ETSI TS 136 302 V18.0.0 (2024-05)

LTE;

Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer (3GPP TS 36.302 version 18.0.0 Release 18)

Reference RTS/TSGR-0236302vi00 Keywords LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from: https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024. All rights reserved.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**TM logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under https://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intell	lectual Property Rights	2
Lega	l Notice	2
Moda	al verbs terminology	2
	word	
1	Scope	
2	References	
3	Definitions and abbreviations	
3.1	Definitions and aboreviations.	
3.2	Abbreviations	
4	Void	8
4.1	Void	
4.2	Void	8
5	Services and functions of the physical layer	8
5.1	General	
5.2	Overview of L1 functions	
5.3	Void	
6	Model of physical layer of the UE	
6.1	Uplink model	
6.1.1 6.1.2	Uplink Shared Channel Random-access Channel	
6.2	Downlink model	
6.2.1	Downlink-Shared Channel	
6.2.2	Broadcast Channel	
6.2.3	Paging Channel	
6.2.4 6.3	Multicast Channel Sidelink model	
6.3.1	Sidelink Broadcast Channel	
6.3.2	Sidelink Discovery Channel	
6.3.3	Sidelink Shared Channel	
7	Void	18
8	Parallel transmission of simultaneous Physical Channels and SRS	1.5
8.1	Uplink	
8.2	Downlink	
8.3	Sidelink	29
9	Measurements provided by the physical layer	31
9.1	Void	31
9.2	UE Measurements	
9.3	E-UTRAN Measurements	31
Anne	ex A (informative): Change history	32
		_

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document is a technical specification of the services provided by the physical layer of E-UTRA to upper layers.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

[1]	Void
[2]	Void
[3]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[4]	Void
[5]	Void
[6]	Void
[7]	Void
[8]	3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation".
[9]	Void
[10]	Void
[11]	3GPP TS 36.214: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements".
[12]	3GPP TS 36.321: "Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification".
[13]	3GPP TS 36.306: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio access capabilities".
[14]	3GPP TS 23.303: "Technical Specification Group Services and System Aspects; Proximity-based services (ProSe)".
[15]	Void
[16]	3GPP TS 23.285: "Technical Specification Group Services and System Aspects; Architecture enhancements for V2X services".
[17]	3GPP TS 36.300: "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access (E-UTRAN); Overall description; Stage 2".

3 Definitions and abbreviations

3.1 **Definitions**

For the purposes of the present document, the terms and definitions given in TR 21.905 [3] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [3].

Carrier frequency: center frequency of the cell.

Frequency layer: set of cells with the same carrier frequency.

NB-IoT: NB-IoT allows access to network services via E-UTRA with a channel bandwidth limited to 200 kHz.

Short Processing Time: For 1 ms TTI length, the operation with short processing time in UL data transmission and DL data reception.

Short TTI: TTI length based on a slot or a subslot.

Sidelink: UE to UE interface for sidelink communication, V2X sidelink communication and sidelink discovery. The sidelink corresponds to the PC5 interface as defined in TS 23.303 [14].

Sidelink communication: AS functionality enabling ProSe Direct Communication as defined in TS 23.303 [14], between two or more nearby UEs, using E-UTRA technology but not traversing any network node. In this version, the terminology "sidelink communication" without "V2X" prefix only concerns PS unless explicitly stated otherwise.

Sidelink discovery: AS functionality enabling ProSe Direct Discovery as defined in TS 23.303 [14], using E-UTRA technology but not traversing any network node.

V2X Sidelink communication: AS functionality enabling V2X Communication as defined in TS 23.285 [16], between nearby UEs, using E-UTRA technology but not traversing any network node.

Timing Advance Group: See the definition in TS 36.321 [12].

Transmission using PUR: Allows one uplink data transmission using preconfigured uplink resource from RRC_IDLE mode as specified in TS 36.300 [17]. Transmission using PUR refers to both CP transmission using PUR and UP transmission using PUR.

Abbreviations 3.2

For the purposes of the present document, the abbreviations given in TR 21.905 [3] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [3].

For the purposes of the present document, the following abbreviations apply:

ACK Acknowledgement Automatic Repeat Request ARO **BCCH Broadcast Control Channel BCH Broadcast Channel**

BL

Bandwidth reduced Low complexity

BLER Block Error Rate Cell Group CG

CMAS Commercial Mobile Alert System

CP Cyclic Prefix Control Plane C-plane

Cyclic Redundancy Check **CRC CSI Channel State Information**

DC **Dual Connectivity**

DCCH Dedicated Control Channel

DL Downlink

DRX Discontinuous Reception DTCH Dedicated Traffic Channel
DTX Discontinuous Transmission

eNB E-UTRAN NodeB

eIMTA Enhanced Interference Management and Traffic Adaptation

EPDCCH Enhanced physical downlink control channel

E-UTRA Evolved UTRA E-UTRAN Evolved UTRAN

FDD Frequency Division Duplex FDM Frequency Division Multiplexing

FS Frame Structure

GERAN GSM EDGE Radio Access Network
GSM Global System for Mobile communication

HARQ Hybrid ARQ

LAA Licensed-Assisted Access
LTE Long Term Evolution
MAC Medium Access Control

MBMS Multimedia Broadcast Multicast Service

MBSFN Multimedia Broadcast multicast service Single Frequency Network

MCCH Multicast Control Channel

MCH Multicast Channel

MCS Modulation and Coding Scheme
MIMO Multiple Input Multiple Output
MTCH Multicast Traffic Channel
MWUS MTC Wake Up Signal
NACK Negative Acknowledgement
NB-IoT Narrow Band Internet of Things

NPBCH Narrow Band Physical Broadcast Channel

NPDCCH Narrow Band Physical Downlink Control Channel NPDSCH Narrow Band Physical Downlink Shared Channel NPRACH Narrow Band Physical Random Access Channel NPUSCH Narrow Band Physical Uplink Shared Channel

NWUS Narrow Band Wake Up Signal

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access

PBCH Physical broadcast channel
PDCCH Physical downlink control channel
PDSCH Physical downlink shared channel

PHY Physical layer

PMCH Physical multicast channel
PRACH Physical random access channel
PRB Physical Resource Block
ProSe Proximity based Services

PSBCH Physical Sidelink Broadcast CHannel
PSCCH Physical Sidelink Control Channel

PSCell Primary SCell

PSDCH Physical Sidelink Discovery Channel
PSSCH Physical Sidelink Shared CHannel
PUCCH Physical uplink control channel
PUR Preconfigured Uplink Resource
PUSCH Physical uplink shared channel
QAM Quadrature Amplitude Modulation

RACH Random Access Channel

RF Radio Frequency
RRC Radio Resource Control
SAP Service Access Point

SBCCH Sidelink Broadcast Control CHannel

SC-FDMA Single Carrier – Frequency Division Multiple Access

SCell Secondary Cell

SC-PTM Single Cell Point to Multipoint SL-BCH Sidelink Broadcast Channel SL-DCH Sidelink Discovery Channel SL-SCH Sidelink Shared Channel

SPDCCH Short PDCCH
SPT Short Processing Time
SPUCCH Short PUCCH

SRS Sounding Reference Symbol
STCH Sidelink Traffic Channel
TAG Timing Advance Group
TB Transport Block
TDD Time Division Duplex
TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunication System

U-plane User plane

UTRA Universal Terrestrial Radio Access

UTRAN Universal Terrestrial Radio Access Network

V2X Vehicle-to-Everything

4 Void

4.1 Void

4.2 Void

5 Services and functions of the physical layer

5.1 General

The physical layer offers data transport services to higher layers.

The access to these services is through the use of transport channels via the MAC sub-layer.

A transport block is defined as the data delivered by MAC layer to the physical layer and vice versa. Transport blocks are delivered once every TTI.

5.2 Overview of L1 functions

The physical layer offers data transport services to higher layers. The access to these services is through the use of a transport channel via the MAC sub-layer. The physical layer is expected to perform the following functions in order to provide the data transport service:

- Error detection on the transport channel and indication to higher layers
- FEC encoding/decoding of the transport channel
- Hybrid ARQ soft-combining
- Rate matching of the coded transport channel to physical channels
- Mapping of the coded transport channel onto physical channels
- Power weighting of physical channels
- Modulation and demodulation of physical channels
- Frequency and time synchronisation
- Radio characteristics measurements and indication to higher layers

- Multiple Input Multiple Output (MIMO) antenna processing
- Transmit Diversity (TX diversity)
- Beamforming
- RF processing.

L1 functions are modelled for each transport channel in clauses 6.1, 6.2 and 6.3.

5.3 Void

6 Model of physical layer of the UE

The E-UTRA physical-layer model captures those characteristics of the E-UTRA physical-layer that are relevant from the point-of-view of higher layers. More specifically, the physical-layer model captures:

- The structure of higher-layer data being passed down to or up from the physical layer;
- The means by which higher layers can configure the physical layer;
- The different indications (error indications, channel-quality indications, etc.) that are provided by the physical layer to higher layers;
- Other (non-transport-channel-based) higher-layer peer-to-peer signalling supported by the physical layer.

6.1 Uplink model

6.1.1 Uplink Shared Channel

The physical-layer model for Uplink Shared Channel transmission is described based on the corresponding physical-layer-processing chain, see Figure 6.1.1-1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue. It should be noted that, in the cases of PUSCH and NPUSCH, the scheduling decision is fully done at the network side. The uplink transmission control in the UE then configures the uplink physical-layer processing, based on uplink transport-format and resource-assignment information received on the downlink.

- Higher-layer data passed to/from the physical layer
- One transport block of dynamic size delivered to the physical layer once every TTI.
- CRC and transport-block-error indication
- Transport-block-error indication delivered to higher layers.
- FEC and rate matching
- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- Physical layer model support of HARQ: in case of Incremental Redundancy, the corresponding Layer 2 Hybrid-ARQ process controls what redundancy version is to be used for the physical layer transmission for each TTI.
- Interleaving
- No control of interleaving by higher layers.
- Data modulation
- Modulation scheme is decided by MAC Scheduler (QPSK, 16QAM, 64QAM, and 256QAM; for BL UEs or UEs
 in enhanced coverage, supported modulation schemes are QPSK and 16QAM; for NB-IoT, supported

modulation schemes are Pi/4-QPSK and Pi/2-BPSK for single-tone allocation, QPSK and 16QAM for multi-tone allocation).

- Mapping to physical resource
- L2-controlled resource assignment.
- Multi-antenna processing
- MAC Scheduler partly configures mapping from assigned resource blocks to the available number of antenna ports.
- Support of L1 control signalling
- Transmission of ACK/NACK and CSI feedback related to DL data transmission

The model of Figure 6.1.1-1 also captures

- Transport via physical layer of Hybrid-ARQ related information associated with the PUSCH, to the peer HARQ process at the transmitter side;
- Transport via physical layer of corresponding HARQ acknowledgements to PUSCH transmitter side (except for NB-IoT UEs).

If a UE is configured with one or more SCells, the physical-layer-processing chain in Figure 6.1.1-1 is repeated for every UL Serving Cell.

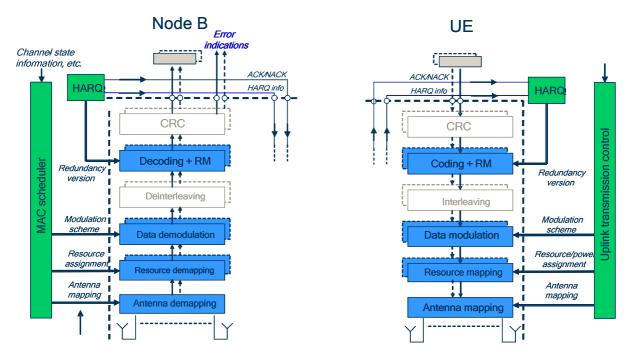


Figure 6.1.1-1: Physical-layer model for UL-SCH transmission

6.1.2 Random-access Channel

The physical-layer model for RACH transmission is characterized by a random access burst that consists of a cyclic prefix, a preamble, and a guard time during which nothing is transmitted.

The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone (ZC-ZCZ), generated from one or several root Zadoff-Chu sequences. For NB-IoT, the random access preambles are generated from single-subcarrier frequency-hopping symbol groups. A symbol group consists of a cyclic prefix followed by five identical symbols, whose value is constant across symbol groups during each NPRACH transmission.

6.2 Downlink model

6.2.1 Downlink-Shared Channel

The physical-layer model for Downlink Shared Channel transmission is described based on the corresponding PDSCH or NPDSCH physical-layer-processing chain, see Figure 6.2.1-1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue on the figure.

- Higher-layer data passed to/from the physical layer
- N (up to two) transport blocks of dynamic size delivered to the physical layer once every TTI.
- CRC and transport-block-error indication
- Transport-block-error indication delivered to higher layers.
- FEC and rate matching
- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- Physical layer model support of HARQ: in case of Incremental Redundancy, the corresponding Layer 2 Hybrid-ARQ process controls what redundancy version is to be used for the physical layer transmission for each TTI.
- Data modulation
- Modulation scheme is decided by MAC Scheduler (QPSK, 16QAM, 64 QAM, 256QAM, and 1024QAM; for BL UEs or UEs in enhanced coverage, supported modulation schemes are QPSK and 16QAM, and 64QAM for CE mode A with no repetitions; for NB-IoT, QPSK and 16QAM are supported).

Multi-antenna processing

- MAC Scheduler partly configures mapping from modulated code words (for each stream) to the available number of antenna ports.
- Mapping to physical resource
- L2-controlled resource assignment.
- Support of L1 control signalling
- Transmission of scheduler related control signals.
- Support for Hybrid-ARQ-related signalling

The model of Figure 6.2.1-1 also captures:

- Transport via physical layer of Hybrid-ARQ related information associated with the PDSCH, to the peer HARQ process at the receiver side;
- Transport via physical layer of corresponding HARQ acknowledgements to PDSCH transmitter side.

If a UE is configured with one or more SCells, the physical-layer-processing chain in Figure 6.2.1-1 is repeated for every DL Serving Cell.

NOTE: The signalling of transport-format and resource-allocation is not captured in the physical-layer model. At the transmitter side, this information can be directly derived from the configuration of the physical layer. The physical layer then transports this information over the radio interface to its peer physical layer, presumably multiplexed in one way or another with the HARQ-related information. On the receiver side, this information is, in contrast to the HARQ-related information, used directly within the physical layer for PDSCH demodulation, decoding etc., without passing through higher layers.

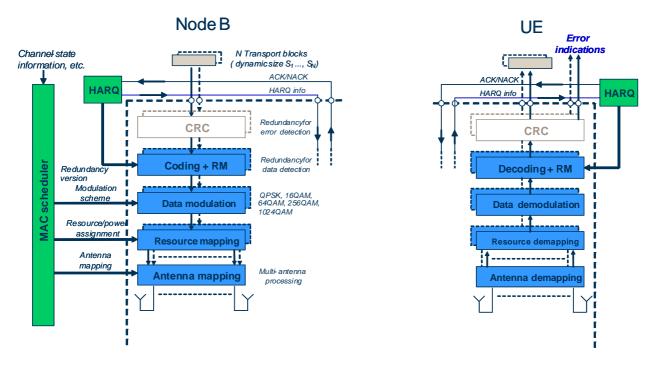


Figure 6.2.1-1: Physical-layer model for DL-SCH transmission

6.2.2 Broadcast Channel

The physical-layer model for BCH transmission is characterized by a fixed pre-defined transport format. The TTI (repetition rate) of the BCH is 40 ms except for NB-IoT and 640 ms for NB-IoT. The BCH physical-layer model is described based on the corresponding BCH physical-layer-processing chain, see Figure 6.2.2-1:

- Higher-layer data passed to/from the physical layer
- A single (fixed-size) transport block per TTI.
- CRC and transport-block-error indication
- Transport-block-error indication delivered to higher layers.
- FEC and rate matching
- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- No BCH Hybrid ARQ, i.e. no higher-layer control of redundancy version.
- Data modulation
- Fixed modulation scheme (QPSK), i.e. no higher-layer control.
- Mapping to physical resource
- Fixed pre-determined transport format and resource allocation, i.e. no higher-layer control.
- Multi-antenna processing
 - Fixed pre-determined processing, i.e. no higher-layer control.
- Support for Hybrid-ARQ-related signalling
- No Hybrid ARQ.

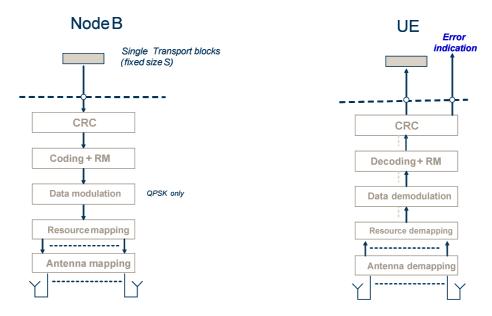


Figure 6.2.2-1: Physical-layer model for BCH transmission

NOTE: For NB-IoT, the BCH transport block of 40 bits is truncated to 34 bits by the NodeB when provided to the physical layer for BCH transmission. The BCH transport block of 34 bits is padded to 40 bits when delivered by the UE physical layer to the upper layer.

6.2.3 Paging Channel

The physical-layer model for PCH transmission is described based on the corresponding PCH physical-layer-processing chain, see Figure 6.2.3-1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue on the figure.

- Higher-layer data passed to/from the physical layer
- A single transport block per TTI.
- CRC and transport-block-error indication
- Transport-block-error indication delivered to higher layers.
- FEC and rate matching
- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- No PCH Hybrid ARQ, i.e. no higher-layer control of redundancy version.
- Data modulation
- Modulation scheme is decided by MAC Scheduler.
- Mapping to physical resource
- L2 controlled resource assignment;
- Possible support of dynamic transport format and resource allocation.
- Multi-antenna processing
- MAC Scheduler partly configures mapping from assigned resource blocks to the available number of antenna ports.
- Support for Hybrid-ARQ-related signalling

No Hybrid ARQ.

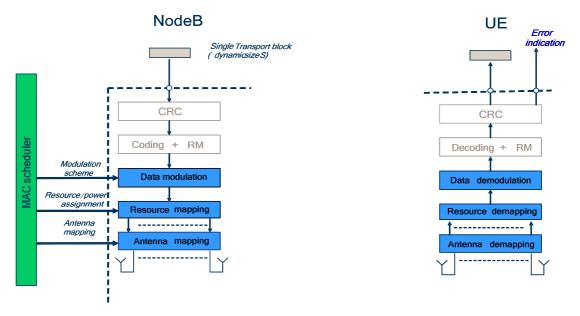


Figure 6.2.3-1: Physical-layer model for PCH transmission

6.2.4 Multicast Channel

The physical-layer model for MCH transmission is characterized by the support for multi-cell reception at the UE (a.k.a. "MBSFN" transmission). This implies that only semi-static configuration of the MCH transport format and resource assignment is possible. The MCH physical-layer model is described based on the corresponding MCH physical-layer-processing chain, see Figure 6.2.4-1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue.

- Higher-layer data passed to/from the physical layer
- One transport block delivered to physical layer once every TTI.
- CRC and transport-block-error indication
- Transport-block-error indication delivered to higher layers.
- FEC and rate matching
- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- No MCH Hybrid ARQ, i.e. no higher-layer control of redundancy version.
- Data modulation
- Modulation scheme is configured by RRC layer.
- Mapping to physical resource
- L2 controlled semi-static resource assignment.
- Multi-antenna processing
- MAC Scheduler partly configures mapping from assigned resource blocks (for each stream) to the available number of antenna ports.
- Support for Hybrid-ARQ-related signalling
- No Hybrid ARQ.

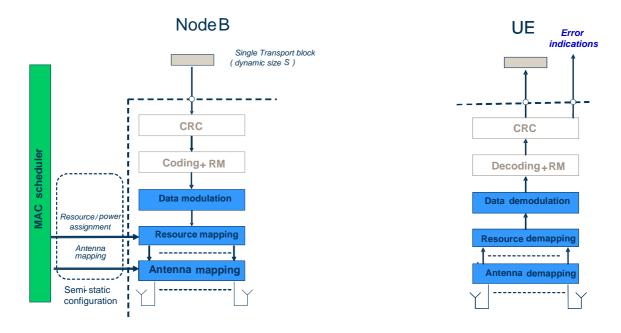


Figure 6.2.4-1: Physical-layer model for MCH transmission

6.3 Sidelink model

6.3.1 Sidelink Broadcast Channel

The physical-layer model for Sidelink Broadcast Channel transmission is characterized by a fixed pre-defined transport format. The TTI (repetition rate) of the SL-BCH not corresponding to V2X sidelink communication is 40ms whereas the TTI (repetition rate) of the SL-BCH corresponding to V2X sidelink communication is 160 ms, if a UE is configured to transmit on SL-BCH. The SL-BCH physical-layer model is described based on the corresponding SL-BCH physical-layer-processing chain, see Figure 6.3.1-1.

- Higher-layer data passed to/from the physical layer
- A single (fixed-size) transport block per TTI.
- CRC and transport-block-error indication
- Transport-block-error indication delivered to higher layers.
- FEC and rate matching
- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- No SL-BCH Hybrid ARQ, i.e. no higher-layer control of redundancy version.
- Data modulation
- Fixed modulation scheme (QPSK), i.e. no higher-layer control.
- Mapping to physical resource
- Fixed pre-determined transport format i.e. no higher-layer control.
- RRC controlled semi-static resource assignment.
- Multi-antenna processing
- Single antenna port is used.

- Support for Hybrid-ARQ-related signalling
- No Hybrid ARQ.

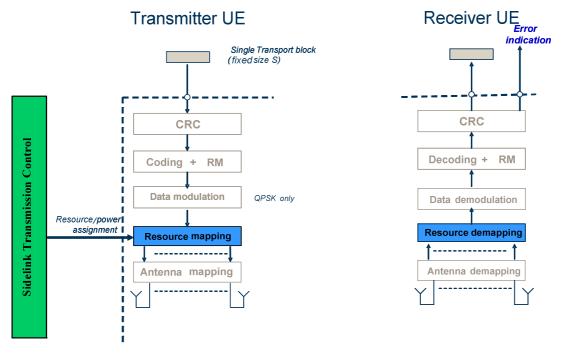


Figure 6.3.1-1: Physical-layer model for SL-BCH transmission

6.3.2 Sidelink Discovery Channel

The physical-layer model for Sidelink Discovery Channel transmission is characterized by a fixed pre-defined transport format. The SL-DCH physical-layer model is described based on the corresponding SL-DCH physical-layer-processing chain, see Figure 6.3.2-1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue. It should be noted that, in case scheduled resource allocation of SL-DCH, the scheduling decision is fully done by network side. The sidelink transmission control in the UE configures the sidelink physical-layer processing, based on sidelink transport-format and resource-assignment information received on the downlink. In case UE autonomous resource selection of SL-DCH, the scheduling decision is done by UE side. The sidelink transmission control in the UE configures the sidelink physical-layer processing, based on pre-defined sidelink transport-format and UE randomly selected resource-assignment.

- Higher-layer data passed to/from the physical layer
- A single (fixed-size) transport block per TTI.
- CRC and transport-block-error indication
- Transport-block-error indication delivered to higher layer.
- FEC and rate matching
- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- Support for soft combining, but no support for ACK/NACK feedback.
- Data modulation
- Fixed modulation scheme (QPSK), i.e. no higher-layer control.
- Mapping to physical resource
- RRC controlled semi-static resource assignment;

Multi-antenna processing

- Single antenna port is used.

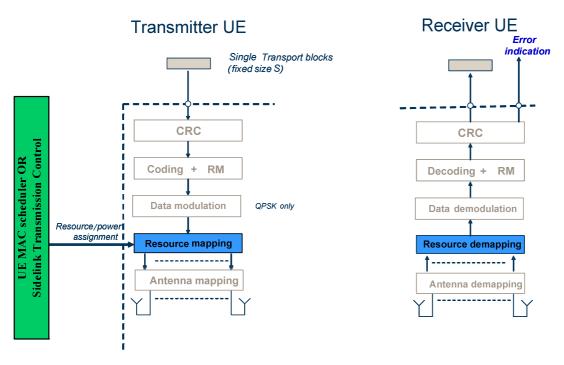


Figure 6.3.2-1: Physical-layer model for SL-DCH transmission

6.3.3 Sidelink Shared Channel

The physical-layer model for Sidelink Shared Channel transmission is described based on the corresponding SL-SCH physical-layer-processing chain, see Figure 6.3.3-1. Processing steps that are relevant for the physical-layer model, e.g. in the sense that they are configurable by higher layers, are highlighted in blue on the figure. It should be noted that, in case of scheduled resource allocation, the SL-SCH scheduling decision is done by network side. The sidelink transmission control in the UE configures the sidelink physical-layer processing, based on sidelink transport-format and resource-assignment information received on the downlink. In case of UE autonomous resource selection, the SL-SCH scheduling decision is done by UE side, and the MAC scheduler in the UE configures the sidelink physical-layer processing, based on the sidelink transport-format autonomously decided by the UE and autonomously selected resource-assignment.

- Higher-layer data passed to/from the physical layer

- One transport block of dynamic size delivered to the physical layer once every TTI.

- CRC and transport-block-error indication

- Transport-block-error indication delivered to higher layers.

- FEC and rate matching

- Channel coding rate is implicitly given by the combination of transport block size, modulation scheme and resource assignment;
- Support for soft combining, but no support for ACK/NACK feedback.

- Data modulation

- For scheduled resource allocation, modulation scheme is decided by higher layer signaling from eNB.

- For UE autonomous resource selection for sidelink communication, modulation scheme is decided by MAC scheduler (QPSK, 16QAM) in transmitter UE. For UE autonomous resource selection for V2X sidelink communication, modulation scheme is decided by MAC scheduler (QPSK, 16QAM, 64QAM) in transmitter UE.
- For UE autonomous resource selection for V2X sidelink communication, modulation scheme is decided by MAC scheduler in transmitter UE, according to the range defined by higher layer signalling from eNB or preconfiguration if configured.
- Mapping to physical resource
- L2-controlled resource assignment.
- Multi-antenna processing
- Single antenna port is used.

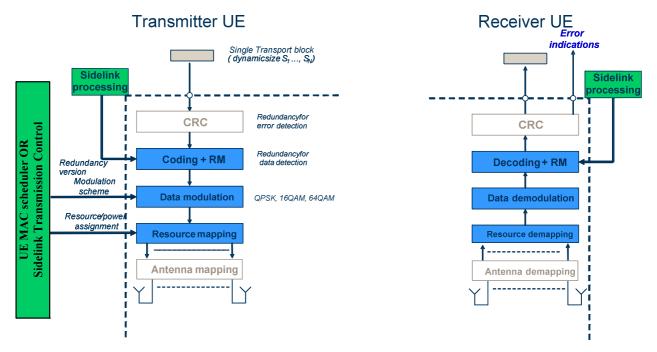


Figure 6.3.3-1: Physical-layer model for SL-SCH transmission

NOTE: For UE autonomous resource selection for V2X sidelink communication, the MAC scheduler in the transmitter UE decides whether to use 64QAM for data modulation based on UE capability, see TS 36.306 [13].

7 Void

8 Parallel transmission of simultaneous Physical Channels and SRS

This clause describes the requirements from the UE to send and receive on multiple Physical and Transport Channels and SRS simultaneously depending on the service capabilities and requirements.

Uplink 8.1

The table 8.1-1 describes the possible combinations of physical channels that can be sent in parallel in the uplink within the same subframe/slot/subslot. For NB-IoT, see Table 8.1-1a.

Table 8.1-1: Uplink

	Physical	Transport	Mandatory dependent	Comment
	Channel	Channel	on UE radio access	
	Combination	Combination	capabilities	
1	q x PUSCH	UL-SCH	Mandatory	Note 1, Note 2, Note 6
2	k x PRACH	RACH	Mandatory	Note 4
3	j x k x PUCCH	N/A	Mandatory	CSI (not on SPUCCH) and Scheduling Requests are provided to Layer 2. Note 4, Note5, Note 6
4	q x PUSCH + j x k x PUCCH	UL-SCH	Mandatory for UEs supporting simultaneous transmission of PUSCH and PUCCH	Note1, Note 2, Note 4, Note5, Note 6
5	k x PRACH +(q-k) x PUSCH	RACH UL-SCH	Mandatory for UEs supporting multiple TAGs	Note 1, Note 2, Note 3, Note 4, Note 6
6	k x PRACH + j x k x PUCCH	RACH	Mandatory for UEs supporting multiple TAGs	Note 3, Note 4, Note5, Note 6
7	k x PRACH +(q-k) x PUSCH + j x k x PUCCH	RACH UL-SCH	Mandatory for UEs supporting simultaneous transmission of PUSCH and PUCCH and multiple TAGs	Note 1, Note 2, Note 3, Note 4, Note5, Note 6

One PUSCH per UL CC. Note 1:

q is the number of UL CCs supported by the UE. q = 1 implies non-CA capable UE. Note 2:

PRACH and PUSCH/PUCCH/SPUCCH are from cells in different Timing Advance Groups, see TS 36.321 Note 3: [12].

Note 4: k is the number of CGs supported by the UE. k = 1 implies non-DC capable UE. k = 2 implies DC capable UE, and one PUCCH/SPUCCH and one PRACH per CG.

j is the number of PUCCH groups supported by the UE. j = 1 implies PUCCH/SPUCCH transmission is Note 5: supported only on PCell. j = 2 implies PUCCH/SPUCCH transmission is supported on PCell and an SCell.

Note 6: Short TTI capable UEs shall support this Physical Channel Combination also for the subslot/slot equivalent of

the mentioned channels (if existing).

Table 8.1-1a: Uplink for NB-IoT

	Physical	Transport	Mandatory dependent	Comment
	Channel	Channel	on UE radio access	
	Combination	Combination	capabilities	
1	NPUSCH	UL-SCH	Mandatory	
2	NPRACH	RACH	Mandatory	

The table 8.1-2 describes the possible combinations of SRS and physical channels that can be sent in parallel in uplink in the last symbol within the same subframe/slot/subslot by one UE. Table 8.1-2 is not applicable for NB-IoT.

Table 8.1-2: Uplink in combinations with SRS

	Physical Channel and SRS Combination	Transport Channel Combination	Mandatory dependent on UE radio access capabilities	Comment
1	q x SRS	N/A	Mandatory	Note 2, Note 4
2	k x PRACH +(q-k) x SRS	RACH	Mandatory for UEs supporting multiple TAGs	Note 2, Note 3, Note 4, Note 7
3	n x PUSCH + (q-n) x SRS	UL-SCH	Mandatory for UEs supporting multiple TAGs	Note 1, Note 2, Note 4, Note 5, Note 6, Note 9
4	j x k x PUCCH + (q- j x k) x SRS	N/A	Mandatory for UEs supporting multiple TAGs	Note 2, Note 4, Note 6, Note 7, Note 8, Note 9
5	n x PUSCH + j x k x PUCCH + (q-n) x SRS	UL-SCH	Mandatory for UEs supporting simultaneous transmission of PUSCH and PUCCH and multiple TAGs	Note 1, Note 2, Note 4, Note 5, Note 6, Note 7, Note 8, Note 9
6	k x PRACH + n x PUSCH + (q-n-k) x SRS	RACH UL-SCH	Mandatory for UEs supporting multiple TAGs	Note 1, Note 2, Note 3, Note 4, Note 5, Note 6, Note 7, Note 9
7	k x PRACH + j x k x PUCCH + (q-(j+1) x k) x SRS	RACH	Mandatory for UEs supporting multiple TAGs	Note 2, Note 3, Note 4, Note 6, Note 7, Note 8, Note 9
8	k x PRACH + n x PUSCH + j x k x PUCCH + (q-n-k) x SRS	RACH UL-SCH	Mandatory for UEs supporting simultaneous transmission of PUSCH and PUCCH and multiple TAGs	Note 1, Note 2, Note 3, Note 4, Note 5, Note 6, Note 7, Note 8, Note 9

- Note 1: One PUSCH per UL CC.
- Note 2: q is the number of UL CCs supported by the UE. q = 1 implies non-CA capable UE.
- Note 3: PRACH and PUSCH/PUCCH/SPUCCH/SRS are from cells in different TAGs, see TS 36.321 [12].
- Note 4: One SRS per UL CC.
- Note 5: n = 1, 2, ..., q-k.
- Note 6: If UE is not configured with multiple TAGs, then SRS and PUSCH/PUCCH are not transmitted in parallel; otherwise, if UE is configured with multiple TAGs, then SRS and PUSCH/PUCCH are transmitted in parallel from different serving cells of the same TAG or different TAGs.
- Note 7: k is the number of CGs supported by the UE. k = 1 implies non-DC capable UE. k = 2 implies DC capable UE, and one PUCCH/SPUCCH and one PRACH per CG.
- Note 8: j is the number of PUCCH groups supported by the UE. j = 1 implies PUCCH/SPUCCH transmission is supported only on PCell. j = 2 implies PUCCH/SPUCCH transmission is supported on PCell and an SCell.
- Note 9: Short TTI capable UEs shall support this Physical Channel Combination also for the subslot/slot equivalent of the mentioned channels (if existing).

8.2 Downlink

The tables describe the possible combinations of physical channels that can be received in parallel in the downlink in the same subframe by one UE. In one subframe, the UE shall be able to receive all TBs according to the indication on

PDCCH. Tables 8.2-1, 8.2-1a, 8.2-2 and 8.2-2a are applicable to LTE; Tables 8.2-1b and 8.2-2b are applicable to NB-IoT.

Table 8.2-1: Downlink "Reception Types" except for NB-IoT UEs, BL UEs and UEs in enhanced coverage

"Reception Type"			Associated Transport Channel
А	PBCH	N/A	ВСН
В	B PDCCH+PDSCH SI-RNTI		DL-SCH
B1	B1 PDCCH+PDSCH SI-RNTI (Note 11)		DL-SCH
С	PDCCH+PDSCH	P-RNTI	PCH
D	PDCCH+PDSCH	RA-RNTI (Note 3)	DL-SCH
		Temporary C-RNTI (Note 3) (Note 4)	DL-SCH
	((PDCCH+SPDCCH)/EPDCCH) +(PDSCH/slot/subslot PDSCH)	C-RNTI and Semi- Persistent Scheduling C- RNTI	DL-SCH
	((PDCCH+SPDCCH)/EPDCCH) +(PDSCH+subslot/slot PDSCH) (Note 14)	C-RNTI and Semi- Persistent Scheduling C- RNTI	DL-SCH
D1	((PDCCH+SPDCCH)/EPDCCH) +(PDSCH/subslot/slot PDSCH) (Note 9)	C-RNTI	DL-SCH
	((PDCCH+SPDCCH)/EPDCCH) +(PDSCH+subslot/slot PDSCH) (Note 9, Note 14)	C-RNTI	DL-SCH
D2	PDCCH+PDSCH	SC-RNTI	DL-SCH
		G-RNTI	DL-SCH
D3	((PDCCH+SPDCCH) /EPDCCH) +(PDSCH/subslot/slot PDSCH)	C-RNTI and Semi-Persistent Scheduling C-RNTI	DL-SCH
	((PDCCH+SPDCCH)/EPDCCH) +(PDSCH+subslot/slot PDSCH) (Note 14)	C-RNTI and Semi-Persistent Scheduling C-RNTI	DL-SCH
	PDCCH+PDSCH	SC-RNTI	DL-SCH
		G-RNTI	DL-SCH
E	PDCCH/EPDCCH (Note 1)	C-RNTI	N/A
F	PDCCH	Temporary C-RNTI (Note 5)	UL-SCH
	(PDCCH+SPDCCH)/EPDCCH	C-RNTI and Semi- Persistent Scheduling C- RNTI	UL-SCH
F1	(PDCCH+SPDCCH)/EPDCCH (Note 9)	C-RNTI	UL-SCH
G	PDCCH	TPC-PUCCH-RNTI	N/A
Н	PDCCH	TPC-PUSCH-RNTI	N/A
I	(PDCCH+SPDCCH)/EPDCCH	Semi-Persistent Scheduling C-RNTI (Note 6)	N/A
J	(PDCCH+SPDCCH)/EPDCCH	Semi-Persistent Scheduling C-RNTI (Note 7)	N/A
K	PDCCH	M-RNTI (Note 8)	N/A
K1	PDCCH	SC-N-RNTI	N/A
K2	PDCCH	M-RNTI	N/A
L	PMCH	N/A (Note 8)	MCH
M	PDCCH	elMTA-RNTI	N/A
N	PDCCH/EPDCCH	SL-RNTI	SL-SCH
N1 N2	PDCCH/EPDCCH PDCCH/EPDCCH	SL-V-RNTI SL Semi-Persistent	SL-SCH SL-SCH
INC	BOOT/ET BOOT	Scheduling V-RNTI	02.0011

0	PDCCH	CC-RNTI	N/A
Р	PDCCH	SRS-TPC-RNTI (Note 10)	N/A
Q	PDCCH/EPDCCH	UL Semi-Persistent Scheduling V-RNTI	UL-SCH
Q1	PDCCH/EPDCCH	UL Semi-Persistent Scheduling V-RNTI (Note 12)	N/A
R	PDCCH/EPDCCH	SL Semi-Persistent Scheduling V-RNTI (Note 13)	N/A

- Note 1: PDCCH or EPDCCH is used to convey PDCCH order for Random Access.
- Note 2: Void.
- Note 3: RA-RNTI and Temporary C-RNTI are mutually exclusive and only applicable during Random Access procedure.
- Note 4: Temporary C-RNTI is only applicable when no valid C-RNTI is available.
- Note 5: Temporary C-RNTI is only applicable during contention-based Random Access procedure.
- Note 6: Semi-Persistent Scheduling C-RNTI is used for DL Semi-Persistent Scheduling release.
- Note 7: Semi-Persistent Scheduling C-RNTI is used for UL Semi-Persistent Scheduling release.
- Note 8: In MBSFN subframes only
- Note 9: DL-SCH reception corresponding to D1, and UL-SCH transmission corresponding to F1, are only applicable to SCells.
- Note 10: SRS-TPC-RNTI is used to trigger group SRS and TPC for SRS-only SCells. Up to 2 SRS-TPC-RNTI can be concurrently configured.
- Note 11: For MBMS-dedicated carrier, SI-RNTI may be assigned with two values which may be used in same subframe.
- Note 12: Used for release of an UL Semi-Persistent Scheduling associated with UL Semi-Persistent Scheduling V-
- Note 13: Used for release of an SL Semi-Persistent Scheduling associated with SL Semi-Persistent Scheduling V-RNTI.
- Note 14: For a UE indicating the capability of decoding PDSCH and subslot/slot PDSCH assigned with C-RNTI/SPS C-RNTI in the same subframe for a given carrier.

Table 8.2-1a: Downlink "Reception Types" for BL UEs and UEs in enhanced coverage

"Reception Type"	Physical Channel(s)	Monitored RNTI	Associated Transport Channel
A	PBCH	N/A	BCH
В	MPDCCH (Note 1)	C-RNTI	N/A
B1	MPDCCH (Note 10)	C-RNTI	N/A
С	MPDCCH	TPC-PUCCH-RNTI	N/A
D	MPDCCH	TPC-PUSCH-RNTI	N/A
D1	MPDCCH (Note 7)	SC-RNTI	DL-SCH
	, ,	G-RNTI	DL-SCH
Е	MPDCCH	Semi-Persistent Scheduling C- RNTI (Note 2)	N/A
F	MPDCCH	Semi-Persistent Scheduling C- RNTI (Note 3)	N/A
	MPDCCH (Note 4)	RA-RNTI	DL-SCH
G	, ,	Temporary C-RNTI	UL-SCH
		Temporary C-RNTI	DL-SCH
		P-RNTI	PCH
	PDSCH (Note 5)	SI-RNTI	DL-SCH
Н	,	P-RNTI	PCH
		Temporary C-RNTI	DL-SCH
		RA-RNTI	DL-SCH
H1	PDSCH (Note 7)	SC-RNTI	DL-SCH
		G-RNTI	DL-SCH
H2	PDSCH	PUR-RNTI	DL-SCH
	MPDCCH	Temporary C-RNTI (Note 6)	UL-SCH
I		C-RNTI and Semi-Persistent Scheduling C-RNTI	UL-SCH
J	MPDCCH	C-RNTI and Semi-Persistent Scheduling C-RNTI	DL-SCH
K	PDSCH (Note 5)	C-RNTI and Semi-Persistent Scheduling C-RNTI	DL-SCH
L	MWUS	N/A	N/A
М	MPDCCH (Note 8)	SI-RNTI	N/A
N	MPDCCH (Note 9)	PUR-RNTI	N/A
0	MPDCCH	PUR-RNTI	DL-SCH
Р	MPDCCH	PUR-RNTI	UL-SCH

Note 1: MPDCCH is used to convey PDCCH order for Random Access.

Note 2: Semi-Persistent Scheduling C-RNTI is used for DL Semi-Persistent Scheduling release.

Note 3: Semi-Persistent Scheduling C-RNTI is used for UL Semi-Persistent Scheduling release.

Note 4: RA-RNTI, P-RNTI, and Temporary C-RNTI are not required to be simultaneously monitored.

Note 5: All RNTIs listed in the reception type are mutually exclusive.

Note 6: Temporary C-RNTI is only applicable during contention-based Random Access procedure.

Note 7: SC-RNTI and G-RNTI are not required to be simultaneously monitored.

Note 8: MPDCCH with SI-RNTI is used for ETWS/CMAS notification indication in RRC_CONNECTED, which is not applicable for BL UE.

Note 9: MPDCCH is used to terminate transmission using PUR.

Note 10: MPDCCH is used to convey uplink HARQ ACK feedback.

Table 8.2-1b: Downlink "Reception Types" for NB-IoT UEs

"Reception Type"	Physical Channel(s)	Monitored RNTI	Associated Transport Channel	
Α	NPBCH	N/A	ВСН	
В	NPDCCH (Note 2)	C-RNTI	N/A	
С	NPDCCH	P-RNTI	PCH	
D	NPDCCH	RA-RNTI (Note 1)	DL-SCH	
		Temporary C-RNTI (Note 1)		
D1	NPDCCH (Note 3)	SC-RNTI	DL-SCH	
		G-RNTI	DL-SCH	
Е	NPDSCH	N/A	DL-SCH	
F	NPDCCH	C-RNTI	DL-SCH	
G	NPDCCH	C-RNTI	UL-SCH	
Н	NWUS	N/A	N/A	
I	NPDCCH	Semi-Persistent Scheduling C- RNTI (Note 4)	N/A	
J	NPDCCH	Semi-Persistent Scheduling C-RNTI	UL-SCH	
K	NPDCCH (Note 5)	PUR-RNTI	N/A	
L	NPDCCH	PUR-RNTI	DL-SCH	
М	NPDCCH	PUR-RNTI	UL-SCH	
Note 1: RA-RNT	I and Temporary C-RN	TI are mutually exclusive and only a	pplicable during Random Access	
procedure.				

The "Reception Type" used in Table 8.2-2 refers to the "Reception Type" in Table 8.2-1.

Note 2: NPDCCH is used to convey PDCCH order for Random Access.

SC-RNTI and G-RNTI are not required to be simultaneously monitored. Semi-Persistent Scheduling C-RNTI is used for releasing SR with SPS BSR. Note 3:

Note 4:

NPDCCH is used to terminate transmission using PUR. Note 5:

Table 8.2-2: Downlink "Reception Type" Combinations except for NB-IoT UEs, BL UEs and UEs in enhanced coverage

	PCell	PSCell	SCell	Non-serving cell
1. RRC_IDLE				
1.1 All UEs	A + B + C + D			
	Remarks: The combin	ation for Random Acces	s procedure is only requ	ired, related to D.
1.2 UEs supporting MBMS	K+L			
1.3 UEs supporting SC-PTM	K1 + D2			
2. RRC_CONNECTED				
2.1 All UEs	A + B + (D or E or G or I) + (F or H or J) + M	A + (D or E or G or I) + (F or H or J) + M	(E or D1) + F1	
2.2 UEs supporting FS2	A + B + (D or E or G or I) + (F or H or J) + F + M + P	A + (D or E or G or I) + (F or H or J) + F + M	(E or D1) + F1	
		two PDCCHs or EPDC	th special subframe con CHs can be received in	
2.2a UEs supporting			D1 + F1 + O	
FS3		to four PDCCHs or EP erent FS3 uplink subfrar	DCCHs can be received mes.	I in the same subframe
2.3 UEs supporting MBMS	((E or G or I) + L + K) or (A + B + D) + (F or H or J) + M	((E or G or I) + L + K) or (A + B + D) + (F or H or J) + M		(A + B) or (L + K)
	other cell. r is the num	ber of DL CCs on which	twhen MBMS reception the UE supports MBMS and the number of $K \le r$.	reception according to
	Remarks: It is not requ	uired to simultaneously r	eceive EPDCCH and PN	ICH on the same cell.
2.3a UEs supporting FeMBMS			(D1 + B + K2) or (L + K2) + F1	(A + B1 + K2) or (L + K2)
	other cell. r is the num	ber of DL CCs on which	t when MBMS reception the UE supports MBMS and the number of K2 ≤	reception according to
	Remarks: It is not requ	uired to simultaneously r	eceive EPDCCH and PN	ICH on the same cell.
2.4 MBMS UEs supporting FS2	((E or G or I) + L + K) or (A + B + D) + 1x(F or H or J) + F + M + P	((E or G or I) + L + K) or (A + B + D) + 1x(F or H or J) + F + M	(E + L + K) or (D1 + B) + F1	(A + B) or (L + K)
		two PDCCHs or EPDC	th special subframe con CHs can be received in	
	other cell. <i>r</i> is the num the MBMSInterestIndic	ber of DL CCs on which cation. The number of L	when MBMS reception the UE supports MBMS and the number of $K \le r$.	reception according to
			eceive EPDCCH and PN	ICH on the same cell.
2.5 UEs supporting ETWS and CMAS	A + B + C + (D or E or G or I) + (F or H or J) + M	A + (D or E or G or I) + (F or H or J) + M	(E or D1) + F1	
2.6 ETWS and CMAS UEs supporting FS2	A + B + C + (D or E or G or I) + (F or H or J) + F + M + P	A + (D or E or G or I) + (F or H or J) + F + M	(E or D1) + F1	
5	Remarks: For TDD UL	/DL configuration 6 with two PDCCHs or EPDC	special subframe config CHs can be received in t	
2.7 UEs supporting sidelink communication	A + B + (D or E or G or I) + (F or H or J) + M + N			
2.7a UEs supporting	A + B + (D or E or G			
V2X sidelink communication	or I) + (F or H or J or Q or Q1) + M + N1 + (N2 or R)			

2.7b UEs su	upporting	A + B + (D or E or G			
V2X sidelinl		or I) + (F or H or J or			
communica	tion	Q or Q1) +M			
		Remarks: The 2.7 and	2.7a combination is the	requirement when the U	E is configured in
				.7b combination is the re	equirement when the
			onomous resource selec		
2.8 UEs sup	oporting	A + B + (D or (K1 +	A + B + (D or (K1 +	B + (D1 or (K1 + D2)	A + B + K1+ D2
SC-PTM		D2) or (K1 + D3) or	D2) or (K1 + D3) or E	or (K1 + D3) or E) +	
		E or G or I) + (F or H	or G or I) + (F or H or	F1	
	:	or J) + M	J) + M		. 50 " "
				when SC-PTM reception	
				nich the UE supports SC	
2.9 SC-PTN	/ LUE 0	A + B + (D or (K1 +	A + B + (D or (K1 +	number of K1 and the nu B + (D1 or (K1 + D2)	A + B + K1+ D2
supporting I		D2) or (K1 + D3) or	D2) or (K1 + D3) or E	or (K1 + D3) or E) +	A + D + K I + D2
Supporting i	- 32	E or G or I) + (F or H	or G or I) + (F or H or	F1	
		or J) + F + M + P	J) + F + M		
				special subframe config	uration 10 and TDD
				CHs can be received in t	
		UL-SCH in two differen			
				when SC-PTM reception	
				nich the UE supports SC	
				number of K1 and the nu	
NOTE 1: p is the num					
				r of F1 is $\leq (q-1)$. For UE	
				UE. Only 1xE is possible	e at any subframe over
		ells. 1xM is included if UE supports eIMTA. nly required to receive one PDSCH, pertaining to D or D1 or D2 (if the UE supports SC-PTM) or			
					= supports SC-PTM) or
		supports the parallel re		missions exceeding its p	roccoing conchility
				se PDSCH transmissions	
	mplementat		nonazadon botwoon the	30 i 200i i tianomiosioni	o to up to the or
			ptional and required only	y for UE supporting EPD	ССН.
				is optional and required	
		d/or subslot/slot PDSCH		, , , , , , , , , , , , , , , , , , , ,	, , , ,
				configured with special s	
				al subframe configuration	
		s can be received in a slot for UL-SCH with a slot duration in two different uplink slots.			
				special subframe config	
), three PDCCHs can be	
				wo SPDCCHs can be re	eceived in a slot for UL-
	OCH with a s	slot duration in two differ	ent uplink slots.		

The "Reception Type" used in Table 8.2-2a refers to the "Reception Type" in Table 8.2-1a.

Table 8.2-2a: Downlink "Reception Type" Combinations for BL UEs and UEs in enhanced coverage

	PCell
1. RRC_IDLE	
1.1 All UEs	A or G or H
1.2 UEs supporting	A or G or H or (D1 + H1)
SC-PTM	
1.3 UEs supporting	A or G or H or L
MWUS	
1.4 UEs supporting	A or G or H or ((P + (O or H2)) or N)
PUR	
2. RRC_CONNECTED	
2.1 All UEs	A or ((((J or E or B) + (I or F or B1)) or C or D) + K) or G or H
	Remarks: The combination for Random Access procedure is only required, related to G and
	H.
	Remarks: B1 is only applicable for UEs supporting uplink HARQ ACK feedback.
2.2 UEs supporting	A or ((((J or E or B) + (I or F or B1)) or C or D) + I + K) or G or H
FS2	Remarks: For TDD UL/DL configuration 0, two MPDCCHs can be received in the same
	subframe for UL-SCH in two different uplink subframes, which is only applicable for UEs
	configured with CE mode A with no repetitions.
	Remarks: The combination for Random Access procedure is only required, related to G and
	H.
0.0115	Remarks: B1 is only applicable for UEs supporting uplink HARQ ACK feedback.
2.3 UEs supporting	A or ((((J or E or B) + (I or F)) or C or D or M) + K) or G or H
ETWS and CMAS	Remarks: The combination for Random Access procedure is only required, related to G and
	H.
2.4 ETWS and	Remarks: The combination is not applicable for BL UE.
supporting FS2	Remarks: For TDD UL/DL configuration 0, two MPDCCHs can be received in the same subframe for UL-SCH in two different uplink subframes, which is only applicable for UEs
Supporting 1 02	configured with CE mode A with no repetitions.
	Remarks: The combination for Random Access procedure is only required, related to G and
	H.
	Remarks: The combination is not applicable for BL UE.
	romano. The combination is not applicable for BE CE.

NOTE: Any subset of the combinations specified in table 8.2-2 and 8.2-2a are also supported.

The "reception type" names in Table 8.2-2b refer to the "reception types" from Table 8.2-1b.

Table 8.2-2b: Downlink "Reception Type" Combinations for NB-IoT UEs

	PCell				
1. RRC_IDLE					
1.1 All UEs	A or C or D or E				
	Remarks: The combination for Random Access procedure is only required, related to D.				
1.2 UEs supporting SC-PTM	A or C or D or E or D1				
1.3 UEs supporting NWUS	A or C or D or E or H				
1.4 UEs supporting transmission using PUR	A or C or D or E or K or L or M				
2. RRC_CONNECTED					
2.1 All UEs	A or B or D or F or G or E				
2.2 UEs supporting SR with SPS BSR	A or B or D or F or G or E or I or J				

8.3 Sidelink

The table 8.3-1 describes the possible combinations of physical channels that can be sent in parallel from UE perspective in the sidelink within the same subframe. Table 8.3-2 describes the possible combinations of physical channels that can be received in parallel from UE perspective in the sidelink within the same subframe.

Table 8.3-1: Sidelink transmission

	Physical	Transport	Mandatory dependent	Comment			
	Channel	Channel	on UE radio access				
	Combination	Combination	capabilities				
1	PSDCH	SL-DCH	Mandatory for UE	The UE supporting sidelink discovery			
			supporting sidelink	transmits sidelink discovery messages on the			
			discovery	camped cell (idle) or PCell (connected).			
2	PSBCH	SL-BCH	Mandatory for UE	The UE supporting sidelink communication or			
			supporting sidelink	V2X sidelink communication transmits			
			communication or V2X	MasterInformationBlock-SL messages in			
			sidelink communication	PSBCH on one preconfigured frequency.			
3	PSSCH	SL-SCH	Mandatory for UE	The UE supporting sidelink communication or			
			supporting sidelink	V2X sidelink communication transmits sidelink			
			communication or V2X	data in PSSCH on one preconfigured			
			sidelink communication	frequency.			
4	PSCCH	N/A	Mandatory for UE	The UE supporting sidelink communication or			
			supporting sidelink	V2X sidelink communication transmits sidelink			
			communication or V2X	control information in PSCCH on one			
			sidelink communication	preconfigured frequency.			
NOT	NOTE: Depending on the UE capability, the UE may be able to perform simultaneous Uplink and Sidelink						
	transmissions. If the UE is unable to perform simultaneous Uplink and Sidelink transmissions, transmissions						
are prioritized according to TS 36.321 [12].							
NOTE: Depending on the UE capability, the UE may be able to perform simultaneous sidelink commu							
transmissions (PSBCH or PSSCH or PSCCH) and sidelink discovery transmission (PSDCH). If the				covery transmission (PSDCH). If the UE is			
unable to perform simultaneous transmission of sidelink communication and discovery, transmissions are							
prioritized according to TS 36.321 [12].							

Table 8.3-2: Sidelink reception

Physical	Transport	Mandatory dependent	Comment				
PSDCH	SL-DCH						
		supporting sidelink					
		discovery					
PSBCH	SL-BCH	Mandatory for UE					
		supporting sidelink					
		communication or V2X					
		sidelink communication					
PSSCH	SL-SCH	Mandatory for UE					
		supporting sidelink					
		communication or V2X					
		sidelink communication					
PSCCH	N/A	Mandatory for UE					
		supporting sidelink					
		communication or V2X					
		sidelink communication					
NOTE: For sidelink communication, the UE shall be able to perform simultaneous Downlink and sidelink							
communication reception. For sidelink discovery, depending on the UE capability, the UE may be able to							
perform simultaneous Downlink and sidelink discovery receptions. If the UE is unable to perform							
simultaneous Downlink and sidelink discovery receptions, receptions are prioritized according to TS 36.321							
[12]. For V2X sidelink communication, the UE shall be able to perform simultaneous Downlink and V2X							
NOTE: If the configured resources for reception of sidelink communication and sidelink discovery are overlapped,							
	Channel Combination PSDCH PSBCH PSSCH PSCCH E: For sidelink of communication perform simul simultaneous [12]. For V2X sidelink communication perform simultaneous [12]. For V2X sidelink comm	Channel Combination PSDCH PSBCH SL-DCH PSBCH SL-BCH PSCH PSCH SL-SCH PSCH PSCH N/A For sidelink communication, the UE communication reception. For sideling perform simultaneous Downlink and simultaneous Downlink and sidelink [12]. For V2X sidelink communication reception. If the configured resources for reception and sidelink communication reception.	Channel Combination Channel Combination on UE radio access capabilities PSDCH SL-DCH Mandatory for UE supporting sidelink discovery PSBCH SL-BCH Mandatory for UE supporting sidelink communication or V2X sidelink communication PSSCH SL-SCH Mandatory for UE supporting sidelink communication or V2X sidelink communication PSCCH N/A Mandatory for UE supporting sidelink communication or V2X sidelink communication E: For sidelink communication, the UE shall be able to perform s communication reception. For sidelink discovery, depending of perform simultaneous Downlink and sidelink discovery receptions, received. [12]. For V2X sidelink communication, the UE shall be able to sidelink communication reception.				

9 Measurements provided by the physical layer

9.1 Void

9.2 UE Measurements

The list and detailed definition of UE measurements definition is provided in TS 36.214 [11].

9.3 E-UTRAN Measurements

The list and detailed definition of E-UTRAN measurements definition is provided in TS 36.214 [11].

Annex A (informative): Change history

Change history								
Date	TSG#	TSG Doc.	CR	Rev	Cat	Subject/Comment	New	
							version	
11/2006		RP-060795	-			First version : presented at TSG-RAN #34 and TSG-RAN WG2 #56 (11/2006)		
05/2007	RP-36	RP-xyztu				Update including physical layer modelling: submitted at TSG-RAN WG2 #58 (05/2006)		
06/2007	RP-37	R2-072502				Update including physical Services and functions of the Physical Layer: presented and TSG-RAN WG2 #58bis (06/2006)	0.0.2	
06/2007	RP-37	R2-072931				Update after presentation at TSG-RAN WG2 #58bis : physical channel channel terminology used	0.1.0	
09/2007	RP-37	RP-070686				Removal of editor's notes. Presented at TSG-RAN #37 for information	1.0.0	
10/2007	R2- 59bis	R2-074579				Agreements in RAN1 LS received at RAN2#59 have to be implemented in the specification (by RAN2#59bis): Parallel reception of Physical Broadcast Channel (PBCH) and DL-SCH in the same TTI is feasible; 2 new measurements were introduced for LTE, UE measurement "Reference Signal Received Quality (RSRQ)" and eNode B measurement "DL RS TX power".	1.0.2	
10/2007	R2- 59bis	R2-074584				Removal of incorrect Parallel reception of physical channels	1.0.3	
11/2007	RP-38	RP-070914				Submission to RAN for RAN#38 approval	2.0.0	
12/2007	RP-38	-				Apprpved at TSG RAN-38 and placed under change control	8.0.0	
		RP-090124	0002	-		Proposed CR on Parallel reception in LTE	8.1.0	
	RP-43	RP-090124		-		Correction of out-of-date information	8.1.0	
06/2009	RP-44	RP-090509	0005	1		Correction of MBMS	8.2.0	
	RP-44	RP-090509	0006	-		Downlink reception types	8.2.0	
	RP-44	RP-090509		-		Simultaneous reception of transport channels in the LTE	8.2.0	
	RP-44	RP-090509		-		Clarification on the parallel receptions for PDSCHs	8.2.0	
12/2009	RP-46	RP-091341		-		Addition of MBMS reception types	9.0.0	
, _ 0 0 0	RP-46	RP-091346		-		Remove FFSs from RAN2 specifications	9.0.0	
	RP-46	RP-091345		_		Proposed CR to 36.302 on Introduction of CMAS	9.0.0	
03/2010	RP-47	RP-100308		1		Correction to RSRP and RSRQ definition with Receiver Diversity to align with TS 36.214	9.1.0	
06/2010	RP-48	RP-100556	0020	_		Correction to RSRQ definition to align with TS 36.214	9.2.0	
12/2010		RP-101226		3		Introduction of CA to TS36.302	10.0.0	
03/2011		RP-110289		1		Correction to parallel reception and transmission for CA	10.1.0	
03/2011	RP-51	RP-110270		Ŀ		Corrections to TS36.302 on MBMS	10.1.0	
	RP-51	RP-110270				Update and correction to TS36.302 for CA	10.1.0	
06/2011		RP-110269		-		DL Assignment in MBSFN Subframe	10.1.0	
12/2011		RP-110639		-		Corrections to channel model	10.2.0	
03/2012		RP-111716 RP-120326		-		Corrections to channel model Correction to the combination of physical uplink channels	10.3.0	
				1				
09/2012 12/2012		RP-121350		-		Introduction of parallel PRACH and PUSCH/PUCCH/SRS transmission	11.0.0	
12/2012		RP-121951		-		Correction to parallel PRACH, SRS and PUSCH/PUCCH transmission	11.1.0	
00/0040	RP-58	RP-121956		-		Introduction of EPDCCH in TS 36.302	11.1.0	
03/2013		RP-130245		-		Correction to parallel SRS and PUSCH/PUCCH transmission	11.2.0	
06/2013	RP-60 RP-60	RP-130808 RP-130808		-		Clarification on EPDCCH reception in MBSFN subframes Correction on downlink reception type combinations for UEs supporting multiple TAGs	11.3.0	
	RP-60	RP-130808	0045	-		Downlink Reception Type Combinations for MBMS capable UE	11.3.0	
09/2013		RP-131311		-		Miscellaneous correction to 36.302	11.4.0	
03/2014		RP-140355		Ī-		MBMS reception on any configured or configurable SCell	11.5.0	
06/2014		RP-140884		-		Introduction of the Downlink Reception Types for TDD eIMTA	12.0.0	
	RP-64	RP-140892		Ī-		Correction on simultaneous DL physical channels for idle UE	12.0.0	
09/2014		RP-141506		1		Updates for low complexity UEs, and the improvements for the representation of the reception requirements	12.1.0	
12/2014	RP-66	RP-142135	0056	ļ-		Introduction of dual connectivity	12.2.0	
03/2015		RP-150376		-		Removal of unnecessary requirement to receive MIB on SCell	12.3.0	
	RP-68	RP-150921		 -		Introduction of ProSe	12.4.0	
		RP-151443		1		TS36.302 rapporteur's cleanup	12.5.0	
					i .	1 000.002 Tapportour o olourup		
09/2015				-		Corrections to Sidelink in TS 36 302	1260	
09/2015 12/2015	RP-70	RP-152053	0062	-		Corrections to Sidelink in TS 36.302	12.6.0 13.0.0	
09/2015	RP-70		0062 0063	- - 1		Corrections to Sidelink in TS 36.302 Introduction of PUCCH on SCell in CA Introduction of SC-PTM	12.6.0 13.0.0 13.0.0	

Change history							
Date	TSG#	TSG Doc.	CR	Rev	Cat	Subject/Comment	New
							version
	RP-71	RP-160453	0066	2		The introduction of eMTC features	13.1.0
06/2016	RP-72	RP-161078	0070	-		Corrections on the data modulation of Downlink-Shared Channel	13.2.0
	RP-72	RP-161080	0071	1		Correction for sidelink	13.2.0
	RP-72	RP-161080	0072	1		Corrections on sidelink related description in TS36.302	13.2.0
	RP-72	RP-161080	0073	-		SC-PTM reception on non-Pcell	13.2.0
	RP-72	RP-161080	0074	-		Improvements for the representation of eMTC features	13.2.0
	RP-72	RP-161081	0076	1		Introduction of NB-IoT in 36.302	13.2.0
09/2016	RP-73	RP-161758	0078	-		Corrections to NB-IoT downlink reception type combinations	13.3.0
	RP-73	RP-161753	0079	1		Introduction of LAA	13.3.0
	RP-73	RP-161751		1		Introduction of MBSFN measurements	13.3.0
	RP-73	RP-161762		1		Introduction of RS-SINR measurement to 36.302	13.3.0
	RP-73	RP-161755		-		Miscellaneous corrections on DL reception types	13.3.0
09/2016		RP-161746		2		Introducing V2V to TS 36.302	14.0.0
	RP-73	RP-161745		1		Introduction of eLAA	14.0.0
12/2016		RP-162318		-		Miscellaneous corrections to TS 36.302	14.1.0
	RP-74	RP-162328		2		Corrections on V2V descriptions in TS 36.302	14.1.0
	RP-74	RP-162324		1		Inroduce the new RNTIs for SRS Carrier Based Switching	14.1.0
	RP-74	RP-162315		1		Clarification on Reception Type for SC-PTM	14.1.0
03/2017	RP-75	RP-170643		Ŀ	F	Correction on the definition of sidelink in 36.302	14.2.0
	RP-75	RP-170656		1	Α	Correction for MAC SDU and PDU for BCH in NB-IoT	14.2.0
	RP-75	RP-170655		<u> </u>	Α	Correction on channel bandwidth definition for NB-IoT	14.2.0
	RP-75	RP-170637		2	В	Introduction of Rel-14 NB-IoTEnhancements	14.2.0
	RP-75	RP-170636		2	В	Introduction of Rel-14 FeMTC	14.2.0
	RP-75	RP-170633		1	В	Introduction of FeMBMS to 36.302	14.2.0
	RP-75	RP-170635		1	В	Introducing V2X to TS 36.302	14.2.0
06/2017	RP-76	RP-171223		2	F	Correction to SC-MCCH and SC-MTCH reception type	14.3.0
00/2011	RP-76	RP-171234		1	F	Correction on the data modulation of Uplink Shared Channel	14.3.0
	RP-76	RP-171244		1	A	Correction to downlink reception types for BL UEs and UEs in CE	14.3.0
	RP-76	RP-171221		1	F	Correction to Downlink Reception Type Combinations for FeMBMS	14.3.0
12/2017	RP-78	RP-172617		2	F	Correction to V2X descriptions in TS 36.302	14.4.0
12/2011	RP-78	RP-172616		3	F	Correction on downlink reception type combination for SC-PTM in feMTC	14.4.0
	RP-78	RP-172624		1	A	Correction to description of uplink and downlink shared channel physical	14.4.0
	111 70	172024	0117	'		layer model for MTC and NB-IoT.	14.4.0
	RP-78	RP-172615	1191	1	F	Table 8.2-2 correction of the remarks for DL reception type of Sidelink	14.4.0
	10. 70	172010	11101	l'	l'	and FeMBMS and move of EPDCCH remark to the bottom of the table	14.4.0
06/2018	RP-80	RP-181218	1192	2	В	Introduction of shortened TTI and processing time for LTE	15.0.0
00/2010	RP-80	RP-181252		1	В	Introduction of Rel-15 NB-IoT enhancementsin 36.302	15.0.0
	RP-80	RP-181224		<u> </u>	В	Introduction of Rel-15 eMTC enhancements in 36.302	15.0.0
12/2018		RP-182671		2	F	Minor corrections to services provided by physical layer	15.1.0
12/2010	RP-82	RP-182678		2	F	Correction on MCS for V2X sidelink communication in TS 36.302	15.1.0
03/2019		RP-190549		2	F	Number of PDCCH/EPDCCH/SPDCCH received parallel	15.2.0
30/2013		RP-190552		1	F	Correction on PDCCH order	15.2.0
		RP-190549		t:	A	Correction on PDCCH reception type combinations on CSS	15.2.0
03/2020		RP-200361		1	В	Introduction of additional enhancements for NB-IoT in TS 36.302	16.0.0
00/2020	RP-87	RP-200360		1	В	Introduction of additional enhancements for R16 eMTC	16.0.0
07/2020		RP-200300		1	A	Correction on reception type combination for eMTC	16.1.0
01/2020	RP-88	RP-201168		 	A	Adding Reception Type for uplink HARQ ACK feedback for Rel-15 eMTC	16.1.0
03/2022		RP-220507		1	В	Introduction of Rel-17 enhancements for NB-IoT and eMTC	17.0.0
UJ/ZUZZ	175-90	115-52000/	1411	11	ט	Upgraded to Rel-18, no technical change	17.0.0

History

	Document history				
V18.0.0	May 2024	Publication			