
 utra-EcN0 INTEGER (0..49)
}
ThresholdGERAN ::= INTEGER (0..63)
ThresholdCDMA2000 ::= INTEGER (0..63)
```
ReportConfigInterRAT field descriptions

<table>
<thead>
<tr>
<th>bN-ThresholdM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold to be used in inter RAT measurement report triggering condition for event number bN. If multiple thresholds are defined for event number bN, the thresholds are differentiated by M.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eventId</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of inter-RAT event triggered reporting criteria.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>maxReportCells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max number of cells, excluding the serving cell, to include in the measurement report. In case purpose is set to reportStrongestCellsForSON only value 1 applies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>reportStrongestCellsForSON applies only in case reportConfig is linked to a measObject set to measObjectUTRA or measObjectCDMA2000.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>reportAmount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of measurement reports applicable for triggerType event as well as for triggerType periodical. In case purpose is set to reportCGI or reportStrongestCellsForSON only value 1 applies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>reportQuantityUTRA-FDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>The quantities to be included in the UTRA measurement report. The value both means that both the cpich RSCP and cpich EcN0 quantities are to be included in the measurement report.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>si-RequestForHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>The field applies to the reportCGI functionality, and when the field is included, the UE is allowed to use autonomous gaps in acquiring system information from the neighbour cell, applies a different value for T321, and includes different fields in the measurement report.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ThresholdGERAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>The actual value is IE value – 110 dBm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>utra-RSCP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>utra-EcN0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corresponds to CPICH_Ec/No in TS 25.133 [29] for FDD, and is not applicable for TDD.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>timeToTrigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time during which specific criteria for the event needs to be met in order to trigger a measurement report.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>reportCGI</td>
<td>The field is optional, need OR, in case purpose is included and set to reportCGI; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

-- ReportConfigToAddModList

The IE ReportConfigToAddModList concerns a list of reporting configurations to add or modify

--- ReportConfigToAddModList information element

```
-- ASN1START
ReportConfigToAddModList ::= SEQUENCE (SIZE (1..maxReportConfigId)) OF ReportConfigToAddMod

ReportConfigToAddMod ::= SEQUENCE {
 reportConfigId ReportConfigId,
 reportConfig CHOICE {
 reportConfigEUTRA ReportConfigEUTRA,
 reportConfigInterRAT ReportConfigInterRAT
 }
}

-- ASN1STOP
```

-- ReportInterval

The ReportInterval indicates the interval between periodical reports. The ReportInterval is applicable if the UE performs periodical reporting (i.e. when reportAmount exceeds 1), for triggerType event as well as for triggerType periodical. Value ms120 corresponds with 120 ms, ms240 corresponds with 240 ms and so on, while value min1 corresponds with 1 min, min6 corresponds with 6 min and so on.
ReportInterval information element

---

ReportInterval ::= ENUMERATED { ms120, ms240, ms480, ms640, ms1024, ms2048, ms5120, ms10240, min1, min6, min12, min30, min60, spare3, spare2, spare1 }

---

- RSRP-Range

The IE RSRP-Range specifies the value range used in RSRP measurements and thresholds. Integer value for RSRP measurements according to mapping table in TS 36.133 [16].

RSRP-Range information element

---

RSRP-Range ::= INTEGER(0..97)

---

- RSRQ-Range

The IE RSRQ-Range specifies the value range used in RSRQ measurements and thresholds. Integer value for RSRQ measurements according to mapping table in TS 36.133 [16].

RSRQ-Range information element

---

RSRQ-Range ::= INTEGER(0..34)

---

- TimeToTrigger

The IE TimeToTrigger specifies the value range used for time to trigger parameter, which concerns the time during which specific criteria for the event needs to be met in order to trigger a measurement report. Value ms0 corresponds to 0 ms, ms40 corresponds to 40 ms, and so on.

TimeToTrigger information element

---

TimeToTrigger ::= ENUMERATED { ms0, ms40, ms64, ms80, ms100, ms128, ms160, ms256, ms320, ms480, ms512, ms640, ms1024, ms1280, ms2560, ms5120 }

---
6.3.6 Other information elements

- **AbsoluteTimeInfo**

The IE **AbsoluteTimeInfo** indicates an absolute time in a format YY-MM-DD HH:MM:SS and using BCD encoding. The first/leftmost bit of the bit string contains the most significant bit of the most significant digit of the year and so on.

**AbsoluteTimeInfo** information element

| -- ASN1START |
| AbsoluteTimeInfo-r10 ::= BIT STRING (SIZE (48)) |
| -- ASN1STOP |

- **AreaConfiguration**

The **AreaConfiguration** indicates area for which UE is requested to perform measurement logging. If not configured, measurement logging is not restricted to specific cells or tracking areas but applies as long as the RPLMN is contained in plmn-IdentityList stored in VarLogMeasReport.

**AreaConfiguration** information element

| -- ASN1START |
| AreaConfiguration-r10 ::= CHOICE {
|   cellGlobalIdList-r10 CellGlobalIdList-r10, TrackingAreaCodeList-r10 |
| } |
| AreaConfiguration-v1130 ::= SEQUENCE {
|   trackingAreaCodeList-v1130 TrackingAreaCodeList-v1130 |
| } |
| CellGlobalIdList-r10 ::= SEQUENCE (SIZE (1..32)) OF CellGlobalIdEUTRA |
| TrackingAreaCodeList-r10 ::= SEQUENCE (SIZE (1..8)) OF TrackingAreaCode |
| TrackingAreaCodeList-v1130 ::= SEQUENCE {
|   plmn-Identity-perTAC-List-r11 SEQUENCE (SIZE (1..8)) OF PLMN-Identity |
| } |
| -- ASN1STOP |

**AreaConfiguration** field descriptions

**plmn-Identity-perTAC-List** includes the PLMN identity for each of the TA codes included in trackingAreaCodeList. The PLMN identity listed first in plmn-Identity-perTAC-List corresponds with the TA code listed first in trackingAreaCodeList and so on.

- **C-RNTI**

The IE **C-RNTI** identifies a UE having a RRC connection within a cell.

**C-RNTI** information element

| -- ASN1START |
| C-RNTI ::= BIT STRING (SIZE (16)) |
| -- ASN1STOP |
– **DedicatedInfoCDMA2000**

The *DedicatedInfoCDMA2000* is used to transfer UE specific CDMA2000 information between the network and the UE. The RRC layer is transparent for this information.

**DedicatedInfoCDMA2000 information element**

```
-- ASN1START
DedicatedInfoCDMA2000 ::= OCTET STRING
-- ASN1STOP
```

– **DedicatedInfoNAS**

The IE *DedicatedInfoNAS* is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for this information.

**DedicatedInfoNAS information element**

```
-- ASN1START
DedicatedInfoNAS ::= OCTET STRING
-- ASN1STOP
```

– **FilterCoefficient**

The IE *FilterCoefficient* specifies the measurement filtering coefficient. Value *fc0* corresponds to $k = 0$, *fc1* corresponds to $k = 1$, and so on.

**FilterCoefficient information element**

```
-- ASN1START
FilterCoefficient ::= ENUMERATED {
 fc0, fc1, fc2, fc3, fc4, fc5,
 fc6, fc7, fc8, fc9, fc11, fc13,
 fc15, fc17, fc19, spare1, ...}
-- ASN1STOP
```

– **LoggingDuration**

The *LoggingDuration* indicates the duration for which UE is requested to perform measurement logging. Value *min10* corresponds to 10 minutes, value *min20* corresponds to 20 minutes and so on.

**LoggingDuration information element**

```
-- ASN1START
LoggingDuration-r10 ::= ENUMERATED {
 min10, min20, min40, min60, min90, min120, spare2, spare1}
-- ASN1STOP
```
LoggingInterval

The **LoggingInterval** indicates the periodicity for logging measurement results. Value ms1280 corresponds to 1.28s, value ms2560 corresponds to 2.56s and so on.

**LoggingInterval information element**

```asn1
LoggingInterval-r10 ::= ENUMERATED {
 ms1280, ms2560, ms5120, ms10240, ms20480,
 ms30720, ms40960, ms61440}
```

MeasSubframePattern

The IE **MeasSubframePattern** is used to specify a subframe pattern. The first/leftmost bit corresponds to the subframe #0 of the radio frame satisfying SFN mod x = 0, where SFN is that of PCell and x is the size of the bit string divided by 10. "1" denotes that the corresponding subframe is used.

**MeasSubframePattern information element**

```asn1
MeasSubframePattern-r10 ::= CHOICE {
 subframePatternFDD-r10 BIT STRING (SIZE (40)),
 subframePatternTDD-r10 CHOICE {
 subframeConfig1-5-r10 BIT STRING (SIZE (20)),
 subframeConfig0-r10 BIT STRING (SIZE (70)),
 subframeConfig6-r10 BIT STRING (SIZE (60)),
 ...
 },
 ...
}
```

MMEC

The IE **MMEC** identifies an MME within the scope of an MME Group within a PLMN, see TS 23.003 [27].

**MMEC information element**

```asn1
MMEC ::= BIT STRING (SIZE (8))
```

NeighCellConfig

The IE **NeighCellConfig** is used to provide the information related to MBSFN and TDD UL/DL configuration of neighbour cells.

**NeighCellConfig information element**

```asn1
NeighCellConfig ::= BIT STRING (SIZE (2))
```
### NeighCellConfig field descriptions

**neighCellConfig**  
Provides information related to MBSFN and TDD UL/DL configuration of neighbour cells of this frequency  
00: Not all neighbour cells have the same MBSFN subframe allocation as the serving cell on this frequency, if configured, and as the PCell otherwise  
10: The MBSFN subframe allocations of all neighbour cells are identical to or subsets of that in the serving cell on this frequency, if configured, and of that in the PCell otherwise  
01: No MBSFN subframes are present in all neighbour cells  
11: Different UL/DL allocation in neighbouring cells for TDD compared to the serving cell on this frequency, if configured, and compared to the PCell otherwise  

For TDD, 00, 10 and 01 are only used for same UL/DL allocation in neighbouring cells compared to the serving cell on this frequency, if configured, and compared to the PCell otherwise.

---

**OtherConfig**

The IE *OtherConfig* contains configuration related to other configuration

### OtherConfig information element

```asn1
-- ASN1START

OtherConfig-r9 ::= SEQUENCE {
 reportProximityConfig-r9 ReportProximityConfig-r9 OPTIONAL, -- Need ON
 ...
 [idc-Config-r11 IDC-Config-r11 OPTIONAL, -- Need ON
 powerPrefIndicationConfig-r11 PowerPrefIndicationConfig-r11 OPTIONAL, -- Need ON
 obtainLocationConfig-r11 ObtainLocationConfig-r11 OPTIONAL -- Need ON
]
}

IDC-Config-r11 ::= SEQUENCE {
 idc-Indication-r11 ENUMERATED {setup} OPTIONAL, -- Need OR
 autonomousDenialParameters-r11 SEQUENCE {
 autonomousDenialSubframes-r11 ENUMERATED {n2, n5, n10, n15, n20, n30, spare2, spare1},
 autonomousDenialValidity-r11 ENUMERATED {sf200, sf500, sf1000, sf2000, spare4, spare3, spare2, spare1}
 } OPTIONAL, -- Need OR
}

ObtainLocationConfig-r11 ::= SEQUENCE {
 obtainLocation-r11 ENUMERATED {setup} OPTIONAL -- Need OR
}

PowerPrefIndicationConfig-r11 ::= CHOICE{
 release NULL,
 setup SEQUENCE {
 powerPrefIndicationTimer-r11 ENUMERATED {s0, s0dot5, s1, s2, s5, s10, s20, s30, s60, s90, s120, s300, s600, spare3, spare2, spare1}
 }
}

ReportProximityConfig-r9 ::= SEQUENCE {
 proximityIndicationEUTRA-r9 ENUMERATED {enabled} OPTIONAL, -- Need OR
 proximityIndicationUTRA-r9 ENUMERATED {enabled} OPTIONAL -- Need OR
}

-- ASN1STOP
```
OtherConfig field descriptions

autonomousDenialSubframes
Indicates the maximum number of the UL subframes for which the UE is allowed to deny any UL transmission. Value n2 corresponds to 2 subframes, n5 to 5 subframes and so on.

autonomousDenialValidity
Indicates the validity period over which the UL autonomous denial subframes shall be counted. Value sf200 corresponds to 200 subframes, sf500 corresponds to 500 subframes and so on.

idc-Indication
The field is used to indicate whether the UE is configured to initiate transmission of the InDeviceCoexIndication message to the network.

obtainLocation
Requests the UE to attempt to have detailed location information available using GNSS. E-UTRAN configures the field only if includeLocationInfo is configured for one or more measurements.

powerPrefIndicationTimer
Prohibit timer for Power Preference Indication reporting. Value in seconds. Value s0 means prohibit timer is set to 0 second or not set, value s0dot5 means prohibit timer is set to 0.5 second, value s1 means prohibit timer is set to 1 second and so on.

reportProximityConfig
Indicates, for each of the applicable RATs (EUTRA, UTRA), whether or not proximity indication is enabled for CSG member cell(s) of the concerned RAT. Note.

NOTE: Enabling/ disabling of proximity indication includes enabling/ disabling of the related functionality e.g. autonomous search in connected mode.

— RAND-CDMA2000 (1xRTT)
The RAND-CDMA2000 concerns a random value, generated by the eNB, to be passed to the CDMA2000 upper layers.

RAND-CDMA2000 information element

-- ASN1START
RAND-CDMA2000 ::= BIT STRING (SIZE (32))
-- ASN1STOP

— RAT-Type
The IE RAT-Type is used to indicate the radio access technology (RAT), including E-UTRA, of the requested/ transferred UE capabilities.

RAT-Type information element

-- ASN1START
RAT-Type ::= ENUMERATED {
eutra, utra, geran-cs, geran-ps, cdma2000-1XRTT, spare3, spare2, spare1, ...
}
-- ASN1STOP

— RRC-TransactionIdentifier
The IE RRC-TransactionIdentifier is used, together with the message type, for the identification of an RRC procedure (transaction).

RRC-TransactionIdentifier information element

-- ASN1START
RRC-TransactionIdentifier ::= INTEGER (0..3)
S-TMSI

The IE S-TMSI contains an S-Temporary Mobile Subscriber Identity, a temporary UE identity provided by the EPC which uniquely identifies the UE within the tracking area, see TS 23.003 [27].

S-TMSI information element

```
S-TMSI ::= SEQUENCE {
 mmec MMEC,
 m-TMSI BIT STRING (SIZE (32))
}
```

S-TMSI field descriptions

m-TMSI
The first/leftmost bit of the bit string contains the most significant bit of the M-TMSI.

TraceReference

The TraceReference contains parameter Trace Reference as defined in TS 32.422 [58].

TraceReference information element

```
TraceReference-r10 ::= SEQUENCE {
 plmn-Identity-r10 PLMN-Identity,
 traceId-r10 OCTET STRING (SIZE (3))
}
```

UE-CapabilityRAT-ContainerList

The IE UE-CapabilityRAT-ContainerList contains list of containers, one for each RAT for which UE capabilities are transferred, if any.

UE-CapabilityRAT-ContainerList information element

```
UE-CapabilityRAT-ContainerList ::=SEQUENCE (SIZE (0..maxRAT-Capabilities)) OF UE-CapabilityRAT-Container
UE-CapabilityRAT-Container ::= SEQUENCE {
 rat-Type RAT-Type,
 ueCapabilityRAT-Container OCTET STRING
}
```
**UECapabilityRAT-ContainerList field descriptions**

**ueCapabilityRAT-Container**

Container for the UE capabilities of the indicated RAT. The encoding is defined in the specification of each RAT:
- For E-UTRA: the encoding of UE capabilities is defined in IE **UE-EUTRA-Capability**.
- For UTRA: the octet string contains the INTER RAT HANDOVER INFO message defined in TS 25.331 [19].
- For GERAN CS: the octet string contains the concatenated string of the Mobile Station Classmark 2 and Mobile Station Classmark 3. The first 5 octets correspond to Mobile Station Classmark 2 and the following octets correspond to Mobile Station Classmark 3. The Mobile Station Classmark 2 is formatted as 'TLV' and is coded in the same way as the **Mobile Station Classmark 2** information element in TS 24.008 [49]. The first octet is the Mobile station classmark 2 IE and its value shall be set to 33H. The second octet is the Length of mobile station classmark 2 and its value shall be set to 3. The octet 3 contains the first octet of the value part of the Mobile Station Classmark 2 information element, the octet 4 contains the second octet of the value part of the **Mobile Station Classmark 2** information element and so on. For each of these octets, the first/ leftmost/ most significant bit of the octet contains b8 of the corresponding octet of the Mobile Station Classmark 2. The Mobile Station Classmark 3 is formatted as 'V' and is coded in the same way as the value part in the **Mobile station classmark 3** information element in TS 24.008 [49]. The sixth octet of this octet string contains octet 1 of the value part of **Mobile station classmark 3**, the seventh octet of this octet string contains octet 2 of the value part of **Mobile station classmark 3** and so on. Note. For GERAN PS: the encoding of UE capabilities is formatted as 'V' and is coded in the same way as the value part in the **MS Radio Access Capability** information element in TS 24.008 [49].
- For CDMA2000-1XRTT: the octet string contains the A21 Mobile Subscription Information and the encoding of this is defined in A.50008 [49]. The A21 Mobile Subscription Information contains the supported CDMA2000 1xRTT band class and band sub-class information.

**NOTE:** The value part is specified by means of CSN.1, which encoding results in a bit string, to which final padding may be appended up to the next octet boundary TS 24.008 [49]. The first/ leftmost bit of the CSN.1 bit string is placed in the first/ leftmost/ most significant bit of the first octet. This continues until the last bit of the CSN.1 bit string, which is placed in the last/ rightmost/ least significant bit of the last octet.

---

**UE-EUTRA-Capability**

The IE **UE-EUTRA-Capability** is used to convey the E-UTRA UE Radio Access Capability Parameters, see TS 36.306 [5], and the Feature Group Indicators for mandatory features (defined in Annexes B.1 and C.1) to the network. The IE **UE-EUTRA-Capability** is transferred in E-UTRA or in another RAT.

### UE-EUTRA-Capability information element

#### -- ASN1START

```asn1
UE-EUTRA-Capability ::= SEQUENCE {
 accessStratumRelease AccessStratumRelease,
 ue-Category INTEGER (1..5),
 pdcp-Parameters PDCP-Parameters,
 physLayerParameters PhyLayerParameters,
 rf-Parameters RF-Parameters,
 measParameters MeasParameters,
 featureGroupIndicators BIT STRING (SIZE (32)) OPTIONAL,
 interRAT-Parameters SEQUENCE {
 utraFDD IRAT-ParametersUTRA-FDD OPTIONAL,
 utraTDD128 IRAT-ParametersUTRA-TDD128 OPTIONAL,
 utraTDD384 IRAT-ParametersUTRA-TDD384 OPTIONAL,
 utraTDD768 IRAT-ParametersUTRA-TDD768 OPTIONAL,
 geran IRAT-ParametersGERAN OPTIONAL,
 cdma2000-HRPD IRAT-ParametersCDMA2000-HRPD OPTIONAL,
 cdma2000-1xRTT IRAT-ParametersCDMA2000-1xRTT OPTIONAL
 },

 nonCriticalExtension UE-EUTRA-Capability-v920-IEs OPTIONAL
}
```

#### -- Late non critical extensions

```asn1
UE-EUTRA-Capability-v9a0-IEs ::= SEQUENCE {
 featureGroupIndRel9Add-r9 BIT STRING (SIZE (32)) OPTIONAL,
 fdd-Add-UE-EUTRA-Capabilities-r9 UE-EUTRA-CapabilityAddXDD-Mode-r9 OPTIONAL,
 tdd-Add-UE-EUTRA-Capabilities-r9 UE-EUTRA-CapabilityAddXDD-Mode-r9 OPTIONAL,
 noncriticalExtension UE-EUTRA-Capability-v9c0-IEs OPTIONAL
}
```

```asn1
UE-EUTRA-Capability-v9c0-IEs ::= SEQUENCE {
 interRAT-ParametersUTRA-v9c0 IRAT-ParametersUTRA-v9c0 OPTIONAL,

 nonCriticalExtension UE-EUTRA-Capability-v9d0-IEs OPTIONAL
}
```

---

[TS 36.331 V12.3.0 (2014-09)]

ETSI
UE-EUTRA-Capability-v9d0-IEs ::= SEQUENCE {
    phyLayerParameters-v9d0    PhyLayerParameters-v9d0    OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v9e0-IEs     OPTIONAL
}

UE-EUTRA-Capability-v9e0-IEs ::= SEQUENCE {
    rf-Parameters-v9e0     RF-Parameters-v9e0    OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v9h0-IEs     OPTIONAL
}

UE-EUTRA-Capability-v9h0-IEs ::= SEQUENCE {
    interRAT-ParametersUTRA-v9h0    IRAT-ParametersUTRA-v9h0    OPTIONAL,
    -- Following field is only to be used for late REL-9 extensions
    lateNonCriticalExtension    OCTET STRING     OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v10c0-IEs     OPTIONAL
}

UE-EUTRA-Capability-v920-IEs ::= SEQUENCE {
    phyLayerParameters-v920    PhyLayerParameters-v920,
    interRAT-ParametersGERAN-v920    IRAT-ParametersGERAN-v920,
    interRAT-ParametersUTRA-v920    IRAT-ParametersUTRA-v920    OPTIONAL,
    IRAT-ParametersCDMA2000-v920    IRAT-ParametersCDMA2000-1XRTT-v920    OPTIONAL,
    deviceType-r9    ENUMERATED {noBenFromBatConsumpOpt}     OPTIONAL,
    csg-ProximityIndicationParameters-r9    CSG-ProximityIndicationParameters-r9,
    neighCellSI-AcquisitionParameters-r9    NeighCellSI-AcquisitionParameters-r9,
    son-Parameters-r9    SON-Parameters-r9,
    nonCriticalExtension    UE-EUTRA-Capability-v940-IEs     OPTIONAL
}

UE-EUTRA-Capability-v940-IEs ::= SEQUENCE {
    lateNonCriticalExtension    OCTET STRING (CONTAINING UE-EUTRA-Capability-v9a0-IEs)     OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v1020-IEs     OPTIONAL
}

UE-EUTRA-Capability-v1020-IEs ::= SEQUENCE {
    ue-Category-v1020     INTEGER (6..8)       OPTIONAL,
    phyLayerParameters-v1020    PhyLayerParameters-v1020,
    rf-Parameters-v1020     RF-Parameters-v1020    OPTIONAL,
    measParameters-v1020    MeasParameters-v1020,
    featureGroupIndRel10-r10    BIT STRING (SIZE (32))     OPTIONAL,
    IRAT-ParametersCDMA2000-v1020    IRAT-ParametersCDMA2000-1XRTT-v1020    OPTIONAL,
    UE-BasedNetwPerfMemsParameters-r10    UE-BasedNetwPerfMemsParameters-r10,
    interRAT-ParametersUTRA-TDD-v1020    IRAT-ParametersUTRA-TDD-v1020    OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v1060-IEs     OPTIONAL
}

UE-EUTRA-Capability-v1060-IEs ::= SEQUENCE {
    fdd-Add-UE-EUTRA-Capabilities-v1060    UE-EUTRA-CapabilityAddXDD-Mode-v1060     OPTIONAL,
    tdd-Add-UE-EUTRA-Capabilities-v1060    UE-EUTRA-CapabilityAddXDD-Mode-v1060     OPTIONAL,
    rf-Parameters-v1060     RF-Parameters-v1060    OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v1090-IEs     OPTIONAL
}

UE-EUTRA-Capability-v1090-IEs ::= SEQUENCE {
    rf-Parameters-v1090     RF-Parameters-v1090    OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v1130-IEs     OPTIONAL
}

UE-EUTRA-Capability-v1130-IEs ::= SEQUENCE {
    PDCP-Parameters-v1130    PDCP-Parameters-v1130,
    phyLayerParameters-v1130    PhyLayerParameters-v1130,
    rf-Parameters-v1130     RF-Parameters-v1130    OPTIONAL,
    measParameters-v1130    MeasParameters-v1130,
    interRAT-ParametersCDMA2000-v1130    IRAT-ParametersCDMA2000-v1130,
    Other-Parameters-r11    Other-Parameters-r11,
    fdd-Add-UE-EUTRA-Capabilities-v1130    UE-EUTRA-CapabilityAddXDD-Mode-v1130     OPTIONAL,
    tdd-Add-UE-EUTRA-Capabilities-v1130    UE-EUTRA-CapabilityAddXDD-Mode-v1130     OPTIONAL,
    nonCriticalExtension    UE-EUTRA-Capability-v1170-IEs     OPTIONAL
}
UE-EUTRA-Capability-v1170-IEs ::= SEQUENCE {
  phyLayerParameters-v1170 PhyLayerParameters-v1170 OPTIONAL,
  ue-Category-v1170 INTEGER (9..10) OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v1180-IEs OPTIONAL
}

UE-EUTRA-Capability-v1180-IEs ::= SEQUENCE {
  rf-Parameters-v1180 RF-Parameters-v1180 OPTIONAL,
  mbms-Parameters-r11 MBMS-Parameters-r11 OPTIONAL,
  tdd-Add-UE-EUTRA-Capabilities-v1180 UE-EUTRA-CapabilityAddXDD-Mode-v1180 OPTIONAL,
  nonCriticalExtension UE-EUTRA-Capability-v12xy-IEs OPTIONAL
}

UE-EUTRA-Capability-v12xy-IEs ::= SEQUENCE {
  phyLayerParameters-v12xy PhyLayerParameters-v12xy OPTIONAL,
  rlc-Parameters-r12    RLC-Parameters-r12 OPTIONAL,
  ue-BasedNetwPerfMeasParameters-v12xy UE-BasedNetwPerfMeasParameters-v12xy OPTIONAL,
  measParameters-v12xy  MeasParameters-v12xy OPTIONAL,
  nonCriticalExtension  SEQUENCE {} OPTIONAL
}

UE-EUTRA-CapabilityAddXDD-Mode-r9 ::= SEQUENCE {
  phyLayerParameters-r9 PhyLayerParameters-r9 OPTIONAL,
  featureGroupIndicators-r9 BIT STRING (SIZE (32)) OPTIONAL,
  featureGroupIndRel9Add-r9 BIT STRING (SIZE (32)) OPTIONAL,
  interRAT-ParametersGERAN-r9 IRAT-ParametersGERAN-r9 OPTIONAL,
  interRAT-ParametersUTRA-r9 IRAT-ParametersUTRA-r9 OPTIONAL,
  interRAT-ParametersCDMA2000-r9 IRAT-ParametersCDMA2000-r9 OPTIONAL,
  neighCellSI-AcquisitionParameters-r9 NeighCellSI-AcquisitionParameters-r9 OPTIONAL,
  ...}

UE-EUTRA-CapabilityAddXDD-Mode-v1060 ::= SEQUENCE {
  phyLayerParameters-v1060 PhyLayerParameters-v1060 OPTIONAL,
  featureGroupIndRel10-v1060 BIT STRING (SIZE (32)) OPTIONAL,
  interRAT-ParametersCDMA2000-v1060 IRAT-ParametersCDMA2000-v1060 OPTIONAL,
  interRAT-ParametersUTRA-TDD-v1060 IRAT-ParametersUTRA-TDD-v1060 OPTIONAL,
  ...}

UE-EUTRA-CapabilityAddXDD-Mode-v1130 ::= SEQUENCE {
  phyLayerParameters-v1130 PhyLayerParameters-v1130 OPTIONAL,
  meausParameters-v1130 MeasParameters-v1130 OPTIONAL,
  otherParameters-r11 Other-Parameters-r11 OPTIONAL,
  ...}

UE-EUTRA-CapabilityAddXDD-Mode-v1180 ::= SEQUENCE {
  mbms-Parameters-r11 MBMS-Parameters-r11}

AccessStratumRelease ::= ENUMERATED {
  rel8, rel9, rel10, rel11, spare4, spare3, spare2, spare1, ...}
PDCP-Parameters-v1130 ::= SEQUENCE {
  pdcp-SN-Extension-r11  ENUMERATED {supported} OPTIONAL,
  supportRohcContextContinue-r11 ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters ::= SEQUENCE {
  ue-TxAntennaSelectionSupported BOOLEAN,
  ue-SpecificRefSigsSupported BOOLEAN
}

PhyLayerParameters-v920 ::= SEQUENCE {
  enhancedDualLayerFDD-r9  ENUMERATED {supported} OPTIONAL,
  enhancedDualLayerTDD-r9  ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters-v9d0 ::= SEQUENCE {
  tm5-FDD-r9  ENUMERATED {supported} OPTIONAL,
  tm5-TDD-r9  ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters-v1020 ::= SEQUENCE {
  twoAntennaPortsForPUCCH-r10  ENUMERATED {supported} OPTIONAL,
  tm9-With-8Tx-FDD-r10  ENUMERATED {supported} OPTIONAL,
  pmi-Disabling-r10  ENUMERATED {supported} OPTIONAL,
  crossCarrierScheduling-r10  ENUMERATED {supported} OPTIONAL,
  simultaneousPUCCH-PUSCH-r10  ENUMERATED {supported} OPTIONAL,
  enhancedDualLayerFDD-r9  ENUMERATED {supported} OPTIONAL,
  enhancedDualLayerTDD-r9  ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters-v1130 ::= SEQUENCE {
  crs-InterfHandl-r11  ENUMERATED {supported} OPTIONAL,
  ePDCCH-r11  ENUMERATED {supported} OPTIONAL,
  multiACK-CSI-Reporting-r11  ENUMERATED {supported} OPTIONAL,
  ss-CCN-InterfHandl-r11  ENUMERATED {supported} OPTIONAL,
  tdd-SpecialSubframe-r11  ENUMERATED {supported} OPTIONAL,
  txDiv-PUCCH1b-ChSelect-r11  ENUMERATED {supported} OPTIONAL,
  ul-CoMP-r11  ENUMERATED {supported} OPTIONAL
}

PhyLayerParameters-v1170 ::= SEQUENCE {
  interBandTDD-CA-WithDifferentConfig-r11  BIT STRING (SIZE (2)) OPTIONAL
}

PhyLayerParameters-v12xy ::= SEQUENCE {
  e-HARQ-Pattern-FDD-r12  ENUMERATED {supported} OPTIONAL,
  tdd-FDD-CA-PCellDuplex-r12  BIT STRING (SIZE (2)) OPTIONAL,
  phy-TDD-ReConfig-TDPPCell-r12  ENUMERATED {supported} OPTIONAL,
  phy-TDD-ReConfig-FDPPCell-r12  ENUMERATED {supported} OPTIONAL,
  pusch-SRS-PowerControl-SubframeSet-r12  ENUMERATED {supported} OPTIONAL,
  csi-SubframeSet-r12  ENUMERATED {supported} OPTIONAL
}

NonContiguousUL-RA-WithinCC-List-r10 ::= SEQUENCE (SIZE (1..maxBands)) OF NonContiguousUL-RA-WithinCC-List-r10 OPTIONAL

NonContiguousUL-RA-WithinCC-r10 ::= SEQUENCE {
  nonContiguousUL-RA-WithinCC-Info-r10  ENUMERATED {supported} OPTIONAL
}

RF-Parameters ::= SEQUENCE {
  supportedBandListEUTRA SupportedBandListEUTRA
}

RF-Parameters-v9e0 ::= SEQUENCE {
  supportedBandListEUTRA-v9e0 SupportedBandListEUTRA-v9e0 OPTIONAL
}

RF-Parameters-v1020 ::= SEQUENCE {
  supportedBandCombination-r10 SupportedBandCombination-r10
}

RF-Parameters-v1060 ::= SEQUENCE {

}
supportedBandCombinationExt-r10 SupportedBandCombinationExt-r10

}  
RF-Parameters-v1090 ::= SEQUENCE {  
supportedBandCombination-v1090 SupportedBandCombination-v1090 OPTIONAL
}

RF-Parameters-v1130 ::= SEQUENCE {  
supportedBandCombination-v1130 SupportedBandCombination-v1130 OPTIONAL
}

RF-Parameters-v1180 ::= SEQUENCE {  
freqBandRetrieval-r11 ENUMERATED {supported} OPTIONAL,  
requestedBands-r11 SEQUENCE (SIZE (1.. maxBands)) OF FreqBandIndicator-r11 OPTIONAL,  
supportedBandCombinationAdd-r11 SupportedBandCombinationAdd-r11 OPTIONAL
}

SupportedBandCombination-r10 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-r10

SupportedBandCombinationExt-r10 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParametersExt-r10

SupportedBandCombination-v1090 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1090

SupportedBandCombination-v1130 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandCombinationParameters-v1130

SupportedBandCombinationAdd-r11 ::= SEQUENCE (SIZE (1..maxBandComb-r11)) OF BandCombinationParameters-r11

BandCombinationParameters-r10 ::= SEQUENCE {  
bandParameterList-r11 BandParameters-r11,  
supportedBandwidthCombinationSet-r11 SupportedBandwidthCombinationSet-r10 OPTIONAL,  
multipleTimingAdvance-r11 ENUMERATED {supported} OPTIONAL,  
simultaneousRx-Tx-r11 ENUMERATED {supported} OPTIONAL,  
bandInfoEUTRA-r11 BandInfoEUTRA,
...
}

BandCombinationParameters-v1090 ::= SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1090

BandCombinationParameters-v1130 ::= SEQUENCE {  
multipleTimingAdvance-v1130 ENUMERATED (supported) OPTIONAL,  
simultaneousRx-Tx-v1130 ENUMERATED (supported) OPTIONAL,  
bandParameterList-v1130 SEQUENCE (SIZE (1..maxSimultaneousBands-r10)) OF BandParameters-v1130 OPTIONAL,
...
}

BandParameterList-r11 ::= SEQUENCE {  
bandParameterList-r11 BandParameters-r11,  
supportedBandwidthCombinationSet-r11 SupportedBandwidthCombinationSet-r10 OPTIONAL,  
multipleTimingAdvance-r11 ENUMERATED (supported) OPTIONAL,  
simultaneousRx-Tx-r11 ENUMERATED (supported) OPTIONAL,  
bandInfoEUTRA-r11 BandInfoEUTRA,
...
}

SupportedBandwidthCombinationSet-r10 ::= BIT STRING (SIZE (1..maxBandwidthCombSet-r10))

BandParameters-r10 ::= SEQUENCE {  
bandEUTRA-r10 FreqBandIndicator,  
bandParametersUL-r10 BandParametersUL-r10 OPTIONAL,  
bandParametersDL-r10 BandParametersDL-r10 OPTIONAL
}

BandParameters-v1090 ::= SEQUENCE {  
bandEUTRA-v1090 FreqBandIndicator-v9e0 OPTIONAL,
...
}

BandParameters-v1130 ::= SEQUENCE {  
supportedCSI-Proc-r11 ENUMERATED (n1, n3, n4)
}
SupportedBandListEUTRA ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandEUTRA

SupportedBandEUTRA ::= SEQUENCE {
  bandEUTRA FreqBandIndicator,
  halfDuplex BOOLEAN
}

SupportedBandEUTRA-v9e0 ::= SEQUENCE {
  bandEUTRA-v9e0 FreqBandIndicator-v9e0 OPTIONAL
}

MeasParameters ::= SEQUENCE {
  bandListEUTRA BandListEUTRA
}

MeasParameters-v1020 ::= SEQUENCE {
  bandCombinationListEUTRA-r10 BandCombinationListEUTRA-r10
}

MeasParameters-v1130 ::= SEQUENCE {
  rsrqMeasWideband-r11 ENUMERATED (supported) OPTIONAL
}

MeasParameters-v12xy ::= SEQUENCE {
  timerT312-r12 ENUMERATED (supported) OPTIONAL,
  alternativeTimeToTrigger-r12 ENUMERATED (supported) OPTIONAL
}

BandListEUTRA ::= SEQUENCE (SIZE (1..maxBands)) OF BandInfoEUTRA

BandCombinationListEUTRA-r10 ::= SEQUENCE (SIZE (1..maxBandComb-r10)) OF BandInfoEUTRA

BandInfoEUTRA ::= SEQUENCE {
  interFreqBandList InterFreqBandList, OPTIONAL
  interRAT-BandList InterRAT-BandList
}

InterFreqBandList ::= SEQUENCE (SIZE (1..maxBands)) OF InterFreqBandInfo

InterFreqBandInfo ::= SEQUENCE {
  interFreqNeedForGaps BOOLEAN
}

InterRAT-BandList ::= SEQUENCE (SIZE (1..maxBands)) OF InterRAT-BandInfo

InterRAT-BandInfo ::= SEQUENCE {
  interRAT-NeedForGaps BOOLEAN
}
IRAT-ParametersUTRA-FDD ::= SEQUENCE {
  supportedBandListUTRA-FDD   SupportedBandListUTRA-FDD
}

IRAT-ParametersUTRA-v920 ::= SEQUENCE {
  e-RedirectionUTRA-r9   ENUMERATED {supported}
}

IRAT-ParametersUTRA-v9c0 ::= SEQUENCE {
  voiceOverPs-HS-UTRA-FDD-r9    ENUMERATED {supported} OPTIONAL,
  voiceOverPs-HS-UTRA-TDD128-r9 ENUMERATED {supported} OPTIONAL,
  srvcc-FromUTRA-FDD-ToUTRA-FDD-r9 ENUMERATED {supported} OPTIONAL,
  srvcc-FromUTRA-FDD-ToGERAN-r9  ENUMERATED {supported} OPTIONAL,
  srvcc-FromUTRA-TDD128-ToUTRA-FDD-r9 ENUMERATED {supported} OPTIONAL,
  srvcc-FromUTRA-TDD128-ToGERAN-r9  ENUMERATED {supported} OPTIONAL
}

IRAT-ParametersUTRA-v9h0 ::= SEQUENCE {
  mfbi-UTRA-r9   ENUMERATED {supported}
}

SupportedBandListUTRA-FDD ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-FDD

SupportedBandUTRA-FDD ::= ENUMERATED {
  bandI, bandII, bandIII, bandIV, bandV, bandVI,
  bandVII, bandVIII, bandIX, bandX, bandXI,
  bandXII, bandXIII, bandXIV, bandXV, ..., bandXVII-8a0, bandXVIII-8a0, bandXIX-8a0, bandXX-8a0,
  bandXXI-8a0, bandXXII-8a0, bandXXIII-8a0, bandXXIV-8a0,
  bandXXV-8a0, bandXXVI-8a0, bandXXVII-8a0, bandXXVIII-8a0,
  bandXXIX-8a0, bandXXX-8a0, bandXXXI-8a0, bandXXXII-8a0}

IRAT-ParametersUTRA-TDD128 ::= SEQUENCE {
  supportedBandListUTRA-TDD128   SupportedBandListUTRA-TDD128
}

SupportedBandListUTRA-TDD128 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-TDD128

SupportedBandUTRA-TDD128 ::= ENUMERATED {
  a, b, c, d, e, f, g, h, i, j, k, l, m, n,
  o, p, ...}

IRAT-ParametersUTRA-TDD384 ::= SEQUENCE {
  supportedBandListUTRA-TDD384   SupportedBandListUTRA-TDD384
}

SupportedBandListUTRA-TDD384 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-TDD384

SupportedBandUTRA-TDD384 ::= ENUMERATED {
  a, b, c, d, e, f, g, h, i, j, k, l, m, n,
  o, p, ...}

IRAT-ParametersUTRA-TDD768 ::= SEQUENCE {
  supportedBandListUTRA-TDD768   SupportedBandListUTRA-TDD768
}

SupportedBandListUTRA-TDD768 ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandUTRA-TDD768

SupportedBandUTRA-TDD768 ::= ENUMERATED {
  a, b, c, d, e, f, g, h, i, j, k, l, m, n,
  o, p, ...}

IRAT-ParametersUTRA-TDD-v1020 ::= SEQUENCE {
  e-RedirectionUTRA-TDD-r10   ENUMERATED {supported}
}

IRAT-ParametersGERAN ::= SEQUENCE {
  supportedBandListGERAN   SupportedBandListGERAN,
  interRAT-PS-HO-ToGERAN   BOOLEAN
}

IRAT-ParametersGERAN-v920 ::= SEQUENCE {
  dtm-r9   ENUMERATED {supported} OPTIONAL,
  e-RedirectionGERAN-r9   ENUMERATED {supported} OPTIONAL
}

SupportedBandListGERAN ::= SEQUENCE (SIZE (1..maxBands)) OF SupportedBandGERAN
SupportedBandGERAN ::= ENUMERATED {
  gsm450, gsm480, gsm710, gsm750, gsm810, gsm850,
  gsm900P, gsm900E, gsm900R, gsm1800, gsm1900,
  spare5, spare4, spare3, spare2, spare1, ...}

IRAT-ParametersCDMA2000-HRPD ::= SEQUENCE {
  supportedBandListHRPD     SupportedBandListHRPD,
  tx-ConfigHRPD            ENUMERATED {single, dual},
  rx-ConfigHRPD            ENUMERATED {single, dual}
}

SupportedBandListHRPD ::= SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandclassCDMA2000

IRAT-ParametersCDMA2000-1XRTT ::= SEQUENCE {
  supportedBandList1XRTT    SupportedBandList1XRTT,
  tx-Config1XRTT            ENUMERATED {single, dual},
  rx-Config1XRTT            ENUMERATED {single, dual}
}

IRAT-ParametersCDMA2000-1XRTT-v920 ::= SEQUENCE {
  e-CSFB-1XRTT-r9           ENUMERATED {supported},
  e-CSFB-ConcPS-Mobil1XRTT-r9 ENUMERATED {supported} OPTIONAL
}

IRAT-ParametersCDMA2000-1XRTT-v1020 ::= SEQUENCE {
  e-CSFB-dual-1XRTT-r10     ENUMERATED {supported}
}

IRAT-ParametersCDMA2000-v1130 ::= SEQUENCE {
  cdma2000-NW-Sharing-r11   ENUMERATED {supported} OPTIONAL
}

SupportedBandList1XRTT ::= SEQUENCE (SIZE (1..maxCDMA-BandClass)) OF BandclassCDMA2000

CSG-ProximityIndicationParameters-r9 ::= SEQUENCE {
  intraFreqProximityIndication-r9 ENUMERATED {supported} OPTIONAL,
  interFreqProximityIndication-r9 ENUMERATED {supported} OPTIONAL,
  utran-ProximityIndication-r9    ENUMERATED {supported} OPTIONAL
}

NeighCellSI-AcquisitionParameters-r9 ::= SEQUENCE {
  intraFreqSI-AcquisitionForHO-r9 ENUMERATED {supported} OPTIONAL,
  interFreqSI-AcquisitionForHO-r9 ENUMERATED {supported} OPTIONAL,
  utran-SI-AcquisitionForHO-r9    ENUMERATED {supported} OPTIONAL
}

SON-Parameters-r9 ::= SEQUENCE {
  rach-Report-r9             ENUMERATED {supported} OPTIONAL
}

UE-BasedNetwPerfMeasParameters-r10 ::= SEQUENCE {
  loggedMeasurementsIdle-r10  ENUMERATED {supported} OPTIONAL,
  standaloneGNSS-Location-r10 ENUMERATED {supported} OPTIONAL
}

UE-BasedNetwPerfMeasParameters-v12xy ::= SEQUENCE {
  loggedMBSFNMeasurements-r12 ENUMERATED {supported}
}

OTDOA-PositioningCapabilities-r10 ::= SEQUENCE {
  otdoa-UE-Assisted-r10      ENUMERATED {supported},
  interFreqRSTD-Measurement-r10 ENUMERATED {supported} OPTIONAL
}

Other-Parameters-r11 ::= SEQUENCE {
  inDeviceCoexInd-r11        ENUMERATED {supported} OPTIONAL,
  powerPrefInd-r11           ENUMERATED {supported} OPTIONAL,
  ue-Rx-TxTimeDiffMeasurements-r11 ENUMERATED {supported} OPTIONAL
}

MBMS-Parameters-r11 ::= SEQUENCE {
  mbms-SCell-r1              ENUMERATED {supported} OPTIONAL,
  mbms-NonServingCell-r11    ENUMERATED {supported} OPTIONAL
}

-- ASN1STOP
<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD_diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>accessStratumRelease</td>
<td></td>
</tr>
<tr>
<td>Set to rel11 in this version of the specification.</td>
<td></td>
</tr>
<tr>
<td>alternativeTimeToTrigger</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports alternativeTimeToTrigger.</td>
<td></td>
</tr>
<tr>
<td>bandCombinationListEUTRA</td>
<td></td>
</tr>
<tr>
<td>One entry corresponding to each supported band combination</td>
<td></td>
</tr>
<tr>
<td>listed in the same order as in supportedBandCombination.</td>
<td></td>
</tr>
<tr>
<td>BandCombinationParameters-v1090</td>
<td></td>
</tr>
<tr>
<td>If included, the UE shall include the same number of entries,</td>
<td></td>
</tr>
<tr>
<td>listed in the same order, as in BandCombinationParameters-r10.</td>
<td></td>
</tr>
<tr>
<td>BandCombinationParameters-v1130</td>
<td></td>
</tr>
<tr>
<td>The field is applicable to each supported CA bandwidth class</td>
<td></td>
</tr>
<tr>
<td>combination (i.e. CA configuration in TS 36.101 [42, Section</td>
<td></td>
</tr>
<tr>
<td>5.6A.1]) indicated in the corresponding band combination. If</td>
<td></td>
</tr>
<tr>
<td>included, the UE shall include the same number of entries,</td>
<td></td>
</tr>
<tr>
<td>and listed in the same order, as in BandCombinationParameters-r10.</td>
<td></td>
</tr>
<tr>
<td>bandEUTRA</td>
<td></td>
</tr>
<tr>
<td>E-UTRA band as defined in TS 36.101 [42]. In case the UE</td>
<td></td>
</tr>
<tr>
<td>includes bandEUTRA-v9e0 or bandEUTRA-v1090, the UE shall</td>
<td></td>
</tr>
<tr>
<td>set the corresponding entry of bandEUTRA (i.e. without</td>
<td></td>
</tr>
<tr>
<td>suffix) or bandEUTRA-r10 respectively to maxFBI.</td>
<td></td>
</tr>
<tr>
<td>bandListEUTRA</td>
<td></td>
</tr>
<tr>
<td>One entry corresponding to each supported E-UTRA band listed</td>
<td></td>
</tr>
<tr>
<td>in the same order as in supportedBandListEUTRA.</td>
<td></td>
</tr>
<tr>
<td>CA-BandwidthClass</td>
<td></td>
</tr>
<tr>
<td>The CA bandwidth class supported by the UE as defined in TS</td>
<td></td>
</tr>
<tr>
<td>36.101 [42, Table 5.6A-1]. The UE explicitly includes all the</td>
<td></td>
</tr>
<tr>
<td>supported CA bandwidth class combinations in the band</td>
<td></td>
</tr>
<tr>
<td>combination signalling. Support for one CA bandwidth class</td>
<td></td>
</tr>
<tr>
<td>does not implicitly indicate support for another CA bandwidth</td>
<td></td>
</tr>
<tr>
<td>class.</td>
<td></td>
</tr>
<tr>
<td>cdma2000-NW-Sharing</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports network sharing for CDMA2000.</td>
<td></td>
</tr>
<tr>
<td>crossCarrierScheduling</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports CRS interference handling.</td>
<td>No</td>
</tr>
<tr>
<td>csi-SubframeSet</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports REL-12 DL CSI subframe</td>
<td></td>
</tr>
<tr>
<td>set configuration, REL-12 DL CSI</td>
<td></td>
</tr>
<tr>
<td>subframe set dependent CSI measurement/feedback, configuration</td>
<td></td>
</tr>
<tr>
<td>of additional CSI-IM resource for a CSI process if the UE</td>
<td></td>
</tr>
<tr>
<td>supports tm10, configuration of two ZP-CSI-RS, PDSCH RE</td>
<td></td>
</tr>
<tr>
<td>mapping with two ZP-CSI-RS configurations, and EPDCCH RE</td>
<td></td>
</tr>
<tr>
<td>mapping with two ZP-CSI-RS configurations if the UE supports</td>
<td></td>
</tr>
<tr>
<td>EPDCCH. This field is only applicable for UEs supporting</td>
<td></td>
</tr>
<tr>
<td>TDD.</td>
<td></td>
</tr>
<tr>
<td>deviceType</td>
<td></td>
</tr>
<tr>
<td>UE may set the value to “noBenFromBatConsumpOpt” when it</td>
<td></td>
</tr>
<tr>
<td>does not foresee to particularly benefit from NW-based</td>
<td></td>
</tr>
<tr>
<td>battery consumption optimisation. Absence of this value</td>
<td></td>
</tr>
<tr>
<td>means that the device does benefit from NW-based battery</td>
<td></td>
</tr>
<tr>
<td>consumption optimisation.</td>
<td></td>
</tr>
<tr>
<td>dtm</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports DTM in GERAN.</td>
<td></td>
</tr>
<tr>
<td>e-CSFB-1XRTT</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced CS fallback to</td>
<td></td>
</tr>
<tr>
<td>CDMA2000 1xRTT or not.</td>
<td></td>
</tr>
<tr>
<td>e-CSFB-ConcPS-Mob1XRTT</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports concurrent enhanced CS</td>
<td></td>
</tr>
<tr>
<td>fallback to CDMA2000 1xRTT and PS handover/ redirection to</td>
<td></td>
</tr>
<tr>
<td>CDMA2000 HRPD.</td>
<td></td>
</tr>
<tr>
<td>e-CSFB-dual-1XRTT</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced CS fallback to</td>
<td></td>
</tr>
<tr>
<td>CDMA2000 1xRTT for dual Rx/Tx configuration. This bit can</td>
<td></td>
</tr>
<tr>
<td>only be set to supported if tx-Config1XRTT and rx-Config1XRTT</td>
<td></td>
</tr>
<tr>
<td>are both set to dual.</td>
<td></td>
</tr>
<tr>
<td>e-HARQ-Pattern-FDD</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced HARQ pattern for</td>
<td></td>
</tr>
<tr>
<td>TTI bundling operation for FDD.</td>
<td></td>
</tr>
<tr>
<td>enhancedDualLayerTDD</td>
<td></td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced dual layer (PDSCH</td>
<td></td>
</tr>
<tr>
<td>transmission mode 8) for TDD or not.</td>
<td></td>
</tr>
<tr>
<td>ePDCCH</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE can receive DCI on UE specific</td>
<td></td>
</tr>
<tr>
<td>search space on Enhanced PDCCH.</td>
<td></td>
</tr>
<tr>
<td>e-RedirectionUTRA</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports enhanced redirection to</td>
<td></td>
</tr>
<tr>
<td>UTRA TDD to multiple carrier</td>
<td></td>
</tr>
</tbody>
</table>
**UE-EUTRA-Capability field descriptions**

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequencies both with and without using related SIB provided by RRConnectionRelease or not.</td>
<td></td>
</tr>
<tr>
<td><strong>extended-RLC-LI-Field</strong> Indicates whether the UE supports 15 bit RLC length indicator.</td>
<td></td>
</tr>
<tr>
<td><strong>featureGroupIndicators</strong>, <strong>featureGroupIndRel9Add</strong>, <strong>featureGroupIndRel10</strong> The definitions of the bits in the bit string are described in Annex B.1 (for featureGroupIndicators and featureGroupIndRel9Add) and in Annex C.1.(for featureGroupIndRel10)</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>freqBandRetrieve</strong> Indicates whether the UE supports reception of requestedFrequencyBands.</td>
<td></td>
</tr>
<tr>
<td><strong>halfDuplex</strong> If halfDuplex is set to true, only half duplex operation is supported for the band, otherwise full duplex operation is supported.</td>
<td></td>
</tr>
<tr>
<td><strong>inDeviceCoexInd</strong> Indicates whether the UE supports in-device coexistence indication as well as autonomous denial functionality.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>interBandTDD-CA-WithDifferentConfig</strong> Indicates whether the UE supports inter-band TDD carrier aggregation with different UL/DL configuration combinations. The first bit indicates UE supports the configuration combination of SCell DL subframes are a subset of PCell by SIB1 configuration and the configuration combination of SCell DL subframes are a superset of PCell configuration; the second bit indicates UE supports the configuration combination of SCell DL subframes are neither superset nor subset of PCell by SIB1 configuration. This field is included only if UE supports inter-band TDD carrier aggregation.</td>
<td></td>
</tr>
<tr>
<td><strong>interFreqBandList</strong> One entry corresponding to each supported E-UTRA band listed in the same order as in supportedBandListEUTRA.</td>
<td></td>
</tr>
<tr>
<td><strong>interFreqNeedForGaps</strong> Indicates need for measurement gaps when operating on the E-UTRA band given by the entry in bandListEUTRA or on the E-UTRA band combination given by the entry in bandCombinationListEUTRA and measuring on the E-UTRA band given by the entry in interFreqBandList.</td>
<td></td>
</tr>
<tr>
<td><strong>interFreqProximityIndication</strong> Indicates whether the UE supports proximity indication for inter-frequency E-UTRAN CSG member cells.</td>
<td></td>
</tr>
<tr>
<td><strong>interFreqRSTD-Measurement</strong> Indicates whether the UE supports inter-frequency RSTD measurements for OTDOA positioning [54].</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>interFreqSI-AcquisitionForHO</strong> Indicates whether the UE supports, upon configuration of si-RequestForHO by the network, acquisition and reporting of relevant information using autonomous gaps by reading the SI from a neighbouring inter-frequency cell.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>interRAT-BandList</strong> One entry corresponding to each supported band of another RAT listed in the same order as in the interRAT-Parameters.</td>
<td></td>
</tr>
<tr>
<td><strong>interRAT-NeedForGaps</strong> Indicates need for DL measurement gaps when operating on the E-UTRA band given by the entry in bandListEUTRA or on the E-UTRA band combination given by the entry in bandCombinationListEUTRA and measuring on the inter-RAT band given by the entry in the interRAT-BandList.</td>
<td></td>
</tr>
<tr>
<td><strong>interRAT-PS-HO-ToGERAN</strong> Indicates whether the UE supports inter-RAT PS handover to GERAN or not.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>intraFreqProximityIndication</strong> Indicates whether the UE supports proximity indication for intra-frequency E-UTRAN CSG member cells.</td>
<td></td>
</tr>
<tr>
<td><strong>intraFreqSI-AcquisitionForHO</strong> Indicates whether the UE supports, upon configuration of si-RequestForHO by the network, acquisition and reporting of relevant information using autonomous gaps by reading the SI from a neighbouring intra-frequency cell.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>loggedMBSFNMeasurements</strong> Indicates whether the UE supports logged measurements for MBSFN. A UE indicating support for logged measurements for MBSFN shall also indicate support for logged measurements in Idle mode.</td>
<td></td>
</tr>
<tr>
<td><strong>loggedMeasurementsIdle</strong> Indicates whether the UE supports logged measurements in Idle mode.</td>
<td></td>
</tr>
</tbody>
</table>
maxNumberROHC-ContextSessions
Set to the maximum number of concurrently active ROHC contexts supported by the UE, excluding context sessions that leave all headers uncompressed. cs2 corresponds with 2 (context sessions), cs4 corresponds with 4 and so on. The network ignores this field if the UE supports none of the ROHC profiles in supportedROHC-Profiles.

mbms-SCell
Indicates whether the UE in RRC_CONNECTED supports MBMS reception on a frequency indicated in an MBMSInterestIndication message, when an SCell is configured on that frequency (regardless of whether the SCell is activated or deactivated).

mbms-NonServingCell
Indicates whether the UE in RRC_CONNECTED supports MBMS reception on a frequency indicated in an MBMSInterestIndication message, where (according to supportedBandCombination and to network synchronization properties) a serving cell may be additionally configured. If this field is included, the UE shall also include the mbms-SCell field.

mbfl-UTRA
It indicates if the UE supports the signalling requirements of multiple radio frequency bands in a UTRA FDD cell, as defined in TS 25.307 [65].

MIMO-CapabilityDL
The number of supported layers for spatial multiplexing in DL.

MIMO-CapabilityUL
The number of supported layers for spatial multiplexing in UL.

multiACK-CS_reporting
Indicates whether the UE supports multi-cell HARQ ACK and periodic CSI reporting and SR on PUCCH format 3.

multiClusterPUSCH-WithinCC
Yes

multipleTimingAdvance
Indicates whether the UE supports multiple timing advances for each band combination listed in supportedBandCombination. If the band combination comprised of more than one band entry (i.e., inter-band or intra-band non-contiguous band combination), the field indicates that the same or different timing advances on different band entries are supported. If the band combination comprised of one band entry (i.e., intra-band contiguous band combination), the field indicates that the same or different timing advances across component carriers of the band entry are supported.

NonContiguousUL-RA-WithinCC-List
One entry corresponding to each supported E-UTRA band listed in the same order as in supportedBandListEUTRA.

otdoa-UE-Assisted
Indicates whether the UE supports UE-assisted OTDOA positioning [54].

pdcp-SN-Extension
Indicates whether the UE supports 15 bit length of PDCP sequence number.

phy-TDD-ReConfig-FDDPCell
Indicates whether the UE supports TDD UL/DL reconfiguration for TDD serving cell(s) via monitoring PDCCH with eIMTA-RNTI on a FDD PCell, and HARQ feedback according to UL and DL HARQ reference configurations. This bit can only be set to supported only if the second bit of tdd-FDD-CA-PCellDuplex is set to 1 and phy-TDD-ReConfig-TDDPCell is set to supported.

phy-TDD-ReConfig-TDDPCell
Indicates whether the UE supports TDD UL/DL reconfiguration for TDD serving cell(s) via monitoring PDCCH with eIMTA-RNTI on a TDD PCell, and HARQ feedback according to UL and DL HARQ reference configurations.

pmi-Disabling
Yes

powerPrefInd
Indicates whether the UE supports power preference indication.

pusch-SRS-PowerControl-SubframeSet
Indicates whether the UE supports subframe set dependent UL power control for PUSCH and SRS. This field is only applicable for UEs supporting TDD.

rach-Report
Indicates whether the UE supports delivery of rachReport.

requestedBands
Indicates the frequency bands requested by E-UTRAN.

rsrqMeasWideband
Indicates whether the UE can perform RSRQ measurements with wider bandwidth.

simultaneousPUCCH-PUSCH
Yes

simultaneousRx-Tx
Indicates whether the UE supports simultaneous reception and transmission on different bands.
### UE-EUTRA-Capability field descriptions

<table>
<thead>
<tr>
<th>Field Description</th>
<th>FDD/TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>for each band combination listed in supportedBandCombination. This field is only applicable for inter-band TDD carrier aggregation.</td>
<td></td>
</tr>
<tr>
<td>srvcc-FromUTRA-FDD-ToGERAN</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA FDD PS HS to GERAN CS.</td>
<td></td>
</tr>
<tr>
<td>srvcc-FromUTRA-FDD-ToUTRA-FDD</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA FDD PS HS to UTRA FDD CS.</td>
<td></td>
</tr>
<tr>
<td>srvcc-FromUTRA-TDD128-ToGERAN</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA TDD 1.28Mcps PS HS to GERAN CS.</td>
<td></td>
</tr>
<tr>
<td>srvcc-FromUTRA-TDD128-ToUTRA-TDD128</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether UE supports SRVCC handover from UTRA TDD 1.28Mcps PS HS to UTRA TDD 1.28Mcps CS.</td>
<td></td>
</tr>
<tr>
<td>ss-CCH-InterfHandl</td>
<td>Yes</td>
</tr>
<tr>
<td>Indicates whether the UE supports synchronisation signal and common channel interference handling.</td>
<td></td>
</tr>
<tr>
<td>standaloneGNSS-Location</td>
<td>-</td>
</tr>
<tr>
<td>Indicates whether the UE is equipped with a standalone GNSS receiver that may be used to provide detailed location information in RRC measurement report and logged measurements.</td>
<td></td>
</tr>
<tr>
<td>supportedBandCombination</td>
<td>-</td>
</tr>
<tr>
<td>Includes the supported CA band combinations, if any, and may include all the supported non-CA bands.</td>
<td></td>
</tr>
<tr>
<td>supportedBandCombinationAdd</td>
<td>-</td>
</tr>
<tr>
<td>Includes additional supported CA band combinations in case maximum number of CA band combinations of supportedBandCombination is exceeded.</td>
<td></td>
</tr>
<tr>
<td>SupportedBandCombinationExt, SupportedBandCombination-v1090,</td>
<td>-</td>
</tr>
<tr>
<td>SupportedBandCombination-v1130</td>
<td>-</td>
</tr>
<tr>
<td>If included, the UE shall include the same number of entries, and listed in the same order, as in supportedBandCombination-r10.</td>
<td></td>
</tr>
<tr>
<td>SupportedBandGERAN</td>
<td>No</td>
</tr>
<tr>
<td>GERAN band as defined in TS 45.005 [20].</td>
<td></td>
</tr>
<tr>
<td>SupportedBandList1XRTT</td>
<td>-</td>
</tr>
<tr>
<td>One entry corresponding to each supported CDMA2000 1xRTT band class.</td>
<td></td>
</tr>
<tr>
<td>SupportedBandListEUTRA</td>
<td>-</td>
</tr>
<tr>
<td>Includes the supported E-UTRA bands. This field shall include all bands which are indicated in BandCombinationParameters.</td>
<td></td>
</tr>
<tr>
<td>SupportedBandListEUTRA-v9e0</td>
<td>-</td>
</tr>
<tr>
<td>If included, the UE shall include the same number of entries, and listed in the same order, as in supportedListEUTRA (i.e. without suffix).</td>
<td></td>
</tr>
<tr>
<td>SupportedBandListGERAN</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td></td>
</tr>
<tr>
<td>SupportedBandListHRPD</td>
<td>-</td>
</tr>
<tr>
<td>One entry corresponding to each supported CDMA2000 HRPD band class.</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-FDD</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.101 [17].</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-TDD128</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.102 [18].</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-TDD384</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.102 [18].</td>
<td></td>
</tr>
<tr>
<td>SupportedBandUTRA-TDD768</td>
<td>-</td>
</tr>
<tr>
<td>UTRA band as defined in TS 25.102 [18].</td>
<td></td>
</tr>
<tr>
<td>supportedBandwidthCombinationSet</td>
<td>-</td>
</tr>
<tr>
<td>The supportedBandwidthCombinationSet indicated for a band combination is applicable to all bandwidth classes indicated by the UE in this band combination.</td>
<td>Field encoded as a bit map, where bit N is set to &quot;1&quot; if UE support Bandwidth Combination Set N for this band combination, see 36.101 [42]. The leading / leftmost bit (bit 0) corresponds to the Bandwidth Combination Set 0, the next bit corresponds to the Bandwidth Combination Set 1 and so on. The UE shall neither include the field for a non-CA band combination, nor for a CA band combination for which the UE only supports Bandwidth Combination Set 0.</td>
</tr>
<tr>
<td>supportedCSI-Procl</td>
<td>-</td>
</tr>
<tr>
<td>Indicates the maximum number of CSI processes supported on a component carrier within a band. Value n1 corresponds to 1 CSI process, value n3 corresponds to 3 CSI processes, and value n4 corresponds to 4 CSI processes. If this field is included, the UE shall include the same number of entries listed in the same order as in BandParameters. If the UE supports at least 1 CSI process on any component carrier, then the UE shall include this field in all bands in all band combinations.</td>
<td></td>
</tr>
<tr>
<td>supportRohcContextContinue</td>
<td>-</td>
</tr>
<tr>
<td><strong>UE-EUTRA-Capability field descriptions</strong></td>
<td><strong>FDD/ TDD diff</strong></td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Indicates whether the UE supports ROHC context continuation operation where the UE does not reset the current ROHC context upon handover.</td>
<td></td>
</tr>
<tr>
<td><strong>tdd-SpecialSubframe</strong></td>
<td>Indicates whether the UE supports TDD special subframe defined in TS 36.211 [21].</td>
</tr>
<tr>
<td><strong>tdd-FDD-CA-PCellDuplex</strong></td>
<td>Indicates whether the UE supports TDD PCell and/or FDD PCell in any supported band combination including at least one FDD band and at least one TDD band. The first bit is set to “1” if UE supports the TDD PCell. The second bit is set to “1” if UE supports FDD PCell. This field is included only if the UE supports band combination including at least one FDD band and at least one TDD band. If this field is included, the UE shall set at least one of the bits as “1”.</td>
</tr>
<tr>
<td><strong>timerT312</strong></td>
<td>Indicates whether the UE supports T312.</td>
</tr>
<tr>
<td><strong>tm5-FDD</strong></td>
<td>Indicates whether the UE supports the PDSCH transmission mode 5 in FDD.</td>
</tr>
<tr>
<td><strong>tm5-TDD</strong></td>
<td>Indicates whether the UE supports the PDSCH transmission mode 5 in TDD.</td>
</tr>
<tr>
<td><strong>tm9-Within-8Tx-FDD</strong></td>
<td>Indicates whether the UE supports TDD special subframe defined in TS 36.211 [21].</td>
</tr>
<tr>
<td><strong>twoAntennaPortsForPUCCH</strong></td>
<td>Indicates whether the UE supports transmit diversity for PUCCH format 1b with channel selection.</td>
</tr>
<tr>
<td><strong>txDiv-PUCCH1b-ChSelect</strong></td>
<td>Indicates whether the UE supports Rx - Tx time difference measurements.</td>
</tr>
<tr>
<td><strong>ue-Category</strong></td>
<td>UE category as defined in TS 36.306 [5]. Set to values 0 to 10 in this version of the specification. For ASN.1 compatibility, a UE indicating category 0 shall also indicate any of the categories (1..5) in ue-Category (without suffix), which is ignored by the eNB.</td>
</tr>
<tr>
<td><strong>ue-Rx-TxTimeDiffMeasurements</strong></td>
<td>Indicates whether the UE supports Rx - Tx time difference measurements.</td>
</tr>
<tr>
<td><strong>ue-SpecificRefSigsSupported</strong></td>
<td>TRUE indicates that the UE is capable of supporting UE transmit antenna selection as described in TS 36.213 [23, 8.7].</td>
</tr>
<tr>
<td><strong>ul-CoMP</strong></td>
<td>Indicates whether the UE supports UL Coordinated Multi-Point operation.</td>
</tr>
<tr>
<td><strong>utr-an-ProximityIndication</strong></td>
<td>Indicates whether the UE supports proximity indication for UTRAN CSG member cells.</td>
</tr>
<tr>
<td><strong>utr-an-SI-AcquisitionForHO</strong></td>
<td>Indicates whether the UE supports, upon configuration of si-RequestForHO by the network, acquisition and reporting of relevant information using autonomous gaps by reading the SI from a neighbouring UMTS cell.</td>
</tr>
<tr>
<td><strong>voiceOverPS-HS-UTRA-FDD</strong></td>
<td>Indicates whether UE supports IMS voice according to GSMA IR.58 profile in UTRA FDD.</td>
</tr>
<tr>
<td><strong>voiceOverPS-HS-UTRA-TDD128</strong></td>
<td>Indicates whether UE supports IMS voice in UTRA TDD 1.28Mcps.</td>
</tr>
</tbody>
</table>

**NOTE 1:** The IE **UE-EUTRA-Capability** does not include AS security capability information, since these are the same as the security capabilities that are signalled by NAS. Consequently AS need not provide "man-in-the-middle" protection for the security capabilities.

**NOTE 2:** The column FDD/ TDD diff indicates if the UE is allowed to signal, as part of the additional capabilities for an XDD mode i.e. within **UE-EUTRA-CapabilityAddXDD-Mode-xNM**, a different value compared to the value signalled elsewhere within **UE-EUTRA-Capability** (i.e. the common value, supported for both XDD modes). A '-' is used to indicate that it is not possible to signal different values (used for fields for which the field description is provided for other reasons).

**NOTE 3:** All the combinations of **CA-MIMO-ParametersUL** and **CA-MIMO-ParametersDL** for one band and across all the bands in each **BandCombinationParameters** are supported by the UE and have the same measurement gap requirement (i.e. the same **BandInfoEUTRA** applies). The **BandCombinationParameters** for the same band combination can be included more than once.

**NOTE 4:** UE CA and measurement capabilities indicate the combinations of frequencies that can be configured as serving frequencies.
– **UE-RadioPagingInfo**

The *UE-RadioPagingInfo* IE contains information needed for paging of category 0 UE.

**UE-RadioPagingInfo information element**

```asn1
UE-RadioPagingInfo-r12 ::= SEQUENCE {
 ue-Category-v12xy INTEGER (0) OPTIONAL,
 ...
}
```

– **UE-TimersAndConstants**

The IE *UE-TimersAndConstants* contains timers and constants used by the UE in either RRC_CONNECTED or RRC_IDLE.

**UE-TimersAndConstants information element**

```asn1
UE-TimersAndConstants ::= SEQUENCE {
 t300 ENUMERATED {
 ms100, ms200, ms300, ms400, ms600, ms1000, ms1500, ms2000},
 t301 ENUMERATED {
 ms100, ms200, ms300, ms400, ms600, ms1000, ms1500, ms2000},
 t310 ENUMERATED {
 ms0, ms50, ms100, ms200, ms500, ms1000, ms2000},
 n310 ENUMERATED {
 n1, n2, n3, n4, n6, n8, n10, n20},
 t311 ENUMERATED {
 ms1000, ms3000, ms5000, ms10000, ms15000, ms20000, ms30000},
 n311 ENUMERATED {
 n1, n2, n3, n4, n5, n6, n8, n10},
 ...
}
```

**UE-TimersAndConstants field descriptions**

<table>
<thead>
<tr>
<th>n3xy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n3xy</td>
<td>Constants are described in section 7.4. n1 corresponds with 1, n2 corresponds with 2 and so on.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t3xy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t3xy</td>
<td>Timers are described in section 7.3. Value ms0 corresponds with 0 ms, ms50 corresponds with 50 ms and so on.</td>
</tr>
</tbody>
</table>

– **VisitedCellInfoList**

The IE *VisitedCellInfoList* includes the mobility history information of maximum of 16 most recently visited cells or time spent outside E-UTRA. The most recently visited cell is stored first in the list. The list includes cells visited in RRC_IDLE and RRC_CONNECTED states.

**VisitedCellInfoList information element**

```asn1
VisitedCellInfoList-r12 ::= SEQUENCE (SIZE (1..maxCellHistory-r12)) OF VisitedCellInfo-r12

VisitedCellInfo-r12 ::= SEQUENCE {
 visitedCellId-r12 CHOICE {
 cellGlobalId-r12 CellGlobalIdEUTRA,
 pci-arfcn-r12 SEQUENCE {
 ...
 }
 }
```

---

**ETSI**


timeSpent
This field indicates the duration of stay in the cell or outside E-UTRA approximated to the closest second. If the duration of stay exceeds 4095s, the UE shall set it to 4095s.

— WLAN-OffloadConfig
The IE WLAN-OffloadConfig includes information for traffic steering between E-UTRAN and WLAN.

WLAN-OffloadConfig information element

---

WLAN-OffloadConfig-r12 ::= SEQUENCE {
  thresholdRSRP-r12  SEQUENCE {
    thresholdRSRP-Low-r12  RSRP-Range,
    thresholdRSRP-High-r12  RSRP-Range
  }  OPTIONAL,  -- Need OR
  thresholdRSRQ-r12  SEQUENCE {
    thresholdRSRQ-Low-r12  RSRQ-Range,
    thresholdRSRQ-High-r12  RSRQ-Range
  }  OPTIONAL,  -- Need OR
  thresholdChannelUtilization-r12  SEQUENCE {
    thresholdChannelUtilizationLow-r12  INTEGER (0..255),
    thresholdChannelUtilizationHigh-r12  INTEGER (0..255)
  }  OPTIONAL,  -- Need OR
  thresholdBackhaul-Bandwidth-r12  SEQUENCE {
    thresholdBackhaulDL-BandwidthLow-r12  WLAN-backhaulRate,
    thresholdBackhaulDL-BandwidthHigh-r12  WLAN-backhaulRate,
    thresholdBackhaulUL-BandwidthLow-r12  WLAN-backhaulRate,
    thresholdBackhaulUL-BandwidthHigh-r12  WLAN-backhaulRate
  }  OPTIONAL,  -- Need OR
  thresholdBeaconRSSI-r12  SEQUENCE {
    thresholdBeaconRSSI-Low-r12  INTEGER (0..255),
    thresholdBeaconRSSI-High-r12  INTEGER (0..255)
  }  OPTIONAL,  -- Need OR
  offloadPreferenceIndicator-r12  BIT STRING (SIZE (16))  OPTIONAL,  -- Need OR
  t-SteeringWLAN-r12  T-Reselection,  ...
}  -- ASN1STOP

WLAN-backhaulRate ::= ENUMERATED {
  r0, r2, r4, r8, r16, r32, r64, r128, r256, r512,
  r1024, r2048, r4096, r8192, r16384, r32768, r65536,
  r131072,
  r262144, r524288, r1048576, r2097152, r4194304, r8388608,
  r16777216, r33554432, r67108864, r134217728, r268435456,
  r536870912, r1073741824, r2147483648, r4294967296
}  -- ASN1STOP

WLAN-OffloadConfig field descriptions

offloadPreferenceIndicator
Indicates the Offload preference indicator.

thresholdBackhaulDLBandwidth-High
Indicates the backhaul available downlink bandwidth threshold used by the UE for traffic steering to WLAN.

thresholdBackhaulDLBandwidth-Low
Indicates the backhaul available downlink bandwidth threshold used by the UE for traffic steering to E-UTRAN.
thresholdBackhaulULBandwidth-High
Indicates the backhaul available uplink bandwidth threshold used by the UE for traffic steering to WLAN. Parameter: Thresh\textsubscript{BackhaulRateULWLAN, High} in TS 36.304 [4]. Value in kilobits/second. Value rN corresponds to N Kbps.

thresholdBackhaulULBandwidth-Low
Indicates the backhaul available uplink bandwidth threshold used by the UE for traffic steering to E-UTRAN. Parameter: Thresh\textsubscript{BackhaulRateULWLAN, Low} in TS 36.304 [4]. Value in kilobits/second. Value rN corresponds to N Kbps.

thresholdBeaconRSSI-High
Indicates the Beacon RSSI threshold used by the UE for traffic steering to WLAN. Parameter: Thresh\textsubscript{BEACONRSSIWLAN, High} in TS 36.304 [4].

thresholdBeaconRSSI-Low
Indicates the Beacon RSSI threshold used by the UE for traffic steering to E-UTRAN. Parameter: Thresh\textsubscript{BEACONRSSIWLAN, Low} in TS 36.304 [4].

thresholdChannelUtilization-High
Indicates the WLAN channel utilization (BSS load) threshold used by the UE for traffic steering to E-UTRAN. Parameter: Thresh\textsubscript{CHUtilWLAN, High} in TS 36.304 [4].

thresholdChannelUtilization-Low
Indicates the WLAN channel utilization (BSS load) threshold used by the UE for traffic steering to WLAN. Parameter: Thresh\textsubscript{CHUtilWLAN, Low} in TS 36.304 [4].

thresholdRSRP-High
Indicates the RSRP threshold (in dBm) used by the UE for traffic steering to E-UTRAN. Parameter: Thresh\textsubscript{ServingOffloadWLAN, HighP} in TS 36.304 [4].

thresholdRSRP-Low
Indicates the RSRP threshold (in dBm) used by the UE for traffic steering to WLAN. Parameter: Thresh\textsubscript{ServingOffloadWLAN, LowP} in TS 36.304 [4].

thresholdRSRQ-High
Indicates the RSRQ threshold (in dB) used by the UE for traffic steering to E-UTRAN. Parameter: Thresh\textsubscript{ServingOffloadWLAN, HighQ} in TS 36.304 [4].

thresholdRSRQ-Low
Indicates the RSRQ threshold (in dB) used by the UE for traffic steering to WLAN. Parameter: Thresh\textsubscript{ServingOffloadWLAN, LowQ} in TS 36.304 [4].

t-SteeringWLAN
Indicates the timer value during which the rules should be fulfilled before starting traffic steering between E-UTRAN and WLAN. Parameter: T\textsubscript{steeringWLAN} in TS 36.304 [4].

6.3.7 MBMS information elements

– MBMS-NotificationConfig

The IE MBMS-NotificationConfig specifies the MBMS notification related configuration parameters, that are applicable for all MBSFN areas.

MBMS-NotificationConfig information element

```asn1
-- ASN1START
MBMS-NotificationConfig-r9 ::= SEQUENCE {
 notificationRepetitionCoeff-r9 ENUMERATED {n2, n4},
 notificationOffset-r9 INTEGER (0..10),
 notificationSF-Index-r9 INTEGER (1..6)
}
-- ASN1STOP
```
### MBMS-NotificationConfig field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>notificationOffset</td>
<td>Indicates, together with the notificationRepetitionCoeff, the radio frames in which the MCCH information change notification is scheduled i.e. the MCCH information change notification is scheduled in radio frames for which: SFN mod notification repetition period = notificationOffset.</td>
</tr>
<tr>
<td>notificationRepetitionCoeff</td>
<td>Actual change notification repetition period common for all MCCHs that are configured = shortest modification period / notificationRepetitionCoeff. The ‘shortest modification period’ corresponds with the lowest value of mcch-ModificationPeriod of all MCCHs that are configured. Value n2 corresponds to coefficient 2, and so on.</td>
</tr>
<tr>
<td>notificationSF-Index</td>
<td>Indicates the subframe used to transmit MCCH change notifications on PDCCH. FDD: Value 1, 2, 3, 4, 5 and 6 correspond with subframe #1, #2, #3 #6, #7, and #8 respectively. TDD: Value 1, 2, 3, 4, and 5 correspond with subframe #3, #4, #7, #8, and #9 respectively.</td>
</tr>
</tbody>
</table>

---

### MBSFN-AreaInfoList

The IE MBSFN-AreaInfoList contains the information required to acquire the MBMS control information associated with one or more MBSFN areas.

---

```asn1
-- ASN1START
MBSFN-AreaInfoList-r9 ::= SEQUENCE (SIZE(1..maxMBSFN-Area)) OF MBSFN-AreaInfo-r9
MBSFN-AreaInfo-r9 ::= SEQUENCE {
 mbsfn-AreaId-r9 INTEGER (0..255),
 non-MBSFNregionLength ENUMERATED {s1, s2},
 notificationIndicator-r9 INTEGER (0..7),
 mcch-Config-r9 SEQUENCE {
 mcch-RepetitionPeriod-r9 ENUMERATED {rf32, rf64, rf128, rf256},
 mcch-Offset-r9 INTEGER (0..10),
 mcch-ModificationPeriod-r9 ENUMERATED {rf512, rf1024},
 sf-AllocInfo-r9 BIT STRING (SIZE(6)),
 signallingMCS-r9 ENUMERATED {n2, n7, n13, n19},
 },
 ...
}
-- ASN1STOP
```
### MBSFN-ArealInfoList field descriptions

**mbsfn-AreaId**
Indicates the MBSFN area ID, parameter $N_0^{MBSFN}$ in TS 36.211 [21, 6.10.2.1].

**mcch-ModificationPeriod**
Defines periodically appearing boundaries, i.e. radio frames for which SFN mod $mcch-ModificationPeriod = 0$. The contents of different transmissions of MCCH information can only be different if there is at least one such boundary in between them.

**mcch-Offset**
Indicates, together with the $mcch-RepetitionPeriod$, the radio frames in which MCCH is scheduled i.e. MCCH is scheduled in radio frames for which: SFN mod $mcch-RepetitionPeriod = mcch-Offset$.

**mcch-RepetitionPeriod**
Defines the interval between transmissions of MCCH information, in radio frames, Value rf32 corresponds to 32 radio frames, rf64 corresponds to 64 radio frames and so on.

**non-MBSFNregionLength**
Indicates how many symbols from the beginning of the subframe constitute the non-MBSFN region. This value applies in all subframes of the MBSFN area used for PMCH transmissions as indicated in the MSI. The values s1 and s2 correspond with 1 and 2 symbols, respectively: see TS 36.211 [21, Table 6.7-1].

**notificationIndicator**
Indicates which PDCCH bit is used to notify the UE about change of the MCCH applicable for this MBSFN area. Value 0 corresponds with the least significant bit as defined in TS 36.212 [22, Section 5.3.3.1] and so on.

**sf-AllocInfo**
Indicates the subframes of the radio frames indicated by the $mcch-RepetitionPeriod$ and the $mcch-Offset$, that may carry MCCH. Value “1” indicates that the corresponding subframe is allocated. The following mapping applies:
- FDD: The first/leftmost bit defines the allocation for subframe #1 of the radio frame indicated by $mcch-RepetitionPeriod$ and $mcch-Offset$; the second bit for #2, the third bit for #3, the fourth bit for #6, the fifth bit for #7 and the sixth bit for #8.
- TDD: The first/leftmost bit defines the allocation for subframe #3 of the radio frame indicated by $mcch-RepetitionPeriod$ and $mcch-Offset$, the second bit for #4, third bit for #7, fourth bit for #8, fifth bit for #9. Uplink subframes are not allocated. The last bit is not used.

**signallingMCS**
Indicates the Modulation and Coding Scheme (MCS) applicable for the subframes indicated by the field $sf-AllocInfo$ and for each (P)MCH that is configured for this MBSFN area, for the first subframe allocated to the (P)MCH within each MCH scheduling period (which may contain the MCH scheduling information provided by MAC). Value n2 corresponds with the value 2 for parameter $f^{MCS}$ in TS 36.213 [23, Table 7.1.7.1-1], and so on.

---

### MBSFN-SubframeConfig

The IE $MBSFN-SubframeConfig$ defines subframes that are reserved for MBSFN in downlink.

---

**MBSFN-SubframeConfig information element**

```
-- ASN1START

MBSFN-SubframeConfig ::= SEQUENCE {
 radioframeAllocationPeriod ENUMERATED {n1, n2, n4, n8, n16, n32},
 radioframeAllocationOffset INTEGER (0..7),
 subframeAllocation CHOICE {
 oneFrame BIT STRING (SIZE(6)),
 fourFrames BIT STRING (SIZE(24))
 }
}
-- ASN1STOP
```
MBSFN-SubframeConfig field descriptions

**fourFrames**
A bit-map indicating MBSFN subframe allocation in four consecutive radio frames. “1” denotes that the corresponding subframe is allocated for MBSFN. The bit-map is interpreted as follows:
- FDD: Starting from the first radioframe and from the first/leftmost bit in the bitmap, the allocation applies to subframes #1, #2, #3, #6, #7, and #8 in the sequence of the four radio-frames.
- TDD: Starting from the first radioframe and from the first/leftmost bit in the bitmap, the allocation applies to subframes #3, #4, #7, #8, and #9 in the sequence of the four radio-frames. The last four bits are not used. Uplink subframes are not allocated unless the field *eimta-MainConfig-r12* is configured.

**oneFrame**
“1” denotes that the corresponding subframe is allocated for MBSFN. The following mapping applies:
- FDD: The first/leftmost bit defines the MBSFN allocation for subframe #1, the second bit for #2, third bit for #3, fourth bit for #6, fifth bit for #7, sixth bit for #8.
- TDD: The first/leftmost bit defines the allocation for subframe #3, the second bit for #4, third bit for #7, fourth bit for #8, fifth bit for #9. Uplink subframes are not allocated unless the field *eimta-MainConfig-r12* is configured. The last bit is not used.

radioFrameAllocationPeriod, radioFrameAllocationOffset
Radio-frames that contain MBSFN subframes occur when equation $SFN \mod radioFrameAllocationPeriod = radioFrameAllocationOffset$ is satisfied. Value $n1$ for radioFrameAllocationPeriod denotes value 1, $n2$ denotes value 2, and so on. When fourFrames is used for subframeAllocation, the equation defines the first radio frame referred to in the description below. Values $n1$ and $n2$ are not applicable when fourFrames is used.

subframeAllocation
Defines the subframes that are allocated for MBSFN within the radio frame allocation period defined by the radioFrameAllocationPeriod and the radioFrameAllocationOffset.

---

**PMCH-InfoList**

The IE **PMCH-InfoList** specifies configuration of all PMCHs of an MBSFN area. The information provided for an individual PMCH includes the configuration parameters of the sessions that are carried by the concerned PMCH.

**PMCH-InfoList information element**

```asn1
PMCH-InfoList-r9 ::= SEQUENCE (SIZE (0..maxPMCH-PerMBSFN)) OF PMCH-Info-r9
PMCH-InfoListExt-r12 ::= SEQUENCE (SIZE (0..maxPMCH-PerMBSFN)) OF PMCH-InfoExt-r12
PMCH-Info-r9 ::= SEQUENCE {
 pmch-Config-r9 PMCH-Config-r9,
 mbms-SessionInfoList-r9 MBMS-SessionInfoList-r9,
 ...
}
PMCH-InfoExt-r12 ::= SEQUENCE {
 pmch-Config-r12 PMCH-Config-r12,
 mbms-SessionInfoList-r12 MBMS-SessionInfoList-r9,
 ...
}
MBMS-SessionInfoList-r9 ::= SEQUENCE (SIZE (0..maxSessionPerPMCH)) OF MBMS-SessionInfo-r9
MBMS-SessionInfo-r9 ::= SEQUENCE {
 tmgi-r9 TMGI-r9,
 sessionId-r9 OCTET STRING (SIZE (1)) OPTIONAL, -- Need OR
 logicalChannelIdentity-r9 INTEGER (0..maxSessionPerPMCH-1),
 ...
}
PMCH-Config-r9 ::= SEQUENCE {
 sf-AllocEnd-r9 INTEGER (0..1535),
 dataMCS-r9 INTEGER (0..28),
 mch-SchedulingPeriod-r9 ENUMERATED {
 rf8, rf16, rf32, rf64, rf128, rf256, rf512, rf1024},
 ...
}
PMCH-Config-r12 ::= SEQUENCE {
 sf-AllocEnd-r12 INTEGER (0..1535),
 dataMCS-r12 INTEGER (0..28),
 mch-SchedulingPeriod-r12 ENUMERATED {
  ```
PMCH-InfoList field descriptions

dataMCS
Indicates the value for parameter $I_{MCS}$ in TS 36.213 [23, Table 7.1.7.1-1], which defines the Modulation and Coding Scheme (MCS) applicable for the subframes of this (P)MCH as indicated by the field commonSF-Alloc. The MCS does however neither apply to the subframes that may carry MCCH i.e. the subframes indicated by the field sf-AllocInfo within SystemInformationBlockType13 nor for the first subframe allocated to this (P)MCH within each MCH scheduling period (which may contain the MCH scheduling information provided by MAC).

mch-SchedulingPeriod
Indicates the MCH scheduling period i.e. the periodicity used for providing MCH scheduling information at lower layers (MAC) applicable for an MCH. Value rf8 corresponds to 8 radio frames, rf16 corresponds to 16 radio frames and so on. The mch-SchedulingPeriod starts in the radio frames for which: SFN mod mch-SchedulingPeriod = 0. E-UTRAN configures mch-SchedulingPeriod of the (P)MCH listed first in PMCH-InfoList to be smaller than or equal to mch-RepetitionPeriod.

pmn-Index
Index of the entry in field pmn-IdentityList within SystemInformationBlockType1.

sessionId
Indicates the optional MBMS Session Identity, which together with TMGI identifies a transmission or a possible retransmission of a specific MBMS session: see TS 29.061 [51, Sections 20.5, 17.7.11, 17.7.15]. The field is included whenever upper layers have assigned a session identity i.e. one is available for the MBMS session in E-UTRAN.

serviceId
Uniquely identifies the identity of an MBMS service within a PLMN. The field contains octet 3-5 of the IE Temporary Mobile Group Identity (TMGI) as defined in TS 24.008 [49]. The first octet contains the third octet of the TMGI, the second octet contains the fourth octet of the TMGI and so on.

sf-AllocEnd
Indicates the last subframe allocated to this (P)MCH within a period identified by field commonSF-AllocPeriod. The subframes allocated to (P)MCH corresponding with the nth entry in pmch-InfoList are the subsequent subframes starting from either the next subframe after the subframe identified by sf-AllocEnd of the (n-1)th listed (P)MCH or, for n=1, the first subframe defined by field commonSF-Alloc, through the subframe identified by sf-AllocEnd of the nth listed (P)MCH. Value 0 corresponds with the first subframe defined by field commonSF-Alloc.

6.4 RRC multiplicity and type constraint values

Multiplicity and type constraint definitions

maxBandComb-r10 INTEGER ::= 128 -- Maximum number of band combinations.
maxBandComb-r11 INTEGER ::= 256 -- Maximum number of additional band combinations.
maxBands INTEGER ::= 64 -- Maximum number of bands listed in EUTRA UE caps.
maxBandwidthClass-r10 INTEGER ::= 16 -- Maximum number of supported CA BW classes per band.
maxBandwidthCombSet-r10 INTEGER ::= 32 -- Maximum number of bandwidth combination sets per supported band combination.
maxCDMA-BandClass INTEGER ::= 32 -- Maximum value of the CDMA band classes.
maxCellBlack INTEGER ::= 16 -- Maximum number of blacklisted physical cell identity ranges listed in SIB type 4 and 5.
maxCellHistory-r12 INTEGER ::= 16 -- Maximum number of visited EUTRA cells reported.
maxCellInfoGERAN-r9 INTEGER ::= 32 -- Maximum number of GERAN cells for which system information can be provided as redirection assistance.
maxCellInfoUTRA-r9 INTEGER ::= 16 -- Information can be provided as redirection assistance.
maxCSI-IM-r11 INTEGER ::= 3 -- Maximum number of CSI-IM configurations.
maxCSI-IM-r12    INTEGER ::= 4 -- Maximum number of CSI-IM configurations
maxCSI-Proc-r11    INTEGER ::= 4 -- Maximum number of CSI RS processes (per carrier
    frequency)
maxCSI-RS-NXP-r11    INTEGER ::= 3 -- Maximum number of CSI RS resource
    configurations using non-zero Tx power
    (per carrier frequency)
maxCSI-RS-ZP-r11    INTEGER ::= 4 -- Maximum number of CSI RS resource
    configurations using zero Tx power (per carrier
    frequency)
maxCQI-ProcExt-r11    INTEGER ::= 3 -- Maximum number of additional periodic CQI
    configurations (per carrier frequency)
maxFreqUTRA-TDD-r10    INTEGER ::= 6 -- Maximum number of UTRA TDD carrier frequencies for
    which system information can be provided as
    redirection assistance
maxCellInter    INTEGER ::= 16 -- Maximum number of neighbouring inter-frequency
    cells listed in SIB type 5
maxCellIntra    INTEGER ::= 16 -- Maximum number of neighbouring intra-frequency
    cells listed in SIB type 4
maxCellListGERAN    INTEGER ::= 3 -- Maximum number of lists of GERAN cells
maxCellMeas    INTEGER ::= 32 -- Maximum number of entries in each of the
    cell lists in a measurement object
maxCellReport    INTEGER ::= 8 -- Maximum number of reported cells
maxDRB    INTEGER ::= 11 -- Maximum number of Data Radio Bearers
maxEARFCN    INTEGER ::= 65535 -- Maximum value of UTRA carrier frequency
maxEARFCN-Plus1    INTEGER ::= 65536 -- Lowest value extended EARFCN range
maxEARFCN2    INTEGER ::= 262143 -- Highest value extended EARFCN range
maxEPDCCH-Set-r11    INTEGER ::= 2 -- Maximum number of EPDCCH sets
maxFBI    INTEGER ::= 64 -- Maximum value of frequency band indicator
maxFBI-Plus1    INTEGER ::= 65 -- Lowest value extended FBI range
maxFreq    INTEGER ::= 8 -- Maximum number of carrier frequencies that are
    affected by the IDC problems
maxFreqMBMS-r11    INTEGER ::= 5 -- Maximum number of carrier frequencies for which an
    MBMS capable UE may indicate an interest
maxGERAN-SI    INTEGER ::= 10 -- Maximum number of GERAN SI blocks that can be
    provided as part of NACC information
maxGNFG    INTEGER ::= 16 -- Maximum number of GERAN neighbour freq groups
maxLogMeasReport-r10    INTEGER ::= 520 -- Maximum number of logged measurement entries
    that can be reported by the UE in one message
maxMBSFN-Allocations    INTEGER ::= 8 -- Maximum number of MBSFN frame allocations with
    different offset
maxMBSFN-Area    INTEGER ::= 8
maxMBSFN-Area-1    INTEGER ::= 7
maxMeasId    INTEGER ::= 32
maxMultiBands    INTEGER ::= 8 -- Maximum number of additional frequency bands
    that a cell belongs to
maxObjectId    INTEGER ::= 32
maxPageRec    INTEGER ::= 16 --
maxPhysCellIdRange-r9    INTEGER ::= 4 -- Maximum number of physical cell identity ranges
maxPIMRN-r11    INTEGER ::= 6 -- Maximum number of PIMRN
maxPNoffset    INTEGER ::= 511 -- Maximum number of CDMA2000 PNoffsets
maxPMCH-PerMBSFN    INTEGER ::= 15
maxRAT-Capabilities    INTEGER ::= 8 -- Maximum number of interworking RATs (incl EUTRA)
maxRE-MapQCL-r11    INTEGER ::= 4 -- Maximum number of PDSCH RE Mapping configurations
    (per carrier frequency)
maxReportConfigId    INTEGER ::= 32
maxRSTD-Freq-r10    INTEGER ::= 3 -- Maximum number of RSTD frequency layers for
    measurement
maxSAI-MBMS-r11    INTEGER ::= 64 -- Maximum number of MBMS service area identities
    broadcast per carrier frequency
maxSCell-r10    INTEGER ::= 4 -- Maximum number of SCells
maxSTAG-r11    INTEGER ::= 3 -- Maximum number of STAGs
maxServCell-r10    INTEGER ::= 5 -- Maximum number of Serving cells
maxServiceCount    INTEGER ::= 16 -- Maximum number of MBMS services that can be included
    in an MBMS counting request and response
maxServiceCount-1    INTEGER ::= 15
maxSessionPerPMCH    INTEGER ::= 29
maxSessionPerPMCH-1    INTEGER ::= 28
maxSIB    INTEGER ::= 32 -- Maximum number of SIBs
maxSIB-r1    INTEGER ::= 31
maxSI-MESSAGE    INTEGER ::= 32 -- Maximum number of SI messages
maxSimultaneousBands-r10    INTEGER ::= 64 -- Maximum number of simultaneously aggregated bands
maxSubframePatternIDC-r11    INTEGER ::= 8 -- Maximum number of subframe reservation patterns
    that the UE can simultaneously recommend to the
    E-UTRAN for use.
3GPP TS 36.331 version 12.3.0 Release 12

7 Variables and constants

7.1 UE variables

NOTE: To facilitate the specification of the UE behavioural requirements, UE variables are represented using ASN.1. Unless explicitly specified otherwise, it is however up to UE implementation how to store the variables. The optionality of the IEs in ASN.1 is used only to indicate that the values may not always be available.

--- EUTRA-UE-Variables

This ASN.1 segment is the start of the E-UTRA UE variable definitions.

---
FROM EUTRA-RRC-Definitions;

-- ASN1STOP

-- VarConnEstFailReport
The UE variable VarConnEstFailReport includes the connection establishment failure information.

VarConnEstFailReport UE variable

-- ASN1START
VarConnEstFailReport-r11 ::= SEQUENCE {
  connEstFailReport-r11     ConnEstFailReport-r11,
  plmn-Identity-r11     PLMN-Identity
}
-- ASN1STOP

-- VarLogMeasConfig
The UE variable VarLogMeasConfig includes the configuration of the logging of measurements to be performed by the UE while in RRC_IDLE, covering intra-frequency, inter-frequency, inter-RAT mobility and MBSFN related measurements. If MBSFN logging is configured, the UE performs logging of measurements while in both RRC_IDLE and RRC_CONNECTED. Otherwise, the UE performs logging of measurements only while in RRC_IDLE.

VarLogMeasConfig UE variable

-- ASN1START
VarLogMeasConfig-r10 ::= SEQUENCE {
  areaConfiguration-r10   AreaConfiguration-r10  OPTIONAL,
  loggingDuration-r10    LoggingDuration-r10,
  loggingInterval-r10    LoggingInterval-r10
}
VarLogMeasConfig-r11 ::= SEQUENCE {
  areaConfiguration-r10   AreaConfiguration-r10  OPTIONAL,
  areaConfiguration-v1130   AreaConfiguration-v1130  OPTIONAL,
  loggingDuration-r10    LoggingDuration-r10,
  loggingInterval-r10    LoggingInterval-r10
}
VarLogMeasConfig-r12 ::= SEQUENCE {
  areaConfiguration-r10   AreaConfiguration-r10  OPTIONAL,
  areaConfiguration-v1130   AreaConfiguration-v1130  OPTIONAL,
  loggingDuration-r10    LoggingDuration-r10,
  loggingInterval-r10    LoggingInterval-r10,
  targetMBSFN-AreaList-r12  TargetMBSFN-AreaList-r12 OPTIONAL
}
-- ASN1STOP

-- VarLogMeasReport
The UE variable VarLogMeasReport includes the logged measurements information.

VarLogMeasReport UE variable

-- ASN1START
VarLogMeasReport-r10 ::= SEQUENCE {
  traceReference-r10     TraceReference-r10,
  traceRecordingSessionRef-r10   OCTET STRING (SIZE (2)),
  tce-Id-r10       OCTET STRING (SIZE (1)),
  plmn-Identity-r10     PLMN-Identity,
  absoluteTimeInfo-r10    AbsoluteTimeInfo-r10
}
-- ASN1STOP
### VarMeasConfig

The UE variable **VarMeasConfig** includes the accumulated configuration of the measurements to be performed by the UE, covering intra-frequency, inter-frequency and inter-RAT mobility related measurements.

NOTE: The amount of measurement configuration information, which a UE is required to store, is specified in subclause 11.1. If the number of frequencies configured for a particular RAT exceeds the minimum performance requirements specified in [16], it is up to UE implementation which frequencies of that RAT are measured. If the total number of frequencies for all RATs provided to the UE in the measurement configuration exceeds the minimum performance requirements specified in [16], it is up to UE implementation which frequencies/RATs are measured.

#### VarMeasConfig UE variable

```asn1
-- ASN1START
VarMeasConfig ::= SEQUENCE {
 -- Measurement identities
 measIdList MeasIdToAddModList OPTIONAL,
 -- Measurement objects
 measObjectList MeasObjectToAddModList OPTIONAL,
 measObjectList-v910 MeasObjectToAddModList-v9e0 OPTIONAL,
 -- Reporting configurations
 reportConfigList ReportConfigToAddModList OPTIONAL,
 -- Other parameters
 quantityConfig QuantityConfig OPTIONAL,
 s-Measure INTEGER (-140..-44) OPTIONAL,
 speedStatePars CHOICE {
 release NULL,
 setup SEQUENCE {
 mobilityStateParameters MobilityStateParameters,
 timeToTrigger-SF SpeedStateScaleFactors
 }
 } OPTIONAL
}
-- ASN1STOP
```

### VarMeasReportList

The UE variable **VarMeasReportList** includes information about the measurements for which the triggering conditions have been met.

#### VarMeasReportList UE variable

```asn1
-- ASN1START
VarMeasReportList ::= SEQUENCE {VarMeasReport} OF VarMeasReport

VarMeasReport ::= SEQUENCE {
 -- List of measurement that have been triggered
 measId MeasId,
 cellsTriggeredList CellsTriggeredList OPTIONAL,
 numberOfReportsSent INTEGER
}
-- ASN1STOP
```
CellsTriggeredList ::= SEQUENCE (SIZE (1..maxCellMeas)) OF CHOICE {
  physCellIdEUTRA       PhysCellId,
  physCellIdUTRA       CHOICE {
    fdd          PhysCellIdUTRA-FDD,
    tdd          PhysCellIdUTRA-TDD
  },
  physCellIdGERAN       SEQUENCE {
    carrierFreq        CarrierFreqGERAN,
    physCellId        PhysCellIdGERAN
  },
  physCellIdCDMA2000     PhysCellIdCDMA2000
} -- ASN1STOP

 VarMobilityHistoryReport

The UE variable VarMobilityHistoryReport includes the mobility history information.

-- ASN1START
VarMobilityHistoryReport-r12 ::= VisitedCellInfoList-r12
-- ASN1STOP

 VarRLF-Report

The UE variable VarRLF-Report includes the radio link failure information or handover failure information.

 VarRLF-Report UE variable

-- ASN1START
VarRLF-Report-r10 ::= SEQUENCE {
  rlf-Report-r10       RLF-Report-r9,
  plmn-Identity-r10      PLMN-Identity
}
VarRLF-Report-r11 ::= SEQUENCE {
  rlf-Report-r10      RLF-Report-r9,
  plmn-IdentityList-r11    PLMN-IdentityList3-r11
}
-- ASN1STOP

 VarShortMAC-Input

The UE variable VarShortMAC-Input specifies the input used to generate the shortMAC-I.

 VarShortMAC-Input UE variable

-- ASN1START
VarShortMAC-Input ::= SEQUENCE {
  cellIdentity       CellIdentity,
  physCellId        PhysCellId,
  c-RNTI         C-RNTI
} -- ASN1STOP
VarShortMAC-Input field descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellIdentity</td>
<td>Set to CellIdentity of the current cell.</td>
</tr>
<tr>
<td>c-RNTI</td>
<td>Set to C-RNTI that the UE had in the PCell it was connected to prior to the failure.</td>
</tr>
<tr>
<td>physCellId</td>
<td>Set to the physical cell identity of the PCell the UE was connected to prior to the failure.</td>
</tr>
</tbody>
</table>

– Multiplicity and type constraint definitions

This section includes multiplicity and type constraints applicable (only) for UE variables.

```asn1
maxLogMeas-r10 INTEGER ::= 4060 -- Maximum number of logged measurement entries that can be stored by the UE
```

– End of EUTRA-UE-Variables

```asn1
END
```

7.2 Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Reset</th>
<th>Incremented</th>
<th>When reaching max value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 7.3 Timers (Informative)

<table>
<thead>
<tr>
<th>Timer</th>
<th>Start</th>
<th>Stop</th>
<th>At expiry</th>
</tr>
</thead>
<tbody>
<tr>
<td>T300</td>
<td>Transmission of RRCConnectionRequest</td>
<td>Reception of RRCConnectionSetup or RRCConnectionReject message, cell re-selection and upon abortion of connection establishment by upper layers</td>
<td>Perform the actions as specified in 5.3.3.6</td>
</tr>
<tr>
<td>T301</td>
<td>Transmission of RRCConnectionReestablishmentRequest</td>
<td>Reception of RRCConnectionReestablishment or RRCConnectionReestablishmentReject message as well as when the selected cell becomes unsuitable</td>
<td>Go to RRC_IDLE</td>
</tr>
<tr>
<td>T302</td>
<td>Reception of RRCConnectionReject while performing RRC connection establishment</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T303</td>
<td>Access barred while performing RRC connection establishment for mobile originating calls</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T304</td>
<td>Reception of RRCConnectionReconfiguration message including the MobilityControlInfo or reception of MobilityFromEUTRACommand message including CellChangeOrder</td>
<td>Criterion for successful completion of handover within E-UTRA, handover to E-UTRA or cell change order is met (the criterion is specified in the target RAT in case of inter-RAT)</td>
<td>In case of cell change order from E-UTRA or intra E-UTRA handover, initiate the RRC connection re-establishment procedure; In case of handover to E-UTRA, perform the actions defined in the specifications applicable for the source RAT.</td>
</tr>
<tr>
<td>T305</td>
<td>Access barred while performing RRC connection establishment for mobile originating signalling</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T306</td>
<td>Access barred while performing RRC connection establishment for mobile originating CS fallback.</td>
<td>Upon entering RRC_CONNECTED and upon cell re-selection</td>
<td>Inform upper layers about barring alleviation as specified in 5.3.3.7</td>
</tr>
<tr>
<td>T310</td>
<td>Upon detecting physical layer problems i.e. upon receiving N310 consecutive out-of-sync indications from lower layers</td>
<td>Upon receiving N311 consecutive in-sync indications from lower layers, upon triggering the handover procedure and upon initiating the connection re-establishment procedure</td>
<td>If security is not activated: go to RRC_IDLE else: initiate the connection re-establishment procedure</td>
</tr>
<tr>
<td>T311</td>
<td>Upon initiating the RRC connection re-establishment procedure</td>
<td>Selection of a suitable E-UTRA cell or a cell using another RAT.</td>
<td>Enter RRC_IDLE</td>
</tr>
<tr>
<td>T312</td>
<td>Upon triggering a measurement report for a measurement identity for which T312 has been configured, while T310 is running</td>
<td>Upon receiving N311 consecutive in-sync indications from lower layers, upon triggering the handover procedure, upon initiating the connection re-establishment procedure, and upon the expiry of T310</td>
<td>If security is not activated: go to RRC_IDLE else: initiate the connection re-establishment procedure</td>
</tr>
<tr>
<td>Timer</td>
<td>Start</td>
<td>Stop</td>
<td>At expiry</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td><strong>T320</strong></td>
<td>Upon receiving ( t_{320} ) or upon cell (re)selection to E-UTRA from another RAT with validity time configured for dedicated priorities (in which case the remaining validity time is applied).</td>
<td>Upon entering RRC_CONNECTED, when PLMN selection is performed on request by NAS, or upon cell (re)selection to another RAT (in which case the timer is carried on to the other RAT).</td>
<td>Discard the cell reselection priority information provided by dedicated signalling.</td>
</tr>
<tr>
<td><strong>T321</strong></td>
<td>Upon receiving ( \text{measConfig} ) including a ( \text{reportConfig} ) with the purpose set to ( \text{reportCGI} ).</td>
<td>Upon acquiring the information needed to set all fields of ( \text{cellGlobalId} ) for the requested cell, upon receiving ( \text{measConfig} ) that includes removal of the ( \text{reportConfig} ) with the purpose set to ( \text{reportCGI} ).</td>
<td>Initiate the measurement reporting procedure, stop performing the related measurements and remove the corresponding ( \text{measId} ).</td>
</tr>
<tr>
<td><strong>T325</strong></td>
<td>Timer (re)started upon receiving ( \text{RRCConnectionReject} ) message with ( \text{deprioritisationTimer} ).</td>
<td></td>
<td>Stop deprivitisation of all frequencies or E-UTRA signalled by ( \text{RRCConnectionReject} ).</td>
</tr>
<tr>
<td><strong>T330</strong></td>
<td>Upon receiving ( \text{LoggedMeasurementConfiguration} ) message.</td>
<td>Upon log volume exceeding the suitable UE memory, upon initiating the release of ( \text{LoggedMeasurementConfiguration} ) procedure.</td>
<td>Perform the actions specified in 5.6.6.4</td>
</tr>
<tr>
<td><strong>T340</strong></td>
<td>Upon transmitting ( \text{UEAssistanceInformation} ) message with ( \text{powerPrefIndication} ) set to normal.</td>
<td>Upon initiating the connection re-establishment procedure.</td>
<td>No action.</td>
</tr>
<tr>
<td><strong>T350</strong></td>
<td>Upon entering RRC_IDLE if ( t_{350} ) has been received in wlan-OffloadDedicated.</td>
<td>Upon entering RRC_CONNECTED and cell reselection.</td>
<td>Discard the RAN assistance parameters provided by dedicated signalling.</td>
</tr>
</tbody>
</table>

### 7.4 Constants

<table>
<thead>
<tr>
<th>Constant</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>N310</td>
<td>Maximum number of consecutive &quot;out-of-sync&quot; indications received from lower layers</td>
</tr>
<tr>
<td>N311</td>
<td>Maximum number of consecutive &quot;in-sync&quot; indications received from lower layers</td>
</tr>
</tbody>
</table>

### 8 Protocol data unit abstract syntax

#### 8.1 General

The RRC PDU contents in clause 6 and clause 10 are described using abstract syntax notation one (ASN.1) as specified in [ITU-T Rec. X.680] and [X.681]. Transfer syntax for RRC PDUs is derived from their ASN.1 definitions by use of Packed Encoding Rules, unaligned as specified in [ITU-T Rec. X.691].

The following encoding rules apply in addition to what has been specified in X.691:

- When a bit string value is placed in a bit-field as specified in 15.6 to 15.11 in X.691, the leading bit of the bit string value shall be placed in the leading bit of the bit-field, and the trailing bit of the bit string value shall be placed in the trailing bit of the bit-field.

**NOTE:** The terms ‘leading bit’ and ‘trailing bit’ are defined in [ITU-T Rec. X.680]. When using the ‘bstring’ notation, the leading bit of the bit string value is on the left, and the trailing bit of the bit string value is on the right.
- When decoding types constrained with the ASN.1 Contents Constraint ("CONTAINING"), automatic decoding of the contained type should not be performed because errors in the decoding of the contained type should not cause the decoding of the entire RRC message PDU to fail. It is recommended that the decoder first decodes the outer PDU type that contains the OCTET STRING or BIT STRING with the Contents Constraint, and then decodes the contained type that is nested within the OCTET STRING or BIT STRING as a separate step.

- When decoding a) RRC message PDUs, b) BIT STRING constrained with a Contents Constraint, or c) OCTET STRING constrained with a Contents Constraint, PER decoders are required to never report an error if there are extraneous zero or non-zero bits at the end of the encoded RRC message PDU, BIT STRING or OCTET STRING.

8.2 Structure of encoded RRC messages

An RRC PDU, which is the bit string that is exchanged between peer entities/ across the radio interface contains the basic production as defined in X.691.

RRC PDUs shall be mapped to and from PDCP SDUs (in case of DCCH) or RLC SDUs (in case of PCCH, BCCH, CCCH or MCCH) upon transmission and reception as follows:

- when delivering an RRC PDU as an PDCP SDU to the PDCP layer for transmission, the first bit of the RRC PDU shall be represented as the first bit in the PDCP SDU and onwards; and

- when delivering an RRC PDU as an RLC SDU to the RLC layer for transmission, the first bit of the RRC PDU shall be represented as the first bit in the RLC SDU and onwards; and

- upon reception of an PDCP SDU from the PDCP layer, the first bit of the PDCP SDU shall represent the first bit of the RRC PDU and onwards; and

- upon reception of an RLC SDU from the RLC layer, the first bit of the RLC SDU shall represent the first bit of the RRC PDU and onwards.

8.3 Basic production

The 'basic production' is obtained by applying UNALIGNED PER to the abstract syntax value (the ASN.1 description) as specified in X.691. It always contains a multiple of 8 bits.

8.4 Extension

The following rules apply with respect to the use of protocol extensions:

- A transmitter compliant with this version of the specification shall, unless explicitly indicated otherwise on a PDU type basis, set the extension part empty. Transmitters compliant with a later version may send non-empty extensions;

- A transmitter compliant with this version of the specification shall set spare bits to zero;

8.5 Padding

If the encoded RRC message does not fill a transport block, the RRC layer shall add padding bits. This applies to PCCH and BCCH.

Padding bits shall be set to 0 and the number of padding bits is a multiple of 8.
9 Specified and default radio configurations

Specified and default configurations are configurations of which the details are specified in the standard. Specified configurations are fixed while default configurations can be modified using dedicated signalling.

9.1 Specified configurations

9.1.1 Logical channel configurations

9.1.1.1 BCCH configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCP configuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLC configuration</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC configuration</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: RRC will perform padding, if required due to the granularity of the TF signalling, as defined in 8.5.

9.1.1.2 CCCH configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCP configuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLC configuration</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC configuration</td>
<td></td>
<td>Normal MAC headers are used</td>
<td></td>
</tr>
<tr>
<td>Logical channel configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>1</td>
<td>Highest priority</td>
<td></td>
</tr>
<tr>
<td>prioritisedBitRate</td>
<td>infinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bucketSizeDuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelGroup</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.1.1.3 PCCH configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>logicalChannelSR-Mask-r9</td>
<td>release</td>
<td></td>
<td>v920</td>
</tr>
</tbody>
</table>

NOTE: RRC will perform padding, if required due to the granularity of the TF signalling, as defined in 8.5.

9.1.1.4 MCCH and MTCH configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCP configuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLC configuration</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC configuration</td>
<td>TM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn-FieldLength</td>
<td>size5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-Reordering</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.1.2 SRB configurations

9.1.2.1 SRB1

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelIdentity</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.1.2.2 SRB2

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelIdentity</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2 Default radio configurations

The following sections only list default values for REL-8 parameters included in protocol version v8.5.0. For all fields introduced in a later protocol version, the default value is "released" unless explicitly specified otherwise. If UE is to apply default configuration while it is configured with some critically extended fields, the UE shall apply the original version with only default values. For the following fields, introduced in a protocol version later than v8.5.0, the default corresponds with "value not applicable":

- codeBookSubsetRestriction-v920;
- pmi-RI-Report;
NOTE 1: Value "N/A" indicates that the UE does not apply a specific value (i.e. upon switching to a default configuration, E-UTRAN can not assume the UE keeps the previously configured value). This implies that E-UTRAN needs to configure a value before invoking the related functionality.

NOTE 2: In general, the signalling should preferably support a "release" option for fields introduced after v8.5.0. The "value not applicable" should be used restrictively, mainly limited to for fields which value is relevant only if another field is set to a value other than its default.

9.2.1 SRB configurations

9.2.1.1 SRB1

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration CHOICE</td>
<td>am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ul-RLC-Config</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;t-PollRetransmit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;pollPDU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;pollByte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;maxRetxThreshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dl-RLC-Config</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;t-Reordering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;t-StatusProhibit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical channel configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>1</td>
<td>Highest priority</td>
<td></td>
</tr>
<tr>
<td>prioritisedBitRate</td>
<td>infinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bucketSizeDuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelGroup</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.1.2 SRB2

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLC configuration CHOICE</td>
<td>am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ul-RLC-Config</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;t-PollRetransmit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;pollPDU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;pollByte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;maxRetxThreshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dl-RLC-Config</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;t-Reordering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;t-StatusProhibit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical channel configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priority</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prioritisedBitRate</td>
<td>infinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bucketSizeDuration</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logicalChannelGroup</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.2 Default MAC main configuration

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC main configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maxHARQ-tx</td>
<td>n5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>periodicBSR-Timer</td>
<td>infinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retxBSR-Timer</td>
<td>sf2560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ttiBundling</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>drx-Config</td>
<td>release</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 9.2.3 Default semi-persistent scheduling configuration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>phr-Config</td>
<td>release</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 9.2.4 Default physical channel configuration

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDSCH-ConfigDedicated</td>
<td>p-a</td>
<td>dB0</td>
<td></td>
</tr>
<tr>
<td>PUCCH-ConfigDedicated</td>
<td>&gt; tdd-AckNackFeedbackMode</td>
<td>bundling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; ackNackRepetition</td>
<td>release</td>
<td></td>
</tr>
<tr>
<td>PUSCH-ConfigDedicated</td>
<td>&gt; betaOffset-ACK-Index</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; betaOffset-RI-Index</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; betaOffset-CQI-Index</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>UplinkPowerControlDedicated</td>
<td>&gt; p0-UE-PUSCH</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; deltaMCS-Enabled</td>
<td>en0 (disabled)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; accumulationEnabled</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; p0-UE-PUCCH</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; pSRS-Offset</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; filterCoefficient</td>
<td>fc4</td>
<td></td>
</tr>
<tr>
<td>tpc-pdcch-ConfigPUCCH</td>
<td>release</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tpc-pdcch-ConfigPUSCH</td>
<td>release</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQI-ReportConfig</td>
<td>&gt; CQI-ReportPeriodic</td>
<td>release</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; cqi-ReportModeAperiodic</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; nomPDSCH-RS-EPRE-Offset</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SoundingRS-UL-ConfigDedicated</td>
<td>release</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AntennaInfoDedicated</td>
<td>&gt; transmissionMode</td>
<td>tm1, tm2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; codebookSubsetRestriction</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt; ue-TransmitAntennaSelection</td>
<td>release</td>
<td></td>
</tr>
<tr>
<td>SchedulingRequestConfig</td>
<td>release</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 9.2.5 Default values timers and constants

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Semantics description</th>
<th>Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>t310</td>
<td>ms1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n310</td>
<td>n1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t311</td>
<td>ms1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n311</td>
<td>n1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10 Radio information related interactions between network nodes

10.1 General

This section specifies RRC messages that are transferred between network nodes. These RRC messages may be transferred to or from the UE via another Radio Access Technology. Consequently, these messages have similar characteristics as the RRC messages that are transferred across the E-UTRA radio interface, i.e. the same transfer syntax and protocol extension mechanisms apply.

10.2 Inter-node RRC messages

10.2.1 General

This section specifies RRC messages that are sent either across the X2- or the S1-interface, either to or from the eNB, i.e. a single 'logical channel' is used for all RRC messages transferred across network nodes. The information could originate from or be destined for another RAT.

-- EUTRA-InterNodeDefinitions

This ASN.1 segment is the start of the E-UTRA inter-node PDU definitions.

```asn1
EUTRA-InterNodeDefinitions DEFINITIONS AUTOMATIC TAGS ::= BEGIN
 IMPORTS
 AntennaInfoCommon,
 ARFCN-ValueEUTRA,
 ARFCN-ValueEUTRA-v9e0,
 ARFCN-ValueEUTRA-r9,
 CellIdentity,
 C-RNTI,
 DL-DCCH-Message,
 InDeviceCoexIndication-r11,
 MasterInformationBlock,
 maxFreq,
 MBMSInterestIndication-r11,
 MeasConfig,
 OtherConfig-r9,
 PhysCellId,
 RadioResourceConfigDedicated,
 RSRP-Range,
 RSRQ-Range,
 SCellToAddModList-r10,
 SecurityAlgorithmConfig,
 ShortMAC-I,
 SystemInformationBlockType1,
 SystemInformationBlockType1-v890-IEs,
 SystemInformationBlockType2,
 UEAssistanceInformation-r11,
 UECapabilityInformation,
 UE-CapabilityRAT-ContainerList,
 UE-RadioPagingInfo-r12,
 WLAN-OffloadConfig-r12 FROM EUTRA-RRC-Definitions;
```

-- ASN1STOP
10.2.2 Message definitions

- HandoverCommand

This message is used to transfer the handover command generated by the target eNB.

Direction: target eNB to source eNB/ source RAN

HandoverCommand message

-- ASN1START
HandoverCommand ::= SEQUENCE {
criticalExtensions     CHOICE {
c   handoverCommand-r8     HandoverCommand-r8-IEs,
     spare7 NULL,
     spare6 NULL, spare5 NULL, spare4 NULL,
     spare3 NULL, spare2 NULL, spare1 NULL
 },
criticalExtensionsFuture   SEQUENCE { }
}

HandoverCommand-r8-IEs ::= SEQUENCE {
handoverCommandMessage    OCTET STRING (CONTAINING DL-DCCH-Message),
nonCriticalExtension    SEQUENCE {}       OPTIONAL
}
-- ASN1STOP

HandoverCommand field descriptions

handoverCommandMessage

Contains the entire DL-DCCH-Message including the RRCConnectionReconfiguration message used to perform handover within E-UTRAN or handover to E-UTRAN, generated (entirely) by the target eNB.

NOTE: The source BSC, in case of inter-RAT handover from GERAN to E-UTRAN, expects that the HandoverCommand message includes DL-DCCH-Message only. Thus, criticalExtensionsFuture, spare1-spare7 and nonCriticalExtension should not be used regardless whether the source RAT is E-UTRAN, UTRAN or GERAN.

- HandoverPreparationInformation

This message is used to transfer the E-UTRA RRC information used by the target eNB during handover preparation, including UE capability information.

Direction: source eNB/ source RAN to target eNB

HandoverPreparationInformation message

-- ASN1START
HandoverPreparationInformation ::= SEQUENCE {
criticalExtensions     CHOICE {
c   handoverPreparationInformation-r8 HandoverPreparationInformation-r8-IEs,
     spare7 NULL,
     spare6 NULL, spare5 NULL, spare4 NULL,
     spare3 NULL, spare2 NULL, spare1 NULL
 },
criticalExtensionsFuture   SEQUENCE { }
}

HandoverPreparationInformation-r8-IEs ::= SEQUENCE {
ue-RadioAccessCapabilityInfo  UE-CapabilityRAT-ContainerList,
as-Config       AS-Config     OPTIONAL,   -- Cond HO
HandoverPreparationInformation field descriptions

**as-Config**
The radio resource configuration. Applicable in case of intra-E-UTRA handover. If the target receives an incomplete MeasConfig and RadioResourceConfigDedicated in the as-Config, the target eNB may decide to apply the full configuration option based on the ue-ConfigRelease.

**as-Context**
Local E-UTRAN context required by the target eNB.

**rrm-Config**
Local E-UTRAN context used depending on the target node’s implementation, which is mainly used for the RRM purpose.

**ue-RadioAccessCapabilityInfo**
NOTE 2

**ue-SupportedEARFCN**
Includes UE supported EARFCN of the handover target E-UTRA cell if the target E-UTRA cell belongs to multiple frequency bands.

**ue-ConfigRelease**
Indicates the RRC protocol release applicable for the current UE configuration. This could be used by target eNB to decide if the full configuration approach should be used. If this field is not present, the target assumes that the current UE configuration is based on the release 8 version of RRC protocol. NOTE 1.

**NOTE 1:** The source typically sets the ue-ConfigRelease to the release corresponding with the current dedicated radio configuration. The source may however also consider the common radio resource configuration e.g. in case interoperability problems would appear if the UE temporary continues extensions of this part of the configuration in a target PCell not supporting them.

**NOTE 2:** The following table indicates per source RAT whether RAT capabilities are included or not.
### Source RAT	E-UTRA capabilities	UTRA capabilities	GERAN capabilities
UTRAN | Included | May be included, ignored by eNB if received | May be included
GERAN CS | Excluded | May be included, ignored by eNB if received | Included
GERAN PS | Excluded | May be included, ignored by eNB if received | Included
E-UTRAN | Included | May be included | May be included

Conditional presence	Explanation
HO | The field is mandatory present in case of handover within E-UTRA; otherwise the field is not present.
HO2 | The field is optional present in case of handover within E-UTRA; otherwise the field is not present.
HO3 | The field is optional present in case of handover from GERAN to E-UTRA, otherwise the field is not present.

---

### UERadioAccessCapabilityInformation

This message is used to transfer UE radio access capability information, covering both upload to and download from the EPC.

Direction: eNB to/ from EPC

#### UERadioAccessCapabilityInformation message

```asn1
UERadioAccessCapabilityInformation ::= SEQUENCE {
 criticalExtensions CHOICE {
 c1 CHOICE{
 ueRadioAccessCapabilityInformation-r8
UERadioAccessCapabilityInformation-r8-IEs,
 spare7 NULL,
 spare6 NULL, spare5 NULL, spare4 NULL,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {} OPTIONAL
 }
}
UERadioAccessCapabilityInformation-r8-IEs ::= SEQUENCE {
 ue-RadioAccessCapabilityInfo OCTET STRING (CONTAINING UECapabilityInformation),
 nonCriticalExtension SEQUENCE {} OPTIONAL
}
```

---

### UERadioAccessCapabilityInformation field descriptions

* ue-RadioAccessCapabilityInfo
Including E-UTRA, GERAN, and CDMA2000-1xRTT Bandclass radio access capabilities (separated). UTRA radio access capabilities are not included.

---

### UERadioPagingInformation

This message is used to transfer radio paging information required by category 0 UE, covering both upload to and download from the EPC.

Direction: eNB to/ from EPC

#### UERadioPagingInformation message

```asn1
UERadioPagingInformation ::= SEQUENCE {
 ue-RadioPagingInfo OCTET STRING (CONTAINING UE Paging Information),
}
```

---
10.3 Inter-node RRC information element definitions

— AS-Config

The AS-Config IE contains information about RRC configuration information in the source eNB which can be utilized by target eNB to determine the need to change the RRC configuration during the handover preparation phase. The information can also be used after the handover is successfully performed or during the RRC connection re-establishment.

NOTE: The AS-Config re-uses information elements primarily created to cover the radio interface signalling requirements. Consequently, the information elements may include some parameters that are not relevant for the target eNB e.g. the SFN as included in the MasterInformationBlock.
AS-Config field descriptions

antennaInfoCommon
This field provides information about the number of antenna ports in the source PCell.

sourceDL-CarrierFreq
Provides the parameter Downlink EARFCN in the source PCell, see TS 36.101 [42]. If the source eNB provides AS-Config-v9e0, it sets sourceDL-CarrierFreq (i.e. without suffix) to maxEARFCN.

sourceOtherConfig
Provides other configuration in the source PCell.

sourceMasterInformationBlock
MasterInformationBlock transmitted in the source PCell.

sourceMeasConfig
Measurement configuration in the source cell. The measurement configuration for all measurements existing in the source eNB when handover is triggered shall be included. See 10.5.

sourceRadioResourceConfig
Radio configuration in the source PCell. The radio resource configuration for all radio bearers existing in the source PCell when handover is triggered shall be included. See 10.5.

sourceSCellConfigList
Radio resource configuration (common and dedicated) of the SCells configured in the source eNB.

sourceSecurityAlgorithmConfig
This field provides the AS integrity protection (SRBs) and AS ciphering (SRBs and DRBs) algorithm configuration used in the source PCell.

sourceSystemInformationBlockType1
SystemInformationBlockType1 transmitted in the source PCell.

sourceSystemInformationBlockType2
SystemInformationBlockType2 transmitted in the source PCell.

-- AS-Context

The IE AS-Context is used to transfer local E-UTRAN context required by the target eNB.

AS-Context information element

-- ASN1START

AS-Context ::=       SEQUENCE {

  reestablishmentInfo  ReestablishmentInfo     OPTIONAL  -- Cond HO

}

AS-Context-v1130 ::=     SEQUENCE {

  idc-Indication-r11   OCTET STRING (CONTAINING
  InDeviceCoexIndication-r11) OPTIONAL, -- Cond HO2

  mbmsInterestIndication-r11   OCTET STRING (CONTAINING
  MBMSInterestIndication-r11) OPTIONAL, -- Cond HO2

  powerPrefIndication-r11   OCTET STRING (CONTAINING
  UEAssistanceInformation-r11) OPTIONAL, -- Cond HO2

  ...

}

-- ASN1STOP

AS-Context field descriptions

idc-Indication
Including information used for handling the IDC problems.

reestablishmentInfo
Including information needed for the RRC connection re-establishment.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>The field is mandatory present in case of handover within E-UTRA; otherwise the field is not present.</td>
</tr>
<tr>
<td>HO2</td>
<td>The field is optional present in case of handover within E-UTRA; otherwise the field is not present.</td>
</tr>
</tbody>
</table>
ReestablishmentInfo

The ReestablishmentInfo IE contains information needed for the RRC connection re-establishment.

ReestablishmentInfo information element

--- ASN1START

ReestablishmentInfo ::= SEQUENCE {
  sourcePhysCellId     PhysCellId,
  targetCellShortMAC-I  ShortMAC-I,
  additionalReestabInfoList   AdditionalReestabInfoList OPTIONAL,
  ...
}

AdditionalReestabInfoList ::= SEQUENCE ( SIZE (1..maxReestabInfo) ) OF AdditionalReestabInfo

AdditionalReestabInfo ::= SEQUENCE {
  cellIdentity      CellIdentity,
  key-eNodeB-Star     Key-eNodeB-Star,
  shortMAC-I       ShortMAC-I
}

Key-eNodeB-Star ::= BIT STRING (SIZE (256))

--- ASN1STOP

ReestablishmentInfo field descriptions

additionalReestabInfoList
Contains a list of shortMAC-I and KeNB* for cells under control of the target eNB, required for potential re-
establishment by the UE in these cells to succeed.

Key-eNodeB-Star
Parameter KeNB*: See TS 33.401 [32, 7.2.8.4]. If the cell identified by cellIdentity belongs to multiple frequency
bands, the source eNB selects the DL-EARFCN for the KeNB* calculation using the same logic as UE uses when
selecting the DL-EARFCN in IDLE as defined in section 6.2.2. This parameter is only used for X2 handover, and for
S1 handover, it shall be ignored by target eNB.

sourcePhysCellId
The physical cell identity of the source PCell, used to determine the UE context in the target eNB at re-establishment.

targetCellShortMAC-I
The ShortMAC-I for the handover target PCell, in order for potential re-establishment to succeed.

RRM-Config

The RRM-Config IE contains information about UE specific RRM information before the handover which can be
utilized by target eNB.

RRM-Config information element

--- ASN1START

RRM-Config ::= SEQUENCE {
  ue-InactiveTime    ENUMERATED {
    s1, s2, s3, s5, s7, s10, s15, s20,
    s25, s30, s40, s50, min1, min1s20c, min1s40,
    min2, min2s30, min3, min3s30, min4, min5, min6,
    min7, min8, min9, min10, min12, min14, min17, min20,
    min24, min28, min33, min38, min44, min50, hr1,
    hr1min30, hr2, hr2min30, hr3, hr3min30, hr4, hr5, hr6,
    hr8, hr10, hr13, hr16, hr20, day1, day1hr12, day2,
    day2hr12, day3, day4, day5, day7, day10, day14, day19,
    day24, day30, dayMoreThan30} OPTIONAL,
  ...,
  [ [ candidateCellInfoList-r10 CandidateCellInfoList-r10 OPTIONAL ] ]
}

CandidateCellInfoList-r10 ::= SEQUENCE (SIZE (1..maxFreq)) OF CandidateCellInfo-r10

CandidateCellInfo-r10 ::= SEQUENCE {
  -- cellIdentification

physCellId-r10     PhysCellId,
dl-CarrierFreq-r10    ARFCN-ValueEUTRA,
-- available measurement results
rsrpResult-r10     RSRP-Range   OPTIONAL,
rsrqResult-r10     RSRQ-Range   OPTIONAL,
...,
[[ dl-CarrierFreq-v1090   ARFCN-ValueEUTRA-v9e0  OPTIONAL
]]
}
-- ASN1STOP

RRM-Config field descriptions

candidateCellInfoList
A list of the best cells on each frequency for which measurement information was available, in order of decreasing RSRP.

dl-CarrierFreq
The source includes dl-CarrierFreq-v1090 if and only if dl-CarrierFreq-r10 is set to maxEARFCN.

ue-InactiveTime
Duration while UE has not received or transmitted any user data. Thus the timer is still running in case e.g., UE measures the neighbour cells for the HO purpose. Value s1 corresponds to 1 second, s2 corresponds to 2 seconds and so on. Value min1 corresponds to 1 minute, value min1s20 corresponds to 1 minute and 20 seconds, value min1s40 corresponds to 1 minute and 40 seconds and so on. Value hr1 corresponds to 1 hour, hr1min30 corresponds to 1 hour and 30 minutes and so on.

10.4 Inter-node RRC multiplicity and type constraint values

– Multiplicity and type constraints definitions

-- ASN1START
maxReestabInfo     INTEGER ::= 32 -- Maximum number of KeNB* and shortMAC-I forwarded
-- at handover for re-establishment preparation
-- ASN1STOP

– End of EUTRA-InterNodeDefinitions

-- ASN1START
END
-- ASN1STOP

10.5 Mandatory information in AS-Config

The AS-Config transferred between source eNB and target-eNB shall include all IEs necessary to describe the AS context. The conditional presence in section 6 is only applicable for eNB to UE communication.

The "need" or "cond" statements are not applied in case of sending the IEs from source eNB to target eNB. Some information elements shall be included regardless of the "need" or "cond" e.g. discardTimer. The AS-Config re-uses information elements primarily created to cover the radio interface signalling requirements. The information elements may include some parameters that are not relevant for the target eNB e.g. the SFN as included in the MasterInformationBlock.

All the fields in the AS-Config as defined in 10.3 that are introduced after v9.2.0 and that are optional for eNB to UE communication shall be included, if the functionality is configured. The fields in the AS-Config that are defined before and including v9.2.0 shall be included as specified in the following.
Within the sourceRadioResourceConfig, sourceMeasConfig and sourceOtherConfig, the source eNB shall include fields that are optional for eNB to UE communication, if the functionality is configured unless explicitly specified otherwise in the following:

- in accordance with a condition that is explicitly stated to be applicable; or
- a default value is defined for the concerned field; and the configured value is the same as the default value that is defined; or
- the need of the field is OP and the current UE configuration corresponds with the behaviour defined for absence of the field;

The following fields, if the functionality is configured, are not mandatory for the source eNB to include in the AS-Config since delta signalling by the target eNB for these fields is not supported:

- semiPersistSchedC-RNTI
- measGapConfig

For the measurement configuration, a corresponding operation as 5.5.6.1 and 5.5.2.2a is executed by target eNB.

### 11 UE capability related constraints and performance requirements

#### 11.1 UE capability related constraints

The following table lists constraints regarding the UE capabilities that E-UTRAN is assumed to take into account.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#DRBs</td>
<td>The number of DRBs that a UE shall support</td>
<td>8</td>
</tr>
<tr>
<td>#RLC-AM</td>
<td>The number of RLC AM entities that a UE shall support</td>
<td>10</td>
</tr>
<tr>
<td>#minCellperMeasObjectEUTRA</td>
<td>The minimum number of neighbour cells (excluding black list cells) that a UE shall be able to store within a MeasObjectEUTRA. NOTE.</td>
<td>32</td>
</tr>
<tr>
<td>#minBlackCellRangespMeasObjectEUTRA</td>
<td>The minimum number of blacklist cell PCI ranges that a UE shall be able to store within a MeasObjectEUTRA</td>
<td>32</td>
</tr>
<tr>
<td>#minCellperMeasObjectUTRA</td>
<td>The minimum number of neighbour cells that a UE shall be able to store within a MeasObjectUTRA. NOTE.</td>
<td>32</td>
</tr>
<tr>
<td>#minCellperMeasObjectGERAN</td>
<td>The minimum number of neighbour cells that a UE shall be able to store within a measObjectGERAN. NOTE.</td>
<td>32</td>
</tr>
<tr>
<td>#minCellperMeasObjectCDMA2000</td>
<td>The minimum number of neighbour cells that a UE shall be able to store within a measObjectCDMA2000. NOTE.</td>
<td>32</td>
</tr>
<tr>
<td>#minCellTotal</td>
<td>The minimum number of neighbour cells (excluding black list cells) that UE shall be able to store in total in all measurement objects configured</td>
<td>256</td>
</tr>
</tbody>
</table>

**NOTE:** In case of CGI reporting, the limit regarding the cells E-UTRAN can configure includes the cell for which the UE is requested to report CGI i.e. the amount of neighbour cells that can be included is at most (# minCellperMeasObjectRAT - 1), where RAT represents EUTRA/UTRA/GERAN/CDMA2000 respectively.

#### 11.2 Processing delay requirements for RRC procedures

The UE performance requirements for RRC procedures are specified in the following table, by means of a value N:

N = the number of 1ms subframes from the end of reception of the E-UTRAN -> UE message on the UE physical layer up to when the UE shall be ready for the reception of uplink grant for the UE -> E-UTRAN response message with no access delay other than the TTI-alignment (e.g. excluding delays caused by scheduling, the random access procedure or physical layer synchronisation).
NOTE: No processing delay requirements are specified for RN-specific procedures.

Figure 11.2-1: Illustration of RRC procedure delay
| Procedure title: | E-UTRAN -> UE | UE -> E-UTRAN | N | Notes |
### RRC Connection Control Procedures

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>E-UTRAN -&gt; UE</th>
<th>UE -&gt; E-UTRAN</th>
<th>N</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRC connection establishment</td>
<td>RRCCConnectionSetup</td>
<td>RRCCConnectionSetupComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection release</td>
<td>RRCCConnectionRelease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RRC connection re-configuration (radio resource configuration)</td>
<td>RRCCConnectionReconfiguration</td>
<td>RRCCConnectionReconfigurationComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-configuration (measurement configuration)</td>
<td>RRCCConnectionReconfiguration</td>
<td>RRCCConnectionReconfigurationComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-configuration (intra-LTE mobility)</td>
<td>RRCCConnectionReconfiguration</td>
<td>RRCCConnectionReconfigurationComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RRC connection reconfiguration (SCell addition/release)</td>
<td>RRCCConnectionReconfiguration</td>
<td>RRCCConnectionReconfigurationComplete</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>RRC connection re-establishment</td>
<td>RRCCConnectionReestablishment</td>
<td>RRCCConnectionReestabishmentComplete</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Initial security activation</td>
<td>SecurityModeCommand</td>
<td>SecurityModeCommandComplete/SecurityModeCommandFailure</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Initial security activation + RRC connection re-configuration (RB establishment)</td>
<td>SecurityModeCommand, RRCCConnectionReconfiguration</td>
<td>RRCCConnectionReconfigurationComplete</td>
<td>20</td>
<td>The two DL messages are transmitted in the same TTI</td>
</tr>
<tr>
<td>Paging</td>
<td>Paging</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Inter RAT mobility

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>RRCCConnectionReconfiguration (sent by other RAT)</th>
<th>RRCCConnectionReconfigurationComplete</th>
<th>N</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handover to E-UTRA</td>
<td>RRCCConnectionReconfiguration (sent by other RAT)</td>
<td>RRCCConnectionReconfigurationComplete</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Handover from E-UTRA</td>
<td>MobilityFromEUTRA Command</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Handover from E-UTRA to CDMA2000</td>
<td>HandoverFromEUTRAPreparationRequest (CDMA2000)</td>
<td></td>
<td>NA</td>
<td>Used to trigger the handover preparation procedure with a CDMA2000 RAT. The performance of this procedure is specified in [16]</td>
</tr>
</tbody>
</table>

### Measurement procedures

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>MeasurementReport</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Reporting</td>
<td>MeasurementReport</td>
<td>NA</td>
</tr>
</tbody>
</table>

### Other procedures

<table>
<thead>
<tr>
<th>Procedure title</th>
<th>UECapabilityEnquiry</th>
<th>UE CapabilityInformation</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter check</td>
<td>CounterCheck</td>
<td>CounterCheckResponse</td>
<td>10</td>
</tr>
<tr>
<td>Proximity indication</td>
<td>ProximityIndication</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>UE information</td>
<td>UEInformationRequest</td>
<td>UEInformationResponse</td>
<td>15</td>
</tr>
<tr>
<td>MBMS counting</td>
<td>MBMSCountingRequest</td>
<td>MBMSCountingResponse</td>
<td>NA</td>
</tr>
<tr>
<td>MBMS interest indication</td>
<td>MBMSInterestIndication</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Procedure title</td>
<td>E-UTRAN -&gt; UE</td>
<td>UE -&gt; E-UTRAN</td>
<td>N</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>In-device coexistence indication</td>
<td></td>
<td>InDeviceCoexIndication</td>
<td>NA</td>
</tr>
<tr>
<td>UE assistance information</td>
<td></td>
<td>UEAssistanceInformation</td>
<td>NA</td>
</tr>
</tbody>
</table>

11.3  Void
Annex A (informative): Guidelines, mainly on use of ASN.1

Editor’s note No agreements have been reached concerning the extension of RRC PDUs so far. Any statements in this section about the protocol extension mechanism should be considered as FFS.

A.1 Introduction

The following clauses contain guidelines for the specification of RRC protocol data units (PDUs) with ASN.1.

A.2 Procedural specification

A.2.1 General principles

The procedural specification provides an overall high level description regarding the UE behaviour in a particular scenario.

It should be noted that most of the UE behaviour associated with the reception of a particular field is covered by the applicable parts of the PDU specification. The procedural specification may also include specific details of the UE behaviour upon reception of a field, but typically this should be done only for cases that are not easy to capture in the PDU section e.g. general actions, more complicated actions depending on the value of multiple fields.

Likewise, the procedural specification need not specify the UE requirements regarding the setting of fields within the messages that are send to E-UTRAN i.e. this may also be covered by the PDU specification.

A.2.2 More detailed aspects

The following more detailed conventions should be used:

- Bullets:
  - Capitals should be used in the same manner as in other parts of the procedural text i.e. in most cases no capital applies since the bullets are part of the sentence starting with 'The UE shall:'
  - All bullets, including the last one in a sub-clause, should end with a semi-colon i.e. an ‘;’
- Conditions
  - Whenever multiple conditions apply, a semi-colon should be used at the end of each conditions with the exception of the last one, i.e. as in 'if cond1; or cond2:

A.3 PDU specification

A.3.1 General principles

A.3.1.1 ASN.1 sections

The RRC PDU contents are formally and completely described using abstract syntax notation (ASN.1), see X.680 [13], X.681 (02/2002) [14].

The complete ASN.1 code is divided into a number of ASN.1 sections in the specifications. In order to facilitate the extraction of the complete ASN.1 code from the specification, each ASN.1 section begins with a text paragraph consisting entirely of an ASN.1 start tag, which consists of a double hyphen followed by a single space and the text string "ASN1START" (in all upper case letters). Each ASN.1 section ends with a text paragraph consisting entirely of
an **ASN.1 stop tag**, which consists of a double hyphen followed by a single space and the text "ASN1STOP" (in all upper case letters):

```plaintext
-- ASN1START
-- ASN1STOP
```

The text paragraphs containing the ASN.1 start and stop tags should not contain any ASN.1 code significant for the complete description of the RRC PDU contents. The complete ASN.1 code may be extracted by copying all the text paragraphs between an ASN.1 start tag and the following ASN.1 stop tag in the order they appear, throughout the specification.

**NOTE:** A typical procedure for extraction of the complete ASN.1 code consists of a first step where the entire RRC PDU contents description (ultimately the entire specification) is saved into a plain text (ASCII) file format, followed by a second step where the actual extraction takes place, based on the occurrence of the ASN.1 start and stop tags.

### A.3.1.2 ASN.1 identifier naming conventions

The naming of identifiers (i.e., the ASN.1 field and type identifiers) should be based on the following guidelines:

- Message (PDU) identifiers should be ordinary mixed case without hyphenation. These identifiers, e.g., the `RRCConnectionModificationCommand`, should be used for reference in the procedure text. Abbreviated forms of these identifiers should not be used.

- Type identifiers other than PDU identifiers should be ordinary mixed case, with hyphenation used to set off acronyms only where an adjacent letter is a capital, e.g., `EstablishmentCause`, `SelectedPLMN` (not `Selected-PLMN`, since the "d" in "Selected" is lowercase), `InitialUE-Identity` and `MeasSFN-SFN-TimeDifference`.

- Field identifiers shall start with a lowercase letter and use mixed case thereafter, e.g., `establishmentCause`. If a field identifier begins with an acronym (which would normally be in upper case), the entire acronym is lowercase (`plmn-Identity`, not `pLMN-Identity`). The acronym is set off with a hyphen (`ue-Identity`, not `ueIdentity`), in order to facilitate a consistent search pattern with corresponding type identifiers.

- Identifiers that are likely to be keywords of some language, especially widely used languages, such as C++ or Java, should be avoided to the extent possible.

- Identifiers, other than PDU identifiers, longer than 25 characters should be avoided where possible. It is recommended to use abbreviations, which should be done in a consistent manner i.e. use 'Meas' instead of 'Measurement' for all occurrences. Examples of typical abbreviations are given in table A.3.1.2.1-1 below.

- **For future extension:** When an extension is introduced a suffix is added to the identifier of the concerned ASN.1 field and/ or type. A suffix of the form "-rX" is used, with X indicating the release, for ASN.1 fields or types introduced in a later release (i.e. a release later than the original/ first release of the protocol) as well as for ASN.1 fields or types for which a revision is introduced in a later release replacing a previous version, e.g., `Foo-r9` for the Rel-9 version of the ASN.1 type `Foo`. A suffix of the form "-vXYZ" is used for ASN.1 fields or types that only are an extension of a corresponding earlier field or type (see sub-clause A.4), e.g., `AnElement-v10b0` for the extension of the ASN.1 type `AnElement` introduced in version 10.11.0 of the specification. A number 0...9, 10, 11, etc. is used to represent the first part of the version number, indicating the release of the protocol. Lower case letters a, b, c, etc. are used to represent the second (and third) part of the version number if they are greater than 9. In the procedural specification, in field descriptions as well as in headings suffixes are not used, unless there is a clear need to distinguish the extension from the original field.

- More generally, in case there is a need to distinguish different variants of an ASN.1 field or IE, a suffix should be added at the end of the identifiers e.g. `MeasObjectUTRA`, `ConfigCommon`. When there is no particular need to distinguish the fields (e.g. because the field is included in different IEs), a common field identifier name may be used. This may be attractive e.g. in case the procedural specification is the same for the different variants.
### Table A.3.1.2-1: Examples of typical abbreviations used in ASN.1 identifiers

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Abbreviated word</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conf</td>
<td>Confirmation</td>
</tr>
<tr>
<td>Config</td>
<td>Configuration</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>Ext</td>
<td>Extension</td>
</tr>
<tr>
<td>Freq</td>
<td>Frequency</td>
</tr>
<tr>
<td>Id</td>
<td>Identity</td>
</tr>
<tr>
<td>Ind</td>
<td>Indication</td>
</tr>
<tr>
<td>Info</td>
<td>Information</td>
</tr>
<tr>
<td>Meas</td>
<td>Measurement</td>
</tr>
<tr>
<td>Neigh</td>
<td>Neighbour(ing)</td>
</tr>
<tr>
<td>Param(s)</td>
<td>Parameter(s)</td>
</tr>
<tr>
<td>Persist</td>
<td>Persistent</td>
</tr>
<tr>
<td>Phys</td>
<td>Physical</td>
</tr>
<tr>
<td>Proc</td>
<td>Process</td>
</tr>
<tr>
<td>Reestab</td>
<td>Reestablishment</td>
</tr>
<tr>
<td>Req</td>
<td>Request</td>
</tr>
<tr>
<td>Sched</td>
<td>Scheduling</td>
</tr>
<tr>
<td>Thresh</td>
<td>Threshold</td>
</tr>
<tr>
<td>Transm</td>
<td>Transmission</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
</tbody>
</table>

**NOTE:** The table A.3.1.2-1 is not exhaustive. Additional abbreviations may be used in ASN.1 identifiers when needed.

### A.3.1.3 Text references using ASN.1 identifiers

A text reference into the RRC PDU contents description from other parts of the specification is made using the ASN.1 field or type identifier of the referenced element. The ASN.1 field and type identifiers used in text references should be in the italic font style. The "do not check spelling and grammar" attribute in Word should be set. Quotation marks (i.e., " ") should not be used around the ASN.1 field or type identifier.

A reference to an RRC PDU type should be made using the corresponding ASN.1 type identifier followed by the word "message", e.g., a reference to the `RRCConnectionRelease` message.

A reference to a specific part of an RRC PDU, or to a specific part of any other ASN.1 type, should be made using the corresponding ASN.1 field identifier followed by the word "field", e.g., a reference to the `prioritisedBitRate` field in the example below.

```plaintext
-- /example/ ASN1START
LogicalChannelConfig ::= SEQUENCE {
 ul-SpecificParameters SEQUENCE {
 priority Priority,
 prioritisedBitRate PrioritisedBitRate,
 bucketSizeDuration BucketSizeDuration,
 logicalChannelGroup INTEGER (0..3)
 } OPTIONAL
}
-- ASN1STOP
```

**NOTE:** All the ASN.1 start tags in the ASN.1 sections, used as examples in this annex to the specification, are deliberately distorted, in order not to include them when the ASN.1 description of the RRC PDU contents is extracted from the specification.

A reference to a specific type of information element should be made using the corresponding ASN.1 type identifier preceded by the acronym "IE", e.g., a reference to the IE `LogicalChannelConfig` in the example above.

References to a specific type of information element should only be used when those are generic, i.e., without regard to the particular context wherein the specific type of information element is used. If the reference is related to a particular context, e.g., an RRC PDU type (message) wherein the information element is used, the corresponding field identifier in that context should be used in the text reference.
A reference to a specific value of an ASN.1 field should be made using the corresponding ASN.1 value without using quotation marks around the ASN.1 value, e.g., 'if the status field is set to value true'.

### A.3.2 High-level message structure

Within each logical channel type, the associated RRC PDU (message) types are alternatives within a CHOICE, as shown in the example below.

```asn1
DL-DCCH-Message ::= SEQUENCE {
 message DL-DCCH-MessageType
}

DL-DCCH-MessageType ::= CHOICE {
 dlInformationTransfer DLInformationTransfer,
 handoverFromEUTRAPreparationRequest HandoverFromEUTRAPreparationRequest,
 mobilityFromEUTRACommand MobilityFromEUTRACommand,
 rrcConnectionReconfiguration RRCConnectionReconfiguration,
 rrcConnectionRelease RRCConnectionRelease,
 securityModeCommand SecurityModeCommand,
 ueCapabilityEnquiry UECapabilityEnquiry,
 spare1 NULL
},
messageClassExtension SEQUENCE {}
}
```

A nested two-level CHOICE structure is used, where the alternative PDU types are alternatives within the inner level `cl` CHOICE.

Spare alternatives (i.e., `spare1` in this case) may be included within the `cl` CHOICE to facilitate future extension. The number of such spare alternatives should not extend the total number of alternatives beyond an integer-power-of-two number of alternatives (i.e., eight in this case).

Further extension of the number of alternative PDU types is facilitated using the `messageClassExtension` alternative in the outer level CHOICE.

### A.3.3 Message definition

Each PDU (message) type is specified in an ASN.1 section similar to the one shown in the example below.

```asn1
RRCConnectionReconfiguration ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 cl CHOICE{
 rrcConnectionReconfiguration-r8 RRCConnectionReconfiguration-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
```

Hooks for critical and non-critical extension should normally be included in the PDU type specification. How these hooks are used is further described in sub-clause A.4.

Critical extensions are characterised by a redefinition of the PDU contents and need to be governed by a mechanism for protocol version agreement between the encoder and the decoder of the PDU, such that the encoder is prevented from sending a critically extended version of the PDU type, which is not comprehended by the decoder.
Critical extension of a PDU type is facilitated by a two-level CHOICE structure, where the alternative PDU contents are alternatives within the inner level $c1$ CHOICE. Spare alternatives (i.e., spare3 down to spare1 in this case) may be included within the $c1$ CHOICE. The number of spare alternatives to be included in the original PDU specification should be decided case by case, based on the expected rate of critical extension in the future releases of the protocol.

Further critical extension, when the spare alternatives from the original specifications are used up, is facilitated using the criticalExtensionsFuture in the outer level CHOICE.

In PDU types where critical extension is not expected in the future releases of the protocol, the inner level $c1$ CHOICE and the spare alternatives may be excluded, as shown in the example below.

```
-- /example/ ASN1START

RRCConnectionReconfigurationComplete ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 rrcConnectionReconfigurationComplete-r8
 RRCConnectionReconfigurationComplete-r8-IEs,
 criticalExtensionsFuture SEQUENCE {}
 }
}

RRCConnectionReconfigurationComplete-r8-IEs ::= SEQUENCE {
 -- Enter the IEs here. -- -- Cond condTag
 ...
}

-- ASN1STOP
```

Non-critical extensions are characterised by the addition of new information to the original specification of the PDU type. If not comprehended, a non-critical extension may be skipped by the decoder, whilst the decoder is still able to complete the decoding of the comprehended parts of the PDU contents.

Non-critical extensions at locations other than the end of the message or other than at the end of a field contained in a BIT or OCTET STRING are facilitated by use of the ASN.1 extension marker "...". The original specification of a PDU type should normally include the extension marker at the end of the sequence of information elements contained.

Non-critical extensions at the end of the message or at the end of a field that is contained in a BIT or OCTET STRING are facilitated by use of an empty sequence that is marked OPTIONAL e.g. as shown in the following example:

```
-- /example/ ASN1START

RRCMessage-r8-IEs ::= SEQUENCE {
 field1 InformationElement1,
 field2 InformationElement2,
 nonCriticalExtension SEQUENCE {} OPTIONAL
}

-- ASN1STOP
```

The ASN.1 section specifying the contents of a PDU type may be followed by a field description table where a further description of, e.g., the semantic properties of the fields may be included. The general format of this table is shown in the example below. The field description table is absent in case there are no fields for which further description needs to be provided e.g. because the PDU does not include any fields, or because an IE is defined for each field while there is nothing specific regarding the use of this IE that needs to be specified.

```
%PDU-TypeIdentifier% field descriptions

%field identifier% Field description.
%field identifier% Field description.
```

The field description table has one column. The header row shall contain the ASN.1 type identifier of the PDU type.

The following rows are used to provide field descriptions. Each row shall include a first paragraph with a field identifier (in bold and italic font style) referring to the part of the PDU to which it applies. The following paragraphs at the same
row may include (in regular font style), e.g., semantic description, references to other specifications and/or specification of value units, which are relevant for the particular part of the PDU.

The parts of the PDU contents that do not require a field description shall be omitted from the field description table.

A.3.4 Information elements

Each IE (information element) type is specified in an ASN.1 section similar to the one shown in the example below.

```
-- /example/ ASN1START

PRACH-ConfigSIB ::= SEQUENCE {
 rootSequenceIndex INTEGER (0..1023),
 prach-ConfigInfo PRACH-ConfigInfo
}

PRACH-Config ::= SEQUENCE {
 rootSequenceIndex INTEGER (0..1023),
 prach-ConfigInfo PRACH-ConfigInfo OPTIONAL -- Need ON
}

PRACH-ConfigInfo ::= SEQUENCE {
 prach-ConfigIndex ENUMERATED {ffs},
 highSpeedFlag ENUMERATED {ffs},
 zeroCorrelationZoneConfig ENUMERATED {ffs}
}

-- ASN1STOP
```

IEs should be introduced whenever there are multiple fields for which the same set of values apply. IEs may also be defined for other reasons e.g. to break down a ASN.1 definition in to smaller pieces.

A group of closely related IE type definitions, like the IEs PRACH-ConfigSIB and PRACH-Config in this example, are preferably placed together in a common ASN.1 section. The IE type identifiers should in this case have a common base, defined as the generic type identifier. It may be complemented by a suffix to distinguish the different variants. The "PRACH-Config" is the generic type identifier in this example, and the "SIB" suffix is added to distinguish the variant. The sub-clause heading and generic references to a group of closely related IEs defined in this way should use the generic type identifier.

The same principle should apply if a new version, or an extension version, of an existing IE is created for critical or non-critical extension of the protocol (see sub-clause A.4). The new version, or the extension version, of the IE is included in the same ASN.1 section defining the original. A suffix is added to the type identifier, using the naming conventions defined in sub-clause A.3.1.2, indicating the release or version of the where the new version, or extension version, was introduced.

Local IE type definitions, like the IE PRACH-ConfigInfo in the example above, may be included in the ASN.1 section and be referenced in the other IE types defined in the same ASN.1 section. The use of locally defined IE types should be encouraged, as a tool to break up large and complex IE type definitions. It can improve the readability of the code. There may also be a benefit for the software implementation of the protocol end-points, as these IE types are typically provided by the ASN.1 compiler as independent data elements, to be used in the software implementation.

An IE type defined in a local context, like the IE PRACH-ConfigInfo, should not be referenced directly from other ASN.1 sections in the RRC specification. An IE type which is referenced in more than one ASN.1 section should be defined in a separate sub-clause, with a separate heading and a separate ASN.1 section (possibly as one in a set of closely related IE types, like the IEs PRACH-ConfigSIB and PRACH-Config in the example above). Such IE types are also referred to as 'global IEs'.

**NOTE:** Referring to an IE type, that is defined as a local IE type in the context of another ASN.1 section, does not generate an ASN.1 compilation error. Nevertheless, using a locally defined IE type in that way makes the IE type definition difficult to find, as it would not be visible at an outline level of the specification. It should be avoided.

The ASN.1 section specifying the contents of one or more IE types, like in the example above, may be followed by a field description table, where a further description of, e.g., the semantic properties of the fields of the information elements may be included. This table may be absent, similar as indicated in sub-clause A.3.3 for the specification of the
PDU type. The general format of the field description table is the same as shown in sub-clause A.3.3 for the specification of the PDU type.

A.3.5 Fields with optional presence

A field with optional presence may be declared with the keyword DEFAULT. It identifies a default value to be assumed, if the sender does not include a value for that field in the encoding:

-- /example/ ASN1START

PreambleInfo ::= SEQUENCE {
    numberOfRA-Preambles INTEGER (1..64) DEFAULT 1,
    ...
}

-- ASN1STOP

Alternatively, a field with optional presence may be declared with the keyword OPTIONAL. It identifies a field for which a value can be omitted. The omission carries semantics, which is different from any normal value of the field:

-- /example/ ASN1START

PRACH-Config ::= SEQUENCE {
    rootSequenceIndex INTEGER (0..1023),
    prach-ConfigInfo PRACH-ConfigInfo OPTIONAL -- Need ON
}

-- ASN1STOP

The semantics of an optionally present field, in the case it is omitted, should be indicated at the end of the paragraph including the keyword OPTIONAL, using a short comment text with a need statement. The need statement includes the keyword "Need", followed by one of the predefined semantics tags (OP, ON or OR) defined in sub-clause 6.1. If the semantics tag OP is used, the semantics of the absent field are further specified either in the field description table following the ASN.1 section, or in procedure text.

A.3.6 Fields with conditional presence

A field with conditional presence is declared with the keyword OPTIONAL. In addition, a short comment text shall be included at the end of the paragraph including the keyword OPTIONAL. The comment text includes the keyword "Cond", followed by a condition tag associated with the field ("UL" in this example):

-- /example/ ASN1START

LogicalChannelConfig ::= SEQUENCE {
    ul-SpecificParameters SEQUENCE {
        priority INTEGER (0),
        ...
    } OPTIONAL -- Cond UL
}

-- ASN1STOP

When conditionally present fields are included in an ASN.1 section, the field description table after the ASN.1 section shall be followed by a conditional presence table. The conditional presence table specifies the conditions for including the fields with conditional presence in the particular ASN.1 section.

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL</td>
<td>Specification of the conditions for including the field associated with the condition tag = &quot;UL&quot;. Semantics in case of optional presence under certain conditions may also be specified.</td>
</tr>
</tbody>
</table>

The conditional presence table has two columns. The first column (heading: "Conditional presence") contains the condition tag (in italic font style), which links the fields with a condition tag in the ASN.1 section to an entry in the table. The second column (heading: "Explanation") contains a text specification of the conditions and requirements for
the presence of the field. The second column may also include semantics, in case of an optional presence of the field, under certain conditions i.e. using the same predefined tags as defined for optional fields in A.3.5.

Conditional presence should primarily be used when presence of a field depends on the presence and/or value of other fields within the same message. If the presence of a field depends on whether another feature/function has been configured, while this function can be configured independently e.g. by another message and/or at another point in time, the relation is best reflected by means of a statement in the field description table.

If the ASN.1 section does not include any fields with conditional presence, the conditional presence table shall not be included.

Whenever a field is only applicable in specific cases e.g. TDD, use of conditional presence should be considered.

A.3.7 Guidelines on use of lists with elements of SEQUENCE type

Where an information element has the form of a list (the SEQUENCE OF construct in ASN.1) with the type of the list elements being a SEQUENCE data type, an information element shall be defined for the list elements even if it would not otherwise be needed.

For example, a list of PLMN identities with reservation flags is defined as in the following example:

```asn1
PLMN-IdentityInfoList ::= SEQUENCE (SIZE (1..6)) OF PLMN-IdentityInfo

PLMN-IdentityInfo ::= SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellReservedForOperatorUse ENUMERATED {reserved, notReserved}
}
```

rather than as in the following (bad) example, which may cause generated code to contain types with unpredictable names:

```asn1
PLMN-IdentityList ::= SEQUENCE (SIZE (1..6)) OF SEQUENCE {
 plmn-Identity PLMN-Identity,
 cellReservedForOperatorUse ENUMERATED {reserved, notReserved}
}
```

A.4 Extension of the PDU specifications

A.4.1 General principles to ensure compatibility

It is essential that extension of the protocol does not affect interoperability i.e. it is essential that implementations based on different versions of the RRC protocol are able to interoperate. In particular, this requirement applies for the following kind of protocol extensions:

- Introduction of new PDU types (i.e. these should not cause unexpected behaviour or damage).
- Introduction of additional fields in an extensible PDUs (i.e. it should be possible to ignore uncomprehended extensions without affecting the handling of the other parts of the message).
- Introduction of additional values of an extensible field of PDUs. If used, the behaviour upon reception of an uncomprehended value should be defined.

It should be noted that the PDU extension mechanism may depend on the logical channel used to transfer the message e.g. for some PDUs an implementation may be aware of the protocol version of the peer in which case selective ignoring of extensions may not be required.
The non-critical extension mechanism is the primary mechanism for introducing protocol extensions i.e. the critical extension mechanism is used merely when there is a need to introduce a 'clean' message version. Such a need appears when the last message version includes a large number of non-critical extensions, which results in issues like readability, overhead associated with the extension markers. The critical extension mechanism may also be considered when it is complicated to accommodate the extensions by means of non-critical extension mechanisms.

A.4.2 Critical extension of messages

The mechanisms to critically extend a message are defined in A.3.3. There are both "outer branch" and "inner branch" mechanisms available. The "outer branch" consists of a CHOICE having the name criticalExtensions, with two values, c1 and criticalExtensionsFuture. The criticalExtensionsFuture branch consists of an empty SEQUENCE, while the c1 branch contains the "inner branch" mechanism.

The "inner branch" structure is a CHOICE with values of the form "MessageName-rX-IEs" (e.g., "RRCConnectionReconfiguration-r8-IEs") or "spareX", with the spare values having type NULL. The "-rX-IEs" structures contain the complete structure of the message IEs for the appropriate release; i.e., the critical extension branch for the Rel-10 version of a message includes all Rel-8 and Rel-9 fields (that are not obviated in the later version), rather than containing only the additional Rel-10 fields.

The following guidelines may be used when deciding which mechanism to introduce for a particular message, i.e. only an 'outer branch', or an 'outer branch' in combination with an 'inner branch' including a certain number of spares:

- For certain messages, e.g. initial uplink messages, messages transmitted on a broadcast channel, critical extension may not be applicable.
- An outer branch may be sufficient for messages not including any fields.
- The number of spares within inner branch should reflect the likelihood that the message will be critically extended in future releases (since each release with a critical extension for the message consumes one of the spare values). The estimation of the critical extension likelyhood may be based on the number, size and changeability of the fields included in the message.
- In messages where an inner branch extension mechanism is available, all spare values of the inner branch should be used before any critical extensions are added using the outer branch.

The following example illustrates the use of the critical extension mechanism by showing the ASN.1 of the original and of a later release.

```asn1
-- /example/ ASN1START -- Original release
RRCMessage ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcMessage-r8 RRCMessage-r8-IEs,
 spare3 NULL, spare2 NULL, spare1 NULL
 },
 criticalExtensionsFuture SEQUENCE {}
 }
}
-- ASN1STOP

-- /example/ ASN1START -- Later release
RRCMessage ::= SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 c1 CHOICE{
 rrcMessage-r8 RRCMessage-r8-IEs,
 rrcMessage-r10 RRCMessage-r10-IEs,
 rrcMessage-r11 RRCMessage-r11-IEs,
 rrcMessage-r14 RRCMessage-r14-IEs
 },
 later CHOICE {
 c2 CHOICE{
 rrcMessage-r16 RRCMessage-r16-IEs,
 spare7 NULL, spare6 NULL, spare5 NULL, spare4 NULL,
 }
 }
 }
}
```
A.4.3 Non-critical extension of messages

A.4.3.1 General principles

The mechanisms to extend a message in a non-critical manner are defined in A.3.3. W.r.t. the use of extension markers, the following additional guidelines apply:

- When further non-critical extensions are added to a message that has been critically extended, the inclusion of these non-critical extensions in earlier critical branches of the message should be avoided when possible.

- The extension marker ("...") is the primary non-critical extension mechanism that is used unless a length determinant is not required. Examples of cases where a length determinant is not required:
  - at the end of a message,
  - at the end of a structure contained in a BIT STRING or OCTET STRING

- When an extension marker is available, non-critical extensions are preferably placed at the location (e.g. the IE) where the concerned parameter belongs from a logical/functional perspective (referred to as the 'default extension location')

- It is desirable to aggregate extensions of the same release or version of the specification into a group, which should be placed at the lowest possible level.

- In specific cases it may be preferable to place extensions elsewhere (referred to as the 'actual extension location') e.g. when it is possible to aggregate several extensions in a group. In such a case, the group should be placed at the lowest suitable level in the message. <TBD: ref to separate example>

- In case placement at the default extension location affects earlier critical branches of the message, locating the extension at a following higher level in the message should be considered.

- In case an extension is not placed at the default extension location, an IE should be defined. The IE's ASN.1 definition should be placed in the same ASN.1 section as the default extension location. In case there are intermediate levels in-between the actual and the default extension location, an IE may be defined for each level. Intermediate levels are primarily introduced for readability and overview. Hence intermediate levels need not always be introduced e.g. they may not be needed when the default and the actual extension location are within the same ASN.1 section. <TBD: ref to separate example>

A.4.3.2 Further guidelines

Further to the general principles defined in the previous section, the following additional guidelines apply regarding the use of extension markers:

- Extension markers within SEQUENCE
  - Extension markers are primarily, but not exclusively, introduced at the higher nesting levels
  - Extension markers are introduced for a SEQUENCE comprising several fields as well as for information elements whose extension would result in complex structures without it (e.g. re-introducing another list)
  - Extension markers are introduced to make it possible to maintain important information structures e.g. parameters relevant for one particular RAT
  - Extension markers are also used for size critical messages (i.e. messages on BCCH, PCCH and CCCH), although introduced somewhat more carefully
- The extension fields introduced (or frozen) in a specific version of the specification are grouped together using double brackets.

- Extension markers within ENUMERATED
  - Spare values are used until the number of values reaches the next power of 2, while the extension marker caters for extension beyond that limit
  - A suffix of the form "vXYZ" is used for the identifier of each new value, e.g. "value-vXYZ".

- Extension markers within CHOICE:
  - Extension markers are introduced when extension is foreseen and when comprehension is not required by the receiver i.e. behaviour is defined for the case where the receiver cannot comprehend the extended value (e.g. ignoring an optional CHOICE field). It should be noted that defining the behaviour of a receiver upon receiving a not comprehended choice value is not required if the sender is aware whether or not the receiver supports the extended value.
  - A suffix of the form "vXYZ" is used for the identifier of each new choice value, e.g. "choice-vXYZ".

Non-critical extensions at the end of a message/ of a field contained in an OCTET or BIT STRING:

- When a nonCriticalExtension is actually used, a "Need" statement should not be provided for the field, which always is a group including at least one extension and a field facilitating further possible extensions. For simplicity, it is recommended not to provide a "Need" statement when the field is not actually used either.

Further, more general, guidelines:

- In case a need statement is not provided for a group, a "Need" statement is provided for all individual extension fields within the group i.e. including for fields that are not marked as OPTIONAL. The latter is to clarify the action upon absence of the whole group.

A.4.3.3 Typical example of evolution of IE with local extensions

The following example illustrates the use of the extension marker for a number of elementary cases (sequence, enumerated, choice). The example also illustrates how the IE may be revised in case the critical extension mechanism is used.

NOTE In case there is a need to support further extensions of release n while the ASN.1 of release (n+1) has been frozen, without requiring the release n receiver to support decoding of release (n+1) extensions, more advanced mechanisms are needed e.g. including multiple extension markers.

```
-- /example/ ASN1START

InformationElement1 ::= SEQUENCE {
 field1 ENUMERATED {
 value1, value2, value3, value4-v880,
 ..., value5-v960 },
 field2 CHOICE {
 field2a BOOLEAN,
 field2b InformationElement2b,
 ..., field2c-v960 InformationElement2c-r9
 },
 ...,
 [[field3-r9 InformationElement3-r9 OPTIONAL -- Need OR
]],
 [[field3-v9a0 InformationElement3-v9a0 OPTIONAL, -- Need OR
 field4-r9 InformationElement4 OPTIONAL -- Need OR
]]
}

InformationElement1-r10 ::= SEQUENCE {
 field1 ENUMERATED {
 value1, value2, value3, value4-v880,
 value5-v960, value6-v1170, spare2, spare1, ... },
 field2 CHOICE {
 field2a BOOLEAN,
 field2b InformationElement2b,
 field2c-v960 InformationElement2c-r9,

```
Some remarks regarding the extensions of InformationElement1 as shown in the above example:

– The InformationElement1 is initially extended with a number of non-critical extensions. In release 10 however, a critical extension is introduced for the message using this IE. Consequently, a new version of the IE InformationElement1 (i.e. InformationElement1-r10) is defined in which the earlier non-critical extensions are incorporated by means of a revision of the original field.

– The value4-v880 is replacing a spare value defined in the original protocol version for field1. Likewise value6-v1170 replaces spare3 that was originally defined in the r10 version of field1.

– Within the critically extended release 10 version of InformationElement1, the names of the original fields/IEs are not changed, unless there is a real need to distinguish them from other fields/IEs. E.g. the field1 and InformationElement4 were defined in the original protocol version (release 8) and hence not tagged. Moreover, the field3-r9 is introduced in release 9 and not re-tagged; although, the InformationElement3 is also critically extended and therefore tagged InformationElement3-r10 in the release 10 version of InformationElement1.

A.4.3.4 Typical examples of non-critical extension at the end of a message

The following example illustrates the use of non-critical extensions at the end of the message or at the end of a field that is contained in a BIT or OCTET STRING i.e. when an empty sequence is used.

Some remarks regarding the extensions shown in the above example:

– The InformationElement4 is introduced in the original version of the protocol (release 8) and hence no suffix is used.

A.4.3.5 Examples of non-critical extensions not placed at the default extension location

The following example illustrates the use of non-critical extensions in case an extension is not placed at the default extension location.
ParentIE-WithEM

The IE ParentIE-WithEM is an example of a high level IE including the extension marker (EM). The root encoding of this IE includes two lower level IEs ChildIE1-WithoutEM and ChildIE2-WithoutEM which do not include the extension marker. Consequently, non-critical extensions of the Child-IEs have to be included at the level of the Parent-IE.

The example illustrates how the two extension IEs ChildIE1-WithoutEM-vNx0 and ChildIE2-WithoutEM-vNx0 (both in release N) are used to connect non-critical extensions with a default extension location in the lower level IEs to the actual extension location in this IE.

**ParentIE-WithEM information element**

```
ParentIE-WithEM ::= SEQUENCE {
 -- Root encoding, including:
 childIE1-WithoutEM ChildIE1-WithoutEM OPTIONAL, -- Need ON
 childIE2-WithoutEM ChildIE2-WithoutEM OPTIONAL, -- Need ON
 ...,
 [[childIE1-WithoutEM-vNx0 ChildIE1-WithoutEM-vNx0 OPTIONAL, -- Need ON
 childIE2-WithoutEM-vNx0 ChildIE2-WithoutEM-vNx0 OPTIONAL -- Need ON
]]
}
```

Some remarks regarding the extensions shown in the above example:

- The fields childIEx-WithoutEM-vNx0 may not really need to be optional (depends on what is defined at the next lower level).
- In general, especially when there are several nesting levels, fields should be marked as optional only when there is a clear reason.

ChildIE1-WithoutEM

The IE ChildIE1-WithoutEM is an example of a lower level IE, used to control certain radio configurations including a configurable feature which can be setup or released using the local IE ChIE1-ConfigurableFeature. The example illustrates how the new field chIE1-NewField is added in release N to the configuration of the configurable feature. The example is based on the following assumptions:

- when initially configuring as well as when modifying the new field, the original fields of the configurable feature have to be provided also i.e. as if the extended ones were present within the setup branch of this feature.
- when the configurable feature is released, the new field should be released also.
- when omitting the original fields of the configurable feature the UE continues using the existing values (which is used to optimise the signalling for features that typically continue unchanged upon handover).
- when omitting the new field of the configurable feature the UE releases the existing values and discontinues the associated functionality (which may be used to support release of unsupported functionality upon handover to an eNB supporting an earlier protocol version).

The above assumptions, which affect the use of conditions and need codes, may not always apply. Hence, the example should not be re-used blindly.

**ChildIE1-WithoutEM information elements**

```
ChildIE1-WithoutEM ::= SEQUENCE {
 -- Root encoding, including:
 chIE1-ConfigurableFeature ChIE1-ConfigurableFeature OPTIONAL -- Need ON
}
```
ChildIE1-WithoutEM-vNx0 ::=  SEQUENCE {
  chIE1-ConfigurableFeature-vNx0  ChIE1-ConfigurableFeature-vNx0 OPTIONAL -- Cond ConfigF
}

ChildIE1-ConfigurableFeature ::=  CHOICE {
  release        NULL,
  setup        SEQUENCE {
    -- Root encoding
  }
}

ChildIE1-ConfigurableFeature-vNx0 ::=  SEQUENCE {
  chIE1-NewField-rN     INTEGER (0..31)
}

-- ASN1STOP

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigF</td>
<td>The field is optional present, need OR, in case of chIE1-ConfigurableFeature is included and set to &quot;setup&quot;; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

ChildIE2-WithoutEM

The IE ChildIE2-WithoutEM is an example of a lower level IE, typically used to control certain radio configurations. The example illustrates how the new field chIE1-NewField is added in release N to the configuration of the configurable feature.

ChildIE2-WithoutEM information element

<table>
<thead>
<tr>
<th>Conditional presence</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConfigF</td>
<td>The field is optional present, need OR, in case of chIE2-ConfigurableFeature is included and set to &quot;setup&quot;; otherwise the field is not present and the UE shall delete any existing value for this field.</td>
</tr>
</tbody>
</table>

A.5 Guidelines regarding inclusion of transaction identifiers in RRC messages

The following rules provide guidance on which messages should include a Transaction identifier:

1: DL messages on CCCH that move UE to RRC-Idle should not include the RRC transaction identifier.

2: All network initiated DL messages by default should include the RRC transaction identifier.

3: All UL messages that are direct response to a DL message with an RRC Transaction identifier should include the RRC Transaction identifier.

4: All UL messages that require a direct DL response message should include an RRC transaction identifier.
5: All UL messages that are not in response to a DL message nor require a corresponding response from the network should not include the RRC Transaction identifier.

A.6 Protection of RRC messages (informative)

The following list provides information which messages can be sent (unprotected) prior to security activation and which messages can be sent unprotected after security activation.

P… Messages that can be sent (unprotected) prior to security activation
A - I… Messages that can be sent without integrity protection after security activation
A - C… Messages that can be sent unciphered after security activation
NA… Message can never be sent after security activation
<table>
<thead>
<tr>
<th>Message</th>
<th>P</th>
<th>A-I</th>
<th>A-C</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSFBParametersRequestCDMA2000</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CSFBParametersResponseCDMA2000</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CounterCheck</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CounterCheckResponse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DLInformationTransfer</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HandoverFromEUTRARequest (CDMA2000)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>InDeviceCoexIndication</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>InterFreqRSTDMeasurementIndication</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LoggedMeasurementsConfiguration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MasterInformationBlock</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MBMSCountingRequest</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MBMSCountingResponse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MBMSInterestIndication</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MBSFNAreaConfiguration</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>MeasurementReport</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Justification for case &quot;P&quot;: RAN2 agreed that measurement configuration may be sent prior to security activation</td>
</tr>
<tr>
<td>MobilityFromEUTRACommand</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Paging</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ProximityIndication</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RNReconfiguration</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RNReconfigurationComplete</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCCConnectionReconfiguration</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>The message shall not be sent unprotected before security activation if it is used to perform handover or to establish SRB2 and DRBs</td>
</tr>
<tr>
<td>RRCCConnectionReconfigurationComplete</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Unprotected, if sent as response to RRCCConnectionReconfiguration which was sent before security activation</td>
</tr>
<tr>
<td>RRCCConnectionReestablishment</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>This message is not protected by PDCP operation.</td>
</tr>
<tr>
<td>RRCCConnectionReestablishmentComplete</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCCConnectionReestablishmentReject</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>One reason to send this may be that the security context has been lost, therefore sent as unprotected.</td>
</tr>
<tr>
<td>RRCCConnectionReestablishmentRequest</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>This message is not protected by PDCP operation. However a short MAC-I is included.</td>
</tr>
<tr>
<td>RRCCConnectionReject</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Justification for P: If the RRC connection only for signalling not requiring DRBs or ciphered messages, or the signalling connection has to be released prematurely, this message is sent as unprotected.</td>
</tr>
<tr>
<td>RRCCConnectionRelease</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RRCCConnectionRequest</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RRCCConnectionSetup</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RRCCConnectionSetupComplete</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SecurityModeCommand</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Integrity protection applied, but no ciphering (integrity verification done after the message received by RRC)</td>
</tr>
<tr>
<td>SecurityModeComplete</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
<td>Integrity protection applied, but no ciphering. Ciphering is applied after completing the procedure.</td>
</tr>
<tr>
<td>SecurityModeFailure</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Neither integrity protection nor ciphering applied.</td>
</tr>
<tr>
<td>SystemInformation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>SystemInformationBlockType1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>UEAssistanceInformation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UECapabilityEnquiry</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>UECapabilityInformation</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
### A.7 Miscellaneous

The following miscellaneous conventions should be used:

- References: Whenever another specification is referenced, the specification number and optionally the relevant subclause, table or figure, should be indicated in addition to the pointer to the References section e.g. as follows: ‘see TS 36.212 [22, 5.3.3.1.6]’.
Annex B (normative): Release 8 and 9 AS feature handling

B.1 Feature group indicators

This annex contains the definitions of the bits in fields featureGroupIndicators (in Table B.1-1) and featureGroupIndRel9Add (in Table B.1-1a).

In this release of the protocol, the UE shall include the fields featureGroupIndicators in the IE UE-EUTRA-Capability and featureGroupIndRel9Add in the IE UE-EUTRA-Capability-v9a0. All the functionalities defined within the field featureGroupIndicators defined in Table B.1-1 or Table B.1-1a are mandatory for the UE, if the related capability (frequency band, RAT, SR-VCC or Inter-RAT ANR) is also supported. For a specific indicator, if all functionalities for a feature group listed in Table B.1-1 have been implemented and tested, the UE shall set the indicator as one (1), else (i.e. if any one of the functionalities in a feature group listed in Table B.1-1 or Table B.1-1a, which have not been implemented or tested), the UE shall set the indicator as zero (0).

The UE shall set all indicators that correspond to RATs not supported by the UE as zero (0).

The UE shall set all indicators, which do not have a definition in Table B.1-1 or Table B.1-1a, as zero (0).

If the optional fields featureGroupIndicators or featureGroupIndRel9Add are not included by a UE of a future release, the network may assume that all features pertaining to the RATs supported by the UE, respectively listed in Table B.1-1 or Table B.1-1a and deployed in the network, have been implemented and tested by the UE.

In Table B.1-1, a 'VoLTE capable UE' corresponds to a UE which is IMS voice capable.

The indexing in Table B.1-1a starts from index 33, which is the leftmost bit in the field featureGroupIndRel9Add.

<table>
<thead>
<tr>
<th>Index of indicator (bit number)</th>
<th>Definition (description of the supported functionality, if indicator set to one)</th>
<th>Notes</th>
<th>If indicated &quot;Yes&quot; the feature shall be implemented and successfully tested for this version of the specification</th>
<th>FDD/ TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (leftmost bit)</td>
<td>- Intra-subframe frequency hopping for PUSCH scheduled by UL grant BRDCST O-DCI</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- DCI format 3a (TPC commands for PUSCH and PUSCH with single bit power adjustments)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-0 – UE selected subband CQI without PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-2 – UE selected subband CQI with multiple PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Simultaneous CQI and ACK/NACK on PUCCH, i.e. PUCCH format 2a and 2b</td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Absolute TPC command for PUSCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Resource allocation type 1 for PDSCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH: Mode 2-0 – UE selected subband CQI without PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH: Mode 2-1 – UE selected subband CQI with single PMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 5bit RLC UM SN</td>
<td></td>
<td>Yes, if UE supports VoLTE. Yes, if UE supports SRVCC to EUTRAN from GERAN.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>- 7bit PDCP SN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- Short DRX cycle</td>
<td>- can only be set to 1 if the UE has set bit number 5 to 1.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | - Long DRX cycle  
- DRX command MAC control element | Yes | No |
| 6 | - Prioritised bit rate | Yes | No |
| 7 | - RLC UM | - can only be set to 0 if the UE does not support VoLTE | Yes, if UE supports VoLTE. Yes, if UE supports SRVCC to EUTRAN from GERAN. No |
| 8 | - EUTRA RRC_CONNECTED to UTRA FDD or UTRA TDD CELL_DCH PS handover, if the UE supports either only UTRAN FDD or only UTRAN TDD  
- EUTRA RRC_CONNECTED to UTRA FDD CELL_DCH PS handover, if the UE supports both UTRAN FDD and UTRAN TDD | - can only be set to 1 if the UE has set bit number 22 to 1 | Yes for FDD, if UE supports UTRA FDD | Yes |
| 9 | - EUTRA RRC_CONNECTED to GERAN GSM_Dedicated handover | - related to SR-VCC  
- can only be set to 1 if the UE has set bit number 23 to 1 | Yes, if UE supports SRVCC to EUTRAN from GERAN. | Yes |
| 10 | - EUTRA RRC_CONNECTED to GERAN (Packet_) Idle by Cell Change Order  
- EUTRA RRC_CONNECTED to GERAN (Packet_) Idle by Cell Change Order with NACC (Network Assisted Cell Change) | - related to SR-VCC  
- can only be set to 1 if the UE has set bit number 24 to 1 | Yes | Yes |
| 11 | - EUTRA RRC_CONNECTED to CDMA2000 1xRTT CS Active handover | - related to SR-VCC  
- can only be set to 1 if the UE has set bit number 25 to 1 | Yes | Yes |
| 12 | - EUTRA RRC_CONNECTED to CDMA2000 HRPD Active handover | - can only be set to 1 if the UE has set bit number 26 to 1 | Yes | Yes |
| 13 | - Inter-frequency handover (within FDD or TDD) | - can only be set to 1 if the UE has set bit number 25 to 1 | Yes, unless UE only supports band 13 | No |
| 14 | - Measurement reporting event: Event A4  
- Neighbour > threshold  
- Measurement reporting event: Event A5  
- Serving < threshold1 & Neighbour > threshold2 | - can only be set to 1 if the UE has set at least one of the bit number 22, 23, 24, 26 or 39 to 1.  
- even if the UE sets bits 41, it shall still set bit 15 to 1 if measurement reporting event B1 is tested for all RATs supported by UE | Yes for FDD, if UE supports only UTRAN FDD and does not support UTRAN TDD or GERAN or 1xRTT or HRPD | Yes |
| 15 | - Measurement reporting event: Event B1  
- Neighbour > threshold for UTRAN FDD or UTRAN TDD, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1  
- Measurement reporting event: Event B1  
- Neighbour > threshold for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively  
- Measurement reporting event: Event B1  
- Neighbour > threshold for GERAN, 1xRTT or HRPD, if the UE has set bit number 23, 24 or 26 to 1, respectively  
- Measurement reporting event: Event B1  
- Neighbour > threshold for GERAN, 1xRTT or HRPD, if the UE has set bit number 23, 24 or 26 to 1, respectively | - can only be set to 1 if the UE has set at least one of the bit number 22, 23, 24, 26 or 39 to 1.  
- even if the UE sets bits 41, it shall still set bit 15 to 1 if measurement reporting event B1 is tested for all RATs supported by UE | Yes for FDD, if UE supports only UTRAN FDD and does not support UTRAN TDD or GERAN or 1xRTT or HRPD | Yes |
| 16 | - Intra-frequency periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCells  
- Inter-frequency periodical measurement reporting where triggerType is set to periodical and purpose is set to reportStrongestCells, if the UE has set bit number 25 to 1 | Yes | No |
- **Inter-RAT periodical measurement reporting** where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells` for UTRAN FDD or UTRAN TDD, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1.

- **Inter-RAT periodical measurement reporting** where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells` for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively.

- **Inter-RAT periodical measurement reporting** where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCells` for GERAN, 1xRTT or HRPD, if the UE has set bit number 23, 24 or 26 to 1, respectively.

**NOTE:** Event triggered periodical reporting (i.e., with `triggerType` set to `event` and with `reportAmount` > 1) is a mandatory functionality of event triggered reporting and therefore not the subject of this bit.

---

<table>
<thead>
<tr>
<th>17</th>
<th>Intra-frequency ANR features including:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Intra-frequency periodical measurement reporting where <code>triggerType</code> is set to <code>periodical</code> and <code>purpose</code> is set to <code>reportStrongestCells</code></td>
</tr>
<tr>
<td></td>
<td>- Intra-frequency periodical measurement reporting where <code>triggerType</code> is set to <code>periodical</code> and <code>purpose</code> is set to <code>reportCGI</code></td>
</tr>
</tbody>
</table>

**- can only be set to 1 if the UE has set bit number 5 to 1.**

---

<table>
<thead>
<tr>
<th>18</th>
<th>Inter-frequency ANR features including:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Inter-frequency periodical measurement reporting where <code>triggerType</code> is set to <code>periodical</code> and <code>purpose</code> is set to <code>reportStrongestCells</code></td>
</tr>
<tr>
<td></td>
<td>- Inter-frequency periodical measurement reporting where <code>triggerType</code> is set to <code>periodical</code> and <code>purpose</code> is set to <code>reportCGI</code></td>
</tr>
</tbody>
</table>

**- can only be set to 1 if the UE has set bit number 5 and bit number 25 to 1.**

---

<table>
<thead>
<tr>
<th>19</th>
<th>Inter-RAT ANR features including:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Inter-RAT periodical measurement reporting where <code>triggerType</code> is set to <code>periodical</code> and <code>purpose</code> is set to <code>reportStrongestCells</code> for GERAN, if the UE has set bit number 23 to 1</td>
</tr>
<tr>
<td></td>
<td>- Inter-RAT periodical measurement reporting where <code>triggerType</code> is set to <code>periodical</code> and <code>purpose</code> is set to <code>reportStrongestCellsForSON</code> for UTRAN FDD or UTRAN TDD, if the UE supports either only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1</td>
</tr>
<tr>
<td></td>
<td>- Inter-RAT periodical measurement reporting where <code>triggerType</code> is set to <code>periodical</code> and <code>purpose</code> is set to <code>reportStrongestCellsForSON</code> for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively</td>
</tr>
</tbody>
</table>

**- can only be set to 1 if the UE has set bit number 5 to 1 and the UE has set at least one of the bit number 22, 23, 24 or 26 to 1.**

**- even if the UE sets bits 33 to 37, it shall still set bit 19 to 1 if inter-RAT ANR features are tested for all RATs for which inter-RAT measurement reporting is indicated as tested.**
- Inter-RAT periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportStrongestCellsForSON` for 1xRTT or HRPD, if the UE has set bit number 24 or 26 to 1, respectively
- Inter-RAT periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportCGI` for UTRAN FDD or UTRAN TDD, if the UE supports only UTRAN FDD or only UTRAN TDD and has set bit number 22 to 1
- Inter-RAT periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportCGI` for UTRAN FDD or UTRAN TDD, if the UE supports both UTRAN FDD and UTRAN TDD and has set bit number 22 or 39 to 1, respectively
- Inter-RAT periodical measurement reporting where `triggerType` is set to `periodical` and `purpose` is set to `reportCGI` for GERAN, 1xRTT or HRPD, if the UE has set bit number 23, 24 or 26 to 1, respectively

20 If bit number 7 is set to 0:
- SRB1 and SRB2 for DCCH + 8x AM DRB
If bit number 7 is set to 1:
- SRB1 and SRB2 for DCCH + 8x AM DRB
- SRB1 and SRB2 for DCCH + 5x AM DRB + 3x UM DRB

NOTE: UE which indicate support for a DRB combination also support all subsets of the DRB combination. Therefore, release of DRB(s) never results in an unsupported DRB combination.

- Regardless of what bit number 7 and bit number 20 is set to, UE shall support at least SRB1 and SRB2 for DCCH + 4x AM DRB
- Regardless of what bit number 20 is set to, if bit number 7 is set to 1, UE shall support at least SRB1 and SRB2 for DCCH + 4x AM DRB + 1x UM DRB

21 - Predefined intra- and inter-subframe frequency hopping for PUSCH with $N_{sb} > 1$
- Predefined inter-subframe frequency hopping for PUSCH with $N_{sb} > 1$

22 - UTRAN FDD or UTRAN TDD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode, if the UE supports either only UTRAN FDD or only UTRAN TDD
- UTRAN FDD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode, if the UE supports both UTRAN FDD and UTRAN TDD

23 - GERAN measurements, reporting and measurement reporting event B2 in E-UTRA connected mode

24 - 1xRTT measurements, reporting and measurement reporting event B2 in E-UTRA connected mode

<table>
<thead>
<tr>
<th>20</th>
<th>If bit number 7 is set to 0:</th>
<th>If bit number 7 is set to 1:</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
|    | - SRB1 and SRB2 for DCCH + 8x AM DRB | - SRB1 and SRB2 for DCCH + 8x AM DRB  
- SRB1 and SRB2 for DCCH + 5x AM DRB + 3x UM DRB | Yes | No |

<table>
<thead>
<tr>
<th>22</th>
<th>Yes for FDD, if UE supports UTRA FDD</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>23</th>
<th>Yes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>25</td>
<td>Inter-frequency measurements and reporting in E-UTRA connected mode</td>
</tr>
<tr>
<td></td>
<td>NOTE: The UE setting this bit to 1 and indicating support for FDD and TDD frequency bands in the UE capability signalling implements and is tested for FDD measurements while the UE is in TDD, and for TDD measurements while the UE is in FDD.</td>
</tr>
<tr>
<td>26</td>
<td>HRPD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode</td>
</tr>
</tbody>
</table>
| 27 | - EUTRA RRC_CONNECTED to UTRA FDD or UTRA TDD CELL_DCH CS handover, if the UE supports either only UTRAN FDD or only UTRAN TDD  
    - EUTRA RRC_CONNECTED to UTRA FDD CELL_DCH CS handover, if the UE supports both UTRAN FDD and UTRAN TDD | Yes for FDD, if UE supports VoLTE and UTRA FDD | Yes |    |
|    | NOTE: For SR-VCC related to SR-VCC  
    - can only be set to 1 if the UE has set bit number 8 to 1 and supports SR-VCC from EUTRA defined in TS 24.008 [49] |              |                 |    |
| 28 | TTI bundling                                                                | Yes for FDD | Yes             |    |
| 29 | Semi-Persistent Scheduling                                                  |              | Yes             |    |
| 30 | Handover between FDD and TDD                                               | - can only be set to 1 if the UE has set bit number 13 to 1 | No |    |
| 31 | Indicates whether the UE supports the mechanisms defined for cells broadcasting multi band information i.e. comprehending multiBandInfoList, disregarding in RRC_CONNECTED the related system information fields and understanding the EARFCN signalling for all bands, that overlap with the bands supported by the UE, and that are defined in the earliest version of TS 36.101 [42] that includes all UE supported bands. | Yes | No |    |
| 32 | Undefined                                                                   |              |                 |    |

**NOTE:** The column FDD/TDD diff indicates if the UE is allowed to signal different values for FDD and TDD.
Table B.1-1a: Definitions of feature group indicators

<table>
<thead>
<tr>
<th>Index of indicator (bit number)</th>
<th>Definition (description of the supported functionality, if indicator set to one)</th>
<th>Notes</th>
<th>If indicated “Yes” the feature shall be implemented and successfully tested for this version of the specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 (leftmost bit)</td>
<td>Inter-RAT ANR features for UTRAN FDD including: - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportStrongestCellsForSON</strong> - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportCGI</strong></td>
<td>- can only be set to 1 if the UE has set bit number 5 and bit number 22 to 1.</td>
<td>Yes</td>
</tr>
<tr>
<td>34</td>
<td>Inter-RAT ANR features for GERAN including: - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportStrongestCells</strong> - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportCGI</strong></td>
<td>- can only be set to 1 if the UE has set bit number 5 and bit number 23 to 1.</td>
<td>Yes</td>
</tr>
<tr>
<td>35</td>
<td>Inter-RAT ANR features for 1xRTT including: - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportStrongestCellsForSON</strong> - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportCGI</strong></td>
<td>- can only be set to 1 if the UE has set bit number 5 and bit number 24 to 1.</td>
<td>Yes</td>
</tr>
<tr>
<td>36</td>
<td>Inter-RAT ANR features for HRPD including: - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportStrongestCellsForSON</strong> - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportCGI</strong></td>
<td>- can only be set to 1 if the UE has set bit number 5 and bit number 26 to 1.</td>
<td>Yes</td>
</tr>
<tr>
<td>37</td>
<td>Inter-RAT ANR features for UTRAN TDD including: - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportStrongestCellsForSON</strong> - Inter-RAT periodical measurement reporting where triggerType is set to <em>periodical</em> and purpose is set to <strong>reportCGI</strong></td>
<td>- can only be set to 1 if the UE has set bit number 5 and at least one of the bit number 22 (for UEs supporting only UTRA TDD) or the bit number 39 to 1.</td>
<td>Yes</td>
</tr>
<tr>
<td>38</td>
<td>- EUTRA RRC_CONNECTED to UTRA TDD CELL_DCH PS handover, if the UE supports both UTRAN FDD and UTRAN TDD</td>
<td>- can only be set to 1 if the UE supports both UTRAN FDD and UTRAN TDD</td>
<td>Yes</td>
</tr>
<tr>
<td>39</td>
<td>- UTRAN TDD measurements, reporting and measurement reporting event B2 in E-UTRA connected mode, if the UE supports both UTRAN FDD and UTRAN TDD</td>
<td>- related to SR-VCC</td>
<td>Yes</td>
</tr>
<tr>
<td>40</td>
<td>- EUTRA RRC_CONNECTED to UTRA</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>TDD CELL DCH CS handover, if the UE supports both UTRAN FDD and UTRAN TDD</td>
<td>- can only be set to 1 if the UE has set bit number 38 to 1</td>
<td>Yes for FDD, unless UE has set bit number 15 to 1</td>
<td>Yes</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>41</td>
<td>Measurement reporting event: Event B1 - Neighbour &gt; threshold for UTRAN FDD, if the UE supports UTRAN FDD and has set bit number 22 to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Undefined</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** The column FDD/TDD diff indicates if the UE is allowed to signal different values for FDD and TDD.

**Clarification for mobility from EUTRAN and inter-frequency handover within EUTRAN**

There are several feature groups related to mobility from E-UTRAN and inter-frequency handover within EUTRAN. The description of these features is based on the assumption that we have 5 main "functions" related to mobility from E-UTRAN:

A. Support of measurements and cell reselection procedure in idle mode

B. Support of RRC release with redirection procedure in connected mode

C. Support of Network Assisted Cell Change in connected mode

D. Support of measurements and reporting in connected mode

E. Support of handover procedure in connected mode

All functions can be applied for mobility to Inter-frequency to EUTRAN, GERAN, UTRAN, CDMA2000 HRPD and CDMA2000 1xRTT except for function C) which is only applicable for mobility to GERAN. Table B.1-2 below summarises the mobility functions that are supported based on the UE capability signaling (band support) and the setting of the feature group support indicators.
Table B.1-2: Mobility from E-UTRAN

<table>
<thead>
<tr>
<th>Feature</th>
<th>GERAN</th>
<th>UTRAN</th>
<th>HRPD</th>
<th>1xRTT</th>
<th>EUTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Measurements and cell reselection procedure in E-UTRA idle mode</td>
<td>Supported if GERAN band support is indicated</td>
<td>Supported if UTRAN band support is indicated</td>
<td>Supported if CDMA2000 HRPD band support is indicated</td>
<td>Supported if CDMA2000 1xRTT band support is indicated</td>
<td>Supported for supported bands</td>
</tr>
<tr>
<td>B. RRC release with blind redirection procedure in E-UTRA connected mode</td>
<td>Supported if GERAN band support is indicated</td>
<td>Supported if UTRAN band support is indicated</td>
<td>Supported if CDMA2000 HRPD band support is indicated</td>
<td>Supported if CDMA2000 1xRTT band support is indicated</td>
<td>Supported for supported bands</td>
</tr>
<tr>
<td>C. Cell Change Order (with or without) Network Assisted Cell Change) in E-UTRA connected mode</td>
<td>Group 10</td>
<td>N.A.</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>D. Inter-frequency/RAT measurements, reporting and measurement reporting event B2 (for inter-RAT) in E-UTRA connected mode</td>
<td>Group 23</td>
<td>Group 22/39</td>
<td>Group 26</td>
<td>Group 24</td>
<td>Group 25</td>
</tr>
<tr>
<td>E. Inter-frequency/RAT handover procedure in E-UTRA connected mode</td>
<td>Group 9 (GSM_connected handover)</td>
<td>Separate UE capability bit defined in TS 36.306 for PS handover</td>
<td>Group 8/38 (PS handover) or Group 27/40 (SRVCC handover)</td>
<td>Group 12</td>
<td>Group 13 (within FDD or TDD) Group 30 (between FDD and TDD)</td>
</tr>
</tbody>
</table>

In case measurements and reporting function is not supported by UE, the network may still issue the mobility procedures redirection (B) and CCO (C) in a blind fashion.

B.2 CSG support

In this release of the protocol, it is mandatory for the UE to support a minimum set of CSG functionality consisting of:

- Identifying whether a cell is CSG or not;
- Ignoring CSG cells in cell selection/reselection.

Additional CSG functionality in AS, i.e. the requirement to detect and camp on CSG cells when the “CSG whitelist” is available or when manual CSG selection is triggered by the user, are related to the corresponding NAS features. This additional AS functionality consists of:

- Manual CSG selection;
- Autonomous CSG search;
- Implicit priority handling for cell reselection with CSG cells.

It is possible that this additional CSG functionality in AS is not supported or tested in early UE implementations.

Note that since the above AS features relate to idle mode operations, the capability support is not signalled to the network. For these reasons, no “feature group indicator” is assigned to this feature to indicate early support in Rel-8.
Annex C (normative): Release 10 AS feature handling

C.1 Feature group indicators

This annex contains the definitions of the bits in field featureGroupIndRel10.

In this release of the protocol, the UE shall include the field featureGroupIndRel10 in the IE UE-EUTRA-Capability-v1020-IEs. All the functionalities defined within the field featureGroupIndRel10 defined in Table C.1-1 are mandatory for the UE, if the related capability (spatial multiplexing in UL, PDSCH transmission mode 9, carrier aggregation, handover to EUTRA, or RAT) is also supported. For a specific indicator, if all functionalities for a feature group listed in Table C.1-1 have been implemented and tested, the UE shall set the indicator as one (1), else (i.e. if any one of the functionalities in a feature group listed in Table C.1-1 have not been implemented or tested), the UE shall set the indicator as zero (0).

The UE shall set all indicators that correspond to RATs not supported by the UE as zero (0).

The UE shall set all indicators, which do not have a definition in Table C.1-1, as zero (0).

If the optional field featureGroupIndRel10 is not included by a UE of a future release, the network may assume that all features, listed in Table C.1-1 and deployed in the network, have been implemented and tested by the UE.

The indexing in Table C.1-1 starts from index 101, which is the leftmost bit in the field featureGroupIndRel10.

Table C.1-1: Definitions of feature group indicators

<table>
<thead>
<tr>
<th>Index of indicator (leftmost bit)</th>
<th>Definition (description of the supported functionality, if indicator set to one)</th>
<th>Notes</th>
<th>If indicated &quot;Yes&quot; the feature shall be implemented and successfully tested for this version of the specification</th>
<th>FDD/ TDD diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>- DMRS with OCC (orthogonal cover code) and SGH (sequence group hopping) disabling</td>
<td></td>
<td>if the UE supports two or more layers for spatial multiplexing in UL, this bit shall be set to 1.</td>
<td>No</td>
</tr>
<tr>
<td>102</td>
<td>- Trigger type 1 SRS (aperiodic SRS) transmission (Up to X ports)</td>
<td></td>
<td>NOTE: X = number of supported layers on given band</td>
<td>TBD</td>
</tr>
<tr>
<td>103</td>
<td>- PDSCH transmission mode 9 when up to 4 CSI reference signal ports are configured</td>
<td></td>
<td>for Category 8 UEs, this bit shall be set to 1.</td>
<td>TBD</td>
</tr>
<tr>
<td>104</td>
<td>- PDSCH transmission mode 9 for TDD when 8 CSI reference signal ports are configured</td>
<td></td>
<td>if the UE does not support TDD, this bit is irrelevant (capability signalling exists for FDD for this feature), and this bit shall be set to 0.</td>
<td>No</td>
</tr>
<tr>
<td>105</td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH: Mode 2-0 – UE selected subband CQI without PMI, when PDSCH transmission mode 9 is configured</td>
<td></td>
<td>this bit can be set to 1 only if indices 2 (Table B.1-1) and 103 are set to 1.</td>
<td>TBD</td>
</tr>
<tr>
<td>106</td>
<td>- Periodic CQI/PMI/RI/PTI reporting on PUCCH: Mode 2-1 – UE selected subband CQI with single PMI, when PDSCH transmission mode 9 and 8 CSI reference signal ports are configured</td>
<td>- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if \textit{tm9-\textbackslash With-8Tx-FDD-r10} is set to 'supported') and if index 2 (Table B.1-1) is set to 1.</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-0 – UE selected subband CQI without PMI, when PDSCH transmission mode 9 is configured - Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-2 – UE selected subband CQI with multiple PMI, when PDSCH transmission mode 9 and up to 4 CSI reference signal ports are configured</td>
<td>- this bit can be set to 1 only if indices 1 (Table B.1-1) and 103 are set to 1.</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>- Aperiodic CQI/PMI/RI reporting on PUSCH: Mode 2-2 – UE selected subband CQI with multiple PMI, when PDSCH transmission mode 9 and 8 CSI reference signal ports are configured</td>
<td>- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if \textit{tm9-\textbackslash With-8Tx-FDD-r10} is set to 'supported') and if index 1 (Table B.1-1) is set to 1.</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH Mode 1-1, submode 1</td>
<td>- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if \textit{tm9-\textbackslash With-8Tx-FDD-r10} is set to 'supported').</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>- Periodic CQI/PMI/RI reporting on PUCCH Mode 1-1, submode 2</td>
<td>- this bit can be set to 1 only if the UE supports PDSCH transmission mode 9 with 8 CSI reference signal ports (i.e., for TDD, if index 104 is set to 1, and for FDD, if \textit{tm9-\textbackslash With-8Tx-FDD-r10} is set to 'supported').</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>- Measurement reporting trigger Event A6</td>
<td>- this bit can be set to 1 only if the UE supports carrier aggregation.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>- SCell addition within the Handover to EUTRA procedure</td>
<td>- this bit can be set to 1 only if the UE supports carrier aggregation and the Handover to EUTRA procedure.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>- Trigger type 0 SRS (periodic SRS) transmission on X Serving Cells NOTE: X = number of supported component carriers in a given band combination</td>
<td>- this bit can be set to 1 only if the UE supports carrier aggregation in UL.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>- Reporting of both UTRA CPICH RSCP and Ec/N0 in a Measurement Report</td>
<td>- this bit can be set to 1 only if index 22 (Table B.1-1) is set to 1.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>- time domain ICIC RLM/RRM measurement subframe restriction for the serving cell - time domain ICIC RRM measurement subframe restriction for neighbour cells - time domain ICIC CSI measurement</td>
<td></td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>subframe restriction</td>
<td>- Relative transmit phase continuity for spatial multiplexing in UL</td>
<td>- this bit can be set to 1 only if the UE supports two or more layers for spatial multiplexing in UL.</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Undefined</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** The column FDD/ TDD diff indicates if the UE is allowed to signal different values for FDD and TDD.
Annex D (informative):
Descriptive background information

D.1 Signalling of Multiple Frequency Band Indicators (Multiple FBI)

D.1.1 Mapping between frequency band indicator and multiple frequency band indicator

This subclause describes the use of the Multiple Frequency Band Indicator (MFBI) lists and the E-UTRA frequency bands in SystemInformationBlockType1 by means of an example as shown in Figure D.1.1-1. In this example:

- E-UTRAN cell belongs to band B90 and also bands B6, B7, B91, and B92.
- E-UTRAN uses B64 to indicate the presence of B90 in freqBandIndicator-v9e0.
- For the MFBI list of this cell, E-UTRAN uses B64 in MultiBandInfoList to indicate the position and priority of the bands in MultiBandInfoList-v9e0.
- The UE, after reading SystemInformationBlockType1, generates an MFBI list with priority of B91, B6, B92, and B7. The UE applies the first listed band which it supports.

![Figure D.1.1-1: Mapping of frequency bands to MultiBandInfoList/MultiBandInfoList-v9e0](image)

D.1.2 Mapping between inter-frequency neighbour list and multiple frequency band indicator

This subclause describes the use of the Multiple Frequency Band Indicator (MFBI) lists and the E-UTRA frequencies signalled in SystemInformationBlockType5 by means of an example as shown in Figure D.1.2-1. In this example:

- E-UTRAN includes 4 frequencies: the bands associated with f1 and f4 belong to bands lower than 64; the bands associated with f2 and f3 belong to bands larger than 64. The reserved EARFCN value of 65535 is used to indicate the presence of ARFCN-ValueEUTRA-v9e0.
- The band associated with f1 has two overlapping bands, B1 and B2 (lower than 64); the band associated with f2 has one overlapping band, B91; the bands associated with f3 has four overlapping bands B3, B4, B92, and B93; the band associated with f4 does not have overlapping bands.
3GPP TS 36.331 version 12.3.0 Release 12  369  ETSI TS 136 331 V12.3.0 (2014-09)

- E-UTRAN includes 4 lists in both `interFreqCarrierFreqList-v8h0` and `interFreqCarrierFreqList-v9e0` and ensure the order of the lists is matching. Each list corresponds to one EARFCN and contains up to 8 bands. The first list corresponds to f1, the second list corresponds to f2, and so on. The grey lists mean not including `MultiBandInfoList` or `MultiBandInfoList-v9e0`, i.e., the corresponding EARFCN does not have any overlapping frequency bands in `MultiBandInfoList` or `MultiBandInfoList-v9e0`.

![Diagram showing mapping of EARFCNs to MultiBandInfoList/MultiBandInfoList-v9e0](image)

Figure D.1.2-1: Mapping of EARFCNs to `MultiBandInfoList/MultiBandInfoList-v9e0`

D.1.3 Mapping between UTRA FDD frequency list and multiple frequency band indicator

This subclause describes the use of the Multiple Frequency Band Indicator (MFBI) lists and the UTRA FDD frequencies signalled in `SystemInformationBlockType6` by means of an example as shown in Figure D.1.3-1. In this example:

- E-UTRA includes 4 UTRAN FDD frequencies.
- The bands associated with f1 and f4 have no overlapping bands. The band associated f2 has two overlapping bands, B1 and B2. The band associated with f3 has one overlapping band, B3.
- E-UTRA include 4 lists in `carrierFreqListUTRA-FDD-v8h0` with the first and fourth entry not including `MultiBandInfoList`.
Figure D.1.3-1: Mapping of UARFCNs to MultiBandInfoList
## Annex E (informative):
## Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/2007</td>
<td>RP-38</td>
<td>-</td>
<td>-</td>
<td>Approved at TSG-RAN #38 and placed under Change Control</td>
<td>1.0</td>
<td>8.0</td>
</tr>
<tr>
<td>03/2008</td>
<td>RP-39</td>
<td>0001</td>
<td>4</td>
<td>CR to 36.331 with Miscellaneous corrections</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>03/2008</td>
<td>RP-39</td>
<td>0002</td>
<td>2</td>
<td>CR to 36.331 to convert RRC to agreed ASN.1 format</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>05/2008</td>
<td>RP-40</td>
<td>0003</td>
<td>1</td>
<td>CR to 36.331 on Miscellaneous clarifications/ corrections</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>09/2008</td>
<td>RP-41</td>
<td>0005</td>
<td></td>
<td>CR on Miscellaneous corrections and clarifications</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>12/2008</td>
<td>RP-42</td>
<td>0006</td>
<td></td>
<td>Miscellaneous corrections and clarifications</td>
<td>8.3</td>
<td>8.4</td>
</tr>
<tr>
<td>03/2009</td>
<td>RP-43</td>
<td>0007</td>
<td></td>
<td>Correction to the Counter Check procedure</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0008</td>
<td></td>
<td>CR to 36.331-UE Actions on Receiving SIB11</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0009</td>
<td>1</td>
<td>Spare usage on BCCH</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0010</td>
<td></td>
<td>Issues in handling optional IE upon absence in GERAN NCL</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0011</td>
<td></td>
<td>CR to 36.331 on Removal of useless RLC re-establishment at RB release</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0012</td>
<td>1</td>
<td>Clarification to RRC level padding at PCCH and BCCH</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0013</td>
<td></td>
<td>Removal of Inter-RAT message</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0014</td>
<td></td>
<td>Paddling of the SRB-ID for security input</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0015</td>
<td></td>
<td>Validity of ETWS SIB</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0016</td>
<td>1</td>
<td>Configuration of the Two-Intervals-SPS</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0017</td>
<td></td>
<td>Corrections on Scaling Factor Values of Qhyst</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0018</td>
<td>1</td>
<td>Optionality of rsrcMaxUppTs</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0019</td>
<td></td>
<td>CR for discussion on field name for common and dedicated IE</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0020</td>
<td></td>
<td>Corrections to Connected mode mobility</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0021</td>
<td></td>
<td>Clarification regarding the measurement reporting procedure</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0022</td>
<td>1</td>
<td>Corrections on s-Measure</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0023</td>
<td>1</td>
<td>R1 of CR0023 (R2-091029) on combination of SPS and TTI bundling for TOD</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0024</td>
<td></td>
<td>L3 filtering for path loss measurements</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0025</td>
<td>1</td>
<td>S-measure handling for reportCGI</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0026</td>
<td>1</td>
<td>Measurement configuration clean up</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0027</td>
<td></td>
<td>Alignment of measurement quantities for UTRA</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0028</td>
<td></td>
<td>CR to 36.331 on L1 parameters ranges alignment</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0029</td>
<td></td>
<td>Default configuration for transmissionMode</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0030</td>
<td></td>
<td>CR to 36.331 on RRC Parameters for MAC, RLC and PDCP</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0031</td>
<td>1</td>
<td>CR to 36.331 - Clarification on Configured PRACH Freq Offset</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0032</td>
<td></td>
<td>Clarification on TTI bundling configuration</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0033</td>
<td>1</td>
<td>Update of R2-091039 on Inter-RAT UE Capability</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0034</td>
<td></td>
<td>Feature Group Support Indicators</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0035</td>
<td></td>
<td>Corrections to RLF detection</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0036</td>
<td></td>
<td>Indication of Dedicated Priority</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0037</td>
<td>2</td>
<td>Security Clean up</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0038</td>
<td>3</td>
<td>Correction of TTI value range</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0039</td>
<td>4</td>
<td>Correction on CDMA measurement result IE</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0040</td>
<td></td>
<td>Clarification of Measurement Reporting</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0041</td>
<td></td>
<td>Spares in DL and UL Bandwidth in MIB and SIB2</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0042</td>
<td></td>
<td>Corrections to RLF detection</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0043</td>
<td></td>
<td>Reception of ETWS secondary notification</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0046</td>
<td>1</td>
<td>Validity time for ETWS message Id and Sequence No</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0047</td>
<td></td>
<td>CR for Timers and constants values used during handover to E-UTRA</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0048</td>
<td></td>
<td>Inter-RAT Security Clarification</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0049</td>
<td></td>
<td>CR to 36.331 on consistent naming of 1xRTT Identifiers</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0050</td>
<td></td>
<td>Capturing RRC behavior regarding NAS local release</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0051</td>
<td></td>
<td>Report CGI before T321 expiry and UE null reporting</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0052</td>
<td></td>
<td>System Information and 3 hour validity</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0053</td>
<td>1</td>
<td>Inter-Node AS Signalling</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0054</td>
<td></td>
<td>Set of values for the parameter &quot;messagePowerOffsetGroupB&quot;</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0055</td>
<td></td>
<td>CR to paging reception for ETWS capable UEs in RRC_CONNECTED</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0056</td>
<td>1</td>
<td>CR for CSRG related items in 36.331</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0057</td>
<td>1</td>
<td>SRS common configuration</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0058</td>
<td></td>
<td>RRC processing delay</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0059</td>
<td></td>
<td>CR for HNB Name</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0060</td>
<td>3</td>
<td>Handover to EUTRA delta configuration</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>RP-43</td>
<td>0063</td>
<td></td>
<td>Delivery of Message Identifier and Serial Number to upper layers for ETWS</td>
<td>8.4</td>
<td>8.5</td>
</tr>
</tbody>
</table>

ETSI
<p>| RP-43 | 0066 | Clarification on the maximum size of cell list | 8.4.0 | 8.5.0 |
| RP-43 | 0067 | Missing RRC messages in 'Protection of RRC messages' | 8.4.0 | 8.5.0 |
| RP-43 | 0069 | Clarification on NAS Security Container | 8.4.0 | 8.5.0 |
| RP-43 | 0071 | Extension of range of CGI/PMI configuration index | 8.4.0 | 8.5.0 |
| RP-43 | 0072 | Access barring alleviation in RRC connection establishment | 8.4.0 | 8.5.0 |
| RP-43 | 0073 | Corrections to feature group support indexes | 8.4.0 | 8.5.0 |
| RP-43 | 0078 | CR from email discussion to capture DRX and TTT handling | 8.4.0 | 8.5.0 |
| RP-43 | 0079 | Need Code handling on BCCH messages | 8.4.0 | 8.5.0 |
| RP-43 | 0080 | Unification of T300 and T301 and removal of miscellaneous FFs | 8.4.0 | 8.5.0 |
| RP-43 | 0084 | Proposed CR modifying the code-point definitions of neighbourCellConfiguration | 8.4.0 | 8.5.0 |
| RP-43 | 0087 | Remove Redundant Optionality in SIB8 | 8.4.0 | 8.5.0 |
| RP-43 | 0089 | Corrections to the generic error handling | 8.4.0 | 8.5.0 |
| RP-43 | 0090 | Configurability of T301 | 8.4.0 | 8.5.0 |
| RP-43 | 0091 | Correction related to TTT | 8.4.0 | 8.5.0 |
| RP-43 | 0095 | CR for 36.331 on SPS-config | 8.4.0 | 8.5.0 |
| RP-43 | 0096 | CR for Deactivation of periodical measurement | 8.4.0 | 8.5.0 |
| RP-43 | 0099 | SMC and reconfiguration | 8.4.0 | 8.5.0 |
| RP-43 | 0101 | TDD handover | 8.4.0 | 8.5.0 |
| RP-43 | 0102 | Corrections to system information acquisition | 8.4.0 | 8.5.0 |
| RP-43 | 0106 | Some Corrections and Clarifications to 36.331 | 8.4.0 | 8.5.0 |
| RP-43 | 0109 | Clarification on the maximum number of ROHC context sessions parameter | 8.4.0 | 8.5.0 |
| RP-43 | 0110 | Transmission of rm-config at Inter-RAT Handover | 8.4.0 | 8.5.0 |
| RP-43 | 0111 | Use of SameRefSignalsInNeighbor parameter | 8.4.0 | 8.5.0 |
| RP-43 | 0126 | Default serving cell offset for measurement event A3 | 8.4.0 | 8.5.0 |
| RP-43 | 0114 | dl-EARFCN missing in HandoverPreparationInformation | 8.4.0 | 8.5.0 |
| RP-43 | 0115 | Cleanup of references to 36.101 | 8.4.0 | 8.5.0 |
| RP-43 | 0117 | Correction to the value range of UE-Categories | 8.4.0 | 8.5.0 |
| RP-43 | 0122 | Correction on RRC connection re-establishment | 8.4.0 | 8.5.0 |
| RP-43 | 0128 | Performed Measurements to report CGI for CDMA2000 | 8.4.0 | 8.5.0 |
| RP-43 | 0125 | CDMA2000-System timeline in VarMeasurementConfiguration | 8.4.0 | 8.5.0 |
| RP-43 | 0126 | UE Capability Information for CDMA2000 TDD | 8.4.0 | 8.5.0 |
| RP-43 | 0127 | CDMA2000 related editorial changes | 8.4.0 | 8.5.0 |
| RP-43 | 0128 | Draft CR to 36.331 on State mismatch recovery at re-establishment | 8.4.0 | 8.5.0 |
| RP-43 | 0129 | Draft CR to 36.331 on Renaming of AC barring related IEs | 8.4.0 | 8.5.0 |
| RP-43 | 0130 | Draft CR to 36.331 on Inheriting of dedicated priorities at inter-RAT reselection | 8.4.0 | 8.5.0 |
| RP-43 | 0135 | Proposed CR to 36.331 Description alignment for paging parameter, nb | 8.4.0 | 8.5.0 |
| RP-43 | 0139 | Miscellaneous corrections and clarifications resulting from ASN.1 review | 8.4.0 | 8.5.0 |
| RP-43 | 0141 | Correction regarding REDirection Information fo GERAN | 8.4.0 | 8.5.0 |
| RP-43 | 0142 | Further ASN.1 review related issues | 8.4.0 | 8.5.0 |
| RP-43 | 0143 | Periodic measurements | 8.4.0 | 8.5.0 |
| RP-43 | 0144 | Further analysis on code point &quot;OFF&quot; for ni-ConfigIndex | 8.4.0 | 8.5.0 |
| RP-43 | 0145 | Adding and deleting same measurement or configuration in one message | 8.4.0 | 8.5.0 |
| RP-43 | 0147 | Corrections to IE dataCodingScheme in SIB11 | 8.4.0 | 8.5.0 |
| RP-43 | 0148 | Clarification on Mobility from E-UTRA | 8.4.0 | 8.5.0 |
| RP-43 | 0149 | 36.331 CR related to &quot;not applicable&quot; | 8.4.0 | 8.5.0 |
| RP-43 | 0150 | UE radio capability transfer | 8.4.0 | 8.5.0 |
| RP-43 | 0151 | CR to 36.331 on value of CDMA band classes | 8.4.0 | 8.5.0 |
| RP-43 | 0152 | Corrections to DRB modification | 8.4.0 | 8.5.0 |
| RP-43 | 0153 | Correction to presence condition for pdcp-config | 8.4.0 | 8.5.0 |
| RP-43 | 0155 | 3GPP HARQ-ACK feedback mode | 8.4.0 | 8.5.0 |
| RP-43 | 0157 | Corrections regarding use of carrierFREQ for CDMA (SIB8) and GERAN (measObject) | 8.4.0 | 8.5.0 |
| RP-43 | 0156 | Sending of GERAN SI/PSi information at Inter-RAT Handover | 8.4.0 | 8.5.0 |
| RP-43 | 0158 | Clarification of CSG support | 8.4.0 | 8.5.0 |
| 06/2009 | 0159 | Octet alignment of VarShortMAC-Input | 8.5.0 | 8.6.0 |
| RP-44 | 0160 | 3 Minor corrections to the feature grouping | 8.5.0 | 8.6.0 |
| RP-44 | 0161 | Security clarification | 8.5.0 | 8.6.0 |
| RP-44 | 0162 | Sending of GERAN SI/PSi information at Inter-RAT Handover | 8.5.0 | 8.6.0 |
| RP-44 | 0163 | Correction of UE measurement model | 8.5.0 | 8.6.0 |
| RP-44 | 0164 | Restricting the reconfiguration of UM RLC SN field size | 8.5.0 | 8.6.0 |
| RP-44 | 0165 | 36.331 CR on Clarification on cell change order from GERAN to E-UTRAN | 8.5.0 | 8.6.0 |
| RP-44 | 0166 | 36.331 CR - Handling of expired TAT and failed D-SR | 8.5.0 | 8.6.0 |
| RP-44 | 0167 | Proposed CR to 36.331 Clarification on mandatory information in AS-Config | 8.5.0 | 8.6.0 |
| RP-44 | 0168 | Miscellaneous small corrections | 8.5.0 | 8.6.0 |
| RP-44 | 0173 | Clarification on the basis of delta signalling | 8.5.0 | 8.6.0 |
| RP-44 | 0177 | CR on Alignment of CCCH and DCCH handling of missing | 8.5.0 | 8.6.0 |
| mandatory field |  |  |  |</p>
<table>
<thead>
<tr>
<th>WP/PRD</th>
<th>Title</th>
<th>AS</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-44</td>
<td>RP-090516 0180 2 Handling of Measurement Context During HO Preparation</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090516 0181 - Clarification of key-eNodeB-Star in AdditionalReestabInfo</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090516 0182 1 UE Capability Transfer</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090516 0186 1 Clarification regarding mobility from E-UTRA in-between SMC and SRB2/DRB setup</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090516 0188 1 Correction and completion of speciﬁcation conventions</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090516 0195 2 RB combination in feature group indicator</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090516 0196 1 CR for need code for fields in mobilityControlInfo</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090497 0197 - Alignment of pusch-HoppingOﬀset with 36.211</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090570 0198 - Explicit srb-Identity values for SRB1 and SRB2</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>RP-44</td>
<td>RP-090516 0199 - Removing use of defaultValue for mac-MainConﬁg</td>
<td>8.5</td>
<td>8.6</td>
</tr>
<tr>
<td>09/2009</td>
<td>RP-45 09/0906 0200 1 Proposed update of the feature grouping</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0201 1 Clarification on measurement object conﬁguration for serving frequency</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0202 - Correction regarding SRVCC</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0203 - Indication of DRB Release during HO</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0204 1 Correction regarding application of dedicated resource conﬁguration upon handover</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0205 - REL-9 protocol extensions in RRC</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0206 - In-order delivery of NAS PDUs at RRC connection re-conﬁguration</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0207 - Correction on Threshold of Measurement Event</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0210 - Clarification on dedicated resource of RA procedure</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0213 1 Cell barring when MasterInformationBlock or SystemInformationBlock1 is missing</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090915 0218 - Security threat with duplicate detection for ETWS</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0224 - Clarification on supported handover types in feature grouping</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0250 1 Handling of unsupported / non-comprehended frequency band and emission requirement</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090906 0251 - RB combinations in feature group indicator 20</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>09/2009</td>
<td>RP-45 09/0934 0220 1 Introduction of Per-QCI radio link failure timers (option 1)</td>
<td>8.7</td>
<td>9.0</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090936 0222 - Null integrity protection algorithm</td>
<td>8.7</td>
<td>9.0</td>
</tr>
<tr>
<td>RP-45</td>
<td>RP-090926 0223 - Emergency Support Indicator in BCH</td>
<td>8.7</td>
<td>9.0</td>
</tr>
<tr>
<td>12/2009</td>
<td>RP-46 12/346 0253 1 (Rel-9)-clarification on the description of redirectedCarrierInfo</td>
<td>8.9</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0254 1 Adding references to RRC processing delay for inter-RAT mobility messages</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091314 0256 - Alignment of srs-Bandwidth with 36.211</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091341 0257 5 Baseline CR capturing eMBSMS agreements</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091343 0258 3 Capturing agreements on inbound mobility</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091314 0260 1 Clarification of preRegistrationZoneID/secondaryPreRegistrationZoneID</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0261 - Clarification on NCC for IRAT HO</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091314 0263 - Clarification on P-max</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0265 1 Clarification on the deﬁnition of maxCellMeas</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0266 - Correction of g-RxLevMin reference in SIB7</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0267 - Correction on SPS-Conting ﬁeld descriptions</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0268 1 Correction relating to the deﬁnition of CellsTriggeredList</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091345 0269 - Correction relating to CMAS UE capability</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0271 1 Feature grouping bit for SRVCC handover</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091314 0272 1 Correction and completion of extension guidelines</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091344 0273 - RACH optimization Stage-3</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091345 0274 - Stage 3 correction for CMAS</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0276 1 SR prohibit mechanism for UL SPS</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0277 - Parameters used for enhanced 1xRTT CS fallback</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0281 - Correction on UTRAN UE Capability transfer</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0285 - Maximum number of CDMA2000 neighbors in SIB8</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091340 0288 1 Introduction of UE Rx-Tx Time Difﬁculty measurement</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0297 - Introduction of SR prohibit timer</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0298 - Remove FFs from RAN2 speciﬁcations</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091343 0301 1 Renaming Allowed CSList (36.331 Rel-9)</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0305 - Re-introduction of message segment discard time</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0306 1 Application of ASN.1 extension guidelines</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0309 1 Support for Dual Radio 1xCSFB</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0311 - Shorter SR periodicity</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091342 0316 - CR to 36.331 for Introduction of Dual Layer Transmission</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091343 0318 1 Draft CR to 36.331 on Network ordered SI reporting</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091346 0322 - UE eNodeB capabilities correction</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>RP-46</td>
<td>RP-091331 0327 1 Clarification on coding of ETWS related iEs</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>03/2010</td>
<td>RP-47 03/0285 0331 - Clarification of CGI reporting</td>
<td>9.1</td>
<td>9.2</td>
</tr>
<tr>
<td>RP-47</td>
<td>RP-100305 0332 - Clarification on MCC change notification</td>
<td>9.1</td>
<td>9.2</td>
</tr>
<tr>
<td>Reference</td>
<td>Title</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification on measurement for serving cell only</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification on proximity indication configuration in handover to E-UTRA</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification on radio resource configuration in handover to E-UTRA procedure</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification on UE maximum transmission power</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Correction to field descriptions of UE-EUTRA-Capability</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Correction to MBMS scheduling terminology</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Corrections to SIB8</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR 36.33.1 R9 for Unifying SI reading for ANR and inbound mobility</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR to 36.33.1 for 1xRTT pre-registration information in SIB8</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR to 36.33.1 on corrections for MBMS</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR to 36.33.1 on CS13 identity reporting</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR to 36.33.1 on Optionality of Rel-9 UE features</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR 36.33.1 on Service Specific Acces Control (SSAC)</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Introduction of power-limited device indication in UE capability</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Missing agreement in MCCH change notification</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Corrections related to MCCH change notification and value ranges</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Prohibit timer for proximity indication</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Proximity Indication after handover and re-establishment</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Specifying the exact mapping of notification Indicator in SIB13 to PDCCH bits</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Corrections out of ASN.1 review scope</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR on clarification of system information change</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Measurement Result CDMA2000 Cell</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Correction on the range of UE Rx-1x t time difference measurement result</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Small clarifications regarding MBMS</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Introduction of REL-9 indication within field accessStratumRelease</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Extending mobility description to cover inbound mobility</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification regarding enhanced CSFB to 1xRTT</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Handling of dedicated RLF timers</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification on UE's behavior of receiving MBMS service</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>MBMS Service ID and Session ID</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Inclusion of non-MBSFN region length in SIB13</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR to 36.33.1 for 1xCSFB access class barring parameters in SIB8</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Multiple 1xRTT/HRPD target cells in MobilityFromEUTRACommand</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Independent support indicators for Dual-Rx CSFB and S102 in SIB8</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification on DRX StartOffset for TDD</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Miscellaneous corrections from REL-9 ASN.1 review</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Need codes and missing conventions</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Introduction of Full Configuration Handover for handling earlier eNB releases</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Clarification to SPN reference in RRC</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>RSRP and RSRQ based Thresholds</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Redirection enhancements to GERAN</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Cell reselection enhancements CR for 36.33.1</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR on UE-originated RLF-Reporting for MRO SON use case</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>CR to 36.33.1 on Redirection enhancements to UTRAN</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Proximity status indication handling at mobility</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Upper layer aspect of MBSFN area id</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Redirection for enhanced 1xRTT CS fallback with concurrent PSHO</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Avoiding interleaving transmission of CMAS notifications</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Introduction of UE GERAN DTM capability indicator</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Introducing provisions for late ASN.1 corrections</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>RP-47</td>
<td>Correction/ alignment of REL-9 UE capability signalling</td>
<td>9.1.0 9.2.0</td>
<td></td>
</tr>
<tr>
<td>06/2010</td>
<td>Clarification for mapping between warning message and CB-data</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Clarification of radio link failure related actions</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Clarification on UE actions upon leaving RRC, CONNECTED</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Correction on CMAS system information</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Corrections to MBMS</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Decoding of unknown future extensions</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Miscellaneous small corrections and clarifications</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Prohibit timer for proximity indication</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>RLF report for MRO correction</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Missing UTRA bands in IRAT-ParametersUTRA-FDD</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Correction on handling of dedicated RLF timers</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Protection of RRC messages</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Handling missing Essential system information</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
<tr>
<td>RP-48</td>
<td>Clarification on UMTS CSG detected cell reporting in LTE</td>
<td>9.2.0 9.3.0</td>
<td></td>
</tr>
</tbody>
</table>
438 RP-100565 0436 - Introducing provisions for late corrections 9.2.0 9.3.0
438 RP-100566 0437 - Clarification regarding / alignment of REL-9 UE capabilities 9.2.0 9.3.0
09/2010
439 RP-100845 0440 - Correction to 3GPP2 reference for interworking with cdma2000 1x 9.3.0 9.4.0
439 RP-100851 0441 - Clarification on UL handover preparation transfer 9.3.0 9.4.0
439 RP-100851 0442 1 Clarifications regarding fulfConfiguration 9.3.0 9.4.0
439 RP-100851 0443 - Clarifications regarding handover to E-UTRAN 9.3.0 9.4.0
439 RP-100854 0444 - Correction on the table of conditionally mandatory Release 9 features 9.3.0 9.4.0
439 RP-100851 0445 - Corrections to TS36.331 on MeasConfig IE 9.3.0 9.4.0
439 RP-100853 0446 2 CR to 36.331 on clarification for MBMS PMT RBs 9.3.0 9.4.0
439 RP-100851 0447 - Introduction of late corrections container for E-UTRA UE capabilities 9.3.0 9.4.0
439 RP-100851 0448 - Renaming of containers for late non-critical extensions 9.3.0 9.4.0
439 RP-100851 0452 - Clarifications Regarding Direction from LTE 9.3.0 9.4.0
439 RP-100845 0456 - Description of multi-user MIMO functionality in feature group indicator table 9.3.0 9.4.0
439 RP-100845 0458 - Correct the PMAX_H to PMAX 9.3.0 9.4.0
439 RP-100851 0460 - Clarification for feature group indicator bit 11 9.3.0 9.4.0
439 RP-100851 0465 1 Clarification of FGI setting for inter-RAT features not supported by the UE 9.3.0 9.4.0
439 RP-101008 0475 1 FGI settings in Rel-9 9.3.0 9.4.0
12/2010
50 RP-101197 0483 - Clarification on Meaning of FGI Bits 9.4.0 9.5.0
50 RP-101197 0485 - Clarification regarding reconfiguration of the quantityConfig 9.4.0 9.5.0
50 RP-101210 0486 1 Corrections to the presence of IE regarding DRX and CQI 9.4.0 9.5.0
50 RP-101210 0493 1 The field descriptions of MeasObjectEUTRA 9.4.0 9.5.0
50 RP-101197 0498 1 Clarification of FGI settings non ANR periodic measurement reporting 9.4.0 9.5.0
50 RP-101209 0500 - Corrections to RLF Report 9.4.0 9.5.0
50 RP-101206 0519 1 T321 timer fix 9.4.0 9.5.0
50 RP-101197 0524 - Restriction of AC barring parameter setting 9.4.0 9.5.0
50 RP-101210 0525 - Removal of SEQUENCE OF SEQUENCE in UEInformationResponse 9.4.0 9.5.0
50 RP-101197 0526 1 Clarification regarding default configuration value N/A 9.4.0 9.5.0
50 RP-101431 0532 - Splitting FGI bit 3 9.4.0 9.5.0
50 RP-101183 0476 4 36.331 CR on Introduction of Minimization of Drive Tests 9.4.0 10.0.0
50 RP-101293 0477 4 AC-Barring for Mobile Originating CSFB call 9.4.0 10.0.0
50 RP-101214 0478 - Addition of UE-EUTRA-Capability descriptions 9.4.0 10.0.0
50 RP-101214 0481 - Clarification on Default Configuration for CQI-ReportConfig 9.4.0 10.0.0
50 RP-101215 0487 CR to 36.331 adding e1xCSFB support for dual Rx/Tx UE 9.4.0 10.0.0
50 RP-101227 0488 1 Introduction of Carrier Aggregation and UL/DL MIMO 9.4.0 10.0.0
50 RP-101228 0489 1 Introduction of relays in RRC 9.4.0 10.0.0
50 RP-101214 0490 1 Priority indication for CSFB with re-direction 9.4.0 10.0.0
50 RP-101214 0491 - SIB Size Limitations 9.4.0 10.0.0
50 RP-101214 0513 - Combined Quantity Report for IRAT measurement of UTRAN 9.4.0 10.0.0
50 RP-101214 0529 - UE power saving and local release 9.4.0 10.0.0
50 RP-101429 0530 1 Inclusion of new UE categories in Rel-10 9.4.0 10.0.0
03/2011
51 RP-110282 0533 - 36331_CRxxx_Protection of Logged Measurements Configuration 10.0.0 10.1.0
51 RP-110294 0534 1 Stage-3 CR for MBMS enhancement 10.0.0 10.1.0
51 RP-110282 0535 - Clean up MDT-related text 10.0.0 10.1.0
51 RP-110282 0536 - Clear MDT configuration and logs when the UE is not registered 10.0.0 10.1.0
51 RP-110282 0536 - Correction to the field description of nB 10.0.0 10.1.0
51 RP-110282 0538 1 Memory size for logged measurements capable UE 10.0.0 10.1.0
51 RP-110282 0538 - CR to 36.331 on corrections for MDT 10.0.0 10.1.0
51 RP-110290 0543 - Introduction of CA/MIMO capability signalling and measurement capability signalling in CA 10.0.0 10.1.0
51 RP-110282 0544 - MDT PDU related clarifications 10.0.0 10.1.0
51 RP-110282 0545 - Correction on release of logged measurement configuration while in another RAT 10.0.0 10.1.0
51 RP-110289 0546 - Miscellaneous Corrections for CA Running RRC CR 10.0.0 10.1.0
51 RP-110280 0547 1 Miscellaneous small clarifications and corrections 10.0.0 10.1.0
51 RP-110293 0548 4 Necessary changes for RLF reporting enhancements 10.0.0 10.1.0
51 RP-110289 0549 1 Memory size for logged measurements capable UE 10.0.0 10.1.0
51 RP-110289 0550 - Parameters confusion of non-CA and CA configurations 10.0.0 10.1.0
51 RP-110272 0553 1 Presence condition for cellSelectionInfo-v820 in SIB1 10.0.0 10.1.0
51 RP-110282 0554 1 Removal of MDT configuration at T330 expiry 10.0.0 10.1.0
51 RP-110289 0556 1 Signalling aspects of existing LTE-A parameters 10.0.0 10.1.0
51 RP-110280 0557 1 Some Corrections on measurement 10.0.0 10.1.0
51 RP-110291 0558 - Stored system information for RNs 10.0.0 10.1.0
51 RP-110291 0559 - Support of Integrity Protection for Relay 10.0.0 10.1.0
51 RP-110290 0561 2 Updates of LT parameters for CA and UL/DL MIMO 10.0.0 10.1.0
51 RP-110291 0571 1 Note for Dedicated SIB for RNs 10.0.0 10.1.0
51 RP-110272 0579 - Correction to cs-fallbackIndicator field description 10.0.0 10.1.0
51 RP-110289 0580 - Clarification to the default configuration of sCellDeactivationTimer 10.0.0 10.1.0
51 RP-110289 0581 - Miscellaneous corrections to TS 36.331 on Carrier Aggregation 10.0.0 10.1.0

3GPP TS 36.331 version 12.3.0 Release 12
ETSI TS 136 331 V12.3.0 (2014-09)
**Corrections to codebookSubsetRestriction and SRS parameters**

**Restructuring of CQI-ReportConfig-r10**

**Correction for SR-VCC and QCI usage**

**Value range of DRX-InactivityTimer**

**CR for s-measure handling**

**Clarification regarding eICIC measurements**

**Clarification on upper layer requested connection release**

**Clarification on the definition of maxCellBlack**

**Clarification of optionality of UE features without capability**

**Add pre Rel-10 procedures to processing delay requirement for RRC procedure Section 11.2**

**Add MIBS counting procedure to processing delay requirement for RRC procedure Section 11.2**

**Add pre Rel-10 procedures to processing delay requirement for RRC procedure Section 11.2**

**Add a specific reference for physical configuration fields**

**Clarification of inter-frequency RSTD measurement indication procedure**

**Clarification of optionality of UE features without capability**

**Clarification on the definition of maxCellBlack**

**Clarification on upper layer requested connection release**

**Clarification regarding eICIC measurements**

**CR for s-measure handling**

**CR on clarification ofRLFReport inCarrier Aggregation**

**FGI bit for handover between LTE FDD/TDD**

**Further updates on L1 parameters**

**General error handling for extension fields**

**Additional information for RLF report**

**Introduction of TCE ID for logged MDT**

**Miscellaneous corrections (related to review in preparation for ASN.1 freeze)**

**PLMN check for MDT logging**

**UE actions upon leaving RRC_CONNECTED**

**Clarification on bandEUTRA-r10 and supportedBandListEUTRA**

**Updated value range for the Extended Wait Timer**

**Value range of DRX Inactivity Timer**

**Correction for SR-VCC and QCI usage**

**Restructuring of CQI ReportConfig-r10**

**Correction on DL allocations in MBSFN subframes**

**Reference SFN for MesasubFramePattern**

**Clarifications to CA related field descriptions**

**Updates to codebookSubsetRestriction and SRS parameters**

**Corrections to handling of ni-ConfigIndex for TM9**

**UE capabilities for Rel-10 LTE features with eICIC measurement restrictions as FGI (Alt.1)**
Voice support Capabilities

36.331 CR introducing In-Device Coexistence (IDC)

Introduction of a new security algorithm ZUC

Korean Public Alert System (KPAS) in relation to CMAS

Clarification on setting of dedicated NS value for CA by E-UTRAN

Introducing means to signal different REL-10 FDD/TDD

Change in Scheduling Information for CMAS

Change in Scheduling Information for ETWS

SPS Reconfiguration

Duplicated ASN.1 naming correction

Time to keep RLF Reporting logs

Minor correction regarding limited service access on non-CSG-

Clarification on MBSFN and measurement resource restrictions

Limiting MBMS counting responses to within the PLMN

Clari...
Correction on multi-TA capability

Clarification on the redirection to UTRA-TDD frequency in case of

Introduction of wideband RSRQ measurements in RRC_IDLE

Clarification on MBMS Service Continuity

15) GERAN measurement object at ANR

Broadcast of Time Info by Using a New SIB

CR to 36.331 on additional information in RLF report for inter-RAT

Introducing further UE aspects regarding multi band cells

Clarification and alignment of handling of other configuration

Correction on MDT multi-PLMN support

Clarification for Multiple Frequency Band Indicators feature

Validity of EAB SIB and acquisition of SIB1

Carrier Aggregation Enhancement RAN1 parameters

Handling of 1xCSFB failure

Moving the TM5 capability

CR to 36.331 on introducing ROHC context continue for intra-ENB handover

Correction on MDT multi-PLMN support

Clarification and alignment of handling of other configuration

Introducing support for Coordinated Multi-Point (CoMP) operation

Introducing further UE aspects regarding multi band cells

CR to 36.331 on additional information in RLF report for inter-RAT MRO

Correction on Power preference indication

SIB1 provisioning via dedicated signalling

Measurement reporting of Scells

Introduction of EPDCCP parameters in TS 36.331

Introduction of Rel-11 UE capabilities

Introduce of wideband RSRQ measurements

Introduction of network sharing for CDMA2000 inter-working

Broadcast of Time Info by Using a New SIB

GERAN measurement object at ANR

03/2013

Miscellaneous corrections from review preceeding ASN.1 freeze

DL COMP capability related correction

Mandatory supporting of B1 measurement to UMTS FDD (FGI bit 15)

Clariication on MBMS Service Continuity

Clariication of CSG member cell

Extension of FIBI and EARFCN

Invalidation of ETWS with security feature

Invalid measurement conﬁguration with different (C)ARFCN

PPI and IDC indication upon handover

Correcting further UE aspects regarding multi band cells

Behaviour in case of excessive dedicated priority information

Clariication on EARFCN signalling in Mobility control info

IDC-SubframePattern length for FDD

Introduction of wideband RSRQ measurements in RRC_IDLE

Optional support of RLF report for inter-RAT MRO

The presence of bandcombination for non-CA capable UEs

Correction for event A5

Mandating MBMS enahncement of FGI_bit 14, 27 and 28 to true

Clarification on the redirection to UTRA-TDD frequency in case of CSFB High Priority

Correction of wrong reference

Clariication to support of deprovisionation feature

Clariication on KASME key usage

Correction on multi-TA capability

MBMS interest indication upon handover/ re-establishment

ETS1 TS 136 331 V12.3.0 (2014-09)
RP-60	RP-130808	1274	Conditions RI reference inheriting CSI process (DL CoMP)	11.3.0	11.4.0	
RP-60	RP-130808	1275	Clarification on NZP CSI-RS resource configuration for UE supporting 1 CSI process	11.3.0	11.4.0	
RP-60	RP-130808	1276	Corrections to field description of psdsch-Start-r11	11.3.0	11.4.0	
RP-60	RP-130809	1277	Need code corrections in Rel-11 RRC	11.3.0	11.4.0	
RP-60	RP-130808	1278	Miscellaneous small corrections	11.3.0	11.4.0	
RP-60	RP-130809	1279	1 FDD/TDD diff column correction for FG31	11.3.0	11.4.0	
RP-60	RP-130804	1282	measCycleSCell upon SCell configuration	11.3.0	11.4.0	
RP-60	RP-130809	1294	Clarification on RRC Reconfiguration with Critical Extension	11.3.0	11.4.0	
RP-60	RP-130802	1298	Security key generation in case of MFBI	11.3.0	11.4.0	
RP-60	RP-130804	1303	Clarification on inclusion of non-CA band combinations	11.3.0	11.4.0	
RP-60	RP-130809	1308	CR on ROHC parameter configuration in Rel-11 RRC	11.3.0	11.4.0	
RP-60	RP-130804	1315	2 Clarification on UE CA capability	11.3.0	11.4.0	
RP-60	RP-130809	1321	Updating 3GPP2 specification references	11.3.0	11.4.0	
09/2013	RP-61	RP-131311	1335	Clarification on PhysCellIdRange	11.4.0	11.5.0
RP-61	RP-131311	1339	1 Correction on the first subframe of the measurement gap	11.4.0	11.5.0	
RP-61	RP-131319	1340	1 Correction for MFBI in SIB15 and SIB6	11.4.0	11.5.0	
RP-61	RP-131319	1343	Clarification of MFBI impact on MBMS service continuity	11.4.0	11.5.0	
RP-61	RP-131238	1344	2 Clarification of UE action for otherwise in conditions	11.4.0	11.5.0	
RP-61	RP-131311	1348	Corrections to the 3GPPP2 specification references in 36.331	11.4.0	11.5.0	
RP-61	RP-131318	1353	Clarifications regarding the usage of "ril-Cause" in case of hardover failure	11.4.0	11.5.0	
12/2013	RP-62	RP-131986	1366	Introduction of capability bit for UTRA MFBI	11.5.0	11.6.0
RP-62	RP-131984	1368	1 Addition of inter-frequency RSTD measurement capability indicator for OTDOA	11.5.0	11.6.0	
RP-62	RP-131989	1370	Clarification on supportedBand	11.5.0	11.6.0	
RP-62	RP-132003	1371	Capturing mandatory/optional agreements on Rel-11 UE features	11.5.0	11.6.0	
RP-62	RP-131995	1372	Clarification on otherwise behaviour	11.5.0	11.6.0	
RP-62	RP-131995	1373	Corrections of the 3GPPP2 references in TS 36.331	11.5.0	11.6.0	
RP-62	RP-131991	1374	measResultLastServCell for SON-HOF report	11.5.0	11.6.0	
RP-62	RP-131729	1375	1 Clarification to timeInfoUTC field in SIB16	11.5.0	11.6.0	
RP-62	RP-131991	1389	Clarification on eRedirection to UMTS TDD with multiple UMTS TDD frequencies	11.5.0	11.6.0	
RP-62	RP-131995	1390	Delta signalling for critical extension	11.5.0	11.6.0	
RP-62	RP-132005	1391	Capability signalling for CSI processes	11.5.0	11.6.0	
RP-62	RP-131991	1395	1 Clarifications on Measurement	11.5.0	11.6.0	
RP-62	RP-131984	1397	Correction to InterFreqRSTDMeasurementInstruction field descriptions	11.5.0	11.6.0	
RP-62	RP-131984	1404	Correction of inter-frequency RSTD indication for multiple frequencies	11.5.0	11.6.0	
RP-62	RP-131993	1405	1 Enabling SRVCC from GERAN without forwarding UE-EUTRA-Capability	11.5.0	11.6.0	
RP-62	RP-131995	1409	1 System information and change monitoring procedure	11.5.0	11.6.0	
RP-62	RP-131991	1410	1 Correction on presence of codebookSubsetRestriction-r10	11.5.0	11.6.0	
RP-62	RP-131998	1376	Introducing UE support for inband mobility to a shared CSG cell	11.5.0	12.0.0	
RP-62	RP-132002	1378	2 Introduction of support of further DL MIMO enhancement	11.5.0	12.0.0	
RP-62	RP-131988	1379	CR for SSC in CONNECTED	11.5.0	12.0.0	
RP-62	RP-132002	1406	Update of CAMS reference to E-UTRAN specific sections in TS23.041	11.5.0	12.0.0	
03/2014	RP-63	RP-140359	1424	1 CR on introduction of Cell-specific time-to-trigger	12.0.0	12.1.0
RP-63	RP-140436	1435	- UE autonomous modification of cellsTriggered upon serving cell addition/ release	12.0.0	12.1.0	
RP-63	RP-140359	1438	1 Introduction of T312	12.0.0	12.1.0	
RP-63	RP-140362	1439	1 Introduction of UE-supported EARFCN list in handover preparation information for MFBI	12.0.0	12.1.0	
RP-63	RP-140352	1442	- Correction of Connection Establishment Failure Report	12.0.0	12.1.0	
RP-63	RP-140356	1450	1 Clarification on the presence of TDD special subframe	12.0.0	12.1.0	
RP-63	RP-140359	1453	- Introduction of UE mobility history reporting (option 2)	12.0.0	12.1.0	
RP-63	RP-140340	1455	1 Clarification regarding need codes, conditions and ASN.1 defaults for extension fields	12.0.0	12.1.0	
RP-63	RP-140340	1456	- ASN.1 issue with inter-node signalling (AS-Config)	12.0.0	12.1.0	
RP-63	RP-140357	1457	1 Clarification for the SIB occurrence in a single SI message	12.0.0	12.1.0	
RP-63	RP-140364	1462	- New UE categories for DL 450Mbps class	12.0.0	12.1.0	
RP-63	RP-140354	1463	- IoT indication for inter-band TDD CA with different UL/DL configuration	12.0.0	12.1.0	
06/2014	RP-64	RP-140869	1471	Removal of command line from EUTRA-UE-Variables imports	12.1.0	12.2.0
RP-64	RP-140871	1475	- Correction on measObjectList in VarMeasConfig	12.1.0	12.2.0	
RP-64	RP-140879	1477	- Minor correction inbound mobility to shared CSG cell	12.1.0	12.2.0	
RP-64	RP-140873	1478	- Clarification on precedence of SCell SI provided dedicatedly	12.1.0	12.2.0	
RP-64	RP-140887	1479	Support of the enhancement for TTI bundling for FDD	12.1.0	12.2.0	
RP-64	RP-140885	1490	Corrections on timer T312	12.1.0	12.2.0	
RP-64	RP-140885	1486	Correction to the description of physCellIdRange in MeasObjectEUTRA	12.1.0	12.2.0	
RP-64	RP-140885	1506	Corrections to UE mobility history information	12.1.0	12.2.0	
RP-64	RP-140873	1489	ACK/NACK feedback mode on PUSCH	12.1.0	12.2.0	
RP-64	RP-140878	1556	SIB5 enhancement for service availability information	12.1.0	12.2.0	
RP-64	RP-140888	1557	Introduction of FDD/TDD CA UE capability	12.1.0	12.2.0	
RP-64	RP-140871	1545	Clarification of E-UTRA MFBI signalling	12.1.0	12.2.0	
RP-64	RP-140871	1520	Introduction of FDD/TDD CA UE capability	12.1.0	12.2.0	
RP-64	RP-140892	1520	1 Extended RLC LI field	12.1.0	12.2.0	
RP-64	RP-140873	1517	1 Network-requested CA Band Combination Capability Signalling	12.1.0	12.2.0	
RP-64	RP-140873	1554	1 Allowing TDD/FDD split for FGI111 and FGI112	12.1.0	12.2.0	
RP-64	RP-140871	1551	1 Inter-RAT ANR capability signalling in FGI33 when UE supports UTRA TDD only	12.1.0	12.2.0	
RP-64	RP-140884	1495	1 Introduction of TDD eIMTA	12.1.0	12.2.0	
RP-64	RP-140885	1499	1 Minor Corrections to T312	12.1.0	12.2.0	
RP-64	RP-140892	1510	1 Introduction of RRC Connection Establishment failure temporary Offset handling	12.1.0	12.2.0	
RP-64	RP-140849	1555	2 Introduction of UE capability for eMBMS reception on SCell and Non-Serving Cell	12.1.0	12.2.0	

**9/2014**

RP-65	RP-141494	1632	FDD&TDD split for CA	12.2.0	12.3.0
RP-65	RP-141505	1599	UE capabilities for Hetnet mobility in TS 36.331	12.2.0	12.3.0
RP-65	RP-141499	1584	Introduction of UE eIMTA capabilities	12.2.0	12.3.0
RP-65	RP-141511	1567	Corrections to extended RLC LI field	12.2.0	12.3.0
RP-65	RP-141511	1603	TAI reporting of last serving cell	12.2.0	12.3.0
RP-65	RP-141498	1630	1 Correction to Network-requested CA Band Combination Capability Signalling	12.2.0	12.3.0
RP-65	RP-141496	1577	1 Clarification on double indication of SAI in SIB15	12.2.0	12.3.0
RP-65	RP-141496	1597	Clarification on MBMSCountingResponse	12.2.0	12.3.0
RP-65	RP-141496	1623	Clarification on the setting of SupportedBandCombination-v1130	12.2.0	12.3.0
RP-65	RP-141489	1574	1 Correction of E-UTRAN UE capabilities description in HandoverPreparationInformation message field descriptions	12.2.0	12.3.0
RP-65	RP-141507	1570	Introducing MBSFN measurement by extension of logged measurements	12.2.0	12.3.0
RP-65	RP-141510	1572	1 Introduction of AGB skip for MMTEL voice/video and SMS	12.2.0	12.3.0
RP-65	RP-141496	1615	1 Clarification on determining MBMS frequencies of interest in MBMSInterestIndication	12.2.0	12.3.0
RP-65	RP-141506	1579	Introduction of signaling support for low complexity UEs	12.2.0	12.3.0
RP-65	RP-141499	1601	1 Rel-12 ASN.1 correction	12.2.0	12.3.0
RP-65	RP-141511	1560	1 Introduction of shorter MCH scheduling period	12.2.0	12.3.0
RP-65	RP-141493	1611	- Clarification for time-domain resource restriction pattern applicable to neighbour cell RSRQ measurements	12.2.0	12.3.0
RP-65	RP-141511	1559	2 Correction to stop condition for "Chiba offset"	12.2.0	12.3.0
RP-65	RP-141115	1636	- Mandating the FGI bit 31 to true	12.2.0	12.3.0
RP-65	RP-141618	1566	2 Connected mode procedures and RRC signaling of WLAN/3GPP Radio Interworking for LTE	12.2.0	12.3.0
## History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>V12.3.0</strong></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>