LTE;
Evolved Universal Terrestrial Radio Access (E-UTRA);
User Equipment (UE) procedures in idle mode
(3GPP TS 36.304 version 13.1.0 Release 13)
Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs): Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
5.2.8 Any Cell Selection state ... 29
5.2.9 Camped on Any Cell state .. 30
5.3 Cell Reservations and Access Restrictions .. 30
5.3.1 Cell status and cell reservations .. 30
5.3.2 Access control ... 31
5.3.3 Emergency call ... 31
5.4 Tracking Area registration ... 31
5.5 Support for manual CSG selection .. 32
5.5.1 E-UTRA case .. 32
5.5.2 UTRA case .. 32
5.6 RAN-assisted WLAN interworking .. 32
5.6.1 RAN assistance parameter handling in RRC_IDLE 32
5.6.2 Access network selection and traffic steering rules 32
5.6.3 RAN assistance parameters definition .. 33
5.7 Reception of broadcast information ... 34
5.7.1 Reception of system information .. 34
5.7.2 Reception of MBMS ... 34
5.8 Paging .. 35
5.8.1 Discontinuous Reception for paging .. 35
5.8.2 Subframe Patterns ... 36
5.8.3 Paging in extended DRX .. 36
5.9 Logged measurements ... 37
5.10 Mobility History Information .. 37
5.11 Sidelink operation .. 38
5.11.1 Sidelink communication .. 38
5.11.2 Sidelink discovery ... 38
5.11.3 Sidelink synchronisation .. 38
5.11.4 Cell selection and reselection for sidelink 38
5.11.4.1 Parameters used for cell selection and reselection triggered for sidelink .. 38
Annex A (informative): Void ... 40
Annex B (informative): Change history ... 41
History .. 44
Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:
 1 presented to TSG for information;
 2 presented to TSG for approval;
 3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.
1 Scope

The present document specifies the Access Stratum (AS) part of the Idle Mode procedures applicable to a UE. The non-access stratum (NAS) part of Idle mode procedures and processes is specified in [5].

The present document specifies the model for the functional division between the NAS and AS in a UE.

The present document applies to all UEs that support at least E-UTRA, including multi-RAT UEs as described in 3GPP specifications, in the following cases:

- When the UE is camped on an E-UTRA cell;
- When the UE is searching for a cell to camp on;

NOTE: When the UE is camped on or searching for a cell to camp on belonging to other RATs, the UE behaviour is described in the specifications of the other RAT.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1] 3GPP TR 25.990: "Vocabulary for UTRAN".
[2] 3GPP TS 36.300: "E-UTRA and E-UTRAN Overall Description; Stage 2".
[5] 3GPP TS 23.122: "NAS functions related to Mobile Station (MS) in idle mode".
[6] 3GPP TS 36.213: "E-UTRA; Physical layer procedures".
[7] 3GPP TS 36.214: "E-UTRA; Physical layer; Measurements".
[8] 3GPP TS 25.304: "User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected mode"
[9] 3GPP TS 43.022: "Functions related to Mobile Station in idle mode and group receive mode".
[12] void
[13] void
[14] void
[15] void
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

Acceptable Cell: A cell that satisfies certain conditions as specified in 4.3. A UE can always attempt emergency calls on an acceptable cell, but restriction as in 5.3.3 apply.

CSG Whitelist: A list provided by NAS containing all the CSG identities and their associated PLMN IDs of the CSGs to which the subscriber belongs.

NOTE: This list is known as Allowed CSG List in Rel-8 Access Stratum specifications.

Available PLMN(s): One or more PLMN(s) for which the UE has found at least one cell and read its PLMN identity(ies).
Barred Cell: A cell a UE is not allowed to camp on.

Camped on a cell: UE has completed the cell selection/reselection process and has chosen a cell. The UE monitors system information and (in most cases) paging information.

Camped on any cell: UE is in idle mode and has completed the cell selection/reselection process and has chosen a cell irrespective of PLMN identity.

Closed Subscriber Group (CSG): A Closed Subscriber Group identifies subscribers of an operator who are permitted to access one or more cells of the PLMN but which have restricted access (CSG cells).

Commercial Mobile Alert System: Public Warning System that delivers Warning Notifications provided by Warning Notification Providers to CMAS capable UEs.

CSG cell: A cell broadcasting a CSG indication that is set to TRUE and a specific CSG identity.

CSG identity: An identifier broadcast by a CSG or hybrid cell/cells and used by the UE to facilitate access for authorised members of the associated Closed Subscriber Group.

CSG member cell: a cell broadcasting the identity of the selected PLMN, registered PLMN or equivalent PLMN and for which the CSG whitelist of the UE includes an entry comprising cell’s CSG ID and the respective PLMN identity.

DRX cycle: Individual time interval between monitoring Paging Occasion for a specific UE.

eDRX cycle: Time interval between the first Paging Occasions occurring after successive extended DRX periods.

EHPLMN: Any of the PLMN entries contained in the Equivalent HPLMN list [5].

Equivalent PLMN list: List of PLMNs considered as equivalent by the UE for cell selection, cell reselection, and handover according to the information provided by the NAS.

EU-Alert: Public Warning System that delivers Warning Notifications provided by Warning Notification Providers using the same AS mechanisms as defined for CMAS.

Home PLMN: A PLMN where the Mobile Country Code (MCC) and Mobile Network Code (MNC) of the PLMN identity are the same as the MCC and MNC of the IMSI.

HNB Name: The Home eNodeB Name is a broadcast string in free text format that provides a human readable name for the Home eNodeB CSG identity and any broadcasted PLMN identity.

Hybrid cell: A cell broadcasting a CSG Indicator that is set to FALSE and a specific CSG identity.

Hyper SFN: Index broadcast in System Information that increments at every SFN wrap around (i.e every 10.24s).

Korean Public Alert System (KPAS): Public Warning System that delivers Warning Notifications provided by Warning Notification Providers using the same AS mechanisms as defined for CMAS.

Location Registration (LR): UE registers its presence in a registration area, for instance regularly or when entering a new tracking area.

Paging Time Window: The period configured for a UE in extended DRX, during which the UE monitors Paging Occasions following DRX cycle.

Power saving mode: Mode allowing the UE to reduce its power consumption, as defined in TS 24.301 [16], TS 23.401 [23], TS 23.682 [24].

Process: A local action in the UE invoked by a RRC procedure or an Idle Mode procedure.

Radio Access Technology: Type of technology used for radio access, for instance E-UTRA, UTRA, GSM, CDMA2000 1xEV-DO (HRPD) or CDMA2000 1x (1xRTT).

Registered PLMN: This is the PLMN on which certain Location Registration outcomes have occurred [5].

Registration Area: (NAS) registration area is an area in which the UE may roam without a need to perform location registration, which is a NAS procedure.
Reserved Cell: A cell on which camping is not allowed, except for particular UEs, if so indicated in the system information.

Restricted Cell: A cell on which camping is allowed, but access attempts are disallowed for UEs whose access classes are indicated as barred.

Selected PLMN: This is the PLMN that has been selected by the NAS, either manually or automatically.

Serving cell: The cell on which the UE is camped.

Sidelink: UE to UE interface for sidelink communication and sidelink discovery. The Sidelink corresponds to the PC5 interface as defined in TS 23.303 [29].

Sidelink communication: AS functionality enabling ProSe Direct Communication as defined in TS 23.303 [29], between two or more nearby UEs, using E-UTRA technology but not traversing any network node.

Sidelink discovery: AS functionality enabling ProSe Direct Discovery as defined in TS 23.303 [29], using E-UTRA technology but not traversing any network node.

Strongest cell: The cell on a particular carrier that is considered strongest according to the layer 1 cell search procedure [6], [7].

Suitable Cell: This is a cell on which an UE may camp. For a E-UTRA cell, the criteria are defined in subclause 4.3, for a UTRA cell in [8], and for a GSM cell the criteria are defined in [9].

3.2 Symbols

For the purposes of the present document, the following symbols apply:

<symbol> <Explanation>

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

1xRTT CDMA2000 1x Radio Transmission Technology
AS Access Stratum
AC Access Class (of the USIM)
ACDC Application specific Congestion control for Data Communication
BCCH Broadcast Control Channel
BSS Basic Service Set
CMAS Commercial Mobile Altert System
CSG Closed Subscriber Group
DRX Discontinuous Reception
DL-SCH Downlink Shared Channel
EHPLMN Equivalent Home PLMN
EPC Evolved Packet Core
EPS Evolved Packet System
ETWS Earthquake and Tsunami Warning System
E-UTRA Evolved UMTS Terrestrial Radio Access
E-UTRAN Evolved UMTS Terrestrial Radio Access Network
FDD Frequency Division Duplex
GERAN GSM/EDGE Radio Access Network
HPLMN Home PLMN
H-SFN Hyper System Frame Number
HRPD High Rate Packet Data
IMSI International Mobile Subscriber Identity
MBMS Multimedia Broadcast-Multicast Service
MBSFN Multimedia Broadcast multicast service Single Frequency Network
MCC Mobile Country Code
MCCH Multicast Control Channel
MDT Minimization of Drive Tests
MM Mobility Management
4 General description of Idle mode

4.1 Overview

The idle mode tasks can be subdivided into four processes:

- PLMN selection;
- Cell selection and reselection;
- Location registration;
- Support for manual CSG selection.

The relationship between these processes is illustrated in Figure 4.1-1.
When a UE is switched on, a public land mobile network (PLMN) is selected by NAS. For the selected PLMN, associated RAT(s) may be set [5]. The NAS shall provide a list of equivalent PLMNs, if available, that the AS shall use for cell selection and cell reselection.

With the cell selection, the UE searches for a suitable cell of the selected PLMN and chooses that cell to provide available services, further the UE shall tune to its control channel. This choosing is known as “camping on the cell”.

The UE shall, if necessary, then register its presence, by means of a NAS registration procedure, in the tracking area of the chosen cell and as outcome of a successful Location Registration the selected PLMN becomes the registered PLMN [5].

If the UE finds a more suitable cell, according to the cell reselection criteria, it reselects onto that cell and camps on it. If the new cell does not belong to at least one tracking area to which the UE is registered, location registration is performed.

If necessary, the UE shall search for higher priority PLMNs at regular time intervals as described in [4] and search for a suitable cell if another PLMN has been selected by NAS.

Search of available CSGs may be triggered by NAS to support manual CSG selection.

If the UE loses coverage of the registered PLMN, either a new PLMN is selected automatically (automatic mode), or an indication of which PLMNs are available is given to the user, so that a manual selection can be made (manual mode).

Registration is not performed by UEs only capable of services that need no registration.

The UE may perform sidelink communication or sidelink discovery while in-coverage or out-of-coverage for sidelink, as specified in section 11.

The purpose of camping on a cell in idle mode is fivefold:

a) It enables the UE to receive system information from the PLMN.

b) When registered and if the UE wishes to establish an RRC connection, it can do this by initially accessing the network on the control channel of the cell on which it is camped.
c) If the PLMN receives a call for the registered UE, it knows (in most cases) the set of tracking areas in which the UE is camped. It can then send a "paging" message for the UE on the control channels of all the cells in this set of tracking areas. The UE will then receive the paging message because it is tuned to the control channel of a cell in one of the registered tracking areas and the UE can respond on that control channel.

d) It enables the UE to receive ETWS and CMAS notifications.

e) It enables the UE to receive MBMS services.

If the UE is unable to find a suitable cell to camp on or if the location registration failed (except for LR rejected with cause #12, cause #14, cause #15 or cause #25, see [5] and [16]), it attempts to camp on a cell irrespective of the PLMN identity, and enters a "limited service" state.

When NAS indicates that PSM starts, the AS configuration (e.g. priorities provided by dedicated signalling and logged measurements) is kept, all running timers continue to run but the UE need not perform any idle mode tasks. If a timer expires while the UE is in PSM it is up to UE implementation whether it performs the corresponding action immediately or the latest when PSM ends. When NAS indicates that PSM ends, the UE shall perform all idle mode tasks.

4.2 Functional division between AS and NAS in Idle mode

Table 1 presents the functional division between UE non-access stratum (NAS) and UE access stratum (AS) in idle mode. The NAS part is specified in [5] and the AS part in the present document.
<table>
<thead>
<tr>
<th>Idle Mode Process</th>
<th>UE Non-Access Stratum</th>
<th>UE Access Stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLMN Selection</td>
<td>Maintain a list of PLMNs in priority order according to [5]. Select a PLMN using automatic or manual mode as specified in [5] and request AS to select a cell belonging to this PLMN. For each PLMN, associated RAT(s) may be set.</td>
<td>Search for available PLMNs. If associated RAT(s) is (are) set for the PLMN, search in this (these) RAT(s) and other RAT(s) for that PLMN as specified in [5]. Perform measurements to support PLMN selection. Synchronise to a broadcast channel to identify found PLMNs. Report available PLMNs with associated RAT(s) to NAS on request from NAS or autonomously.</td>
</tr>
<tr>
<td>Evaluate reports of available PLMNs from AS for PLMN selection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain a list of equivalent PLMN identities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Selection</td>
<td>Control cell selection for example by indicating RAT(s) associated with the selected PLMN to be used initially in the search of a cell in the cell selection. NAS is also maintaining lists of forbidden registration areas and a list of CSG IDs and their associated PLMN ID on which the UE is allowed (CSG whitelist) and provide these lists to AS.</td>
<td>Perform measurements needed to support cell selection. Detect and synchronise to a broadcast channel. Receive and handle broadcast information. Forward NAS system information to NAS. Search for a suitable cell. The cells broadcast one or more 'PLMN identity' in the system information. Respond to NAS whether such cell is found or not. If associated RATs is (are) set for the PLMN, perform the search in this (these) RAT(s) and other RATs for that PLMN as specified in [5]. If such a cell is found, the cell is selected to camp on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Reselection</td>
<td>Control cell reselection by for example, maintaining lists of forbidden registration areas. Maintain a list of equivalent PLMN identities and provide the list to AS. Maintain a list of forbidden registration areas and provide the list to AS. Maintain a list of CSG IDs and their associated PLMN ID on which the UE is allowed (CSG whitelist) to camp and provide the list to AS.</td>
<td>Perform measurements needed to support cell reselection. Detect and synchronise to a broadcast channel. Receive and handle broadcast information. Forward NAS system information to NAS. Change cell if a more suitable cell is found.</td>
</tr>
<tr>
<td>Location registration</td>
<td>Register the UE as active after power on. Register the UE’s presence in a registration area, for instance regularly or when entering a new tracking area. Maintain lists of forbidden registration areas. Deregister UE when shutting down.</td>
<td>Report registration area information to NAS.</td>
</tr>
</tbody>
</table>
Table 4.2-1: Functional division between AS and NAS in idle mode

<table>
<thead>
<tr>
<th>Idle Mode Process</th>
<th>UE Non-Access Stratum</th>
<th>UE Access Stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for manual CSG selection</td>
<td>Provide request to search for available CSGs. Evaluate reports of available CSGs from AS for CSG selection. Select a CSG and request AS to select a cell belonging to this CSG.</td>
<td>Search for cells with a CSG ID. Read the HNB name from BCCH on SIB9 if a cell with a CSG ID is found. Report CSG ID of the found cell broadcasting a CSG ID together with the HNB name and PLMN(s) to NAS. On selection of a CSG by NAS, select any cell belonging to the selected CSG fulfilling the cell selection criteria and not barred or reserved for operator use for UEs not belonging to AC 11 or 15 and give an indication to NAS that access is possible (for the registration procedure).</td>
</tr>
</tbody>
</table>

4.3 Service types in Idle Mode

This clause defines the level of service that may be provided by the network to a UE in Idle mode.

The action of camping on a cell is necessary to get access to some services. Three levels of services are defined for UE:

- Limited service (emergency calls, ETWS and CMAS on an acceptable cell)
- Normal service (for public use on a suitable cell)
- Operator service (for operators only on a reserved cell)

Furthermore, the cells are categorised according to which services they offer:

acceptable cell:

An "acceptable cell" is a cell on which the UE may camp to obtain limited service (originate emergency calls and receive ETWS and CMAS notifications). Such a cell shall fulfil the following requirements, which is the minimum set of requirements to initiate an emergency call and to receive ETWS and CMAS notification in a E-UTRAN network:

- The cell is not barred, see subclause 5.3.1;
- The cell selection criteria are fulfilled, see subclause 5.2.3.2;

suitable cell:

A "suitable cell" is a cell on which the UE may camp on to obtain normal service. The UE shall have a valid USIM and such a cell shall fulfil all the following requirements.

- The cell is part of either:
 - the selected PLMN, or:
 - the registered PLMN, or:
 - a PLMN of the Equivalent PLMN list
- For a CSG cell, the cell is a CSG member cell for the UE;
 According to the latest information provided by NAS:
 - The cell is not barred, see subclause 5.3.1;
 - The cell is part of at least one TA that is not part of the list of "forbidden tracking areas for roaming" [4], which belongs to a PLMN that fulfils the first bullet above;
 - The cell selection criteria are fulfilled, see subclause 5.2.3.2;
If more than one PLMN identity is broadcast in the cell, the cell is considered to be part of all TAs with TAIs constructed from the PLMN identities and the TAC broadcast in the cell.

barred cell:

A cell is barred if it is so indicated in the system information [3].

reserved cell:

A cell is reserved if it is so indicated in system information [3].

Following exceptions to these definitions are applicable for UEs:

- camped on a cell that belongs to a registration area that is forbidden for regional provision of service; a cell that belongs to a registration area that is forbidden for regional provision service ([5], [16]) is suitable but provides only limited service.

- as an outcome of the manual CSG selection procedure the UE is allowed to access an acceptable cell which fulfils the cell selection criteria and is not barred or reserved for operator use for UEs not belonging to AC 11 or 15 and inform NAS that access is possible (for location registration procedure).

NOTE: UE is not required to support manual search and selection of PLMN or CSGs while in RRC CONNECTED state. The UE may use local release of RRC connection to perform manual search if it is not possible to perform the search while RRC connected.

- if a UE has an ongoing emergency call, all acceptable cells of that PLMN are treated as suitable for the duration of the emergency call.

- if the UE in RRC_IDLE fulfils the conditions to support sidelink communication in limited service state as specified in TS 23.303 [N, 4.5.6], the UE may perform sidelink communication.

5 Process and procedure descriptions

5.1 PLMN selection

In the UE, the AS shall report available PLMNs to the NAS on request from the NAS or autonomously.

During PLMN selection, based on the list of PLMN identities in priority order, the particular PLMN may be selected either automatically or manually. Each PLMN in the list of PLMN identities is identified by a 'PLMN identity'. In the system information on the broadcast channel, the UE can receive one or multiple 'PLMN identity' in a given cell. The result of the PLMN selection performed by NAS (see 3GPP TS 23.122 [5]) is an identifier of the selected PLMN.

5.1.1 Void

5.1.2 Support for PLMN selection

5.1.2.1 General

On request of the NAS the AS shall perform a search for available PLMNs and report them to NAS.

5.1.2.2 E-UTRA case

The UE shall scan all RF channels in the E-UTRA bands according to its capabilities to find available PLMNs. On each carrier, the UE shall search for the strongest cell and read its system information, in order to find out which PLMN(s) the cell belongs to. If the UE can read one or several PLMN identities in the strongest cell, each found PLMN (see the PLMN reading in [3]) shall be reported to the NAS as a high quality PLMN (but without the RSRP value), provided that the following high quality criterion is fulfilled:

1. For an E-UTRAN cell, the measured RSRP value shall be greater than or equal to -110 dBm.
Found PLMNs that do not satisfy the high quality criterion, but for which the UE has been able to read the PLMN identities are reported to the NAS together with the RSRP value. The quality measure reported by the UE to NAS shall be the same for each PLMN found in one cell.

The search for PLMNs may be stopped on request of the NAS. The UE may optimise PLMN search by using stored information e.g. carrier frequencies and optionally also information on cell parameters from previously received measurement control information elements.

Once the UE has selected a PLMN, the cell selection procedure shall be performed in order to select a suitable cell of that PLMN to camp on.

If a CSG ID is provided by NAS as part of PLMN selection, the UE shall search for an acceptable or suitable cell belonging to the provided CSG ID to camp on. When the UE is no longer camped on a cell with the provided CSG ID, AS shall inform NAS.

5.1.2.3 UTRA case

Support for PLMN selection in UTRA is described in [8].

5.1.2.4 GSM case

Support for PLMN selection in GERAN is described in [9].

5.1.2.5 CDMA2000 case

For CDMA2000 the network determination for HRPD and 1xRTT is described in [17] and [18] respectively.

5.2 Cell selection and reselection

5.2.1 Introduction

UE shall perform measurements for cell selection and reselection purposes as specified in [10].

The NAS can control the RAT(s) in which the cell selection should be performed, for instance by indicating RAT(s) associated with the selected PLMN, and by maintaining a list of forbidden registration area(s) and a list of equivalent PLMNs. The UE shall select a suitable cell based on idle mode measurements and cell selection criteria.

In order to speed up the cell selection process, stored information for several RATs may be available in the UE.

When camped on a cell, the UE shall regularly search for a better cell according to the cell reselection criteria. If a better cell is found, that cell is selected. The change of cell may imply a change of RAT. Details on performance requirements for cell reselection can be found in [10].

The NAS is informed if the cell selection and reselection results in changes in the received system information relevant for NAS.

For normal service, the UE shall camp on a suitable cell, tune to that cell's control channel(s) so that the UE can:

- receive system information from the PLMN; and
 - receive registration area information from the PLMN, e.g., tracking area information; and
 - receive other AS and NAS Information; and
- if registered:
 - receive paging and notification messages from the PLMN; and
 - initiate transfer to connected mode.
5.2.2 States and state transitions in Idle Mode

Figure 5.2.2-1 shows the states and state transitions and procedures in RRC_IDLE. Whenever a new PLMN selection is performed, it causes an exit to number 1.

![Diagram of RRC_IDLE Cell Selection and Reselection](image)

Figure 5.2.2-1: RRC_IDLE Cell Selection and Reselection
5.2.3 Cell Selection process

5.2.3.1 Description

The UE shall use one of the following two cell selection procedures:

a) Initial Cell Selection

This procedure requires no prior knowledge of which RF channels are E-UTRA carriers. The UE shall scan all RF channels in the E-UTRA bands according to its capabilities to find a suitable cell. On each carrier frequency, the UE need only search for the strongest cell. Once a suitable cell is found this cell shall be selected.

b) Stored Information Cell Selection

This procedure requires stored information of carrier frequencies and optionally also information on cell parameters, from previously received measurement control information elements or from previously detected cells. Once the UE has found a suitable cell the UE shall select it. If no suitable cell is found the Initial Cell Selection procedure shall be started.

NOTE: Priorities between different frequencies or RATs provided to the UE by system information or dedicated signalling are not used in the cell selection process.

5.2.3.2 Cell Selection Criterion

The cell selection criterion S in normal coverage is fulfilled when:

$$S_{rxlev} > 0 \ \text{AND} \ \ S_{qual} > 0$$

where:

$$S_{rxlev} = Q_{rxlevmeas} - (Q_{rxlevmin} + Q_{rxlevminoffset}) - P_{compensation} - Q_{offset_{temp}}$$

$$S_{qual} = Q_{qualmeas} - (Q_{qualmin} + Q_{qualminoffset}) - Q_{offset_{temp}}$$

where:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{rxlev}</td>
<td>Cell selection RX level value (dB)</td>
</tr>
<tr>
<td>S_{qual}</td>
<td>Cell selection quality value (dB)</td>
</tr>
<tr>
<td>$Q_{offset_{temp}}$</td>
<td>Offset temporarily applied to a cell as specified in [3] (dB)</td>
</tr>
<tr>
<td>$Q_{rxlevmeas}$</td>
<td>Measured cell RX level value (RSRP)</td>
</tr>
<tr>
<td>$Q_{qualmeas}$</td>
<td>Measured cell quality value (RSRQ)</td>
</tr>
<tr>
<td>$Q_{rxlevmin}$</td>
<td>Minimum required RX level in the cell (dBm)</td>
</tr>
<tr>
<td>$Q_{qualmin}$</td>
<td>Minimum required quality level in the cell (dB)</td>
</tr>
<tr>
<td>$Q_{rxlevminoffset}$</td>
<td>Offset to the signalled $Q_{rxlevmin}$ taken into account in the S_{rxlev} evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5]</td>
</tr>
<tr>
<td>$Q_{qualminoffset}$</td>
<td>Offset to the signalled $Q_{qualmin}$ taken into account in the S_{qual} evaluation as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5]</td>
</tr>
<tr>
<td>$P_{compensation}$</td>
<td>If the UE supports the additional P_{max} in the $NS-PmaxList$, if present, in SIB1, SIB3 and SIB5: max($P_{EMAX1} - P_{PowerClass}$, 0) – (min($P_{EMAX2}$, $P_{PowerClass}$) – min(P_{EMAX1}, $P_{PowerClass}$)) (dB); else: max($P_{EMAX1} - P_{PowerClass}$, 0) (dB);</td>
</tr>
<tr>
<td>P_{EMAX1}, P_{EMAX2}</td>
<td>Maximum TX power level an UE may use when transmitting on the uplink in the cell (dBm) defined as P_{EMAX} in [TS 36.101]. P_{EMAX1} and P_{EMAX2} are obtained from the p-Max and the $NS-PmaxList$ respectively in SIB1, SIB3 and SIB5 as specified in TS 36.331 [3].</td>
</tr>
<tr>
<td>$P_{PowerClass}$</td>
<td>Maximum RF output power of the UE (dBm) according to the UE power class as defined in [TS 36.101]</td>
</tr>
</tbody>
</table>
The signalled values $Q_{\text{rxlevminoffset}}$ and $Q_{\text{qualminoffset}}$ are only applied when a cell is evaluated for cell selection as a result of a periodic search for a higher priority PLMN while camped normally in a VPLMN [5]. During this periodic search for higher priority PLMN the UE may check the S criteria of a cell using parameter values stored from a different cell of this higher priority PLMN.

If cell selection criterion S in normal coverage is not fulfilled for a cell, UE shall consider itself to be in enhanced coverage if the cell selection criterion S for enhanced coverage is fulfilled, where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{rxlevmin}</td>
<td>UE applies coverage specific value $Q_{\text{rxlevmin,CE}}$ (dBm)</td>
</tr>
<tr>
<td>Q_{qualmin}</td>
<td>UE applies coverage specific value $Q_{\text{qualmin,CE}}$ (dB)</td>
</tr>
</tbody>
</table>

For the UE in enhanced coverage, coverage specific values $Q_{\text{rxlevmin,CE}}$ and $Q_{\text{qualmin,CE}}$ are only applied for the suitability check in enhanced coverage (i.e. not used for measurement and reselection thresholds).

5.2.3.3 CSG cells and Hybrid cells in Cell Selection

In addition to normal cell selection rules a manual selection of CSGs shall be supported by the UE upon request from higher layers as defined in subclause 5.5.

5.2.3.4 GSM case in Cell Selection

The cell selection criteria and procedures in GSM are specified in [9].

5.2.3.5 UTRAN case in Cell Selection

The cell selection criteria and procedures in UTRAN are specified in [8].

5.2.4 Cell Reselection evaluation process

5.2.4.1 Reselection priorities handling

Absolute priorities of different E-UTRAN frequencies or inter-RAT frequencies may be provided to the UE in the system information, in the $\text{RRCConnectionRelease}$ message, or by inheriting from another RAT at inter-RAT cell (re)selection. In the case of system information, an E-UTRAN frequency or inter-RAT frequency may be listed without providing a priority (i.e. the field $\text{cellReselectionPriority}$ is absent for that frequency). If priorities are provided in dedicated signalling, the UE shall ignore all the priorities provided in system information. If UE is in $\text{camped on any cell state}$, UE shall only apply the priorities provided by system information from current cell, and the UE preserves priorities provided by dedicated signalling and $\text{deprioritisationReq}$ received in $\text{RRCConnectionReject}$ unless specified otherwise. When the UE in $\text{camped normally state}$, has only dedicated priorities other than for the current frequency, the UE shall consider the current frequency to be the lowest priority frequency (i.e. lower than any of the network configured values). While the UE is camped on a suitable CSG cell, the UE shall always consider the current frequency to be the highest priority frequency (i.e. higher than any of the network configured values), irrespective of any other priority value allocated to this frequency if that cell can be accessed in normal coverage. If the UE capable of sidelink communication is configured to perform sidelink communication and can only perform the sidelink communication while camping on a frequency, the UE may consider that frequency to be the highest priority.

NOTE: The prioritization among the frequencies which UE considers to be the highest priority frequency is left to UE implementation.

If the UE is capable either of MBMS Service Continuity or of SC-PTM reception and is receiving or interested to receive an MBMS service and can only receive this MBMS service while camping on a frequency on which it is provided, the UE may consider that frequency to be the highest priority during the MBMS session [2] as long as the two following conditions are fulfilled:

1) Either:
 - the UE is capable of MBMS service continuity and the reselected cell is broadcasting SIB13; or
 - the UE is capable of SC-PTM reception and the reselected cell is broadcasting SIB20;

2) Either:
- SIB15 of the serving cell indicates for that frequency one or more MBMS SAIs included in the MBMS User Service Description (USD) [22] of this service; or
- SIB15 is not broadcast in the serving cell and that frequency is included in the USD of this service.

If the UE is capable either of MBMS Service Continuity or of SC-PTM reception and is receiving or interested to receive an MBMS service provided on a downlink only MBMS frequency, the UE may consider cell reselection candidate frequencies at which it can not receive the MBMS service to be of the lowest priority during the MBMS session [2], as long as the above mentioned condition 1) is fulfilled for the cell on the MBMS frequency which the UE monitors and as long as the above mentioned condition 2) is fulfilled for the serving cell.

NOTE: An example scenario in which the previous down-prioritisation may be needed concerns the case the MBMS frequency is a downlink only carrier on which camping is not possible, while the UE can only receive this MBMS frequency when camping on a subset of cell reselection candidate frequencies.

If the UE is not capable of MBMS Service Continuity but has knowledge on which frequency an MBMS service of interest is provided, it may consider that frequency to be the highest priority during the MBMS session [2] as long as the reselected cell is broadcasting SIB13.

If the UE is not capable of MBMS Service Continuity but has knowledge on which downlink only frequency an MBMS service of interest is provided, it may consider cell reselection candidate frequencies at which it can not receive the MBMS service to be of the lowest priority during the MBMS session [2] as long as the cell on the MBMS frequency which the UE monitors is broadcasting SIB13.

NOTE: The UE considers that the MBMS session is ongoing using the session start and end times as provided by upper layers in the USD i.e. the UE does not verify if the session is indicated on MCCH.

In case UE receives RRCConnectionReject with deprioritisationReq, UE shall consider current carrier frequency and stored frequencies due to the previously received RRCConnectionReject with deprioritisationReq or all the frequencies of EUTRA to be the lowest priority frequency (i.e. lower than any of the network configured values) while T325 is running irrespective of camped RAT. The UE shall delete the stored deprioritisation request(s) when a PLMN selection is performed on request by NAS [5].

NOTE: Connecting to CDMA2000 does not imply PLMN selection.

NOTE: UE should search for a higher priority layer for cell reselection as soon as possible after the change of priority. The minimum related performance requirements specified in TS 36.133 [10] are still applicable.

The UE shall delete priorities provided by dedicated signalling when:
- the UE enters RRC_CONNECTED state; or
- the optional validity time of dedicated priorities (T320) expires; or
- a PLMN selection is performed on request by NAS [5].

NOTE: Equal priorities between RATs are not supported.

The UE shall only perform cell reselection evaluation for E-UTRAN frequencies and inter-RAT frequencies that are given in system information and for which the UE has a priority provided.

The UE shall not consider any black listed cells as candidate for cell reselection.

The UE shall inherit the priorities provided by dedicated signalling and the remaining validity time (i.e., T320 in E-UTRA, T322 in UTRA and T3230 in GERAN), if configured, at inter-RAT cell (re)selection.

NOTE: The network may assign dedicated cell reselection priorities for frequencies not configured by system information.

While T360 is running, redistribution target is considered to be the highest priority (i.e. higher than the any network configured values).
5.2.4.2 Measurement rules for cell re-selection

When evaluating Srxlev and Squal of non-serving cells for reselection purposes, the UE shall use parameters provided by the serving cell.

Following rules are used by the UE to limit needed measurements:

- If the serving cell fulfils Srxlev > S_{IntraSearchP} and Squal > S_{IntraSearchQ}, the UE may choose not to perform intra-frequency measurements.
- Otherwise, the UE shall perform intra-frequency measurements.
- The UE shall apply the following rules for E-UTRAN inter-frequencies and inter-RAT frequencies which are indicated in system information and for which the UE has priority provided as defined in 5.2.4.1:
 - For an E-UTRAN inter-frequency or inter-RAT frequency with a reselection priority higher than the reselection priority of the current E-UTRA frequency the UE shall perform measurements of higher priority E-UTRAN inter-frequency or inter-RAT frequencies according to [10].
 - For an E-UTRAN inter-frequency with an equal or lower reselection priority than the reselection priority of the current E-UTRA frequency and for inter-RAT frequency with lower reselection priority than the reselection priority of the current E-UTRAN frequency:
 - If the serving cell fulfils Srxlev > S_{nonIntraSearchP} and Squal > S_{nonIntraSearchQ}, the UE may choose not to perform measurements of E-UTRAN inter-frequencies or inter-RAT frequency cells of equal or lower priority unless the UE is triggered to measure an E-UTRAN inter-frequency which is configured with redistributionInterFreqInfo.
 - Otherwise, the UE shall perform measurements of E-UTRAN inter-frequencies or inter-RAT frequency cells of equal or lower priority according to [10].

5.2.4.3 Mobility states of a UE

Besides Normal-mobility state a High-mobility and a Medium-mobility state are applicable if the parameters (T_{CRmax}, N_{CR_H}, N_{CR_M} and T_{CRmaxHystr}) are sent in the system information broadcast of the serving cell.

State detection criteria:

Medium-mobility state criteria:

- If number of cell reselections during time period T_{CRmax} exceeds N_{CR_M} and not exceeds N_{CR_H}

High-mobility state criteria:

- If number of cell reselections during time period T_{CRmax} exceeds N_{CR_H}

The UE shall not count consecutive reselections between same two cells into mobility state detection criteria if same cell is reselected just after one other reselection.

State transitions:

The UE shall:

- if the criteria for High-mobility state is detected:
 - enter High-mobility state.
- else if the criteria for Medium-mobility state is detected:
 - enter Medium-mobility state.
- else if criteria for either Medium- or High-mobility state is not detected during time period T_{CRmaxHystr}:
 - enter Normal-mobility state.
If the UE is in High- or Medium-mobility state, the UE shall apply the speed dependent scaling rules as defined in subclause 5.2.4.3.1.

5.2.4.3.1 Scaling rules

UE shall apply the following scaling rules:

- If neither Medium- nor Highmobility state is detected:
 - no scaling is applied.

- If High-mobility state is detected:
 - Add the \(sf_{High} \) of "Speed dependent ScalingFactor for \(Q_{hyst} \)" to \(Q_{hyst} \) if sent on system information
 - For E-UTRAN cells multiply \(T_{reselection_{UTRA}} \) by the \(sf_{High} \) of "Speed dependent ScalingFactor for \(T_{reselection_{UTRA}} \)" if sent on system information
 - For UTRAN cells multiply \(T_{reselection_{UTRA}} \) by the \(sf_{High} \) of "Speed dependent ScalingFactor for \(T_{reselection_{UTRA}} \)" if sent on system information
 - For GERAN cells multiply \(T_{reselection_{GERA}} \) by the \(sf_{High} \) of "Speed dependent ScalingFactor for \(T_{reselection_{GERA}} \)" if sent on system information
 - For CDMA2000 HRPD cells Multiply \(T_{reselection_{CDMA_HRPD}} \) by the \(sf_{High} \) of "Speed dependent ScalingFactor for \(T_{reselection_{CDMA_HRPD}} \)" if sent on system information
 - For CDMA2000 1xRTT cells Multiply \(T_{reselection_{CDMA_1xRTT}} \) by the \(sf_{High} \) of "Speed dependent ScalingFactor for \(T_{reselection_{CDMA_1xRTT}} \)" if sent on system information

- If Medium-mobility state is detected:
 - Add the \(sf_{Medium} \) of "Speed dependent ScalingFactor for \(Q_{hyst} \) for medium mobility state" to \(Q_{hyst} \) if sent on system information
 - For E-UTRAN cells multiply \(T_{reselection_{UTRA}} \) by the \(sf_{Medium} \) of "Speed dependent ScalingFactor for \(T_{reselection_{UTRA}} \)" if sent on system information
 - For UTRAN cells multiply \(T_{reselection_{UTRA}} \) by the \(sf_{Medium} \) of "Speed dependent ScalingFactor for \(T_{reselection_{UTRA}} \)" if sent on system information
 - For GERAN cells multiply \(T_{reselection_{GERA}} \) by the \(sf_{Medium} \) of "Speed dependent ScalingFactor for \(T_{reselection_{GERA}} \)" if sent on system information
 - For CDMA2000 HRPD cells Multiply \(T_{reselection_{CDMA_HRPD}} \) by the \(sf_{Medium} \) of "Speed dependent ScalingFactor for \(T_{reselection_{CDMA_HRPD}} \)" if sent on system information
 - For CDMA2000 1xRTT cells Multiply \(T_{reselection_{CDMA_1xRTT}} \) by the \(sf_{Medium} \) of "Speed dependent ScalingFactor for \(T_{reselection_{CDMA_1xRTT}} \)" if sent on system information

In case scaling is applied to any \(T_{reselection_{RAT}} \) parameter the UE shall round up the result after all scalings to the nearest second.

5.2.4.4 Cells with cell reservations, access restrictions or unsuitable for normal camping

For the highest ranked cell (including serving cell) according to cell reselection criteria specified in subclause 5.2.4.6, for the best cell according to absolute priority reselection criteria specified in subclause 5.2.4.5, the UE shall check if the access is restricted according to the rules in subclause 5.3.1.

If that cell and other cells have to be excluded from the candidate list, as stated in subclause 5.3.1, the UE shall not consider these as candidates for cell reselection. This limitation shall be removed when the highest ranked cell changes.

If the highest ranked cell or best cell according to absolute priority reselection rules is an intra-frequency or inter-frequency cell which is not suitable due to being part of the "list of forbidden TAs for roaming" or belonging to a
PLMN which is not indicated as being equivalent to the registered PLMN, the UE shall not consider this cell and other cells on the same frequency, as candidates for reselection for a maximum of 300s. If the UE enters into state any cell selection, any limitation shall be removed. If the UE is redirected under E-UTRAN control to a frequency for which the timer is running, any limitation on that frequency shall be removed.

If the highest ranked cell or best cell according to absolute priority reselection rules is an inter-RAT cell which is not suitable due to being part of the "list of forbidden TAs for roaming" or belonging to a PLMN which is not indicated as being equivalent to the registered PLMN, the UE shall not consider this cell as a candidate for reselection for a maximum of 300s. In case of UTRA further requirements are defined in the [8]. If the UE enters into state any cell selection, any limitation shall be removed. If the UE is redirected under E-UTRAN control to a frequency for which the timer is running, any limitation on that frequency shall be removed.

If the highest ranked cell or best cell according to absolute priority reselection rules is a CSG cell which is not suitable due to not being a CSG member cell, the UE shall not consider this cell as candidate for cell reselection but shall continue considering other cells on the same frequency for cell reselection.

5.2.4.5 E-UTRAN Inter-frequency and inter-RAT Cell Reselection criteria

If threshServingLowQ is provided in $\text{SystemInformationBlockType3}$ and more than 1 second has elapsed since the UE camped on the current serving cell, cell reselection to a cell on a higher priority E-UTRAN frequency or inter-RAT frequency than the serving frequency shall be performed if:

- A cell of a higher priority EUTRAN or UTRAN FDD RAT/ frequency fulfils $\text{Squal} > \text{Thresh}_{\text{X, HighQ}}$ during a time interval $\text{Treselection}_{\text{RAT}}$; or
- A cell of a higher priority UTRAN TDD, GERAN or CDMA2000 RAT/ frequency fulfils $\text{SrxEV} > \text{Thresh}_{\text{X, HighP}}$ during a time interval $\text{Treselection}_{\text{RAT}}$.

Otherwise, cell reselection to a cell on a higher priority E-UTRAN frequency or inter-RAT frequency than the serving frequency shall be performed if:

- A cell of a higher priority RAT/ frequency fulfils $\text{SrxEV} > \text{Thresh}_{\text{X, HighP}}$ during a time interval $\text{Treselection}_{\text{RAT}}$; and
- More than 1 second has elapsed since the UE camped on the current serving cell.

Cell reselection to a cell on an equal priority E-UTRAN frequency shall be based on ranking for Intra-frequency cell reselection as defined in sub-clause 5.2.4.6.

If threshServingLowQ is provided in $\text{SystemInformationBlockType3}$ and more than 1 second has elapsed since the UE camped on the current serving cell, cell reselection to a cell on a lower priority E-UTRAN frequency or inter-RAT frequency than the serving frequency shall be performed if:

- The serving cell fulfils $\text{Squal} < \text{Thresh}_{\text{Serving, LowQ}}$ and a cell of a lower priority EUTRAN or UTRAN FDD RAT/ frequency fulfils $\text{Squal} > \text{Thresh}_{\text{X, LowQ}}$ during a time interval $\text{Treselection}_{\text{RAT}}$; or
- The serving cell fulfils $\text{Squal} < \text{Thresh}_{\text{Serving, LowQ}}$ and a cell of a lower priority UTRAN TDD, GERAN or CDMA2000 RAT/ frequency fulfils $\text{SrxEV} > \text{Thresh}_{\text{X, LowP}}$ during a time interval $\text{Treselection}_{\text{RAT}}$.

Otherwise, cell reselection to a cell on a lower priority E-UTRAN frequency or inter-RAT frequency than the serving frequency shall be performed if:

- The serving cell fulfils $\text{SrxEV} < \text{Thresh}_{\text{Serving, LowP}}$ and a cell of a lower priority RAT/ frequency fulfils $\text{SrxEV} > \text{Thresh}_{\text{X, LowP}}$ during a time interval $\text{Treselection}_{\text{RAT}}$; and
- More than 1 second has elapsed since the UE camped on the current serving cell.

Cell reselection to a higher priority RAT/ frequency shall take precedence over a lower priority RAT/ frequency, if multiple cells of different priorities fulfil the cell reselection criteria.

The UE shall not perform cell reselection to UTRAN FDD cells for which the cell selection criterion S is not fulfilled.

For cdma2000 RATs, SrxEV is equal to $-\text{FLOOR}(-2 \times 10 \times \log_{10} \text{Ec/Io})$ in units of 0.5 dB, as defined in [18], with Ec/Io referring to the value measured from the evaluated cell.
For cdma2000 RATs, Thresh\textsubscript{X, HighP} and Thresh\textsubscript{X, LowP} are equal to \(-1\) times the values signalled for the corresponding parameters in the system information.

In all the above criteria the value of \(T_{\text{reselectionRAT}}\) is scaled when the UE is in the medium or high mobility state as defined in subclause 5.2.4.3.1. If more than one cell meets the above criteria, the UE shall reselect a cell as follows:

- If the highest-priority frequency is an E-UTRAN frequency, a cell ranked as the best cell among the cells on the highest priority frequency(ies) meeting the criteria according to section 5.2.4.6;
- If the highest-priority frequency is from another RAT, a cell ranked as the best cell among the cells on the highest priority frequency(ies) meeting the criteria of that RAT.

Cell reselection to another RAT, for which Squal based cell reselection parameters are broadcast in system information, shall be performed based on the Squal criteria if the UE supports Squal (RSRQ) based cell reselection to E-UTRAN from all the other RATs provided by system information which UE supports. Otherwise, cell reselection to another RAT shall be performed based on Srxlev criteria.

5.2.4.6 Intra-frequency and equal priority inter-frequency Cell Reselection criteria

The cell-ranking criterion \(R_s\) for serving cell and \(R_n\) for neighbouring cells is defined by:

\[
\begin{align*}
R_s &= Q_{\text{meas},s} + Q_{\text{Hyst}} - Q_{\text{offset},\text{temp}} \\
R_n &= Q_{\text{meas},n} - Q_{\text{offset}} - Q_{\text{offset},\text{temp}}
\end{align*}
\]

where:

<table>
<thead>
<tr>
<th>Q\text{meas}</th>
<th>RSRP measurement quantity used in cell reselections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qoffset</td>
<td>For intra-frequency: Equals to (Q_{\text{offset},s,n}), if (Q_{\text{offset},s,n}) is valid, otherwise this equals to zero.</td>
</tr>
<tr>
<td></td>
<td>For inter-frequency: Equals to (Q_{\text{offset},s,n}) plus (Q_{\text{offset, frequency}}), if (Q_{\text{offset},s,n}) is valid, otherwise this equals to (Q_{\text{offset, frequency}}).</td>
</tr>
<tr>
<td>Qoffset\text{temp}</td>
<td>Offset temporarily applied to a cell as specified in [3]</td>
</tr>
</tbody>
</table>

The UE shall perform ranking of all cells that fulfil the cell selection criterion \(S\), which is defined in 5.2.3.2, but may exclude all CSG cells that are known by the UE not to be CSG member cells.

The cells shall be ranked according to the \(R\) criteria specified above, deriving \(Q_{\text{meas},s}\) and \(Q_{\text{meas},n}\) and calculating the \(R\) values using averaged RSRP results.

If a cell is ranked as the best cell the UE shall perform cell reselection to that cell. If this cell is found to be not-suitable, the UE shall behave according to subclause 5.2.4.4.

In all cases, the UE shall reselect the new cell, only if the following conditions are met:

- the new cell is better ranked than the serving cell during a time interval \(T_{\text{reselectionRAT}}\);
- more than 1 second has elapsed since the UE camped on the current serving cell.

5.2.4.6a Reselection for enhanced coverage

Ranking is applied for inter-frequency cell reselection when the current serving cell can only be accessed using enhanced coverage.

5.2.4.7 Cell reselection parameters in system information broadcasts

Cell reselection parameters are broadcast in system information and are read from the serving cell as follows:

cellReselectionPriority

This specifies the absolute priority for E-UTRAN frequency or UTRAN frequency or group of GERAN frequencies or band class of CDMA2000 HRPD or band class of CDMA2000 1xRTT.

cellReselectionSubPriority
This specifies the fractional priority value added to cellReselectionPriority for E-UTRAN frequency.

Qoffset
This specifies the offset between the two cells.

QoffsetFrequency
Frequency specific offset for equal priority E-UTRAN frequencies.

QoffsetTemp
This specifies the additional offset to be used for cell selection and re-selection. It is temporarily used in case the RRC Connection Establishment fails on the cell as specified in [3].

Qhyst
This specifies the hysteresis value for ranking criteria.

Qqualmin
This specifies the minimum required quality level in the cell in dB.

Qrxlevmin
This specifies the minimum required Rx level in the cell in dBm.

RedistributionFactorFreq
This specifies the redistribution factor for a neighbour E-UTRAN frequency.

RedistributionFactorCell
This specifies the redistribution factor for a neighbour E-UTRAN cell.

RedistributionFactorServing
This specifies the redistribution factor for serving cell or serving frequency.

TreselectionRAT
This specifies the cell reselection timer value. For each target E-UTRA frequency and for each RAT (other than E-UTRA) a specific value for the cell reselection timer is defined, which is applicable when evaluating reselection within E-UTRAN or towards other RAT (i.e. Treselection_RAT for E-UTRAN is TreselectionEUTRA, for UTRAN TreselectionUTRA for GERAN TreselectionGERA, for TreselectionCDMA_HRPD, and for TreselectionCDMA_1xRTT).

Note: TreselectionRAT is not sent on system information, but used in reselection rules by the UE for each RAT.

TreselectionEUTRA_CE
This specifies the cell reselection timer value Treselection_RAT for E-UTRAN UE in enhanced coverage among same priority cell. The parameter can be set per E-UTRAN frequency.

TreselectionEUTRA
This specifies the cell reselection timer value Treselection_RAT for E-UTRAN. The parameter can be set per E-UTRAN frequency [3].

TreselectionUTRA
This specifies the cell reselection timer value Treselection_RAT for UTRAN.

TreselectionGERA
This specifies the cell reselection timer value Treselection_RAT for GERAN.
Treselection\textsubscript{CDMA_HRPD}
This specifies the cell reselection timer value \text{Treselection}_{RAT} for CDMA HRPD.

Treselection\textsubscript{CDMA_1xRTT}
This specifies the cell reselection timer value \text{Treselection}_{RAT} for CDMA 1xRTT.

\text{Thresh\textsubscript{X, HighP}}
This specifies the Srxlev threshold (in dB) used by the UE when reselecting towards a higher priority RAT/ frequency than the current serving frequency. Each frequency of E-UTRAN and UTRAN, each group of GERAN frequencies, each band class of CDMA2000 HRPD and CDMA2000 1xRTT might have a specific threshold.

\text{Thresh\textsubscript{X, HighQ}}
This specifies the Squal threshold (in dB) used by the UE when reselecting towards a higher priority RAT/ frequency than the current serving frequency. Each frequency of E-UTRAN and UTRAN FDD might have a specific threshold.

\text{Thresh\textsubscript{X, LowP}}
This specifies the Srxlev threshold (in dB) used by the UE when reselecting towards a lower priority RAT/ frequency than the current serving frequency. Each frequency of E-UTRAN and UTRAN, each group of GERAN frequencies, each band class of CDMA2000 HRPD and CDMA2000 1xRTT might have a specific threshold.

\text{Thresh\textsubscript{X, LowQ}}
This specifies the Squal threshold (in dB) used by the UE when reselecting towards a lower priority RAT/ frequency than the current serving frequency. Each frequency of E-UTRAN and UTRAN FDD might have a specific threshold.

\text{Thresh\textsubscript{Serving, LowP}}
This specifies the Srxlev threshold (in dB) used by the UE on the serving cell when reselecting towards a lower priority RAT/ frequency.

\text{Thresh\textsubscript{Serving, LowQ}}
This specifies the Squal threshold (in dB) used by the UE on the serving cell when reselecting towards a lower priority RAT/ frequency.

\text{S\textsubscript{IntraSearchP}}
This specifies the Srxlev threshold (in dB) for intra-frequency measurements.

\text{S\textsubscript{IntraSearchQ}}
This specifies the Squal threshold (in dB) for intra-frequency measurements.

\text{S\textsubscript{nonIntraSearchP}}
This specifies the Srxlev threshold (in dB) for E-UTRAN inter-frequency and inter-RAT measurements.

\text{S\textsubscript{nonIntraSearchQ}}
This specifies the Squal threshold (in dB) for E-UTRAN inter-frequency and inter-RAT measurements.

5.2.4.7.1 Speed dependant reselection parameters
\text{T\textsubscript{CR_{max}}}
This specifies the duration for evaluating allowed amount of cell reselection(s).

\text{N\textsubscript{CR_M}}
This specifies the maximum number of cell reselections to enter Medium-mobility state.

\text{N\textsubscript{CR_H}}
This specifies the maximum number of cell reselections to enter High-mobility state.

\(T_{CRmaHyst} \)

This specifies the additional time period before the UE can enter Normal-mobility state.

Speed dependent ScalingFactor for Qhyst

This specifies scaling factor for Qhyst in \(sf-High \) for High-mobility state and \(sf-Medium \) for Medium-mobility state

Speed dependent ScalingFactor for Treselection\textsubscript{EUTRA}

This specifies scaling factor for Treselection\textsubscript{EUTRA} in \(sf-High \) for High-mobility state and \(sf-Medium \) for Medium-mobility state

Speed dependent ScalingFactor for Treselection\textsubscript{UTRA}

This specifies scaling factor for Treselection\textsubscript{UTRA} in \(sf-High \) for High-mobility state and \(sf-Medium \) for Medium-mobility state

Speed dependent ScalingFactor for Treselection\textsubscript{GERA}

This specifies scaling factor for Treselection\textsubscript{GERA} in \(sf-High \) for High-mobility state and \(sf-Medium \) for Medium-mobility state

Speed dependent ScalingFactor for Treselection\textsubscript{CDMA_HRPD}

This specifies scaling factor for Treselection\textsubscript{CDMA_HRPD} in \(sf-High \) for High mobility state and \(sf-Medium \) for Medium-mobility state

Speed dependent ScalingFactor for Treselection\textsubscript{CDMA_1xRTT}

This specifies scaling factor for Treselection\textsubscript{CDMA_1xRTT} in \(sf-High \) for High mobility state and \(sf-Medium \) for Medium-mobility state

5.2.4.8 Cell reselection with CSG cells

5.2.4.8.1 Cell reselection from a non-CSG cell to a CSG cell

In addition to normal cell reselection, the UE shall use an autonomous search function to detect at least previously visited CSG member cells on non-serving frequencies, including inter-RAT frequencies, according to the performance requirements specified in [10], when at least one CSG ID with associated PLMN identity is included in the UE’s CSG whitelist. The UE may also use autonomous search on the serving frequency. The UE shall disable the autonomous search function for CSG cells if the UE’s CSG whitelist is empty.

NOTE: The UE autonomous search function, per UE implementation, determines when and/or where to search for CSG member cells.

If the UE detects one or more suitable CSG cells on different frequencies, then the UE shall reselect to one of the detected cells irrespective of the frequency priority of the cell the UE is currently camped on, if the concerned CSG cell is the highest ranked cell on that frequency.

If the UE detects a suitable CSG cell on the same frequency, it shall reselect to this cell as per normal reselection rules (5.2.4.6).

If the UE detects one or more suitable CSG cells on another RAT, the UE shall reselect to one of them according to [19].

5.2.4.8.2 Cell reselection from a CSG cell

While camped on a suitable CSG cell, the UE shall apply the normal cell reselection rules as defined in subclause 5.2.4.

To search for suitable CSG cells on non-serving frequencies, the UE may use an autonomous search function. If the UE detects a CSG cell on a non-serving frequency, the UE may reselect to the detected CSG cell if it is the highest ranked cell on its frequency.
If the UE detects one or more suitable CSG cells on another RAT, the UE may reselect to one of them if allowed according to [19].

5.2.4.9 Cell reselection with Hybrid cells

In addition to normal cell reselection rules, the UE shall use an autonomous search function to detect at least previously visited hybrid cells whose CSG ID and associated PLMN identity is in the UE’s CSG whitelist according to the performance requirements specified in [10]. The UE shall treat detected hybrid cells as CSG cells if the CSG ID and associated PLMN identity of the hybrid cell is in the UE’s CSG whitelist and as normal cells otherwise.

5.2.4.10 E-UTRAN Inter-frequency Redistribution procedure

If a UE is redistribution capable and redistributionServingInfo is included in SystemInformationBlockType3 and redistributionInterFreqInfo is included in SystemInformationBlockType5 and the UE is not configured with dedicated priorities and

- if T360 is not running and if redistrOnPagingOnly is not present in SystemInformationBlockType3; or
- if T360 expires and if redistrOnPagingOnly is not present in SystemInformationBlockType3; or
- if Paging message is received and the redistributionIndication is included:
 - Perform inter-frequency measurement as specified in 5.2.4.2;
 - Once measurement results are available perform redistribution target selection as specified in 5.2.4.10.1;
 - Start T360.

The UE shall stop T360 and cease to consider a frequency or cell to be redistribution target when:

- the UE enters RRC_CONNECTED state; or
- T360 expires; or
- if Paging message is received and the redistributionIndication is included while T360 is running; or
- the UE reselects a cell not belonging to redistribution target.

5.2.4.10.1 Redistribution target selection

The UE shall compile a sorted list of one or more candidate redistribution targets, and for each candidate entry [j] a valid redistrFactor[j], in which entries are added in increasing index order starting with index 0 as follows:

- for the serving frequency (redistributionFactorServing is included in SystemInformationBlockType3 whenever redistribution is configured):
 - the serving cell if redistributionFactorCell is included;
 - otherwise the serving frequency;
 - In both cases, redistrFactor[0] is set to redistributionFactorServing;
- for each entry in InterFreqCarrierFreqList and subsequent for each entry in InterFreqCarrierFreqListExt:
 - the cell ranked as the best cell on this frequency according to section 5.2.4.6 if redistributionNeighCellList is configured and includes this cell;
 - otherwise, the concerned frequency if redistributionFactorFreq is configured and if at least one cell on the frequency fulfills the cell selection criterion S defined in 5.2.3.2;
 - If the cell is included, redistrFactor[j] is set to the corresponding redistributionFactorCell; If the frequency is included, redistrFactor[j] is set to the corresponding redistributionFactorFreq;

The UE shall choose a redistribution target as follows:
- If \(\text{UE} _\text{ID} \leq 100 \times \text{redistrRange}[0] \), the UE shall choose the frequency or the cell corresponding to \(\text{redistrFactor}[0] \) as its redistribution target or;

- If \(100 \times \sum_{j=0}^{i-1} \text{redistrRange}[j] < \text{UE} _\text{ID} \leq 100 \times \sum_{j=0}^{i} \text{redistrRange}[j] \), then the UE shall choose the frequency or cell corresponding to \(\text{redistrFactor}[i] \) as its redistribution target;

- \(\text{UE} _\text{ID} = \text{IMSI} \mod 100 \);

The \text{redistrRange}[i] of E-UTRAN frequency or cell is defined by:

\[
\begin{align*}
\text{redistrRange}[i] &= \frac{\text{redistrFactor}[i]}{\sum_{j=0}^{(\text{maxCandidates}-1)} \text{redistrFactor}[j]} \\
\end{align*}
\]

Where: \(\text{maxCandidates} \) is the total number of frequencies/cells with valid \(\text{redistrFactor}[j] \).

5.2.5 Void

5.2.6 Camped Normally state

When camped normally, the UE shall perform the following tasks:

- select and monitor the indicated Paging Channels of the cell as specified in clause 7 according to information sent in system information;

- monitor relevant System Information as specified in [3];

- perform necessary measurements for the cell reselection evaluation procedure;

- execute the cell reselection evaluation process on the following occasions/triggers:
 1) UE internal triggers, so as to meet performance as specified in [10];
 2) When information on the BCCH used for the cell reselection evaluation procedure has been modified.

5.2.7 Cell Selection when leaving RRC.CONNECTED state

On transition from RRC.CONNECTED to RRC.IDLE, UE shall attempt to camp on a suitable cell according to \(\text{redirectedCarrierInfo} \), if included in the \(\text{RRCConnectionRelease} \) message. If the UE cannot find a suitable cell, the UE is allowed to camp on any suitable cell of the indicated RAT. If the \(\text{RRCConnectionRelease} \) message does not contain \(\text{redirectedCarrierInfo} \) UE shall attempt to select a suitable cell on an EUTRA carrier. If no suitable cell is found according to the above, the UE shall perform a cell selection starting with Stored Information Cell Selection procedure in order to find a suitable cell to camp on.

When returning to RRC.IDLE after UE moved to RRC.CONNECTED state from camped on any cell state, UE shall attempt to camp on an acceptable cell according to \(\text{redirectedCarrierInfo} \), if included in the \(\text{RRCConnectionRelease} \) message. If the UE cannot find an acceptable cell, the UE is allowed to camp on any acceptable cell of the indicated RAT. If the \(\text{RRCConnectionRelease} \) message does not contain \(\text{redirectedCarrierInfo} \) UE shall attempt to select an acceptable cell on an EUTRA carrier. If no acceptable cell is found according to the above, the UE shall continue to search for an acceptable cell of any PLMN in state any cell selection.

5.2.8 Any Cell Selection state

In this state, the UE shall attempt to find an acceptable cell of any PLMN to camp on, trying all RATs that are supported by the UE and searching first for a high quality cell, as defined in subclause 5.1.2.2.
The UE, which is not camped on any cell, shall stay in this state until an acceptable cell is found.

5.2.9 Camped on Any Cell state

In this state, the UE shall perform the following tasks:

- select and monitor the indicated paging channels of the cell as specified in clause 7;
- monitor relevant System Information as specified in [3];
- perform necessary measurements for the cell reselection evaluation procedure;
- execute the cell reselection evaluation process on the following occasions/triggers:
 1) UE internal triggers, so as to meet performance as specified in [10];
 2) When information on the BCCH used for the cell reselection evaluation procedure has been modified;
- regularly attempt to find a suitable cell trying all frequencies of all RATs that are supported by the UE. If a suitable cell is found, UE shall move to camped normally state;
- if the UE supports voice services and the current cell does not support emergency call as indicated in System information specified in [3], the UE should perform cell selection/reselection to an acceptable cell of any supported RAT regardless of priorities provided in system information from current cell, if no suitable cell is found.

NOTE1: The UE is allowed to not perform reselection to an inter-frequency E-UTRAN cell in order to prevent camping on a cell on which it cannot initiate an IMS emergency call.

5.3 Cell Reservations and Access Restrictions

There are two mechanisms which allow an operator to impose cell reservations or access restrictions. The first mechanism uses indication of cell status and special reservations for control of cell selection and reselection procedures. The second mechanism, referred to as Access Control, shall allow preventing selected classes of users or ACDC categories from sending initial access messages for load control reasons. For Access Control based on Access Classes, at subscription, one or more Access Classes are allocated to the subscriber and stored in the USIM [4]. For Access Control based on ACDC categories, at subscription at least four ACDC categories are allocated to the subscriber and stored in the ACDC MO [31] or USIM [32].

5.3.1 Cell status and cell reservations

Cell status and cell reservations are indicated in the SystemInformationBlockType1 message [3] by means of two fields:

- cellBarred (IE type: "barred" or "not barred")
 In case of multiple PLMNs indicated in SIB1, this field is common for all PLMNs
- cellReservedForOperatorUse (IE type: "reserved" or "not reserved")
 In case of multiple PLMNs indicated in SIB1, this field is specified per PLMN.

When cell status is indicated as "not barred" and "not reserved" for operator use,

- All UEs shall treat this cell as candidate during the cell selection and cell reselection procedures.

When cell status is indicated as "not barred" and "reserved" for operator use for any PLMN,

- UEs assigned to Access Class 11 or 15 operating in their HPLMN/EHPLMN shall treat this cell as candidate during the cell selection and reselection procedures if the field cellReservedForOperatorUse for that PLMN set to 'reserved'.
- UEs assigned to an Access Class in the range of 0 to 9, 12 to 14 shall behave as if the cell status is "barred" in case the cell is "reserved for operator use" for the registered PLMN or the selected PLMN.
NOTE 1: ACs 11, 15 are only valid for use in the HPLMN/ EHPLMN; ACs 12, 13, 14 are only valid for use in the home country [4].

When cell status "barred" is indicated or to be treated as if the cell status is "barred",

- The UE is not permitted to select/reselect this cell, not even for emergency calls.
- The UE shall select another cell according to the following rule:
 - If the cell is to be treated as if the cell status is 'barred' due to being unable to acquire the MasterInformationBlock, the SystemInformationBlockType1, or the SystemInformationBlockType2:
 - the UE may exclude the barred cell as a candidate for cell selection/reselection for up to 300 seconds.
 - the UE may select another cell on the same frequency if the selection criteria are fulfilled.
 - else
 - If the cell is a CSG cell:
 - the UE may select another cell on the same frequency if the selection/reselection criteria are fulfilled.
 - else
 - If the field intraFreqReselection in field cellAccessRelatedInfo in SystemInformationBlockType1 message is set to "allowed", the UE may select another cell on the same frequency if re-selection criteria are fulfilled.
 - The UE shall exclude the barred cell as a candidate for cell selection/reselection for 300 seconds.
 - If the field intraFreqReselection in field cellAccessRelatedInfo in SystemInformationBlockType1 message is set to "not allowed" the UE shall not re-select a cell on the same frequency as the barred cell;
 - The UE shall exclude the barred cell and the cells on the same frequency as a candidate for cell selection/reselection for 300 seconds.

The cell selection of another cell may also include a change of RAT.

5.3.2 Access control

Information on cell access restrictions associated with the Access Classes or ACDC categories is broadcast as system information, [3].

The UE shall ignore Access Class or ACDC category related cell access restrictions when selecting a cell to camp on, i.e. it shall not reject a cell for camping on because access on that cell is not allowed for any of the Access Classes or ACDC categories of the UE. A change of the indicated access restriction shall not trigger cell reselection by the UE.

Access Class or ACDC category related cell access restrictions shall be checked by the UE when starting RRC connection establishment procedure as specified in [3].

5.3.3 Emergency call

A restriction on emergency calls, if needed, is indicated by the field ac-BarringForEmergency [3]. If access class 10 is indicated as barred in a cell, UEs with access class 0 to 9 or without an IMSI are not allowed to initiate emergency calls in this cell. For UEs with access classes 11 to 15, emergency calls are not allowed if both access class 10 and the relevant access class (11 to 15) are barred. Otherwise, emergency calls are allowed for those UEs.

Full details of operation under "Access class barred list" are described in [4].

5.4 Tracking Area registration

In the UE, the AS shall report tracking area information to the NAS.
If the UE reads more than one PLMN identity in the current cell, the UE shall report the found PLMN identities that make the cell suitable in the tracking area information to NAS.

The NAS part of the location registration process is specified in [5].

Actions for the UE AS upon reception of Location Registration reject are specified in [4] and [16].

5.5 Support for manual CSG selection

5.5.1 E-UTRA case

In the UE on request of NAS, the AS shall scan all RF channels in the E-UTRA bands according to its capabilities to find available CSGs. On each carrier, the UE shall at least search for the strongest cell, read its system information and report available CSG ID(s) together with their 'HNB name' (if broadcast) and PLMN(s) to the NAS. The search for available CSGs may be stopped on request of the NAS.

If NAS has selected a CSG and provided this selection to AS, the UE shall search for an acceptable or suitable cell belonging to the selected CSG to camp on.

5.5.2 UTRA case

Support for manual CSG selection in UTRA is described in [8].

5.6 RAN-assisted WLAN interworking

The purpose of this procedure is to facilitate RAN-assisted WLAN interworking.

5.6.1 RAN assistance parameter handling in RRC_IDLE

RAN assistance parameters may be provided to the UE in SystemInformationBlockType17 or in the RRCConnectionReconfiguration message. RAN assistance parameters are used only if the UE is camped normally.

5.6.2 Access network selection and traffic steering rules

The rules in this sub-clause are only applicable for WLANs for which identifiers has been signaled to the UE by E-UTRAN and the UE is capable of RAN-assisted WLAN interworking based on access network selection and traffic steering rules. Coexistence with ANDSF based WLAN selection and traffic steering methods on the UE is based on mechanism described in TS 23.402 [25]. The rules refer to the following quantities:

<table>
<thead>
<tr>
<th>ChannelUtilizationWLAN</th>
<th>WLAN channel utilization as defined in subclause 8.4.2.30 in [26].</th>
</tr>
</thead>
<tbody>
<tr>
<td>BackhaulRateDlWLAN</td>
<td>WLAN DLBandwidth as defined in subclause 9.1.2 in [27].</td>
</tr>
<tr>
<td>BackhaulRateUlWLAN</td>
<td>WLAN ULBandwidth as defined in subclause 9.1.2 in [27].</td>
</tr>
<tr>
<td>WLANRSSI</td>
<td>WLAN RSSI as defined in [7].</td>
</tr>
<tr>
<td>RSRPmeas</td>
<td>Qrxlevmeas in RRC_IDLE, and PCell RSRP in RRC_CONNECTED as defined in TS 36.331 [3].</td>
</tr>
<tr>
<td>RSRQmeas</td>
<td>Qqualmeas in RRC_IDLE, and PCell RSRQ in RRC_CONNECTED as defined in TS 36.331 [3].</td>
</tr>
</tbody>
</table>

The upper layers in the UE shall be notified (see TS 24.302 [28]) when and for which WLAN(s), that matches all the provided identifiers (in subclause 5.6.3) for a specific entry in the list, the following conditions 1 and 2 for steering traffic from E-UTRAN to WLAN are satisfied for a time interval TsteeringWLAN:

1. In the E-UTRAN serving cell:

 \[
 \text{RSRPmeas} \leq \text{Thresh}_{\text{ServingOffloadWLAN, LowP}}, \quad \text{or} \\
 \text{RSRQmeas} \leq \text{Thresh}_{\text{ServingOffloadWLAN, LowQ}},
 \]
2. In the target WLAN:
 ChannelUtilizationWLAN < ThreshChUtilWLAN, Low; and
 BackhaulRateDIWLAN > ThreshBackhRateDIWLAN, High; and
 BackhaulRateUIWLAN > ThreshBackhRateULWLAN, High; and
 WLANRSSI > ThreshWLANRSSI, High;

The UE shall not consider the metrics for which a threshold has not been provided. The UE shall evaluate the E-
UTRAN conditions on PCell only. If not all metrics related to the provided thresholds can be acquired for a WLAN
BSS, the UE shall exclude that WLAN BSS from the evaluation of the above rule.

The upper layers in the UE shall be notified (see TS 24.302 [28]) when the following conditions 3 or 4 for steering
traffic from WLAN to E-UTRAN are satisfied for a time interval TsteeringWLAN:

3. In the source WLAN:
 ChannelUtilizationWLAN > ThreshChUtilWLAN, High; or
 BackhaulRateDIWLAN < ThreshBackhRateDIWLAN, Low; or
 BackhaulRateUIWLAN < ThreshBackhRateULWLAN, Low; or
 WLANRSSI < ThreshWLANRSSI, Low;

4. In the target E-UTRAN cell:
 RSRPmeas > ThreshServingOffloadWLAN, HighP; and
 RSRQmeas > ThreshServingOffloadWLAN, HighQ;

The UE shall not consider the metrics for which a threshold has not been provided. The UE shall evaluate the E-
UTRAN conditions on PCell only.

5.6.3 RAN assistance parameters definition

The following RAN assistance parameters for RAN-assisted WLAN interworking may be provided:

ThreshServingOffloadWLAN, LowP
This specifies the RSRP threshold (in dBm) used by the UE for traffic steering to from E-UTRAN to WLAN.

ThreshServingOffloadWLAN, HighP
This specifies the RSRP threshold (in dBm) used by the UE for traffic steering from WLAN to E-UTRAN.

ThreshServingOffloadWLAN, LowQ
This specifies the RSRQ threshold (in dB) used by the UE for traffic steering from E-UTRAN to WLAN.

ThreshServingOffloadWLAN, HighQ
This specifies the RSRQ threshold (in dB) used by the UE for traffic steering from WLAN to E-UTRAN.

ThreshChUtilWLAN, Low
This specifies the WLAN channel utilization (BSS load) threshold used by the UE for traffic steering from E-UTRAN
to WLAN.

ThreshChUtilWLAN, High
This specifies the WLAN channel utilization (BSS load) threshold used by the UE for traffic steering from WLAN to E-UTRAN.

\textbf{Thresh}_{\text{BackhRateDL, WLAN, Low}}

This specifies the backhaul available downlink bandwidth threshold used by the UE for traffic steering from WLAN to E-UTRAN.

\textbf{Thresh}_{\text{BackhRateDL, WLAN, High}}

This specifies the backhaul available downlink bandwidth threshold used by the UE for traffic steering from E-UTRAN to WLAN.

\textbf{Thresh}_{\text{BackhRateUL, WLAN, Low}}

This specifies the backhaul available uplink bandwidth threshold used by the UE for traffic steering from WLAN to E-UTRAN.

\textbf{Thresh}_{\text{BackhRateUL, WLAN, High}}

This specifies the backhaul available uplink bandwidth threshold used by the UE for traffic steering from E-UTRAN to WLAN.

\textbf{Thresh}_{\text{WLANRSSI, Low}}

This specifies the WLAN RSSI threshold used by the UE for traffic steering from WLAN to E-UTRAN.

\textbf{Thresh}_{\text{WLANRSSI, High}}

This specifies the Beacon RSSI threshold used by the UE for traffic steering from E-UTRAN to WLAN.

\textbf{Tsteering}_{\text{WLAN}}

This specifies the timer value \(T_{\text{steering, WLAN}} \) during which the rules should be fulfilled before starting traffic steering between E-UTRAN and WLAN.

\textbf{WLAN identifiers}

Only the SSIDs, BSSIDs and HESSIDs which are provided in this parameter shall be considered for traffic steering between E-UTRAN and WLAN based on the rules in this subclause.

6 Reception of broadcast information

6.1 Reception of system information

The NAS is informed if the cell selection and reselection results in changes in the received NAS system information. UE shall monitor PCH as described in chapter 7.1 to receive System Information change notifications in RRC_IDLE. Changes in the system information are indicated by the network using a Paging message. When the Paging message indicates system information changes then UE shall re-acquire all system information as specified in [3].

6.2 Reception of MBMS

A UE interested to receive MBMS services provided using MBSFN transmission shall apply the MCCH information acquisition procedure as specified in [3] to receive the MCCH information upon entering the corresponding MBSFN area and upon receiving a notification that the MCCH information has changed. A UE interested to receive MBMS services provided using MBSFN transmission identifies if a service that it is interested to receive is started or ongoing by receiving the MCCH information, and then receives a MTCH corresponding to the identified service.

A UE interested to receive MBMS services provided using SC-PTM transmission shall apply the SC-MCCH information acquisition procedure as specified in [3] to receive the SC-MCCH information upon entering a new cell and upon receiving a notification that the SC-MCCH information has changed. A UE interested to receive MBMS services...
provided using SC-PTM transmission identifies if a service that it is interested to receive is started or ongoing by receiving the SC-MCCH information, and then receives a SC-MTCH configured using the SC-MRB establishment procedure in [3] and using the DL-SCH reception and SC-PTM DRX procedure as specified in [30].

7 Paging

7.1 Discontinuous Reception for paging

The UE may use Discontinuous Reception (DRX) in idle mode in order to reduce power consumption. One Paging Occasion (PO) is a subframe where there may be P-RNTI transmitted on PDCCH or MPDCCH addressing the paging message. In P-RNTI transmitted on MPDCCH case, PO refers to the starting subframe of MPDCCH repetitions.

One Paging Frame (PF) is one Radio Frame, which may contain one or multiple Paging Occasion(s). When DRX is used the UE needs only to monitor one PO per DRX cycle.

One Paging Narrowband (PNB) is one narrowband, on which the UE performs the paging message reception.

PF, PO, and PNB are determined by following formulae using the DRX parameters provided in System Information:

PF is given by following equation:

\[\text{SFN mod } T = (T \text{ div } N)^* (\text{UE_ID mod } N) \]

Index \(i_s\) pointing to PO from subframe pattern defined in 7.2 will be derived from following calculation:

\[i_s = \text{floor}(\text{UE_ID}/N) \mod N \]

If P-RNTI is monitored on MPDCCH, the PNB is determined by the following equation:

\[\text{PNB} = \text{floor}(\text{UE_ID}/(N*Ns)) \mod Nn \]

System Information DRX parameters stored in the UE shall be updated locally in the UE whenever the DRX parameter values are changed in SI. If the UE has no IMSI, for instance when making an emergency call without USIM, the UE shall use as default identity \(\text{UE_ID} = 0\) in the PF, \(i_s\), and PNB formulas above.

The following Parameters are used for the calculation of the PF, \(i_s\), and PNB:

- \(T\): DRX cycle of the UE. If a UE specific extended DRX value of 512 radio frames is configured by upper layers according to 7.3, \(T = 512\). Otherwise, \(T\) is determined by the shortest of the UE specific DRX value, if allocated by upper layers, and a default DRX value broadcast in system information. If UE specific DRX is not configured by upper layers, the default value is applied.

- \(nB\): 4T, 2T, T, T/2, T/4, T/8, T/16, T/32.

- \(N\): \(\text{min}(T, nB)\)

- \(Ns\): \(\text{max}(1, nB/T)\)

- \(Nn\) : number of paging narrowbands provided in system information

- \(\text{UE_ID}\):

 - IMSI mod 1024, if P-RNTI is monitored on PDCCH.

 - IMSI mod 16384, if P-RNTI is monitored on MPDCCH.

IMSI is given as sequence of digits of type Integer (0..9), IMSI shall in the formulae above be interpreted as a decimal integer number, where the first digit given in the sequence represents the highest order digit.

For example:

\[\text{IMSI} = 12 \text{ (digit1=1, digit2=2)} \]
In the calculations, this shall be interpreted as the decimal integer "12", not "1x16+2 = 18".

7.2 Subframe Patterns

FDD:
- If P-RNTI is transmitted on PDCCH, or if P-RNTI is transmitted on MPDCCH with system bandwidth > 3MHz:

<table>
<thead>
<tr>
<th>Ns</th>
<th>PO when i_s=0</th>
<th>PO when i_s=1</th>
<th>PO when i_s=2</th>
<th>PO when i_s=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

- If P-RNTI is transmitted on MPDCCH with system bandwidth of 1.4MHz and 3MHz:

<table>
<thead>
<tr>
<th>Ns</th>
<th>PO when i_s=0</th>
<th>PO when i_s=1</th>
<th>PO when i_s=2</th>
<th>PO when i_s=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

TDD (all UL/DL configurations):
- If P-RNTI is transmitted on PDCCH, or if P-RNTI is transmitted on MPDCCH with system bandwidth > 3MHz:

<table>
<thead>
<tr>
<th>Ns</th>
<th>PO when i_s=0</th>
<th>PO when i_s=1</th>
<th>PO when i_s=2</th>
<th>PO when i_s=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

- If P-RNTI is transmitted on MPDCCH with system bandwidth of 1.4MHz and 3MHz:

<table>
<thead>
<tr>
<th>Ns</th>
<th>PO when i_s=0</th>
<th>PO when i_s=1</th>
<th>PO when i_s=2</th>
<th>PO when i_s=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

7.3 Paging in extended DRX

The UE may be configured by upper layers with an extended DRX (eDRX) cycle T_{eDRX}. The UE may operate in extended DRX only if the cell indicates support for eDRX in System Information.

If the UE is configured with a T_{eDRX} cycle of 512 radio frames, it monitors POs as defined in 7.1 with parameter $T = 512$. Otherwise, a UE configured with eDRX monitors POs as defined in 7.1 (i.e., based on the upper layer configured DRX value and a default DRX value determined in 7.1), during a periodic Paging Time Window (PTW) configured for the UE or until a paging message including the UE’s NAS identity is received for the UE during the PTW, whichever is earlier. The PTW is UE-specific and is determined by a Paging Hyperframe (PH), a starting position within the PH (PTW_start) and an ending position (PTW_end). PH, PTW_start and PTW_end are given by the following formulae:

The PH is the H-SFN satisfying the following equation:

$$H\text{-SFN} \mod T_{eDRX,H} = (\text{UE_ID} \mod T_{eDRX,H}), \text{where}$$

- UE_ID: IMSI mod 1024
- $T_{eDRX,H}$: eDRX cycle of the UE in Hyper-frames, ($T_{eDRX,H} = 1, 2, \ldots, 256$ Hyper-frames) and configured by upper layers

PTW_start denotes the first radio frame of the PH that is part the PTW and has SFN satisfying the following equation:
SFN = 256* \text{i}_{\text{DRX}}, \text{ where} \newline \quad - \text{i}_{\text{DRX}} = \text{floor}(\text{UE}_{\text{ID}}/T_{\text{eDRX},\text{H}}) \mod 4 \newline

PTW_end is the last radio frame of the PTW and has SFN satisfying the following equation:
SFN = (\text{PTW_start} + \text{L} \times 100 - 1) \mod 1024, \text{ where} \newline \quad - \text{L} = \text{Paging Time Window length (in seconds) configured by upper layers} \newline

8 \quad \text{Logged measurements} \newline

The UE may be configured to perform logging of measurement results in RRC_IDLE mode with the \text{LoggedMeasurementsConfiguration} message as specified in TS 36.331 [3]. This configuration is valid while the logging duration timer is running. \newline

If the configuration of logged measurements is valid, the UE shall perform logging of measurement results if all of the following conditions are met:
- The UE is in \text{camped normally} state in RRC_IDLE mode; \newline
- The RPLMN of the UE is the same as the RPLMN at the point of time of \text{LoggedMeasurementConfiguration} message reception, or is present in the \text{plmn-IdentityList} (see TS 36.331 [3]) if configured; \newline
- The UE is camped on a cell belonging to the \text{areaConfiguration} (see TS 36.331 [3]), if configured; \newline
- The UE is camped on the RAT where the logged measurement configuration was received; \newline
- The UE receives MBMS service from MBSFN area(s) belonging to \text{targetMBSFN-AreaList}, if included in the logged measurement configuration; \newline
- The IDC capable UE does not detect the presence of in-device coexistence interference. \newline

If the configuration of logged MBSFN measurements is valid, the UE shall perform logging of measurement results in RRC_CONNECTED in addition to RRC_IDLE, as described in TS 36.331 [3]. \newline

Otherwise, the logging of measurement results shall be suspended. \newline
- \text{NOTE:} Even if logging of measurement results is suspended, the logging duration timer and time stamp will continue, and the logged measurement configuration and corresponding log are kept. \newline

9 \quad \text{Accessibility measurements} \newline

The UE logs failure information when the RRC connection establishment procedure fails as specified in TS 36.331 [3]. \newline

10 \quad \text{Mobility History Information} \newline

The UE stores the history of serving cells as specified in TS 36.331[3].
11 Sidelink operation

11.1 Sidelink communication

The UE may transmit or receive sidelink communication if it fulfills the condition(s) defined in TS 36.331 [3, 5.10.1a]. When UE is in-coverage for sidelink operation as defined in section 11.4, the UE may perform the sidelink communication according to SystemInformationBlockType18, and when out-of-coverage for sidelink, the UE may perform the sidelink communication according to SL-Preconfiguration, as specified in [3].

11.2 Sidelink discovery

The UE may transmit or receive sidelink discovery if it fulfills the condition(s) defined in TS 36.331 [3, 5.10.1a]. When UE is in-coverage for sidelink as defined in section 11.4, the UE may perform the sidelink discovery according to SystemInformationBlockType19, and when out-of-coverage for sidelink as defined in section 11.4, the UE may perform the sidelink discovery according to SL-Preconfiguration, as specified in [3].

11.3 Sidelink synchronisation

The UE may perform sidelink synchronisation according to SystemInformationBlockType18 for sidelink communication or SystemInformationBlockType19 for sidelink discovery, as specified in [3].

11.4 Cell selection and reselection for sidelink

The requirements defined in this section for sidelink operation apply for UEs in RRC_IDLE and in RRC_CONNECTED.

When UE is interested to perform sidelink communication or sidelink discovery announcement on non-serving frequency, it shall perform measurements on that frequency for cell selection and intra-frequency reselection purpose in accordance with [10].

If the UE detects at least one cell on the frequency which UE is configured to perform sidelink operation on fulfilling the S criterion in accordance with section 11.4.1, it shall consider itself to be in-coverage for sidelink operation on that frequency. If the UE cannot detect any cell on that frequency meeting the S criterion, it shall consider itself to be out-of-coverage for sidelink operation on that frequency.

If the UE has selected a cell on a non-serving frequency for sidelink communication or sidelink discovery announcement, it shall perform additional intra-frequency reselection process to select a better cell for sidelink operation on that frequency in accordance with section 11.4.1.

NOTE1: The UE may consider the carrier pre-configured for sidelink communication to have the highest cell reselection priority in accordance with section 5.2.4.1.

NOTE2: If the frequency the UE is configured to perform sidelink communication on is a serving frequency, the UE uses the serving cell on that frequency for the sidelink operation.

11.4.1 Parameters used for cell selection and reselection triggered for sidelink

When evaluating S criterion or R criterion (ranking), as defined in section 5.2.3.2 and section 5.2.4.6 respectively, for cell selection/reselection triggered for sidelink communication or sidelink discovery announcement on a non-serving frequency, UE shall perform the evaluation as follows:

- if the UE intends to perform sidelink discovery announcement and it is configured with discCellSelectionInfo applicable for that frequency as specified in [3], the UE shall use cell selection/reselection parameters included in the discCellSelectionInfo for the evaluation, and for a parameter used in the evaluation but not included in the discCellSelectionInfo applicable for that frequency, UE shall apply zero value.
- else, the UE shall use cell selection/reselection parameters broadcast by the concerned cell (i.e. selected cell for the sidelink operation) for the evaluation.
Annex A (informative):
Void
Annex B (informative):
Change history

<table>
<thead>
<tr>
<th>Date</th>
<th>TSG #</th>
<th>TSG Doc.</th>
<th>CR</th>
<th>Rev</th>
<th>Subject/Comment</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-06</td>
<td>RP-37</td>
<td>RP-070687</td>
<td></td>
<td></td>
<td>Presented for information at TSG RAN-37</td>
<td>0.0.0</td>
<td>0.1.0</td>
</tr>
<tr>
<td>2007-09</td>
<td>RP-38</td>
<td>RP-070915</td>
<td></td>
<td></td>
<td>Presented for approval at TSG RAN-38</td>
<td>1.2.0</td>
<td>2.0.0</td>
</tr>
<tr>
<td>2008-03</td>
<td>RP-39</td>
<td>0001</td>
<td>1</td>
<td></td>
<td>CR to 36.304 on Miscellaneous corrections</td>
<td>8.0.0</td>
<td>8.1.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-40</td>
<td>RP-080408</td>
<td>0002</td>
<td>1</td>
<td>CR to specific Reselection parameters for CDMA HRPD and 1xRTT</td>
<td>8.1.0</td>
<td>8.2.0</td>
</tr>
<tr>
<td></td>
<td>RP-40</td>
<td>RP-080408</td>
<td>0003</td>
<td>1</td>
<td>Paging Subframe Patterns for FDD and TDD and paging parameters clarification</td>
<td>8.1.0</td>
<td>8.2.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-40</td>
<td>RP-080408</td>
<td>0004</td>
<td>1</td>
<td>Editorial corrections to 36.304</td>
<td>8.1.0</td>
<td>8.2.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-40</td>
<td>RP-080408</td>
<td>0005</td>
<td></td>
<td>PLM selection ping-pong control</td>
<td>8.1.0</td>
<td>8.2.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-41</td>
<td>0000</td>
<td>1</td>
<td>CR</td>
<td>CR on Considerations on various open items in 36.304</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-41</td>
<td>RP-080689</td>
<td>0007</td>
<td>1</td>
<td>Correction to priority based reselection handling</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-41</td>
<td>RP-080689</td>
<td>0008</td>
<td>1</td>
<td>Clarification of the medium mobility state criteria</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-41</td>
<td>RP-080689</td>
<td>0009</td>
<td></td>
<td>Support for Manual CSG ID Selection</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-41</td>
<td>RP-080689</td>
<td>010</td>
<td></td>
<td>USIM less paging occasion calculation</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>2008-05</td>
<td>RP-41</td>
<td>RP-080689</td>
<td>013</td>
<td></td>
<td>Definition of Offset in cell reselection criteria</td>
<td>8.2.0</td>
<td>8.3.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>0020</td>
<td>1</td>
<td></td>
<td>CR to 36.304 on Update of Figure 4.1-1 Overall Idle Mode</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0021</td>
<td></td>
<td>Proposed CR to 36.304 [Rel-8] on Definition of</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0022</td>
<td></td>
<td>Proposed CR to 36.304 [Rel-8] on Intra-frequency reselection allowed/not-allowed concept</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0023</td>
<td></td>
<td>Proposed CR to 36.304 [Rel-8] on Introduction of Rcompensation</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0024</td>
<td></td>
<td>Proposed CR to 36.304 [Rel-8] on Support of UE autonomous search for E-UTRAN CSG cells when camped on other RAT than E-UTRAN</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0025</td>
<td></td>
<td>Correction to range of N in TS 36.304</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0026</td>
<td>2</td>
<td>Miscellaneous corrections to 36.304</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0027</td>
<td>1</td>
<td>Proposed CR to 36.304 [Rel-8] on Support of registration procedures as outcome of a manual CSG ID Selection</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0029</td>
<td>2</td>
<td>Implicit priority for CSG cells</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0032</td>
<td></td>
<td>Correction of the reselection formula for offset used for PLMN selection</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0036</td>
<td></td>
<td>Clarification of definition of SnonServingCell,x for cdma2000 RANs in TS 36.304</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0038</td>
<td>1</td>
<td>Support of emergency calls in LTE Rel-8</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0042</td>
<td></td>
<td>CR to 36.304 on Removal of cellReservationExtension</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2008-12</td>
<td>RP-42</td>
<td>RP-081017</td>
<td>0044</td>
<td>1</td>
<td>Idle mode agreements related to 36.304</td>
<td>8.3.0</td>
<td>8.4.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0045</td>
<td></td>
<td>CR to 36.304 on correction of definition of Pmax</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0046</td>
<td>1</td>
<td>Emergency call in camped on any cell state in LTE Rel8</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0047</td>
<td></td>
<td>Handling of Priority of Camping Frequency</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0048</td>
<td>2</td>
<td>Correction to implementation of CR0009 to 36.304</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0049</td>
<td></td>
<td>UE Behaviour on Registration Failure to CSG</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0050</td>
<td>2</td>
<td>Corrections to Inter-RAT Cell Reselection Criteria</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0051</td>
<td>1</td>
<td>CR to 36.304 on Update of Figure 4.1-1 Overall Idle Mode Process</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0053</td>
<td>2</td>
<td>Correction to priority based reselection handling</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0057</td>
<td>3</td>
<td>CR on UE behaviour in absence of reselection priorities in system information</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0058</td>
<td>3</td>
<td>Cell reselection for CSG</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0060</td>
<td></td>
<td>Corrections to Inter-RAT Cell Reselection Criteria</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0062</td>
<td></td>
<td>Manual selection</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090145</td>
<td>0063</td>
<td>1</td>
<td>Reception of ETWS notification without verifying digital signature</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0066</td>
<td></td>
<td>Draft CR to 36.304 on Inheriting of dedicated priorities at inter-RAT reselection</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
<tr>
<td>2009-03</td>
<td>RP-43</td>
<td>RP-090125</td>
<td>0067</td>
<td></td>
<td>Proposed CR to 36.304 Clarification on applying DRX value</td>
<td>8.4.0</td>
<td>8.5.0</td>
</tr>
</tbody>
</table>
RP-43 RP-090125 0070 - Draft CR to 36.304 on Correction to UE behaviour if dedicated cell reselection priority is assigned but frequency is not configured by system information 8.4.0 8.5.0
RP-43 RP-090125 0071 - Clarification to the best non-allowed CSG cell 8.4.0 8.5.0
2009-06 RP-44 RP-090510 0072 2 CR on correction of sign in SnoniServingCell,x for CDMA2000 RATs 8.5.0 8.6.0
RP-44 RP-090510 0073 - Correction to UE behaviour while 300s frequency barring timer is running 8.5.0 8.6.0
RP-44 RP-090510 0074 1 Correction to any cell selection procedure 8.5.0 8.6.0
RP-44 RP-090510 0075 1 Correction to reselection in case IFRI is not allowed 8.5.0 8.6.0
RP-44 RP-090510 0076 1 Clarification when no candidate cells on serving frequency 8.5.0 8.6.0
RP-44 RP-090510 0077 1 Clarification of the Priority Handling in CSG Cell 8.5.0 8.6.0
RP-44 RP-090510 0078 - Correction to cell selection when leaving RRC connected mode 8.5.0 8.6.0
RP-44 RP-090510 0080 - CR for Removing FFS for T3230 8.5.0 8.6.0
RP-44 RP-090510 0082 - Correction on the Lower Priority Cell Reselection Rule 8.5.0 8.6.0
RP-44 RP-090510 0084 - Clarification on disabling E-UTRA capabilities with a USIM 8.5.0 8.6.0
2009-09 RP-45 RP-090906 0085 - Clarification on cell status and cell reservations 8.6.0 8.7.0
RP-45 RP-090906 0089 - Correction on Cell reserved for operators use 8.6.0 8.7.0
RP-45 RP-090906 0094 - clarifications for manual CSG ID selection 8.6.0 8.7.0
2009-09 RP-45 RP-090934 0086 1 Some clarifications on TS 36.304 8.7.0 9.0.0
RP-45 RP-090926 0091 - 1 IMS emergency call when UE camps on acceptable cell 8.7.0 9.0.0
RP-45 RP-090933 0096 - 1 Reception of CMAS notifications in limited service state 8.7.0 9.0.0
2009-12 RP-46 RP-091314 0098 - Clarification on Parameters for Cell Selection 9.0.0 9.1.0
RP-46 RP-091346 0099 - Clarifications on autonomous search function for CSG 9.0.0 9.1.0
RP-46 RP-091346 0100 1 Correction of Treselection inconsistency regarding frequency groups 9.0.0 9.1.0
RP-46 RP-091346 0102 - CR to 36.304 - Handling of barring in case of priority based reselection 9.0.0 9.1.0
RP-46 RP-091346 0103 - Functions supported for the UE "limited service state" 9.0.0 9.1.0
RP-46 RP-091334 0104 3 UE's behaviour when camping on cell supporting emergency call 9.0.0 9.1.0
RP-46 RP-091343 0106 2 Stage3 CR for LTE hybrid cell Idle Mode Mobility 9.0.0 9.1.0
RP-46 RP-091314 0109 - Correction related to Location Registration in manual CSG ID selection procedure 9.0.0 9.1.0
RP-46 RP-091343 0114 - Access Stratum support for manual CSG selection across PLMN (CR 36.304 Rel-9) 9.0.0 9.1.0
RP-46 RP-091343 0117 - Renaming Allowed CSG List (36.304 Rel-9) 9.0.0 9.1.0
RP-46 RP-091341 0119 - Proposed CR to 36.304 on Introduction of MBMS 9.0.0 9.1.0
2010-03 RP-47 RP-100296 0122 - Clarification on RRC connection re-establishment for emergency calls 9.1.0 9.2.0
RP-47 RP-100308 0123 1 Correction on reselection from non-CSG cell to CSG inter-RAT cell 9.1.0 9.2.0
RP-47 RP-100308 0124 1 Miscellaneous correction on 36.304 9.1.0 9.2.0
RP-47 RP-100305 0125 - Proposed CR to 36.304 on Addition of missing abbreviations related with MBMS 9.1.0 9.2.0
RP-47 RP-100308 0129 - Cell reselection enhancements CR for 36.304 9.1.0 9.2.0
2010-06 RP-48 RP-100356 0133 - Correction to CSG autonomous search function 9.2.0 9.3.0
2010-09 RP-49 RP-100865 0134 - Clarification on CSG autonomous search 9.3.0 9.4.0
RP-49 RP-100851 0136 1 Clarifications Regarding Redirection from LTE 9.3.0 9.4.0
RP-49 RP-100845 0138 - Correct the PEXAM_H to PEXAM 9.3.0 9.4.0
RP-49 RP-100851 0139 1 Clarification on the use of RSRQ for cell reselection towards GERAN or CDMA 9.3.0 9.4.0
2010-12 RP-50 RP-101210 0142 - Cell selection in case of redirection based CSFB procedure 9.4.0 9.5.0
RP-50 RP-101221 0140 2 36.304 CR on MDT 9.5.0 10.0.0
2011-03 RP-51 RP-110271 0151 - 36.304 correction on manual CSG selection 10.0.0 10.1.0
2011-06 RP-52 RP-110835 0154 - CR to align NAS and AS for handling of CSG cells 10.1.0 10.2.0
RP-52 RP-110843 0155 1 Clean up of MDT section 10.1.0 10.2.0
2011-09 RP-53 RP-112281 0160 - Correction of inter-frequency or inter-RAT cell reselection criteria for UTRA TDD case 10.2.0 10.3.0
2011-12 RP-54 RP-111710 0167 1 Clarification of inter-RAT cell reselection enhancements 10.3.0 10.4.0
2012-03 RP-55 RP-120325 0175 - MBMS Multibands Cell Selection and Reselection 10.4.0 10.5.0
2012-06 RP-56 RP-120813 0183 1 Korean Public Alert System (KPAS) in relation to CMAS 10.5.0 10.6.0
RP-56 RP-120807 0187 1 Avoiding unexpected UE prioritization for MBMS where MBMS is not deployed 10.5.0 10.6.0
RP-56 RP-120813 0188 1 EU-Alert in relation to CMAS 10.5.0 11.0.0
2012-09 RP-57 RP-121370 0192 1 Introduction of MDT multi-PLMN 11.0.0 11.1.0
RP-57 RP-121375 0195 - Introducing MBMS enhancements 11.0.0 11.1.0
2012-12 RP-58 RP-121940 0196 - Clarification of MBMS Prioritisation 11.1.0 11.2.0
RP-58 RP-121957 0197 - Correction to absolute priority cell reselection 11.1.0 11.2.0
RP-58 RP-121946 0198 - Introduction of MDT accessibility measurements 11.1.0 11.2.0
RP-58 RP-121941 0199 - CR on RAN overload handling using RRC Reject 11.1.0 11.2.0
2013-03 RP-59 RP-130241 0209 - Clarification on MBMS Service Continuity 11.2.0 11.3.0
<table>
<thead>
<tr>
<th>RP-59</th>
<th>RP-130248</th>
<th>0210</th>
<th>Clarification of De-prioritization in idle mode</th>
<th>11.2.0</th>
<th>11.3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-59</td>
<td>RP-130247</td>
<td>0213</td>
<td>Corrections on mobility to CSG and hybrid cells in idle mode</td>
<td>11.2.0</td>
<td>11.3.0</td>
</tr>
<tr>
<td>RP-59</td>
<td>RP-130248</td>
<td>0214</td>
<td>Clarification on handling of deprioritization information upon PLMN selection</td>
<td>11.2.0</td>
<td>11.3.0</td>
</tr>
<tr>
<td>2013-06</td>
<td>RP-60</td>
<td>RP-130808</td>
<td>0221</td>
<td>Correction of MBMS prioritisation</td>
<td>11.3.0</td>
</tr>
<tr>
<td>2013-09</td>
<td>RP-60</td>
<td>RP-130809</td>
<td>0222</td>
<td>Updating 3GPP2 specification references</td>
<td>11.3.0</td>
</tr>
<tr>
<td>2013-12</td>
<td>RP-61</td>
<td>RP-131311</td>
<td>0223</td>
<td>Cell reselection criteria with threshServingLowQ provided</td>
<td>11.4.0</td>
</tr>
<tr>
<td>2014-03</td>
<td>RP-62</td>
<td>RP-131987</td>
<td>0227</td>
<td>Correction of MBMS prioritisation for DL only carrier</td>
<td>11.5.0</td>
</tr>
<tr>
<td>2014-06</td>
<td>RP-63</td>
<td>RP-140359</td>
<td>0233</td>
<td>Introduction of UE mobility history reporting (option 2)</td>
<td>11.6.0</td>
</tr>
<tr>
<td>2014-09</td>
<td>RP-64</td>
<td>RP-140892</td>
<td>0238</td>
<td>Correlation of MBMS prioritisation</td>
<td>12.0.0</td>
</tr>
<tr>
<td>2014-12</td>
<td>RP-65</td>
<td>RP-141507</td>
<td>0244</td>
<td>Introduction of MBSFN MDT</td>
<td>12.1.0</td>
</tr>
<tr>
<td>2015-03</td>
<td>RP-66</td>
<td>RP-150373</td>
<td>0253</td>
<td>UE behavior when the cell temporarily becomes unsuitable.</td>
<td>12.2.0</td>
</tr>
<tr>
<td>2015-06</td>
<td>RP-67</td>
<td>RP-150373</td>
<td>0260</td>
<td>UE capability signaling for WLAN/3GPP radio interworking</td>
<td>12.3.0</td>
</tr>
<tr>
<td>2015-09</td>
<td>RP-68</td>
<td>RP-150373</td>
<td>0265</td>
<td>Cleanup on RAN-assisted WLAN interworking</td>
<td>12.3.0</td>
</tr>
<tr>
<td>2015-12</td>
<td>RP-69</td>
<td>RP-150373</td>
<td>0272</td>
<td>Correction to SI acquisition failure</td>
<td>12.4.0</td>
</tr>
<tr>
<td>2016-03</td>
<td>RP-70</td>
<td>RP-160456</td>
<td>0289</td>
<td>Correction on PO monitoring during paing window in eDRX</td>
<td>13.0.0</td>
</tr>
<tr>
<td>2016-03</td>
<td>RP-71</td>
<td>RP-160470</td>
<td>0290</td>
<td>Clarification of idle mode load distribution</td>
<td>13.0.0</td>
</tr>
<tr>
<td>2016-03</td>
<td>RP-71</td>
<td>RP-160456</td>
<td>0291</td>
<td>M Miscellaneous corrections</td>
<td>13.0.0</td>
</tr>
<tr>
<td>2016-03</td>
<td>RP-71</td>
<td>RP-160456</td>
<td>0292</td>
<td>PTW terminology alignment</td>
<td>13.0.0</td>
</tr>
<tr>
<td>2016-03</td>
<td>RP-71</td>
<td>RP-160470</td>
<td>0295</td>
<td>Correction to E-UTRAN Inter-frequency Redistribution procedure_all2</td>
<td>13.0.0</td>
</tr>
<tr>
<td>2016-03</td>
<td>RP-71</td>
<td>RP-160453</td>
<td>0299</td>
<td>The introduction of the Idle procedure for eMTC UE</td>
<td>13.0.0</td>
</tr>
<tr>
<td>2016-03</td>
<td>RP-71</td>
<td>RP-160457</td>
<td>0300</td>
<td>Introduction of WLAN RSSI measurements</td>
<td>13.0.0</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V13.0.0</td>
<td>February 2016</td>
<td>Publication</td>
</tr>
<tr>
<td>V13.1.0</td>
<td>April 2016</td>
<td>Publication</td>
</tr>
</tbody>
</table>