ETSI TS 136 212 V15.3.0 (2018-10) ## LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (3GPP TS 36.212 version 15.3.0 Release 15) # Reference RTS/TSGR-0136212vf30 Keywords LTE #### **ETSI** 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 #### Important notice The present document can be downloaded from: <u>http://www.etsi.org/standards-search</u> The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx #### **Copyright Notification** No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media. © ETSI 2018. All rights reserved. DECT[™], PLUGTESTS[™], UMTS[™] and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP[™] and LTE[™] are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M logo is protected for the benefit of its Members. **GSM**® and the GSM logo are trademarks registered and owned by the GSM Association. ## Intellectual Property Rights #### **Essential patents** IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. #### **Trademarks** The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. ## **Foreword** This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP). The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables. The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp. ## Modal verbs terminology In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions). "must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. # Contents | Intelle | ectual Property Rights | 2 | |---------|--|-----| | Forew | /ord | 2 | | Moda | l verbs terminology | 2 | | Forew | vord | 6 | | 1 | Scope | 7 | | 2 | References | 7 | | 3 | Definitions, symbols and abbreviations | 7 | | 3.1 | Definitions | 7 | | 3.2 | Symbols | 7 | | 3.3 | Abbreviations | 8 | | 4 | Mapping to physical channels | 9 | | 4.1 | Uplink | 9 | | 4.2 | Downlink | 9 | | 4.3 | Sidelink | 9 | | 5 | Channel coding, multiplexing and interleaving | 10 | | 5.1 | Generic procedures | | | 5.1.1 | CRC calculation | | | 5.1.2 | Code block segmentation and code block CRC attachment | | | 5.1.3 | Channel coding | | | 5.1.3.1 | · · | | | 5.1.3.2 | The state of s | | | 5.1.3.2 | | | | 5.1.3.2 | | | | 5.1.3.2 | | | | 5.1.4 | Rate matching | | | 5.1.4.1 | | | | 5.1.4.1 | · · | | | 5.1.4.1 | | | | 5.1.4.2 | | | | 5.1.4.2 | 2.1 Sub-block interleaver | 22 | | 5.1.4.2 | | | | 5.1.5 | Code block concatenation | 24 | | 5.2 | Uplink transport channels and control information | | | 5.2.1 | Random access channel | | | 5.2.2 | Uplink shared channel | | | 5.2.2.1 | <u>*</u> | | | 5.2.2.2 | 1 | | | 5.2.2.3 | | | | 5.2.2.4 | Rate matching | 26 | | 5.2.2.5 | Code block concatenation | 26 | | 5.2.2.6 | Channel coding of control information | 26 | | 5.2.2.6 | 5.1 Channel quality information formats for wideband CQI reports | 44 | | 5.2.2.6 | Channel quality information formats for higher layer configured subband CQI reports | 67 | | 5.2.2.6 | | | | 5.2.2.6 | Channel coding for CQI/PMI information in PUSCH | 119 | | 5.2.2.6 | | 120 | | 5.2.2.6 | 5A Channel coding of AUL-UCI | | | 5.2.2.7 | Data and control multiplexing | 122 | | 5.2.2.7 | Data and control multiplexing for Partial PUSCH Mode 1 | 123 | | 5.2.2.7 | | | | 5.2.2.8 | | | | 5.2.3 | Uplink control information on PUCCH | | | 5.2.3.1 | • | | | 5.2.3.1 | | | | 5.2.3.2 | Channel coding for UCI scheduling request | | |-------------------------|--|-----| | 5.2.3.3 | Channel coding for UCI channel quality information | | | 5.2.3.3.1 | Channel quality information formats for wideband reports | | | 5.2.3.3.2 | Channel quality information formats for UE-selected sub-band reports | 154 | | 5.2.3.4 | Channel coding for UCI channel quality information and HARQ-ACK | 168 | | 5.2.4 | Uplink control information on PUSCH without UL-SCH data | 169 | | 5.2.4.1 | Channel coding of control information | 169 | | 5.2.4.2 | Control information mapping | 171 | | 5.2.4.3 | Channel interleaver | | | 5.3 | Downlink transport channels and control information | | | 5.3.1 | Broadcast channel | | | 5.3.1.1 | Transport block CRC attachment | | | 5.3.1.2 | Channel coding | | | 5.3.1.3 | Rate matching | | | 5.3.2 | Downlink shared channel, Paging channel and Multicast channel | | | 5.3.2.1 | Transport block CRC attachment | | | 5.3.2.2 | Code block segmentation and code block CRC attachment | | | 5.3.2.3 | Channel coding | | | 5.3.2.4 | Rate matching | | | 5.3.2.5 | Code block concatenation | | | 5.3.3 | Downlink control information | | | 5.3.3.1 | DCI formats | | | 5.3.3.1.1 | Format 0 | | | 5.3.3.1.1
5.3.3.1.1A | Format 0A. | | | 5.3.3.1.1A | Format 0B. | | | | | | | 5.3.3.1.1C | Format 0C | | | 5.3.3.1.2 | Format 1 | | | 5.3.3.1.3 | Format 1A. | | | 5.3.3.1.3A | Format 1B | | | 5.3.3.1.4 | Format
1C | | | 5.3.3.1.4A | Format 1D | | | 5.3.3.1.5 | Format 2 | | | 5.3.3.1.5A | Format 2A | | | 5.3.3.1.5B | Format 2B | | | 5.3.3.1.5C | Format 2C | | | 5.3.3.1.5D | Format 2D | | | 5.3.3.1.6 | Format 3 | | | 5.3.3.1.7 | Format 3A | | | 5.3.3.1.7A | Format 3B | | | 5.3.3.1.8 | Format 4 | | | 5.3.3.1.8A | Format 4A | | | 5.3.3.1.8B | Format 4B | | | 5.3.3.1.9 | Format 5 | | | 5.3.3.1.9A | Format 5A | | | 5.3.3.1.10 | Format 6-0A | 212 | | 5.3.3.1.11 | Format 6-0B | 213 | | 5.3.3.1.12 | Format 6-1A | 214 | | 5.3.3.1.13 | Format 6-1B | 217 | | 5.3.3.1.14 | Format 6-2 | 219 | | 5.3.3.1.15 | Format 7-0A | 220 | | 5.3.3.1.16 | Format 7-0B | 221 | | 5.3.3.1.17 | Format 7-1A | 222 | | 5.3.3.1.18 | Format 7-1B | | | 5.3.3.1.19 | Format 7-1C | | | 5.3.3.1.20 | Format 7-1D | | | 5.3.3.1.21 | Format 7-1E | | | 5.3.3.1.22 | Format 7-1F | | | 5.3.3.1.23 | Format 7-1G | | | 5.3.3.2 | CRC attachment | | | 5.3.3.3 | Channel coding | | | 5.3.3.4 | Rate matching | | | 5.3.4
5.3.4 | Control format indicator | | | J.J.T | CONTROL IOTHIA MAICAIOI | | | History. | | 248 | |-----------|--|-----| | Annex A | (informative): Change history | 242 | | 6.4.3.3 | DCI Format N2 | 240 | | 6.4.3.2 | DCI Format N1 | | | 6.4.3.1 | DCI Format N0 | | | 6.4.3 | Downlink control information | | | 6.4.2 | Downlink shared channel and Paging channel | | | 6.4.1 | Broadcast channel | | | 6.4 | Downlink transport channels and control information | | | 6.3.4 | Scheduling request | | | 6.3.3 | Uplink control information on NPUSCH without UL-SCH data | | | 6.3.2 | Uplink shared channel | | | 6.3.1 | Random access channel | 236 | | 6.3 | Uplink transport channels and control information | 236 | | 6.2 | Generic procedures | | | 6.1 | Mapping to physical channels | | | 6 Na | arrowband IoT | 235 | | 5.4.4 | Sidelink discovery channel | 235 | | 5.4.3.1.2 | SCI format 1 | | | 5.4.3.1.1 | SCI format 0 | 234 | | 5.4.3.1 | SCI formats | 234 | | 5.4.3 | Sidelink control information | 234 | | 5.4.2 | Sidelink shared channel | | | 5.4.1.3 | Rate matching | | | 5.4.1.2 | Channel coding | | | 5.4.1.1 | Transport block CRC attachment | | | 5.4.1 | Sidelink broadcast channel | | | 5.4 | Sidelink transport channels and control information. | | | 5.3.5.1 | Channel coding | | | 5.3.4.1 | HARQ indicator (HI) | | | 5.3.4.1 | Channel coding | 231 | ## **Foreword** This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP). The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows: Version x.y.z where: - x the first digit: - 1 presented to TSG for information; - 2 presented to TSG for approval; - 3 or greater indicates TSG approved document under change control. - Y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc. - z the third digit is incremented when editorial only changes have been incorporated in the document. ## 1 Scope The present document specifies the coding, multiplexing and mapping to physical channels for E-UTRA. ## 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. - References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific. - For a specific reference, subsequent revisions do not apply. - For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*. - [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [2] 3GPP TS 36.211: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation". [3] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures". - [4] 3GPP TS 36.306: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio access capabilities". - [5] 3GPP TS36.321, "Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification" - [6] 3GPP TS36.331, "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC) protocol specification" - [7] 3GPP TS23.285, "Technical Specification Group Services and System Aspects; Architecture enhancements for V2X services" - [8] 3GPP TS 37.213: "Physical layer procedures for shared spectrum channel access". ## 3 Definitions, symbols and abbreviations ## 3.1 Definitions For the purposes of the present document, the terms and definitions given in [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in [1]. **BL/CE:** A Bandwidth-reduced Low-complexity or Coverage Enhanced (BL/CE) UE is capable of coverage enhancement mode A support and intends to access a cell in a coverage enhancement mode or is configured in a coverage enhancement mode. Non-BL/CE: A non-BL/CE UE is a UE that does not fulfil the conditions in the above definition of a BL/CE UE. ## 3.2 Symbols For the purposes of the present document, the following symbols apply: $N_{\rm RB}^{\rm DL}$ Downlink bandwidth configuration, expressed in number of resource blocks [2] $N_{\rm RB}^{\rm UL}$ Uplink bandwidth configuration, expressed in number of resource blocks [2] $N_{\rm RB}^{\rm SL}$ Sidelink bandwidth configuration, expressed in number of resource blocks [2] $N_{\rm subchannel}^{\rm SL}$ Number of sidelink subchannels configured on the resource pool of a subcarrier [2] $N_{\rm sc}^{\rm RB}$ Resource block size in the frequency domain, expressed as a number of subcarriers $N_{\mathrm{symb}}^{\mathrm{PUSCH}}$ Number of SC-FDMA symbols carrying PUSCH in a subframe $N_{\text{symb}}^{\text{PUSCH-initial}}$ Number of SC-FDMA symbols carrying PUSCH in the initial PUSCH transmission subframe $N_{ m symb}^{ m UL}$ Number of SC-FDMA symbols in an uplink slot $N_{ m symb}^{ m SL}$ Number of SC-FDMA symbols in a sidelink slot N_{SRS} Number of SC-FDMA symbols used for SRS transmission in a subframe (0 or 1). ## 3.3 Abbreviations For the purposes of the present document, the following abbreviations apply: AUL Autonomous Uplink AUL-DFI AUL downlink feedback information AUL-UCI AUL uplink control information BCH Broadcast channel CFI Control Format Indicator COT Channel Occupancy Time CP Cyclic Prefix CSI Channel State Information DCI Downlink Control Information DL-SCH Downlink Shared channel EN-DC E-UTRA NR Dual Connectivity with MCG using E-UTRA and SCG using NR EPDCCH Enhanced Physical Downlink Control channel FDD Frequency Division Duplexing HI HARQ indicator LAA Licensed-Assisted Access MCH Multicast channel MPDCCH MTC Physical Downlink Control Channel MUST Multiuser Superposition Transmission NPBCH Narrowband Physical Broadcast channel NPDCCH Narrowband Physical Downlink Control channel NPDSCH Narrowband Physical Downlink Shared channel NPRACH Narrowband Physical Random Access channel NPUSCH Narrowband Physical Uplink Shared channel PBCH Physical Broadcast channel PCFICH Physical Control Format Indicator channel PCH Paging channel **PDCCH** Physical Downlink Control channel **PDSCH** Physical Downlink Shared channel Physical HARQ indicator channel **PHICH PMCH** Physical Multicast channel PMI Precoding Matrix Indicator Physical Random Access channel **PRACH** Physical Sidelink Broadcast Channel **PSBCH PSCCH** Physical Sidelink Control Channel Physical Sidelink Discovery Channel **PSDCH** Physical Sidelink Shared Channel **PSSCH PUCCH** Physical Uplink Control channel **PUSCH** Physical Uplink Shared channel RACH Random Access channel RI Rank Indication SCI Sidelink Control Information SL-BCH Sidelink Broadcast Channel | SL-DCH | Sidelink Discovery Channel | |--------|---| | SL-SCH | Sidelink Shared Channel | | SPDCCH | Short Physical Downlink Control channel | | SPUCCH | Short Physical Uplink Control channel | | SR | Scheduling Request | | SRS | Sounding Reference Signal | | TDD | Time Division Duplexing | | TPMI | Transmitted Precoding Matrix Indicator | | UCI | Uplink Control Information | | UL-SCH | Uplink Shared channel | # 4 Mapping to physical channels The mapping to physical channels for Narrowband IoT is provided in subclause 6.1. ## 4.1 Uplink Table 4.1-1 specifies the mapping of the uplink transport channels to their corresponding physical channels. Table 4.1-2 specifies the mapping of the uplink control channel information to its corresponding physical channel. **Table 4.1-1** | TrCH | Physical Channel | |--------|------------------| | UL-SCH | PUSCH | | RACH | PRACH | **Table 4.1-2** | Control information | Physical Channel | |---------------------|----------------------| | UCI | PUCCH, PUSCH, SPUCCH | ## 4.2 Downlink Table 4.2-1 specifies the mapping of the downlink transport channels to their corresponding physical channels. Table 4.2-2 specifies the mapping of the downlink control channel information to its corresponding physical channel. **Table 4.2-1** | TrCH | Physical Channel | |--------|------------------| | DL-SCH | PDSCH | | BCH | PBCH | | PCH | PDSCH | | MCH | PMCH | **Table 4.2-2** | Control information | Physical Channel | |---------------------|----------------------------------| | CFI | PCFICH | | HI | PHICH | | DCI | PDCCH, EPDCCH, MPDCCH,
SPDCCH | ## 4.3 Sidelink Table 4.3-1 specifies the mapping of the sidelink transport channels to their corresponding physical channels. Table 4.3-2 specifies the mapping of the sidelink control information to its corresponding physical channel. **Table 4.3-1** | TrCH | Physical Channel |
--------|------------------| | SL-SCH | PSSCH | | SL-BCH | PSBCH | | SL-DCH | PSDCH | **Table 4.3-2** | Control information | Physical Channel | |---------------------|------------------| | SCI | PSCCH | ## 5 Channel coding, multiplexing and interleaving Data and control streams from/to MAC layer are encoded /decoded to offer transport and control services over the radio transmission link. Channel coding scheme is a combination of error detection, error correcting, rate matching, interleaving and transport channel or control information mapping onto/splitting from physical channels. ## 5.1 Generic procedures This subclause contains coding procedures which are used for more than one transport channel or control information type. ### 5.1.1 CRC calculation Denote the input bits to the CRC computation by a_0 , a_1 , a_2 , a_3 ,..., a_{A-1} , and the parity bits by p_0 , p_1 , p_2 , p_3 ,..., p_{L-1} . A is the size of the input sequence and L is the number of parity bits. The parity bits are generated by one of the following cyclic generator polynomials: - $g_{CRC24A}(D) = [D^{24} + D^{23} + D^{18} + D^{17} + D^{14} + D^{11} + D^{10} + D^7 + D^6 + D^5 + D^4 + D^3 + D + 1]$ and; - $g_{CRC24B}(D) = [D^{24} + D^{23} + D^6 + D^5 + D + 1]$ for a CRC length L = 24 and; - $g_{CRC16}(D) = [D^{16} + D^{12} + D^5 + 1]$ for a CRC length L = 16. - $g_{CRCS}(D) = [D^8 + D^7 + D^4 + D^3 + D + 1]$ for a CRC length of L = 8. The encoding is performed in a systematic form, which means that in GF(2), the polynomial: $$a_0 D^{A+23} + a_1 D^{A+22} + \ldots + a_{A-1} D^{24} + p_0 D^{23} + p_1 D^{22} + \ldots + p_{22} D^1 + p_{23}$$ yields a remainder equal to 0 when divided by the corresponding length-24 CRC generator polynomial, $g_{CRC24A}(D)$ or $g_{CRC24B}(D)$, the polynomial: $$a_0 D^{A+15} + a_1 D^{A+14} + \ldots + a_{A-1} D^{16} + p_0 D^{15} + p_1 D^{14} + \ldots + p_{14} D^1 + p_{15}$$ yields a remainder equal to 0 when divided by $g_{CRC16}(D)$, and the polynomial: $$a_0 D^{A+7} + a_1 D^{A+6} + \dots + a_{A-1} D^8 + p_0 D^7 + p_1 D^6 + \dots + p_6 D^1 + p_7$$ yields a remainder equal to 0 when divided by $g_{CRC8}(D)$. The bits after CRC attachment are denoted by $b_0, b_1, b_2, b_3, ..., b_{B-1}$, where B = A + L. The relation between a_k and b_k is: $$b_k = a_k$$ for $k = 0, 1, 2, ..., A-1$ $$b_k = p_{k-A}$$ for $k = A, A+1, A+2, ..., A+L-1$. ## 5.1.2 Code block segmentation and code block CRC attachment The input bit sequence to the code block segmentation is denoted by $b_0, b_1, b_2, b_3, ..., b_{B-1}$, where B > 0. If B is larger than the maximum code block size Z, segmentation of the input bit sequence is performed and an additional CRC sequence of L = 24 bits is attached to each code block. The maximum code block size is: $$-Z = 6144.$$ If the number of filler bits F calculated below is not 0, filler bits are added to the beginning of the first block. Note that if B < 40, filler bits are added to the beginning of the code block. The filler bits shall be set to <*NULL*> at the input to the encoder. Total number of code blocks *C* is determined by: if $$B \le Z$$ $$L = 0$$ Number of code blocks: $C = 1$ $$B' = B$$ else $$L = 24$$ Number of code blocks: $C = \lceil B/(Z - L) \rceil$. $$B' = B + C \cdot L$$ end if The bits output from code block segmentation, for $C \neq 0$, are denoted by $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$, where r is the code block number, and K_r is the number of bits for the code block number r. Number of bits in each code block (applicable for $C \neq 0$ only): First segmentation size: K_{+} = minimum K in table 5.1.3-3 such that $C \cdot K \ge B'$ if C = 1 the number of code blocks with length K_{+} is $C_{+}=1$, $K_{-}=0$, $C_{-}=0$ else if C > 1 Second segmentation size: K_{-} = maximum K in table 5.1.3-3 such that $K < K_{+}$ $$\Delta_K = K_+ - K_-$$ Number of segments of size K_{-} : $C_{-} = \left\lfloor \frac{C \cdot K_{+} - B'}{\Delta_{K}} \right\rfloor$. Number of segments of size K_+ : $C_+ = C - C_-$. end if Number of filler bits: $F = C_+ \cdot K_+ + C_- \cdot K_- - B'$ for k = 0 to F-1 -- Insertion of filler bits $$c_{0k} = < NULL >$$ ``` end for k = F s = 0 for r = 0 to C-1 if r < C_{-} K_r = K_- else K_r = K_+ end if while k < K_r - L c_{rk} = b_s k = k + 1 s = s + 1 end while if C > 1 The sequence c_{r0}, c_{r1}, c_{r2}, c_{r3}, \dots, c_{r(K_r-L-1)} is used to calculate the CRC parity bits p_{r0}, p_{r1}, p_{r2}, \dots, p_{r(L-1)} according to subclause 5.1.1 with the generator polynomial g_{CRC24B}(D). For CRC calculation it is assumed that filler bits, if present, have the value 0. while k < K_r c_{rk} = p_{r(k+L-K_r)} k = k + 1 end while end if k = 0 end for ``` ## 5.1.3 Channel coding The bit sequence input for a given code block to channel coding is denoted by $c_0, c_1, c_2, c_3, ..., c_{K-1}$, where K is the number of bits to encode. After encoding the bits are denoted by $d_0^{(i)}, d_1^{(i)}, d_2^{(i)}, d_3^{(i)}, ..., d_{D-1}^{(i)}$, where D is the number of encoded bits per output stream and i indexes the encoder output stream. The relation between c_k and $d_k^{(i)}$ and between K and D is dependent on the channel coding scheme. The following channel coding schemes can be applied to TrCHs: - tail biting convolutional coding; - turbo coding. Usage of coding scheme and coding rate for the different types of TrCH is shown in table 5.1.3-1. Usage of coding scheme and coding rate for the different control information types is shown in table 5.1.3-2. The values of D in connection with each coding scheme: - tail biting convolutional coding with rate 1/3: D = K; - turbo coding with rate 1/3: D = K + 4. The range for the output stream index i is 0, 1 and 2 for both coding schemes. Table 5.1.3-1: Usage of channel coding scheme and coding rate for TrCHs | TrCH | Coding scheme | Coding rate | |--------|----------------------|-------------| | UL-SCH | | | | DL-SCH | | | | PCH | Turbo coding | 1/3 | | MCH | ruibo coding | 1/3 | | SL-SCH | | | | SL-DCH | | | | BCH | Tail biting | | | SL-BCH | convolutional coding | 1/3 | Table 5.1.3-2: Usage of channel coding scheme and coding rate for control information | Control Information | Coding scheme | Coding rate | |---------------------|-----------------|-------------| | | Tail biting | | | DCI | convolutional | 1/3 | | | coding | | | CFI | Block code | 1/16 | | HI | Repetition code | 1/3 | | | Block code | variable | | UCI | Tail biting | | | l OCI | convolutional | 1/3 | | | coding | | | SCI | Tail biting | | | | convolutional | 1/3 | | | coding | | ## 5.1.3.1 Tail biting convolutional coding A tail biting convolutional code with constraint length 7 and coding rate 1/3 is defined. The configuration of the convolutional encoder is presented in figure 5.1.3-1. The initial value of the shift register of the encoder shall be set to the values corresponding to the last 6 information bits in the input stream so that the initial and final states of the shift register are the same. Therefore, denoting the shift register of the encoder by $s_0, s_1, s_2, ..., s_5$, then the initial value of the shift register shall be set to Figure 5.1.3-1: Rate 1/3 tail biting convolutional encoder The encoder output streams $d_k^{(0)}$, $d_k^{(1)}$ and $d_k^{(2)}$ correspond to the first, second and third parity streams, respectively as shown in Figure 5.1.3-1. ### 5.1.3.2 Turbo coding #### 5.1.3.2.1 Turbo encoder The scheme of turbo encoder is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state constituent encoders and one turbo code internal interleaver. The coding rate of turbo encoder is 1/3. The structure of turbo encoder is illustrated in figure 5.1.3-2. The transfer function of the 8-state constituent code for the PCCC is: $$G(D) = \left[1, \frac{g_1(D)}{g_0(D)}\right],$$ where $$g_0(D) = 1 + D^2 + D^3,$$ $$g_1(D) = 1 + D + D^3$$. The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when starting to encode the input bits. The output from the turbo encoder is $$d_k^{(0)} = x_k$$ $$d_k^{(1)} = z_k$$ $$d_k^{(2)} = z_k'$$ for k = 0,1,2,..., K-1. If the code block to be encoded is the 0-th code block and the number of filler bits is greater than zero, i.e., F > 0, then the encoder shall set c_k , = 0, k = 0,...,(F-1) at its input and shall set $d_k^{(0)} = \langle NULL \rangle$, k = 0,...,(F-1) and $d_k^{(1)} = \langle NULL \rangle$, k = 0,...,(F-1) at its output. The bits input to the turbo encoder are denoted by $c_0, c_1, c_2, c_3, ..., c_{K-1}$, and the bits output from the first and second 8-state constituent encoders are denoted by $z_0, z_1, z_2, z_3, ..., z_{K-1}$ and $z_0', z_1', z_2', z_3', ..., z_{K-1}'$, respectively. The bits output from the turbo code internal interleaver are denoted by $c_0', c_1', ..., c_{K-1}'$, and these bits are to be the input to the second 8-state constituent encoder. Figure 5.1.3-2: Structure of rate 1/3 turbo encoder (dotted lines apply for trellis termination only) #### 5.1.3.2.2 Trellis termination for turbo encoder Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are padded after the encoding of information bits. The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 5.1.3-2 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 5.1.3-2 in lower position) while the first constituent encoder is disabled. The transmitted bits for trellis termination shall then be: $$\begin{split} &d_{K}^{(0)} = x_{K}\,,\; d_{K+1}^{(0)} = z_{K+1},\; d_{K+2}^{(0)} = x_{K}'\,,\; d_{K+3}^{(0)} = z_{K+1}'\\ &d_{K}^{(1)} = z_{K}\,,\; d_{K+1}^{(1)} = x_{K+2}\,,\; d_{K+2}^{(1)} = z_{K}'\,,\; d_{K+3}^{(1)} = x_{K+2}'\\ &d_{K}^{(2)} = x_{K+1}\,,\;
d_{K+1}^{(2)} = z_{K+2}\,,\; d_{K+2}^{(2)} = x_{K+1}'\,,\; d_{K+3}^{(2)} = z_{K+2}'\\ \end{split}$$ #### 5.1.3.2.3 Turbo code internal interleaver The bits input to the turbo code internal interleaver are denoted by $c_0, c_1, ..., c_{K-1}$, where K is the number of input bits. The bits output from the turbo code internal interleaver are denoted by $c_0, c_1', ..., c_{K-1}'$. The relationship between the input and output bits is as follows: $$c'_i = c_{\Pi(i)}, i=0, 1..., (K-1)$$ where the relationship between the output index i and the input index $\Pi(i)$ satisfies the following quadratic form: $$\Pi(i) = (f_1 \cdot i + f_2 \cdot i^2) \mod K$$ The parameters f_1 and f_2 depend on the block size K and are summarized in Table 5.1.3-3. Table 5.1.3-3: Turbo code internal interleaver parameters | i | Κ | f_1 | f_2 | |----------|------------|------------|-----------|----------|------------|------------|-----------------|------------|--------------|------------|------------|------------|--------------|-----------|-----------------| | 1 | 40 | 3 | 10 | 48 | 416 | 25 | 52 | 95 | 1120 | 67 | 140 | 142 | 3200 | 111 | 240 | | 2 | 48 | 7 | 12 | 49 | 424 | 51 | 106 | 96 | 1152 | 35 | 72 | 143 | 3264 | 443 | 204 | | 3 | 56 | 19 | 42 | 50 | 432 | 47 | 72 | 97 | 1184 | 19 | 74 | 144 | 3328 | 51 | 104 | | 4 | 64 | 7 | 16 | 51 | 440 | 91 | 110 | 98 | 1216 | 39 | 76 | 145 | 3392 | 51 | 212 | | 5 | 72 | 7 | 18 | 52 | 448 | 29 | 168 | 99 | 1248 | 19 | 78 | 146 | 3456 | 451 | 192 | | 6 | 80 | 11 | 20 | 53 | 456 | 29 | 114 | 100 | 1280 | 199 | 240 | 147 | 3520 | 257 | 220 | | 7 | 88 | 5 | 22 | 54 | 464 | 247 | 58 | 101 | 1312 | 21 | 82 | 148 | 3584 | 57 | 336 | | 8 | 96 | 11 | 24 | 55 | 472 | 29 | 118 | 102 | 1344 | 211 | 252 | 149 | 3648 | 313 | 228 | | 9 | 104 | 7 | 26 | 56 | 480 | 89 | 180 | 103 | 1376 | 21 | 86 | 150 | 3712 | 271 | 232 | | 10 | 112 | 41 | 84 | 57 | 488 | 91 | 122 | 104 | 1408 | 43 | 88 | 151 | 3776 | 179 | 236 | | 11 | 120 | 103 | 90 | 58 | 496 | 157 | 62 | 105 | 1440 | 149 | 60 | 152 | 3840 | 331 | 120 | | 12 | 128 | 15 | 32 | 59 | 504 | 55 | 84 | 106 | 1472 | 45 | 92 | 153 | 3904 | 363 | 244 | | 13 | 136 | 9 | 34 | 60 | 512 | 31 | 64 | 107 | 1504 | 49 | 846 | 154 | 3968 | 375 | 248 | | 14 | 144 | 17 | 108 | 61 | 528 | 17 | 66 | 108 | 1536 | 71 | 48 | 155 | 4032 | 127 | 168 | | 15 | 152 | 9 | 38 | 62 | 544 | 35 | 68 | 109 | 1568 | 13 | 28 | 156 | 4096 | 31 | 64 | | 16 | 160 | 21 | 120 | 63 | 560 | 227 | 420 | 110 | 1600 | 17 | 80 | 157 | 4160 | 33 | 130 | | 17 | 168 | 101 | 84 | 64 | 576 | 65 | 96 | 111 | 1632 | 25 | 102 | 158 | 4224 | 43 | 264 | | 18 | 176 | 21 | 44 | 65 | 592 | 19 | 74 | 112 | 1664 | 183 | 104 | 159 | 4288 | 33 | 134 | | 19 | 184 | 57 | 46 | 66 | 608 | 37 | 76 | 113 | 1696 | 55 | 954 | 160 | 4352 | 477 | 408 | | 20 | 192 | 23 | 48 | 67 | 624 | 41 | 234 | 114 | 1728 | 127 | 96 | 161 | 4416 | 35 | 138 | | 21 | 200 | 13 | 50 | 68 | 640 | 39 | 80 | 115 | 1760 | 27 | 110 | 162 | 4480 | 233 | 280 | | 22 | 208 | 27 | 52 | 69 | 656 | 185 | 82 | 116 | 1792 | 29 | 112 | 163 | 4544 | 357 | 142 | | 23 | 216 | 11 | 36 | 70 | 672 | 43 | 252 | 117 | 1824 | 29 | 114 | 164 | 4608 | 337 | 480 | | 24 | 224 | 27 | 56 | 71 | 688 | 21 | 86 | 118 | 1856 | 57 | 116 | 165 | 4672 | 37 | 146 | | 25 | 232 | 85 | 58 | 72 | 704 | 155 | 44 | 119 | 1888 | 45 | 354 | 166 | 4736 | 71 | 444 | | 26 | 240 | 29 | 60 | 73 | 720 | 79 | 120 | 120 | 1920 | 31 | 120 | 167 | 4800 | 71 | 120 | | 27 | 248 | 33 | 62 | 74 | 736 | 139 | 92 | 121 | 1952 | 59 | 610 | 168 | 4864 | 37 | 152 | | 28 | 256 | 15 | 32 | 75 | 752 | 23 | 94 | 122 | 1984 | 185 | 124 | 169 | 4928 | 39 | 462 | | 29 | 264 | 17 | 198 | 76 | 768 | 217 | 48 | 123 | 2016 | 113 | 420 | 170 | 4992 | 127 | 234 | | 30 | 272 | 33 | 68 | 77 | 784 | 25 | 98 | 124 | 2048 | 31 | 64 | 171 | 5056 | 39 | 158 | | 31 | 280 | 103 | 210 | 78 | 800 | 17 | 80 | 125 | 2112 | 17 | 66 | 172 | 5120 | 39 | 80 | | 32 | 288 | 19 | 36 | 79 | 816 | 127 | 102 | 126 | 2176 | 171 | 136 | 173 | 5184 | 31 | 96 | | 33 | 296 | 19 | 74 | 80 | 832 | 25 | 52 | 127 | 2240 | 209 | 420 | 174 | 5248 | 113 | 902 | | 34 | 304 | 37 | 76 | 81 | 848 | 239 | 106 | 128 | 2304 | 253 | 216 | 175 | 5312 | 41 | 166 | | 35 | 312 | 19 | 78 | 82 | 864 | 17 | 48 | 129 | 2368 | 367 | 444 | 176 | 5376 | 251 | 336 | | 36
37 | 320
328 | 21
21 | 120
82 | 83
84 | 880 | 137
215 | 110
112 | 130
131 | 2432
2496 | 265
181 | 456
468 | 177
178 | 5440 | 43
21 | 170
86 | | | | | | | 896 | | | | | | | | 5504 | | | | 38 | 336
344 | 115
193 | 84
86 | 85
86 | 912
928 | 29
15 | 114
58 | 132
133 | 2560
2624 | 39
27 | 80
164 | 179
180 | 5568
5632 | 43
45 | 174
176 | | 40 | 352 | 21 | 44 | 87 | | | | 134 | | 127 | 504 | 181 | | 45 | 178 | | 40 | 360 | 133 | 90 | 88 | 944
960 | 147
29 | 118
60 | 134 | 2688
2752 | 143 | 172 | 182 | 5696
5760 | 45
161 | 120 | | 42 | 368 | 81 | 46 | 89 | 976 | 59 | 122 | 136 | 2816 | 43 | 88 | 183 | 5824 | 89 | 182 | | 43 | 376 | 45 | 94 | 90 | 992 | 65 | 124 | 137 | 2880 | 29 | 300 | 184 | 5888 | 323 | 184 | | 44 | 384 | 23 | 48 | 91 | 1008 | 55 | 84 | 138 | 2944 | 45 | 92 | 185 | 5952 | 47 | 186 | | 45 | 392 | 243 | 98 | 92 | 1024 | 31 | 64 | 139 | 3008 | 157 | 188 | 186 | 6016 | 23 | 94 | | 46 | 400 | 151 | 40 | 93 | 1056 | 17 | 66 | 140 | 3072 | 47 | 96 | 187 | 6080 | 47 | 190 | | 47 | 408 | 155 | 102 | 94 | 1088 | 171 | 204 | 141 | 3136 | 13 | 28 | 188 | 6144 | 263 | 480 | | 47 | +00 | 100 | 102 | 34 | 1000 | 1/1 | ∠∪ 4 | 141 | 3130 | 10 | 20 | 100 | 0144 | 200 | 1 00 | ## 5.1.4 Rate matching ## 5.1.4.1 Rate matching for turbo coded transport channels The rate matching for turbo coded transport channels is defined per coded block and consists of interleaving the three information bit streams $d_k^{(0)}$, $d_k^{(1)}$ and $d_k^{(2)}$, followed by the collection of bits and the generation of a circular buffer as depicted in Figure 5.1.4-1. The output bits for each code block are transmitted as described in subclause 5.1.4.1.2. Figure 5.1.4-1. Rate matching for turbo coded transport channels The bit stream $d_k^{(0)}$ is interleaved according to the sub-block interleaver defined in subclause 5.1.4.1.1 with an output sequence defined as $v_0^{(0)}, v_1^{(0)}, v_2^{(0)}, ..., v_{K_{\Pi}-1}^{(0)}$ and where K_{Π} is defined in subclause 5.1.4.1.1. The bit stream $d_k^{(1)}$ is interleaved according to the sub-block interleaver defined in subclause 5.1.4.1.1 with an output sequence defined as $v_0^{(1)}, v_1^{(1)}, v_2^{(1)}, ..., v_{K_{\Pi}-1}^{(1)}$. The bit stream $d_k^{(2)}$ is interleaved according to the sub-block interleaver defined in subclause 5.1.4.1.1 with an output sequence defined as $v_0^{(2)}, v_1^{(2)}, v_2^{(2)}, ..., v_{K_{\Pi}-1}^{(2)}$. The sequence of bits e_k for transmission is generated according to subclause 5.1.4.1.2. #### 5.1.4.1.1 Sub-block interleaver The bits input to the block interleaver are denoted by $d_0^{(i)}, d_1^{(i)}, d_2^{(i)}, ..., d_{D-1}^{(i)}$, where D is the number of bits. The output bit sequence from the block interleaver is derived as follows: - (1) Assign $C_{subblock}^{TC} = 32$ to be the number of columns of the matrix. The columns of the matrix are numbered 0, 1, 2,..., $C_{subblock}^{TC} 1$ from left to right. - (2) Determine the number of rows of the matrix $R_{subblock}^{TC}$, by finding minimum integer $R_{subblock}^{TC}$ such that: $$D \le \left(R_{subblock}^{TC} \times C_{subblock}^{TC} \right)$$ The rows of rectangular matrix are numbered $0, 1, 2, ..., R_{subblock}^{TC} - 1$ from top to bottom. (3) If $\left(R_{subblock}^{TC} \times C_{subblock}^{TC}\right) > D$, then $N_D = \left(R_{subblock}^{TC} \times C_{subblock}^{TC} - D\right)$ dummy bits are padded such that $y_k = \langle NULL \rangle$ for $k = 0, 1, ..., N_D - 1$. Then, $y_{N_D + k} = d_k^{(i)}$, k = 0, 1, ..., D - 1, and the bit sequence y_k is written into the $\left(R_{subblock}^{TC} \times C_{subblock}^{TC}\right)$ matrix row by row starting with bit y_0 in column 0 of row 0: $$\begin{bmatrix} y_0 & y_1 & y_2 & \cdots & y_{C_{subblock}^{TC}-1} \\ y_{C_{subblock}^{TC}} & y_{C_{subblock}^{TC}+1} & y_{C_{subblock}^{TC}+2} & \cdots & y_{2C_{subblock}^{TC}-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{(R_{subblock}^{TC}-1)\times C_{subblock}^{TC}} & y_{(R_{subblock}^{TC}-1)\times C_{subblock}^{TC}+1} & y_{(R_{subblock}^{TC}-1)\times C_{subblock}^{TC}-1)\times C_{subblock}^{TC}+1} \end{bmatrix}$$ For $d_k^{(0)}$ and $d_k^{(1)}$: (4) Perform the inter-column permutation for the matrix based on the pattern $\langle P(j) \rangle_{j \in \{0,1,\dots,C_{subblock}^{TC}-1\}}$ that is shown in table 5.1.4-1, where P(j) is the original column position of the j-th permuted column. After permutation of the columns, the inter-column permuted $\left(R_{subblock}^{TC} \times C_{subblock}^{TC}\right)$ matrix is equal to $$\begin{bmatrix} y_{P(0)} & y_{P(1)} & y_{P(2)} & \cdots & y_{P(C_{subblock}^{TC}-1)} \\ y_{P(0)+C_{subblock}^{TC}} & y_{P(1)+C_{subblock}^{TC}} & y_{P(2)+C_{subblock}^{TC}} & \cdots & y_{P(C_{subblock}^{TC}-1)+C_{subblock}^{TC}} \\ \vdots & \vdots & \ddots & \vdots \\ y_{P(0)+(R_{subblock}^{TC}-1)\times C_{subblock}^{TC}} & y_{P(1)+(R_{subblock}^{TC}-1)\times C_{subblock}^{TC}} & y_{P(2)+(R_{subblock}^{TC}-1)\times C_{subblock}^{TC}} & \cdots & y_{P(C_{subblock}^{TC}-1)+(R_{subblock}^{TC}-1)\times C_{subblock}^{TC}} \\ \end{bmatrix}$$ (5) The output of the block interleaver is the bit sequence read out column by column from the inter-column permuted $\left(R_{subblock}^{TC} \times C_{subblock}^{TC}\right)$ matrix. The bits after sub-block interleaving are denoted by $v_0^{(i)}$, $v_1^{(i)}$, $v_2^{(i)}$,..., $v_{K_{\Pi}-1}^{(i)}$, where $v_0^{(i)}$ corresponds to $y_{P(0)}$, $v_1^{(i)}$ to $y_{P(0)+C_{subblock}^{TC}}$... and $K_{\Pi} = \left(R_{subblock}^{TC} \times C_{subblock}^{TC}\right)$. For $d_k^{(2)}$: (4) The output of the
sub-block interleaver is denoted by $v_0^{(2)}, v_1^{(2)}, v_2^{(2)}, ..., v_{K_{\Pi}-1}^{(2)}$, where $v_k^{(2)} = y_{\pi(k)}$ and where $$\pi(k) = \left(P\left(\left\lfloor \frac{k}{R_{subblock}^{TC}} \right\rfloor\right) + C_{subblock}^{TC} \times \left(k \mod R_{subblock}^{TC}\right) + 1\right) \mod K_{\Pi}$$ The permutation function P is defined in Table 5.1.4-1. Table 5.1.4-1 Inter-column permutation pattern for sub-block interleaver | Number of columns | Inter-column permutation pattern | | | | |---------------------|--|--|--|--| | $C_{subblock}^{TC}$ | $< P(0), P(1),, P(C_{subblock}^{TC} - 1) >$ | | | | | 32 | < 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31 > | | | | #### 5.1.4.1.2 Bit collection, selection and transmission The circular buffer of length $K_w = 3K_{\Pi}$ for the r-th coded block is generated as follows: $$w_k = v_k^{(0)}$$ for $k = 0,..., K_{\Pi} - 1$ $w_{K_{\Pi} + 2k} = v_k^{(1)}$ for $k = 0,..., K_{\Pi} - 1$ $w_{K_{\Pi} + 2k + 1} = v_k^{(2)}$ for $k = 0,..., K_{\Pi} - 1$ Denote the soft buffer size for the transport block by N_{IR} bits and the soft buffer size for the r-th code block by N_{cb} bits. The size N_{cb} is obtained as follows, where C is the number of code blocks computed in subclause 5.1.2: - $$N_{cb} = \min\left(\left\lfloor \frac{N_{IR}}{C} \right\rfloor, K_w\right)$$ for DL-SCH and PCH transport channels - $N_{cb} = K_w$ for UL-SCH, MCH, SL-SCH and SL-DCH transport channels For UE category 0, for DL-SCH associated with SI-RNTI and RA-RNTI and PCH transport channel, N_{cb} is always equal to K_w . Where $N_{\rm IR}$ is equal to: $$N_{IR} = \left| \frac{\alpha \cdot N_{soft}}{K_{C} \cdot K_{\text{MIMO}} \cdot \min(M_{\text{DL_HARQ}}, M_{\text{limit}})} \right|$$ Where the coefficient α is 1 for subframe duration, 0.5 for slot duration and $\frac{1}{6}$ for subslot duration of initial PDSCH transmission. For retransmission of a transport block with slot or subslot duration, α is 1 if the transport block has initially been transmitted with subframe duration. For retransmission of a transport block with subframe duration, α is 0.5 if the transport block has initially been transmitted with slot duration, and $\frac{1}{6}$ if the transport block has initially been transmitted with subslot duration. If the UE signals ue-CategoryDL-v14xy indicating UE category M2, N_{soft} is the total number of soft channel bits according to the UE category indicated by ue-CategoryDL-v14xy. Otherwise, if the UE signals ue-CategoryDL-v1310 indicating UE category M1, N_{soft} is the total number of soft channel bits according to the UE category indicated by ue-CategoryDL-v1310. Otherwise, if the UE signals ue-CategoryDL-v13xy, and is configured with transmission mode 9 or transmission mode 10 and the higher layer parameter maxLayersMIMO-r10 is configured to eightLayers, N_{soft} is the total number of soft channel bits according to the UE category indicated by ue-CategoryDL-v13xy. Otherwise, if the UE signals ue-CategoryDL-r12 indicating UE category 0, or if the UE signals ue-CategoryDL-r12 indicating UE category 14 and is configured by higher layers with alt CQI-Table-r12 or alt CQI-Table-1024 QAM-r15 for the DL cell, N_{soft} is the total number of soft channel bits according to the UE category indicated by ue-CategoryDL-r12. Otherwise, if the UE signals ue-Category-v11a0, and is configured by higher layers with altCQI-Table-r12 for the DL cell, N_{soft} is the total number of soft channel bits according to the UE category indicated by ue-Category-v11a0. Otherwise, if the UE signals ue-Category-v1020, and is configured with transmission mode 9 or transmission mode 10, or is configured with transmission mode 3 or transmission mode 4 and the higher layer parameter maxLayersMIMO-r10 is configured to four Layers, for the DL cell, N_{soft} is the total number of soft channel bits [4] according to the UE category indicated by ue-Category-v1020 [6]. Otherwise, N_{soft} is the total number of soft channel bits [4] according to the UE category indicated by *ue-Category* (without suffix) [6]. ``` If N_{\text{soft}} = 35982720 or 47431680, ``` $$K_C=5$$, elseif $N_{\text{soft}} = 303562752$, $$K_C = 32$$, elseif $N_{\text{soft}} = 14616576$, if the UE is configured by higher layers with altCQI-Table-r12, $$K_C = 3/2$$ else $K_C = 2$ end if. elseif $N_{\text{soft}} = 19488768$, if the UE is configured by higher layers with altCQI-Table-1024QAM-r15, $$K_C = 8/5$$ elseif the UE is configured by higher layers with altCQI-Table-r12, $K_C = 2$ else $K_C = 8/3$ end if. elseif $N_{\text{soft}} = 7308288$ and the UE is configured by higher layers with altCQI-Table-r12, if the UE is capable of supporting no more than a maximum of two spatial layers for the DL cell in the transmission mode configured for the UE, or if the configured maximum number of layers indicated by the *maxLayersMIMO-r10* field is no more than two, $K_C = 3$ else $K_C = 3/2$ end if. elseif N_{soft} = 7308288 and the UE is configured by higher layers with altCQI-Table-1024QAM-r15, if the UE is capable of supporting no more than a maximum of two spatial layers for the DL cell in the transmission mode configured for the UE, or if the configured maximum number of layers indicated by the *maxLayersMIMO-r10* field is no more than two, $$K_C = 12/5$$ else $K_C = 6/5$ end if. elseif $N_{\text{soft}} = 3654144$ and the UE is capable of supporting no more than a maximum of two spatial layers for the DL cell, or if the configured maximum number of layers indicated by the maxLayersMIMO-r10 field is no more than two, $$K_C = 2$$ else $K_C = 1$ End if. For initial PDSCH transmission with subframe duration, K_{MIMO} is equal to 2 if the UE is configured to receive PDSCH transmissions based on transmission modes 3, 4, 8, 9 or 10 as defined in subclause 7.1 of [3], and is equal to 1 otherwise. For BL/CE UE K_{MIMO} is equal to 1. For initial PDSCH transmission with slot/subslot duration, K_{MIMO} is equal to 1. M_{DL HARO} is the maximum number of DL HARQ processes as defined in clause 7 of [3]. M_{limit} is a constant equal to 8. Denoting by *E* the rate matching output sequence length for the *r*-th coded block, and rv_{idx} the redundancy version number for this transmission ($rv_{idx} = 0, 1, 2 \text{ or } 3$), the rate matching output bit sequence is e_k , k = 0,1,..., E-1. Define by G the total number of bits available for the transmission of one transport block. Set $G' = G/(N_L \cdot Q_m)$ where Q_m is equal to 1 for $\pi/2$ -BPSK, 2 for QPSK, 4 for 16QAM, 6 for 64QAM, 8 for 256QAM, and 10 for 1024QAM, and where - For transmit diversity: - N_L is equal to 2, - Otherwise: - N_L is equal to the number of layers a transport block is mapped onto Set $\gamma = G' \mod C$, where C is the number of code blocks computed in subclause 5.1.2. if $$r \le C - \gamma - 1$$ $$\operatorname{set} E = N_L \cdot Q_m \cdot \lfloor G' / C \rfloor$$ else set $$E = N_L \cdot Q_m \cdot \left[G' / C \right]$$ end if Set $$k_0 = R_{subblock}^{TC} \cdot \left(2 \cdot \left[\frac{N_{cb}}{8R_{subblock}^{TC}} \right] \cdot rv_{idx} + 2 \right)$$, where $R_{subblock}^{TC}$ is the number of rows defined in subclause 5.1.4.1.1. Set $$k = 0$$ and $j = 0$ while $\{k < E\}$ if $$w_{(k_0+j) \mod N_{ch}} \neq < NULL >$$ $$e_k = w_{(k_0 + j) \bmod N_{ch}}$$ k = k + 1 end if $$j = j + 1$$ end while # 5.1.4.2 Rate matching for convolutionally coded transport channels and control information The rate matching for convolutionally coded transport channels and control information consists of interleaving the three bit streams, $d_k^{(0)}$, $d_k^{(1)}$ and $d_k^{(2)}$, followed by the collection of bits and the generation of a circular buffer as depicted in Figure 5.1.4-2. The output bits are transmitted as described in subclause 5.1.4.2.2. Figure 5.1.4-2. Rate matching for convolutionally coded transport channels and control information The bit stream $d_k^{(0)}$ is interleaved according to the sub-block interleaver defined in subclause 5.1.4.2.1 with an output sequence defined as $v_0^{(0)}, v_1^{(0)}, v_2^{(0)}, ..., v_{K_{\Pi}-1}^{(0)}$ and where K_{Π} is defined in subclause 5.1.4.2.1. The bit stream $d_k^{(1)}$ is interleaved according to the sub-block interleaver defined in subclause 5.1.4.2.1 with an output sequence defined as $v_0^{(1)}, v_1^{(1)}, v_2^{(1)}, ..., v_{K_{n-1}}^{(1)}$. The bit stream $d_k^{(2)}$ is interleaved according to the sub-block interleaver defined in subclause 5.1.4.2.1 with an output sequence defined as $v_0^{(2)}$, $v_1^{(2)}$, $v_2^{(2)}$,..., $v_{K_{\Pi}-1}^{(2)}$. The sequence of bits e_k for transmission is generated according to subclause 5.1.4.2.2. #### 5.1.4.2.1 Sub-block interleaver The bits input to the block interleaver are denoted by $d_0^{(i)}, d_1^{(i)}, d_2^{(i)}, ..., d_{D-1}^{(i)}$, where D is the number of bits. The output bit sequence from the block interleaver is derived as follows: - (1) Assign $C_{subblock}^{CC} = 32$ to be the number of columns of the matrix. The columns of the matrix are numbered 0, 1, 2,..., $C_{subblock}^{CC} 1$ from left to right. - (2) Determine the number of rows of the matrix $R_{subblock}^{CC}$, by finding minimum integer $R_{subblock}^{CC}$ such that: $$D \le \left(R_{subblock}^{CC} \times C_{subblock}^{CC}\right)$$ The rows of rectangular matrix are numbered 0, 1, 2,..., $R_{\mathit{subblock}}^{\mathit{CC}} - 1$ from top to bottom. (3) If $\left(R_{subblock}^{CC} \times C_{subblock}^{CC}\right) > D$, then $N_D = \left(R_{subblock}^{CC} \times C_{subblock}^{CC} - D\right)$ dummy bits are padded such that $y_k = \langle NULL \rangle$ for $k = 0, 1, ..., N_D$ -1. Then, $y_{N_D+k}
= d_k^{(i)}$, k = 0, 1, ..., D-1, and the bit sequence y_k is written into the $\left(R_{subblock}^{CC} \times C_{subblock}^{CC}\right)$ matrix row by row starting with bit y_0 in column 0 of row 0: $$\begin{bmatrix} y_0 & y_1 & y_2 & \cdots & y_{C^{CC}_{subblock}-1} \\ y_{C^{CC}_{subblock}} & y_{C^{CC}_{subblock}+1} & y_{C^{CC}_{subblock}+2} & \cdots & y_{2C^{CC}_{subblock}-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{(R^{CC}_{subblock}-1) \times C^{CC}_{subblock}} & y_{(R^{CC}_{subblock}-1) \times C^{CC}_{subblock}+1} & y_{(R^{CC}_{subblock}-1) \times C^{CC}_{subblock}+2} & \cdots & y_{(R^{CC}_{subblock} \times C^{CC}_{subblock}-1)} \end{bmatrix}$$ (4) Perform the inter-column permutation for the matrix based on the pattern $\langle P(j) \rangle_{j \in \left\{0,1,\dots,C_{subblock}^{CC}-1\right\}}$ that is shown in table 5.1.4-2, where P(j) is the original column position of the j-th permuted column. After permutation of the columns, the inter-column permuted $\left(R_{subblock}^{CC} \times C_{subblock}^{CC}\right)$ matrix is equal to $$\begin{bmatrix} y_{P(0)} & y_{P(1)} & y_{P(2)} & \cdots & y_{P(C_{subblock}^{CC}-1)} \\ y_{P(0)+C_{subblock}^{CC}} & y_{P(1)+C_{subblock}^{CC}} & y_{P(2)+C_{subblock}^{CC}} & \cdots & y_{P(C_{subblock}^{CC}-1)+C_{subblock}^{CC}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_{P(0)+(R_{subblock}^{CC}-1)\times C_{subblock}^{CC}} & y_{P(1)+(R_{subblock}^{CC}-1)\times C_{subblock}^{CC}} & y_{P(2)+(R_{subblock}^{CC}-1)\times C_{subblock}^{CC}} & \cdots & y_{P(C_{subblock}^{CC}-1)+(R_{subblock}^{CC}-1)\times C_{subblock}^{CC}} \end{bmatrix}$$ (5) The output of the block interleaver is the bit sequence read out column by column from the inter-column permuted $\left(R_{subblock}^{CC} \times C_{subblock}^{CC}\right)$ matrix. The bits after sub-block interleaving are denoted by $v_0^{(i)}$, $v_1^{(i)}$, $v_2^{(i)}$, ..., $v_{K_{\Pi}-1}^{(i)}$, where $v_0^{(i)}$ corresponds to $y_{P(0)}$, $v_1^{(i)}$ to $y_{P(0)+C_{subblock}^{CC}}$... and $K_{\Pi} = \left(R_{subblock}^{CC} \times C_{subblock}^{CC}\right)$ Table 5.1.4-2 Inter-column permutation pattern for sub-block interleaver | Number of columns | Inter-column permutation pattern | | | | |---------------------|--|--|--|--| | $C_{subblock}^{CC}$ | $< P(0), P(1),, P(C_{subblock}^{CC} - 1) >$ | | | | | 32 | < 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30 > | | | | This block interleaver is also used in interleaving PDCCH modulation symbols. In that case, the input bit sequence consists of PDCCH symbol quadruplets [2]. ## 5.1.4.2.2 Bit collection, selection and transmission The circular buffer of length $K_w = 3K_{\Pi}$ is generated as follows: $$w_k = v_k^{(0)}$$ for $k = 0,..., K_{\Pi} - 1$ $w_{K_{\Pi} + k} = v_k^{(1)}$ for $k = 0,..., K_{\Pi} - 1$ $w_{2K_{\Pi} + k} = v_k^{(2)}$ for $k = 0,..., K_{\Pi} - 1$ Denoting by E the rate matching output sequence length, the rate matching output bit sequence is e_k , k = 0,1,..., E-1. Set $$k = 0$$ and $j = 0$ while $\{k < E\}$ if $w_{j \mod K_w} \neq < NULL >$ $e_k = w_{j \mod K_w}$ $k = k + 1$ end if $j = j + 1$ end while ### 5.1.5 Code block concatenation The input bit sequence for the code block concatenation block are the sequences e_{rk} , for r = 0,...,C-1 and $k = 0,...,E_r-1$. The output bit sequence from the code block concatenation block is the sequence f_k for k = 0,...,G-1 The code block concatenation consists of sequentially concatenating the rate matching outputs for the different code blocks. Therefore, ``` Set k = 0 and r = 0 while r < C Set j = 0 while j < E_r f_k = e_{rj} k = k + 1 j = j + 1 end while r = r + 1 ``` end while ## 5.2 Uplink transport channels and control information If the UE is configured with a Master Cell Group (MCG) and Secondary Cell Group (SCG) [6], the procedures described in this clause are applied to the MCG and SCG, respectively. When the procedures are applied to a SCG, the term primary cell refers to the primary SCell (PSCell) of the SCG. If the UE is configured with a PUCCH SCell [6], the procedures described in this clause are applied to the group of DL cells associated with the PUCCH SCell, respectively. When the procedures are applied to the group of DL cells associated with the PUCCH SCell, the term primary cell refers to the PUCCH SCell. If the UE is configured with a LAA SCell, the procedures described in this clause are applied assuming the LAA SCell is an FDD SCell. ## 5.2.1 Random access channel The sequence index for the random access channel is received from higher layers and is processed according to [2]. ## 5.2.2 Uplink shared channel Figure 5.2.2-1 shows the processing structure for the UL-SCH transport channel on one UL cell. If sub-PRB allocation is used, data arrives to the coding unit in the form of one transport block over a number of subframes per UL cell. Otherwise, data arrives to the coding unit in the form of a maximum of two transport blocks every transmission time interval (TTI) per UL cell. The following coding steps can be identified for each transport block of an UL cell: - Add CRC to the transport block - Code block segmentation and code block CRC attachment - Channel coding of data and control information - Rate matching - Code block concatenation - Multiplexing of data and control information - Channel interleaver The coding steps for one UL-SCH transport block are shown in the figure below. The same general processing applies for each UL-SCH transport block on each UL cell with restrictions as specified in [3]. Figure 5.2.2-1: Transport block processing for UL-SCH ## 5.2.2.1 Transport block CRC attachment Error detection is provided on each UL-SCH transport block through a Cyclic Redundancy Check (CRC). The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by $a_0, a_1, a_2, a_3, ..., a_{A-1}$, and the parity bits by $p_0, p_1, p_2, p_3, ..., p_{L-1}$. A is the size of the transport block and L is the number of parity bits. The lowest order information bit a_0 is mapped to the most significant bit of the transport block as defined in subclause 6.1.1 of [5]. The parity bits are computed and attached to the UL-SCH transport block according to subclause 5.1.1 setting L to 24 bits and using the generator polynomial $g_{CRC24A}(D)$. ## 5.2.2.2 Code block segmentation and code block CRC attachment The bits input to the code block segmentation are denoted by $b_0, b_1, b_2, b_3, ..., b_{B-1}$ where B is the number of bits in the transport block (including CRC). Code block segmentation and code block CRC attachment are performed according to subclause 5.1.2. The bits after code block segmentation are denoted by c_{r0} , c_{r1} , c_{r2} , c_{r3} ,..., $c_{r(K_r-1)}$, where r is the code block number and K_r is the number of bits for code block number r. ## 5.2.2.3 Channel coding of UL-SCH Code blocks are delivered to the channel coding block. The bits in a code block are denoted by $c_{r0}, c_{r1}, c_{r2}, c_{r3}, ..., c_{r(K_r-1)}$, where r is the code block number, and K_r is the number of bits in code block number r. The total number of code blocks is denoted by C and each code block is individually turbo encoded according to subclause 5.1.3.2. After encoding the bits are denoted by $d_{r0}^{(i)}$, $d_{r1}^{(i)}$, $d_{r2}^{(i)}$, $d_{r3}^{(i)}$,..., $d_{r(D_r-1)}^{(i)}$, with i = 0,1, and 2 and where D_r is the number of bits on the i-th coded stream for code block number r, i.e. $D_r = K_r + 4$. ## 5.2.2.4 Rate matching Turbo coded blocks are delivered to the rate matching block. They are denoted by $d_{r0}^{(i)}$, $d_{r1}^{(i)}$, $d_{r2}^{(i)}$, $d_{r3}^{(i)}$,..., $d_{r(D_r-1)}^{(i)}$, with i = 0,1, and 2, and where r is the code block number, i is the coded stream index, and D_r is the number of bits in each coded stream of code block number r. The total number of code blocks is denoted by C and each coded block is individually rate matched according to subclause 5.1.4.1. After rate matching, the bits are denoted by e_{r0} , e_{r1} , e_{r2} , e_{r3} ,..., $e_{r(E_r-1)}$, where r is the coded block number, and where E_r is the number of rate matched bits for code block number r. #### 5.2.2.5 Code block concatenation The bits input to the code block concatenation block are denoted by e_{r0} , e_{r1} , e_{r2} , e_{r3} ,..., $e_{r(E_r-1)}$ for r = 0,..., C-1 and where E_r is the number of rate matched bits for the r-th code block. Code block concatenation is performed according to subclause 5.1.5. The bits after code block concatenation are denoted by f_0 , f_1 , f_2 , f_3 ,..., f_{G-1} , where G is the total number of coded bits for transmission of the given transport block over N_L transmission layers excluding the bits used for control transmission, when control information is multiplexed with the UL-SCH transmission. ### 5.2.2.6 Channel coding of control information Control data arrives at the coding unit in the form of channel quality information (CQI and/or PMI), HARQ-ACK and rank indication, and CSI-RS resource indication (CRI). Different coding rates for the control information are achieved by allocating different number of coded symbols for its transmission. When control data are transmitted in the PUSCH, the channel coding for HARQ-ACK, rank indication (including RI only, joint report of RI/i1, joint report of CRI/RI, joint report of CRI/RI/joint report of CRI/RI/joint report of RI/i1, joint report of RI/PTI), CRI and channel quality information $o_0, o_1, o_2, ..., o_{O-1}$ is done independently. Parameters i1,1-1, i1,2-1, i1,1-2, i1,2-2, i1,p-2 correspond to parameters $i_{1,1}$, $i_{1,2}$, d_1 , d_2 , and I_p in subclause 7.2.4 of [3].
For the cases with TDD primary cell, the number of HARQ-ACK bits is determined as described in subclause 7.3 of [3]. When the UE transmits HARQ-ACK bits, rank indicator bits or CRI bits, it shall determine the number of coded modulation symbols per layer Q' for HARQ-ACK, rank indicator, or CRI bits as follows. For the case when only one transport block is transmitted in the PUSCH conveying the HARQ-ACK bits, rank indicator bits or CRI bits: $$Q' = \min \left(\frac{O \cdot M_{sc}^{PUSCH-initial} \cdot N_{symb}^{PUSCH-initial} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C-1} K_r}, N_{symb}^{UCI} \cdot M_{sc}^{PUSCH} \right)$$ where - O is the number of HARQ-ACK bits, rank indicator bits or CRI bits, and - N_{symb}^{UCI} is 4 for PUSCH with subframe duration, or for Partial PUSCH Mode 1. N_{symb}^{UCI} is 2 for PUSCH with slot duration, or for Partial PUSCH Mode 2 or 3. N_{symb}^{UCI} is 1 for PUSCH with subslot duration. - $M_{\rm sc}^{\rm PUSCH}$ is the scheduled bandwidth for PUSCH transmission in the current subframe/slot/subslot for the transport block, expressed as a number of subcarriers in [2], and - $N_{\text{symb}}^{\text{PUSCH-initial}}$ is the number of SC-FDMA symbols per subframe/slot/subslot for initial PUSCH transmission for the same transport block, respectively, given by $$N_{\text{symb}}^{PUSCH-initial} = (\tilde{N}_{\text{symb}}^{\text{UL}} - N_{\text{SRS}} - N_{\text{start}}^{PUSCH-initial} - N_{\text{end}}^{PUSCH-initial}), \text{ where}$$ - $\tilde{N}_{\text{symb}}^{\text{UL}} = (N_{\text{symb}}^{\text{UL}} 1)$ for PUSCH with slot duration, or for Partial PUSCH Mode 2 or 3, or - $\tilde{N}_{\mathrm{symb}}^{\mathrm{UL}} = N_{\mathrm{symb}}^{\mathit{subslot}} N_{\mathit{DMRS}}$ for PUSCH with subslot duration, - $N_{\text{symb}}^{\text{subslot}}$ is the number of SC-FDMA symbols of the subslot as defined in subclause 4.1 of [2], - N_{DMRS} is the number of SC-FDMA symbols for DMRS of the subslot as defined in subclause 5.5.2.1.2 of [2] - otherwise $\tilde{N}_{\text{symb}}^{\text{UL}} = 2(N_{\text{symb}}^{\text{UL}} 1)$. - N_{SRS} is equal to 1 - if UE configured with one UL cell is configured to send PUSCH and SRS in the same subframe/slot/subslot for initial transmission, or - if UE transmits PUSCH and SRS in the same subframe/slot/subslot in the same serving cell for initial transmission, or - if the PUSCH resource allocation for initial transmission even partially overlaps with the cell-specific SRS subframe and bandwidth configuration defined in subclause 5.5.3 of [2], and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe, or - if the subframe/slot/subslot for initial transmission in the same serving cell is in a UE-specific type-1 SRS subframe as defined in Subclause 8.2 of [3], and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe, or - if the subframe/slot/subslot for initial transmission in the same serving cell is in a UE-specific type-0 SRS subframe as defined in subclause 8.2 of [3] and the UE is configured with multiple TAGs, and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe. - Otherwise N_{SRS} is equal to 0. - $N_{\text{start}}^{PUSCH-initial}$ is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH not starting from the beginning of the first symbol or the seventh symbol of the subframe for initial transmission, otherwise is equal to 0. - $N_{\rm end}^{\it PUSCH-initial}$ is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH up to the second to last symbol of the subframe for initial transmission and $N_{\it SRS}$ is equal to 0, otherwise is equal to 0. - $M_{sc}^{PUSCH-initial}$, C, and K_r are obtained from the initial PDCCH or EPDCCH or MPDCCH or SPDCCH for the same transport block. If there is no initial PDCCH or EPDCCH with DCI format 0/0A/0B/4A/4B or MPDCCH with DCI format 6-0A/6-0B or SPDCCH with DCI format 7-0A/7-0B for the same transport block, $M_{sc}^{PUSCH-initial}$, C, and K_r shall be determined from: - the most recent semi-persistent scheduling assignment PDCCH or EPDCCH or MPDCCH or SPDCCH, when the initial PUSCH for the same transport block is semi-persistently scheduled, or, - the random access response grant for the same transport block, when the PUSCH is initiated by the random access response grant, or - the most recent AUL activation DCI as defined in [3], when the initial PUSCH for the same transport block is AUL PUSCH. For the case when two transport blocks are transmitted in the PUSCH conveying the HARQ-ACK bits, rank indicator bits or CRI bits: $$Q' = \max \left[\min \left(Q'_{temp}, 4 \cdot M_{sc}^{PUSCH} \right) Q'_{\min} \right]$$ with $$Q_{temp=}' = \frac{O \cdot M_{sc}^{PUSCH-initial(1)} \cdot N_{symb}^{PUSCH-initial(1)} \cdot M_{sc}^{PUSCH-initial(2)} \cdot N_{symb}^{PUSCH-initial(2)} \cdot P_{offset}^{PUSCH-initial(2)}}{\sum_{r=0}^{C^{(1)}-1} K_{r}^{(1)} \cdot M_{sc}^{PUSCH-initial(2)} \cdot N_{symb}^{PUSCH-initial(2)} + \sum_{r=0}^{C^{(2)}-1} K_{r}^{(2)} \cdot M_{sc}^{PUSCH-initial(1)} \cdot N_{symb}^{PUSCH-initial(1)}}$$ where - O is the number of HARQ-ACK bits, rank indicator bits or CRI bits, and - $Q'_{\min} = O$ if $O \le 2$, $Q'_{\min} = \lceil 2O/Q'_m \rceil$ if $3 \le O \le 11$ with $Q'_m = \min(Q_m^1, Q_m^2)$ where Q_m^x , $x = \{1, 2\}$ is the modulation order of transport block "x", and $Q'_{\min} = \lceil 2O_1/Q'_m \rceil + \lceil 2O_2/Q'_m \rceil$ if O > 11 with $O_1 = \lceil O/2 \rceil$ and $O_2 = O \lceil O/2 \rceil$. - $M_{\rm sc}^{PUSCH\text{-}initial(x)}$, $x = \{1,2\}$ are the scheduled bandwidths or bandwidths assigned by the most recent AUL activation DCI as defined in [3] for PUSCH transmission in the initial sub-frame for the first and second transport block, respectively, expressed as a number of subcarriers in [2], and - $N_{\text{symb}}^{PUSCH-init\,ial(x)}$, $x = \{1,2\}$ are the number of SC-FDMA symbols per subframe for initial PUSCH transmission for the first and second transport block given by $$N_{\text{symb}}^{PUSCH-initial(x)} = \left(\tilde{N}_{\text{symb}}^{\text{UL}} - N_{\text{SRS}}^{(x)} - N_{\text{start}}^{PUSCH-initial(x)} - N_{\text{end}}^{PUSCH-initial(x)}\right), x = \{1,2\}, \text{ where } N_{\text{symb}}^{PUSCH-initial(x)} = \left(\tilde{N}_{\text{symb}}^{\text{UL}} - N_{\text{start}}^{(x)} - N_{\text{end}}^{PUSCH-initial(x)}\right)$$ - $\tilde{N}_{\text{symb}}^{\text{UL}} = (N_{\text{symb}}^{\text{UL}} 1)$ for Partial PUSCH Mode 2 or 3, - otherwise $\tilde{N}_{\text{symb}}^{\text{UL}} = 2(N_{\text{symb}}^{\text{UL}} 1)$. - $N_{SRS}^{(x)}$, $x = \{1,2\}$ is equal to 1 - if UE configured with one UL cell is configured to send PUSCH and SRS in the same subframe for initial transmission, or - if UE transmits PUSCH and SRS in the same subframe in the same serving cell for initial transmission of transport block "x", or - if the PUSCH resource allocation for initial transmission of transport book "x" even partially overlaps with the cell-specific SRS subframe and bandwidth configuration defined in subclause 5.5.3 of [2], or - if the subframe for initial transmission of transport block "x" in the same serving cell is a UE-specific type-1 SRS subframe as defined in Subclause 8.2 of [3], or - if the subframe for initial transmission of transport block "x" in the same serving cell is a UE-specific type-0 SRS subframe as defined in subclause 8.2 of [3] and the UE is configured with multiple TAGs. - Otherwise $N_{SRS}^{(x)}$, $x = \{1,2\}$ is equal to 0. - $N_{\text{start}}^{PUSCH-initial(x)}$, $x = \{1,2\}$ is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH for the first and second transport block not starting from the beginning of the first symbol or the seventh symbol of the subframe for initial transmission, otherwise is equal to 0. - $N_{\text{end}}^{PUSCH-initial(x)}$, $x = \{1,2\}$ is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH for the first and second transport block up to the second to last symbol of the subframe for initial transmission and $N_{SRS}^{(x)}$, $x = \{1,2\}$ is equal to 0, otherwise is equal to 0. - $M_{sc}^{PUSCH-initial(x)}$, $x = \{1,2\}$, $C^{(x)}$, $x = \{1,2\}$, and $K_r^{(x)}$, $x = \{1,2\}$ are obtained from the initial PDCCH or EPDCCH for the corresponding transport block, or from the most recent AUL activation DCI as defined in [3], when the initial PUSCH for the corresponding transport block is AUL PUSCH. For HARQ-ACK, $Q_{ACK} = Q_m \cdot Q'$ and $\beta_{offset}^{PUSCH} = \beta_{offset}^{HARQ-ACK}$, where Q_m is the modulation order of a given transport block. For UEs configured with no more than five DL cells, $\beta_{offset}^{HARQ-ACK}$ shall be determined according to [3] depending on the number of transmission codewords for the corresponding PUSCH, the duration for the corresponding PUSCH (subslot/slot/subframe), and the beta offset indicator in SPDCCH with DCI format 7-0A/7-0B when the duration for the corresponding PUSCH is subslot. For UEs configured with more than five DL cells, $\beta_{offset}^{HARQ-ACK}$ shall be determined according to [3] depending on the number of transmission codewords for the corresponding PUSCH, the number of HARQ-ACK feedback bits, the duration for the corresponding PUSCH (subslot/slot/subframe), and the beta offset indicator in SPDCCH with DCI format 7-0A/7-0B when the duration for the corresponding PUSCH is subslot. For rank indication or CRI, $Q_{RI} = Q_m \cdot Q'$, $Q_{CRI} = Q_m \cdot Q'$ and $\beta_{offset}^{PUSCH} = \beta_{offset}^{RI}$, where Q_m is the modulation order of a given transport block, and β_{offset}^{RI} shall be determined according to [3] depending on the number of
transmission codewords for the corresponding PUSCH, the duration for the corresponding PUSCH, the beta offset indicator in SPDCCH with DCI format 7-0A/7-0B when the duration for the corresponding PUSCH is subslot, and on the uplink power control subframe set for the corresponding PUSCH when two uplink power control subframe sets are configured by higher layers for the cell. #### For HARQ-ACK - Each positive acknowledgement (ACK) is encoded as a binary '1' and each negative acknowledgement (NACK) is encoded as a binary '0' - If HARQ-ACK feedback consists of 1-bit of information, i.e., $[o_0^{ACK}]$, it is first encoded according to Table 5.2.2.6-1. - If HARQ-ACK feedback consists of 2-bits of information, i.e., $[o_0^{ACK} \ o_1^{ACK}]$ with o_0^{ACK} corresponding to HARQ-ACK bit for codeword 0 and o_1^{ACK} corresponding to that for codeword 1, or if HARQ-ACK feedback consists of 2-bits of information as a result of the aggregation of HARQ-ACK bits corresponding to two DL cells with which the UE is configured by higher layers, or if HARQ-ACK feedback consists of 2-bits of information corresponding to two subframes for TDD, it is first encoded according to Table 5.2.2.6-2 where $o_2^{ACK} = (o_0^{ACK} + o_1^{ACK}) \bmod 2.$ Table 5.2.2.6-1: Encoding of 1-bit HARQ-ACK | Q_m | Encoded HARQ-ACK | |-------|--| | 2 | $[o_0^{ACK} y]$ | | 4 | $[o_0^{ACK} \ \mathbf{y} \ \mathbf{x} \ \mathbf{x}]$ | | 6 | $[o_0^{ACK} y x x x x]$ | | 8 | $[o_0^{ACK} y x x x x x x x]$ | Table 5.2.2.6-2: Encoding of 2-bit HARQ-ACK | Q_m | Encoded HARQ-ACK | |-------|--| | 2 | $[o_0^{ACK} \ o_1^{ACK} \ o_2^{ACK} \ o_0^{ACK} \ o_1^{ACK} \ o_2^{ACK}]$ | | 4 | $[o_0^{ACK} o_1^{ACK} \times \times o_2^{ACK} o_0^{ACK} \times \times o_1^{ACK} o_2^{ACK} \times X]$ | | 6 | $[o_0^{ACK} o_1^{ACK} \times \times \times o_2^{ACK} o_0^{ACK} \times \times \times o_1^{ACK} o_2^{ACK} \times \times \times \times]$ | | 8 | $[o_0^{ACK} o_1^{ACK} \times \times \times \times \times \times o_2^{ACK} o_0^{ACK} \times \times \times \times \times o_1^{ACK} o_2^{ACK} \times \times \times \times \times \times]$ | - If HARQ-ACK feedback consists of $3 \le O^{ACK} \le 11$ bits of information as a result of the aggregation of HARQ-ACK bits corresponding to one or more DL cells with which the UE is configured by higher layers, i.e., o_0^{ACK} o_1^{ACK} ,..., $o_{Q^{ACK}_{-1}}^{ACK}$, then a coded bit sequence \widetilde{q}_0^{ACK} \widetilde{q}_1^{ACK} ,..., \widetilde{q}_{31}^{ACK} is obtained by using the bit sequence o_0^{ACK} o_1^{ACK} ,..., $o_{Q^{ACK}_{-1}}^{ACK}$ as the input to the channel coding block described in subclause 5.2.2.6.4. In turn, the bit sequence o_0^{ACK} , o_1^{ACK} , o_1^{ACK} , o_1^{ACK} , ..., o_1^{ACK} , ..., o_2^{ACK} , ..., o_2^{ACK} , ..., o_2^{ACK} , ..., o_3^{ACK} is obtained by the circular repetition of the bit sequence o_1^{ACK} , ..., o_3^{ACK} $o_3^{$ - If HARQ-ACK feedback consists of $11 < O^{ACK} \le 22$ bits of information as a result of the aggregation of HARQ-ACK bits corresponding to one or more DL cells with which the UE is configured by higher layers, i.e., o_0^{ACK} o_1^{ACK} ,..., o_0^{ACK} , then the coded bit sequence q_0^{ACK} , q_1^{ACK} , q_2^{ACK} ,..., q_{QACK-1}^{ACK} is obtained by using the bit sequence o_0^{ACK} o_1^{ACK} ,..., o_{QACK-1}^{ACK} as the input to the channel coding block described in subclause 5.2.2.6.5. - If HARQ-ACK feedback consists of $O^{ACK}>22$ bits of information as a result of the aggregation of HARQ-ACK bits corresponding to one or more DL cells with which the UE is configured by higher layers, the coded bit sequence is denoted by q_0^{ACK} , q_1^{ACK} , q_2^{ACK} ,..., q_{QACK-1}^{ACK} . The CRC attachment, channel coding and rate matching of the HARQ-ACK bits are performed according to subclauses 5.1.1 setting L to 8 bits, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is o_0^{ACK} o_1^{ACK} ,..., $o_{O^{ACK}-1}^{ACK}$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. The "x" and "y" in Table 5.2.2.6-1 and 5.2.2.6-2 are placeholders for [2] to scramble the HARQ-ACK bits in a way that maximizes the Euclidean distance of the modulation symbols carrying HARQ-ACK information. For FDD or TDD HARQ-ACK multiplexing or the aggregation of more than one DL cell including at least one cell using FDD and at least one cell using TDD when HARQ-ACK consists of one or two bits of information, the bit sequence q_0^{ACK} , q_1^{ACK} , q_2^{ACK} ,..., q_{QACK}^{ACK} is obtained by concatenation of multiple encoded HARQ-ACK blocks where Q_{ACK} is the total number of coded bits for all the encoded HARQ-ACK blocks. The last concatenation of the encoded HARQ-ACK block may be partial so that the total bit sequence length is equal to Q_{ACK} . For UEs configured by higher layers with *dl-TTI-Length*, if *codebooksizeDeterminationSTTI-rel15* is configured as *dai*, the bit sequence $\tilde{o}_0^{sACK} \tilde{o}_1^{sACK}, ..., \tilde{o}_{O^{sACK}-1}^{sACK}$ corresponding to PDSCH with slot/subslot duration is determined according to the Downlink Assignment Index (DAI) as in Table 5.3.3.1.2-2 and as defined in [3]; otherwise, the bit sequence $\tilde{o}_0^{sACK} \tilde{o}_1^{sACK}, ..., \tilde{o}_{O^{sACK}-1}^{sACK}$ is determined as below. For FDD with at least one cell configured with higher layer parameter dl-TTI-Length or for the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD and at least one DL cell configured with higher layer parameter dl-TTI-Length, define the bit sequence $\tilde{o}_0^{sACK}\tilde{o}_1^{sACK}$,..., \tilde{o}_0^{sACK} _corresponding to PDSCH with slot/subslot duration as the result of the concatenation of HARQ-ACK bits for one or multiple DL cells configured with higher layer parameter dl-TTI-Length, N_{cells}^{sDL} as the number of cells configured with dl-TTI-Length for the UE and B_c^{sDL} as the number of slot(s) or subslot(s) for which the UE needs to feed back HARQ-ACK bits in UL slot or subslot n for the c-th serving cell. For a cell using FDD and configured with dl-TTI-Length=subslot and ul-TTI-Length=subslot, or for a cell using FDD and configured with dl-TTI-Length=slot and ul-TTI-Length=slot, $B_c^{sDL}=1$. For a cell using FDD and configured with dl-TTI-Length=slot and ul-TTI-Length=slot, $B_c^{sDL}=3$. For a cell using TDD, $B_c^{sDL}=1$ if slot n-4 in the cell is in a DL subframe, or slot n-4 is the first slot in a special subframe with special subframe cofigurations 1/2/3/4/6/7/8/9/10 and normal downlink CP, or slot n-4 is the second slot in a special subframe with special subframe cofigurations 3/4/8 and normal downlink CP, and $B_c^{sDL}=0$ otherwise. The bit sequence $\tilde{o}_0^{sACK} \tilde{o}_1^{sACK}, ..., \tilde{o}_o^{sACK}_{sACK}$ is performed according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell configured with dl-TTI-Length ``` Set j=0 – HARQ-ACK bit index while c < N_{cells}^{sDL} set l=0; while l < B_c^{sDL} \widetilde{o}_j^{sACK} = \text{HARQ-ACK bit of this cell} j=j+1 l=l+1 end while c=c+1 ``` end while For FDD with at least one cell configured with higher layer parameter dl-TTl-Length or for the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD and at least one DL cell configured with higher layer parameter dl-TTl-Length, define the bit sequence $\tilde{o}_0^{LACK} \tilde{o}_1^{LACK}, ..., \tilde{o}_{O^{LACK}-1}^{LACK}$ corresponding to PDSCH with subframe duration as the result of the concatenation of HARQ-ACK bits for one or multiple DL cells. The bit sequence $\tilde{o}_0^{LACK} \tilde{o}_1^{LACK}, ..., \tilde{o}_{O^{LACK}-1}^{LACK}$ is determined as below for bit sequence $\tilde{o}_0^{ACK} \tilde{o}_1^{ACK}, ..., \tilde{o}_{O^{ACK}-1}^{ACK}$ and spatial bundling is performed if the HARQ-ACK is to be transmitted on subslot PUSCH or if the HARQ-ACK is to be transmitted on slot PUSCH and spatial bundling is configured. For UEs configured by higher layers with codebooksizeDetermination-r13 = dai, the bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ corresponding to PDSCH with subframe duration is determined according to the Downlink Assignment Index (DAI) as in Table 5.3.3.1.2-2 and as defined in [3]. Otherwise, the bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is determined as below. For FDD when the UE is not configured with EN-DC and higher layer parameter *subframeAssignment-r15*, when HARQ ACK consists of 2 or more bits of information as a result of the aggregation of more than one DL cell, the bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ corresponding to PDSCH with subframe duration is the result of the concatenation of HARQ-ACK bits for the multiple DL cells according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell Set j = 0 - HARQ - ACK bit index Set N_{cells}^{DL} to the number of cells configured by higher layers for the UE while $c < N_{cells}^{DL}$ if transmission mode configured in cell $c \in \{1,2,5,6,7\}$ – 1 bit HARQ-ACK feedback for this cell $$\tilde{o}_{j}^{ACK} = \text{HARQ-ACK}$$ bit of this cell $j = j + 1$ else if the PUSCH is with subframe or slot duration and the UE is not
configured with spatial bundling on PUSCH by higher layers ``` \tilde{o}_j^{ACK}= HARQ-ACK bit corresponding to the first codeword of this cell j=j+1 \tilde{o}_j^{ACK}= HARQ-ACK bit corresponding to the second codeword of this cell j=j+1 else ``` \tilde{o}_{j}^{ACK} = binary AND operation of the HARQ-ACK bits corresponding to the first and second codewords of this cell ``` j = j + 1 end if ``` end if c = c + 1 end while For the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD when the UE is not configured with EN-DC and higher layer parameter *subframeAssignment-r15*, the bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ,..., \tilde{o}_0^{ACK} is the result of the concatenation of HARQ-ACK bits for one or multiple DL cells. Define N_{cells}^{DL} as the number of cells configured by higher layers for the UE and B_c^{DL} as the number of subframes for which the UE needs to feed back HARQ-ACK bits in UL subframe n for the c-th serving cell. For a cell using TDD, the subframes are determined by the DL-reference UL/DL configuration if the UE is configured with higher layer parameter *eimta-HARQ-ReferenceConfig*, and determined by the UL/DL configuration otherwise. For a cell using TDD, $B_c^{DL}=1$ if subframe n-4 in the cell, or subframe n-3 in the cell if higher layer parameter *shortProcessingTime* is configured for the cell, is a DL subframe or a special subframe with special subframe configurations 1/2/3/4/6/7/8/9/10 and normal downlink CP or a special subframe with special subframe configurations 1/2/3/5/6/7 and extended downlink CP, and $B_c^{DL}=0$ otherwise. For a cell using FDD, $B_c^{DL}=1$. The bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ,..., $\tilde{o}_{Q^{ACK}-1}^{ACK}$ is performed according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell Set j = 0 - HARQ-ACK bit index while $c < N_{cells}^{DL}$ $$_{\rm if} B_c^{DL} = 1$$ if transmission mode configured in cell $c \in \{1,2,5,6,7\} - 1$ bit HARQ-ACK feedback for this cell $$\tilde{o}_{j}^{ACK} = \text{HARQ-ACK}$$ bit of this cell $j = j + 1$ else if the PUSCH is with subframe or slot duration and the UE is not configured with spatial bundling on PUSCH by higher layers \tilde{o}_{i}^{ACK} = HARQ-ACK bit corresponding to the first codeword of this cell j = j + 1 \tilde{o}_{i}^{ACK} = HARQ-ACK bit corresponding to the second codeword of this cell j = j + 1 else \tilde{o}_{j}^{ACK} = binary AND operation of the HARQ-ACK bits corresponding to the first and second codewords of this cell j = j + 1 end if end if end if c = c + 1 end while For the cases with TDD primary cell or EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured, when HARQ-ACK is for the aggregation of one or more DL cells and the UE is configured with PUCCH format 3, PUCCH format 4 or PUCCH format 5 [3], the bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is the result of the concatenation of HARQ-ACK bits for the one or more DL cells configured by higher layers and the multiple subframes as defined in [3]. Define N_{cells}^{DL} as the number of cells configured by higher layers for the UE and B_c^{DL} as the number of subframes for which the UE needs to feed back HARQ-ACK bits as defined in Subclause 7.3 of [3]. The number of HARQ-ACK bits for the UE to convey if it is configured with PUCCH format 3, PUCCH format 4 or PUCCH format 5 is computed as follows: ``` Set k = 0 – counter of HARQ-ACK bits ``` Set c=0 - cell index: lower indices correspond to lower RRC indices of corresponding cell ``` while c < N_{cells}^{DL} set l=0; while l < B_c^{DL} if transmission mode configured in cell c \in \{1,2,5,6,7\} -- 1 bit HARQ-ACK feedback for this cell k=k+1 else ``` k = k + 2 end if l = l+1 end while c = c + 1 end while When PUCCH format 3 is configured, if $k \le 20$ when TDD is used in all the configured serving cell(s) of the UE, or if $k \le 21$ when FDD is used in at least one of the configured serving cells with TDD primary cell, or if $k \le 21$ when the UE is configured with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15*; or when PUCCH format 4 or PUCCH format 5 is configured and when the UE is not configured with spatial bundling on PUSCH by higher layers, the multiplexing of HARQ-ACK bits is performed according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell ``` Set j=0 – HARQ-ACK bit index while c < N_{cells}^{DL} set l=0; while l < B_c^{DL} if transmission mode configured in cell c \in \{1,2,5,6,7\} — 1 bit HARQ-ACK feedback for this cell \widetilde{o}_j^{ACK} = o_{c,l}^{ACK} \text{ HARQ-ACK bit of this cell as defined in Subclause 7.3 of [3]} ``` ``` j=j+1 else [\widetilde{o}_j^{ACK},\widetilde{o}_{j+1}^{ACK}]=[o_{c,2l}^{ACK},o_{c,2l+1}^{ACK}] \text{ HARQ-ACK bits of this cell as defined in Subclause 7.3 of [3]} j=j+2 end if ``` ``` l = l+1 end while c = c + 1 ``` end while When PUCCH format 3 is configured, if k > 20 when TDD is used in all the configured serving cell(s) of the UE, or if k > 21 when FDD is used in at least one of the configured serving cells with TDD primary cell, or if k > 21 when the UE is configured with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15*, spatial bundling is applied to all subframes in all cells; or when PUCCH format 4 or PUCCH format 5 is configured and when the UE is configured with spatial bundling on PUSCH by higher layers; or when the PUSCH is subslot duration, the multiplexing of HARQ-ACK bits is performed according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell ``` Set j=0 – HARQ-ACK bit index while c< N_{cells}^{DL} set l=0; while l< B_c^{DL} if transmission mode configured in cell c\in\{1,2,5,6,7\} – 1 bit HARQ-ACK feedback for this cell \widetilde{o}_j^{ACK}=o_{c,l}^{ACK} HARQ-ACK bit of this cell as defined in Subclause 7.3 of [3] j=j+1 else \widetilde{o}_j^{ACK}=o_{c,l}^{ACK} binary AND operation of the HARQ-ACK bits corresponding to the first and second codewords of this cell as defined in Subclause 7.3 of [3] j=j+1 end if l=l+1 end while ``` end while c = c + 1 For FDD with at least one cell configured with higher layer parameter dl-TTI-Length or for the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD and at least one DL cell configured with higher layer parameter dl-TTI-Length, bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is obtained by concatenation of the bit sequence $\tilde{o}_0^{sACK}\tilde{o}_1^{sACK}$..., $\tilde{o}_{O^{sACK}-1}^{sACK}$ and $\tilde{o}_0^{LACK}\tilde{o}_1^{LACK}$..., $\tilde{o}_{O^{LACK}-1}^{LACK}$, where $O^{ACK} = O^{sACK} + O^{LACK}$ in the cases defined in subclause 7.3 of [3]. In all other cases, the sequence of bits \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is given by $\tilde{o}_0^{sACK}\tilde{o}_1^{sACK}$..., $\tilde{o}_{O^{sACK}-1}^{sACK}$. For the cases with TDD primary cell with at least one cell configured with higher layer parameter dl-TTI-Length, the bit sequence \tilde{o}_0^{ACK} \tilde{o}_1^{ACK} ..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is as defined in [3]. For $o^{ACK} \le 11$ or $o^{ACK} > 22$, the bit sequence $o^{ACK}_0 o^{ACK}_1, ..., o^{ACK}_{O^{ACK}_{-1}}$ is obtained by setting $o^{ACK}_i = \tilde{o}^{ACK}_i$. For $11 < o^{ACK} \le 22$, the bit sequence o_0^{ACK} o_1^{ACK} ,..., $o_{O^{ACK}-1}^{ACK}$ is obtained by setting $o_{i/2}^{ACK} = \tilde{o}_i^{ACK}$ if i is even and $o_{[O^{ACK}/2]+(i-1)/2}^{ACK} = \tilde{o}_i^{ACK}$ if i is odd. For the cases with TDD primary cell when HARQ-ACK is for the aggregation of two DL cells and the UE is configured with PUCCH format 1b with channel selection, the bit sequence o_0^{ACK} o_1^{ACK} ,..., $o_{O^{ACK}-1}^{ACK}$ is obtained as described in subclause 7.3 of [3]. For TDD HARQ-ACK bundling, a bit sequence \widetilde{q}_0^{ACK} , \widetilde{q}_1^{ACK} , \widetilde{q}_2^{ACK} ,..., $\widetilde{q}_{Q_{ACK}-1}^{ACK}$ is obtained by concatenation of multiple encoded HARQ-ACK blocks where Q_{ACK} is the total number of coded bits for all the encoded HARQ-ACK blocks. The last concatenation of the encoded HARQ-ACK block may be partial so that the total bit sequence length is equal to Q_{ACK} . A scrambling sequence $\left[w_0^{ACK} w_1^{ACK} w_2^{ACK} w_3^{ACK}\right]$ is then selected from Table 5.2.2.6-A with index $i = \left(N_{bundled} - 1\right) \bmod 4$, where $N_{bundled}$ is determined as described in subclause 7.3 of [3]. The bit sequence q_0^{ACK} , q_1^{ACK} , q_2^{ACK} ,..., $q_{Q_{ACK}-1}^{ACK}$ is then generated by setting m = 1 if HARQ-ACK consists of 1-bit and m = 3 if HARQ-ACK consists of 2-bits and then scrambling \widetilde{q}_0^{ACK} , \widetilde{q}_1^{ACK} , \widetilde{q}_2^{ACK} ,..., $\widetilde{q}_{Q_{ACK}-1}^{ACK}$ as follows Set i, k to 0 while $i < Q_{ACK}$ if $$\tilde{q}_i^{ACK} = y$$ // place-holder repetition bit $$q_i^{ACK} = \left(\widetilde{q}_{i-1}^{ACK} + w_{|k/m|}^{ACK}\right) \mod 2$$ $$k = (k+1) \mod 4m$$ else if $$\tilde{q}_i^{ACK} = x$$ // a place-holder bit $$q_i^{ACK} = \widetilde{q}_i^{ACK}$$ else // coded bit $$q_i^{ACK} = \left(\widetilde{q}_i^{ACK} + w_{\lfloor k/m \rfloor}^{ACK}\right) \mod 2$$ $$k = (k+1) \mod 4m$$ end if i = i + 1 end while Table 5.2.2.6-A: Scrambling sequence selection for TDD HARQ-ACK bundling | i | $\left[w_0^{ACK}w_1^{ACK}w_2^{ACK}w_3^{ACK}\right]$ | |---|---| | 0 | [1 1 1 1] | | 1 | [1 0 1 0] | | 2 | [1 1 0 0] | | 3 | [1 0 0 1] | When HARQ-ACK information is to be multiplexed with UL-SCH at a given
PUSCH, the HARQ-ACK information is multiplexed in all layers of all transport blocks of that PUSCH, For a given transport block, the vector sequence output of the channel coding for HARQ-ACK information is denoted by $\underline{q}_0^{ACK}, \underline{q}_1^{ACK}, ..., \underline{q}_{Q'_{ACK}-1}^{ACK}$, where \underline{q}_i^{ACK} , $i=0,...,Q_{ACK}'-1$ are column vectors of length $\left(Q_m\cdot N_L\right)$ and where $Q_{ACK}'=Q_{ACK}/Q_m$ is obtained as follows: Set i, k to 0 while $i < Q_{ACK}$ $$\hat{q}_{k}^{ACK} = [q_{i}^{ACK} ... q_{i+Q_{m}-1}^{ACK}]$$ -- temporary row vector $$\underline{\underline{q}}_{k}^{ACK} = [\underbrace{\hat{\underline{q}}_{k}^{ACK} \cdots \hat{\underline{q}}_{k}^{ACK}}^{N_{L}}]^{T} - \text{replicating the row vector } \hat{\underline{q}}_{k}^{ACK} N_{L} \text{ times and transposing into a column vector}$$ $$i = i + Q_m$$ $$k = k + 1$$ end while where $\,N_L\,$ is the number of layers onto which the UL-SCH transport block is mapped. For rank indication (RI) (RI only, joint report of RI and i1, joint report of CRI and RI, joint report of CRI, RI and i1, joint report of CRI, RI, and PTI, joint report of RI and i1,p-2, and joint report of RI and PTI) or CRI - The corresponding bit widths for CRI feedback for PDSCH transmissions are given by Tables 5.2.2.6.1-2A, 5.2.2.6.1-2C, 5.2.2.6.1-2G, 5.2.2.6.2-3A, 5.2.2.6.2-3C, 5.2.2.6.2-3G, 5.2.2.6.3-3A, 5.2.2.6.3-3C, 5.2.2.6.3-3G, 5.2.3.3.1-3E, 5.2.3.3.1-3H, 5.2.3.3.2-4E, and 5.2.3.3.2-4H. - The corresponding bit widths for RI feedback for PDSCH transmissions are given by Tables 5.2.2.6.1-2, 5.2.2.6.1-2B, 5.2.2.6.1-2D, 5.2.2.6.1-2E, 5.2.2.6.1-2F, 5.2.2.6.2-3, 5.2.2.6.2-3B, 5.2.2.6.2-3D, 5.2.2.6.2-3E, 5.2.2.6.2-3F, 5.2.2.6.3-3, 5.2.2.6.3-3B, 5.2.2.6.3-3D, 5.2.2.6.3-3E, 5.2.2.6.3-3F, 5.2.3.3.1-3, 5.2.3.3.1-3A, 5.2.3.3.1-3B, 5.2.3.3.1-3B-1, 5.2.3.3.1-3C, 5.2.3.3.1-3D, 5.2.3.3.1-3F, 5.2.3.3.1-3G, 5.2.3.3.1-3I, 5.2.3.3.1-3J, 5.2.3.3.1-5, 5.2.3.3.2-4F, 5.2.3.3.2-4B, 5.2.3.3.2-4C, 5.2.3.3.2-4D, 5.2.3.3.2-4F, 5.2.3.3.2-4G and 5.2.3.3.2-4I which are determined assuming the maximum number of layers as follows: - If the *maxLayersMIMO-r10* is configured for the DL cell, the maximum number of layers for subframe operation is determined according to *maxLayersMIMO-r10* for the DL cell. - If the UE is configured with *ShortTTI-Length* and if the higher layer parameter *maxLayersMIMO-sTTI-r15* is configured for the DL cell, the maximum number of layers for slot/subslot operation is determined according to *maxLayersMIMO-sTTI-r15* for the DL cell. - Else, - If the UE is configured with transmission mode 9, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the configured number of CSI-RS ports and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 9, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the maximum of number of antenna port of the configured CSI-RS resources and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 9, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the configured number of CSI-RS ports and *ue-Category* (without suffix). - If the UE is configured with transmission mode 9, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the maximum of number of antenna port of the configured CSI-RS resources and *ue-Category* (without suffix). - If the UE is configured with transmission mode 9, and higher layer parameter *semiOpenLoop*, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of 2 and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 9, and higher layer parameter *semiOpenLoop*, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of 2 and *ue-Category* (without suffix). - If the UE is configured with transmission mode 9, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 with *activatedResources*>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the maximum of number of antenna ports of the activated CSI-RS resources and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 9, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 with *activatedResources*>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the maximum of number of antenna ports of the activated CSI-RS resources and *ue-Category* (without suffix). - If the UE is configured with transmission mode 9, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with *activatedResources*=1 or *numberActivatedAperiodicCSI-RS-Resources*>0, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the number of antenna port of the activated or selected CSI-RS resource and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 9, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with *activatedResources*=1 or *numberActivatedAperiodicCSI-RS-Resources*>0, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the number of antenna ports of the activated or selected CSI-RS resource and *ue-Category* (without suffix). - If the UE is configured with transmission mode 9 and higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the configured number of CSI-RS ports of *eMIMO-Type2* and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 9 and higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers is determined according to the minimum of the configured number of CSI-RS ports of *eMIMO-Type2* and *ue-Category* (without suffix). - If the UE is configured with transmission mode 10, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the configured number of CSI-RS ports for that CSI process and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 10, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the maximum of number of antenna port of the configured CSI-RS resources in that CSI process and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 10, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the configured number of CSI-RS ports for that CSI process and *ue-Category* (without suffix). - If the UE is configured with transmission mode 10, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the maximum of number of antenna port of the configured CSI-RS resources in that CSI process and *ue-Category* (without suffix). - If the UE is configured with transmission mode 10, and higher layer parameter *semiOpenLoop*, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of 2 and the
maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 10, and higher layer parameter *semiOpenLoop*, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of 2 and *ue-Category* (without suffix). - If the UE is configured with transmission mode 10, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 with *activatedResources*>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the maximum of number of antenna ports of the activated CSI-RS resources in that CSI process and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 10, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 with *activatedResources*>1, and RI and CRI are transmitted in the same reporting instance, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the maximum of number of antenna port of the activated CSI-RS resources in that CSI process and *ue-Category* (without suffix). - If the UE is configured with transmission mode 10, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with *activatedResources*=1 or *numberActivatedAperiodicCSI-RS-Resources*>0, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the number of antenna ports of the activated or selected CSI-RS resource in that CSI process and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 10, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with *activatedResources*=1 or *numberActivatedAperiodicCSI-RS-Resources>*0, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the number of antenna port of the activated or selected CSI-RS resource in that CSI process and *ue-Category* (without suffix). - If the UE is configured with transmission mode 10 and higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and the *supportedMIMO-CapabilityDL-r10* field is included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the configured number of CSI-RS ports of *eMIMO-Type2* for that CSI process and the maximum of the reported UE downlink MIMO capabilities for the same band in the corresponding band combination. - If the UE is configured with transmission mode 10 and higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and the *supportedMIMO-CapabilityDL-r10* field is not included in the *UE-EUTRA-Capability*, the maximum number of layers for each CSI process is determined according to the minimum of the - configured number of CSI-RS ports of *eMIMO-Type2* for that CSI process and *ue-Category* (without suffix) - Otherwise the maximum number of layers is determined according to the minimum of the number of PBCH antenna ports and *ue-Category* (without suffix). - If RI feedback consists of 1-bit of information, i.e., $[o_0^{RI}]$, it is first encoded according to Table 5.2.2.6-3. The $[o_0^{RI}]$ to RI mapping is given by Table 5.2.2.6-5. - If RI feedback consists of 2-bits of information, i.e., $[o_0^{RI} \ o_1^{RI}]$ with o_0^{RI} corresponding to MSB of 2-bit input and o_1^{RI} corresponding to LSB, it is first encoded according to Table 5.2.2.6-4 where $o_2^{RI} = (o_0^{RI} + o_1^{RI}) \mod 2$. The $[o_0^{RI} \ o_1^{RI}]$ to RI mapping is given by Table 5.2.2.6-6A if the UE is configured with higher layer parameter feCoMP-CSI-Enabled, otherwise given by Table 5.2.2.6-6. Table 5.2.2.6-3: Encoding of 1-bit RI | Q_m | Encoded RI | |-------|------------------------------| | 2 | $[o_0^{RI} y]$ | | 4 | $[o_0^{RI} \text{ y x x}]$ | | 6 | $[o_0^{RI} y x x x x x]$ | | 8 | $[o_0^{RI} y x x x x x x x]$ | Table 5.2.2.6-4: Encoding of 2-bit RI | Q_m | Encoded RI | |-------|--| | 2 | $[o_0^{RI} \ o_1^{RI} \ o_2^{RI} \ o_0^{RI} \ o_1^{RI} \ o_2^{RI}]$ | | 4 | $[o_0^{RI} o_1^{RI} \times \times o_2^{RI} o_0^{RI} \times \times o_1^{RI} o_2^{RI} \times \times]$ | | 6 | $[o_0^{RI} \ o_1^{RI} \ x \ x \ x \ x \ o_2^{RI} \ o_0^{RI} \ x \ x \ x \ x \ o_1^{RI} \ o_2^{RI} \ x \ x \ x \ x]$ | | 8 | $[o_0^{RI} o_1^{RI} \times \times \times \times \times \times o_2^{RI} o_0^{RI} \times \times \times \times \times o_1^{RI} o_2^{RI} \times \times \times \times \times \times]$ | Table 5.2.2.6-5: o_0^{RI} to RI mapping | o_0^{RI} | RI | |------------|----| | 0 | 1 | | 1 | 2 | Table 5.2.2.6-6: o_0^{RI} , o_1^{RI} to RI mapping | o_0^{RI} , o_1^{RI} | RI | |-------------------------|----| | 0, 0 | 1 | | 0, 1 | 2 | | 1, 0 | 3 | | 1, 1 | 4 | Table 5.2.2.6-6A: o_0^{RI} , o_1^{RI} to RI mapping | O_0^{RI} , O_1^{RI} | RI (CRI = 0 or 1) | {RI0, RI1} (CRI = 2) | |-------------------------|-------------------|----------------------| | 0, 0 | 1 | {1,1} | | 0, 1 | 2 | {1,2} | | 1, 0 | 3 | {2,1} | | 1, 1 | 4 | {2,2} | Table 5.2.2.6-7: o_0^{RI} , o_1^{RI} , o_2^{RI} to RI mapping | o_0^{RI} , o_1^{RI} , o_2^{RI} | RI | |--------------------------------------|----| | 0, 0, 0 | 1 | | 0, 0, 1 | 2 | | 0, 1, 0 | 3 | | 0, 1, 1 | 4 | | 1, 0, 0 | 5 | | 1, 0, 1 | 6 | | 1, 1, 0 | 7 | | 1, 1, 1 | 8 | Table 5.2.2.6-8: o_0^{RI} , o_1^{RI} , o_2^{RI} , o_3^{RI} to RI mapping | o_0^{RI} , o_1^{RI} , o_2^{RI} , o_3^{RI} | RI (CRI = 0 or 1) | {RI0, RI1} (CRI = 2) | |---|-------------------|----------------------| | 0, 0, 0, 0 | 1 | {1,1} | | 0, 0, 0, 1 | 2 | {1,2} | | 0, 0, 1, 0 | 3 | {2,1} | | 0, 0, 1, 1 | 4 | {2,2} | | 0, 1, 0, 0 | 5 | {2,3} | | 0, 1, 0, 1 | 6 | {3,2} | | 0, 1, 1, 0 | 7 | {3,3} | | 0, 1, 1, 1 | 8 | {3,4} | | 1, 0, 0, 0 | reserved | {4,3} | | 1, 0, 0, 1 | reserved | {4,4} | | 1, 0, 1, 0 | reserved | reserved | | 1, 0, 1, 1 | reserved | reserved | | 1, 1, 0, 0 | reserved | reserved | | 1, 1, 0, 1 | reserved | reserved | | 1, 1, 1, 0 | reserved | reserved | | 1, 1, 1, 1 | reserved | reserved | - If RI feedback for a given DL cell consists of 3-bits of information, i.e., $[o_0^{RI} \ o_1^{RI} \ o_2^{RI}]$ with o_0^{RI} corresponding to MSB of 3-bit input and o_2^{RI} corresponding to LSB. The $[o_0^{RI} \ o_1^{RI} \ o_2^{RI}]$ to RI mapping is given by Table 5.2.2.6-7. - If RI feedback for a given DL cell consists of 4-bits of information when the UE is configured with higher layer parameter feCoMP-CSI-Enabled, i.e., $\begin{bmatrix} o_0^{RI} & o_1^{RI} & o_2^{RI} & o_3^{RI} \end{bmatrix}$ with o_0^{RI} corresponding to MSB of 4-bit input and o_3^{RI} corresponding to LSB, the $\begin{bmatrix} o_0^{RI} & o_1^{RI} & o_2^{RI} & o_3^{RI} \end{bmatrix}$ to RI mapping is given by Table 5.2.2.6-8. - If RI feedback consists of $3 \le O^{RI} \le 11$ bits of information, i.e., $[o_0^{RI} \ o_1^{RI}, ..., o_{O^{RI}-1}^{RI}]$, then a coded bit sequence $[\tilde{q}_0^{RI} \ \tilde{q}_1^{RI}, ..., \tilde{q}_{31}^{RI}]$ is obtained by using the bit sequence $[o_0^{RI} \ o_1^{RI}, ..., o_{O^{RI}-1}^{RI}]$ as the input to the channel coding block described in subclause 5.2.2.6.4. - If RI feedback consists of $11 < O^{RI} \le 22$ bits of information as a result of the aggregation of RI bits corresponding to multiple DL cells or multiple CSI processes, i.e., $[o_0^{RI} \ o_1^{RI}, ..., o_{O^{RI}-1}^{RI}]$, then the coded bit sequence $[o_0^{RI}, q_1^{RI}, q_2^{RI}, ..., q_{O^{RI}-1}^{RI}]$ is obtained by using the bit sequence $[o_0^{RI}, o_1^{RI}, ..., o_{O^{RI}-1}^{RI}]$ as the input to the channel coding block described in subclause 5.2.2.6.5. - If RI feedback consists of $O^{RI} > 22$ bits of information as a result of the aggregation of RI bits corresponding to multiple DL cells or multiple CSI processes, i.e., $[o_0^{RI} \ o_1^{RI}, ..., o_{O^{RI}-1}^{RI}]$, then the coded bit sequence is denoted by $q_0^{RI}, q_1^{RI}, q_2^{RI}, ..., q_{Q_{RI}-1}^{RI}$. The CRC attachment, channel coding and rate matching of the HARQ-ACK bits are performed according to subclauses 5.1.1 setting L to 8 bits, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $[o_0^{RI} \ o_1^{RI}, ..., o_{O^{RI}-1}^{RI}]$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. - A UE capable of supporting only up to 5 serving cells is not expected to support CRI/RI payload larger than 22 bits. The "x" and "y" in Table 5.2.2.6-3 and 5.2.2.6-4 are placeholders for [2] to scramble the RI bits in a way that maximizes the Euclidean distance of the modulation symbols carrying rank information. For the case where RI feedback for more than one DL cell is to be reported, the RI report for each DL cell is concatenated prior to coding in increasing order of cell index. For the case where RI feedback for more than one CSI process is to be reported, the RI reports are
concatenated prior to coding first in increasing order of CSI process index for each DL cell and then in increasing order of cell index. For the case where RI feedback consists of one or two bits of information the bit sequence q_0^{RI} , q_1^{RI} , q_2^{RI} ,..., $q_{Q_{RI}-1}^{RI}$ is obtained by concatenation of multiple encoded RI blocks where Q_{RI} is the total number of coded bits for all the encoded RI blocks. The last concatenation of the encoded RI block may be partial so that the total bit sequence length is equal to Q_{RI} . For the case where RI feedback consists of $3 \le O^{RI} \le 11$ bits of information, the bit sequence q_0^{RI} , q_1^{RI} , q_2^{RI} ,..., $q_{Q_{RI}-1}^{RI}$ is obtained by the circular repetition of the bit sequence \tilde{q}_0^{RI} , \tilde{q}_1^{RI} ,..., \tilde{q}_{31}^{RI} so that the total bit sequence length is equal to Q_{RI} . For the case where CRI feedback is to be reported, the same procedures for RI are applied for CRI. When rank information is to be multiplexed with UL-SCH at a given PUSCH, the rank information is multiplexed in all layers of all transport blocks of that PUSCH. For a given transport block, the vector sequence output of the channel coding for rank information is denoted by $\underline{q}_0^{RI}, \underline{q}_1^{RI}, ..., \underline{q}_{Q'_{RI}-1}^{RI}$, where \underline{q}_i^{RI} , $i=0,...,Q'_{RI}-1$ are column vectors of length $(Q_m \cdot N_L)$ and where $Q'_{RI} = Q_{RI} / Q_m$. The vector sequence is obtained as follows: Set i, j, k to 0 while $i < Q_{RI}$ $$\hat{q}_{k}^{RI} = [q_{i}^{RI} ... q_{i+Q_{m}-1}^{RI}]$$ -- temporary row vector $$\underline{q}_{k}^{RI} = [\underline{\hat{q}}_{k}^{RI} \cdots \underline{\hat{q}}_{k}^{RI}]^{T} - \text{replicating the row vector } \underline{\hat{q}}_{k}^{RI} N_{L} \text{ times and transposing into a column vector}$$ $$i = i + Q_m$$ $$k = k + 1$$ end while where N_L is the number of layers onto which the UL-SCH transport block is mapped. The same processing procedures for RI and RI multiplexing with UL-SCH at a given PUSCH are applied for CRI, using CRI instead of RI in the equations. For channel quality control information (CQI and/or PMI denoted as CQI/PMI); When the UE transmits channel quality control information bits, it shall determine the number of modulation coded symbols per layer Q' for channel quality information as $$Q' = \min \left[\frac{(O+L) \cdot M_{sc}^{PUSCH-initial(x)} \cdot N_{symb}^{PUSCH-initial(x)} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C^{(x)}-1} K_{r}^{(x)}} \right], M_{sc}^{PUSCH} \cdot N_{symb}^{PUSCH} - \frac{Q_{RI}^{(x)}}{Q_{m}^{(x)}}$$ where - O is the number of CQI/PMI bits, and - L is the number of CRC bits given by $L = \begin{cases} 0 & O \le 11 \\ 8 & \text{otherwise} \end{cases}$, and - $Q_{CQI} = Q_m^{(x)} \cdot Q'$ and $\beta_{offset}^{PUSCH} = \beta_{offset}^{CQI}$, where β_{offset}^{CQI} shall be determined according to [3] depending on the number of transmission codewords for the corresponding PUSCH, the duration of the corresponding PUSCH, and on the uplink power control subframe set for the corresponding PUSCH when two uplink power control subframe sets are configured by higher layers for the cell. - If neither RI nor CRI is not transmitted then $Q_{RI}^{(x)} = 0$. The variable "x" in $K_r^{(x)}$ represents the transport block index corresponding to the highest I_{MCS} value indicated by the initial UL grant. In case the two transport blocks have the same I_{MCS} value in the corresponding initial UL grant, "x=1", which corresponds to the first transport block. $M_{sc}^{PUSCH-initial(x)}$, $C^{(x)}$, and $K_r^{(x)}$ are obtained from the initial PDCCH or EPDCCH or MPDCCH or SPDCCH for the same transport block. If there is no initial PDCCH or EPDCCH with DCI format 0/0A/0B/4A/4B or MPDCCH with DCI format 6-0A/6-0B or SPDCCH with DCI format 7-0A/7-0B for the same transport block, $M_{sc}^{PUSCH-initial(x)}$, $C^{(x)}$, and $K_r^{(x)}$ shall be determined from: - the most recent semi-persistent scheduling assignment PDCCH or EPDCCH or MPDCCH or SPDCCH, when the initial PUSCH for the same transport block is semi-persistently scheduled, or, - the random access response grant for the same transport block, when the PUSCH is initiated by the random access response grant, or - the most recent AUL activation DCI as defined in [3], when the initial PUSCH for the same transport block is AUL PUSCH. $N_{symb}^{PUSCH-initial(x)}$ is the number of SC-FDMA symbols per subframe/slot/subslot for initial PUSCH transmission for the same transport block. For UL-SCH data information $G = N_L^{(x)} \cdot \left(N_{\text{symb}}^{\text{PUSCH}} \cdot M_{\text{sc}}^{\text{PUSCH}} \cdot Q_m^{(x)} - Q_{CQI} - Q_{RI}^{(x)} \right)$, where - $N_L^{(x)}$ is the number of layers the corresponding UL-SCH transport block is mapped onto, and - $M_{\rm sc}^{\rm PUSCH}$ is the scheduled bandwidth for PUSCH transmission in the current subframe/slot/subslot for the transport block, and - $N_{\text{symb}}^{\text{PUSCH}}$ is the number of SC-FDMA symbols in the current PUSCH transmission subframe/slot/subslot given by $N_{\text{symb}}^{\text{PUSCH}} = \left(\tilde{N}_{\text{symb}}^{\text{UL}} N_{\text{SRS}} N_{\text{start}}^{\text{PUSCH}} N_{\text{end}}^{\text{PUSCH}}\right)$, where - $\tilde{N}_{\text{symb}}^{\text{UL}} = (N_{\text{symb}}^{\text{UL}} 1)$ for PUSCH with slot duration, or for Partial PUSCH Mode 2 or 3, or - $\widetilde{N}_{ ext{symb}}^{ ext{UL}} = N_{ ext{symb}}^{ ext{subslot}} N_{ ext{DMRS}}$ for PUSCH with subslot duration, - $N_{\text{symb}}^{\text{subslot}}$ is the number of SC-FDMA symbols of the subslot as defined in subclause 4.1 of [2], - N_{DMRS} is the number of SC-FDMA symbols for DMRS of the subslot as defined in subclause 5.5.2.1.2 of [2] - otherwise $\tilde{N}_{\text{symb}}^{\text{UL}} = 2(N_{\text{symb}}^{\text{UL}} 1)$. - N_{SRS} is equal to 1 for non-BL/CE UEs and BL/CE UEs in CEModeA - if UE configured with one UL cell is configured to send PUSCH and SRS in the same subframe for the current subframe/slot/subslot, or - if UE transmits PUSCH and SRS in the same subframe/slot/subslot for the current subframe in the same serving cell, or - if the PUSCH resource allocation for the current subframe even partially overlaps with the cell-specific SRS subframe and bandwidth configuration defined in subclause 5.5.3 of [2], and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe, or - if the current subframe/slot/subslot in the same serving cell is a UE-specific type-1 SRS subframe as defined in Subclause 8.2 of [3], and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe, or - if the current subframe/slot/subslot in the same serving cell is a UE-specific type-0 SRS subframe as defined in subclause 8.2 of [3] and the UE is configured with multiple TAGs, and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe. - Otherwise N_{SRS} is equal to 0. - N_{start}^{PUSCH} is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH not starting from the beginning of the first symbol or the seventh symbol of the current subframe, otherwise is equal to 0. - $N_{\rm end}^{\it PUSCH}$ is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH up to the second to last symbol of the current subframe and $N_{\it SRS}$ is equal to 0, otherwise is equal to 0 In case of CQI/PMI report for more than one DL cell, $o_0, o_1, o_2, ..., o_{O-1}$ is the result of concatenating the CQI/PMI report for each DL cell in increasing order of cell index. For the case where CQI/PMI feedback for more than one CSI process is to be reported, $o_0, o_1, o_2, ..., o_{O-1}$ is the result of concatenating the CQI/PMI reports in increasing order of CSI process index for each DL cell and then in increasing order of cell index. - If the payload size is less than or equal to 11 bits, the channel coding of the channel quality information is performed according to subclause 5.2.2.6.4 with input sequence $o_0, o_1, o_2, ..., o_{O-1}$. - For payload sizes greater than 11 bits, the CRC attachment, channel coding and rate matching of the channel quality information is performed according to subclauses 5.1.1, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $o_0, o_1, o_2, ..., o_{Q-1}$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. The output sequence for the channel coding of channel quality information is denoted by $q_0, q_1, q_2, q_3, ..., q_{N_L \cdot Q_{CQI}^{-1}}$, where N_I is the number of layers the corresponding UL-SCH transport block is mapped onto. ## 5.2.2.6.1 Channel quality information formats for wideband CQI reports If the parameter *CQI-ReportModeAperiodic* is configured to the value of *rm12* by higher layers [6], the fields and the corresponding bit widths for channel quality information and rank indication feedback are described as below. Table 5.2.2.6.1-1, Table 5.2.2.6.1-1A and Table 5.2.2.6.1-1B show the fields and the corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 4, transmission mode 6, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports except with *advancedCodebookEnabled=TRUE*, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports except with *advancedCodebookEnabled=TRUE*, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8
antenna ports and higher layer parameter *eMIMO-Type*, *eMIMO-Type* is set to 'CLASS B' for a CSI process with K>1 except with *feCoMP-CSI-Enabled=true*, and K=1 except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type*2 and *eMIMO-Type*2 configured with PMI/RI reporting with 2/4/8 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3] and *alternativeCodebookEnabledCLASSB_K1* is configured by higher layers [6]. Table 5.2.2.6.1-1-1 and Table 5.2.2.6.1-1A-1 show the fields and the corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true* except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. Table 5.2.2.6.1-1B-1 and Table 5.2.2.6.1-1B-2 show the fields and the corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE. Table 5.2.2.6.1-1B-3 shows the fields and the corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 4 antenna ports with K>1, and higher layer parameter *feCoMP-CSI-Enabled=true* with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3].For Table 5.2.2.6.1-1-1, Table 5.2.2.6.1-1A-1 and Table 5.2.2.6.1-1B-3, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. Table 5.2.2.6.1-1C and Table 5.2.2.6.1-1D show the fields and the corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' except with *advancedCodebookEnabled=TRUE*. Table 5.2.2.6.1-1D-1 and Table 5.2.2.6.1-1D-2 show the fields and corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' and advancedCodebookEnabled=TRUE. Table 5.2.2.6.1-1E shows the fields and corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and higher layer parameter *alternativeCodebookEnabledCLASSB_K1=TRUE* configured, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *alternativeCodebookEnabledCLASSB_K1=TRUE*. For Table 5.2.2.6.1-1, Table 5.2.2.6.1-1-1, Table 5.2.2.6.1-1A, Table 5.2.2.6.1-1A-1, Table 5.2.2.6.1-1B, Table 5.2.2.6.1-1B-1, Table 5.2.2.6.1-1B-2, Table 5.2.2.6.1-1B-3, Table 5.2.2.6.1-1C, Table 5.2.2.6.1-D, Table 5.2.2.6.1-1D-1 1, Table 5.2.2.6.1-1D-2 and Table 5.2.2.6.1-1E, N is defined in subclause 7.2 of [3]. For Table 5.2.2.6.1-1B-1, Table 5.2.2.6.1-1B-2, Table 5.2.2.6.1-1C, Table 5.2.2.6.1-D-1 and Table 5.2.2.6.1-1D-2, the codebook configuration (N_1, N_2, O_1, O_2) is defined in [3], and CodebookConfig is configured by higher layers [6]. The $$\text{parameters } \left(S_1, S_2\right) \text{ in rank 3 and 4 are defined as } \left(S_1, S_2\right) = \left(1, 1\right) \text{ for } \textit{CodebookConfig} = 1, \\ \left(S_1, S_2\right) = \left(\frac{O_1}{2}, \frac{O_2}{2}\right) \frac{O$$ $$\text{for } \textit{CodebookConfig} = 2, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{2}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \\ \text{for } \textit{CodebookConfig} = 3, \ \left(S_1, S_2$$ $\label{eq:codebookConfig} \textit{CodebookConfig} = 4. \text{ The parameters } \left(S_1, S_2\right) \text{ in rank 5 to 8 are defined as } \left(S_1, S_2\right) = \left(1, 1\right) \text{ for } \textit{CodebookConfig} = 1,$ $$(S_1, S_2) = \left(\frac{O_1}{4}, \frac{O_2}{4}\right)$$ for $CodebookConfig=2/3/4$. The parameters (L_1, L_2) are defined as $L_1 = \min\{4, N_1\}$ and $$L_2 = 2 \text{ for } N_1 \geq N_2 \text{ and } N_2 \neq 1 \text{ , } L_1 = 2 \text{ and } L_2 = \min \big\{ 4, N_2 \big\} \text{ for } N_1 < N_2 \text{ and } N_1 \neq 1 \text{ , and } L_1 = \min \big\{ 8, N_1 \big\} \text{ and } L_2 = 1 \text{ for } N_2 = 1 \text{ .}$$ Table 5.2.2.6.1-1: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 4, transmission mode 6, transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4 antenna ports with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | |----------------------------|------------|----------|-----------------|------------|--| | Field | 2 anten | na ports | 4 antenna ports | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 0 | 4 | 0 | 4 | | | Precoding matrix indicator | 2 <i>N</i> | N | 4 <i>N</i> | 4 <i>N</i> | | Table 5.2.2.6.1-1-1: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4 antenna ports with K>1 and higher
layer parameter feCoMP-CSI-Enabled=true except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width for CRI=0 or 1 | | | | |---------------------------------------|------------------------------|----------|-----------------|----------| | Field | 2 antenna ports | | 4 antenna ports | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 0 | 4 | | Precoding matrix indicator | 2 <i>N</i> | N | 4N | 4N | | | Bit width for CRI=2 | | | | | Field | 2 antenna ports 4 antenna po | | na ports | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Precoding matrix indicator codeword 0 | 2 <i>N</i> | N | 4 <i>N</i> | 4N | | Precoding matrix indicator codeword 1 | 2 <i>N</i> | N | 4 <i>N</i> | 4N | Table 5.2.2.6.1-1A: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 8 antenna ports with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | Field | Bit width | | | | | |-------------------------|------------|------------|------------|------------|--| | rieid | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | | Subband second PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | | | | | | | | | Field | Bit width | | | | | | rieiu | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | Wideband first PMI i1 | 2 | 2 | 2 | 0 | | | Subband second PMI i2 | 0 | 0 | 0 | 0 | | Table 5.2.2.6.1-1A-1: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 8 antenna ports with K>1 and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bit width for CRI=0 or 1 | | | | |----------------------------------|--------------------------|--------------|--------------|------------| | rieid | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | Subband second PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | | | | | | | Field | | Bit width fo | r CRI=0 or 1 | | | i ieiu | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Wideband first PMI i1 | 2 | 2 | 2 | 0 | | Subband second PMI i2 | 0 | 0 | 0 | 0 | | Field | Bit width for CRI=2 | | | | | rieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Wideband first PMI i1 codeword 0 | 4 | 4 | 2 | 2 | | Subband second PMI i2 codeword 0 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | Wideband first PMI i1 codeword 1 | 4 | 4 | 2 | 2 | | Subband second PMI i2 codeword 1 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | Table 5.2.2.6.1-1B: Fields for channel quality information feedback for wideband CQI and subband PMI reports with 4 antenna ports (transmission mode 8, transmission mode 9 and transmission mode 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 4 antenna ports with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | | Bit v | vidth | | |-------------------------|------------|------------|------------|----------| | - 1010 | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | Subband second PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 4N | Table 5.2.2.6.1-1B-1: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | Field | Bit width | | | | |---------------------------|-----------|-------------|------------|------------| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Wideband first PMI i1,1-1 | 3 | 3 | 0 | 0 | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | Wideband first PMI i1,1-2 | 0 | 0 | 0 | 0 | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | Wideband first PMI i1,p-2 | 2 | 2 | 0 | 0 | | Subband second PMI i2 | 6N | 12 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | Table 5.2.2.6.1-1B-2: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | |---------------------------|---------------------------------|---------------------------------|------------|----------|--| | rield | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Wideband first PMI i1,1-1 | $\lceil \log_2(N_1 O_1) \rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | 2 | 2 | | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,p-2 | 2 | 2 | 0 | 0 | | | Subband second PMI i2 | 6 <i>N</i> | 12 <i>N</i> | 4 <i>N</i> | 3N | | | | | | | | | | Field | | Bit width | | | | | rieid | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | Wideband first PMI i1,1-1 | 2 | 2 | 2 | 0 | | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,1-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,p-2 | 0 | 0 | 0 | 0 | | | Subband second PMI i2 | 0 | 0 | 0 | 0 | | Table 5.2.2.6.1-1B-3: Fields for channel quality information feedback for wideband CQI and subband PMI reports with 4 antenna ports (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 4 antenna ports with K>1, and higher layer parameter feCoMP-CSI-Enabled=true with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bit width for CRI=0 or 1 | | | | | |----------------------------------|---|----------|----------|------------|--| | 1,0.0 | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | | Subband second PMI i2 | 4N 4N 4N 4N | | | | | | Field | Bit width for CRI=2 | | | | | | 1.000 | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | Wideband first PMI i1 codeword 0 | 4 | 4 | 0 | 0 | | | Subband second PMI i2 codeword 0 | 4 <i>N</i> 4 <i>N</i> 4 <i>N</i> 4 <i>N</i> | | | 4 <i>N</i> | | | Wideband first PMI i1 codeword 1 | 4 | 4 | 0 | 0 | | | Subband second PMI i2 codeword 1 | 4N 4N 4N 4N | | | | | Table 5.2.2.6.1-1C: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) and CodebookConfig=1, except with advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | | |-------------------------------|---|--|---|---|--|--| | rieia | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | | | Wideband
CQI
codeword 0 | 4 | 4 | 4 | 4 | | | | Wideband
CQI
codeword 1 | 0 | 4 | 4 | 4 | | | | Wideband
first PMI i1,1 | $\lceil \log_2(N_1 O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | Wideband first PMI i1,2 | $\lceil \log_2(N_2O_2)
\rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2 O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | | | | Subband
second PMI
i2 | 2 <i>N</i> | 2 <i>N</i> | N | N | | | | Field | | | Bit width | | | | | i ieiu | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | | | Wideband
CQI
codeword 0 | 4 | 4 | 4 | 4 | | | | Wideband
CQI
codeword 1 | 4 | 4 | 4 | 4 | | | | Wideband first PMI i1,1 | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | | | | Wideband first PMI i1,2 | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | | | | Subband
second PMI
i2 | 0 | 0 | 0 | 0 | | | Table 5.2.2.6.1-1D: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,O_1,O_2) and CodebookConfig=2/3/4, except with advancedCodebookEnabled=TRUE) | Field | | | Bit width | | |----------------------------------|--|--|---|---| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | Wideband
CQI
codeword
1 | 0 | 4 | 4 | 4 | | Wideband
first PMI
i1,1 | $\left\lceil \log_2 \left(N_1 O_1 / 2 \right) \right\rceil$ | $\lceil \log_2(N_1O_1/2) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | Wideband
first PMI
i1,2 | $\left\lceil \log_2 \left(N_2 O_2 / 2 \right) \right\rceil$ | $\lceil \log_2(N_2O_2/2) \rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | | Subband
second
PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | Field | | | Bit width | | | \A(': 1 . 1 | Rank = 5 | Rank = 6 | Rank = 7 | Rank= 8 | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | Wideband
CQI
codeword
1 | 4 | 4 | 4 | 4 | | Wideband
first PMI
i1,1 | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2\left(N_1 O_1 / S_1\right) \right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | | Wideband
first PMI
i1,2 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | Subband
second
PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.1-1D-1: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9/10 configured with higher layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled = TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, Q, Q) and CodebookConfig=1) | Field | | | Bit width | | |----------------------------------|--|---|---|---| | | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | Wideband
CQI
codeword
1 | 0 | 4 | 4 | 4 | | Wideband
first PMI
i1,1-1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | Wideband
first PMI
i1,2-1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 \right) \right\rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | | Wideband
first PMI
i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | Wideband
first PMI
i1,2-2 | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | Wideband
first PMI
i1,p-2 | 2 | 2 | 0 | 0 | | Subband
second
PMI i2 | 6 <i>N</i> | 12 <i>N</i> | N | N | | Field | | | Bit width | | | \A(' | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | Wideband
CQI
codeword
1 | 4 | 4 | 4 | 4 | | Wideband
first PMI
i1,1-1 | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | | Wideband
first PMI
i1,2-1 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | Wideband
first PMI
i1,1-2 | 0 | 0 | 0 | 0 | | Wideband
first PMI
i1,2-2 | 0 | 0 | 0 | 0 | | Wideband
first PMI
i1,p-2 | 0 | 0 | 0 | 0 | | Subband | | | | 1 | Table 5.2.2.6.1-1D-2: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9/10 configured with higher layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled= TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N, N, Q, Q) and CodebookConfig=2/3/4) | Field | | | Bit width | | |--------------------------------------|--------------------------------|--------------------------------|---|---| | Field | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | Wideban
d CQI
codeword
0 | 4 | 4 | 4 | 4 | | Wideban
d CQI
codeword
1 | 0 | 4 | 4 | 4 | | Wideban
d first
PMI i1,1-
1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left[\log_2\left(\frac{N_1O_1}{S_1}\times\left(2+\left\lfloor\frac{9-N_2}{8}\right\rfloor\right)\right)\right]$ | | Wideban
d first
PMI i1,2-
1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2\left(\frac{N_2O_2}{S_2}\right)\right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | | Wideban
d first
PMI i1,1-
2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | Wideban
d first
PMI i1,2-
2 | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | Wideban
d first
PMI i1,p-
2 | 2 | 2 | 0 | 0 | | Subband
second
PMI i2 | 6 <i>N</i> | 12 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | Field | | | Bit width | | | 1 1010 | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | Wideban
d CQI
codeword
0 | 4 | 4 | 4 | 4 | |--------------------------------------|---|---|--|--| | Wideban
d CQI
codeword
1 | 4 | 4 | 4 | 4 | | Wideban
d first
PMI i1,1-
1 | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | | Wideban
d first
PMI i1,2-
1 | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | | Wideban
d first
PMI i1,1-
2 | 0 | 0 | 0 | 0 | | Wideban
d first
PMI i1,2-
2 | 0 | 0 | 0 | 0 | | Wideban
d first
PMI i1,p-
2 | 0 | 0 | 0 | 0 | | Subband
second
PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.1-1E: Fields for channel quality information feedback for wideband CQI and subband PMI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports with K=1 with alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter alternativeCodebookEnabledCLASSB_K1=TRUE) | | | | Bit w | idth | | | |----------------------------
------------|--|-----------------|------------|------------|---------| | Field | 2 anteni | na ports | 4 antenna ports | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank =2 | Rank =3 | Rank =4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 0 | 4 | 4 | 4 | | Precoding matrix indicator | 2 <i>N</i> | N | 3 <i>N</i> | 3 <i>N</i> | 2 <i>N</i> | N | | | | | Bit w | idth | | | | Field | | | 8 antenn | a ports | | | | | Rank = 1 | Rank = 1 Rank = 2 Rank = 3 Rank = 4 Rank = 5~8 | | | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 1 | | Wideband CQI codeword 1 | 0 4 0 4 4 | | | 1 | | | | Precoding matrix indicator | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | (|) | If the parameter *CQI-ReportModeAperiodic* is configured to the value of *rm10-v13xy* by higher layers [6], the fields and the corresponding bit widths for channel quality information and rank indication feedback are described as below. Table 5.2.2.6.1-1F shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, and transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port except with feCoMP-CSI-Enabled=true. Table 5.2.2.6.1-1F-1 shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter *feCoMP-CSI-Enabled=true*. Table 5.2.2.6.1-1G shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports except with *feCoMP-CSI-Enabled=true*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* is set to 'CLASS B' with 2/4/8 antenna ports without PMI reporting. Table 5.2.2.6.1-1G-1 shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports and higher layer parameter *feCoMP-CSI-Enabled=true*. For Table 5.2.2.6.1-1F-1 and Table 5.2.2.6.1-1G-1, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. Table 5.2.2.6.1-1F: Fields for channel quality information feedback for wideband CQI reports (transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, and transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port except with feCoMP-CSI-Enabled=true) | Field | Bit width | |---------------|-----------| | Wide-band CQI | 4 | Table 5.2.2.6.1-1F-1: Fields for channel quality information feedback for wideband CQI reports (transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bit width for CRI=0 or 1 | |--------------------------|--------------------------| | Wide-band CQI | 4 | | Field | Bit width for CRI=2 | | Wide-band CQI codeword 0 | 4 | | Wide-band CQI codeword 1 | 4 | Table 5.2.2.6.1-1G: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports except with feCoMP-CSI-Enabled=true, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 is set to 'CLASS B' with 2/4/8 antenna ports without PMI reporting) | Field | Bit width | | | |--------------------------|-----------|----------|--| | Field | Rank = 1 | Rank > 1 | | | Wide-band CQI codeword 0 | 4 | 4 | | | Wide-band CQI codeword 1 | 0 | 4 | | Table 5.2.2.6.1-1G-1: Fields for channel quality information feedback for wideband CQI reports (transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports and higher layer parameter *feCoMP-CSI-Enabled=true*) | Field | Bit width fo | r CRI=0 or 1 | | |--------------------------|---------------------|--------------|--| | rieid | Rank = 1 | Rank > 1 | | | Wide-band CQI codeword 0 | 4 | 4 | | | Wide-band CQI codeword 1 | 0 | 4 | | | Field | Bit width for CRI=2 | | | | rieid | Rank = 1 | Rank > 1 | | | Wide-band CQI codeword 0 | 4 | 4 | | | | | | | If the parameter *CQI-ReportModeAperiodic* is configured to the value of *rm11-v13xx* by higher layers [6], the fields and the corresponding bit widths for channel quality information and rank indication feedback are described as below. Table 5.2.2.6.1-1H, Table 5.2.2.6.1-1I and Table 5.2.2.6.1-1J show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 4, transmission mode 5, transmission mode 6, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true*, and K=1 except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with PMI/RI reporting with 2/4/8 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3] and *alternativeCodebookEnabledCLASSB_K1* is configured by higher layers [6]. Table 5.2.2.6.1-1H-1, Table 5.2.2.6.1-1I-1 show the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. Table 5.2.2.6.1-1J-1 and Table 5.2.2.6.1-1J-2 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A'. Table 5.2.2.6.1-1J-3 shows the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.2.6.1-1J-4 shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true* with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. For Table 5.2.2.6.1-1H-1, Table 5.2.2.6.1-1I-1 and Table 5.2.2.6.1-1J-4, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. Table 5.2.2.6.1-1K-1 and Table Table 5.2.2.6.1-1K-2 show the fields and the corresponding bit widths for channel quality information feedback for higher layer configured report for PDSCH transmission associated with transmission mode 9/10 configured with higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.2.6.1-1K-3 and Table 5.2.2.6.1-1K-4 show the fields and the corresponding bit widths for channel quality information feedback for higher layer configured report for PDSCH transmission associated with transmission mode 9/10 configured with higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) . For Table 5.2.2.6.1-1H, Table 5.2.2.6.1-1I, Table 5.2.2.6.1-1J, Table 5.2.2.6.1-1J-1, Table 5.2.2.6.1-1J-2 and Table 5.2.2.6.1-1J-3, N is defined in subclause 7.2 of [3]. For Table 5.2.2.6.1-1J-1, Table 5.2.2.6.1-1J-2, Table
5.2.2.6.1-1K-3, Table 5.2.2.6.1-1K-4 and Table 5.2.2.6.1-1K-5, the codebook configuration (N_1, N_2, O_1, O_2) is defined in [3], and CodebookConfig is configured by higher layers [6]. The parameters (S_1, S_2) in rank 1 and rank 2 are defined as $(S_1, S_2) = (1, 1)$ for CodebookConfig=1 and $(S_1, S_2) = (2, 2)$ for CodebookConfig=2, 3 and 4. The parameters (S_1, S_2) in rank 3 and 4 are defined as $(S_1, S_2) = (1, 1)$ for CodebookConfig=1, $(S_1, S_2) = \left(\frac{O_1}{2}, \frac{O_2}{2}\right)$ for CodebookConfig=3, $(S_1, S_2) = \left(O_1, \frac{O_2}{4}\right)$ for CodebookConfig=4. The parameters (S_1, S_2) in rank 5 to 8 are defined as $(S_1, S_2) = (1, 1)$ for CodebookConfig=1, $(S_1, S_2) = \left(\frac{O_1}{4}, \frac{O_2}{4}\right)$ for CodebookConfig=2/3/4. Table 5.2.2.6.1-1H: Fields for channel quality information feedback for wideband CQI reports (transmission mode 4, transmission mode 5, transmission mode 6, transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | |----------------------------|-----------|----------|----------|----------|--|--| | Field | 2 anteni | na ports | 4 anteni | na ports | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Wide-band CQI codeword 1 | 0 | 4 | 0 | 4 | | | | Precoding matrix indicator | 2 | 1 | 4 | 4 | | | Table 5.2.2.6.1-1H-1: Fields for channel quality information feedback for wideband CQI reports (transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | | Bit width fo | r CRI=0 or 1 | | |---------------------------------------|----------|--------------|-----------------|----------| | Field | 2 anteni | na ports | 4 antenna ports | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | Wide-band CQI codeword 1 | 0 4 | | 0 | 4 | | Precoding matrix indicator | 2 | 1 | 4 | 4 | | | | Bit width | for CRI=2 | | | Field | 2 anteni | na ports | 4 anteni | na ports | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | Wide-band CQI codeword 1 | 4 | 4 | 4 | 4 | | Precoding matrix indicator codeword 0 | 2 | 1 | 4 | 4 | | Precoding matrix indicator codeword 1 | 2 | 1 | 4 | 4 | Table 5.2.2.6.1-1I: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9 configured with PMI/RI reporting with 8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 8 antenna ports, transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | Field | | Bitw | ridth | | |-------------------------|----------|----------|----------|----------| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | Wideband second PMI i2 | 4 | 4 | 4 | 3 | | | | | | | | Field | | Bitw | ridth | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Wideband first PMI i1 | 2 | 2 | 2 | 0 | | Wideband second PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.1-1I-1: Fields for channel quality information feedback for wideband CQI reports (transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bitwidth for CRI=0 or 1 | | | | |-------|-------------------------|----------|----------|----------| | rielu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | |-----------------------------------|-------------------------|----------|----------|----------| | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | Wideband second PMI i2 | 4 | 4 | 4 | 3 | | | | | | | | Field | Bitwidth for CRI=0 or 1 | | | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Wideband first PMI i1 | 2 | 2 | 2 | 0 | | Wideband second PMI i2 | 0 | 0 | 0 | 0 | | Field | Bitwidth for CRI=2 | | | | | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Wideband first PMI i1 codeword 0 | 4 | 4 | 2 | 2 | | Wideband second PMI i2 codeword 0 | 4 | 4 | 4 | 3 | | Wideband first PMI i1 codeword 1 | 4 | 4 | 2 | 2 | | Wideband second PMI i2 codeword 1 | 4 | 4 | 4 | 3 | Table 5.2.2.6.1-1J: Fields for channel quality information feedback for wideband CQI reports with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodeBookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodeBookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bitwidth | | | | | |-------------------------|----------|----------|----------|----------|--| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | | Wideband second PMI i2 | 4 | 4 | 4 | 4 | | Table 5.2.2.6.1-1J-1: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N, N_2, O, O, O) and CodebookConfig=1) | Field | Bit width | | | | |-------|-----------|----------|---------|---------| | rieid | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | Wideband
CQI
codeword
0 | 4 | 4 4 | | 4 | |--|--------------------------------|---|---|---| | Wideband
CQI
codeword
1 | 0 | 4 | 4 | 4 | | Wideband
first PMI
i1,1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | Wideband
second
PMI i2 | 2 | 2 | 1 | 1 | | Field | Rank = 5 | Rank = 6 | Bit width | Rank =8 | | | | | | | | Wideband
CQI
codeword
0 | 4 | 4 | Rank =7
4 | 4 | | CQI
codeword | | | | | | CQI codeword 0 Wideband CQI codeword 1 Wideband first PMI i1,1 | 4 | 4 | 4 | 4 | | CQI codeword 0 Wideband CQI codeword 1 Wideband first PMI | 4 | 4 $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | 4 $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | 4 | Table 5.2.2.6.1-1J-2: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, Q_1, Q_2) and CodebookConfig=2/3/4) | Field | | | Bit width | | |-------------------------------|--|--|---
---| | Field | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | Wideband
CQI codeword
0 | 4 | 4 | 4 | 4 | | Wideband
CQI codeword
1 | 0 | 4 | 4 | 4 | | Wideband first
PMI i1,1 | $\lceil \log_2(N_1O_1/2) \rceil$ | $\left\lceil \log_2(N_1O_1/2) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | Wideband first
PMI i1,2 | $\lceil \log_2(N_2O_2/2) \rceil$ | $\left\lceil \log_2(N_2O_2/2) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | | Wideband
second PMI i2 | 4 | 4 | 4 | 3 | | Field | | | Bit width | | | - 10.0 | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | Wideband
CQI codeword
0 | 4 | 4 | 4 | 4 | | Wideband
CQI codeword
1 | 4 | 4 | 4 | 4 | | Wideband first
PMI i1,1 | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2\left(N_1 O_1 / S_1\right)\right\rceil$ | | Wideband first
PMI i1,2 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | Wideband
second PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.1-1J-3: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports with K=1 and alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter alternativeCodebookEnabledCLASSB_K1=TRUE) | Field | Bit width | | | | | | |----------------------------|--|----------|-------------------|----------|----------|---------| | | 2 anten | na ports | s 4 antenna ports | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank =2 | Rank =3 | Rank =4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 0 | 4 | 4 | 4 | | Precoding matrix indicator | 2 | 1 | 3 | 3 | 2 | 1 | | Field | | | Bit w | ridth | | | | | | | 8 antenr | na ports | | | | | Rank = 1 Rank = 2 Rank = 3 Rank = 4 Rank = 5 to Rank | | | | Rank = 8 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 1 | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | 4 | | | Precoding matrix indicator | 4 | 1 | 1 | 3 | - (| , | Table 5.2.2.6.1-1J-4: Fields for channel quality information feedback for wideband CQI reports with 4 antenna ports (transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bitwidth for CRI=0 or 1 | | | | |-----------------------------------|-------------------------|----------|----------|----------| | rieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | Wideband second PMI i2 | 4 | 4 | 4 | 4 | | Field | Bitwidth for CRI=2 | | | | | Fleiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Wideband first PMI i1 codeword 0 | 4 | 4 | 0 | 0 | | Wideband second PMI i2 codeword 0 | 4 | 4 | 4 | 4 | | Wideband first PMI i1 codeword 1 | 4 | 4 | 0 | 0 | | Wideband second PMI i2 codeword 1 | 4 | 4 | 4 | 4 | Table 5.2.2.6.1-1K-1: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bit width | | | |--------------------------|-----------|----------|--| | rieid | Rank = 1 | Rank = 2 | | | Wide-band CQI codeword 0 | 4 | 4 | | | Wide-band CQI codeword 1 | 0 | 4 | | Table 5.2.2.6.1-1K-2: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 4/8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bitv | vidth | |-------------------------|----------|----------| | rieiu | Rank = 1 | Rank = 2 | | Wideband CQI codeword 0 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | | Wideband first PMI i1 | 4 | 4 | Table 5.2.2.6.1-1K-3: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, Q, Q) and CodebookConfig=1) | Field | Bit wi | dth | |-------------------------|--------------------------------|---------------------------------| | Field | Rank = 1 | Rank = 2 | | Wideband CQI codeword 0 | 4 | 4 | | Wideband CQI codeword 1 | 0 | 4 | | Wideband first PMI i1,1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | | Wideband first PMI i1,2 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | Table 5.2.2.6.1-1K-4: Fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q_1,Q_2) and CodebookConfig=2/3/4) | Field | Bit width | | | |-------------------------|----------------------------------|---|--| | rieiu | Rank = 1 | Rank = 2 | | | Wideband CQI codeword 0 | 4 | 4 | | | Wideband CQI codeword 1 | 0 | 4 | | | Wideband first PMI i1,1 | $\lceil \log_2(N_1O_1/2) \rceil$ | $\lceil \log_2(N_1O_1/2) \rceil$ | | | Wideband first PMI i1,2 | $\lceil \log_2(N_2O_2/2) \rceil$ | $\left\lceil \log_2(N_2O_2/2) \right\rceil$ | | Table 5.2.2.6.1-1K-5 shows the fields and the corresponding bit widths for i1 for wideband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* is set to 'CLASS B', and *eMIMO-Type* is set to 'CLASS A' with 8/12/16/20/24/28/32 antenna ports, where i1 is associated with Class A. | | | Bit width | | | |-------------------------------|--|------------------------------------|---|--| | Field | Max 1 or 2 layers | Max 4 or 8 layers | | | | | Rank = 1 | Rank = 1 | Rank =3 | | | Wideband
first PMI
i1,1 | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | | Table 5.2.2.6.1-2 shows the fields and the corresponding bit width for the rank indication feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode set to 'multi-shot' with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList, and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports, and rank indication is associated with eMIMO-Type2, transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A', and transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 with 2/4/8 antenna ports, transmission mode 9/10 configured without PMI reporting and higher layer parameter csi-RS-NZPmode set to 'multi-shot' and with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, and transmission
mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured without PMI reporting with 2/4/8 antenna ports, and rank indication is associated with eMIMO-Type2. Table 5.2.2.6.1-2A shows the fields and the corresponding bit width for the CRI feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting for Class B CSI reporting with K>1 CSI-RS resources except with feCoMP-CSI-Enabled=true and one port per CSI-RS resource except with higher layer parameter csi-RS-NZP-mode configured, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1, where CRI is associated with the eMIMO-Type. Table 5.2.2.6.1-2B shows the fields and the corresponding bit width for the joint CRI and RI feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true*, and except with higher layer parameter *csi-RS-NZP-mode* configured, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources except with *feCoMP-CSI-Enabled=true* and more than one port for at least one CSI-RS resource except with higher layer parameter *csi-RS-NZP-mode* configured. Table 5.2.2.6.1-2C shows the fields and the corresponding bit width for the CRI feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and the higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources*>1 and one port per activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*. N is the value of higher layer parameter *activatedResources*. Table 5.2.2.6.1-2D shows the fields and the corresponding bit width for the joint CRI and RI feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*, and transmission mode 9/10 configured with PMI/RI reporting and the higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*. N is the value of higher layer parameter *activatedResources*. Table 5.2.2.6.1-2E shows the fields and the corresponding bit width for the rank indication feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* is set to 'CLASS A' and *eMIMO-Type*2 is set to 'CLASS B', where rank indication is associated with the *eMIMO-Type*. Table 5.2.2.6.1-2F shows the fields and the corresponding bit width for the joint CRI and RI feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true* except with higher layer parameter *csi-RS-NZP-mode* configured, transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and more than one port for at least one CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, transmission mode 10 configured without PMI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*. In the case of CRI=2, Rank indication in Table 5.2.2.6.1-2F corresponds to {RI0, RI1}, where RI0 is the rank indication for codeword 0 and RI1 is the rank indication for codeword 1. Table 5.2.2.6.1-2G shows the fields and the corresponding bit width for the CRI feedback for wideband CQI reports for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, and transmission mode 10 configured with PMI/RI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources*>1 and one port per activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*. Table 5.2.2.6.1-2: Fields for rank indication feedback for wideband CQI reports (transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 9/10 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1, transmission mode 9/10 configured with PMI/RI or without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, transmission mode 9/10 and higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports and rank indication is associated with eMIMO-Type2, and transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A') | | | Bit width | | | | | |-----------------|--------------------|----------------------|-----------------|----------------------|-----------------|-----------------| | Field | 2 antonno | 4 antenna | ports | 8/12/16/20/2 | 24/28/32 antenr | na ports | | Field | 2 antenna
ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | Table 5.2.2.6.1-2A: Fields for CRI feedback for wideband CQI reports (transmission mode 9/10 configured with PMI/RI reporting for Class B CSI reporting with K>1 CSI-RS resources except with feCoMP-CSI-Enabled=true and 1 port per CSI-RS resource except with higher layer parameter csi-RS-NZP-mode configured, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type is set to 'CLASS B' with K>1, where CRI is associated with the eMIMO-Type) | Field | | Bit width | | | | | |--------|-----|-------------|------------|--|--|--| | i iciu | K=2 | K=3 and K=4 | K=5 to K=8 | | | | | CRI | 1 | 2 | 3 | | | | Table 5.2.2.6.1-2B: Fields for joint CRI and RI feedback for wideband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true*, and except with higher layer parameter *csi-RS-NZP-mode* configured, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources except with *feCoMP-CSI-Enabled=true* and >1 ports for at least one CSI-RS resource except with higher layer parameter *csi-RS-NZP-mode* configured) | | | Bit width | | | | | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | Field | 2 antenna | 4 antenna | 4 antenna ports | | antenna ports | | | rieiu | ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | CRI | $\lceil \log_2(K) \rceil$ | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | Table 5.2.2.6.1-2C: Fields for CRI feedback for wideband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources>1 and 1 port per activated CSI-RS resource except with feCoMP-CSI-Enabled=true) | Field | | Bit width | |-------|-------|-----------------| | rieiu | N = 2 | N = 3 and N = 4 | | CRI | 1 | 2 | Table 5.2.2.6.1-2D: Fields for joint CRI and RI feedback for wideband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multishot' with activatedResources>1 and more than one port for at least one activated CSI-RS resource except with feCoMP-CSI-Enabled=true, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources>1 and >1 ports for at least one activated CSI-RS resource except with feCoMP-CSI-Enabled=true) | | | Bit width | | | | | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------
---------------------------| | Field | 2 antanna | 4 antenna | 4 antenna ports | | antenna ports | | | i ieiu | 2 antenna
ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | CRI | $\lceil \log_2(N) \rceil$ | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | Table 5.2.2.6.1-2E: Fields for rank indication feedback for wideband CQI reports (transmission mode 9/10 and higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* set to 'CLASS A' and *eMIMO-Type*2 is set to 'CLASS B', where rank indication is associated with the *eMIMO-Type*) | | Bit width | | | | |-----------------|---------------------------------------|---|--|--| | Field | 8/12/16/20/24/28/32 antenna ports | | | | | | Max 1 or 2 layers Max 4 or 8 layers | | | | | Rank indication | 0 | 1 | | | Table 5.2.2.6.1-2F: Fields for joint CRI and RI feedback for wideband CQI reports (transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true except with higher layer parameter csi-RS-NZP-mode configured, transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 CSI-RS resources and more than one port for at least one CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true, transmission mode 10 configured without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources>1 and more than one port for at least one activated CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true, and transmission mode 10 configured with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources>1 and >1 ports for at least one activated CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true) | | Bit width | | | | | | |-----------------|-----------|----------------------|-----------------|----------------------|-----------------|-----------------| | Field | 2 antenna | 4 antenna | ports | 8 antenna ports | | | | | ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | CRI | 2 | 2 | 2 | 2 | 2 | 2 | | Rank indication | 2 | 2 | 4 | 2 | 4 | 4 | Table 5.2.2.6.1-2G: Fields for CRI feedback for wideband CQI reports (transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, and transmission mode 10 configured with PMI/RI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' with *activatedResources*>1 and 1 port per activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*) | Field | Bit width | |-------|-----------| | CRI | 2 | The channel quality bits in Table 5.2.2.6.1-1, Table 5.2.2.6.1-1-1, Table 5.2.2.6.1-1A, Table 5.2.2.6.1-1A, Table 5.2.2.6.1-1B, Table 5.2.2.6.1-1B-1, Table 5.2.2.6.1-1B-2, Table 5.2.2.6.1-1B-3, Table 5.2.2.6.1-1C, Table 5.2.2.6.1-1D, Table 5.2.2.6.1-1D-1, Table 5.2.2.6.1-1D-2, Table 5.2.2.6.1-1E, Table 5.2.2.6.1-1F, Table 5.2.2.6.1-1F, Table 5.2.2.6.1-1I, Table 5.2.2.6.1-1I, Table 5.2.2.6.1-1I, Table 5.2.2.6.1-1I, Table 5.2.2.6.1-1I, Table 5.2.2.6.1-1J-1, Table 5.2.2.6.1-1J-1, Table 5.2.2.6.1-1J-1, Table 5.2.2.6.1-1J-2, Table 5.2.2.6.1-1J-3, Table 5.2.2.6.1-1J-4, Table 5.2.2.6.1-1K-1, Table 5.2.2.6.1-1K-2, Table 5.2.2.6.1-1K-3, Table 5.2.2.6.1-1K-4, Table 5.2.2.6.1-2B, and Table 5.2.2.6.1-2D, form the bit sequence $o_0, o_1, o_2, ..., o_{O-1}$ with o_0 corresponding to the first bit of the first field in the table, o_1 corresponding to the second bit of the first field in the table, and o_{O-1} corresponding to the last bit in the last field in the table. The field of PMI shall be in the increasing order of the subband index [3]. The first bit of each field corresponds to MSB and the last bit LSB. The RI bits sequence in Table 5.2.2.6.1-2, Table 5.2.2.6.1-2B, Table 5.2.2.6.1-2E, Table 5.2.2.6.1-2F and the CRI sequence in Table 5.2.2.6.1-2A, Table 5.2.2.6.1-2C, Table 5.2.2.6.1-2G are encoded according to subclause 5.2.2.6. For transmission mode 9/10 configured with Class B CSI reporting and K>1 except with *feCoMP-CSI-Enabled=true*, the number of antenna port in Table 5.2.2.6.1-2B (or Table 5.2.2.6.1-2F with *feCoMP-CSI-Enabled=true*) refers to the maximum number of antenna ports of K CSI-RS resources configured for the CSI-process for the UE. For transmission mode 9/10 configured with Class B CSI reporting and K>1 except with *feCoMP-CSI-Enabled=true* and with *activatedResources*>1, the number of antenna port in Table 5.2.2.6.1-2D refers to the maximum number of antenna ports of N CSI-RS resources activated for the CSI-process for the UE. N is the value of higher layer parameter *activatedResources*. For a UE configured with the higher layer parameter *shortTTI*, the entries associated with codeword 1 in Table 5.2.2.6.1-1, Table 5.2.2.6.1-1A, Table 5.2.2.6.1-1B, Table 5.2.2.6.1-1B-1, Table 5.2.2.6.1-1B-2, Table 5.2.2.6.1-1C, Table 5.2.2.6.1-1D, Table 5.2.2.6.1-1D-1, Table 5.2.2.6.1-1D-2, Table 5.2.2.6.1-1E, Table 5.2.2.6.1-1G, Table 5.2.2.6.1-1H, Table 5.2.2.6.1-1I, Table 5.2.2.6.1-1J, Table 5.2.2.6.1-1J-1, Table 5.2.2.6.1-1J-2, Table 5.2.2.6.1-1J-3, Table 5.2.2.6.1-1K-1, Table 5.2.2.6.1-1K-2, Table 5.2.2.6.1-1K-3 and Table 5.2.2.6.1-1K-4 are not applicable. ## 5.2.2.6.2 Channel quality information formats for higher layer configured subband CQI reports Table 5.2.2.6.2-1 shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, and transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port except with *feCoMP-CSI-Enabled=true*. *N* in Table 5.2.2.6.2-1 is defined in subclause 7.2 of [3]. Table 5.2.2.6.2-1A shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports except with *feCoMP-CSI-Enabled=true*, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* is set to 'CLASS B' without PMI reporting with 2/4/8 antenna ports, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE* or *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.2.6.2-1B shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter *feCoMP-CSI-Enabled=true*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. *N* in Table 5.2.2.6.2-1B is defined in subclause 7.2 of [3]. Table 5.2.2.6.2-1B-1 shows the fields and the corresponding bit width for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports and higher layer parameter *feCoMP-CSI-Enabled=true*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. *N* in Table 5.2.2.6.2-1B-1 is defined in subclause 7.2 of [3]. For Table 5.2.2.6.2-1B and Table 5.2.2.6.2-1B-1, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. Table 5.2.2.6.2-1: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, and transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port except with feCoMP-CSI-Enabled=true) | Field | Bit width | |--------------------------|------------| | Wide-band CQI codeword | 4 | | Subband differential CQI | 2 <i>N</i> | Table 5.2.2.6.2-1A Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports except with feCoMP-CSI-Enabled=true, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 is set to 'CLASS B' without PMI reporting with 2/4/8 antenna ports, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | d Bit width | | |-------------------------------------|--------------------------|------------| | | Rank = 1 Rank > | | | Wide-band CQI codeword 0 | 4 | 4 | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | | Wide-band CQI codeword 1 | 0 | 4 | | Subband differential CQI codeword 1 | tial CQI
codeword 1 0 2N | | Table 5.2.2.6.2-1B: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bit width for CRI=0 or 1 | |-------------------------------------|--------------------------| | Wide-band CQI | 4 | | Subband differential CQI | 2N | | Field | Bit width for CRI=2 | | Wide-band CQI codeword 0 | 4 | | Subband differential CQI codeword 0 | 2N | | Wide-band CQI codeword 1 | 4 | | Subband differential CQI codeword 1 | 2N | Table 5.2.2.6.2-1B-1: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports and higher layer parameter *feCoMP-CSI-Enabled=true*) | Field | Bit width for CRI=0 or 1 | | | |-------------------------------------|--------------------------|-----------------------|--| | | Rank = 1 | Rank > 1 | | | Wide-band CQI codeword 0 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | | | Wide-band CQI codeword 1 | 0 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | | | | | | | | Field | Bit width | for CRI=2 | | | Field | Bit width
Rank = 1 | for CRI=2
Rank > 1 | | | Field Wide-band CQI codeword 0 | | | | | | | | | | Wide-band CQI codeword 0 | Rank = 1
4 | Rank > 1 4 | | Table 5.2.2.6.2-2, Table 5.2.2.6.2-2A and Table 5.2.2.6.2-2B show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 4, transmission mode 5, transmission mode 6, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE. The number of configured CSI-RS resources in a CSI process K is defined in [3] and alternativeCodebookEnabledCLASSB_K1 is configured by higher layers [6]. Table 5.2.2.6.2-2-1 and Table 5.2.2.6.2-2A-1 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. Table 5.2.2.6.2-2B-1 and Table 5.2.2.6.2-2B-2 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' except with *advancedCodebookEnabled=TRUE*. Table5.2.2.6.2-2B-3 shows the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.2.6.2-2B-4 shows the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' without *alternativeCodebookEnabledCLASSB_K1=TRUE*, with *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.2.6.2-2B-5 and Table 5.2.2.6.2-2B-6 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters <code>semiOpenLoop</code> and <code>eMIMO-Type</code>, and <code>eMIMO-Type</code> is set to 'CLASS A' with 8/12/16/20/24/28/32 antenna ports. Table 5.2.2.6.2-2B-7 and Table 5.2.2.6.2-2B-8 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE. Table 5.2.2.6.2-2B-9 and Table 5.2.2.6.2-2B-10 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16 /20/24/28/32 antenna ports and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' and advancedCodebookEnabled =TRUE. Table 5.2.2.6.2-2B-11 shows the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. For Table 5.2.2.6.2-2-1, Table 5.2.2.6.2-2A-1 and Table 5.2.2.6.2-2B-11, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. For Table 5.2.2.6.2-2, Table 5.2.2.6.2-2-1, Table 5.2.2.6.2-2A, Table 5.2.2.6.2-2A-1, Table 5.2.2.6.2-2B, Table 5.2.2.6.2-2B-1, Table 5.2.2.6.2-2B-2, Table 5.2.2.6.2-2B-3, Table 5.2.2.6.2-2B-4, Table 5.2.2.6.2-2B-5, Table 5.2.2.6.2-2B-6, Table 5.2.2.6.2-2B-7, Table 5.2.2.6.2-2B-8, Table 5.2.2.6.2-2B-9, Table 5.2.2.6.2-2B-10 and Table 5.2.2.6.2-2B-11, N is defined in subclause 7.2 of [3]. For Table 5.2.2.6.2-2B-1, Table 5.2.2.6.2-2B-2, Table 5.2.2.6.2-2B-5, Table 5.2.2.6.2-2B-6, Table 5.2.2.6.2-2B-8, Table 5.2.2.6.2-2B-9 and Table 5.2.2.6.2-2B-10, the codebook configuration $\left(N_1, N_2, O_1, O_2\right)$ is defined in [3], and CodebookConfig is configured by higher layers [6]. The parameters $\left(S_1, S_2\right)$ in rank 3 and 4 are defined as $$(S_1, S_2) = (1, 1)$$ for $CodebookConfig=1$, $(S_1, S_2) = \left(\frac{O_1}{2}, \frac{O_2}{2}\right)$ for $$\textit{CodebookConfig=2, } \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \\ \text{for } \textit{CodebookConfig=3, } \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{4}\right) \\ \text{for } \textit{CodebookConfig=4.} \\$$ The parameters (S_1, S_2) in rank 5 to 8 are defined as $(S_1, S_2) = (1, 1)$ for CodebookConfig=1, $$\left(S_{1},S_{2}\right) = \left(\frac{O_{1}}{4},\frac{O_{2}}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ are defined as } L_{1} = \min\left\{4,N_{1}\right\} \text{ and } \left(S_{1},S_{2}\right) = \left(\frac{O_{1}}{4},\frac{O_{2}}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ are defined as } L_{1} = \min\left\{4,N_{1}\right\} \text{ and } \left(S_{1},S_{2}\right) = \left(\frac{O_{1}}{4},\frac{O_{2}}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ are defined as } L_{1} = \min\left\{4,N_{1}\right\} \text{ and } \left(S_{1},S_{2}\right) = \left(\frac{O_{1}}{4},\frac{O_{2}}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ are defined as } L_{1} = \min\left\{4,N_{1}\right\} \text{ and } \left(S_{1},S_{2}\right) = \left(\frac{O_{1}}{4},\frac{O_{2}}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ are defined as } L_{1} = \min\left\{4,N_{1}\right\} \text{ and } \left(S_{1},S_{2}\right) = \left(\frac{O_{1}}{4},\frac{O_{2}}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ are defined as } L_{1} = \min\left\{4,N_{1}\right\} \text{ and } \left(S_{1},S_{2}\right) = \left(\frac{O_{1}}{4},\frac{O_{2}}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4.
\text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters } \left(L_{1},L_{2}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters$$ $$L_2 = 2 \text{ for } N_1 \geq N_2 \text{ and } N_2 \neq 1 \text{ , } L_1 = 2 \text{ and } L_2 = \min \left\{ 4, N_2 \right\} \text{ for } N_1 < N_2 \text{ and } N_1 \neq 1 \text{ , } L_1 = \min \left\{ 8, N_1 \right\} \text{ and } L_2 = 1 \text{ for } N_2 = 1 \text{ .}$$ Table 5.2.2.6.2-2: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 4, transmission mode 5, transmission mode 6, transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bit width | | | | | |-------------------------------------|-----------------|-------------------|-----------------|------------|--| | | 2 antenna ports | | 4 antenna ports | | | | | Rank = 1 | Rank = 1 Rank = 2 | | Rank > 1 | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wide-band CQI codeword 1 | 0 | 4 | 0 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 0 | 2 <i>N</i> | | | Precoding matrix indicator | 2 | 1 | 4 | 4 | | Table 5.2.2.6.2-2-1: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true, except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bit width for CRI=0 or 1 | | | | |---------------------------------------|--------------------------|------------|----------|------------| | | 2 antenna ports | | 4 anteni | na ports | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2N | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wide-band CQI codeword 1 | 0 | 4 | 0 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 0 | 2 <i>N</i> | | Precoding matrix indicator | 2 | 1 | 4 | 4 | | Field | Bit width for CRI=2 | | | | | | 2 antenna ports | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2N | 2N | 2N | 2N | | Wide-band CQI codeword 1 | 4 | 4 | 0 | 4 | | Subband differential CQI codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 0 | 2 <i>N</i> | | Precoding matrix indicator codeword 0 | 2 | 1 | 4 | 4 | | Precoding matrix indicator codeword 1 | 2 | 1 | 4 | 4 | Table 5.2.2.6.2-2A: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | Field | Bitwidth | | | | |-------------------------------------|------------|------------|------------|------------| | rieid | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | Wideband second PMI i2 | 4 | 4 | 4 | 3 | | | | | | | | Field | | Bitw | /idth | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2N | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband first PMI i1 | 2 | 2 | 2 | 0 | | Wideband second PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.2-2A-1: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bitwidth for CRI=0 or 1 | | | | |--------|-------------------------|----------|----------|----------| | i iciu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | 4 | 4 | 4 | 4 | |--------------|---|--|---------------------| | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | 0 | 4 | 4 | 4 | | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | 4 | 4 | 2 | 2 | | 4 | 4 | 4 | 3 | | | | | | | | Bitwidth for | CRI=0 or 1 | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | 4 | 4 | 4 | 4 | | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | 4 | 4 | 4 | 4 | | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | 2 | 2 | 2 | 0 | | 0 | 0 | 0 | 0 | | | Bitwidth | for CRI=2 | | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | 4 | 4 | 4 | 4 | | 2 <i>N</i> | 2N | 2 <i>N</i> | 2 <i>N</i> | | 4 | 4 | 4 | 4 | | | | _ | | | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | 2 <i>N</i> 4 | 2 <i>N</i> | 2 <i>N</i> 2 | 2 <i>N</i> | | | == ' | | | | 4 | 4 | 2 | 2 | | | 2N
0
0
4
4
4
Rank = 5
4
2N
2
0
Rank = 1
4
2N | 2N 2N 0 4 0 2N 4 4 4 4 4 4 4 2N 2N | 2N 2N 2N 2N | Table 5.2.2.6.2-2B: Fields for channel quality information feedback for higher layer configured subband CQI reports with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bitwidth | | | | |-------------------------------------|------------|------------|------------|------------| | i ieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | Wideband second PMI i2 | 4 | 4 | 4 | 4 | Table 5.2.2.6.2-2B-1: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) and CodebookConfig=1, except with advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | | |---|---|--|---|---|--|--| | | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | | | Wideband
CQI
codeword
0 | 4 | 4 | 4 |
4 | | | | Subband
differential
CQI
codeword
0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | Wideband
CQI
codeword
1 | 0 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword
1 | 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | Wideband
first PMI
i1,1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | | | Wideband
second
PMI i2 | 2 | 2 | 1 | 1 | | | | Field | Doub 5 | Davida 0 | Bit width | Davida 0 | | | | Wideband | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | | | CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword
0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband
CQI
codeword
1 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword
1 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | Wideband
first PMI
i1,1 | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2\left(N_1 O_1 / S_1\right) \right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2\left(N_1 O_1 / S_1\right) \right\rceil$ | | | | Wideband
first PMI | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | | | | i1,2
Wideband | | | | | | | Table 5.2.2.6.2-2B-2: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) and CodebookConfig=2/3/4, except with advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | | |---|--|--|---|---|--|--| | Field | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband
differential CQI
codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | | Subband
differential CQI
codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband first
PMI i1,1 | $\left\lceil \log_2 \left(N_1 O_1 / 2 \right) \right\rceil$ | $\left\lceil \log_2(N_1O_1/2) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left[\log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right]$ | | | | Wideband first
PMI i1,2 | $\lceil \log_2(N_2O_2/2) \rceil$ | $\left\lceil \log_2(N_2O_2/2) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | | | | Wideband
second PMI i2 | 4 | 4 | 4 | 3 | | | | Field | | | Bit width | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband
differential CQI
codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | | Subband
differential CQI
codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband first
PMI i1,1 | $\left\lceil \log_2\left(N_1 O_1 / S_1\right) \right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2 \left(N_{_1} O_{_1} / S_{_1} \right) \right\rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | | | | Wideband first
PMI i1,2 | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | | | | Wideband
second PMI i2 | 0 | 0 | 0 | 0 | | | Table 5.2.2.6.2-2B-3: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports with K=1 and alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with 2/4/8 antenna ports and higher layer parameter alternativeCodebookEnabledCLASSB_K1=TRUE) | | Bit width | | | | | | |-------------------------------------|-----------------|------------|-----------------|------------|------------|------------| | Field | 2 antenna ports | | 4 antenna ports | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank =2 | Rank =3 | Rank =4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2N | 2 <i>N</i> | 2N | 2N | 2N | 2N | | Wideband CQI codeword 1 | 0 | 4 | 0 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Precoding matrix indicator | 2 | 1 | 3 | 3 | 2 | 1 | | | | | Bit w | ridth | | | | Field | | | 8 antenr | na ports | | | | | Rank = 1 | Rank = 2 | Rank = 3 | Rank =4 | Rank =5 to | Rank = 8 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 1 | | Subband differential CQI codeword 0 | 2N | 2N | 2N | 2N | 2 <i>N</i> | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2N | 2 <i>N</i> | 2N | 2N | | | Precoding matrix indicator | 4 | 4 | 4 | 3 | (|) | Table 5.2.2.6.2-2B-4: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 4/8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bitv | vidth | |-------------------------------------|------------|------------| | rieiu | Rank = 1 | Rank = 2 | | Wideband CQI codeword 0 | 4 | 4 | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 0 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | | Wideband first PMI i1 | 4 | 4 | Table 5.2.2.6.2-2B-5: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N, N, Q, Q, Q) and CodebookConfig=1) | Field | Bit width | | | |-------------------------------------|---------------------------------|---------------------------------|--| | rieiu | Rank = 1 | Rank = 2 | | | Wideband CQI codeword 0 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | | | Wideband CQI codeword 1 | 0 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | | | Wideband first PMI i1,1 | $\lceil \log_2(N_1 O_1) \rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | | | Wideband first PMI i1,2 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | | Table 5.2.2.6.2-2B-6: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N, N, Q, Q) and CodebookConfig=2/3/4) | Field | Bit width | | | |-------|-----------|----------|--| | rielu | Rank = 1 | Rank = 2 | | | Wideband CQI codeword 0 | 4 | 4 | |-------------------------------------|---|--| | Subband differential CQI codeword 0 | 2 <i>N</i> | 2N | | Wideband CQI codeword 1 | 0 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | | Wideband first PMI i1,1 | $\left\lceil \log_2(N_1O_1/2) \right\rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / 2 \right) \right\rceil$ | | Wideband first PMI i1,2 | $\lceil \log_2(N_2O_2/2) \rceil$ | $\left\lceil \log_2(N_2O_2/2) \right\rceil$ | Table 5.2.2.6.2-2B-7: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | |-------------------------------------|------------|------------|------------|------------|--| | rieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband first PMI i1,1-1 | 3 | 3 | 0 | 0 | | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,1-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,p-2 |
2 | 2 | 0 | 0 | | | Wideband second PMI i2 | 6 | 12 | 4 | 4 | | Table 5.2.2.6.2-2B-8: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | | Bitwidth | | | | | |---|--------------------------------|---------------------------------|-------------------------------|-------------------------|--| | Field | Rank = 1 | Rank = 2 | Rank
= 3 | Rank
= 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | 2 <i>N</i> | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2N | 2 <i>N</i> | 2 <i>N</i> | | | Wideband first PMI i1,1-1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | 2 | 2 | | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,p-2 | 2 | 2 | 0 | 0 | | | Wideband second PMI i2 | 6 | 12 | 4 | 3 | | | | | | | | | | | | Bitwidth | | | | | Field | Rank = 5 | Rank = 6 | Rank
= 7 | Rank
= 8 | | | Wideband CQI codeword 0 | 4 | | | _ | | | Wideballa Odl CodeWold C | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 4
2N | 4
2 <i>N</i> | | | | <u> </u> | • | | | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | 2 <i>N</i> | | | Subband differential CQI codeword 0 Wideband CQI codeword 1 | 2 <i>N</i> 4 | 2 <i>N</i> 4 | 2 <i>N</i> 4 | 2 <i>N</i> 4 | | | Subband differential CQI codeword 0 Wideband CQI codeword 1 Subband differential CQI codeword 1 | 2N
4
2N | 2N
4
2N | 2 <i>N</i>
4
2 <i>N</i> | 2N
4
2N | | | Subband differential CQI codeword 0 Wideband CQI codeword 1 Subband differential CQI codeword 1 Wideband first PMI i1,1-1 | 2N
4
2N
2 | 2N
4
2N
2 | 2N
4
2N
2 | 2N
4
2N
0 | | | Subband differential CQI codeword 0 Wideband CQI codeword 1 Subband differential CQI codeword 1 Wideband first PMI i1,1-1 Wideband first PMI i1,2-1 | 2N
4
2N
2
0 | 2N
4
2N
2
0 | 2N
4
2N
2
0 | 2N
4
2N
0 | | | Subband differential CQI codeword 0 Wideband CQI codeword 1 Subband differential CQI codeword 1 Wideband first PMI i1,1-1 Wideband first PMI i1,2-1 Wideband first PMI i1,1-2 | 2N
4
2N
2
0
0 | 2N
4
2N
2
0
0 | 2N
4
2N
2
0 | 2N
4
2N
0
0 | | Table 5.2.2.6.2-2B-9: Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with 8/12/16/20/24/28/32 antenna ports and higher layer parameter advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled=TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q,Q) and CodebookConfig=1) | | Bit width | | | | | | | |---|--|---|---|---|--|--|--| | Field | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | | | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband
CQI
codeword | 0 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
1 | 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband
first PMI
i1,1-1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | | Wideband
first PMI
i1,2-1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | | | | Wideband
first PMI
i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | | | Wideband
first PMI
i1,2-2 | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | | | | Wideband
first PMI
i1,p-2 | 2 | 2 | 0 | 0 | | | | | Wideband
second
PMI i2 | 6 | 12 | 1 | 1 | | | | | Field | Rank = 5 | Rank = 6 | Bit width Rank =7 | Rank =8 | | | | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | | Wideband
CQI
codeword
1 | 4 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
1 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband
first PMI
i1,1-1 | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $ \lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil $ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | | | | | Wideband
first PMI
i1,2-1 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | | | | Wideband
first PMI
i1,1-2 | 0 | 0 | 0 | 0 | | | | | Wideband
first PMI
i1,2-2 | 0 | 0 | 0 | 0 | |---------------------------------|---|---|---|---| | Wideband
first PMI
i1,p-2 | 0 | 0 | 0 | 0 | | Wideband
second
PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.2-2B-10 Fields for channel quality information feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with 8/12/16/20/24/28/32 antenna ports and higher layer parameters advancedCodebookEnabled and emilous em | | Bit width | | | | | | | |---|--|---|---|---|--|--|--| | Field | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | | | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband
CQI
codeword | 0 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
1 | 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband
first PMI
i1,1-1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left[\log_2\left(\frac{N_1O_1}{S_1}\times\left(2+\left\lfloor\frac{9-N_2}{8}\right\rfloor\right)\right)\right]$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | | Wideband
first PMI
i1,2-1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | | | | | Wideband
first PMI
i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | | | Wideband
first PMI
i1,2-2 | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | | | | Wideband
first PMI
i1,p-2 | 2 | 2 | 0 | 0 | | | | | Wideband
second
PMI i2 | 6 | 12 | 4 | 3 | | | | | Field | D 1 5 | D. 1. 0 | Bit width | D. J. O. | | | | | | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | | | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | | Wideband
CQI
codeword | 4 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband
first PMI
i1,1-1 | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | | | | | Wideband
first PMI
i1,2-1 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | | | | | Wideband
first PMI
i1,1-2 | 0 | 0 | 0 | 0 | | | | | Wideband
first PMI
i1,2-2 | 0 | 0 | 0 | 0 | |---------------------------------|---|---|---|---| | Wideband
first PMI
i1,p-2 | 0 | 0 | 0 | 0 | | Wideband
second
PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.2-2B-11: Fields for channel quality information feedback for higher layer configured subband CQI reports with 4 antenna ports (transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | | Bitwidth for CRI=0 or 1 | | | | |
-------------------------------------|------------|-------------------------|------------|------------|--|--| | Fleia | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2N | | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | | | Wideband second PMI i2 | 4 | 4 | 4 | 4 | | | | Field | | Bitwidth for CRI=2 | | | | | | rieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2N | | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband first PMI i1 codeword 0 | 4 | 4 | 0 | 0 | | | | Wideband second PMI i2 codeword 0 | 4 | 4 | 4 | 4 | | | | Wideband first PMI i1 codeword 1 | 4 | 4 | 0 | 0 | | | | Wideband second PMI i2 codeword 1 | 4 | 4 | 4 | 4 | | | Table 5.2.2.6.2-2C, Table 5.2.2.6.2-2D and Table 5.2.2.6.2-2E show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 4, transmission mode 6, transmission mode 8 configured with subband PMI/RI reporting, transmission mode 9 configured with subband PMI/RI reporting with 2/4/8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 10 configured with subband PMI/RI reporting with 2/4/8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with subband PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with subband PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE. The number of configured CSI-RS resources in a CSI process K is defined in [3] and alternativeCodebookEnabledCLASSB_K1 is configured by higher layers [6]. Table 5.2.2.6.2-2C-1 and Table 5.2.2.6.2-2D-1 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured with subband PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. Table 5.2.2.6.2-2E-1 and Table 5.2.2.6.2-2E-2 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with subband PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' except with *advancedCodebookEnabled=TRUE*. Table5.2.2.6.2-2E-3 shows the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with subband PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with subband PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.2.6.2-2E-4 and Table 5.2.2.6.2-2E-5 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE. Table 5.2.2.6.2-2E-6 and Table 5.2.2.6.2-2E-7 show the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 9/10 configured with subband PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' and advancedCodebookEnabled=TRUE. Table 5.2.2.6.2-2E-9 shows the fields and the corresponding bit widths for the channel quality information feedback for higher layer configured report for PDSCH transmissions associated with transmission mode 10 configured with subband PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. For Table 5.2.2.6.2-2C-1, Table 5.2.2.6.2-2D-1 and Table 5.2.2.6.2-2E-9, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. For Table 5.2.2.6.2-2C, Table 5.2.2.6.2-2C-1, Table 5.2.2.6.2-2D, Table 5.2.2.6.2-2D-1, Table 5.2.2.6.2-2E, Table 5.2.2.6.2-2E-1, Table 5.2.2.6.2-2E-2, Table 5.2.2.6.2-2E-3, Table 5.2.2.6.2-2E-4, Table 5.2.2.6.2-2E-5, Table 5.2.2.6.2-2E-6, Table 5.2.2.6.2-2E-7 and Table 5.2.2.6.2-2E-9, N is defined in subclause 7.2 of [3]. For Table 5.2.2.6.2-2E-1, Table 5.2.2.6.2-2E-3, Table 5.2.2.6.2-2E-6, Table 5.2.2.6.2-2E-7 and Table 5.2.2.6.2-2E-8, the codebook configuration (N_1, N_2, O_1, O_2) is defined in [3], and CodebookConfig is configured by higher layers [6]. The parameters (S_1, S_2) in rank 1 and rank 2 are defined as $(S_1, S_2) = (1, 1)$ for CodebookConfig=1 and $(S_1, S_2) = (2, 2)$ for CodebookConfig=2, 3 and 4. The parameters (S_1, S_2) in rank 3 and 4 are defined as $$\left(S_{1}, S_{2}\right) = \left(1, 1\right) \text{ for } \textit{CodebookConfig} = 1, \\ \left(S_{1}, S_{2}\right) = \left(\frac{O_{1}}{2}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\ \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{2}\right) \text{ for } \textit{CodebookConfig} = 2, \\$$ $\textit{CodebookConfig} = 3, \ \left(S_1, S_2\right) = \left(O_1, \frac{O_2}{4}\right) \text{ for } \textit{CodebookConfig} = 4. \text{ The parameters } \left(S_1, S_2\right) \text{ in rank 5 to 8 are } 1 + \frac{1}{2} \left(S_1, S_2\right) = \left(S_1, S_2\right) + \frac{1}{2} \left(S_1,$ $$\text{defined as } \left(S_1, S_2\right) = \left(1,1\right) \text{ for } \textit{CodebookConfig} = 1, \\ \left(S_1, S_2\right) = \left(\frac{O_1}{4}, \frac{O_2}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The } \left(\frac{O_1}{4}, \frac{O_2}{4}\right) = \frac{O_2}{4}\right)$$ $\begin{array}{l} \text{parameters } \left(L_{\!_{1}}, L_{\!_{2}}\right) \text{ are
defined as } L_{\!_{1}} = \min \left\{4, N_{\!_{1}}\right\} \text{ and } L_{\!_{2}} = 2 \ \text{ for } N_{\!_{1}} \geq N_{\!_{2}} \text{ and } N_{\!_{2}} \neq 1 \,, \ L_{\!_{1}} = 2 \ \text{ and } L_{\!_{2}} = \min \left\{4, N_{\!_{2}}\right\} \text{ for } N_{\!_{1}} < N_{\!_{2}} \text{ and } N_{\!_{1}} \neq 1 \,, \ L_{\!_{1}} = \min \left\{8, N_{\!_{1}}\right\} \text{ and } L_{\!_{2}} = 1 \ \text{for } N_{\!_{2}} = 1 \,. \end{array}$ Table 5.2.2.6.2-2C: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports (transmission mode 4 and transmission mode 6 configured with subband PMI reporting, transmission mode 8 configured with subband PMI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9 and transmission 10 configured with subband PMI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with subband PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with subband PMI/RI reporting with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | |-------------------------------------|-----------------|------------|-----------------|------------|------------|------------|--| | Field | 2 antenna ports | | 4 antenna ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2N | | | Wide-band CQI codeword 1 | 0 | 4 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 0 | 2N | 2N | 2 <i>N</i> | | | Subband precoding matrix indicator | 2 <i>N</i> | N | 4 <i>N</i> | 4N | 4N | 4N | | Table 5.2.2.6.2-2C-1: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports (transmission mode 10 configured with subband PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true, except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width for CRI=0 or 1 | | | | | | | |---|--------------------------|------------|-----------------|------------|------------|------------|--| | Field | 2 antenna ports | | | | | | | | i ieiu | Rank = | | | | 1 | 2 | 1 | 2 | 3 | 4 | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | | | Wide-band CQI codeword 1 | 0 | 4 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Subband precoding matrix indicator | 2 <i>N</i> | N | 4 <i>N</i> | 4N | 4 <i>N</i> | 4 <i>N</i> | | | | Bit width for CRI=2 | | | | | | | | Field | 2 anteni | na ports | 4 antenna ports | | | | | | i ieiu | Rank = | | | | 1 | 2 | 1 | 2 | 3 | 4 | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2N | 2N | 2N | 2N | 2N | 2 <i>N</i> | | | Wide-band CQI codeword 1 | 4 | 4 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 2 <i>N</i> | | | Subband precoding matrix indicator codeword 0 | 2 <i>N</i> | N | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | | | Subband precoding matrix indicator codeword 1 set | 2 <i>N</i> | N | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | | Table 5.2.2.6.2-2D: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 8 antenna ports (transmission mode 9 configured with subband PMI reporting except with advancedCodebookEnabled=TRUE, transmission mode 10 configured with subband PMI reporting except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with subband PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with subband PMI/RI reporting with 8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | Field | | Bitwidth | | | | | |---|----------------------|---------------------|--------------------|--------------|--|--| | rieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | | | Subband second PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | | | | Bitwidth | | | | | | | Field | | Bitw | ridth | | | | | Field | Rank = 5 | Bitw
Rank = 6 | ridth
Rank = 7 | Rank = 8 | | | | Field Wideband CQI codeword 0 | Rank = 5 | | | Rank = 8 | | | | 11312 | | Rank = 6 | Rank = 7 | | | | | Wideband CQI codeword 0 | 4 | Rank = 6 | Rank = 7 | 4 | | | | Wideband CQI codeword 0 Subband differential CQI codeword 0 | 4
2N | Rank = 6
4
2N | Rank = 7 4 2N | 4
2N | | | | Wideband CQI codeword 0 Subband differential CQI codeword 0 Wideband CQI codeword 1 | 4
2 <i>N</i>
4 | Rank = 6 4 2N 4 | Rank = 7 4 2N 4 | 4
2N
4 | | | Table 5.2.2.6.2-2D-1: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 8 antenna ports (transmission mode 10 configured with subband PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*) | Field | | Bitwidth for | CRI= 0 or 1 | | | |-------------------------------------|---------------------|--------------|-------------|------------|--| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | | Subband second PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | | Field | | Bitwidth for | CRI= 0 or 1 | | | | rieid | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband first PMI i1 | 2 | 2 | 2 | 0 | | | Subband second PMI i2 | 0 | 0 | 0 | 0 | | | Field | Bitwidth for CRI= 2 | | | | | | i ieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2N | 2N | 2N | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband first PMI i1 codeword 0 | 4 | 4 | 2 | 2 | | | Subband second PMI i2 codeword 0 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | | Wideband first PMI i1 codeword 1 | 4 | 4 | 2 | 2 | | | Subband second PMI i2 codeword 1 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | Table 5.2.2.6.2-2E: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 4 antenna ports (transmission modes 8, 9 and 10 configured with subband PMI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE, except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with subband PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 with except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with subband PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bitwidth | | | | | |-------------------------------------|------------|------------|------------|------------|--| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | | Subband second PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | | Table 5.2.2.6.2-2E-1: Fields for channel quality information feedback for higher layer configured subband CQI reports and subband PMI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N, N, Q, Q) and CodebookConfig=1, except with advancedCodebookEnabled=TRUE) | Field | | Bitwidtl | 1 | | |---
--|--|---|---| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband
differential CQI
codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband
differential CQI
codeword 1 | 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wideband first
PMI i1,1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | Wideband first
PMI i1,2 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2\left(N_2O_2 ight) ceil$ | $\lceil \log_2(N_2O_2) \rceil$ | | Subband
second PMI i2 | 2 <i>N</i> | 2 <i>N</i> | N | N | | Field | | | | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband
differential CQI
codeword 0 | 2N | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Subband
differential CQI
codeword 1 | 2N | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wideband first
PMI i1,1 | $\left\lceil \log_2\left(N_1 O_1 / S_1\right) \right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2\left(N_{_1}O_{_1}/S_{_1}\right)\right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | | Wideband first
PMI i1,2 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | | Subband
second PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.2-2E-2: Fields for channel quality information feedback for higher layer configured subband CQI reports and subband PMI reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q,Q_1) and CodebookConfig=2/3/4, except with advancedCodebookEnabled=TRUE) | Field | Bitwidth | | | | | | | |---|----------------------------------|--|---|---|--|--|--| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2N | | | | | Wideband
CQI
codeword
1 | 0 | 4 | 4 | 4 | | | | | Subband
differential
CQI
codeword
1 | 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband
first PMI
i1,1 | $\lceil \log_2(N_1O_1/2) \rceil$ | $\lceil \log_2(N_1O_1/2) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2/2) \rceil$ | $\left\lceil \log_2(N_2O_2/2) \right\rceil$ | $\left\lceil \log_2\!\left(\frac{N_{_2}O_{_2}}{S_{_2}}\right)\right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | | | | | Subband
second
PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | | | | Field | Rank = 5 | Rank = 6 | Bitwidth 7 | Rank = 8 | | | | | Widehand | Rank = 5 | Ralik = 0 | Rank = 7 | Ralik = 0 | | | | | Wideband
CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | | Subband | | | | | | | | | differential
CQI
codeword | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | | differential
CQI
codeword | 2N
4 | 2N
4 | 2 <i>N</i> | 2 <i>N</i> | | | | | differential CQI codeword 0 Wideband CQI codeword 1 Subband differential CQI codeword | | | | | | | | | differential CQI codeword 0 Wideband CQI codeword 1 Subband differential CQI codeword 1 Wideband first PMI i1,1 | 2N | 4 | 4 | 4 | | | | | differential CQI codeword 0 Wideband CQI codeword 1 Subband differential CQI codeword 1 Wideband first PMI | 2N | $\frac{2N}{\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil}$ | 4
2N | 4
2N | | | | Table 5.2.2.6.2-2E-3: Fields for channel quality information feedback for higher layer configured subband CQI reports and subband PMI reports (transmission mode 9/10 configured and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with 2/4/8 antenna ports and higher layer parameter *alternativeCodebookEnabledCLASSB_K1=TRUE*) | | Bit width | | | | | | | | |-------------------------------------|-------------------------|------------|------------|------------|----------------------|------------|--|--| | Field | 2 antenna ports 4 anten | | | | na ports | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank =2 | Rank =3 | Rank =4 | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2N | 2 <i>N</i> | 2N | | | | Wideband CQI codeword 1 | 0 | 4 | 0 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | 2N | | | | Precoding matrix indicator | 2 <i>N</i> | N | 3 <i>N</i> | 3 <i>N</i> | 2 <i>N</i> | N | | | | | | Bit width | | | | | | | | Field | | | 8 anten | na ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 3 | Rank =4 | Rank = 5 t | o Rank = 8 | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 2 | 1 | | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2N | 2. | N | | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | 4 | 1 | | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2. | N | | | | Precoding matrix indicator | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | (|) | | | Table 5.2.2.6.2-2E-4: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports (transmission mode 9/10 configured with subband PMI reporting with 4 antenna ports, and higher layer parameter advancedCodebookEnabled=TRUE) | Field | Bit width | | | | |-------------------------------------|------------|-------------|------------|------------| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wideband first PMI i1,1-1 | 3 | 3 | 0 | 0 | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | Wideband first PMI i1,1-2 | 0 | 0 | 0 | 0 | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | Wideband first PMI i1,p-2 | 2 | 2 | 0 | 0 | | Subband second PMI i2 | 6 <i>N</i> | 12 <i>N</i> | 4N | 4 <i>N</i> | Table 5.2.2.6.2-2E-5: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports (transmission mode 9/10 configured with subband PMI reporting with 8 antenna ports, and higher layer parameter advancedCodebookEnabled=TRUE) | Field | Bitwidth | | | | | |-------------------------------------|--|---------------------------------|------------|------------|--| | rieid | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | Wideband first PMI i1,1-1 | $\left\lceil \log_2(N_1 O_1) \right\rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | 2 | 2 | | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,p-2 | 2 | 2 | 0 | 0 | | | Subband second PMI i2 | 6 <i>N</i> | 12 <i>N</i> | 4N | 3 <i>N</i> | | | Field | Bitwidth | | | | | | rieiu | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2N | 2N | 2 <i>N</i> | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 2 <i>N</i> | 2N | 2N | 2 <i>N</i> | | | Wideband first PMI i1,1-1 | 2 | 2 | 2 | 0 | | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,1-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,p-2 | 0 | 0 | 0 | 0 | | | Subband second PMI i2 | 0 | 0 | 0 | 0 | | Table 5.2.2.6.2-2E-6: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports (transmission mode 9/10 configured with higher layer parameters advancedCodebookEnabled and eMIMO-Type,
and advancedCodebookEnabled= TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, Q_1, Q_2) and CodebookConfig=1) | Field | Bitwidth | | | | | | | |---|---|---|---|---|--|--|--| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | | Subband
differential CQI
codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | | | Subband
differential CQI
codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | | Wideband first
PMI i1,1-1 | $\lceil \log_2(N_1 O_1) \rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | | Wideband first
PMI i1,2-1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 \right) \right\rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | | | | | Wideband first
PMI i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | | | Wideband first
PMI i1,2-2 | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | | | | Wideband first
PMI i1,p-2 | 2 | 2 | 0 | 0 | | | | | Subband
second PMI i2 | 6 <i>N</i> | 12 <i>N</i> | N | N | | | | | Field | | Bitwidth | | | | | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | | Subband
differential CQI
codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | | | | Subband
differential CQI
codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | | | | Wideband first
PMI i1,1-1 | $\lceil \log_2\left(N_1 O_1 / S_1\right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | | | | | Wideband first
PMI i1,2-1 | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | | | | | Wideband first
PMI i1,1-2 | 0 | 0 | 0 | 0 | | | | | Wideband first
PMI i1,2-2 | 0 | 0 | 0 | 0 | | | | | Wideband first
PMI i1,p-2 | 0 | 0 | 0 | 0 | | | | | Subband second PMI i2 | 0 | 0 | 0 | 0 | | | | Table 5.2.2.6.2-2E-7: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports (transmission mode 9/10 configured with higher layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled= TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, Q, Q) and CodebookConfig=2/3/4) | Field | | Bitwidth | 1 | | |---|--|--|---|---| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband
differential CQI
codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband
differential CQI
codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband first
PMI i1,1-1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | Wideband first
PMI i1,2-1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | | Wideband first
PMI i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | Wideband first
PMI i1,2-2 | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | Wideband first
PMI i1,p-2 | 2 | 2 | 0 | 0 | | Subband
second PMI i2 | 6 <i>N</i> | 12 <i>N</i> | 4 <i>N</i> | 3 <i>N</i> | | Field | | Bitwidth | | | | Wideband CQI | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | codeword 0 | 4 | 4 | 4 | 4 | | Subband
differential CQI
codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Subband
differential CQI
codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2N | 2 <i>N</i> | | Wideband first
PMI i1,1-1 | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | | Wideband first
PMI i1,2-1 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | | Wideband first
PMI i1,1-2 | 0 | 0 | 0 | 0 | | Wideband first
PMI i1,2-2 | 0 | 0 | 0 | 0 | | Wideband first
PMI i1,p-2 | 0 | 0 | 0 | 0 | | Subband
second PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.2-2E-8 shows the fields and the corresponding bit widths for i1 for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* is set to 'CLASS A' with 8/12/16/20/24/28/32 antenna ports and *eMIMO-Type2* is set to 'CLASS B', where i1is associated with Class A. Table 5.2.2.6.2-2E-8: Fields for i1 feedback (transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q_1,Q_2) , where i₁ is associated with Class A) | | Bit width | | | | | |-------------------------------|--|------------------------------------|---|--|--| | Field | Max 1 or 2 layers | Max 4 or 8 layers | | | | | | Rank = 1 | Rank = 1 | Rank =3 | | | | Wideband
first PMI
i1,1 | $\lceil \log_2 (N_1 O_1 / S_1) \rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | | | Table 5.2.2.6.2-2E-9: Fields for channel quality information feedback for higher layer configured subband CQI and subband PMI reports with 4 antenna ports (transmission mode 10 configured with subband PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true*, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | | Bitwidth for | r CRI=0 or 1 | | |-------------------------------------|--------------------|--------------|--------------|------------| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | Subband second PMI i2 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | | Field | Bitwidth for CRI=2 | | | | | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband CQI codeword 1 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | 2 <i>N</i> | | Wideband first PMI i1 codeword 0 | 4 | 4 | 0 | 0 | | Subband second PMI i2 codeword 0 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | | Wideband first PMI i1 codeword 1 | 4 | 4 | 0 | 0 | | Subband second PMI i2 codeword 1 | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | 4 <i>N</i> | Table 5.2.2.6.2-3 shows the fields and the corresponding bit width for the rank indication feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, and transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter
csi-RS-NZP-mode is set to 'multi-shot' with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports and rank indication is associated with eMIMO-Type2, transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A', and transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 with 2/4/8 antenna ports, transmission mode 9/10 configured without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured without PMI reporting with 2/4/8 antenna ports and rank indication is associated with eMIMO-Type2. Table 5.2.2.6.2-3A shows the fields and the corresponding bit width for the CSI-RS resource indication feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource except with *feCoMP-CSI-Enabled=true* and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with higher layer parameter *csi-RS-NZP-mode* configured, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, where CRI is associated with the *eMIMO-Type*. Table 5.2.2.6.2-3B shows the fields and the corresponding bit width for the joint CRI and RI feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true*, and except with higher layer parameter *csi-RS-NZP-mode* configured, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true* and 2/4/8 antenna ports except with higher layer parameter *csi-RS-NZP-mode* configured. Table 5.2.2.6.2-3C shows the fields and the corresponding bit width for the CSI-RS resource indication feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *csi-RS-NZP-mode* set to 'multi-shot' and with *activatedResources*, and 1 antenna port per activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*. N is the value of higher layer parameter *activatedResources*. Table 5.2.2.6.2-3D shows the fields and the corresponding bit width for the joint CRI and RI feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*. N is the value of higher layer parameter *activatedResources*. Table 5.2.2.6.2-3E shows the fields and the corresponding bit width for the rank indication feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* is set to 'CLASS A' with 8/12/16/20/24/28/32 antenna ports and *eMIMO-Type2* is set to 'CLASS B', where rank indication is associated with the *eMIMO-Type*. Table 5.2.2.6.2-3F shows the fields and the corresponding bit width for the joint CRI and RI feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true* except with higher layer parameter *csi-RS-NZP-mode* configured, transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and more than one port for at least one CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, transmission mode 10 configured without PMI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, and transmission mode 10 configured with PMI/RI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*. In the case of CRI=2, Rank indication in Table 5.2.2.6.2-3F corresponds to {RI0, RI1}, where RI0 is the rank indication for codeword 0 and RI1 is the rank indication for codeword 1. Table 5.2.2.6.2-3G shows the fields and the corresponding bit width for the CRI feedback for higher layer configured subband CQI reports for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, and transmission mode 10 configured with higher layer parameter *csi-RS-NZP-mode* set to 'multi-shot' and with *activatedResources>*1, and 1 antenna port per activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*. Table 5.2.2.6.2-3: Fields for rank indication feedback for higher layer configured subband CQI reports (transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 9/10 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1, transmission mode 9/10 configured with PMI/RI or without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources =1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports and rank indication is associated with eMIMO-Type2, and transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type, and eMIMO-Type is set to 'CLASS A') | | | | Bit wi | dth | | | |-----------------|--------------------|----------------------|-----------------|-----------------------------------|-----------------|-----------------| | Field | 4 antenna por | | ports | 8/12/16/20/24/28/32 antenna ports | | na ports | | rieiu | 2 antenna
ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | Table 5.2.2.6.2-3A: Fields for CRI feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource except with feCoMP-CSI-Enabled=true and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with higher layer parameter csi-RS-NZP-mode configured, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type is set to 'CLASS B' with K>1, where CRI is associated with the eMIMO-Type) | Field | | Bit width | | |-------|-------|-----------------|------------------| | rieiu | K = 2 | K = 3 and K = 4 | K = 5 to K = 8 | | CRI | 1 | 2 | 3 | Table 5.2.2.6.2-3B: Fields for joint CRI and RI feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and except with higher layer parameter csi-RS-NZP-mode configured, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true and 2/4/8 antenna ports except with higher layer parameter csi-RS-NZP-mode configured) | | | Bit width | | | | | | |-----------------
---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--| | Field | 2 antenna | 4 antenna | 4 antenna ports | | 8 antenna ports | | | | i ieiu | ports | Max 1 or 2
layers | Max 4
lavers | Max 1 or 2
lavers | Max 4
layers | Max 8
layers | | | CRI | $\lceil \log_2(K) \rceil$ | | | CKI | $ \log_2(\mathbf{K}) $ | $ \log_2(K) $ | 10g ₂ (K) | $ \log_2(K) $ | 10g ₂ (K) | $ \log_2(K) $ | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | Table 5.2.2.6.2-3C: Fields for CRI feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured with higher layer parameter *csi-RS-NZP-mode* set to 'multi-shot' and with *activatedResources>*1, and 1 antenna port per activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*) | Field | Bit width | | | |-------|-----------|-----------------|--| | rieid | N = 2 | N = 3 and N = 4 | | | CRI | 1 | 2 | | Table 5.2.2.6.2-3D: Fields for joint CRI and RI feedback for higher layer configured subband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*) | | | Bit width | | | | | | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--| | Field | 2 antonna | 4 antenna | 4 antenna ports | | 8 antenna ports | | | | Tielu | 2 antenna
ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | CRI | $\lceil \log_2(N) \rceil$ | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | Table 5.2.2.6.2-3E: Fields for rank indication feedback for higher layer configured subband CQI reports (transmission mode 9/10 and higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type set to 'CLASS A' and eMIMO-Type2 is set to 'CLASS B', where rank indication is associated with the eMIMO-Type) | | Bit width | | | |-----------------|-----------------------------------|-------------------|--| | Field | 8/12/16/20/24/28/32 antenna ports | | | | | Max 1 or 2 layers | Max 4 or 8 layers | | | Rank indication | 0 | 1 | | Table 5.2.2.6.2-3F: Fields for joint CRI and RI feedback for higher layer configured subband CQI reports (transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true except with higher layer parameter csi-RS-NZP-mode configured, transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 CSI-RS resources and more than one port for at least one CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true, transmission mode 10 configured without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' and with activatedResources>1 and more than one port for at least one activated CSI-RS resource with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' and with activatedResources>1 and more than one port for at least one activated CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true) | | | Bit width | | | | | | | |---|-----------------|--------------------|----------------------|-----------------|----------------------|-----------------|-----------------|--| | | Field | Cold 2 ontonno | | 4 antenna ports | | 8 antenna ports | | | | | rieiu | 2 antenna
ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | Ī | CRI | 2 | 2 | 2 | 2 | 2 | 2 | | | | Rank indication | 2 | 2 | 4 | 2 | 4 | 4 | | Table 5.2.2.6.2-3G: Fields for CRI feedback for higher layer configured subband CQI reports (transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true, and transmission mode 10 configured with higher layer parameter csi-RS-NZP-mode set to 'multi-shot' and with activatedResources>1, and 1 antenna port per activated CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bit width | |-------|-----------| | CRI | 2 | The channel quality bits in Table 5.2.2.6.2-1, Table 5.2.2.6.2-1B, Table 5.2.2.6.2-1B-1, Table 5.2.2.6.2-2, Table 5.2.2.6.2-2A, Table 5.2.2.6.2-2A-1, Table 5.2.2.6.2-2B, Table 5.2.2.6.2-2C, Table 5.2.2.6.2-2C-1, Table 5.2.2.6.2-2D, Table 5.2.2.6.2-2D-1, Table 5.2.2.6.2-2E, Table 5.2.2.6.2-2B-1, Table 5.2.2.6.2-2B-2, Table 5.2.2.6.2-2B-3, Table 5.2.2.6.2-2B-4, Table 5.2.2.6.2-2B-5, Table 5.2.2.6.2-2B-6, Table 5.2.2.6.2-2B-7, Table 5.2.2.6.2-2B-7, Table 5.2.2.6.2-2B-7, Table 5.2.2.6.2-2B-11, Table 5.2.2.6.2-2B-7, Table 5.2.2.6.2-2B-9, Table 5.2.2.6.2-2B-10, Table 5.2.2.6.2-2B-11, Table 5.2.2.6.2-2E-1, Table 5.2.2.6.2-2E-2, Table 5.2.2.6.2-2E-3, Table 5.2.2.6.2-2E-4, Table 5.2.2.6.2-2E-5, Table 5.2.2.6.2-2E-6, Table 5.2.2.6.2-2E-7, Table 5.2.2.6.2-2E-9, Table 5.2.2.6.2-3B, and Table 5.2.2.6.2-3D form the bit sequence $o_0, o_1, o_2, ..., o_{O-1}$ with o_0 corresponding to the first bit of the first field in each of the tables, o_1 corresponding to the second bit of the FMI and subband differential CQI shall be in the increasing order of the subband index [3]. The first bit of each field corresponds to MSB and the last bit LSB. The RI bits sequence in Tables 5.2.2.6.2-3, 5.2.2.6.2-3B, 5.2.2.6.2-3D, 5.2.2.6.2-3E, 5.2.2.6.2-3F and the CRI sequence in Tables 5.2.2.6.2-3A, 5.2.2.6.2-3C and 5.2.2.6.2-3G are encoded according to subclause 5.2.2.6. For transmission mode 9/10 configured with Class B CSI reporting and K>1 except with *feCoMP-CSI-Enabled=true*, the number of antenna port in Table 5.2.2.6.2-3B (or Table 5.2.2.6.2-3F with *feCoMP-CSI-Enabled=true*) refers to the maximum number of antenna ports of K CSI-RS resources configured for the CSI-process for the UE. For transmission mode 9/10 configured with Class B CSI reporting and K>1 except with *feCoMP-CSI-Enabled=true* and with *activatedResources*>1, the number of antenna port in Table 5.2.2.6.2-3D refers to the maximum number of antenna ports of N CSI-RS resources activated for the CSI-process for the UE. *N* is the value of higher layer parameter *activatedResources*. For a UE configured with the higher layer parameter *shortTTI*, the entries associated with codeword 1 in Table 5.2.2.6.2-1A, Table 5.2.2.6.2-2, Table 5.2.2.6.2-2A, Table 5.2.2.6.2-2B, Table 5.2.2.6.2-2B1, Table 5.2.2.6.2-2B2, Table 5.2.2.6.2-2B3, Table 5.2.2.6.2-2B4, Table 5.2.2.6.2-2B5, Table 5.2.2.6.2-2B6, Table 5.2.2.6.2-2B7, Table 5.2.2.6.2-2B8, Table 5.2.2.6.2-2B9, Table 5.2.2.6.2-2B10, Table 5.2.2.6.2-2C, Table 5.2.2.6.2-2D, Table 5.2.2.6.2-2E, Table 5.2.2.6.2-2E, Table 5.2.2.6.2-2E-3, Table 5.2.2.6.2-2E-4, Table 5.2.2.6.2-2E-5, Table 5.2.2.6.2-2E-6, Table 5.2.2.6.2-2E-7 and Table 5.2.2.6.2-2E-8 are not applicable. ## 5.2.2.6.3 Channel quality information formats for UE selected subband CQI reports Table 5.2.2.6.3-1 shows the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port except with feCoMP-CSI-Enabled=true, and transmission mode 6 for BL/CE UEs. L in Table 5.2.2.6.3-1 is defined in subclause 7.2 of [3]. Table 5.2.2.6.3-1A shows the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports except with *feCoMP-CSI-Enabled=true*, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured without PMI reporting with 2/4/8 antenna ports. Table 5.2.2.6.3-1B show the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter *feCoMP-CSI-Enabled=true*. Table 5.2.2.6.3-1B-1 show the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports and higher layer parameter *feCoMP-CSI-Enabled=true*. For Table 5.2.2.6.3-1B and Table 5.2.2.6.3-1B-1, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. Table 5.2.2.6.3-1: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1
antenna port, transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port except with feCoMP-CSI-Enabled=true, and transmission mode 6 for BL/CE UEs) | Field | Bit width | |-------------------------------------|-----------| | Wide-band CQI codeword | 4 | | Subband differential CQI | 2 | | Position of the M selected subbands | L | Table 5.2.2.6.3-1A Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports except with feCoMP-CSI-Enabled=true, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured without PMI reporting with 2/4/8 antenna ports) | Field | Bit width | | | | |-------------------------------------|-----------|---------|--|--| | | Rank = 1 | Rank >1 | | | | Wide-band CQI codeword 0 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 | 2 | | | | Wide-band CQI codeword 1 | 0 | 4 | | | | Subband differential CQI codeword 1 | 0 | 2 | | | | Position of the M selected subbands | L | L | | | Table 5.2.2.6.3-1B: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bit width for CRI=0 or 1 | |-------------------------------------|--------------------------| | Wide-band CQI | 4 | | Subband differential CQI | 2 | | Position of the M selected subbands | L | | Field | Bit width for CRI=2 | | Wide-band CQI codeword 0 | 4 | | Subband differential CQI codeword 0 | 2 | | Wide-band CQI codeword 1 | 4 | | Subband differential CQI codeword 1 | 2 | | Position of the M selected subbands | L | Table 5.2.2.6.3-1B-1: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports and higher layer parameter feCoMP-CSI-Enabled=true) | Field | Bit width for CRI= 0 or 1 | | | |--|---------------------------|----------------------|--| | | Rank = 1 | Rank >1 | | | Wide-band CQI codeword 0 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 | 2 | | | Wide-band CQI codeword 1 | 0 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 | | | Position of the M selected subbands | L | L | | | | | | | | Field | Bit width | for CRI=2 | | | Field | Bit width | for CRI=2
Rank >1 | | | Field Wide-band CQI codeword 0 | | | | | 1.5.0 | | | | | Wide-band CQI codeword 0 | Rank = 1
4 | Rank >1
4 | | | Wide-band CQI codeword 0 Subband differential CQI codeword 0 | Rank = 1
4 | Rank >1
4
2 | | Table 5.2.2.6.3-2, Table 5.2.2.6.3-2A and Table 5.2.2.6.3-2B show the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 4, transmission mode 6, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna port except with *advancedCodebookEnabled=TRUE*, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports except with *advancedCodebookEnabled=TRUE*, and transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true* and K=1 except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with PMI/RI reporting with 2/4/8 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, where the number of configured CSI-RS resources in a CSI process K is defined in [3] and *alternativeCodebookEnabledCLASSB_K1* is configured by higher layers [6]. Table 5.2.2.6.3-2-1 and Table 5.2.2.6.3-2A-1 show the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and higher layer parameter *feCoMP-CSI-Enabled=true*, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. Table 5.2.2.6.3-2B-1 shows the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and higher layer parameter *feCoMP-CSI-Enabled=true*, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3]. For Table 5.2.2.6.3-2-1, Table 5.2.2.6.3-2A-1 and Table 5.2.2.6.3-2B-1, in the case of CRI=2, the rank value corresponds to RIO for codeword 0 and RI1 for codeword 1. Table 5.2.2.6.3-2C and Table 5.2.2.6.3-2D show the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' except with *advancedCodebookEnabled=TRUE*. Table 5.2.2.6.3-2E shows the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured with PMI/RI reporting with 2/4/8 antenna ports with *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.2.6.3-2F and Table 5.2.2.6.3-2G show the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE. Table 5.2.2.6.3-2H and Table 5.2.2.6.3-2I show the fields and the corresponding bit widths for the channel quality information feedback for UE selected subband CQI for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' and advancedCodebookEnabled=TRUE. For Table 5.2.2.6.3-2, Table 5.2.2.6.3-2-1, Table 5.2.2.6.3-2A, Table 5.2.2.6.3-2A-1, Table 5.2.2.6.3-2B, Table 5.2.2.6.3-2B, Table 5.2.2.6.3-2B, Table 5.2.2.6.3-2C, Table 5.2.2.6.3-2D, Table 5.2.2.6.3-2E, Table 5.2.2.6.3-2F, Table 5.2.2.6.3-2G, Table 5.2.2.6.3-2H and Table 5.2.2.6.3-2I, L is defined in subclause 7.2 of [3]. For Table 5.2.2.6.3-2C, Table 5.2.2.6.3-2D, Table 5.2.2.6.3-2G, Table 5.2.2.6.3-2H, Table 5.2.2.6.3-2I and Table 5.2.2.6.3-2J, the codebook configuration $\left(N_1,N_2,O_1,O_2\right)$ is defined in [3], and CodebookConfig is configured by higher layers [6]. The parameters $\left(S_1,S_2\right)$ in rank 1 and rank 2 are defined as $\left(S_1,S_2\right)=\left(1,1\right)$ for CodebookConfig=1 and $\left(S_1,S_2\right)=\left(2,2\right)$ for CodebookConfig=2, 3 and 4. The parameters $\left(S_1,S_2\right)$ in rank 3 and 4 are defined as $\left(S_1,S_2\right)=\left(1,1\right)$ for CodebookConfig=1, $\left(S_1,S_2\right)=\left(\frac{O_1}{2},\frac{O_2}{2}\right)$ for CodebookConfig=2, $\left(S_1,S_2\right)=\left(O_1,\frac{O_2}{2}\right)$ for CodebookConfig=3, $$\begin{split} &\left(S_1,S_2\right) = \left(O_1,\frac{O_2}{4}\right) \text{ for } \textit{CodebookConfig} = 4. \text{ The parameters } \left(S_1,S_2\right) \text{ in rank 5 to 8 are defined as} \\ &\left(S_1,S_2\right) = \left(1,1\right) \text{ for } \textit{CodebookConfig} = 1, \\ &\left(S_1,S_2\right) = \left(\frac{O_1}{4},\frac{O_2}{4}\right) \text{ for } \textit{CodebookConfig} = 2/3/4. \text{ The parameters} \\ &\left(L_1,L_2\right) \text{ are defined as } L_1 = \min\left\{4,N_1\right\} \text{ and } L_2 = 2 \text{ for } N_1 \geq N_2 \text{ and } N_2 \neq 1, \\ &L_1 = 2 \text{ and } L_2 = \min\left\{4,N_2\right\} \text{ for } N_1 < N_2 \text{ and } N_1 \neq 1, \\ &L_1 = \min\left\{8,N_1\right\} \text{ and } L_2 = 1 \text{ for } N_2 = 1. \end{split}$$ Table 5.2.2.6.3-2: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 4, transmission mode 6, transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission
mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | | Bit width | | | | | | |-------------------------------------|-----------|----------|-----------------|----------|--|--| | Field | 2 anten | na ports | 4 antenna ports | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | | | Wide-band CQI codeword 1 | 0 | 4 | 0 | 4 | | | | Subband differential CQI codeword 1 | 0 | 2 | 0 | 2 | | | | Position of the M selected subbands | L | L | L | L | | | | Precoding matrix indicator | 4 | 2 | 8 | 8 | | | Table 5.2.2.6.3-2-1: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1, and higher layer parameter feCoMP-CSI-Enabled=true, except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width for CRI=0 or 1 | | | | | |---------------------------------------|--------------------------|----------|-----------------|----------|--| | Field | 2 anteni | na ports | 4 antenna ports | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | | Wide-band CQI codeword 1 | 0 | 4 | 0 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 | 0 | 2 | | | Position of the M selected subbands | L | L | L | L | | | Precoding matrix indicator | 4 | 2 | 8 | 8 | | | | Bit width for CRI=2 | | | | | | Field | 2 anteni | na ports | 4 antenna ports | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | | Wide-band CQI codeword 1 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 2 | 2 | 2 | 2 | | | Position of the M selected subbands | L | L | L | L | | | Precoding matrix indicator codeword 0 | 4 | 2 | 8 | 8 | | | Precoding matrix indicator codeword 1 | 4 | 2 | 8 | 8 | | Table 5.2.2.6.3-2A: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | Field | Bit width | | | | | | | | |-------------------------------------|-----------|----------|--------|--------|----------|----------|----------|----------| | rieia | Rank = | Rank = 2 | Rank = | Rank = | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Wide-band CQI codeword 1 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Position of the M selected subbands | L | L | L | L | L | L | L | L | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 0 | | Wideband second PMI i2 | 4 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | | Subband second PMI i2 | 4 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | Table 5.2.2.6.3-2A-1: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and higher layer parameter *feCoMP-CSI-Enabled=true*) | Field | Bit width for CRI=0 or 1 | | | | | | |-------|--------------------------|----------|----------|----------|--|--| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | |-------------------------------------|---------------------|-------------|---------------|----------|--|--| | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | | | Wide-band CQI codeword 1 | 0 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | | | | Position of the M selected subbands | L | L | L | L | | | | Wideband first PMI i1 | 4 | 4 | 2 | 2 | | | | Wideband second PMI i2 | 4 | 4 | 4 | 3 | | | | Subband second PMI i2 | 4 | 4 | 4 | 3 | | | | Field | | Bitwidth fo | r CRI= 0 or 1 | | | | | rieiu | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | | | Wide-band CQI codeword 1 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 2 | 2 | 2 | 2 | | | | Position of the M selected subbands | L | L | L | L | | | | Wideband first PMI i1 | 2 | 2 | 2 | 0 | | | | Wideband second PMI i2 | 0 | 0 | 0 | 0 | | | | Subband second PMI i2 | 0 | 0 | 0 | 0 | | | | Field | Bit width for CRI=2 | | | | | | | i ieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | | | Wide-band CQI codeword 1 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 2 | 2 | 2 | 2 | | | | Position of the M selected subbands | L | L | L | L | | | | Wideband first PMI i1 codeword 0 | 4 | 4 | 2 | 2 | | | | Wideband second PMI i2 codeword 0 | 4 | 4 | 4 | 3 | | | | Subband second PMI i2 codeword 0 | 4 | 4 | 4 | 3 | | | | Wideband first PMI i1 codeword 1 | 4 | 4 | 2 | 2 | | | | Wideband second PMI i2 codeword 1 | 4 | 4 | 4 | 3 | | | | Subband second PMI i2 codeword 1 | 4 | 4 | 4 | 3 | | | Table 5.2.2.6.3-2B: Fields for channel quality information feedback for UE selected subband CQI reports with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE, except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | Field | | Bit w | vidth | | |-------------------------------------|----------|----------|----------|----------| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | Wide-band CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | | Position of the M selected subbands | L | L | L | L | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | Wideband second PMI i2 | 4 | 4 | 4 | 4 | | Subband second PMI i2 | 4 | 4 | 4 | 4 | Table 5.2.2.6.3-2B-1: Fields for channel quality information feedback for UE selected subband CQI reports with 4 antenna ports (transmission mode 10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1, and higher layer parameter feCoMP-CSI-Enabled=true, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bit width for CRI=0 or 1 | | | | |---|--------------------------------------|--------------------------------------|---|---| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | Wide-band CQI codeword 1 | 0 | 4 | 4 | 4 | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | | Position of the M selected subbands | L | L | L | L | | Wideband first PMI i1 | 4 | 4 | 0 | 0 | | Wideband second PMI i2 | 4 | 4 | 4 | 4 | | Subband second PMI i2 | 4 | 4 | 4 | 4 | | | Bit width for CRI=2 | | | | | Field | | | | | | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Field Wide-band CQI codeword 0 | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | 1,000 | | | | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | | Wide-band CQI codeword 0 Subband differential CQI codeword 0 | 4 2 | 4 2 | 4 2 | 4 2 | | Wide-band CQI codeword 0 Subband differential CQI codeword 0 Wide-band CQI codeword 1 | 4 2 4 | 4 2 4 | 4 2 4 | 4
2
4 | | Wide-band CQI codeword 0 Subband differential CQI codeword 0 Wide-band CQI codeword 1 Subband differential CQI codeword 1 | 4
2
4
2 | 4
2
4
2 | 4
2
4
2 | 4
2
4
2 | | Wide-band CQI codeword 0 Subband differential CQI codeword 0 Wide-band CQI codeword 1 Subband differential CQI codeword 1 Position of the M selected subbands | 4
2
4
2
L | 4
2
4
2
L | 4
2
4
2
L | 4
2
4
2
L | | Wide-band CQI codeword 0 Subband differential CQI codeword 0 Wide-band CQI codeword 1 Subband differential CQI codeword 1 Position of the M selected subbands Wideband first PMI i1 codeword 0 | 4
2
4
2
L
4 | 4
2
4
2
L
4 | 4
2
4
2
L
0 | 4
2
4
2
<i>L</i>
0 | |
Wide-band CQI codeword 0 Subband differential CQI codeword 0 Wide-band CQI codeword 1 Subband differential CQI codeword 1 Position of the M selected subbands Wideband first PMI i1 codeword 0 Wideband second PMI i2 codeword 0 | 4
2
4
2
L
4
4 | 4
2
4
2
L
4
4 | 4
2
4
2
<i>L</i>
0
4 | 2
4
2
2
L
0
4 | | Wide-band CQI codeword 0 Subband differential CQI codeword 0 Wide-band CQI codeword 1 Subband differential CQI codeword 1 Position of the M selected subbands Wideband first PMI i1 codeword 0 Wideband second PMI i2 codeword 0 Subband second PMI i2 codeword 0 | 4
2
4
2
L
4
4
4 | 4
2
4
2
L
4
4
4 | 4
2
4
2
<i>L</i>
0
4
4 | 4
2
4
2
<i>L</i>
0
4
4 | Table 5.2.2.6.3-2C: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) and CodebookConfig=1, except with advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | | |--|---|---|---|---|--|--| | i-leiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wide-band
CQI
codeword 0 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword 0 | 2 | 2 | 2 | 2 | | | | Wide-band
CQI
codeword 1 | 0 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword 1 | 0 | 2 | 2 | 2 | | | | Position of
the M
selected
subbands | L | L | L | L | | | | Wideband
first PMI i1,1 | $\lceil \log_2(N_1 O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left[\log_2\left(\frac{N_1O_1}{S_1}\times\left(2+\left\lfloor\frac{9-N_2}{8}\right\rfloor\right)\right)\right]$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | Wideband first PMI i1,2 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | | | | Wideband
second PMI
i2 | 2 | 2 | 1 | 1 | | | | Subband
second PMI
i2 | 2 | 2 | 1 | 1 | | | | Field | Bit width | | | | | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | | Wide-band
CQI
codeword 0 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword 0 | 2 | 2 | 2 | 2 | | | | Wide-band
CQI
codeword 1 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword 1 | 2 | 2 | 2 | 2 | | | | Position of
the M
selected
subbands | L | L | L | L | | | | Wideband
first PMI i1,1 | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | | | | Wideband first PMI i1,2 | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | | | | Wideband
second PMI
i2 | 0 | 0 | 0 | 0 | | | | Subband
second PMI
i2 | 0 | 0 | 0 | 0 | | | Table 5.2.2.6.3-2D: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration $(N_{\!_1},N_{\!_2},Q_{\!_1},Q_{\!_2})$ and CodebookConfig=2/3/4, except with advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | | |---|--|--|---|---|--|--| | 1 1010 | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wide-
band CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword
0 | 2 | 2 | 2 | 2 | | | | Wide-
band CQI
codeword
1 | 0 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword
1 | 0 | 2 | 2 | 2 | | | | Position of the M selected subbands | L | L | L | L | | | | Wideband
first PMI
i1,1 | $\lceil \log_2(N_1O_1/2) \rceil$ | $\left\lceil \log_2(N_1O_1/2) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left[\log_2\left(\frac{N_1O_1}{S_1}\times\left(2+\left\lfloor\frac{9-N_2}{8}\right\rfloor\right)\right)\right]$ | | | | Wideband
first PMI
i1,2 | $\left\lceil \log_2 \left(N_2 O_2 / 2 \right) \right\rceil$ | $\lceil \log_2(N_2O_2/2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | | | Wideband
second
PMI i2 | 4 | 4 | 4 | 3 | | | | Subband
second
PMI i2 | 4 | 4 | 4 | 3 | | | | Field | Bit width | | | | | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | | Wide-
band CQI
codeword
0 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword
0 | 2 | 2 | 2 | 2 | | | | Wide-
band CQI
codeword
1 | 4 | 4 | 4 | 4 | | | | Subband
differential
CQI
codeword
1 | 2 | 2 | 2 | 2 | | | | Position of the M selected subbands | L | L | L | L | | | | Wideband
first PMI
i1,1 | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\left\lceil \log_2\left(N_{_1}O_{_1}/S_{_1}\right)\right\rceil$ | | | | Wideband
first PMI
i1,2 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | |-------------------------------|--|--|--|---| | Wideband
second
PMI i2 | 0 | 0 | 0 | 0 | | Subband
second
PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.3-2E: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and alternativeCodebookEnabledCLASSB_K1=TRUE and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports with alternativeCodebookEnabledCLASSB_K1=TRUE) | Bit width | | | | | | | | |-------------------------------------|-----------------|----------|-----------------|---------|---------|---------|--| | Field | 2 antenna ports | | 4 antenna ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank =2 | Rank =3 | Rank =4 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | 2 | 2 | | | Wideband CQI codeword 1 | 0 | 4 | 0 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | 2 | 2 | | | Position of the M selected subbands | L | L | L | L | L | L | | | Wideband Precoding matrix indicator | 2 | 1 | 3 | 3 | 2 | 1 | | | Subband Precoding matrix indicator | 2 | 1 | 3 | 3 | 2 | 1 | | | | Bit width | | | | | | | | Field | | | 8 antenn | a ports | | | | | | Rank = 1 | Rank = 2 | Rank = 3 | Rank =4 | Rank | =5~8 | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 1 | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | 2 | 2 | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | 4 | | | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | 2 | | | | Position of the M selected subbands | L | L | L | L | L | | | | Wideband Precoding matrix indicator | 4 | 4 | 4 | 3 | 0 | | | | Subband Precoding matrix indicator | 4 | 4 | 4 | 3 | (|) | | Table 5.2.2.6.3-2F: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | Field | | Bit width | | | | | | |-------------------------------------|----------|-----------|----------|----------|--|--|--| | rieiu | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | | Wideband CQI codeword 0 | 4 | 4 | 4 | 4 | | | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | | | | | Wideband CQI codeword 1 | 0 | 4 | 4 | 4 | | | | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | | | | | Position of the M selected subbands | L | L | L | L | | | | | Wideband first PMI i1,1-1 | 3 | 3 | 0 | 0 | | | | | Wideband first PMI i1,2-1 | 0 | 0 | 0 | 0 | | | | | Wideband first PMI i1,1-2 | 0 | 0 | 0 | 0 | | | | | Wideband first PMI i1,2-2 | 0 | 0 | 0 | 0 | | | | | Wideband first PMI i1,p-2 | 2 | 2 | 0 | 0 | | | | | Wideband second PMI i2 | 6 | 12 | 4 | 4 | | | | | Subband second PMI i2 | 6 | 12 | 4 | 4 | | | | Table 5.2.2.6.3-2G: Fields for channel quality information feedback for UE selected subband CQI reports
(transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | | Bit width | | | | | | | | | |-------------------------------------|---------------------------------|---------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|--| | Field | Rank = 1 | Rank = 2 | Rank
= 3 | Rank
= 4 | Rank
= 5 | Rank
= 6 | Rank
= 7 | Rank
= 8 | | | Wide-band CQI codeword 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Wide-band CQI codeword 1 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | Subband differential CQI codeword 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Position of the M selected subbands | L | L | L | L | L | L | L | L | | | Wideband first PMI
i1,1-1 | $\lceil \log_2(N_1 O_1) \rceil$ | $\lceil \log_2(N_1 O_1) \rceil$ | 2 | 2 | 2 | 2 | 2 | 0 | | | Wideband first PMI
i1,2-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Wideband first PMI
i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | 0 | 0 | 0 | 0 | | | Wideband first PMI
i1,2-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Wideband first PMI i1,p-2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | | Wideband second
PMI i2 | 6 | 12 | 4 | 3 | 0 | 0 | 0 | 0 | | | Subband second
PMI i2 | 6 | 12 | 4 | 3 | 0 | 0 | 0 | 0 | | Table 5.2.2.6.3-2H: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled=True and eMIMO-Type is set to 'CLASS A' with codebook configuration (N, N, Q, Q) and CodebookConfig=1) | | Bit width | | | | | | | |--------------------|--------------------------------|--------------------------------|--|---|--|--|--| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | | Wide- | Naiik – i | Naiik – Z | Nank – 3 | Naik - 4 | | | | | band CQI | 4 | 4 | 4 | 4 | | | | | codeword | 4 | 4 | 4 | 4 | | | | | 0 | | | | | | | | | Subband | | | | | | | | | differential | | | | | | | | | CQI | 2 | 2 | 2 | 2 | | | | | codeword | | | | | | | | | 0 | | | | | | | | | Wide- | | | | | | | | | band CQI | 0 | 4 | 4 | 4 | | | | | codeword | | | | | | | | | 1
Subband | | | | | | | | | differential | | | | | | | | | CQI | 0 | 2 | 2 | 2 | | | | | codeword | O | 2 | ۷ | 2 | | | | | 1 | | | | | | | | | Position | | | | | | | | | of the M | Y | 7 | Ψ. | · | | | | | selected | L | L | L | L | | | | | subbands | | | | | | | | | Wideband | F / \] | F / \7 | $\begin{bmatrix} (NO(10N)) \end{bmatrix}$ | $\begin{bmatrix} (NO(\log N)) \end{bmatrix}$ | | | | | first PMI | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\log_2\left(\frac{N_1O_1}{S_1}\times\left(2+\left \frac{9-N_2}{8}\right \right)\right)$ | $\left[\log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right]$ | | | | | i1,1-1 | | | | | | | | | Wideband | F- | F- (\7 | [- ((g)] | [- ((G)] | | | | | first PMI | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2\left(N_2^{}O_2^{}/S_2^{}\right) \rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | | | | i1,2-1 | | | | | | | | | Wideband | Γ ₁ | [1 (7)] | _ | _ | | | | | first PMI | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | | | i1,1-2 | | | | | | | | | Wideband first PMI | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | | | | i1,2-2 | $ \log_2(L_2) $ | $ \log_2(L_2) $ | 0 | 0 | | | | | Wideband | | | | | | | | | first PMI | 2 | 2 | 0 | 0 | | | | | i1,p-2 | _ | _ | · · | ŭ | | | | | Wideband | | | | | | | | | second | 6 | 12 | 1 | 1 | | | | | PMI i2 | - | | | · | | | | | Subband | | | | | | | | | second | 6 | 12 | 1 | 1 | | | | | PMI i2 | | | | | | | | | | | | Bit width | | | | | | Field | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | | | | Wide- | Naiik = 3 | Nalik = 0 | Nalik = 1 | Nailk = 0 | | | | | band CQI | | | | | | | | | codeword | 4 | 4 | 4 | 4 | | | | | 0 | | | | | | | | | Subband | | | | | | | | | differential | | | | | | | | | CQI | 2 | 2 | 2 | 2 | | | | | codeword | | | | | | | | | 0 | | | | | | | | | Wide- | | | | | | | | | band CQI | 4 | 4 | 4 | 4 | | | | | codeword | 7 | | 7 |] | | | | | 1 | | | | | | | | | Subband | | | | | | | | | differential | • | | | _ | | | | | CQI | 2 | 2 | 2 | 2 | | | | | codeword | | | | | | | | | 1 | | | | | | | | | Position of the M selected subbands | L | L | L | L | |-------------------------------------|--|---|--|---| | Wideband
first PMI
i1,1-1 | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2\left(N_1 O_1 / S_1\right) \right\rceil$ | $\left\lceil \log_2\left(N_{_1}O_{_1}/S_{_1}\right)\right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | | Wideband
first PMI
i1,2-1 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | | Wideband
first PMI
i1,1-2 | 0 | 0 | 0 | 0 | | Wideband
first PMI
i1,2-2 | 0 | 0 | 0 | 0 | | Wideband
first PMI
i1,p-2 | 0 | 0 | 0 | 0 | | Wideband
second
PMI i2 | 0 | 0 | 0 | 0 | | Subband
second
PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.3-2I: Fields for channel quality information feedback for UE selected subband CQI reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled=TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N, N, Q, Q) and CodebookConfig=2/3/4) | Field | | | Bit width | | |---|--------------------------------|--------------------------------|--|---| | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | Wide-
band CQI
codeword
0 | 4 | 4 | 4 | 4 | | Subband
differential
CQI
codeword
0 | 2 | 2 | 2 | 2 | | Wide-
band CQI
codeword
1 | 0 | 4 | 4 | 4 | | Subband
differential
CQI
codeword
1 | 0 | 2 | 2 | 2 | | Position of the M selected subbands | L | L | L | L | | Wideband
first PMI
i1,1-1 | $\lceil \log_2(N_1O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left\lceil \log_2\left(\frac{N_1O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor\right)\right)\right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | Wideband
first PMI
i1,2-1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | | Wideband
first PMI
i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | Wideband
first PMI
i1,2-2 | $\lceil \log_2(L_2) \rceil$ | $\lceil \log_2(L_2) \rceil$ | 0 | 0 | | Wideband
first PMI
i1,p-2 | 2 | 2 | 0 | 0 | | Wideband
second
PMI i2 | 6 | 12 | 4 | 3 | | Subband
second
PMI i2 | 6 | 12 | 4 | 3 | | Field | | | Bit width | | | | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wide-
band CQI
codeword
0 | 4 | 4 | 4 | 4 | | Subband
differential
CQI
codeword
0 | 2 | 2 | 2 | 2 | | Wide-
band CQI
codeword
1 | 4 | 4 | 4 | 4 | | Subband
differential
CQI
codeword
1 | 2 | 2 | 2 | 2 | | Position of the M selected subbands | L | L | L | L | |-------------------------------------|--|---|---|---| | Wideband
first PMI
i1,1-1 | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | $\left\lceil \log_2\left(N_1O_1/S_1\right)\right\rceil$ | | Wideband
first PMI
i1,2-1 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | $\left\lceil \log_2\left(N_2O_2/S_2\right)\right\rceil$ | | Wideband
first PMI
i1,1-2 | 0 | 0 | 0 | 0 | | Wideband
first PMI
i1,2-2 | 0 | 0 | 0 | 0 | | Wideband
first PMI
i1,p-2 | 0 | 0 | 0 | 0 | | Wideband
second
PMI i2 | 0 | 0 | 0 | 0 | | Subband
second
PMI i2 | 0 | 0 | 0 | 0 | Table 5.2.2.6.3-2J shows the fields and the corresponding bit widths for i1 for UE selected subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* is set to 'CLASS A' with 8/12/16/20/24/28/32 antenna ports and *eMIMO-Type2* is set to 'CLASS B', where i1 is associated with Class A. Table 5.2.2.6.3-2J: Fields for i1 feedback (transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type is
set to 'CLASS A' with codebook configuration (N_1,N_2,Q_1,Q_2) , where i1 is associated with Class A) | | Bit width | | | | | | | |-------------------------------|--|------------------------------------|---|--|--|--|--| | Field | Max 1 or 2 layers | Max 4 or 8 layers | | | | | | | | Rank = 1 | Rank = 1 | Rank =3 | | | | | | Wideband
first PMI
i1,1 | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | | | | | Table 5.2.2.6.3-3 shows the fields and the corresponding bit widths for the rank indication feedback for UE selected subband CQI reports for PDSCH transmissions associated with transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode set to 'multi-shot' and with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports and rank indication is associated with eMIMO-Type2, transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A', and transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 with with 2/4/8 antenna ports, transmission mode 9/10 configured without PMI reporting and higher layer parameter csi-RS-NZP-mode set to 'multi-shot' and with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured without PMI reporting with 2/4/8 antenna ports and rank indication is associated with *eMIMO-Type*2. Table 5.2.2.6.3-3A shows the fields and the corresponding bit widths for the CSI-RS resource indication feedback for UE selected subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource except with feCoMP-CSI-Enabled=true and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with higher layer parameter $exit{CSI-RS-NZP-mode}$ configured, and transmission mode 9/10 configured with higher layer parameter $exit{CMIMO-Type}$ and $exit{CMIMO-Type}$, and $exit{CMIMO-Type}$ is set to 'CLASS B' with K>1, where CRI is associated with the $exit{CMIMO-Type}$. Table 5.2.2.6.3-3B shows the fields and the corresponding bit widths for the joint CRI and RI feedback for UE selected subband CQI report for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true*, and except with higher layer parameter *csi-RS-NZP-mode* configured, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *feCoMP-CSI-Enabled=true* and 2/4/8 antenna ports except with higher layer parameter *csi-RS-NZP-mode* configured. Table 5.2.2.6.3-3C shows the fields and the corresponding bit widths for the CSI-RS resource indication feedback for UE selected subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *csi-RS-NZP-mode* set to 'multi-shot' and with *activatedResources*>1 and with 1 antenna port per activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*. N is the value of higher layer parameter *activatedResources*. Table 5.2.2.6.3-3D shows the fields and the corresponding bit widths for the joint CRI and RI feedback for UE selected subband CQI report for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*. N is the value of higher layer parameter *activatedResources*. Table 5.2.2.6.3-3E shows the fields and the corresponding bit width for the rank indication feedback for UE selected subband CQI reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* is set to 'CLASS A' with8/12/16/20/24/28/32 antenna ports and *eMIMO-Type2* is set to 'CLASS B', where rank indication is associated with the *eMIMO-Type*. Table 5.2.2.6.3-3F shows the fields and the corresponding bit width for the joint CRI and RI feedback for UE selected subband CQI reports for PDSCH transmissions associated with transmission mode 10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and higher layer parameter *feCoMP-CSI-Enabled=true* except with higher layer parameter *csi-RS-NZP-mode* configured, transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and more than one port for at least one CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, transmission mode 10 configured without PMI reporting and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource and higher layer parameter *csi-RS-NZP-mode* is set to 'multi-shot' and with *activatedResources>*1 and more than one port for at least one activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*. In the case of CRI=2, Rank indication in Table 5.2.2.6.1-2F corresponds to {RI0, RI1}, where RI0 is the rank indication for codeword 0 and RI1 is the rank indication for codeword 1. Table 5.2.2.6.3-3G shows the fields and the corresponding bit width for the CRI feedback for UE selected subband CQI reports for PDSCH transmissions associated with transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, and transmission mode 10 configured with higher layer parameter *csi-RS-NZP-mode* set to 'multi-shot' and with *activatedResources*>1, and 1 antenna port per activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*. Table 5.2.2.6.3-3: Fields for rank indication feedback for UE selected subband CQI reports (transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports and transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 9/10 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1, transmission mode 9/10 configured with PMI/RI or without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' with activatedResources=1 and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-ConfigNZP-ApList and the higher layer parameter csi-RS-NZP-mode is set to 'aperiodic' and more than one port for the activated CSI-RS resource, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports and rank indication is associated with eMIMO-Type2, and transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type, and eMIMO-Type is set to 'CLASS A') | Field | Bit width | | | | | | | |-----------------|--------------------|----------------------|-----------------|-----------------------------------|-----------------|-----------------|--| | | 2 antonna | 4 antenna ports | | 8/12/16/20/24/28/32 antenna ports | | | | | | 2 antenna
ports | Max 1 or 2
layers |
Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | Table 5.2.2.6.3-3A: Fields for CSI-RS resource indication feedback for UE selected subband CQI reports (transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource except with feCoMP-CSI-Enabled=true and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with higher layer parameter csi-RS-NZP-mode configured, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type is set to 'CLASS B' with K>1, where CRI is assocated with the eMIMO-Type) | Field | Bit width | | | | | |-------|-----------|----------------|------------------|--|--| | rieiu | K = 2 | K = 3 and K= 4 | K = 5 to K = 8 | | | | CRI | 1 | 2 | 3 | | | Table 5.2.2.6.3-3B: Fields for joint CRI and RI feedback for UE selected subband CQI report (transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true, and except with higher layer parameter csi-RS-NZP-mode configured, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with feCoMP-CSI-Enabled=true and 2/4/8 antenna ports except with higher layer parameter csi-RS-NZP-mode configured) | | Bit width | | | | | | | | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|--| | Field | 2 antenna | 4 antenna ports | | 8 antenna ports | | | | | | | ports | Max 1 or 2
layers | Max 4
lavers | Max 1 or 2
lavers | Max 4
layers | Max 8
layers | | | | CRI | $\lceil \log_2(K) \rceil$ | | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | | Table 5.2.2.6.3-3C: Fields for CSI-RS resource indication feedback for UE selected subband CQI reports (transmission mode 9/10 configured with higher layer parameter *csi-RS-NZP-mode* set to 'multi-shot' and with *activatedResources>*1, and 1 antenna port per activated CSI-RS resource except with *feCoMP-CSI-Enabled=true*) | Field | Bit width | | | | | |-------|-----------|-----------------|--|--|--| | rieid | N = 2 | N = 3 and N = 4 | | | | | CRI | 1 | 2 | | | | Table 5.2.2.6.3-3D: Fields for joint CRI and RI feedback for UE selected subband CQI report (transmission mode 9/10 configured without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' and with activatedResources>1 and more than one port for at least one activated CSI-RS resource except with feCoMP-CSI-Enabled=true, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' and with activatedResources>1 and more than one port for at least one activated CSI-RS resource except with feCoMP-CSI-Enabled=true) | | Bit width | | | | | | | | | | | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|--|--|--|--| | Field | 2 antenna | 4 antenna | a ports | 8 antenna ports | | | | | | | | | rieiu | ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | | | | | CRI | $\lceil \log_2(N) \rceil$ | | | | | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | | | | | Table 5.2.2.6.3-3E: Fields for rank indication feedback for UE selected subband CQI reports (transmission mode 9/10 and higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports, with eMIMO-Type set to 'CLASS A', where rank indication is associated with the eMIMO-Type) | | Bit width | | | | | | |-----------------|-----------------------------------|-------------------|--|--|--|--| | Field | 8/12/16/20/24/28/32 antenna ports | | | | | | | | Max 1 or 2 layers | Max 4 or 8 layers | | | | | | Rank indication | 0 | 1 | | | | | Table 5.2.2.6.3-3F: Fields for joint CRI and RI feedback for UE selected subband CQI reports (transmission mode 10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and higher layer parameter feCoMP-CSI-Enabled=true except with higher layer parameter csi-RS-NZP-mode configured, transmission mode 10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 CSI-RS resources and more than one port for at least one CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true, transmission mode 10 configured without PMI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' and with activatedResources>1 and more than one port for at least one activated CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true, and transmission mode 10 configured with PMI/RI reporting and higher layer parameter csi-RS-NZP-mode is set to 'multi-shot' and with activatedResources>1 and more than one port for at least one activated CSI-RS resource and higher layer parameter feCoMP-CSI-Enabled=true) | | Bit width | | | | | | | | | | |-----------------|-----------|----------------------|-----------------|----------------------|-----------------|-----------------|--|--|--|--| | Field | 2 antenna | 4 antenna | ports | 8 antenna ports | | | | | | | | rieiu | ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | | | | CRI | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | Rank indication | 2 | 2 | 4 | 2 | 4 | 4 | | | | | Table 5.2.2.6.3-3G: Fields for CRI feedback for UE selected subband CQI reports (transmission mode 10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 CSI-RS resources and one port for each CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*, and transmission mode 10 configured with higher layer parameter *csi-RS-NZP-mode* set to 'multi-shot' and with *activatedResources>*1, and 1 antenna port per activated CSI-RS resource and higher layer parameter *feCoMP-CSI-Enabled=true*) | Field | Bit width | |-------|-----------| | CRI | 2 | The channel quality bits in Table 5.2.2.6.3-1, Table 5.2.2.6.3-1B, Table 5.2.2.6.3-1B-1, Table 5.2.2.6.3-2, Table 5.2.2.6.3-2A, Table 5.2.2.6.3-2A-1, Table 5.2.2.6.3-2B, Table 5.2.2.6.3-2B-1, Table 5.2.2.6.3-2C, Table 5.2.2.6.3-2D, Table 5.2.2.6.3-2E, Table 5.2.2.6.3-2F, Table 5.2.2.6.3-2G, Table 5.2.2.6.3-2H, Table 5.2.2.6.3-2I, Table 5.2.2.6.3-3B, and Table 5.2.2.6.3-3D form the bit sequence $o_0, o_1, o_2, ..., o_{O-1}$ with o_0 corresponding to the first bit of the first field in each of the tables, o_1 corresponding to the second bit of the first field in each of the tables, and o_{O-1} corresponding to the last bit in the last field in each of the tables. The field of PMI shall start with the wideband PMI followed by the PMI for the M selected subbands. The first bit of each field corresponds to MSB and the last bit LSB. The RI bits sequence in Table 5.2.2.6.3-3, Table 5.2.2.6.3-3B, Table 5.2.2.6.3-3D, Table 5.2.2.6.3-3G are encoded according to subclause 5.2.2.6. For transmission mode 9/10 configured with Class B CSI reporting and K>1, the number of antenna port in Table 5.2.2.6.3-3B (or Table 5.2.2.6.3-3F with *feCoMP-CSI-Enabled=true*) refers to the maximum number of antenna ports of K CSI-RS resources configured for the CSI-process for the UE. For transmission mode 9/10 configured with Class B CSI reporting and K>1 except with *feCoMP-CSI-Enabled=true* and with *activatedResources*>1, the number of antenna port in Table 5.2.2.6.3-3D refers to the maximum number of antenna ports of N CSI-RS resources activated for the CSI-process for the UE. N is the value of higher layer parameter *activatedResources*. For a UE configured with the higher layer parameter *shortTTI*, the entries associated with codeword 1 in Table 5.2.2.6.3-1A, Table 5.2.2.6.3-2, Table 5.2.2.6.3-2A, Table 5.2.2.6.3-2B, Table 5.2.2.6.3-2C, Table 5.2.2.6.3-2D, Table 5.2.2.6.3-2F, Table 5.2.2.6.3-2F, Table 5.2.2.6.3-2H and Table 5.2.2.6.3-2I are not applicable. #### 5.2.2.6.4 Channel coding for CQI/PMI information in PUSCH The channel quality bits input to the channel coding block are denoted by $o_0, o_1, o_2, o_3, ..., o_{Q-1}$ where O is the number of bits. The number of channel quality bits depends on the transmission format. When PUCCH-based reporting format is used, the number of CQI/PMI bits is defined in subclause 5.2.3.3.1 for wideband reports and in subclause 5.2.3.3.2 for UE selected subbands reports. When PUSCH-based reporting format is used, the number of CQI/PMI bits is defined in subclause 5.2.2.6.1 for wideband reports, in subclause 5.2.2.6.2 for higher layer configured subbands reports and in subclause 5.2.2.6.3 for UE selected subbands reports. The channel quality information is first coded using a (32, O) block code. The code words of the (32, O) block code are a linear combination of the 11 basis sequences denoted $M_{i,n}$ and defined in Table 5.2.2.6.4-1. | i | M _{i,0} | M _{i,1} | M _{i,2} | M _{i,3} | M _{i,4} | $M_{i,5}$ | M _{i,6} | M _{i,7} | M _{i,8} | M _{i,9} | M _{i,10} | |----|------------------|------------------|------------------|------------------|------------------|-----------|------------------|------------------|------------------|------------------|-------------------| | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | | 3 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | 4 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | | 5 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | | 6 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1
 1 | 1 | | 7 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | | 8 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | | 9 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | | 10 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | | 11 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | | 12 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | | 13 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | | 14 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | | 15 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | | 16 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | | 17 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | | 18 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | 19 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | 20 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | 21 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | 22 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | | 23 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | | 24 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | | 25 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | | 26 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | | 27 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | | 28 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | | 29 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | | 30 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 31 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 5.2.2.6.4-1: Basis sequences for (32, 0) code The encoded CQI/PMI block is denoted by $b_0, b_1, b_2, b_3, ..., b_{B-1}$ where B = 32 and $$b_i = \sum_{n=0}^{O-1} (o_n \cdot M_{i,n}) \mod 2$$ where $i = 0, 1, 2, ..., B-1$. The output bit sequence $q_0, q_1, q_2, q_3, ..., q_{N_L \cdot Q_{CQI} - 1}$ is obtained by circular repetition of the encoded CQI/PMI block as follows $q_i = b_{(i \text{ mod } B)}$ where $i = 0, 1, 2, ..., N_L \cdot Q_{CQI}$ -1, where N_L is the number of layers the corresponding UL-SCH transport block is mapped onto. ### 5.2.2.6.5 Channel coding for more than 11 bits of HARQ-ACK information The HARQ-ACK bits input to the channel coding block are denoted by o_0^{ACK} o_1^{ACK} ,..., $o_{O^{ACK}-1}^{ACK}$ where $11 < O^{ACK} \le 22$ is the number of bits. The sequences of bits o_0^{ACK} , o_1^{ACK} , o_2^{ACK} ,..., $o_{|O^{ACK}/2}^{ACK}|_1$ and $o_{|O^{ACK}/2}^{ACK}|_2$, $o_{|O^{ACK}/2}^{ACK}|_1$, $o_{|O^{ACK}/2}^{ACK}|_1$, $o_{|O^{ACK}/2}^{ACK}|_1$ are encoded as follows $$\widetilde{q}_i = \sum_{n=0}^{\left\lceil o^{ACK}/2\right\rceil - 1} \left(o_n^{ACK} \cdot M_{i,n}\right) \mod 2$$ and $$\widetilde{\widetilde{q}}_{i} = \sum_{n=0}^{O^{ACK} - \left[O^{ACK}/2\right] - 1} \left(O_{O^{ACK}/2}^{ACK} + N_{i,n}\right) \mod 2$$ where i = 0, 1, 2, ..., 31 and the basis sequences $M_{i,n}$ are defined in Table 5.2.2.6.4-1. The output bit sequence $q_0^{ACK}, q_1^{ACK}, q_2^{ACK}, ..., q_{Q_{ACK}-1}^{ACK}$ is obtained by the concatenation and circular repetition of the bit sequences $\tilde{q}_0, \tilde{q}_1, \tilde{q}_2, ..., \tilde{q}_{31}$ and $\tilde{\tilde{q}}_0, \tilde{\tilde{q}}_1, \tilde{\tilde{q}}_2, ..., \tilde{\tilde{q}}_{31}$ as follows: Set i = 0 while $i < [Q/2] \cdot Q_m$ $$q_i^{ACK} = \tilde{q}_{i \mod 32}$$ $$i = i + 1$$ end while Set i = 0 while $i < (Q - [Q/2]) \cdot Q_m$ $$q_{\lceil Q'/2 \rceil \cdot Q_m + i}^{ACK} = \widetilde{\widetilde{q}}_{i \bmod 32}$$ $$i = i + 1$$ end while # 5.2.2.6A Channel coding of AUL-UCI Control data arrives at the coding unit in the form of AUL uplink control information (AUL-UCI), $o_0^{AUL-UCI}$, $o_1^{AUL-UCI}$, $o_2^{AUL-UCI}$, $o_2^{AUL-UCI}$, ..., $o_{O-1}^{AUL-UCI}$, and is transmitted on AUL PUSCH as defined in [3]. When the UE transmits AUL-UCI bits in the AUL PUSCH, it shall determine the number of modulation coded symbols per layer Q' for AUL-UCI as $$Q' = \min \left(\left[\frac{(O+L) \cdot M_{sc}^{PUSCH-initial(x)} \cdot N_{symb}^{PUSCH-initial(x)} \cdot \beta_{offset}^{PUSCH}}{\sum_{r=0}^{C^{(x)}-1} K_r^{(x)}} \right], M_{sc}^{PUSCH} \cdot N_{symb}^{PUSCH}$$ where - O is the number of AUL-UCI bits, and - L is the number of CRC bits given by L = 16, and - $Q_{AUL-UCI} = Q_m^{(x)} \cdot Q'$ and $\beta_{offset}^{PUSCH} = \beta_{offset}^{AUL-UCI}$, where $\beta_{offset}^{AUL-UCI}$ shall be determined according to [3] depending on the number of transmission codewords for the corresponding AUL PUSCH, and where $Q_m^{(x)}$ is the modulation order of transport block "x". - $M_{\rm sc}^{\rm PUSCH}$ is the bandwidth assigned in the most recent AUL activation DCI as defined in [3] for PUSCH transmission for the transport block. - $M_{sc}^{PUSCH-initial(x)}$, $N_{symb}^{PUSCH-initial(x)}$, and N_{symb}^{PUSCH} are defined in 5.2.2.6. The variable "x" in $K_r^{(x)}$ represents the transport block index corresponding to the highest I_{MCS} value indicated by the most recent AUL activation DCI. In case the two transport blocks have the same I_{MCS} value in the corresponding AUL activation DCI, "x=1", which corresponds to the first transport block. $M_{sc}^{PUSCH-initial(x)}$, $C^{(x)}$, and $K_r^{(x)}$ are obtained from the most recent AUL activation DCI as defined in [3] for the same transport block. For UL-SCH data information transmitted on the AUL PUSCH, $G = N_L^{(x)} \cdot \left(N_{\text{symb}}^{\text{PUSCH}} \cdot M_{\text{sc}}^{\text{PUSCH}} \cdot Q_m^{(x)} - Q_{AUL-UCI}\right)$, where $N_L^{(x)}$ is the number of layers the corresponding UL-SCH transport block is mapped onto. Table 5.2.2.6A-1 shows the fields and the corresponding bit widths for the AUL-UCI that is transmitted on the AUL PUSCH configured for 1 transport block and 2 transport blocks, respectively. | | Bit width | | | | | |---|----------------------|-----------------------|--|--|--| | Field | 1 transport
block | 2 transport
blocks | | | | | AUL C-RNTI | 16 | 16 | | | | | HARQ process number | 4 | 4 | | | | | Redundancy version | 2 | 2 | | | | | New data indicator | 1 | 2 | | | | | PUSCH starting symbol | 1 | 1 | | | | | PUSCH ending symbol | 1 | 1 | | | | | Channel Occupancy Time (COT) sharing indication | 1 | 1 | | | | Table 5.2.2.6A-1: Fields for AUL-UCI The CRC attachment, channel coding and rate matching of the AUL-UCI is performed according to subclauses 5.1.1, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $o_0^{AUL-UCI}$, $o_1^{AUL-UCI}$, $o_2^{AUL-UCI}$, ..., $o_{O-1}^{AUL-UCI}$, which is obtained by concatenating the fields as given in Table 5.2.2.6A-1. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output sequence for the channel coding of AUL-UCI is denoted by $q_0^{AUL-UCI}, q_1^{AUL-UCI}, q_2^{AUL-UCI}, q_3^{AUL-UCI}, \dots, q_{N_LQ_{AUL-UCI}-1}^{AUL-UCI}$, where N_L is the number of layers the corresponding UL-SCH transport block is mapped onto. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. ### 5.2.2.7 Data and control multiplexing The control and data multiplexing is performed such that HARQ-ACK information is present on both slots and is mapped to resources around the demodulation reference signals. In addition, the multiplexing ensures that control and data information are mapped to different modulation symbols. The inputs to the data and control multiplexing are the coded bits of the control information denoted by $q_0,q_1,q_2,q_3,...,q_{N_L\cdot Q_{CQI}-1}$ and the coded bits of the UL-SCH denoted by $f_0,f_1,f_2,f_3,...,f_{G-1}$. The output of the data and control multiplexing operation is denoted by $\underline{g}_0,\underline{g}_1,\underline{g}_2,\underline{g}_3,...,\underline{g}_{H'-1}$, where $H=\left(G+N_L\cdot Q_{CQI}\right)$ and $H'=H/\left(N_L\cdot Q_m\right)$, and where \underline{g}_i , i=0,...,H'-1 are column vectors of length $\left(Q_m\cdot N_L\right)$. H is the total number of coded bits allocated for UL-SCH data and CQI/PMI information across the $\,N_L\,$ transmission layers of the transport block. In case where more than one UL-SCH transport block are transmitted in a subframe of an UL cell, the CQI/PMI information is multiplexed with data only on the UL-SCH transport block with highest I_{MCS} value on the initial grant or for the initial PUSCH. In case the two transport blocks have the same I_{MCS} value in the corresponding initial UL grant or for the initial PUSCH, the CQI/PMI information is multiplexed with data only on the first transport block. For that UL-SCH transport block or in the case of single transport block transmission, and assuming that N_L is the number of layers onto which the UL-SCH transport block is mapped, the control information and the data shall be multiplexed as follows: Set i, j, k to 0 while $j < N_L Q_{COL}$ -- first place the control information $$\underline{g}_k = [q_j \dots q_{j+N_L \cdot Q_m - 1}]^T$$ $$j = j + N_L \cdot Q_m$$ $$k = k + 1$$ end while while i < G -- then place the data $$\underline{g}_k = [f_i \dots f_{i+Q_m \cdot N_L - 1}]^T$$ $$i = i + Q_m \cdot N_L$$ $$k = k + 1$$ end while ## 5.2.2.7A Data and control multiplexing for Partial PUSCH Mode 1 If the control information is channel quality information and the control information is transmitted on the Partial PUSCH Mode 1, the UL-SCH data information and control information are multiplexed such that the CQI/PMI information is present only on the second slot of the subframe. The inputs to the data and control multiplexing are the coded bits of the control information denoted by $q_0,q_1,q_2,q_3,...,q_{N_L\cdot Q_{CQI}-1}$ and the coded bits of the UL-SCH denoted by $f_0,f_1,f_2,f_3,...,f_{G-1}$. The output for UL-SCH data information is denoted by $\underline{g}_0,\underline{g}_1,\underline{g}_2,\underline{g}_3,...,\underline{g}_{H'-1}$, where H=G and $H'=H/(N_L\cdot Q_m)$, and where \underline{g}_i , i=0,...,H'-1 are column vectors of length $(Q_m\cdot N_L)$. The output for channel quality information is denoted by $\underline{q}_0,\underline{q}_1,...,\underline{q}_{Q'_{CQI}-1}$,
where \underline{q}_i , $i=0,...,Q'_{CQI}-1$ are column vectors of length $(Q_m\cdot N_L)$ and where $Q'_{CQI}=Q_{CQI}/Q_m$. For a UL-SCH transport block, and assuming that N_L is the number of layers onto which the UL-SCH transport block is mapped, the output for UL-SCH data information is obtained as follows: Set i, k to 0 while i < G $$\underline{g}_{k} = [f_{i} \dots f_{i+Q_{m} \cdot N_{L}-1}]^{T}$$ $$i = i + Q_m \cdot N_L$$ $$k = k + 1$$ end while In case where more than one UL-SCH transport block are transmitted in a subframe of an UL cell, the CQI/PMI information is multiplexed with data only on the UL-SCH transport block with highest I_{MCS} value for the initial PUSCH. In case the two transport blocks have the same I_{MCS} value for the initial PUSCH, the CQI/PMI information is multiplexed with data only on the first transport block. For that UL-SCH transport block or in the case of single transport block transmission, and assuming that N_L is the number of layers onto which the UL-SCH transport block is mapped, the output for the CQI/PMI information is obtained as follows: Set i, k to 0 while $i < N_L.Q_{COL}$ $$q_{k} = [q_{i} ... q_{i+N_{i} \cdot Q_{m}-1}]^{T}$$ $$i = i + N_L \cdot Q_m$$ $$k = k + 1$$ end while # 5.2.2.7B Data and control multiplexing for AUL PUSCH If the control information is AUL-UCI and the control information is transmitted on the AUL PUSCH, the UL-SCH data information and control information are multiplexed such that the AUL-UCI is mapped from symbol 1 to symbol 12 of the subframe. The inputs to the data and control multiplexing are the coded bits of the control information denoted by $q_0^{AUL-UCI}, q_1^{AUL-UCI}, q_2^{AUL-UCI}, q_3^{AUL-UCI}, \dots, q_{N_LQ_{AUL-UCI}^{-1}}^{AUL-UCI}$ and the coded bits of the UL-SCH denoted by $f_0, f_1, f_2, f_3, \dots, f_{G-1}$. The output for UL-SCH data information is denoted by $\underline{g}_0, \underline{g}_1, \underline{g}_2, \underline{g}_3, \dots, \underline{g}_{H'-1}$, where H = G and $H' = H/(N_L \cdot Q_m)$, and where \underline{g}_i , $i = 0, \dots, H'-1$ are column vectors of length $(Q_m \cdot N_L)$. The output for AUL-UCI is denoted by $\underline{q}_0^{AUL-UCI}, \underline{q}_1^{AUL-UCI}, \dots, \underline{q}_{Q'_{AUL-UCI}^{-1}}^{AUL-UCI}$, where $\underline{q}_i^{AUL-UCI}$, $i = 0, \dots, Q'_{AUL-UCI}-1$ are column vectors of length $(Q_m \cdot N_L)$ and where $Q'_{AUL-UCI} = Q_{AUL-UCI}/Q_m$. For a UL-SCH transport block, and assuming that N_L is the number of layers onto which the UL-SCH transport block is mapped, the output for UL-SCH data information is obtained as follows: Set i, k to 0 while i < G $$\underline{g}_{k} = [f_{i} \dots f_{i+Q_{m} \cdot N_{L}-1}]^{T}$$ $$i = i + Q_m \cdot N_L$$ $$k = k + 1$$ end while In case where more than one UL-SCH transport block are transmitted in a subframe of an UL cell, the AUL-UCI is multiplexed with data only on the UL-SCH transport block with highest I_{MCS} value indicated by the AUL activation DCI. In case the two transport blocks have the same I_{MCS} value in the corresponding AUL activation DCI, the AUL-UCI is multiplexed with data only on the first transport block. For that UL-SCH transport block or in the case of single transport block transmission, and assuming that N_L is the number of layers onto which the UL-SCH transport block is mapped, the output for the AUL-UCI is obtained as follows: Set i, k to 0 while $$i < N_L.Q_{AUL-UCI}$$ $$\underline{q}_{k}^{AUL-UCI} = [q_{i}^{AUL-UCI} \dots q_{i+N_{L}\cdot Q_{m}-1}^{AUL-UCI}]^{T}$$ $$i = i + N_L \cdot Q_m$$ $$k = k + 1$$ end while #### 5.2.2.8 Channel interleaver The channel interleaver described in this subclause in conjunction with the resource element mapping for PUSCH in [2] implements a time-first mapping of modulation symbols onto the transmit waveform while ensuring that - if the PUSCH is Partial PUSCH Mode 1, the CQI/PMI and RI information are present only on the second slot of the subframe regardless of the number of actually transmitted slot(s) for the subframe based on the result of the channel access procedure in 4.2.1 defined in [8]; - if the PUSCH is Partial PUSCH Mode 2 or 3, the CQI/PMI and RI information are present only on the scheduled slot of the subframe; - if the PUSCH is AUL PUSCH, the AUL-UCI is mapped from symbol 1 to symbol 12 of the subframe; - otherwise, the HARQ-ACK and RI information are present on both slots in the subframe for PUSCH with subframe duration. HARQ-ACK information is mapped to resources around the uplink demodulation reference signals while RI information is mapped to resources around those used by HARQ-ACK. The input to the channel interleaver are denoted by $$- \underline{g}_0, \underline{g}_1, \underline{g}_2, ..., \underline{g}_{H'-1}, \ \underline{q}_0^{RI}, \underline{q}_1^{RI}, \underline{q}_2^{RI}, ..., \underline{q}_{Q'_{RI}-1}^{RI}, \text{ and } \underline{q}_0, \underline{q}_1, ..., \underline{q}_{Q'_{COI}-1}, \text{ if the PUSCH is Partial PUSCH Mode 1};$$ $$- \underline{g}_0, \underline{g}_1, \underline{g}_2, ..., \underline{g}_{H'-1}, \text{ and } \underline{q}_0^{\textit{AUL-UCI}}, \underline{q}_1^{\textit{AUL-UCI}}, ..., \underline{q}_{\underline{Q'_\textit{AUL-UCI}}-1}^{\textit{AUL-UCI}}, \text{ if the PUSCH is AUL PUSCH;}$$ - otherwise $$\underline{g}_0, \underline{g}_1, \underline{g}_2, ..., \underline{g}_{H'-1}, \ \underline{q}_0^{RI}, \underline{q}_1^{RI}, \underline{q}_2^{RI}, ..., \underline{q}_{Q'_{RI}-1}^{RI}$$ and $\underline{q}_0^{ACK}, \underline{q}_1^{ACK}, \underline{q}_2^{ACK}, ..., \underline{q}_{Q'_{ACK}-1}^{ACK}$. In case where more than one UL-SCH transport block are transmitted in a subframe of an UL cell, the HARQ-ACK and RI information are multiplexed with data on both UL-SCH transport blocks. The number of modulation symbols per layer in the subframe is given by - $H'_{total} = H' + Q'_{CQI} + Q'_{RI}$ if the PUSCH for the subframe is Partial PUSCH Mode 1 and the CQI/PMI is multiplexed with data on this UL-SCH transport block, - $H'_{total} = H' + Q'_{AUL-UCI}$ if the PUSCH for the subframe is AUL PUSCH and the AUL-UCI is multiplexed with data on this UL-SCH transport block, and - $H'_{total} = H' + Q'_{RI}$ otherwise. In the case sub-PRB allocation is used, $H = H_s$ is the number of modulation symbols in a BL/CE subframe s of the S subframes allocated to a UL-SCH transport block, s = 0, 1, 2, ..., S-1 [3]. The output bit sequence from the channel interleaver is derived as follows: - (1) Assign $C_{mux} = N_{\text{symb}}^{\text{PUSCH}}$ to be the number of columns of the matrix. The columns of the matrix are numbered 0, 1, 2,..., C_{mux} –1 from left to right. $N_{\text{symb}}^{\text{PUSCH}}$ is determined according to subclause 5.2.2.6, or by higher layer parameter symPUSCH-UpPts for PUSCH transmission in UpPTS. - (2) The number of rows of the matrix is $R_{mux} = (H'_{total} \cdot Q_m \cdot N_L)/C_{mux}$ and we define $R'_{mux} = R_{mux}/(Q_m \cdot N_L)$. The rows of the rectangular matrix are numbered 0, 1, 2,..., $R_{mux} - 1$ from top to bottom. - (3) If rank information is transmitted in this subframe/slot/subslot, the vector sequence $\underline{q}_0^{RI}, \underline{q}_1^{RI}, \underline{q}_2^{RI}, ..., \underline{q}_{Q_{RI}'-1}^{RI}$ is written onto the columns depending on PUSCH duration and DMRS pattern for PUSCH with subslot duration and by sets of $(Q_m \cdot N_L)$ rows starting from the last row and moving upwards according to the following pseudocode. Set i, j to 0. Set r to $$R'_{mux} - 1$$ while $i < Q'_{RI}$ if the PUSCH is Partial PUSCH Mode 1 $$c_{RI} = \text{Column Set}(j+2)$$ else $$c_{RI} = \text{ColumnSet}(j)$$ end if $$\underline{y}_{r \times C_{mux} + c_{RI}} = \underline{q}_i^{RI}$$ $$i = i + 1$$ if the duration of the PUSCH is subframe $$r = R'_{mux} - 1 - \lfloor i/4 \rfloor$$ $$j = (j+3) \mod 4$$ else if the duration of the PUSCH is slot, or if the PUSCH is Partial PUSCH Mode 1, 2 or 3 $$r = R'_{mux} - 1 - \lfloor i/2 \rfloor$$ $$j = (j+1) \mod 2$$ else if the duration of the PUSCH is subslot $$r = R'_{mux} - 1 - i$$ end if end while Where ColumnSet is given - in Table 5.2.2.8-1A if the PUSCH is scheduled by DCI format 0A/0B/4A/4B and - indexed left to right from 0 to 1 if the PUSCH is Partial PUSCH Mode 1, 2, or 3; - indexed left to right from 0 to 3 otherwise; - otherwise, - in Table 5.2.2.8-1 indexed left to right from 0 to 3 for PUSCH with subframe duration, - in Table 5.2.2.8-1 indexed left to right from 0 to 1 for PUSCH with slot duration, - as {1} if DMRS pattern field of corresponding uplink DCI formats is '00' for subslot#0, '10' for subslot#1, '01' for subslot#2, '10' for subslot#4, '00' for subslot#5 in case *N_{SRS}* is equal to 0, or '01' for subslot#5, and as {0} otherwise, for PUSCH with subslot duration. - as $\{1\}$ for subslot #0 and subslot #5 in case N_{SRS} is equal to 0, and as $\{0\}$ otherwise, for semi-persistently scheduled PUSCH with subslot duration. - (3a) If CQI/PMI information is transmitted in this subframe with Partial PUSCH mode 1, the vector sequence $\underline{q}_0, \underline{q}_1, ..., \underline{q}_{Q'_{CQI}-1}$ is written onto the $(R_{mux} \times C_{mux})$ matrix by sets of $(Q_m \cdot N_L)$ rows from the column with $\underline{y}_{C_{mux}/2}$ to the column with $\underline{y}_{C_{mux}}$ and rows 0 to $(Q_m \cdot N_L 1)$ and skipping the matrix entries that are already occupied: $$\begin{bmatrix} \underline{y}_0 & \underline{y}_1 & \underline{y}_2 & L & \underline{y}_{C_{mux}-1} \\ \underline{y}_{C_{mux}} & \underline{y}_{C_{mux}+1} & \underline{y}_{C_{mux}+2} & L & \underline{y}_{2C_{mux}-1} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \end{bmatrix}$$ The pseudocode is as follows: Set i, k to 0. while $$k < Q'_{CQI}$$, if \underline{y}_i is not assigned to RI symbols in step (3) and $i \mod C_{mux} \ge \lfloor C_{mux}/2 \rfloor$ $$\underline{y}_i = \underline{q}_k$$ $$k = k + 1$$ end if i = i+1 end while
(3b) If AUL-UCI is transmitted in this subframe, the vector sequence $\underline{q}_0^{AUL-UCI}$, $\underline{q}_1^{AUL-UCI}$, ..., $\underline{q}_{Q'_{AUL-UCI}-1}^{AUL-UCI}$ is written onto the $(R_{mux} \times C_{mux})$ matrix by sets of $(Q_m \cdot N_L)$ rows from the column with \underline{y}_1 to the column with $\underline{y}_{C_{mux}-2}$ and rows 0 to $(Q_m \cdot N_L - 1)$: $$\begin{bmatrix} \underline{y}_0 & \underline{y}_1 & \underline{y}_2 & L & \underline{y}_{C_{mux}-1} \\ \underline{y}_{C_{mux}} & \underline{y}_{C_{mux}+1} & \underline{y}_{C_{mux}+2} & L & \underline{y}_{2C_{mux}-1} \\ \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \end{bmatrix}$$ The pseudocode is as follows: Set i, k to 0. while $$k < Q'_{AUL-UCI}$$, if $$i \mod C_{mux} \ge 1$$ and $i \mod C_{mux} \le C_{mux} - 2$ $$\underline{y}_i = \underline{q}_k^{AUL-UCI}$$ $$k = k + 1$$ end if i = i+1 end while (4) Write the input vector sequence, for k = 0, 1, ..., H'-1, into the $(R_{mux} \times C_{mux})$ matrix by sets of $(Q_m \cdot N_L)$ rows starting with the vector \underline{y}_0 in column 0 and rows 0 to $(Q_m \cdot N_L - 1)$ and skipping the matrix entries that are already occupied: $$\begin{bmatrix} \underline{y}_0 & \underline{y}_1 & \underline{y}_2 & \cdots & \underline{y}_{C_{mux}-1} \\ \underline{y}_{C_{mux}} & \underline{y}_{C_{mux}+1} & \underline{y}_{C_{mux}+2} & \cdots & \underline{y}_{2C_{mux}-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \underline{y}_{(R'_{mux}-1)\times C_{mux}} & \underline{y}_{(R'_{mux}-1)\times C_{mux}+1} & \underline{y}_{(R'_{mux}-1)\times C_{mux}+2} & \cdots & \underline{y}_{(R'_{mux}\times C_{mux}-1)} \end{bmatrix}$$ The pseudocode is as follows: Set i, k to 0. while k < H', if y_i is not assigned to RI symbols, or CQI/PMI symbols in step (3a), or AUL-UCI symbols in step (3b) $$\underline{y}_i = \underline{g}_k$$ $$k = k + 1$$ end if i = i+1 end while (5) If HARQ-ACK information is transmitted in this subframe/slot/subslot, the vector sequence \underline{q}_0^{ACK} , \underline{q}_1^{ACK} , \underline{q}_2^{ACK} ,..., $\underline{q}_{Q'ACK}^{ACK}$ is written onto the columns depending on PUSCH duration and DMRS pattern for PUSCH with subslot duration, and by sets of $(Q_m \cdot N_L)$ rows starting from the last row and moving upwards according to the following pseudo-code. Note that this operation overwrites some of the channel interleaver entries obtained in step (4). Set i, j to 0. Set r to $R'_{mux} - 1 - Q'_{RI}$ if $N^{\text{PUSCH}}_{\text{symb}} = 1$ and $R'_{mux} - Q'_{RI} \ge Q'_{ACK}$ for PUSCH with subslot duration, $Q'_{ACK} - 1$ if $N^{\text{PUSCH}}_{\text{symb}} = 1$ and $R'_{mux} - Q'_{RI} < Q'_{ACK}$ for PUSCH with subslot duration, and $R'_{mux} - 1$ otherwise while $i < Q'_{ACK}$ $$c_{ACK} = \text{ColumnSet}(j)$$ $$\underline{y}_{r \times C_{mux} + c_{ACK}} = \underline{q}_{i}^{ACK}$$ $$i = i + 1$$ if the duration of the PUSCH is subframe $$r = R'_{mux} - 1 - \left| i/4 \right|$$ $$j = (j+3) \bmod 4$$ else if the duration of the PUSCH is slot $$r = R'_{mux} - 1 - \lfloor i/2 \rfloor$$ $$j = (j+1) \bmod 2$$ else if the duration of the PUSCH is subslot, $R'_{mux} - Q'_{RI} \ge Q'_{ACK}$ and $N^{PUSCH}_{symb} = 1$ $$r = R'_{mux} - 1 - i - Q'_{RI}$$ else if the duration of the PUSCH is subslot, $R'_{mux} - Q'_{RI} < Q'_{ACK}$ and $N_{\text{symb}}^{\text{PUSCH}} = 1$ $$r = Q'_{ACK} - 1 - i$$ else if the duration of the PUSCH is subslot and $N_{\text{symb}}^{\text{PUSCH}} = 2$ or $N_{\text{symb}}^{\text{PUSCH}} = 3$ $$r = R'_{mux} - 1 - i$$ end if end while Where ColumnSet is given - in Table 5.2.2.8-2 indexed left to right from 0 to 3 for PUSCH with subframe duration, - in Table 5.2.2.8-2 indexed left to right from 0 to 1 for PUSCH with slot duration, - as {1} if DMRS pattern field of corresponding uplink DCI formats is '01' for subslot#0, '11' for subslot#1, '10' for subslot#3, or '11' for subslot#4, and as {0} otherwise, for PUSCH with subslot duration. - as {1} for subslot #1 and subslot #3 if the higher layer parameter *semiPersistSchedIntervalUL* is set to 1 subslot and MSB of DMRS pattern field of corresponding uplink DCI formats is '1', and as {0} otherwise, for semi-persistently scheduled PUSCH with subslot duration. - (6) The output of the block interleaver is the bit sequence read out column by column from the $(R_{mux} \times C_{mux})$ matrix. The bits after channel interleaving are denoted by h_0 , h_1 , h_2 ,..., $h_{H+N_L\cdot Q_{RI}-1}$, where N_L is the number of layers the corresponding UL-SCH transport block is mapped onto. Table 5.2.2.8-1: Column set for Insertion of rank information for PUSCH not scheduled using DCI Format 0A, 4A, 0B and 4B | CP configuration | Column Set | |------------------|---------------| | Normal | {1, 4, 7, 10} | | Extended | {0, 3, 5, 8} | Table 5.2.2.8-1A: Column set for Insertion of rank information for PUSCH scheduled using DCI Format 0A, 4A, 0B and 4B | CP Configuration | PUSCH Starting Position | Column Set | |------------------|--|---------------| | | At symbol 0, or at symbol 7 | {1, 4, 7, 10} | | Normal | Within symbol 0, or
at symbol 1, or
within symbol 7, or
at symbol 8 | {0, 3,6, 9} | Table 5.2.2.8-2: Column set for Insertion of HARQ-ACK information | CP configuration | Column Set | |------------------|--------------| | Normal | {2, 3, 8, 9} | | Extended | {1, 2, 6, 7} | The same channel interleaver procedures for RI are applied for CRI, using CRI instead of RI in the equations. # 5.2.3 Uplink control information on PUCCH Data arrives to the coding unit in the form of indicators for measurement indication, scheduling request and HARQ acknowledgement. Three forms of channel coding are used as shown in Figure 5.2.3-1, - one for HARQ-ACK and for combination of HARQ-ACK and periodic CSI transmitted on PUCCH format 3, including the cases with scheduling request, - another for the channel quality information CQI/PMI transmitted on PUCCH format 2, - and another for combination of CQI/PMI and HARQ-ACK transmitted on PUCCH format 2/2a/2b. A fourth form of channel coding is used as shown in Figure 5.2.3-2, for HARQ-ACK and for combination of HARQ-ACK and periodic CSI transmitted on PUCCH format 4 or PUCCH format 5 including the cases with scheduling request, or for periodic CSI transmitted on PUCCH format 4 or PUCCH format 5 including the cases with scheduling request. Figure 5.2.3-1: Processing for UCI Figure 5.2.3-2: Processing for UCI ### 5.2.3.1 Channel coding for UCI HARQ-ACK on PUCCH The HARQ-ACK bits are received from higher layers for each subframe of each cell. Each positive acknowledgement (ACK) is encoded as a binary '1' and each negative acknowledgement (NACK) is encoded as a binary '0'. For UEs configured with no more than five DL cells, or for UEs configured by higher layers with *codebooksizeDetermination-r13* = cc, and for the case where PUCCH format 3, PUCCH format 4 or PUCCH format 5 [2] is configured by higher layers and is used for transmission of the HARQ-ACK feedback information, the HARQ-ACK feedback consists of the concatenation of HARQ-ACK bits for each of the serving cells. For UEs configured by higher layers with *codebooksizeDetermination-r13* = dai, the HARQ-ACK feedback consists of the HARQ-ACK bits for the serving cells depending on the Downlink Assignment Index (DAI) as in Table 5.3.3.1.2-2 and as defined in [3]. For cells configured with transmission modes 1, 2, 5, 6 or 7 [3], i.e., single codeword transmission modes, 1 bit of HARQ-ACK information, a_k , is used for that cell. For cells configured with other transmission modes, 2 bits of HARQ-ACK information are used for those cells, i.e., a_k , a_{k+1} with a_k corresponding to HARQ-ACK bit for codeword 0 and a_{k+1} corresponding to that for codeword 1. Define O^{ACK} as the number of HARQ-ACK feedback bits and $N_{A/N}^{PUCCH \text{ format } 3}$ as the number of HARQ-ACK feedback bits including the possible concurrent transmission of scheduling request and/or periodic CSI when PUCCH format 3 is used for transmission of HARQ-ACK feedback (subclause 10.1 in [3]), and $N_{A/N}^{PUCCH \text{ format } 4}$ as the number of HARQ-ACK feedback bits including the possible concurrent transmission of scheduling request and/or periodic CSI when PUCCH format 4 is used for transmission of HARQ-ACK feedback (subclause 10.1 in [3]), and $N_{A/N}^{PUCCH \text{ format } 5}$ as the number of HARQ-ACK feedback bits including the possible concurrent transmission of scheduling request and/or periodic CSI when PUCCH format 5 is used for transmission of HARQ-ACK feedback (subclause 10.1 in [3]). For UEs configured by higher layers with *codebooksizeDetermination-r13* = dai, the bit sequence \tilde{o}_0^{ACK} , \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is determined according to the Downlink Assignment Index (DAI) as in Table 5.3.3.1.2-2 and as defined in [3]. Otherwise, the bit sequence \tilde{o}_0^{ACK} , \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is determined as below. For FDD when the UE is not configured with EN-DC and higher layer parameter *subframeAssignment-r15*, the sequence of bits \tilde{o}_0^{ACK} , \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is the result of the concatenation of HARQ-ACK bits for different cells according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell Set j = 0 – HARQ-ACK bit index Set N_{cells}^{DL} to the number of cells configured by higher layers for the UE while $c < N_{cells}^{DL}$ if transmission mode configured in cell $c \in \{1,2,5,6,7\}$ -- 1 bit HARQ-ACK feedback for this cell $$\tilde{o}_{j}^{ACK}$$ = HARQ-ACK bit of this cell $j = j + 1$ else if the UE is configured with spatial bundling on PUCCH by higher layers and if the UE is configured with PUCCH format 4 or PUCCH
format 5 or if HARQ-ACK is to be transmitted on subslot SPUCCH as described in subclause 5.2.3.1A \tilde{o}_{j}^{ACK} = binary AND operation of the HARQ-ACK bits corresponding to the first and second codewords of this cell $$j = j + 1$$ else \tilde{o}_{i}^{ACK} = HARQ-ACK bit corresponding to the first codeword of this cell j = j + 1 $\widetilde{o}_{i}^{\textit{ACK}} = \text{HARQ-ACK}$ bit corresponding to the second codeword of this cell j = j + 1 end if end if c = c + 1 end while For the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD when the UE is not configured with EN-DC and higher layer parameter *subframeAssignment-r15*, the sequence of bits \tilde{o}_0^{ACK} , \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is the result of the concatenation of HARQ-ACK bits for different cells. Define N_{cells}^{DL} as the number of cells configured by higher layers for the UE and \boldsymbol{B}_{c}^{DL} as the number of subframes for which the UE needs to feed back HARQ-ACK bits in UL subframe n for the c-th serving cell. For a cell using TDD, the subframes are determined by the DL-reference UL/DL configuration if the UE is configured with higher layer parameter eimta-HARQ-ReferenceConfig, and determined by the UL/DL configuration otherwise. For a cell using TDD, $\boldsymbol{B}_{c}^{DL}=1$ if subframe n-4 in the cell, or subframe n-3 in the cell if higher layer parameter shortProcessingTime is configured for the cell, is a DL subframe or a special subframe with special subframe configurations 1/2/3/4/6/7/8/9/10 and normal downlink CP or a special subframe with special subframe configurations 1/2/3/5/6/7 and extended downlink CP, and $B_c^{DL} = 0$ otherwise. For a cell using FDD, $B_c^{DL} = 1$. The sequence of bits \tilde{o}_0^{ACK} , \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is performed according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell Set j = 0 – HARQ-ACK bit index while $c < N_{coll}^{DL}$ $$_{\rm if} B_c^{DL} = 1$$ if transmission mode configured in cell $c \in \{1,2,5,6,7\}$ -- 1 bit HARQ-ACK feedback for this cell $$\tilde{o}_{j}^{ACK} = \text{HARQ-ACK}$$ bit of this cell $j = j + 1$ else if the UE is configured with spatial bundling on PUCCH by higher layers and if the UE is configured with PUCCH format 4 or PUCCH format 5 or if HARQ-ACK is to be transmitted on subslot SPUCCH as described in subclause 5.2.3.1A \tilde{o}_{j}^{ACK} = binary AND operation of the HARQ-ACK bits corresponding to the first and second codewords of this cell $$j = j + 1$$ else \tilde{o}_{i}^{ACK} = HARQ-ACK bit corresponding to the first codeword of this cell j = j + 1 \tilde{o}_{i}^{ACK} = HARQ-ACK bit corresponding to the second codeword of this cell j = j + 1 end if end if c = c + 1 end while For the cases with TDD primary cell or EN-DC with FDD primary cell and higher layer parameter subframeAssignment-r15 configured, the sequence of bits \tilde{o}_0^{ACK} , \tilde{o}_1^{ACK} ,..., $\tilde{o}_{O^{ACK}-1}^{ACK}$ is obtained from the HARQ-ACK bits for different cells and different subframes. Define N_{cells}^{DL} as the number of cells configured by higher layers for the UE and B_c^{DL} as the number of subframes for which the UE needs to feed back HARQ-ACK bits in cell c as defined in Subclause 7.3 of [3]. The number of HARQ-ACK bits k and the number of HARQ-ACK bits after spatial bundling k_b are computed as follows: Set k = 0 – counter of HARQ-ACK bits Set $k_b = 0$ – counter of HARQ-ACK bits after spatial bundling Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell while $c < N_{cells}^{DL}$ set l = 0; while $l < B_c^{DL}$ if transmission mode configured in cell $c \in \{1,2,5,6,7\}$ -- 1 bit HARQ-ACK feedback for this cell $$k = k + 1$$ $$k_b = k_b + 1$$ else $$k = k + 2$$ $$k_b = k_b + 1$$ end if $$l = l + 1$$ end while $$c = c + 1$$ end while In case the transmission of HARQ-ACK feedback using PUCCH format 3, PUCCH format 4 or PUCCH format 5 coincides with a sub-frame configured to the UE by higher layers for transmission of scheduling request, the number of scheduling request bit O^{SR} is 1; otherwise $O^{SR}=0$. In case the transmission of HARQ-ACK feedback using PUCCH format 3, PUCCH format 4 or PUCCH format 5 coincides with a sub-frame configured to the UE by higher layers for transmission of periodic CSI, O^{CSI} is the number of periodic CSI bit(s) for the CSI report as defined in subclause 7.2.2 [3]; otherwise O^{CSI} =0. For PUCCH format 3, the number of HARQ-ACK feedback bits O^{ACK} is computed as follows: Set $k_{\text{max}} = 20$ when TDD is used in all the configured serving cell(s) of the UE and $k_{\text{max}} = 21$ when FDD is used in at least one of the configured serving cells with TDD primary cell and $k_{\text{max}} = 21$ when the UE is configured with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15*. If $k \le k_{\text{max}}$ and $O^{\text{CSI}} = 0$, or if $k + O^{\text{CSI}} + O^{\text{SR}} \le 22$ and $O^{\text{CSI}} > 0$, or if $k_b + O^{\text{CSI}} + O^{\text{SR}} > 22$ and $k \le k_{\text{max}}$, then $$Q^{ACK} = k$$ else, $$O^{ACK} = k_b$$ For PUCCH format 4 or PUCCH format 5, $O^{ACK} = k$ if the UE is not configured with spatial bundling on PUCCH by higher layers; otherwise $O^{ACK} = k_h$. If $O^{ACK} = k$ and the HARQ-ACK is to be transmitted on slot SPUCCH or PUCCH, the multiplexing of HARQ-ACK bits is performed according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell Set $$j = 0 - HARQ-ACK$$ bit index while $$c < N_{colls}^{DL}$$ set l = 0; while $$l < B_c^{DL}$$ if transmission mode configured in cell $c \in \{1,2,5,6,7\}$ -- 1 bit HARQ-ACK feedback for this cell $$\tilde{o}_{j}^{ACK} = o_{c,l}^{ACK}$$ HARQ-ACK bit of this cell as defined in Subclause 7.3 of [3] ``` j = j + 1 else [\tilde{o}_{j}^{ACK}, \tilde{o}_{j+1}^{ACK}] = [o_{c,2l}^{ACK}, o_{c,2l+1}^{ACK}] HARQ-ACK bit of this cell as defined in Subclause 7.3 of [3] i = i + 2 end if l = l + 1 end while c = c + 1 end while ``` If $O^{ACK} = k_b$ or if HARQ-ACK is to be transmitted on subslot SPUCCH as described in subclause 5.2.3.1A, spatial bundling is applied to all subframes in all cells and the multiplexing of HARQ-ACK bits is performed according to the following pseudo-code Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell ``` Set j = 0 – HARQ-ACK bit index while c < N_{cells}^{DL} set l = 0; while l < B_c^{DL} if transmission mode configured in cell c \in \{1, 2, 5, 6, 7\} - 1 bit HARQ-ACK feedback for this cell \tilde{o}_{i}^{ACK} = o_{c,l}^{ACK} HARQ-ACK bit of this cell as defined in Subclause 7.3 of [3] j = j + 1 ``` else $\tilde{o}_{i}^{ACK} = o_{c,l}^{ACK}$ binary AND operation of the HARQ-ACK bits corresponding to the first and second codewords of this cell as defined in Subclause 7.3 of [3] j = j + 1 end if l = l + 1 end while c = c + 1 end while In case the transmission of HARQ-ACK feedback using PUCCH format 3, PUCCH format 4 or PUCCH format 5 [2] coincides with a sub-frame configured to the UE by higher layers for transmission of scheduling request, the scheduling request bit (1 = positive SR; 0 = negative SR) is appended at the end of the sequence of concatenated HARQ-ACK bits. In case the transmission of HARQ-ACK feedback using PUCCH format 3, PUCCH format 4 or PUCCH format 5 [2] coincides with a sub-frame configured to the UE by higher layers for transmission of periodic CSI, and periodic CSI is not dropped as defined in subclause 7.3.2 and subclause 10.1.1 of [3], the periodic CSI bits for the CSI report as defined in subclause 7.2.2 [3] are appended at the end of the sequence of concatenated HARQ-ACK bits and scheduling request bit (if any), where in case of CSI report for more than one DL cell, the CSI report for each DL cell is appended in increasing order of cell index. As with the transmission of the scheduling request, the procedure above is used with $N_{A/N}^{PUCCH \text{ format 3}}$, $N_{A/N}^{PUCCH \text{ format 4}}$ or $N_{A/N}^{PUCCH \text{ format 5}}$ including the number of periodic CSI bits and scheduling request bit (if any). For $N_{A/N}^{\text{PUCCH format 3}} \leq 11$, the bit sequence $a_0, a_1, a_2, ..., a_{N_{A/N}^{\text{PUCCH format 3}}-1}$ is obtained by setting $a_i = \widetilde{o}_i^{ACK}$. For $11 < N_{A/N}^{\text{PUCCH format 3}} \le 22$, the bit sequence $a_0, a_1, a_2, \dots, a_{N_{A/N}^{\text{PUCCH format 3}} - 1}$ is obtained by setting $a_{i/2} = \widetilde{o}_i^{ACK}$ if i is even and $a_{N_{A/N}^{\text{PUCCH format 3}}/2}|_{+(i-1)/2}|_{+(i-1)/2} = \widetilde{o}_i^{ACK}$ if i is odd. For $N_{A/N}^{\text{PUCCH format 3}} \le 11$, the sequence of bits $a_0, a_1, a_2, ..., a_{N_{A/N}^{\text{PUCCH format 3}}-1}$ is encoded as follows $$\widetilde{b}_{i} = \sum_{n=0}^{N_{A/N}^{PUCCH \text{ format } 3} - 1} \left(a_{n} \cdot M_{i,n} \right) \mod 2$$ where i = 0, 1, 2, ..., 31 and the basis sequences $M_{i,n}$ are defined in Table 5.2.2.6.4-1. The output bit sequence $b_0,b_1,b_2,...,b_{B-1}$ is obtained by circular repetition of the sequence $\tilde{b}_0,\tilde{b}_1,\tilde{b}_2,...,\tilde{b}_{31}$ $$b_i = \widetilde{b}_{(i \mod 32)}$$ where i = 0, 1, 2, ..., B-1 and where $B = 4 \cdot N_{sc}^{RB}$. For $11 < N_{A/N}^{\text{PUCCH format 3}} \le 22$, the sequences of bits $a_0, a_1, a_2, ..., a_{\left[N_{A/N}^{\text{PUCCH format 3}}/2\right]_{-1}}^{\text{PUCCH format 3}}$ and $a \left[N_{A/N}^{\text{PUCCH format 3}}, 2 \right], a \left[N_{A/N}^{\text{PUCCH format 3}}, 2 \right]_{+1}, a \left[N_{A/N}^{\text{PUCCH format 3}}, 2 \right]_{+2}, \dots, a_{N_{A/N}^{\text{PUCCH format 3}}} \right]_{-1}$ are encoded as follows $$\widetilde{b}_{i} = \sum_{n=0}^{\left\lceil
N_{A/N}^{\text{PUCCH format 3}} \right\rceil - 1} \sum_{n=0}^{-1} \left(a_{n} \cdot M_{i,n} \right) \mod 2$$ and $$\widetilde{\widetilde{b}}_{i} = \sum_{n=0}^{N_{A/N}^{\text{PUCCH format 3}} - \left \lceil N_{A/N}^{\text{PUCCH format 3}} \right \rceil - 1} \left(a_{\left \lceil N_{A/N}^{\text{PUCCH format 3}} \right \rceil - 1} \cdot M_{i,n} \right) \mod 2$$ where i = 0, 1, 2, ..., 23 and the basis sequences $M_{i,n}$ are defined in Table 5.2.2.6.4-1. The output bit sequence $b_0, b_1, b_2, ..., b_{B-1}$ where $B = 4 \cdot N_{\text{sc}}^{\text{RB}}$ is obtained by the alternate concatenation of the bit sequences $\tilde{b}_0, \tilde{b}_1, \tilde{b}_2, ..., \tilde{b}_{23}$ and $\tilde{\tilde{b}}_0, \tilde{\tilde{b}}_1, \tilde{\tilde{b}}_2, ..., \tilde{\tilde{b}}_{23}$ as follows Set i, j = 0 while $i < 4 \cdot N_{sc}^{RB}$ $$b_i = \widetilde{b}_j$$, $b_{i+1} = \widetilde{b}_{j+1}$ $$b_{i+2} = \tilde{\tilde{b}}_{i}, b_{i+3} = \tilde{\tilde{b}}_{i+1}$$ $$i = i + 4$$ $$j = j + 2$$ end while For $N_{A/N}^{\rm PUCCH \, format \, 4} > 22$, the bit sequence $a_0, a_1, a_2, \ldots, a_{N_{A/N}^{\rm PUCCH \, format \, 4}-1}$ is obtained by setting $a_i = \widetilde{o}_i^{ACK}$, and the output bit sequence after the rate matching is denoted by $e_0, e_1, e_2, \ldots, e_{E-1}$, where $E = Q_m \cdot M_{RB}^{\rm PUCCH \, 4} \cdot N_{symb}^{\rm PUSCH} \cdot N_{sc}^{\rm RB}$, Q_m is the modulation order of the PUCCH format 4, $N_{symb}^{\rm PUSCH}$ is determined according to subclause 5.2.4.1, and $M_{RB}^{\rm PUCCH \, 4}$ represents the bandwidth of the PUCCH format 4 in terms of resource blocks [2]. The CRC attachment, channel coding and rate matching are performed according to subclauses 5.1.1 by setting L to 8 bits, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $a_0, a_1, a_2, \ldots, a_{N_{A/N}^{\rm PUCCH \, format \, 4}-1}$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. For $N_{A/N}^{PUCCH format 5} > 22$, the bit sequence $a_0, a_1, a_2, ..., a_{N_{A/N}^{PUCCH format 5}-1}$ is obtained by setting $a_i = \tilde{o}_i^{ACK}$, and the output bit sequence after the rate matching is denoted by $e_0, e_1, e_2, ..., e_{E-1}$, where $E = Q_m \cdot N_{symb}^{PUSCH} \cdot N_{sc}^{RB} / 2$, Q_m is the modulation order of the PUCCH format 5 and N_{symb}^{PUSCH} is determined according to subclause 5.2.4.1. The CRC attachment, channel coding and rate matching are performed according to subclauses 5.1.1 by setting L to 8 bits, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $a_0, a_1, a_2, ..., a_{N_{A/N}^{PUCCH format 5}-1}$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. When PUCCH format 3, PUCCH format 4 or PUCCH format 5 is not used for transmission of HARQ-ACK feedback, the HARQ-ACK bits are processed for transmission according to subclause 10.1 in [3]. ### 5.2.3.1A Channel coding for UCI HARQ-ACK on SPUCCH The HARQ-ACK bits are received from higher layers for each subframe of each cell and for each slot or subslot of each cell if higher layer parameter dl-TTl-Length is configured for the cell. Each positive acknowledgement (ACK) is encoded as a binary '1' and each negative acknowledgement (NACK) is encoded as a binary '0'. For UEs configured with more than one DL cell and no more than five DL cells, or for UEs configured by higher layers with codebooksizeDeterminationSTTl-rel15 = cc, the HARQ-ACK feedback consists of the concatenation of HARQ-ACK bits for each of the serving cells. For UEs configured by higher layers with codebooksizeDeterminationSTTl-rel15 = dai, the HARQ-ACK feedback consists of the HARQ-ACK bits for the serving cells depending on the Downlink Assignment Index (DAI) as in Table 5.3.3.1.2-2 and as defined in [3]. For a cell configured with higher layer parameter dl-TTl-Length, 1 bit of HARQ-ACK information, a_k , is used for that cell. Define O^{ACK} as the number of HARQ-ACK feedback bits and $N_{A/N}^{\rm SPUCCH\ format\ 3}$ as the number of HARQ-ACK feedback bits including the possible concurrent transmission of scheduling request when SPUCCH format 3 is used for transmission of HARQ-ACK feedback (subclause 10.1 in [3]), and $N_{A/N}^{\rm SPUCCH\ format\ 4}$ as the number of HARQ-ACK feedback bits including the possible concurrent transmission of scheduling request when SPUCCH format 4 is used for transmission of HARQ-ACK feedback (subclause 10.1 in [3]). For UEs configured by higher layers with codebooksizeDeterminationSTTI-rel15 = dai, the bit sequence $\widetilde{O}_0^{sACK}\widetilde{O}_1^{sACK},...,\widetilde{O}_{O^{sACK}-1}^{sACK}$ is determined according to the Downlink Assignment Index (DAI) as in Table 5.3.3.1.2-2 and as defined in [3]. Otherwise, the bit sequence $\widetilde{O}_0^{sACK}\widetilde{O}_1^{sACK},...,\widetilde{O}_{O^{sACK}-1}^{sACK}$ is determined as below. For FDD with at least one cell configured with higher layer parameter dl-TTl-Length or for the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD and at least one DL cell configured with higher layer parameter dl-TTl-Length, define the bit sequence $\tilde{o}_0^{sACK}\tilde{o}_1^{sACK}$,..., \tilde{o}_0^{sACK} ,..., \tilde{o}_0^{sACK} corresponding to PDSCH with slot/subslot duration as the result of the concatenation of HARQ-ACK bits for one or multiple DL cells configured with higher layer parameter dl-TTl-Length, N_{cells}^{sDL} as the number of cells configured with dl-TTl-Length for the UE and B_c^{sDL} as the number of slot(s) or subslot(s) for which the UE needs to feed back HARQ-ACK bits in UL slot or subslot n for the c-th serving cell. For a cell using FDD and configured with dl-TTl-Length=subslot and ul-TTl- Length=subslot, or for a cell using FDD and configured with dl-TTI-Length=slot and ul-TTI-Length=slot, $B_c^{sDL}=1$. For a cell using FDD and configured with dl-TTI-Length=subslot and ul-TTI-Length=slot, $B_c^{sDL}=3$. For a cell using TDD, $B_c^{sDL}=1$ if slot n-4 in the cell is in a DL subframe, or slot n-4 is the first slot in a special subframe with special subframe configurations 1/2/3/4/6/7/8/9/10 and normal downlink CP, or slot n-4 is the second slot in a special subframe with special subframe configurations 3/4/8 and normal downlink CP, and $B_c^{sDL}=0$ otherwise. The bit sequence $\tilde{o}_0^{sACK} \tilde{o}_1^{sACK}, ..., \tilde{o}_{O^{sACK}-1}^{sACK}$ is performed according to the following pseudo-code: Set c = 0 – cell index: lower indices correspond to lower RRC indices of corresponding cell configured with dl-TTI-Length ``` Set j=0 – HARQ-ACK bit index while c < N_{cells}^{sDL} set l=0; while l < B_c^{sDL} \widetilde{o}_j^{sACK} = \text{HARQ-ACK bit of this cell} j=j+1 l=l+1 end while c=c+1 ``` end while For FDD with at least one cell configured with higher layer parameter dl-TTI-Length or for the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD and at least one DL cell configured with higher layer parameter dl-TTI-Length, define the bit sequence $\tilde{O}_0^{LACK} \tilde{O}_1^{LACK}, ..., \tilde{O}_{O^{LACK}-1}^{LACK}$ as the result of the concatenation of HARQ-ACK bits corresponding to PDSCH with subframe duration for one or multiple DL cells. The bit sequence $\tilde{O}_0^{LACK} \tilde{O}_1^{LACK}, ..., \tilde{O}_{O^{LACK}-1}^{LACK}$ is determined as for bit sequence $\tilde{O}_0^{ACK} \tilde{O}_1^{ACK}, ..., \tilde{O}_{O^{ACK}-1}^{ACK}$ is usually in subclause 5.2.3.1 and spatial bundling is performed if the HARQ-ACK is to be transmitted on subslot SPUCCH or if the HARQ-ACK is to be transmitted on slot SPUCCH and spatial bundling is configured. For FDD with at least one cell configured with higher layer parameter dl-TTI-Length or for the aggregation of more than one DL cell including a primary cell using FDD and at least one secondary cell using TDD and at least one DL cell configured with higher layer parameter dl-TTI-Length, the sequence of bits $\tilde{O}_0^{ACK}, \tilde{O}_1^{ACK}, ..., \tilde{O}_{O^{ACK}-1}^{ACK}$ is the result of the concatenation of HARQ-ACK bits for different cells and is obtained by concatenation of the bit sequence $\tilde{O}_0^{SACK}, \tilde{O}_1^{SACK}, ..., \tilde{O}_{O^{ACK}-1}^{SACK}$ and $\tilde{O}_0^{LACK}, ..., \tilde{O}_{O^{ACK}-1}^{ACK}$ in the cases defined in subclause 7.3 of [3]. In all other cases, the sequence of bits $\tilde{O}_0^{ACK}, \tilde{O}_1^{ACK}, ..., \tilde{O}_{O^{ACK}-1}^{ACK}$ is given by $\tilde{O}_0^{SACK}, \tilde{O}_1^{SACK}, ..., \tilde{O}_{O^{ACK}-1}^{ACK}$. In case the transmission of HARQ-ACK feedback using SPUCCH format 3 or SPUCCH format 4 coincides with a slot/subslot configured to the UE by higher layers for transmission of scheduling request, the number of scheduling request bits O^{SR} is 1; otherwise O^{SR} =0, and the scheduling request bit (1 = positive SR; 0 = negative SR) is appended at the end of the sequence of concatenated HARQ-ACK bits. For $N_{A/N}^{\text{SPUCCH format 3}} \leq 11$, the bit sequence $a_0, a_1, a_2, \ldots, a_{N_{A/N}^{\text{SPUCCH format 3}}-1}$ is obtained by setting $a_i = \tilde{o}_i^{ACK}$ and is encoded as follows $$b_i = \sum_{n=0}^{N_{A/N}^{\text{SPUCCHformat3}}-1} (a_n \cdot M_{i,n}) \mod 2$$ where $i=0,\,1,\,2,\,...,\,B$ -1 and $B=2\cdot N_{\rm sc}^{\rm RB}$, the basis sequences $M_{i,n}$ are defined in Table 5.2.2.6.4-1. For SPUCCH format 4, the output sequence is of length E, where $E = Q_m \cdot M_{RB}^{\text{SPUCCH format 4}} \cdot N_{\text{symb}}^{\text{SPUCCH format 4}}
\cdot N_{sc}^{RB}$, Q_m is the modulation order of the SPUCCH format 4, $N_{\text{symb}}^{\text{SPUCCH format 4}}$ is equal to $N_{\text{symb}}^{\text{SPUSCH}} - 1$ for slot SPUCCH format 4 and equal to $N_{\text{symb}}^{\text{SPUSCH}}$ for subslot SPUCCH format 4, $N_{\text{symb}}^{\text{SPUSCH}}$ is determined according to subclause 5.2.4.1, and $M_{RB}^{\text{SPUCCH format 4}}$ represents the bandwidth of the SPUCCH format 4 in terms of resource blocks [2]. For $N_{A/N}^{\text{SPUCCH format 4}} \leq 11$, the bit sequence $a_0, a_1, a_2, \ldots, a_{N_{A/N}^{\text{SPUCCH format 4}} - 1}$ is obtained by setting $a_i = \widetilde{o}_i^{ACK}$ and is encoded as follows $$\widetilde{b}_{i} = \sum_{n=0}^{N_{A/N}^{SPUCCHformat4}-1} (a_{n} \cdot M_{i,n}) \mod 2$$ where i = 0, 1, 2, ..., 31 and the basis sequences $M_{i,n}$ are defined in Table 5.2.2.6.4-1. The output bit sequence $b_0, b_1, b_2, ..., b_{E-1}$ is obtained by circular repetition of the sequence $\tilde{b}_0, \tilde{b}_1, \tilde{b}_2, ..., \tilde{b}_{31}$ $$b_i = \widetilde{b}_{(i \bmod 32)},$$ where i = 0, 1, 2, ..., E-1. For $11 < N_{A/N}^{\text{SPUCCH format 4}} \le 22$, the bit sequence $a_0, a_1, a_2, \ldots, a_{N_{A/N}^{\text{SPUCCH format 4}}-1}$ is obtained by setting $a_{i/2} = \widetilde{o}_i^{ACK}$ if i is even and $a_{\left[N_{A/N}^{\text{SPUCCH format 4}}/2\right]+(i-1)/2} = \widetilde{o}_i^{ACK}$ if i is odd. The sequences of bits $a_0, a_1, a_2, \ldots, a_{\left[N_{A/N}^{\text{SPUCCH format 4}}/2\right]+1}$ and $a_{\left[N_{A/N}^{\text{SPUCCH format 4}}/2\right]+1}, a_{\left[N_{A/N}^{\text{SPUCCH format 4}}/2\right]+2}, \ldots, a_{\left[N_{A/N}^{\text{SPUCCH format 4}}/2\right]+1}$ are encoded as follows $$\widetilde{b}_{i} = \sum_{n=0}^{\left\lceil \frac{NSPUCCH \text{ format}^{4}}{2} \right\rceil - 1} \left(a_{n} \cdot M_{i,n} \right) \text{mod } 2$$ and $$\widetilde{\widetilde{b}}_{i} = \sum_{n=0}^{N_{A/N}^{\text{SPUCCH format4}} - \left[N_{A/N}^{\text{SPUCCH format4}} / 2\right] - 1} \left(a_{N_{A/N}^{\text{SPUCCH format4}} / 2\right] + n} \cdot M_{i,n} \right) \mod 2$$ where i = 0, 1, 2, ..., 31 and the basis sequences $M_{i,n}$ are defined in Table 5.2.2.6.4-1. The output bit sequence $b_0, b_1, b_2, ..., b_{E-1}$ is obtained by the concatenation and circular repetition of the bit sequences $\tilde{b}_0, \tilde{b}_1, \tilde{b}_2, ..., \tilde{b}_{31}$ and $\tilde{\tilde{b}}_0, \tilde{\tilde{b}}_1, \tilde{\tilde{b}}_2, ..., \tilde{\tilde{b}}_{31}$ as follows Set i = 0 while $i < \lceil E/2 \rceil$ $$b_i = \tilde{b}_{i \bmod 32}$$ $$i = i + 1$$ end while while $$i < E - \lceil E/2 \rceil$$ $$b_{\lceil E/2 \rceil + i} = \widetilde{\widetilde{b}}_{i \bmod 32}$$ $$i = i + 1$$ end while For $N_{A/N}^{\rm SPUCCH \, format \, 4} \geq 22$, the output bit sequence after the rate matching is denoted by $e_0, e_1, e_2, \ldots, e_{E-1}$. The CRC attachment, channel coding and rate matching are performed according to subclauses 5.1.1 by setting L to 8 bits, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $a_0, a_1, a_2, \ldots, a_{N_{A/N}^{\rm SPUCCH \, format \, 4}-1}$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. When SPUCCH format 3 or SPUCCH format 4 is not used for transmission of HARQ-ACK feedback, the HARQ-ACK bits are processed for transmission according to subclause 10.1 in [3]. ### 5.2.3.2 Channel coding for UCI scheduling request The scheduling request indication is received from higher layers and is processed according to [2]. ### 5.2.3.3 Channel coding for UCI channel quality information The channel quality and possible concurrent scheduling request bits input to the channel coding block are denoted by $a_0, a_1, a_2, a_3, ..., a_{A-1}$ where A is the number of bits, and where the scheduling request bit (if present) is prepended to the sequence of channel quality bits. The number of channel quality bits depends on the transmission format as indicated in subclause 5.2.3.3.1 for wideband reports and in subclause 5.2.3.3.2 for UE-selected subbands reports. For PUCCH format 2, the channel quality information is coded using a (20, A) code. The code words of the (20, A) code are a linear combination of the 13 basis sequences denoted $M_{i,n}$ and defined in Table 5.2.3.3-1. | i | M _{i,0} | M _{i,1} | $M_{i,2}$ | M _{i,3} | M _{i,4} | M _{i,5} | M _{i,6} | M _{i,7} | M _{i,8} | M _{i,9} | M _{i,10} | M _{i,11} | M _{i,12} | |----|------------------|------------------|-----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------| | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | | 3 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | | 4 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | | 5 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | | 6 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | | 7 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | | 8 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | | 9 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | | 10 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | | 11 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | | 12 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | 13 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | | 14 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | 15 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | | 16 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | | 17 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | | 18 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 19 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Table 5.2.3.3-1: Basis sequences for (20, A) code After encoding the bits are denoted by $b_0, b_1, b_2, b_3, ..., b_{B-1}$ where B = 20 and with $$b_i = \sum_{n=0}^{A-1} (a_n \cdot M_{i,n}) \mod 2$$ where $i = 0, 1, 2, ..., B-1$. For PUCCH format 4, the output bit sequence after the rate matching is denoted by $e_0, e_1, e_2, \ldots, e_{E-1}$, where $E = Q_m \cdot M_{RB}^{PUCCH4} \cdot N_{symb}^{PUSCH} \cdot N_{sc}^{RB}$, Q_m is the modulation order of the PUCCH format 4, N_{symb}^{PUSCH} is determined according to subclause 5.2.4.1, and M_{RB}^{PUCCH4} represents the bandwidth of the PUCCH format 4 in terms of resource blocks [2]. The CRC attachment, channel coding and rate matching are performed according to subclauses 5.1.1 by setting L to 8 bits, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $a_0, a_1, a_2, \ldots, a_{A-1}$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. For PUCCH format 5, the output bit sequence after the rate matching is denoted by $e_0, e_1, e_2, \ldots, e_{E-1}$, where $E = Q_m \cdot N_{symb}^{PUSCH} \cdot N_{sc}^{RB} / 2$, Q_m is the modulation order of the PUCCH format 5 and N_{symb}^{PUSCH} is determined according to subclause 5.2.4.1. The CRC attachment, channel coding and rate matching are performed according to subclauses 5.1.1 by setting L to 8 bits, 5.1.3.1 and 5.1.4.2, respectively. The input bit sequence to the CRC attachment operation is $a_0, a_1, a_2, \ldots, a_{A-1}$. The output bit sequence of the CRC attachment operation is the input bit sequence to the channel coding operation. The output bit sequence of the channel coding operation is the input bit sequence to the rate matching operation. ### 5.2.3.3.1 Channel quality information formats for wideband reports Table 5.2.3.3.1-1 shows the fields and the corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with a transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port, transmission mode 9/10 configured without PMI with higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B', and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured without PMI. Table 5.2.3.3.1-1A shows the fields and the corresponding bit widths for the channel quality information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 configured without PMI reporting with 2/4/8 antenna ports, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters *semiOpenLoop* and *eMIMO-Type*. Table 5.2.3.3.1-1: UCI fields for channel quality information feedback for wideband CQI reports (transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port, and transmission mode 9/10 configured without PMI with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B', and transmission mode 9/10 configured with
higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured without PMI) | Field | Bit width | |---------------|-----------| | Wide-band CQI | 4 | Table 5.2.3.3.1-1A: UCI fields for channel quality information feedback for wideband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured without PMI reporting with 2/4/8 antenna ports, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type) | Field | Bit width | | | | |--------------------------|-----------|----------|--|--| | Fleid | Rank = 1 | Rank > 1 | | | | Wide-band CQI | 4 | 4 | | | | Spatial differential CQI | 0 | 3 | | | Table 5.2.3.3.1-2 shows the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 4, transmission mode 5, transmission mode 6, and transmission mode 8 configured with PMI/RI reporting except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.1-2: UCI fields for channel quality information feedback for wideband CQI reports (transmission mode 4, transmission mode 5, transmission mode 6, and transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | |----------------------------|-----------|----------|-----------------|----------|--|--|--| | Field | 2 anteni | na ports | 4 antenna ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | | | Wide-band CQI | 4 | 4 | 4 | 4 | | | | | Spatial differential CQI | 0 | 3 | 0 | 3 | | | | | Precoding matrix indicator | 2 | 1 | 4 | 4 | | | | Table 5.2.3.3.1-2A and Table 5.2.3.3.1-2B show the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9 configured with PMI/RI reporting except with *alternativeCodeBookEnabledFor4TX-r12=TRUE* or *advancedCodebookEnabled=TRUE*, and transmission mode 10 configured with PMI/RI reporting except with *alternativeCodeBookEnabled=TRUE*, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, K>1, or *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 2/4/8 antenna ports, except with *alternativeCodebookEnabledCLASSB_K1=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3] and *alternativeCodebookEnabledCLASSB_K1* is configured by higher layers [6]. Table 5.2.3.3.1-2A-1 and Table 5.2.3.3.1-2A-2 show the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9 /10 configured with PMI/RI reporting with higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' except with *advancedCodebookEnabled=TRUE*. Table 5.2.3.3.1-2A-3 and Table 5.2.3.3.1-2A-4 show the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameter *advancedCodebookEnabled=TRUE*. Table 5.2.3.3.1-2A-5 and Table 5.2.3.3.1-2A-6 show the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters *advancedCodebookEnabled* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' and *advancedCodebookEnabled* = *TRUE*. Table 5.2.3.3.1-2B-1 shows the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, K>1, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.1-2A: UCI fields for transmission of wideband CQI and precoding information (i2) (transmission mode 9 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, and transmission mode 10 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE or advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports, except with alternativeCodebookEnabledCLASSB K1=TRUE) | | Bit width | | | | | | | | |--|-----------------|--------|-----------------|--------|-----------------|--------|--------|--------| | Field | 2 antenna ports | | 4 antenna ports | | 8 antenna ports | | | | | rieiu | Rank = | Rank = | Rank = | Rank > | Rank = | Rank = | Rank = | Rank > | | | 1 | 2 | 1 | 1 | 1 | 2,3 | 4 | 4 | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Spatial differential CQI | 0 | 3 | 0 | 3 | 0 | 3 | 3 | 3 | | Wide-band PMI (2 or 4
antenna ports)
or i2 (8 antenna ports) | 2 | 1 | 4 | 4 | 4 | 4 | 3 | 0 | Table 5.2.3.3.1-2A-1: UCI fields for transmission of wideband CQI and precoding information (i2) (transmission mode 9/10 configured PMI/RI with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' and with codebook configuration (N_1, N_2, Q_1, Q_2) , and CodebookConfig=1, except with advancedCodebookEnabled=TRUE) | | Bit width | | | | | | | | |--------------------------|-----------|-----------------------------------|--------|--------|--------|--------|--------|-------------| | Field | | 8/12/16/20/24/28/32 antenna ports | | | | | | | | rieiu | Rank = =
8 | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Wide-band
i2 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | Table 5.2.3.3.1-2A-2: UCI fields for transmission of wideband CQI and precoding information (i2) (transmission mode 9/10 configured PMI/RI with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' and with codebook configuration (N_1, N_2, Q_1, Q_2) , and CodebookConfig=2/3/4, except with advancedCodebookEnabled=TRUE) | | Bit width | | | | | | | | |--------------------------|-----------|-----------------------------------|--------|--------|--------|--------|--------|--------| | Field | | 8/12/16/20/24/28/32 antenna ports | | | | | | | | rieid | Rank = | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Wide-band i2 | 4 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | Table 5.2.3.3.1-2A-3: UCI fields for transmission of wideband CQI and precoding information (i2) (transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | Field | Bit width | | | | |--------------------------|-----------|----------|--|--| | rieid | Rank = 1 | Rank > 1 | | | | Wideband CQI | 4 | 4 | | | | Spatial differential CQI | 0 | 3 | | | | Wide-band i2 | 6 | 4 | | | Table 5.2.3.3.1-2A-4: UCI fields for transmission of wideband CQI and precoding information (i2) (transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | | | Bit width | | | | | | | |--------------------------|-----------------|-----------|--------|------|--------|--------|--------|--------| | Field | 8 antenna ports | | | | | | | | | rieid | Rank = | Rank = | Rank = | Rank | Rank = | Rank = | Rank = | Rank = | | | 1 | 2 | 3 | =4 | 5 | 6 | 7 | 8 | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Wide-band i2 | 6 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | Table 5.2.3.3.1-2A-5: UCI fields for transmission of wideband CQI and precoding information (i2) (transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled=TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q,Q) and CodebookConfig=1) | | Bit width | | | | | | | | |--------------------------|-----------------------------------|--------|----------|-------------|----------|-------------|-------------|-------------| | Field | 8/12/16/20/24/28/32 antenna ports | | | | | | | | | rieiu | Rank =
1 | Rank = | Rank = 3 | Rank =
4 | Rank = 5 | Rank =
6 | Rank =
7 | Rank =
8 | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Wide-band
i2 | 6 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | Table 5.2.3.3.1-2A-6: UCI fields for transmission of wideband CQI and precoding information (i2) (transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher
layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled=TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q_1,Q_2) and CodebookConfig=2/3/4). | | | Bit width | | | | | | | | |--------------------------|--------|-----------|--------|-------------|------------|--------|--------|--------|--| | Field | | | 8/12/1 | 6/20/24/28/ | 32 antenna | ports | | | | | Field | Rank = | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | Wide-band
i2 | 6 | 4 | 4 | 3 | 0 | 0 | 0 | 0 | | Table 5.2.3.3.1-2B: UCI fields for transmission of wideband CQI and precoding information (i1, i2) for transmission mode 9 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 10 configured with PMI/RI reporting with 8 antenna ports except with advancedCodebookEnabled=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, K>1, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 8 antenna ports, except with alternativeCodebookEnabledCLASSB_K1=TRUE. | | | Bit width | | | | | | | |--------------------------|--------|--|---|---------|----------|---|---|-------------| | Field | | | | 8 anten | na ports | | | | | rieiu | Rank = | ank = Rank Ran | | | | | | Rank =
8 | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | i1 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 0 | | Wide-band i2 | 1 | 1 | 3 | 3 | 0 | 0 | 0 | 0 | Table 5.2.3.3.1-2B-1: UCI fields for transmission of wideband CQI and precoding information (i1) for transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, K>1, with alternativeCodeBookEnabledFor4TX-r12=TRUE. | | | Bit width | | | | | | | | |--------------------------|----------|-----------|-----------------|----------|--|--|--|--|--| | Field | 4 anten | na ports | 8 antenna ports | | | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank = 2 | | | | | | | Wide-band CQI | 4 | 4 | 4 | 4 | | | | | | | Spatial differential CQI | 0 | 3 | 0 | 3 | | | | | | | i1 | 2 | 2 | 3 | 3 | | | | | | Table 5.2.3.3.1-2C and Table 5.2.3.3.1-2D show the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions for 4 antenna ports associated with transmission modes 8, 9 and 10 configured with PMI/RI reporting and *alternativeCodeBookEnabledFor4TX-r12=TRUE* except with *advancedCodebookEnabled=TRUE*, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 4 antenna ports with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, K>1, and *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 4 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.1-2E shows the fields and the corresponding bit widths for the channel quality and precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 2/4/8 antenna ports with *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.3.3.1-2C: UCI fields for transmission of wideband CQI and precoding information (i2) with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE except with advancedCodebookEnabled=TRUE, and transmission mode 9/10 configured with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, K>1, and alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, and alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | |--------------------------|---------------------------------|---|---|---|--|--|--| | Field 4 antenna ports | | | | | | | | | | Rank = 1 Rank = 2 Rank = 3 Rank | | | | | | | | Wide-band CQI | 4 | 4 | 4 | 4 | | | | | Spatial differential CQI | 0 | 3 | 3 | 3 | | | | | Wideband i2 | 4 | 4 | 4 | 4 | | | | Table 5.2.3.3.1-2D: UCI fields for transmission of wideband CQI and precoding information (i1, i2) with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE except with advancedCodebookEnabled=TRUE, and transmission mode 9/10 configured with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, K>1, and alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, and alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | | |--------------------------|-----------------|----------|----------|----------|--|--|--|--| | Field | 4 antenna ports | | | | | | | | | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | | | Wide-band CQI | 4 | 4 | 4 | 4 | | | | | | Spatial differential CQI | 0 | 3 | 3 | 3 | | | | | | i1 | 2 | 2 | 0 | 0 | | | | | | Wideband i2 | 2 | 2 | 4 | 4 | | | | | Table 5.2.3.3.1-2E: UCI fields for transmission of wideband CQI and precoding information (transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports with alternativeCodebookEnabledCLASSB_K1=TRUE) | | Bit width | | | | | | | |--------------------------|-----------|----------|-----------------|----------|-------------|------------|--| | Field | 2 anteni | na ports | 4 antenna ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | 4 | | | Spatial differential CQI | 0 | 3 | 0 | 3 | 3 | 3 | | | Wide-band PMI | 2 | 1 | 3 | 3 | 2 | 1 | | | | | | Bit v | vidth | | | | | Field | | | 8 anten | na ports | | | | | | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | Rank = 5 to | o Rank = 8 | | | Wide-band CQI | 4 | 4 | 4 | 4 | 4 | | | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | | | | Wide-band PMI | 4 | 4 | 4 | 3 | (|) | | Table 5.2.3.3.1-3 shows the fields and the corresponding bit widths for the rank indication feedback for wideband reports for PDSCH transmissions associated with transmission mode 3, transmission mode 4, transmission mode
8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B', transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' except with *advancedCodebookEnabled=TRUE*, and transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 2/4/8 antenna ports, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type2* and *eMIMO-Type2*, and *eMIMO-Type2* is set to 'CLASS B' without PMI reporting with 2/4/8 antenna ports. Table 5.2.3.3.1-3: UCI fields for rank indication feedback for wideband reports (transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting, transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, transmission mode 9/10 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type, and eMIMO-Type is set to 'CLASS B', transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' except with advancedCodebookEnabled=TRUE, and transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports) | | | Bit width | | | | | | |-----------------|--------------------|----------------------|-----------------|-----------------------------------|-----------------|-----------------|--| | Field | 2 antonno | 4 antenna ports | | 8/12/16/20/24/28/32 antenna ports | | | | | rieiu | 2 antenna
ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | Table 5.2.3.3.1-3A shows the fields and the corresponding bit widths for the joint transmission of rank indication and i1 for wideband reports for PDSCH transmissions associated with transmission mode 9 and transmission mode 10, transmission mode 9/10 configured with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and K>1, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with 2/4/8 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE* or *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.1-3A: UCI fields for joint report of RI and i1 (transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodeBookEnabledFor4TX-r12 =TRUE and transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodeBookEnabledFor4TX-r12 =TRUE, transmission mode 9/10 configured with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, except with alternativeCodeBookEnabledFor4TX-r12 =TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with 2/4/8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | | | Bit width | | | | | | |-----------------|--------------------|----------------------|-----------------|----------------------|-----------------|-----------------|--| | Field | 2 antonno | 4 antenna ports | | 8 antenna ports | | | | | rieid | 2 antenna
ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | Rank indication | 1 | 1 | 2 | 4 | 5 | 5 | | | i1 | - | - | - | | | | | Table 5.2.3.3.1-3B shows the fields and the corresponding bit widths for the joint transmission of rank indication and i1 for wideband reports for PDSCH transmissions associated with transmission modes 8, 9 and 10 configured with PMI/RI reporting with 4 antenna ports and *alternativeCodeBookEnabledFor4TX-r12 =TRUE*, transmission mode 9/10 configured with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodeBookEnabledCLASSB_K1=TRUE*, and K>1, with *alternativeCodeBookEnabledFor4TX-r12 =TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with 4 antenna ports except with *alternativeCodeBookEnabledCLASSB_K1=TRUE*, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.1-3B-1 shows the fields and the corresponding bit widths for the joint transmission of rank indication and i1 for wideband reports for PDSCH transmissions associated with transmission modes 9 and 10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameters *semiOpenLoop* and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1*=TRUE, and K>1, with *alternativeCodeBookEnabledFor4TX-r12* =TRUE. Table 5.2.3.3.1-3B: UCI fields for joint report of RI and i1 with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit | Bit width | | | | | |------------------------|--------------------------------|-----------|--|--|--|--| | Field | 4 antenna ports | | | | | | | | Max 1 or 2 layers Max 4 layers | | | | | | | Rank indication and i1 | 4 5 | | | | | | Table 5.2.3.3.1-3B-1: UCI fields for joint report of RI and i1 with 4/8 antenna ports (transmission modes 9 and 10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, with alternativeCodeBookEnabledFor4TX-r12 =TRUE) | Field | Bit width | |------------------------|-------------------| | Field | 4/8 antenna ports | | Rank indication and i1 | 4 | Table 5.2.3.3.1-3C shows the fields and the corresponding bit widths for the joint report of CRI and rank indication feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *activatedResources*>0. Table 5.2.3.3.1-3C: UCI fields for joint report of CRI and rank indication feedback for wideband reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1, and transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with activatedResources>0) | | Bit width | | | | | | | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--| | Field | 2 antenna | 4 antenna ports | | 8 antenna ports | | | | | | ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | CRI | $\lceil \log_2(K) \rceil$ | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | Table 5.2.3.3.1-3D shows the fields and the corresponding bit widths for the joint report of CRI, rank indication and i1 feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 ports, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *activatedResources*>0, with alternativeCodeBookEnabledFor4TX-r12=TRUE. Table 5.2.3.3.1-3D: UCI fields for joint report of CRI, rank indication and i1 feedback for wideband reports (transmission mode 9/10 configured with PMI/RI reporting with 8 ports, and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1, transmission mode 9/10 configured with PMI/RI reporting with 4 ports Class B CSI reporting with K>1 with alternativeCodeBookEnabledFor4TX-r12=TRUE, except with activatedResources>0) | | Bit width | | | | | | | |------------------------|--------------------------------|---------------------------|--------------------------------|---------------------------|---------------------------|--|--| | Field | 4 antenna | ports | 8 antenna ports | | | | | | Fleiu |
Max 1 or 2 layers Max 4 layers | | Max 1 or 2 Max 4 layers layers | | Max 8
layers | | | | CRI | $\lceil \log_2(K) \rceil$ | | | | Rank indication and i1 | 4 | 5 | 4 | 5 | 5 | | | Table 5.2.3.3.1-3E shows the fields and the corresponding bit widths for the CRI feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource, Class B CSI reporting with K>1 except with *activatedResources*>0, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* is set to 'CLASS B' with K>1, where CRI is associated with *eMIMO-Type*. Table 5.2.3.3.1-3E: Fields for CRI feedback for wideband CQI reports (transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource for Class B CSI reporting with K>1 except with activatedResources>0, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type is set to 'CLASS B' with K>1, where CRI is associated with eMIMO-Type) | Field | Bit width | | | | | |-------|-----------|-----------------|----------------|--|--| | rieid | K = 2 | K = 3 and K = 4 | K = 5 to K = 8 | | | | CRI | 1 | 2 | 3 | | | Table 5.2.3.3.1-3F shows the fields and the corresponding bit widths for the joint report of CRI and rank indication feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and with *activatedResources*>1, and transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and with *activatedResources*>1. N is the value of higher layer parameter *activatedResources*. Table 5.2.3.3.1-3F: UCI fields for joint report of CRI and rank indication feedback for wideband reports (transmission mode 9/10 configured with PMI/RI or without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and with activatedResources>1) | | Bit width | | | | | | | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--| | Field | 2 antenna | 4 antenna ports | | 8 antenna ports | | | | | i ieiu | ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | CRI | $\lceil \log_2(N) \rceil$ | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | Table 5.2.3.3.1-3G shows the fields and the corresponding bit widths for the joint report of CRI, rank indication and i1 feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 ports, and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and with *activatedResources*>1, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. *N* is the value of higher layer parameter *activatedResources*. Table 5.2.3.3.1-3G: UCI fields for joint report of CRI, rank indication and i1 feedback for wideband reports (transmission mode 9/10 configured with PMI/RI reporting with 8 ports, and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and with activatedResources>1, and transmission mode 9/10 configured with PMI/RI reporting with 4 ports Class B CSI reporting with K>1 and with activatedResources>1 with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | |------------------------|---------------------------|---|---------------------------|---------------------------|---------------------------|--|--| | Field | 4 antenna | ports | 8 antenna ports | | | | | | rieiu | Max 1 or 2 layers | or 2 layers Max 4 layers Max 1 or 2 layers Ma | | Max 4 layers | Max 8
layers | | | | CRI | $\lceil \log_2(N) \rceil$ | | | | Rank indication and i1 | 4 | 5 | 4 | 5 | 5 | | | Table 5.2.3.3.1-3H shows the fields and the corresponding bit widths for the CRI feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource, Class B CSI reporting with K>1 and with *activatedResources*>1. *N* is the value of higher layer parameter *activatedResources*. Table 5.2.3.3.1-3H: Fields for CRI feedback for wideband CQI reports (transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource for Class B CSI reporting with K>1 and with activatedResources>1) | Field | Bit width | | | | |-------|-----------|-----------------|--|--| | Fleiu | N = 2 | N = 3 and N = 4 | | | | CRI | 1 | 2 | | | Parameters i1,1-1, i1,2-1, i1,1-2, i1,2-2, i1,p-2 correspond to parameters $i_{1,1}$, $i_{1,2}$, d_1 , d_2 , and I_p in subclause 7.2.4 of [3]. Table 5.2.3.3.1-3I and Table 5.2.3.3.1-3J show the fields and the corresponding bit widths for the joint report of rank indication and i1,p-2 feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameter *advancedCodebookEnabled=TRUE*, and transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters *advancedCodebookEnabled* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A' and *advancedCodebookEnabled=TRUE*. Table 5.2.3.3.1-3I: Fields for joint report of rank indication and i1,p-2 feedback for wideband reports (transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter advancedCodebookEnabled= TRUE) | Field | Bit width | | | | | |-----------------|-------------------|--------------|--|--|--| | rieiu | Max 1 or 2 layers | Max 4 layers | | | | | Rank indication | 1 | 2 | | | | | i1,p-2 | 2 | 2 | | | | Table 5.2.3.3.1-3J: Fields for joint report of rank indication and i1,p-2 feedback for wideband reports (transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter advancedCodebookEnabled= TRUE, and transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports, and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' and advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | |-----------------|-------------------|--------------|--------------|--|--| | rieid | Max 1 or 2 layers | Max 4 layers | Max 8 layers | | | | Rank indication | 1 | 2 | 3 | | | | i1,p-2 | 2 | 2 | 2 | | | Table 5.2.3.3.1-4 shows the fields and the corresponding bit widths for the precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A'. For Table 5.2.3.3.1-4, 5.2.3.3.1-4B, 5.2.3.3.1-4C, 5.2.3.3.1-4D, the parameters (S_1,S_2) in rank 1 and rank 2 are defined as $(S_1,S_2)=(1,1)$ for CodebookConfig=1 and $(S_1,S_2)=(2,2)$ for CodebookConfig=2,3 and 4. The parameters (S_1,S_2) in rank 3 and 4 are defined as $(S_1,S_2)=(1,1)$ for CodebookConfig=1, $(S_1,S_2)=\left(\frac{O_1}{2},\frac{O_2}{2}\right)$ for CodebookConfig=3, $(S_1,S_2)=\left(O_1,\frac{O_2}{4}\right)$ for CodebookConfig=3, $(S_1,S_2)=\left(O_1,\frac{O_2}{4}\right)$ for CodebookConfig=3. The parameters (S_1,S_2) in rank 5 to 8 are defined as $(S_1,S_2)=(1,1)$ for CodebookConfig=1, $(S_1,S_2)=\left(\frac{O_1}{4},\frac{O_2}{4}\right)$ for CodebookConfig=2/3/4. The parameters (L_1,L_2) are defined as $L_1=\min\{4,N_1\}$ and $L_2=2$ for $N_1\geq N_2$ and $N_2\neq 1$, $L_1=2$ and $L_2=\min\{4,N_2\}$ for $N_1< N_2$ and $N_1\neq 1$, $L_1=\min\{8,N_1\}$ and $L_2=1$ for $N_2=1$. Table 5.2.3.3.1-4: UCI fields for channel quality information feedback for precoding information (i1) (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, Q_1, Q_2) , except with advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | | |-------------------------------|---------------------------------------|---|---|---|--|--| | Field | Rank = 1 | | | Rank =4 | | | | Wideband
first PMI
i1,1 | $\lceil \log_2(N_1 O_1 / S_1) \rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2 \left(N_2 O_2 / S_2 \right) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2 (N_2 O_2 / S_2) \rceil$ | | | | Field | Bit width | | | | | | | Field | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | | | Wideband
first PMI
i1,1 | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | |-------------------------------|--|--|------------------------------------|--| | Wideband
first PMI
i1,2 |
$\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2 (N_2 O_2 / S_2) \rceil$ | Table 5.2.3.3.1-4A, Table 5.2.3.3.1-4B and Table 5.2.3.3.1-4C show the fields and the corresponding bit widths for the precoding matrix information feedback for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 4/8 antenna ports and higher layer parameter <code>advancedCodebookEnabled=TRUE</code>, and transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters <code>advancedCodebookEnabled</code> and <code>eMIMO-Type</code>, and <code>eMIMO-Type</code> is set to 'CLASS A' and <code>advancedCodebookEnabled=TRUE</code>. Table 5.2.3.3.1-4A: UCI fields for channel quality information feedback for precoding information (i1) (transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | Field | Bit width | | | | | | |---------------------------------|-----------|----------|----------|----------|--|--| | rieid | Rank = 1 | Rank = 2 | Rank = 3 | Rank = 4 | | | | Wideband
first PMI
i1,1-1 | 3 | 3 | 0 | 0 | | | | Wideband
first PMI
i1,2-1 | 0 | 0 | 0 | 0 | | | | Wideband
first PMI
i1,1-2 | 0 | 0 | 0 | 0 | | | | Wideband
first PMI
i1,2-2 | 0 | 0 | 0 | 0 | | | Table 5.2.3.3.1-4B: UCI fields for channel quality information feedback for precoding information (i1) (transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter advancedCodebookEnabled=TRUE) | | Bit width | | | | | | | | |------------------------------|--|--------------------------------|----------|------------|----------|----------|----------|----------| | Field | Rank = 1 | Rank = 2 | Rank = 3 | Rank
=4 | Rank = 5 | Rank = 6 | Rank = 7 | Rank = 8 | | Wideband first
PMI i1,1-1 | $\left\lceil \log_2(N_1 O_1) \right\rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | 2 | 2 | 2 | 2 | 2 | 0 | | Wideband first
PMI i1,2-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Wideband first
PMI i1,1-2 | $\lceil \log_2(L_1) \rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | 0 | 0 | 0 | 0 | | Wideband first
PMI i1,2-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 5.2.3.3.1-4C: UCI fields for channel quality information feedback for precoding information (i1) (transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameters advancedCodebookEnabled and eMIMO-Type, and advancedCodebookEnabled=TRUE and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q_1,Q_2)) | Field | | | Bit width | | |-------|----------|----------|-----------|---------| | Field | Rank = 1 | Rank = 2 | Rank =3 | Rank =4 | | Wideband
first PMI
i1,1-1 | $\lceil \log_2(N_1 O_1) \rceil$ | $\lceil \log_2(N_1O_1) \rceil$ | $\left[\log_2\left(\frac{N_1O_1}{S_1}\times\left(2+\left\lfloor\frac{9-N_2}{8}\right\rfloor\right)\right)\right]$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | |--|--|---|---|---|--|--| | Wideband
first PMI
i1,2-1 | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | | | | Wideband
first PMI
i1,1-2 | $\left\lceil \log_2(L_{_{\! 1}}) \right\rceil$ | $\lceil \log_2(L_1) \rceil$ | 0 | 0 | | | | Wideband
first PMI
i1,2-2 | $\lceil \log_2(L_2) ceil$ | $\lceil \log_2(L_2) ceil$ | 0 | 0 | | | | Field | Bit width | | | | | | | | | | | | | | | Field | Rank = 5 | Rank = 6 | Rank =7 | Rank =8 | | | | Wideband
first PMI
i1,1-1 | Rank = 5 | Rank = 6 $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | Rank =7 $ \lceil \log_2(N_1 O_1 / S_1) \rceil $ | Rank =8 $\lceil \log_2(N_1 O_1 / S_1) \rceil$ | | | | Wideband
first PMI | $\lceil \log_2(N_1O_1/S_1) \rceil$ | | | | | | | Wideband
first PMI
i1,1-1
Wideband
first PMI | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\lceil \log_2 \left(N_1 O_1 / S_1 \right) \rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | | | Table 5.2.3.3.1-4D shows the fields and the corresponding bit widths for the joint transmission of i1 and rank indication for wideband reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type* is set to 'CLASS A' with 8/12/16/20/24/28/32 antenna ports and *eMIMO-Type2* is set to 'CLASS B', where i1 and rank indication are associated with Class A. Table 5.2.3.3.1-4D: UCI fields for channel quality information feedback for report of i1 and rank indication feedback (transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type* is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) , where i1and rank indication are associated with Class A) | | | Bit width | | | | | |-------------------------------|--|--|---|--|--|--| | Field | Max 1 or 2 layers Max 4 or 8 layers | | | | | | | | Rank = 1 | Rank = 1 | Rank =3 | | | | | Wideband
first PMI
i1,1 | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\left\lceil \log_2 \left(N_1 O_1 / S_1 \right) \right\rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | | | Wideband
first PMI
i1,2 | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\left\lceil \log_2(N_2O_2/S_2) \right\rceil$ | | | | | RI | 0 | 1 | | | | | The channel quality bits in Table 5.2.3.3.1-1 through Table 5.2.3.3.1-4C form the bit sequence $a_0, a_1, a_2, a_3, ..., a_{A-1}$ with a_0 corresponding to the first bit of the first field in each of the tables, a_1 corresponding to the second bit of the first field in each of the tables, and a_{A-1} corresponding to the last bit in the last field in each of the tables. The first bit of each field corresponds to MSB and the last bit LSB. The RI feedback for one bit is mapped according to Table 5.2.2.6-5 with o_0^{RI} replaced by a_0 . The RI feedback for two bits is mapped according to Table 5.2.2.6-6 with o_0^{RI} , o_1^{RI} replaced by a_0, a_1 . The RI feedback for three bits is mapped according to Table 5.2.2.6-7 with o_0^{RI} , o_1^{RI} , o_2^{RI} replaced by a_0, a_1, a_2 . The same procedures for RI mapping are applied to CRI, replacing RI with CRI. The mapping for the jointly coded RI and i1 is provided in Table 7.2.2-1E of [3]. When multiplexed with UL-SCH, the channel coding and multiplexing for the transmission configurations in Table 5.2.3.3.1-3, Table 5.2.3.3.1-3A, Table 5.2.3.3.1-3B, Table 5.2.3.3.1-3B-1, Table 5.2.3.3.1-3C, Table 5.2.3.3.1-3D, Table 5.2.3.3.1-3F, Tables 5.2.3.3.1-3G, 5.2.3.3.1-3I, 5.2.3.3.1-3J and Table 5.2.3.3.1-4D is performed assuming RI transmission in subclause 5.2.2.6. All other transmission configurations in this subclause are coded and multiplexed assuming CQI/PMI transmission in subclause 5.2.2.6. For transmission mode 9/10 configured with Class B CSI reporting and K>1, the number of antenna port in Table 5.2.3.3.1-3C, 5.2.3.3.1-3D refers to the maximum number of antenna ports of K CSI-RS resources configured for the CSI-process for the UE. For transmission mode 9/10 configured with Class B CSI reporting and K>1 and with *numberActivatedCSI-RS-Resource*>1, the number of antenna port in Table 5.2.3.3.1-3F, 5.2.3.3.1-3G refers to the maximum number of antenna ports of N CSI-RS resources activated for the CSI-process for the UE. ## 5.2.3.3.2 Channel quality information formats for UE-selected sub-band reports Table 5.2.3.3.2-1 shows the fields and the corresponding bit widths for the sub-band channel quality information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type*2 is set to 'CLASS B' configured without PMI/RI reporting or configured with 1 antenna port. Table 5.2.3.3.2-1A shows the fields and the corresponding bit widths for the sub-band channel quality information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type* and *eMIMO-Type*2 is set to 'CLASS B' configured without PMI reporting with 2/4/8 antenna ports. Table 5.2.3.3.2-1: UCI fields for channel quality information feedback for UE-selected sub-band CQI reports
(transmission mode 1, transmission mode 2, transmission mode 3, transmission mode 7, transmission mode 8 configured without PMI/RI reporting, transmission mode 9 configured without PMI/RI reporting or configured with 1 antenna port, transmission mode 10 configured without PMI/RI reporting or configured with 1 antenna port, transmission mode 9/10 configured without PMI/RI with higher layer parameter eMIMO-Type is set to 'CLASS B', and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 is set to 'CLASS B' configured without PMI/RI reporting or configured with 1 antenna port) | Field | Bit width | |----------------|-----------| | Sub-band CQI | 4 | | Sub-band label | 1 or 2 | Table 5.2.3.3.2-1A: UCI fields for channel quality information feedback for UE-selected subband CQI reports (transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 is set to 'CLASS B' configured without PMI reporting with 2/4/8 antenna ports) | Field | Bit width | | | |--------------------------|-----------|----------|--| | | Rank = 1 | Rank > 1 | | | Wide-band CQI | 4 | 4 | | | Spatial differential CQI | 0 | 3 | | | Sub-band label | 1 or 2 | 1 or 2 | | Table 5.2.3.3.2-2 shows the fields and the corresponding bit widths for the sub-band channel quality information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 4, transmission mode 5, transmission mode 6, and transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE. Table 5.2.3.3.2-2: UCI fields for channel quality information feedback for UE-selected sub-band reports (transmission mode 4, transmission mode 5, transmission mode 6 and transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | |--------------------------|-----------|----------|-----------------|----------|--|--|--| | Field | 2 anten | na ports | 4 antenna ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | | | Sub-band CQI | 4 | 4 | 4 | 4 | | | | | Spatial differential CQI | 0 | 3 | 0 | 3 | | | | | Sub-band label | 1 or 2 | 1 or 2 | 1 or 2 | 1 or 2 | | | | Table 5.2.3.3.2-2A and Table 5.2.3.3.2-2B show the fields and the corresponding bit widths for the sub-band channel quality information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, or K>1, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 2/4/8 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE* or *alternativeCodeBookEnabledFor4TX-r12=TRUE*. The number of configured CSI-RS resources in a CSI process K is defined in [3] and *alternativeCodebookEnabledCLASSB_K1* is configured by higher layers [6]. Table 5.2.3.3.2-2A-1 shows UCI fields for channel quality information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4/8 antenna ports, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type2* is set to 'CLASS B' configured without PMI reporting with 2/4/8 antenna ports. Table 5.2.3.3.2-2C shows the fields and the corresponding bit widths for the sub-band channel quality information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission modes 8, 9 and 10 configured with PMI/RI reporting and *alternativeCodeBookEnabledFor4TX-r12 =TRUE*, transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 4 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.2-2A: UCI fields for channel quality information feedback for UE-selected sub-band reports (transmission mode 9 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB K1=TRUE or | | Bit width | | | | | | | |--------------------------|-------------------|----------|-----------------|----------|--|--|--| | Field | 2 anten | na ports | 4 antenna ports | | | | | | | Rank = 1 Rank = 2 | | Rank = 1 | Rank > 1 | | | | | Wide-band CQI | 0 | 0 | 0 | 0 | | | | | Sub-band CQI | 4 | 4 | 4 | 4 | | | | | Spatial differential CQI | 0 | 3 | 0 | <u>3</u> | | | | | Wide-band i2 | 0 | 0 | 0 | 0 | | | | | Sub-band i2 | 0 | 0 | 0 | 0 | | | | | Sub-band label | 1 or 2 | 1 or 2 | 1 or 2 | 1 or 2 | | | | alternativeCodeBookEnabledFor4TX-r12=TRUE) Table 5.2.3.3.2-2A-1: UCI fields for channel quality information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and alternativeCodebookEnabledCLASSB_K1=TRUE, transmission mode 9/10 configured without PMI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4/8 antenna ports, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 is set to 'CLASS B' configured without PMI reporting with 2/4/8 antenna ports) | | Bit width | | | | |--------------------------|---------------------|----------|--|--| | Field | 2/4/8 antenna ports | | | | | | Rank = 1 | Rank > 1 | | | | Wide-band CQI | 0 | 0 | | | | Sub-band CQI | 4 | 4 | | | | Spatial differential CQI | 0 | 3 | | | | Wide-band i2 | 0 | 0 | | | | Sub-band i2 | 0 | 0 | | | | Sub-band label | 1 or 2 | 1 or 2 | | | Table 5.2.3.3.2-2B: UCI fields for channel quality feedback for UE-selected sub-band reports (transmission mode 9 configured with PMI/RI reporting with 8 antenna ports, transmission mode 10 configured with PMI/RI reporting with 8 antenna ports, and transmission mode 9/10 configured with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | | | Bit width | | | | | | | | | | | |--------------------------|-------|-----------------|-------|----------------------|-------|--------|----------------|--------|----------|--------|--|--| | Field | | 8 antenna ports | | | | | | | | | | | | Field | Ran | Rank = 1 Rank | | Rank = 2, 3 Rank = 4 | | k = 4 | Rank = 5, 6, 7 | | Rank = 8 | | | | | | PTI=0 | PTI=1 | | | | Wide-band CQI | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | | | | Sub-band CQI | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | | | | Spatial differential CQI | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | Wide-band i2 | 4 | 0 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | | | | Sub-band i2 | 0 | 4 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | | | | Sub-band label | 0 | 1 or 2 | | | 157 Table 5.2.3.3.2-2C: UCI fields for channel quality feedback for UE-selected sub-band reports with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with 4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, and with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | | | | | | | |--------------------------|-----------------|----------------------------|-------|--------|--------|--------|--|-----------------|--|--|--|--|--| | Field | 4 antenna ports | | | | | | | 4 antenna ports | | | | | | | | Ran | Rank = 1 Rank = 2 Rank = 3 | | | | | | | | | |
| | | | PTI=0 PTI=1 | | PTI=0 | PTI=1 | PTI=1 | PTI=1 | | | | | | | | | Wide-band CQI | 4 | 0 | 4 | 0 | 0 | 0 | | | | | | | | | Sub-band CQI | 0 | 4 | 0 | 4 | 4 | 4 | | | | | | | | | Spatial differential CQI | 0 | 0 | 3 | 3 | 3 | 3 | | | | | | | | | Wide-band i2 | 4 | 0 | 4 | 0 | 0 | 0 | | | | | | | | | Sub-band i2 | 0 | 4 | 0 | 2 | 2 | 2 | | | | | | | | | Sub-band label | 0 | 1 or 2 | 0 | 1 or 2 | 1 or 2 | 1 or 2 | | | | | | | | Table 5.2.3.3.2-2D shows the fields and the corresponding bit widths for the sub-band channel quality information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4 antenna ports, and K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and K>1, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.2-2D: UCI fields for channel quality information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4 antenna ports, and K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bit w | vidth | |--------------------------|----------|----------| | rieiu | Rank = 1 | Rank = 2 | | Wide-band CQI | 0 | 0 | | Sub-band CQI | 4 | 4 | | Spatial differential CQI | 0 | 3 | | Wide-band i2 | 0 | 0 | | Sub-band i2 | 0 | 0 | | Sub-band label | 1 or 2 | 1 or 2 | Table 5.2.3.3.2-2E shows the fields and the corresponding bit widths for the sub-band channel quality information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 4/8 antenna ports, and K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and K>1, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A'. Table 5.2.3.3.2-2E: UCI fields for channel quality information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 4/8 antenna ports, and K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS A') | Field | | Bit width | | | | | | |--------------------------|-------|-----------|----------|--------|--|--|--| | rieiu | Ran | k = 1 | Rank = 2 | | | | | | | PTI=0 | PTI=1 | PTI=0 | PTI=1 | | | | | Wide-band CQI | 4 | 0 | 4 | 0 | | | | | Sub-band CQI | 0 | 4 | 0 | 4 | | | | | Spatial differential CQI | 0 | 0 | 3 | 3 | | | | | Wide-band i2 | 0 | 0 | 0 | 0 | | | | | Sub-band i2 | 0 | 0 | 0 | 0 | | | | | Sub-band label | 0 | 1 or 2 | 0 | 1 or 2 | | | | Table 5.2.3.3.2-3 shows the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 4, transmission mode 5, transmission mode 6 and transmission mode 8 configured with PMI/RI reporting except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.2-3: UCI fields for channel quality information feedback for UE-selected sub-band CQI reports (transmission mode 4, transmission mode 5, transmission mode 6 and transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | |----------------------------|-----------|----------|-----------------|----------|--|--|--| | Field | 2 anteni | na ports | 4 antenna ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | | | Wide-band CQI | 4 | 4 | 4 | 4 | | | | | Spatial differential CQI | 0 | 3 | 0 | 3 | | | | | Precoding matrix indicator | 2 | 1 | 4 | 4 | | | | Table 5.2.3.3.2-3A and Table 5.2.3.3.2-3B show the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE. Table 5.2.3.3.2-3A-1 shows the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 2/4/8 antenna ports with *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.3.3.2-3A-2 shows the fields and the corresponding bit widths for the wide-band channel quality feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 2/4 antenna ports, and K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and K>1, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.2-3C shows the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission modes 8, 9 and 10 configured with PMI/RI reporting, 4 antenna ports and *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, K>1 with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 4 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.2-3C-1 shows the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameters *semiOpenLoop* and *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with 4/8 antenna ports, and K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and K>1, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.2-3A: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports (transmission mode 9 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, K>1, except with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE or alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | |--------------------------|-----------|----------|-----------------|----------|--|--|--| | Field | 2 anten | na ports | 4 antenna ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 1 | Rank > 1 | | | | | Wide-band CQI | 4 | 4 | 4 | 4 | | | | | Spatial differential CQI | 0 | 3 | 0 | 3 | | | | | i1 | 0 | 0 | 0 | 0 | | | | | Wide-band i2 | 2 | 1 | 4 | 4 | | | | Table 5.2.3.3.2-3A-1: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with 2/4/8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports with alternativeCodebookEnabledCLASSB_K1=TRUE) | | Bit width | | | | | | | | |--------------------------|-----------|----------|----------|-----------------|---------|---------|--|--| | Field | 2 anteni | na ports | | 4 antenna ports | | | | | | | Rank = 1
 Rank = 2 | Rank = 1 | Rank =2 | Rank =3 | Rank =4 | | | | Wideband CQI | 4 | 4 | 4 | 4 | 4 | 4 | | | | Spatial differential CQI | 0 | 3 | 0 | 3 | 3 | 3 | | | | i1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Wide-band i2 | 2 | 1 | 3 | 3 | 2 | 1 | | | | | | | Bit w | idth | | | | | | Field | | | 8 antenn | a ports | | | | | | | Rank = 1 | Rank = 2 | Rank = 3 | Rank =4 | Rank | =5~8 | | | | Wideband CQI | 4 | 4 | 4 | 4 | 4 | 1 | | | | Spatial differential CQI | 0 | 3 | 3 | 3 | 3 | 3 | | | | i1 | 0 | 0 | 0 | 0 | (|) | | | | Wide-band i2 | 4 | 4 | 4 | 3 | (|) | | | Table 5.2.3.3.2-3A-2: UCI fields for wide-band channel quality feedback for UE-selected sub-band reports (transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with 2/4 antenna ports, and K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, except with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | |----------------------------|-----------|----------|--| | Field | Rank = 1 | Rank = 2 | | | Wideband CQI | 4 | 4 | | | Spatial differential CQI | 0 | 3 | | | Precoding matrix indicator | 0 | 0 | | Table 5.2.3.3.2-3B: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports (transmission mode 9 configured with PMI/RI reporting with 8 antenna ports and transmission mode 10 configured with PMI/RI reporting with 8 antenna ports, and transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, K>1, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 8 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE) | | | | Bit w | vidth | | | |--------------------------|-------|-------|----------|----------|-------|-------| | Field | | | 8 anteni | na ports | | | | i ieiu | Ran | k = 1 | Ran | k = 2 | Ranl | k = 3 | | | PTI=0 | PTI=1 | PTI=0 | PTI=1 | PTI=0 | PTI=1 | | Wide-band CQI | 0 | 4 | 0 | 4 | 0 | 4 | | Spatial differential CQI | 0 | 0 | 0 | 3 | 0 | 3 | | i1 | 4 | 0 | 4 | 0 | 2 | 0 | | Wide-band i2 | 0 | 4 | 0 | 4 | 0 | 4 | | | | | Bit w | vidth | | | | Field | | | 8 anteni | na ports | | | | Field | Ran | k = 4 | Rank = | 5, 6, 7 | Ranl | k = 8 | | | PTI=0 | PTI=1 | PTI=0 | PTI=1 | PTI=0 | PTI=1 | | Wide-band CQI | 0 | 4 | 0 | 4 | 0 | 4 | | Spatial differential CQI | 0 | 3 | 0 | 3 | 0 | 3 | | i1 | 2 | 0 | 2 | 0 | 0 | 0 | | Wide-band i2 | 0 | 3 | 0 | 0 | 0 | 0 | Table 5.2.3.3.2-3B-1 shows the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with CodebookConfig=1. The parameters (S_1, S_2) are defined as $(S_1, S_2)=(1, 1)$ for CodebookConfig=1. Table 5.2.3.3.2-3B-2 shows the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with CodebookConfig=2/3/4. The parameters $\left(S_1,S_2\right)$ in rank 1 and rank 2 are defined as $\left(S_1,S_2\right)=\left(2,2\right)$ for CodebookConfig=2,3 and 4. The parameters $\left(S_1,S_2\right)$ in rank 3 and 4 are defined as $\left(S_1,S_2\right)=\left(\frac{O_1}{2},\frac{O_2}{2}\right)$ for CodebookConfig=2, $\left(S_1,S_2\right)=\left(O_1,\frac{O_2}{2}\right)$ for CodebookConfig=3, $\left(S_1,S_2\right)=\left(O_1,\frac{O_2}{4}\right)$ for CodebookConfig=4. The parameters $\left(S_1,S_2\right)$ in rank 5 to 8 are defined as $\left(S_1,S_2\right)=\left(\frac{O_1}{4},\frac{O_2}{4}\right)$ for CodebookConfig=2/3/4. Table 5.2.3.3.2-3B-3 shows the fields and the corresponding bit widths for the wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with CodebookConfig=1/2/3/4. The parameters $\left(S_1,S_2\right)$ in rank 1 and rank 2 are defined as $\left(S_1,S_2\right)=\left(1,1\right)$ for CodebookConfig=1 and $\left(S_1,S_2\right)=\left(2,2\right)$ for CodebookConfig=2, 3 and 4. Table 5.2.3.3.2-3B-1: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) , and CodebookConfig=1) | | | 8/12/ | Bit widt
/16/20/24/28/32 | | norts | | | |--------------------------------|---|-------|--|-----------------|---|-------|--| | Field | Rank = 1 | 0/12/ | Rank = | • | Rank = 3 | | | | | PTI=0 | PTI=1 | PTI=0 | PTI=1 | PTI=0 | PTI=1 | | | Wide-
band CQI | 0 | 4 | 0 | 4 | 0 | 4 | | | Spatial differential CQI | 0 | 0 | 0 | 3 | 0 | 3 | | | Wideband
first PMI
i1,1 | $\left\lceil \log \left(\frac{N_i O_i}{S_i} \right) \right\rceil$ | 0 | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \right) \right\rceil$ | 0 | $\left[\log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right]$ | 0 | | | Wideband
first PMI
i1,2 | $\left\lceil \log \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | 0 | | 0 | $\left\lceil \log \left(rac{N_2 O_2}{S_2} ight) ight ceil$ | 0 | | | Wide-
band i2 | 0 | 2 | 0 | 2 | 0 | 1 | | | | | 8/12/ | Bit widt
/16/20/24/28/32 | | oorts | | | | Field | Rank = 4 | | | = 5 to Rank = 8 | | | | | | PTI=0 | PTI=1 | PTI=0 | | PTI=1 | | | | Wide-
band CQI | 0 | 4 | 0 | | 4 | | | | Spatial
differential
CQI | 0 | 3 | 0 | | 3 | | | | Wideband
first PMI
i1,1 | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | 0 | $\log \frac{NQ}{S}$ | | 0 | | | | Wideband
first PMI
i1,2 | $\left\lceil \log \left(rac{N_2 O_2}{S_2} ight) ight ceil$ | 0 | $\log \left(\frac{N_2 Q_2}{S_2}\right)$ | $\Big] = -$ | 0 | | | | Wide- | 0 | 1 | 0 | | 0 | | | Table 5.2.3.3.2-3B-2: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1,N_2,Q_1,Q_2) , and CodebookConfig=2/3/4) | | | 0/40 | Bit wic | | | | |---------------------------------|---|-----------|--|----------------------------------|---|-------| | | Rank = 1 | 8/12 | /16/20/24/28/32
Rank = | | ports
Rank = 3 | | | Field | | PTI= | | | | | | | PTI=0 | 1 | PTI=0 | PTI=1 | PTI=0 | PTI=1 | | Wide-
band CQI | 0 | 4 | 0 | 4 | 0 | 4 | | Spatial
differentia
I CQI | 0 | 0 | 0 | 3 | 0 | 3 | | Wideban
d first
PMI i1,1 | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \right) \right\rceil$ | 0 | $\left\lceil \log \left(\frac{N_l O_l}{S_l} \right) \right\rceil$ | 0 | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | 0 | | Wideban
d first
PMI i1,2 | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | 0 | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | 0 | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | 0 | | Wide-
band i2 | 0 | 4 | 0 | 4 | 0 | 4 | | | | 8/12 | Bit wid
/16/20/24/28/32 | | norts | | | Field | Rank = 4 | 0/12 | 10/20/24/20/02 | | = 5 to Rank = 8 | | | | PTI=0 | PTI=
1 | PTI=0 | 0 | PTI=1 | | | Wide-
band CQI | 0 | 4 | 0 | | 4 | | | Spatial differentia | 0 | 3 | 0 3 | | 3 | | | Wideban
d first
PMI i1,1 | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | 0 | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \right) \right\rceil$ | | 0 | | | Wideban
d first
PMI i1,2 | $\left\lceil \log_2 \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | 0 | $\log_2 \left(\frac{N_2 C}{S_2} \right)$ | $\left \frac{Q_2}{Q_2} \right $ | 0 | | | Wide-
band i2 | 0 | 3 | 0 | | 0 | | Table 5.2.3.3.2-3B-3: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports (transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS A' with codebook configuration (N_1, N_2, Q, Q_1) , and CodebookConfig=1/2/3/4) | | Bit width 8/12/16/20/24/28/32 antenna ports | | | | | | | |--------------------------|--|-------|---|-------|--|--|--| | Field | Rank = | : 1 | Rank | = 2 | | | | | | PTI=0 | PTI=1 | PTI=0 |
PTI=1 | | | | | Wide-band CQI | 0 | 4 | 0 | 4 | | | | | Spatial differential CQI | 0 | 0 | 0 | 3 | | | | | Wideband first PMI i1,1 | $\left\lceil \log \left(\frac{N_l O_l}{S_l} \right) \right\rceil$ | 0 | $\log \frac{NQ}{S}$ | 0 | | | | | Wideband first PMI i1,2 | $\left\lceil \log \left(\frac{N_2 O_2}{S_2} \right) \right\rceil$ | 0 | $\log \left(\frac{N_2 O_2}{S_2}\right)$ | 0 | | | | | Wide-band i2 | 0 | 0 | 0 | 0 | | | | Table 5.2.3.3.2-3C: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports with 4 antenna ports (transmission modes 8, 9 and 10 configured with PMI/RI reporting and alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 4 antenna ports except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | | | | |--------------------------|-----------------|-------|----------|-------|----------|--------|--|--| | Field | 4 antenna ports | | | | | | | | | | Rank = 1 | | Rank = 2 | | Rank = 3 | Rank=4 | | | | | PTI=0 | PTI=1 | PTI=0 | PTI=1 | PTI=1 | PTI=1 | | | | Wide-band CQI | 0 | 4 | 0 | 4 | 4 | 4 | | | | Spatial differential CQI | 0 | 0 | 0 | 3 | 3 | 3 | | | | i1 | 4 | 0 | 4 | 0 | 0 | 0 | | | | Wide-band i2 | 0 | 4 | 0 | 4 | 4 | 4 | | | Table 5.2.3.3.2-3C-1: UCI fields for wide-band channel quality and precoding matrix information feedback for UE-selected sub-band reports with 4/8 antenna ports (transmission mode 9/10 configured with higher layer parameters semiOpenLoop and eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, and K>1, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | Field | Bit width | | | | | | | |--------------------------|-----------|-------|----------|-------|--|--|--| | Field | Ran | k = 1 | Rank = 2 | | | | | | | PTI=0 | PTI=1 | PTI=0 | PTI=1 | | | | | Wide-band CQI | 0 | 4 | 0 | 4 | | | | | Spatial differential CQI | 0 | 0 | 0 | 3 | | | | | i1 | 4 | 0 | 4 | 0 | | | | | Wide-band i2 | 0 | 0 | 0 | 0 | | | | Table 5.2.3.3.2-4 shows the fields and the corresponding bit width for the rank indication feedback for UE-selected subband reports for PDSCH transmissions associated with transmission mode 3, transmission mode 4, transmission mode 8 configured with PMI/RI reporting except with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports with higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE*, transmission mode 9/10 configured without PMI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and *alternativeCodebookEnabledCLASSB_K1=TRUE* for 2/4/8 antenna ports, transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 2/4/8 antenna ports with *alternativeCodebookEnabledCLASSB_K1=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured without PMI reporting with *alternativeCodebookEnabledCLASSB_K1=TRUE* for 2/4/8 antenna ports. Table 5.2.3.3.2-4: UCI fields for rank indication feedback for UE-selected sub-band reports (transmission mode 3, transmission mode 4, and transmission mode 8 configured with PMI/RI reporting except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9/10 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and alternativeCodebookEnabledCLASSB_K1=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI or without PMI reporting with 2/4/8 antenna ports with alternativeCodebookEnabledCLASSB_K1=TRUE) | | Bit width | | | | | | | | |-----------------|-----------------------|----------------------|-----------------|----------------------|-----------------|-----------------|--|--| | Field | 2 antonna | 4 antenna ports | | 8 antenna ports | | | | | | rieiu | Field 2 antenna ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | | Table 5.2.3.3.2-4A shows the fields and the corresponding bit width for the rank indication and precoder type indication (PTI) feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports and transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports, and transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, or K>1, except with *alternativeCodeBookEnabledFor4TX-r12=TRUE* for 4Tx, transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS A', and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting with 2/4/8 antenna ports except with *alternativeCodebookEnabledCLASSB_K1=TRUE*. Table 5.2.3.3.2-4B shows the fields and the corresponding bit width for the rank indication and precoder type indication (PTI) feedback with 4 antenna ports for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 8, transmission mode 9 and transmission mode 10 configured with PMI/RI reporting and *alternativeCodeBookEnabledFor4TX-r12 =TRUE*, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K=1 and except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, K>1, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type2*, and *eMIMO-Type2* configured with PMI/RI reporting except with *alternativeCodebookEnabledCLASSB_K1=TRUE*, with *alternativeCodeBookEnabledFor4TX-r12=TRUE*. Table 5.2.3.3.2-4A: UCI fields for joint report of RI and PTI (transmission mode 9 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 10 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9/10 configured with PMI/RI reporting with 2/4/8 antenna ports with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, or K>1, except with alternativeCodeBookEnabledFor4TX-r12=TRUE for 4Tx, transmission mode 9/10 configured with PMI/RI reporting with 8/12/16/20/24/28/32 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS A', and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting with 2/4/8 antenna ports except with alternativeCodebookEnabledCLASSB K1=TRUE) | | Bit width | | | | | | | | | |--------------------------|-----------|----------------------|-----------------|-----------------------------------|-----------------|-----------------|--|--|--| | Field | 2 antenna | 4 antenna | ports | 8/12/16/20/24/28/32 antenna ports | | | | | | | | ports | Max 1 or 2
layers | Max 4
layers | Max 1 or 2
layers | Max 4
layers | Max 8
layers | | | | | Rank indication | 1 | 1 | 2 | 1 | 2 | 3 | | | | | Precoder type indication | - | - | - | 1 | 1 | 1 | | | | Table 5.2.3.3.2-4B: UCI fields for joint report of RI and PTI with 4 antenna ports (transmission mode 8, transmission mode 9 and transmission mode 10 configured with PMI/RI reporting and alternativeCodeBookEnabledFor4TX-r12=TRUE, transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K=1 and except with alternativeCodebookEnabledCLASSB_K1=TRUE, K>1, with alternativeCodeBookEnabledFor4TX-r12=TRUE, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type2 configured with PMI/RI reporting except with alternativeCodebookEnabledCLASSB_K1=TRUE, with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | |--------------------------|-------------------|--------------|--| | Field | 4 antenna ports | | | | | Max 1 or 2 layers | Max 4 layers | | | Rank indication | 1 | 2 | | | Precoder type indication | 1 | 1 | | Table 5.2.3.3.2-4C shows the fields and the corresponding bit widths for the joint report of CRI and rank indication feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1, and transmission mode 9/10 configured without PMI reporting with 2/4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *activatedResources*>0. Table 5.2.3.3.2-4D shows the fields and the corresponding bit widths for the joint report of CRI, rank indication and PTI feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10
configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 except with *activatedResources*>0. Table 5.2.3.3.2-4C: UCI fields for joint report of CRI and rank indication feedback for UE-selected subband reports (transmission mode 9/10 configured with PMI/RI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1, and transmission mode 9/10 configured without PMI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 except with activatedResources>0) | Field Bit width 2 antenna ports | | th | Bit width | | |---------------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | | | ports | 4 antenna ports | | | | Max 1 or 2 layers | Max 4 layers | Max 1 or 2 layers | Max 4 layers | | CRI | $\lceil \log_2(K) \rceil$ | $\lceil \log_2(K) \rceil$ | $\lceil \log_2(K) \rceil$ | $\lceil \log_2(K) \rceil$ | | Rank indication | 1 | 1 | 2 | 2 | Table 5.2.3.3.2-4D: UCI fields for joint report of CRI, RI and PTI (transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1, transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports with Class B CSI reporting with K>1with alternativeCodeBookEnabledFor4TX-r12=TRUE, except with activatedResources>0) | | Bit width | | | | | |--------------------------|--------------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | Field | 4 antenna ports | | 8 antenna ports | | | | i ieiu | Max 1 or 2 layers Max 4 layers | | Max 1 or 2
layers | Max 4 layers | Max 8
layers | | CRI | $\lceil \log_2(K) \rceil$ | | Rank indication | 1 | 2 | 1 | 2 | 3 | | Precoder type indication | 1 | 1 | 1 | 1 | 1 | Table 5.2.3.3.2-4E shows the fields and the corresponding bit width for CRI feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource reporting for Class B CSI reporting with K>1 except with *activatedResources*>0, and transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* is set to 'CLASS B' with K>1, where CRI is associated with *eMIMO-Type*. Table 5.2.3.3.2-4E: Fields for CRI feedback for transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource for Class B CSI reporting with K>1 except with activatedResources>0, and transmission mode 9/10 configured with higher layer parameter eMIMO-Type and eMIMO-Type2, and eMIMO-Type is set to 'CLASS B' with K>1, where CRI is associated with eMIMO-Type) | Field | Bit width | | | |-------|-----------|-----------------|----------------| | Fleid | K = 2 | K = 3 and K = 4 | K = 5 to K = 8 | | CRI | 1 | 2 | 3 | Table 5.2.3.3.2-4F shows the fields and the corresponding bit widths for the joint report of CRI and rank indication feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and *activatedResources*>1, and transmission mode 9/10 configured without PMI reporting with 2/4 antenna ports and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and *activatedResources*>1. *N* is the value of higher layer parameter *activatedResources*. Table 5.2.3.3.2-4G shows the fields and the corresponding bit widths for the joint report of CRI, rank indication and PTI feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with PMI/RI reporting and higher layer parameter *eMIMO-Type*, and *eMIMO-Type* is set to 'CLASS B' with K>1 and *activatedResources*>1. *N* is the value of higher layer parameter *activatedResources*. Table 5.2.3.3.2-4F: UCI fields for joint report of CRI and rank indication feedback for UE-selected subband reports (transmission mode 9/10 configured with PMI/RI or without PMI reporting with 2/4 antenna ports and higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and activatedResources>1) | Field | Bit wid | vidth Bit width | | th | |-----------------|---------------------------|---------------------------|---------------------------|---------------------------| | | 2 antenna ports | | 4 antenna ports | | | | Max 1 or 2 layers | Max 4 layers | Max 1 or 2 layers | Max 4 layers | | CRI | $\lceil \log_2(N) \rceil$ | $\lceil \log_2(N) \rceil$ | $\lceil \log_2(N) \rceil$ | $\lceil \log_2(N) \rceil$ | | Rank indication | 1 | 1 | 2 | 2 | Table 5.2.3.3.2-4G: UCI fields for joint report of CRI, RI and PTI (transmission mode 9/10 configured with PMI/RI reporting with 8 antenna ports with higher layer parameter eMIMO-Type, and eMIMO-Type is set to 'CLASS B' with K>1 and activatedResources>1, and transmission mode 9/10 configured with PMI/RI reporting with 4 antenna ports with Class B CSI reporting with K>1 and with activatedResources>1 and with alternativeCodeBookEnabledFor4TX-r12=TRUE) | | Bit width | | | | | |--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | Field | 4 antenna ports | | 8 antenna ports | | | | i leiu | Max 1 or 2 layers | Max 4 layers | Max 1 or 2
layers | Max 4 layers | Max 8
layers | | CRI | $\lceil \log_2(N) \rceil$ | | Rank indication | 1 | 2 | 1 | 2 | 3 | | Precoder type indication | 1 | 1 | 1 | 1 | 1 | Table 5.2.3.3.2-4H shows the fields and the corresponding bit width for CRI feedback for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource reporting for Class B CSI reporting with K>1 and *activatedResources*>1. *N* is the value of higher layer parameter *activatedResources*. Table 5.2.3.3.2-4H: Fields for CRI feedback for transmission mode 9/10 configured with 1 antenna port for each CSI-RS resource for Class B CSI reporting with K>1 and activatedResources>1) | Field | Bit width | | |-------|-----------|-----------------| | Field | N = 2 | N = 3 and N = 4 | | CRI | 1 | 2 | Table 5.2.3.3.1-4I shows the fields and the corresponding bit widths for the joint transmission of rank indication and i1 for UE-selected sub-band reports for PDSCH transmissions associated with transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type*2, and *eMIMO-Type* is set to 'CLASS A' with 8/12/16/20/24/28/32 antenna ports and *eMIMO-Type*2 is set to 'CLASS B', where rank indication and i1 are associated with Class A. The parameters (S_1, S_2) in rank 1 and rank 2 are defined as $(S_1, S_2) = (1, 1)$ for *CodebookConfig*=1 and $(S_1, S_2) = (2, 2)$ for *CodebookConfig*=2, 3 and 4. The parameters (S_1, S_2) in rank 3 and 4 are defined as $$(S_1, S_2) = (1, 1)$$ for $CodebookConfig=1$, $(S_1, S_2) = \left(\frac{O_1}{2}, \frac{O_2}{2}\right)$ for $CodebookConfig=2$, $(S_1, S_2) = \left(O_1, \frac{O_2}{2}\right)$ for $CodebookConfig=3$. $CodebookConfig=3, \left(S_{1}, S_{2}\right) = \left(O_{1}, \frac{O_{2}}{4}\right) \text{ for } CodebookConfig=4.$ Table 5.2.3.3.2-4l: UCI fields for channel quality information feedback for report of i1 and rank indication feedback (transmission mode 9/10 configured with higher layer parameter *eMIMO-Type* and *eMIMO-Type* is set to 'CLASS A' with codebook configuration (N_1, N_2, O_1, O_2) , where i1 and rank indication are associated with Class A) | | Bit width | | | | |-------------------------------|--|------------------------------------|---|--| | Field | Max 1 or 2 layers Max 4 or 8 layers | | ers | | | | Rank = 1 | Rank = 1 | Rank =3 | | | Wideband
first PMI
i1,1 | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\lceil \log_2(N_1O_1/S_1) \rceil$ | $\left\lceil \log_2 \left(\frac{N_1 O_1}{S_1} \times \left(2 + \left\lfloor \frac{9 - N_2}{8} \right\rfloor \right) \right) \right\rceil$ | | | Wideband
first PMI
i1,2 | $\left\lceil \log_2 \left(N_2 O_2 / S_2 \right) \right\rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | $\lceil \log_2(N_2O_2/S_2) \rceil$ | | | RI | 0 | 1 | | | The channel quality bits in Table 5.2.3.3.2-1 through Table 5.2.3.3.2-3C-1 form the bit sequence $a_0, a_1, a_2, a_3, ..., a_{A-1}$ with a_0 corresponding to the first bit of the first field in each of the tables, a_1 corresponding to the second bit of the first field in each of the tables, and a_{A-1} corresponding to the last bit in the last field in each of the tables. The first bit of each field corresponds to MSB and the last bit LSB. The RI feedback for one bit is mapped according to Table 5.2.2.6-5 with o_0^{RI} replaced by a_0 . The RI feedback for two bits is mapped according to Table 5.2.2.6-6 with o_0^{RI} , o_1^{RI} replaced by a_0, a_1 . The RI feedback for three bits is mapped according to Table 5.2.2.6-7 with o_0^{RI} , o_1^{RI} , o_2^{RI} replaced by a_0, a_1, a_2 . The same procedures for RI mapping are applied to CRI, replacing RI with CRI. When multiplexed with UL-SCH, the channel coding and multiplexing for the transmission configurations in Table 5.2.3.3.2-4, Table 5.2.3.3.2-4A, Table 5.2.3.3.2-4B, Table 5.2.3.3.2-4C, Table 5.2.3.3.2-4D, Table 5.2.3.3.2-4F, Table 5.2.3.3.2-4G and Table 5.2.3.3.2-4I is performed assuming RI transmission in subclause 5.2.2.6. All other transmission configurations in this subclause are coded and multiplexed assuming
CQI/PMI transmission in subclause 5.2.2.6. For transmission mode 9/10 configured with Class B CSI reporting and K>1, the number of antenna port in Table 5.2.3.3.2-4C, 5.2.3.3.2-4D refers to the maximum number of antenna ports of K CSI-RS resources configured for the CSI-process for the UE. For transmission mode 9/10 configured with Class B CSI reporting and K>1, and with *activatedResources*>1, the number of antenna ports in Table 5.2.3.3.2-4F and Table 5.2.3.3.2-4G refers to the maximum number of antenna ports of N CSI-RS resources activated for the CSI-process for the UE. ## 5.2.3.4 Channel coding for UCI channel quality information and HARQ-ACK This subclause defines the channel coding scheme for the simultaneous transmission of channel quality information and HARQ-ACK information in a subframe. When normal CP is used for uplink transmission, the channel quality information is coded according to subclause 5.2.3.3 with input bit sequence $a_0', a_1', a_2', a_3', ..., a_{A'-1}'$ and output bit sequence $b_0', b_1', b_2', b_3', ..., b_{B'-1}'$, where B' = 20. The HARQ-ACK bits are denoted by a_0'' in case one HARQ-ACK bit or a_0'', a_1'' in case two HARQ-ACK bits are reported per subframe. Each positive acknowledgement (ACK) is encoded as a binary '1' and each negative acknowledgement (NACK) is encoded as a binary '0'. The output of this channel coding block for normal CP is denoted by $b_0, b_1, b_2, b_3, ..., b_{B-1}$, where $$b_i = b'_i, i = 0,..., B'-1$$ In case one HARQ-ACK bit is reported per subframe: $$b_{B'} = a_0''$$ and $B = (B'+1)$ In case two HARQ-ACK bits are reported per subframe: $$b_{B'} = a_0'', b_{B'+1} = a_1''$$ and $B = (B'+2)$ When extended CP is used for uplink transmission, the channel quality information and the HARQ-ACK bits are jointly coded. The HARQ-ACK bits are denoted by a_0'' in case one HARQ-ACK bit or $\left[a_0'', a_1''\right]$ in case two HARQ-ACK bits are reported per subframe. The channel quality information denoted by $a'_0, a'_1, a'_2, a'_3, ..., a'_{A'-1}$ is multiplexed with the HARQ-ACK bits to yield the sequence $a_0, a_1, a_2, a_3, ..., a_{A-1}$ as follows $$a_i = a'_i, i = 0,..., A'-1$$ and $a_{A'} = a_0''$ and A = (A'+1) in case one HARQ-ACK bit is reported per subframe, or $a_{A'} = a_0''$, $a_{(A'+1)} = a_1''$ and A = (A'+2) in case two HARQ-ACK bits are reported per subframe. The sequence $a_0, a_1, a_2, a_3, ..., a_{A-1}$ is encoded according to subclause 5.2.3.3 to yield the output bit sequence $b_0, b_1, b_2, b_3, ..., b_{B-1}$ where B = 20. # 5.2.4 Uplink control information on PUSCH without UL-SCH data When control data are sent via PUSCH without UL-SCH data, the following coding steps can be identified: - Channel coding of control information - Control information mapping - Channel interleaver ## 5.2.4.1 Channel coding of control information Control data arrives at the coding unit in the form of channel quality information (CQI and/or PMI), HARQ-ACK and rank indication. Different coding rates for the control information are achieved by allocating different number of coded symbols for its transmission. When the UE transmits HARQ-ACK bits or rank indicator bits, it shall determine the number of coded symbols Q' for HARQ-ACK or rank indicator as $$Q' = \min \left[\left[\frac{O \cdot M_{sc}^{PUSCH} \cdot N_{symb}^{PUSCH} \cdot \beta_{offset}^{PUSCH}}{O_{cQI-MIN}} \right], N_{symb}^{UCI} \cdot M_{sc}^{PUSCH} \right]$$ where - O is the number of HARQ-ACK bits as defined in subclause 5.2.2.6, or rank indicator bits, - $O_{CQI-MIN}$ is the number of CQI bits including CRC bits assuming rank equals to 1 for all serving cells for which an aperiodic CSI report is triggered [3], - N_{symb}^{UCI} is 4 for PUSCH with subframe duration, N_{symb}^{UCI} is 2 for PUSCH with slot duration, or for Partial PUSCH Mode 2 or 3. N_{symb}^{UCI} is 1 for PUSCH with subslot duration, - $M_{\rm sc}^{\rm PUSCH}$ is the scheduled bandwidth for PUSCH transmission in the current subframe/slot/subslot expressed as a number of subcarriers in [2], and - $N_{\text{symb}}^{\text{PUSCH}}$ is the number of SC-FDMA symbols in the current PUSCH transmission subframe/slot/subslot given by $N_{\text{symb}}^{\text{PUSCH}} = \left(\tilde{N}_{\text{symb}}^{\text{UL}} N_{\text{SRS}} N_{\text{start}}^{\text{PUSCH}} N_{\text{end}}^{\text{PUSCH}} \right)$, where - $\tilde{N}_{\mathrm{symb}}^{\mathrm{UL}} = \left(N_{\mathrm{symb}}^{\mathrm{UL}} 1\right)$ for PUSCH with slot duration, or for Partial PUSCH Mode 2 or 3, or - $\widetilde{N}_{ ext{symb}}^{ ext{UL}} = N_{ ext{symb}}^{ ext{subslot}} N_{ ext{DMRS}}$ for PUSCH with subslot duration, - $N_{\mathrm{symb}}^{\mathit{subslot}}$ is the number of SC-FDMA symbols of the subslot as defined in subclause 4.1 of [2], - N_{DMRS} is the number of SC-FDMA symbols for DMRS of the subslot as defined in subclause 5.5.2.1.2 of [2] - otherwise $\widetilde{N}_{\text{symb}}^{\text{UL}} = 2(N_{\text{symb}}^{\text{UL}} 1)$. - N_{SRS} is equal to 1 - if UE is configured to send PUSCH and SRS in the same subframe/slot/subslot for the current subframe, or - if the PUSCH resource allocation for the current subframe/slot/subslot even partially overlaps with the cell-specific SRS subframe and bandwidth configuration defined in subclause 5.5.3 of [2], and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe, or - if the current subframe/slot/subslot is within a UE-specific type-1 SRS subframe as defined in Subclause 8.2 of [3], and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe, or - if the current subframe/slot/subslot is within a UE-specific type-0 SRS subframe as defined in subclause 8.2 of [3] and the UE is configured with multiple TAGs, and for PUSCH with slot/subslot duration if the current slot/subslot is the last slot/subslot in a subframe. - Otherwise N_{SRS} is equal to 0. - N_{start}^{PUSCH} is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH not starting from the beginning of the first symbol or the seventh symbol of the current subframe, otherwise is equal to 0. - $N_{\rm end}^{\it PUSCH}$ is equal to 1 when the UE configured for uplink transmission on a LAA SCell is indicated to transmit the PUSCH up to the second to last symbol of the current subframe and $N_{\it SRS}$ is equal to 0, otherwise is equal to 0. For HARQ-ACK information $Q_{ACK} = Q_m \cdot Q'$ and [$\beta_{offset}^{PUSCH} = \beta_{offset}^{HARQ-ACK} / \beta_{offset}^{CQI}$]. For UEs configured with no more than five DL cells, $\beta_{offset}^{HARQ-ACK}$ shall be determined according to [3] depending on the duration for the corresponding PUSCH (subframe/slot/subslot), and the beta offset indicator in PDCCH/SPDCCH with DCI format 7-0A/7-0B when the duration for the corresponding PUSCH is subslot. For UEs configured with more than five DL cells, $\beta_{offset}^{HARQ-ACK}$ shall be determined according to [3] depending on the number of HARQ-ACK feedback bits, the duration for the corresponding PUSCH (subframe/slot/subslot), and the beta offset indicator in PDCCH/SPDCCH with DCI format 7-0A/7-0B when the duration for the corresponding PUSCH is subslot. For rank indication or CRI, $Q_{RI} = Q_m \cdot Q'$, $Q_{CRI} = Q_m \cdot Q'$ and [$\beta_{offset}^{PUSCH} = \beta_{offset}^{RI} / \beta_{offset}^{CQI}$], where β_{offset}^{RI} shall be determined according to [3] depending on the duration for the corresponding PUSCH (subframe/slot/subslot), and the beta offset indicator in PDCCH/SPDCCH with DCI format 7-0A/7-0B when the duration for the corresponding PUSCH is subslot. For CQI and/or PMI information $Q_{CQI} = N_{symb}^{PUSCH} \cdot M_{sc}^{PUSCH} \cdot Q_m - Q_{RI}$ The channel coding and rate matching of the control data is performed according to subclause 5.2.2.6. The coded output sequence for channel quality information is denoted by $q_0, q_1, q_2, q_3, ..., q_{Q_{COI}-1}$, the coded vector sequence output for HARQ-ACK is denoted by \underline{q}_0^{ACK} , \underline{q}_1^{ACK} , \underline{q}_2^{ACK} ,..., $\underline{q}_{Q'_{ACK}-1}^{ACK}$ and the coded vector sequence output for rank indication or CRI, is denoted by \underline{q}_0^{RI} , \underline{q}_1^{RI} , \underline{q}_2^{RI} ,..., $\underline{q}_{Q'_{RI}-1}^{RI}$. # 5.2.4.2 Control information mapping The input are the coded bits of the channel quality information denoted by $q_0, q_1, q_2, q_3, ..., q_{Q_{CQ^i}-1}$. The output is denoted by $\underline{g}_0, \underline{g}_1, \underline{g}_2, \underline{g}_3, ..., \underline{g}_{H'-1}$, where $H = Q_{CQ^i}$ and $H' = H/Q_m$, and where \underline{g}_i , i = 0, ..., H'-1 are column vectors of length Q_m . H is the total number of coded bits allocated for CQI/PMI information. The control information shall be mapped as follows: Set j, k to 0 while $j < Q_{COI}$ $$\underline{g}_k = [q_j \dots q_{j+Q_m-1}]^T$$ $$j = j + Q_m$$ $$k = k + 1$$ end while #### 5.2.4.3 Channel interleaver The vector sequences $\underline{g}_0, \underline{g}_1, \underline{g}_2, ..., \underline{g}_{H'-1}, \underline{q}_0^{RI}, \underline{q}_1^{RI}, \underline{q}_2^{RI}, ..., \underline{q}_{Q'_{RI}-1}^{RI}$ and $\underline{q}_0^{ACK}, \underline{q}_1^{ACK}, \underline{q}_2^{ACK}, ..., \underline{q}_{Q'_{ACK}-1}^{ACK}$ are channel interleaved according subclause 5.2.2.8. The bits after channel interleaving are denoted by $h_0, h_1, h_2, ..., h_{H+O_{NI}-1}$. # 5.3 Downlink transport channels and control information If the UE is configured with a Master Cell Group (MCG) and Secondary Cell Group (SCG) [6], the procedures described in this clause are applied to the MCG and SCG, respectively. When the procedures are applied to a SCG, the term primary cell refers to the primary SCell (PSCell) of the SCG. If the UE is configured with a PUCCH SCell [6], the procedures described in this clause are
applied to the group of DL cells associated with the PUCCH SCell, respectively. When the procedures are applied to the group of DL cells associated with the PUCCH SCell, the term primary cell refers to the PUCCH SCell. If the UE is configured with a LAA SCell, the procedures described in this clause are applied assuming the LAA SCell is an FDD SCell. ## 5.3.1 Broadcast channel Figure 5.3.1-1 shows the processing structure for the BCH transport channel. Data arrives to the coding unit in the form of a maximum of one transport block every transmission time interval (TTI) of 40ms, or 160ms for a MBMS-dedicated cell. The following coding steps can be identified: - Add CRC to the transport block - Channel coding - Rate matching The coding steps for BCH transport channel are shown in the figure below. Figure 5.3.1-1: Transport channel processing for BCH # 5.3.1.1 Transport block CRC attachment Error detection is provided on BCH transport blocks through a Cyclic Redundancy Check (CRC). The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by $a_0, a_1, a_2, a_3, ..., a_{A-1}$, and the parity bits by $p_0, p_1, p_2, p_3, ..., p_{L-1}$. A is the size of the transport block and set to 24 bits and L is the number of parity bits. The lowest order information bit a_0 is mapped to the most significant bit of the transport block as defined in subclause 6.1.1 of [5]. The parity bits are computed and attached to the BCH transport block according to subclause 5.1.1 setting L to 16 bits. After the attachment, the CRC bits are scrambled according to the eNodeB transmit antenna configuration with the sequence $x_{ant,0}, x_{ant,1}, ..., x_{ant,15}$ as indicated in Table 5.3.1.1-1 to form the sequence of bits $c_0, c_1, c_2, c_3, ..., c_{K-1}$ where $$c_k = a_k$$ for $k = 0, 1, 2, ..., A-1$ $$c_k = (p_{k-A} + x_{ant,k-A}) \mod 2$$ for $k = A, A+1, A+2, ..., A+15$. Table 5.3.1.1-1: CRC mask for PBCH | N. J. Commission of the L. P. | PBCH CRC mask | |--|--| | Number of transmit antenna ports at eNodeB | $< x_{ant,0}, x_{ant,1},, x_{ant,15} >$ | | 1 | <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | | 2 | <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | | 4 | <0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1> | ## 5.3.1.2 Channel coding Information bits are delivered to the channel coding block. They are denoted by $c_0, c_1, c_2, c_3, ..., c_{K-1}$, where K is the number of bits, and they are tail biting convolutionally encoded according to subclause 5.1.3.1. After encoding the bits are denoted by $d_0^{(i)}$, $d_1^{(i)}$, $d_2^{(i)}$, $d_3^{(i)}$,..., $d_{D-1}^{(i)}$, with i = 0,1, and 2, and where D is the number of bits on the i-th coded stream, i.e., D = K. # 5.3.1.3 Rate matching A tail biting convolutionally coded block is delivered to the rate matching block. This block of coded bits is denoted by $d_0^{(i)}, d_1^{(i)}, d_2^{(i)}, d_3^{(i)}, \dots, d_{D-1}^{(i)}$, with i = 0,1, and 2, and where i is the coded stream index and D is the number of bits in each coded stream. This coded block is rate matched according to subclause 5.1.4.2. After rate matching, the bits are denoted by $e_0, e_1, e_2, e_3, ..., e_{E-1}$, where E is the number of rate matched bits as defined in subclause 6.6.1 of [2]. # 5.3.2 Downlink shared channel, Paging channel and Multicast channel Figure 5.3.2-1 shows the processing structure for each transport block for the DL-SCH, PCH and MCH transport channels. Data arrives to the coding unit in the form of a maximum of two transport blocks every transmission time interval (TTI) per DL cell. The following coding steps can be identified for each transport block of a DL cell: - Add CRC to the transport block - Code block segmentation and code block CRC attachment - Channel coding - Rate matching - Code block concatenation The coding steps for PCH and MCH transport channels, and for one transport block of DL-SCH are shown in the figure below. The same processing applies for each transport block on each DL cell. Figure 5.3.2-1: Transport block processing for DL-SCH, PCH and MCH # 5.3.2.1 Transport block CRC attachment Error detection is provided on transport blocks through a Cyclic Redundancy Check (CRC). The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by $a_0, a_1, a_2, a_3, ..., a_{A-1}$, and the parity bits by $p_0, p_1, p_2, p_3, ..., p_{L-1}$. A is the size of the transport block and L is the number of parity bits. The lowest order information bit a_0 is mapped to the most significant bit of the transport block as defined in subclause 6.1.1 of [5]. The parity bits are computed and attached to the transport block according to subclause 5.1.1 setting L to 24 bits and using the generator polynomial $g_{CRC24A}(D)$. # 5.3.2.2 Code block segmentation and code block CRC attachment The bits input to the code block segmentation are denoted by $b_0, b_1, b_2, b_3, ..., b_{B-1}$ where B is the number of bits in the transport block (including CRC). Code block segmentation and code block CRC attachment are performed according to subclause 5.1.2. The bits after code block segmentation are denoted by c_{r0} , c_{r1} , c_{r2} , c_{r3} ,..., $c_{r(K_r-1)}$, where r is the code block number and K_r is the number of bits for code block number r. ## 5.3.2.3 Channel coding Code blocks are delivered to the channel coding block. They are denoted by c_{r0} , c_{r1} , c_{r2} , c_{r3} ,..., $c_{r(K_r-1)}$, where r is the code block number, and K_r is the number of bits in code block number r. The total number of code blocks is denoted by C and each code block is individually turbo encoded according to subclause 5.1.3.2. After encoding the bits are denoted by $d_{r0}^{(i)}$, $d_{r1}^{(i)}$, $d_{r2}^{(i)}$, $d_{r3}^{(i)}$,..., $d_{r(D_r-1)}^{(i)}$, with i=0,1, and 2, and where D_r is the number of bits on the i-th coded stream for code block number r, i.e. $D_r = K_r + 4$. # 5.3.2.4 Rate matching Turbo coded blocks are delivered to the rate matching block. They are denoted by $d_{r0}^{(i)}$, $d_{r1}^{(i)}$, $d_{r2}^{(i)}$, $d_{r3}^{(i)}$,..., $d_{r(D_r-1)}^{(i)}$, with i=0,1, and 2, and where r is the code block number, i is the coded stream index, and D_r is the number of bits in each coded stream of code block number r. The total number of code blocks is denoted by C and each coded block is individually rate matched according to subclause 5.1.4.1. After rate matching, the bits are denoted by e_{r0} , e_{r1} , e_{r2} , e_{r3} ,..., $e_{r(E_r-1)}$, where r is the coded block number, and where E_r is the number of rate matched bits for code block number r. ## 5.3.2.5 Code block concatenation The bits input to the code block concatenation block are denoted by e_{r0} , e_{r1} , e_{r2} , e_{r3} ,..., $e_{r(E_r-1)}$ for r = 0,..., C - 1 and where E_r is the number of rate matched bits for the r-th code block. Code block concatenation is performed according to subclause 5.1.5. The bits after code block concatenation are denoted by f_0 , f_1 , f_2 , f_3 ,..., f_{G-1} , where G is the total number of coded bits for transmission. This sequence of coded bits corresponding to one transport block after code block concatenation is referred to as one codeword in subclause 6.3.1 of [2]. In case of multiple transport blocks per TTI, the transport block to codeword mapping is specified according to subclause 5.3.3.1.5, 5.3.3.1.5A or 5.3.3.1.5B, depending on the DCI Format. ## 5.3.3 Downlink control information A DCI transports downlink, uplink or sidelink scheduling information, requests for aperiodic CQI reports, LAA common information, notifications of MCCH change [6] or uplink power control commands for one cell and one RNTI. The RNTI is implicitly encoded in the CRC. Figure 5.3.3-1 shows the processing structure for one DCI. The following coding steps can be identified: - Information element multiplexing - CRC attachment - Channel coding - Rate matching The coding steps for DCI are shown in the figure below. Figure 5.3.3-1: Processing for one DCI ## 5.3.3.1 DCI formats The fields defined in the DCI formats below are mapped to the information bits a_0 to a_{A-1} as follows. Each field is mapped in the order in which it appears in the description, including the zero-padding bit(s), if any, with the first field mapped to the lowest order information bit a_0 and each successive field mapped to higher order information bits. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to a_0 . #### 5.3.3.1.1 Format 0 DCI format 0 is used for the scheduling of PUSCH in one UL cell. The following information is transmitted by means of the DCI format 0: - Carrier indicator 0 or 3 bits. This field is present according to the definitions in [3]. - Flag for format0/format1A differentiation 1 bit, where value 0 indicates format 0 and value 1 indicates format 1A - Frequency hopping flag 1 bit as defined in subclause 8.4 of [3]. This field is used as the MSB of the corresponding resource allocation field for resource allocation type 1. - Resource block assignment and hopping resource allocation $\left[\log_2(N_{RB}^{UL}(N_{RB}^{UL}+1)/2)\right]$ bits - For PUSCH hopping (resource allocation type 0 only): - N_{UL_hop} MSB bits are used to obtain the value of $\tilde{n}_{PRB}(i)$ as indicated in subclause 8.4 of [3] - $\left[\left[\log_2(N_{\text{RB}}^{\text{UL}}(N_{\text{RB}}^{\text{UL}} + 1)/2) \right] N_{\text{UL_hop}} \right]$ bits provide the resource allocation of the first slot in the UL subframe - For non-hopping PUSCH with resource allocation type 0: - $\left[\left[\log_2(N_{RB}^{UL}(N_{RB}^{UL} + 1)/2) \right] \right]$ bits
provide the resource allocation in the UL subframe as defined in subclause 8.1.1 of [3] - For non-hopping PUSCH with resource allocation type 1: - The concatenation of the frequency hopping flag field and the resource block assignment and hopping resource allocation field provides the resource allocation field in the UL subframe as defined in subclause 8.1.2 of [3] - Modulation and coding scheme and redundancy version 5 bits as defined in subclause 8.6 of [3] - New data indicator 1 bit - HARQ process number 4 bits if higher layer parameter *ul-TTI-Length* is configured for the cell, otherwise 3 bits (this field is present when higher layer parameter *shortProcessingTime* is configured for the cell and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3]) - Redundancy version 2 bits (this field is present when higher layer parameter *shortProcessingTime* is configured for the cell and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3]) - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - Cyclic shift for DM RS and OCC index and IFDMA configuration 3 bits as defined in subclause 5.5.2.1.1 of [2] (this field is not present when the format 0 CRC is scrambled by UL-SPS-V-RNTI) - UL SPS configuration index 3 bits as defined in subclause 9.2.1 of [3]. (this field is present when the format 0 CRC is scrambled by UL-SPS-V-RNTI) - UL index 2 bits as defined in subclauses 5.1.1.1, 7.2.1, 8 and 8.4 of [3] (this field is present only for TDD operation with uplink-downlink configuration 0, or TDD operation with uplink-downlink configuration 6 and special subframe configuration 10 when the higher layer parameter *symPUSCH-UpPts* or *shortProcessingTime* is configured for the cell and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3]) - Downlink Assignment Index (DAI) 2 bits as defined in subclause 7.3 of [3] (this field is present only for the following cases: 1) TDD primary cell and either TDD operation with uplink-downlink configurations 1-6 or FDD operation; or 2) EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3]) - CSI request -1, 2, 3, 4 or 5 bits as defined in subclause 7.2.1 of [3]. - If UEs are not configured with CSI-RS-ConfigNZPAperiodic or if UEs are configured with CSI-RS-ConfigNZPAperiodic and numberActivatedAperiodicCSI-RS-Resources=1 for each CSI process, the 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured by higher layers with more than one CSI process and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*, and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; the 3-bit field applies to UEs that are configured with more than five DL cells and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; otherwise the 1-bit field applies If UEs are configured with CSI-RS-ConfigNZPAperiodic and numberActivatedAperiodicCSI-RS-Resources>1 for at least one CSI process, the 4-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured by higher layers with more than one CSI process and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*, and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; the 5-bit field applies to UEs that are configured with more than five DL cells and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; otherwise the 3-bit field applies. - SRS request 0 or 1 bit. This field can only be present in DCI formats scheduling PUSCH which are mapped onto the UE specific search space given by the C-RNTI as defined in [3]. The interpretation of this field is provided in subclause 8.2 of [3] - Resource allocation type 1 bit. This field is only present if $N_{RB}^{UL} \le N_{RB}^{DL}$. The interpretation of this field is provided in subclause 8.1 of [3] - Cyclic Shift Field mapping table for DMRS 1 bit as defined in subclause 5.5.2.1.1 of [2]. The 1-bit field applies to UEs that are configured with higher layer parameter *UL-DMRS-IFDMA*, and when the corresponding DCI format is mapped onto the UE-specific search space given by the C-RNTI as defined in [3]. When the format 0 CRC is scrambled by SPS C-RNTI, this field is set to zero. If the number of information bits in format 0 mapped onto a given search space is less than the payload size of format 1A for scheduling the same serving cell and mapped onto the same search space (including any padding bits appended to format 1A), zeros shall be appended to format 0 until the payload size equals that of format 1A. ## 5.3.3.1.1A Format 0A DCI format 0A is used for the scheduling of PUSCH in a LAA SCell, or activating/releasing AUL transmission as defined in [3], or indicating AUL downlink feedback information (AUL-DFI) to a UE that is activated with AUL transmission. The following information is transmitted by means of the DCI format 0A: - Carrier indicator -0 or 3 bits. This field is present according to the definitions in [3]. If the format 0A DCI is scrambled by C-RNTI - Flag for format0A/format1A differentiation – 1 bit, where value 0 indicates format 0A and value 1 indicates format 1A; ## Else Flag for AUL differentiation – 1 bit, where value 0 indicates activating/releasing AUL transmission and value 1 indicates AUL-DFI. If the format 0A is used for the scheduling of PUSCH in a LAA SCell or activating/releasing AUL transmission for a UE, all the remaining fields are set as follows: - PUSCH trigger A 1 bit, where value 0 indicates non-triggered scheduling and value 1 indicates triggered scheduling as defined in subclause 8.0 of [3]. - Timing offset 4 bits as defined in subclause 8.0 of [3]. - When the PUSCH trigger A is set to 0, - The field indicates the absolute timing offset for the PUSCH transmission. - Otherwise, - The first two bits of the field indicate the timing offset, relative to the UL offset *l* as defined in clause 13A of [3], for the PUSCH transmission. - The last two bits of the field indicate the time window within which the scheduling of PUSCH via triggered scheduling is valid. - Resource block assignment 5 or 6 bits provide the resource allocation in the UL subframe as defined in subclause 8.1.4 of [3] - Modulation and coding scheme 5 bits as defined in subclause 8.6 of [3] - HARQ process number 4 bits. - New data indicator 1 bit - Redundancy version 2 bits as defined in subclause 8.6.1 of [3] - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - Cyclic shift for DM RS and OCC index 3 bits as defined in subclause 5.5.2.1.1 of [2] - CSI request 1, 2 or 3 bits as defined in subclause 7.2.1 of [3]. The 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured by higher layers with more than one CSI process and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*, and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; the 3-bit field applies to UEs that are configured with more than five DL cells and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; otherwise the 1-bit field applies - SRS request 1 bit. The interpretation of this field is provided in subclause 8.2 of [3] - Partial PUSCH Mode 2 bits as specified in Table 5.3.3.1.1A-3. This field is only present when at least one of *laa-PUSCH-Mode1*, *laa-PUSCH-Mode2*, and *laa-PUSCH-Mode3* is configured. The UE is not expected to be indicated with a partial PUSCH mode that is not configured by RRC. - PUSCH starting position 2 bits - as specified in Table 5.3.3.1.1A-2 if the 'Partial PUSCH Mode' field indicates Partial PUSCH Mode 2; - as specified in Table 5.3.3.1.1A-1 otherwise. - PUSCH ending symbol 1 bit, where - if the 'Partial PUSCH Mode' field indicates Partial PUSCH Mode 3, value 0 indicates symbol 6 of the subframe, and value 1 indicates symbol 3 of the subframe. - otherwise value 0 indicates the last symbol of the subframe and value 1 indicates the second to last symbol of the subframe. - Channel Access type 1 bit as defined in subclause 4.2 of [8] - Channel Access Priority Class 2 bits as defined in subclause 4.2 of [8] If the format 0A is used for indicating AUL-DFI to a UE that is activated with AUL transmission, all the remaining fields are set as follows: - HARQ-ACK bitmap 16 bits, where the order of the bitmap to HARQ process index mapping is such that HARQ
process indices are mapped in ascending order from MSB to LSB of the bitmap. For each bit of the bitmap, value 1 indicates ACK, and value 0 indicates NACK. - TPC command 2 bits as defined in subclause 5.1.1.1 of [3]. - All the remaining bits in format 0A are set to zero. If the number of information bits in format 0A mapped onto a given search space is less than the payload size of format 1A for scheduling the same serving cell and mapped onto the same search space (including any padding bits appended to format 1A), zeros shall be appended to format 0A until the payload size equals that of format 1A. Table 5.3.3.1.1A-1: PUSCH starting position | Value | PUSCH starting position | | |-------|-------------------------|--| | 00 | symbol 0 | | | 01 | 25µs in symbol 0 | | | 10 | (25+TA) µs in symbol 0 | | | 11 | symbol 1 | | Table 5.3.3.1.1A-2: PUSCH starting position in the second slot | Value | PUSCH starting position | | |-------|-------------------------|--| | 00 | symbol 7 | | | 01 | 25µs in symbol 7 | | | 10 | (25+TA) µs in symbol 7 | | | 11 | symbol 8 | | Table 5.3.3.1.1A-3: Partial PUSCH Mode | Value | Partial PUSCH Mode | Starting position | Ending symbol | |-------|----------------------|--|--| | 00 | Partial PUSCH Mode 0 | Indicated by 'PUSCH starting position' | The last symbol of the subframe or the | | | | according to Table 5.3.3.1.1A-1 | second to last symbol of the subframe | | 01 | Partial PUSCH Mode 1 | Indicated by 'PUSCH starting position' or at symbol 7, based on the result of the channel access procedure in 4.2.1 defined in [8] | The last symbol of the subframe or the second to last symbol of the subframe | | 10 | Partial PUSCH Mode 2 | Indicated by 'PUSCH starting position' according to Table 5.3.3.1.1A-2 | The last symbol of the subframe or the second to last symbol of the subframe | | 11 | Partial PUSCH Mode 3 | Indicated by 'PUSCH starting position' according to Table 5.3.3.1.1A-1 | Symbol 3 of the subframe or symbol 6 of the subframe | #### 5.3.3.1.1B Format 0B DCI format 0B is used for the scheduling of PUSCH in each of multiple subframes in a LAA SCell. The following information is transmitted by means of the DCI format 0B: - Carrier indicator – 0 or 3 bits. This field is present according to the definitions in [3]. - PUSCH trigger A 1 bit, where value 0 indicates non-triggered scheduling and value 1 indicates triggered scheduling as defined in subclause 8.0 of [3]. - Timing offset 4 bits as defined in subclause 8.0 of [3]. - When the PUSCH trigger A is set to 0, - The field indicates the absolute timing offset for the PUSCH transmission. - Otherwise, - The first two bits of the field indicate the timing offset, relative to the UL offset *l* as described in clause 13A of [3], for the PUSCH transmission. - The last two bits of the field indicate the time window within which the scheduling of PUSCH via triggered scheduling is valid. - Number of scheduled subframes 1 or 2 bits. The 1-bit field applies when *maxNumberOfSchedSubframes-Format0B-r14* is configured by higher layers to two, otherwise the 2-bit field applies. - Resource block assignment 5 or 6 bits provide the resource allocation in the UL subframe as defined in subclause 8.1.4 of [3]. - Modulation and coding scheme 5 bits as defined in subclause 8.6 of [3]. - HARQ process number 4 bits. The 4-bit applies to the first scheduled subframe, and the HARQ process numbers for other scheduled subframes are defined in subclause 8.0 of [3]. - New data indicator maxNumberOfSchedSubframes-Format0B-r14 bits. Each scheduled PUSCH corresponds to 1 bit. - Redundancy version *maxNumberOfSchedSubframes-Format0B-r14* bits. Each scheduled PUSCH corresponds to 1 bit as defined in subclause 8.6.1 of [3]. - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3]. - Cyclic shift for DM RS and OCC index 3 bits as defined in subclause 5.5.2.1.1 of [2]. - CSI request 1, 2 or 3 bits as defined in subclause 7.2.1 of [3]. The 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured by higher layers with more than one CSI process and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*, and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; the 3-bit field applies to UEs that are configured with more than five DL cells and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; otherwise the 1-bit field applies. - SRS request 2 bits. The interpretation of this field is provided in subclause 8.2 of [3]. - Partial PUSCH Mode 1 1 bit only present if *laa-PUSCH-Mode1* is configured by higher layer, and applicable to each of the scheduled subframe(s), except for the first scheduled subframe in case the 'Partial PUSCH Mode 2' field is value 1 and the last scheduled subframe in case the 'Partial PUSCH Mode 3' field is value 1, where - value 0 indicates the starting position of the PUSCH is determined following Partial PUSCH Mode 0 as defined in Table 5.3.3.1.1A-3; - value 1 indicates the starting position of the PUSCH of the first transmitted subframe is determined following Partial PUSCH Mode 1 as defined in Table 5.3.3.1.1A-3. - Partial PUSCH Mode 2 1 bit. This field is only present if *laa-PUSCH-Mode2* is configured by higher layer, and applicable to only the first scheduled subframe. - Partial PUSCH Mode 3 1 bit. This field is only present if *laa-PUSCH-Mode3* is configured by higher layer, and applicable to only the last scheduled subframe. - PUSCH starting position 2 bits - as specified in Table 5.3.3.1.1A-2 applicable to only the first scheduled subframe, if the 'Partial PUSCH Mode 2' field is value 1; - as specified in Table 5.3.3.1.1A-1 applicable to only the first scheduled subframe otherwise. - PUSCH ending symbol 1 bit, where - if the 'Partial PUSCH Mode 3' field is value 1, value 0 indicates symbol 6 of the last scheduled subframe, and value 1 indicates symbol 3 of the last scheduled subframe; - otherwise value 0 indicates the last symbol of the last scheduled subframe and value 1 indicates the second to last symbol of the last scheduled subframe. - Channel Access type 1 bit as defined in subclause 4.2 of [8]. - Channel Access Priority Class 2 bits as defined in subclause 4.2 of [8]. If the number of information bits in format 0B is equal to the payload size for DCI format 1, 2, 2A, 2B, 2C or 2D associated with the configured DL transmission mode in the same serving cell, one zero bit shall be appended to format 0B. ## 5.3.3.1.1C Format 0C DCI format 0C is used for the scheduling of PUSCH in one UL cell. The following information is transmitted by means of the DCI format 0C: - Flag for format 0C/format1A differentiation 1 bit, where value 0 indicates format 0C and value 1 indicates format 1A - Resource allocation type 1 bit. This field is only present if $N_{\rm RB}^{\rm UL} \le N_{\rm RB}^{\rm DL}$. The interpretation of this field is provided in subclause 8.1 of [3] - Frequency hopping flag 1 bit as defined in subclause 5.3.4 of [2]. This field is used as the MSB of the corresponding resource allocation field for resource allocation type 1. - Resource block assignment $\left[\log_2(N_{RB}^{UL}(N_{RB}^{UL}+1)/2)\right]$ bits - For PUSCH with resource allocation type 0: - $\left[\log_2\left(N_{\text{RB}}^{\text{UL}}\left(N_{\text{RB}}^{\text{UL}}+1\right)/2\right)\right]$ bits provide the resource allocation in the UL subframe as defined in subclause 8.1.1 of [3] - For non-hopping PUSCH with resource allocation type 1: - The concatenation of the frequency hopping flag field and the resource block assignment field provides the resource allocation field in the UL subframe as defined in subclause 8.1.2 of [3] - Modulation and coding scheme 5 bits as defined in subclause 8.6 of [3] - Repetition number 3 bits as defined in subclause 8.0 of [3] - HARQ process number 3 bits - New data indicator 1 bit - Redundancy version 2 bits - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - Cyclic shift for DM RS and OCC index 3 bits as defined in subclause 5.5.2.1.1 of [2] - UL index 2 bits as defined in subclauses 5.1.1.1, 7.2.1, 8 and 8.4 of [3] (this field is present only for TDD operation with uplink-downlink configuration 0) - Downlink Assignment Index (DAI) 2 bits as defined in subclause 7.3 of [3] (This field is present only for the following cases: 1) TDD primary cell and either TDD operation with uplink-downlink configurations 1-6 or FDD operation; or 2) EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - CSI request 1, 2 or 3 bits as defined in subclause 7.2.1 of [3]. The 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured by higher layers with more than one CSI process and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*, and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; the
3-bit field applies to UEs that are configured with more than five DL cells and when the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]; otherwise the 1-bit field applies - SRS request –1 bit. The interpretation of this field is provided in subclause 8.2 of [3] - Modulation order override 1 bit as defined in subclause 8.6.1 of [3] - Precoding information: number of bits as specified in Table 5.3.3.1.8-1. This field is present only if the higher layer parameter *transmissionModeUL* is configured to be transmission mode 2. Bit field as shown in Table 5.3.3.1.8-2 and Table 5.3.3.1.8-3, where only codeword 0 is enabled and the indexes corresponding to 1 layer are used. Note that TPMI for 2 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-1 of [2], and TPMI for 4 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-2, Table 5.3.3A.2-3, Table 5.3.3A.2-4 and Table 5.3.3A.2-5 of [2]. The transport block is mapped to codeword 0. If the number of information bits in format 0C mapped onto a given search space is less than the payload size of format 1A for scheduling the same serving cell and mapped onto the same search space (including any padding bits appended to format 1A), zeros shall be appended to format 0C until the payload size equals that of format 1A. ### 5.3.3.1.2 Format 1 DCI format 1 is used for the scheduling of one PDSCH codeword in one cell. The following information is transmitted by means of the DCI format 1: - Carrier indicator 0 or 3 bits. This field is present according to the definitions in [3]. - Resource allocation header (resource allocation type 0 / type 1) 1 bit as defined in subclause 7.1.6 of [3] If downlink bandwidth is less than or equal to 10 PRBs, there is no resource allocation header and resource allocation type 0 is assumed. - Resource block assignment: - For resource allocation type 0 as defined in subclause 7.1.6.1 of [3]: - $\left[N_{\text{RB}}^{\text{DL}}/P\right]$ bits provide the resource allocation - For resource allocation type 1 as defined in subclause 7.1.6.2 of [3]: - $\lceil \log_2(P) \rceil$ bits of this field are used as a header specific to this resource allocation type to indicate the selected resource blocks subset - 1 bit indicates a shift of the resource allocation span - $\left(N_{RB}^{DL}/P\right]$ $\left[\log_2(P)\right]$ 1) bits provide the resource allocation where the value of P depends on the number of DL resource blocks as indicated in subclause 7.1.6.1 of [3] - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - New data indicator 1 bit - Redundancy version 2 bits - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - MUST interference presence and power ratio 0 or 2 bits as defined in subclause 6.3.3 of [2]. This field is present only when the UE is configured for MUST-near operation and the number of antenna ports for CRS transmission in the serving cell is 2. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with CSI-RS-ConfigZPAperiodic. If the UE is not configured to decode PDCCH or EPDCCH with CRC scrambled by the C-RNTI and the number of information bits in format 1 is equal to that for format 0/1A, one bit of value zero shall be appended to format 1. If the UE is configured to decode PDCCH or EPDCCH with CRC scrambled by the C-RNTI and the number of information bits in format 1 is equal to that for format 0/1A for scheduling the same serving cell and mapped onto the UE specific search space given by the C-RNTI as defined in [3], one bit of value zero shall be appended to format 1. If the number of information bits in format 1 carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one or more zero bit(s) shall be appended to format 1 until the payload size of format 1 does not belong to one of the sizes in Table 5.3.3.1.2-1 and is not equal to that of format 0/1A mapped onto the same search space. Table 5.3.3.1.2-1: Ambiguous Sizes of Information Bits {12, 14, 16, 20, 24, 26, 32, 40, 44, 56} Table 5.3.3.1.2-2: Number of bits for Downlink Assignment Index | Number of bits | | |----------------|---| | 4 | For UEs configured by higher layers with <i>codebooksizeDetermination-r13</i> = <i>dai</i> and when a DCI format 1/1A/1B/1D/2/2A/2B/2C/2D/6-1A scheduling PDSCH is mapped onto the UE specific search space given by the C-RNTI as defined in [3], or UEs configured by higher layers with <i>codebooksizeDeterminationSTTI</i> = <i>dai</i> and when a DCI format 7-1A/7-1B/7-1C/7-1D/7-1E/7-1F/7-1G scheduling PDSCH is mapped onto the UE specific search space given by the C-RNTI as defined in [3], the 4-bit DAI consists of a 2-bit counter DAI and a 2-bit total DAI. - Counter DAI – 2 bits as defined in subclause 7.3 of [3] - Total DAI – 2 bits as defined in subclause 7.3 of [3] | | 2 | For UEs not configured with <i>codebooksizeDetermination-r13</i> = <i>dai</i> and <i>codebooksizeDeterminationSTTI-r15</i> = <i>dai</i> , or for UEs configured by higher layers with <i>codebooksizeDetermination-r13</i> = <i>dai</i> and when a DCI format scheduling PDSCH is not mapped onto the UE specific search space given by the C-RNTI as defined in [3], this field is present for FDD or TDD operation, for cases with TDD primary cell. If the UL/DL configuration of all TDD serving cells is same and the UE is not configured to decode PDCCH with CRC scrambled by <i>eimta-RNTI</i> , then this field only applies to serving cell with UL/DL configuration 1-6. If at least two TDD serving cells have different UL/DL configurations or the UE is configured to decode PDCCH with CRC scrambled by <i>eimta-RNTI</i> , then this field applies to a serving cell with DL-reference UL/DL configuration 1-6 as defined in subclause 10.2 of [3]. For UEs configured with EN-DC with FDD primary cell and higher layer parameter <i>subframeAssignment-r15</i> and a DCI format scheduling PDSCH is mapped onto the UE specific search space given by the C-RNTI as defined in [3], this field is present. | | 0 | For UEs not configured with codebooksizeDetermination-r13 = dai and codebooksizeDeterminationSTTI-r15=dai and not configured with EN-DC and higher layer parameter subframeAssignment-r15, or for UEs configured by higher layers with codebooksizeDetermination-r13 = dai and when a DCI format scheduling PDSCH is not mapped onto the UE specific search space given by the C-RNTI as defined in [3], this field is not present for FDD or TDD operation, for cases with FDD primary cell. For UEs configured with EN-DC with FDD primary cell and higher layer parameter subframeAssignment-r15 and a DCI format scheduling PDSCH is not mapped onto the UE specific search space given by the C-RNTI as defined in [3], this field is not present. | # 5.3.3.1.3 Format 1A DCI format 1A is used for the compact scheduling of one PDSCH codeword in one cell and random access procedure initiated by a PDCCH order. The DCI corresponding to a PDCCH order can be carried by PDCCH or EPDCCH. The following information is transmitted by means of the DCI format 1A: - Carrier indicator 0 or 3 bits. This field is present according to the definitions in [3]. - Flag for format0/format1A differentiation or flag for format0A/format1A differentiation 1 bit, where value 0 indicates format 0 or format 0A and value 1 indicates format 1A Format 1A is used for random access procedure initiated by a PDCCH order only if format 1A CRC is scrambled with C-RNTI and all the remaining fields are set as follows: - Localized/Distributed VRB assignment flag $-\ 1$ bit is set to '0' - Resource block assignment $\left[\log_2(N_{RB}^{DL}(N_{RB}^{DL}+1)/2)\right]$ bits,
where all bits shall be set to 1 - Preamble Index 6 bits - PRACH Mask Index 4 bits, [5] - All the remaining bits in format 1A for compact scheduling assignment of one PDSCH codeword are set to zero ### Otherwise, - Localized/Distributed VRB assignment flag – 1 bit as defined in 7.1.6.3 of [3] - Resource block assignment $\left[\log_2(N_{RB}^{DL}(N_{RB}^{DL}+1)/2)\right]$ bits as defined in subclause 7.1.6.3 of [3]: - For localized VRB: $$\left[\log_2(N_{\rm RB}^{\rm DL}(N_{\rm RB}^{\rm DL}+1)/2)\right]$$ bits provide the resource allocation - For distributed VRB: - If $N_{\rm RB}^{\rm DL}$ < 50 or if the format 1A CRC is scrambled by RA-RNTI, P-RNTI, SI-RNTI, SC-RNTI or G-RNTI: - $$\left[\log_2(N_{\rm RB}^{\rm DL}(N_{\rm RB}^{\rm DL}+1)/2)\right]$$ bits provide the resource allocation - Else - 1 bit, the MSB indicates the gap value, where value 0 indicates $N_{\rm gap} = N_{\rm gap,1}$ and value 1 indicates $N_{\rm gap} = N_{\rm gap,2}$ - $$(\left\lceil \log_2(N_{\rm RB}^{\rm DL}(N_{\rm RB}^{\rm DL}+1)/2) \right\rceil - 1)$$ bits provide the resource allocation, where $N_{\rm gap}$ is defined in [2]. - Modulation and coding scheme 5bits as defined in subclause 7.1.7 of [3]. The MSB is set to 0 when the UE is configured with *blindSubframePDSCH-Repetitions* set to TRUE and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3] and the repetition number is greater than 1 and the higher layer parameter *mcs-restrictionSubframePDSCH-Repetitions* is configured to 1. - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3], otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured and the corresponding DCI is not mapped onto the UE specific search space given by the C-RNTI as defined in [3]), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3]) - New data indicator 1 bit - If the format 1A CRC is scrambled by RA-RNTI, P-RNTI, SI-RNTI, SC-RNTI or G-RNTI: - If $N_{\rm RB}^{\rm DL} \ge 50$ and Localized/Distributed VRB assignment flag is set to 1 - the new data indicator bit indicates the gap value, where value 0 indicates $N_{\rm gap} = N_{\rm gap,1}$ and value 1 indicates $N_{\rm gap} = N_{\rm gap,2}$. - Else the new data indicator bit is reserved. - Else - The new data indicator bit as defined in [5] - Redundancy version 2 bits - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - If the format 1A CRC is scrambled by RA-RNTI, P-RNTI, or SI-RNTI: - The most significant bit of the TPC command is reserved. - The least significant bit of the TPC command indicates column N_{PRB}^{1A} of the TBS table defined of [3]. - If least significant bit is 0 then $N_{PRB}^{1A} = 2$ else $N_{PRB}^{1A} = 3$. - Else - The two bits including the most significant bit indicates the TPC command - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - SRS request 0 or 1 bit. This field can only be present in DCI formats scheduling PDSCH which are mapped onto the UE specific search space given by the C-RNTI as defined in [3]. The interpretation of this field is provided in subclause 8.2 of [3]. This field is not present when the DCI is used for scheduling PDSCH in a LAA SCell. - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - SRS timing offset 3 bits as defined in [3]. This field is present only when the DCI format is used for scheduling PDSCH in a LAA SCell and the UE is configured with uplink transmission on the LAA Scell. - Repetition number 2 bits as defined in Table 5.3.3.1.17-1, where the number of transmissions for PDSCH is given by higher layer parameter *maxNumber-SubframePDSCH-Repetitions* for the value of '11'. This field is present only when the UE is configured with higher layer parameter *blindSubframePDSCH-Repetitions* set to TRUE and the corresponding DCI is mapped onto the UE specific search space given by the C-RNTI as defined in [3]. If the UE is not configured to decode PDCCH or EPDCCH with CRC scrambled by the C-RNTI, and the number of information bits in format 1A is less than that of format 0, zeros shall be appended to format 1A until the payload size equals that of format 0. If the UE is configured to decode PDCCH or EPDCCH with CRC scrambled by the C-RNTI and the number of information bits in format 1A mapped onto a given search space is less than that of format 0 for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 1A until the payload size equals that of format 0, except when format 1A assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the UE is configured to decode PDCCH or EPDCCH with CRC scrambled by the C-RNTI and the number of information bits in format 1A mapped onto a given search space is less than that of format 0A for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 1A until the payload size equals that of format 0A, except when format 1A assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 1A carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one zero bit shall be appended to format 1A. When the format 1A CRC is scrambled with a RA-RNTI, P-RNTI, SI-RNTI, SC-RNTI or G-RNTI then the following fields among the fields above are reserved: - HARQ process number - Downlink Assignment Index (used for cases with TDD primary cell and either FDD operation or TDD operation, and is not present for cases with FDD primary cell and either FDD operation or TDD operation) ### 5.3.3.1.3A Format 1B DCI format 1B is used for the compact scheduling of one PDSCH codeword in one cell with precoding information. The following information is transmitted by means of the DCI format 1B: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - Localized/Distributed VRB assignment flag 1 bit as defined in subclause 7.1.6.3 of [3] - Resource block assignment $\left[\log_2(N_{\rm RB}^{\rm DL}(N_{\rm RB}^{\rm DL}+1)/2)\right]$ bits as defined in subclause 7.1.6.3 of [3] - For localized VRB: $$\log_2(N_{RB}^{DL}(N_{RB}^{DL}+1)/2)$$ bits provide the resource allocation - For distributed VRB: - For $N_{\rm RB}^{\rm DL}$ < 50 - $$\left[\log_2(N_{RB}^{DL}(N_{RB}^{DL}+1)/2)\right]$$ bits provide the resource allocation - For $$N_{\rm RB}^{\rm DL} \ge 50$$ - 1 bit, the MSB indicates the gap value, where value 0 indicates $N_{\rm gap} = N_{\rm gap,1}$ and value 1 indicates $$N_{\rm gap} = N_{\rm gap,2}$$ - $$\left(\left[\log_2(N_{\rm RB}^{\rm DL}(N_{\rm RB}^{\rm DL}+1)/2) \right] - 1 \right)$$ bits provide the resource allocation - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - New data indicator 1 bit - Redundancy version 2 bits - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - TPMI information for precoding number of bits as specified in Table 5.3.3.1.3A-1 TPMI information indicates which codebook index is used in Table 6.3.4.2.3-1 or Table 6.3.4.2.3-2 of [2] corresponding to the single-layer transmission. - PMI confirmation for precoding 1 bit as specified in Table 5.3.3.1.3A-2 - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with CSI-RS-ConfigZPAperiodic. If PMI confirmation indicates that the eNodeB has applied precoding according to PMI(s) reported by the UE, the precoding for the corresponding RB(s) in subframe n is according to the latest PMI(s) in an aperiodic CSI reported on or before subframe n-4. Table 5.3.3.1.3A-1: Number of bits for TPMI information | Number of antenna ports at eNodeB | Number of bits | |-----------------------------------|----------------| | 2 | 2 | | 4 | 4 | | Bit field mapped to index | Message | |---------------------------
---| | 0 | Precoding according to the indicated TPMI in the TPMI information field | | 1 | Precoding using the precoder(s) according to PMI(s) indicated in the latest aperiodic CSI report. For aperiodic CSI mode 2-2: - Precoding of scheduled resource blocks belonging to the reported preferred M subband(s), use precoder(s) according to the preferred M subband PMI(s) indicated in the latest aperiodic CSI report; - Precoding of scheduled resource blocks not belonging to the reported preferred M subband(s), precoding using a precoder according to the wideband PMI indicated in the latest aperiodic CSI report. | Table 5.3.3.1.3A-2: Content of PMI confirmation If the number of information bits in format 1B is equal to that for format 0/1A for scheduling the same serving cell and mapped onto the UE specific search space given by the C-RNTI as defined in [3], one bit of value zero shall be appended to format 1B. If the number of information bits in format 1B carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one or more zero bit(s) shall be appended to format 1B until the payload size of format 1B does not belong to one of the sizes in Table 5.3.3.1.2-1 and is not equal to that of format 0/1A mapped onto the same search space. ### 5.3.3.1.4 Format 1C DCI format 1C is used for very compact scheduling of one PDSCH codeword, notifying MCCH change [6], notifying SC-MCCH change and direct indication [6], reconfiguring TDD, and LAA common information. The following information is transmitted by means of the DCI format 1C: If the format 1C is used for very compact scheduling of one PDSCH codeword - 1 bit indicates the gap value, where value 0 indicates $N_{\rm gap} = N_{\rm gap,1}$ and value 1 indicates $N_{\rm gap} = N_{\rm gap,2}$ - For $N_{\rm RB}^{\rm DL}$ < 50, there is no bit for gap indication - Resource block assignment $\left\lceil \log_2 \left(N_{\text{VRB,gap1}}^{\text{DL}} / N_{\text{RB}}^{\text{step}} \right) \cdot \left(\left\lfloor N_{\text{VRB,gap1}}^{\text{DL}} / N_{\text{RB}}^{\text{step}} \right) + 1 \right) / 2 \right) \right\rceil$ bits as defined in 7.1.6.3 of [3] where $N_{\text{VRB,gap1}}^{\text{DL}}$ is defined in [2] and $N_{\text{RB}}^{\text{step}}$ is defined in [3] - Modulation and coding scheme 5 bits as defined in subclause 7.1.7 of [3] Else if the format 1C is used for notifying MCCH change and direct indication - Information for MCCH change notification 8 bits as defined in subclause 5.8.1.3 of [6] - Direct Indication information 2 bits provide direct indication of system information update and other fields, as defined in subclause 6.6a [6]. This field is only present for MBMS-dedicated cell or feMBMS/Unicast-mixed cell with $N_{\rm RB}^{\rm DL} \ge 15$. - Reserved information bits are added until the size is equal to that of format 1C used for very compact scheduling of one PDSCH codeword Else if the format 1C is used for notifying SC-MCCH change - Information for SC-MCCH change notification – 8 bits as defined in subclause 5.8a.1.3 of [6] - Reserved information bits are added until the size is equal to that of format 1C used for very compact scheduling of one PDSCH codeword Else if the format 1C is used for reconfiguring TDD - UL/DL configuration indication: UL/DL configuration number 1, UL/DL configuration number 2,..., UL/DL configuration number I Where each UL/DL configuration is 3 bits, $I = \left\lfloor \frac{L_{\text{format 1c}}}{3} \right\rfloor$, $L_{\text{format 1c}}$ is equal to the payload size of format 1C used for very compact scheduling of one PDSCH codeword. The parameter *eimta-UL-DL-ConfigIndex* provided by higher layers determines the index to the UL/DL configuration indication for a serving cell. - Zeros are added until the size is equal to that of format 1C used for very compact scheduling of one PDSCH codeword #### Else - Subframe configuration for LAA 4 bits as defined in clause 13A of [3] - UL duration and offset 5 bits as defined in clause 13A of [3]. The field only applies to a UE configured with uplink transmission on a LAA SCell - PUSCH trigger B − 1 bit as defined in subclause 8.0 of [3]. The field only applies to a UE configured with uplink transmission on a LAA SCell - COT sharing indication for AUL 1 bit as defined in 4.1.3 of [8]. The field only applies to a UE configured with uplink transmission on a LAA SCell - Reserved information bits are added until the size is equal to that of format 1C used for very compact scheduling of one PDSCH codeword ### 5.3.3.1.4A Format 1D DCI format 1D is used for the compact scheduling of one PDSCH codeword in one cell with precoding and power offset information. The following information is transmitted by means of the DCI format 1D: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - Localized/Distributed VRB assignment flag 1 bit as defined in subclause 7.1.6.3 of [3] - Resource block assignment $\left[\log_2(N_{\text{RB}}^{\text{DL}}(N_{\text{RB}}^{\text{DL}}+1)/2)\right]$ bits as defined in subclause 7.1.6.3 of [3]: - For localized VRB: $$\left[\log_2(N_{\rm RR}^{\rm DL}(N_{\rm RR}^{\rm DL}+1)/2)\right]$$ bits provide the resource allocation - For distributed VRB: - For $N_{\rm pp}^{\rm DL}$ < 50 - $$\left[\log_2(N_{\rm RB}^{\rm DL}(N_{\rm RB}^{\rm DL}+1)/2)\right]$$ bits provide the resource allocation - For $$N_{\rm RB}^{\rm DL} \ge 50$$ - 1 bit, the MSB indicates the gap value, where value 0 indicates $N_{\rm gap} = N_{\rm gap,1}$ and value 1 indicates $N_{\rm gap} = N_{\rm gap,2}$ - $$\left[\log_2(N_{\rm RB}^{\rm DL}(N_{\rm RB}^{\rm DL}+1)/2)\right]$$ -1) bits provide the resource allocation - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - New data indicator 1 bit - Redundancy version 2 bits - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - TPMI information for precoding number of bits as specified in Table 5.3.3.1.4A-1 TPMI information indicates which codebook index is used in Table 6.3.4.2.3-1 or Table 6.3.4.2.3-2 of [2] corresponding to the single-layer transmission. - Downlink power offset 1 bit as defined in subclause 7.1.5 of [3] - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with CSI-RS-ConfigZPAperiodic. Table 5.3.3.1.4A-1: Number of bits for TPMI information | Number of antenna ports at eNodeB | Number of bits | |-----------------------------------|----------------| | 2 | 2 | | 4 | 4 | If the number of information bits in format 1D is equal to that for format 0/1A for scheduling the same serving cell and mapped onto the UE specific search space given by the C-RNTI as defined in [3], one bit of value zero shall be appended to format 1D. If the number of information bits in format 1D carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one or more zero bit(s) shall be appended to format 1D until the payload size of format 1D does not belong to one of the sizes in Table 5.3.3.1.2-1 and is not equal to that of format 0/1A mapped onto the same search space. #### 5.3.3.1.5 Format 2 The following information is transmitted by means of the DCI format 2: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - Resource allocation header (resource allocation type 0 / type 1) 1 bit as defined in subclause 7.1.6 of [3] If downlink bandwidth is less than or equal to 10 PRBs, there is no resource allocation header and resource allocation type 0 is assumed. - Resource block assignment: - For resource allocation type 0 defined in subclause 7.1.6.1 of [3]: - $\left\lceil N_{\text{RB}}^{\text{DL}} / P \right\rceil$ bits provide the resource allocation - For resource allocation type 1 as defined in subclause 7.1.6.2 of [3]: - $\lceil \log_2(P) \rceil$ bits of this field are used as a header specific to this resource allocation type to indicate the selected resource blocks subset - 1 bit indicates a shift of the resource allocation span - $\left(N_{RB}^{DL}/P\right]$ $\left[\log_2(P)\right]$ 1) bits provide the resource allocation where the value of P depends on the number of DL resource blocks as indicated in subclause 7.1.6.1 of [3] - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured
for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - Transport block to codeword swap flag 1 bit In addition, for transport block 1: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits - MUST interference presence and power ratio 0 or 2 bits as defined in subclause 6.3.3 of [2]. This field is present only when the UE is configured for MUST-near operation and the number of antenna ports for CRS transmission in the serving cell is 2 In addition, for transport block 2: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits - MUST interference presence and power ratio 0 or 2 bits as defined in subclause 6.3.3 of [2]. This field is present only when the UE is configured for MUST-near operation and the number of antenna ports for CRS transmission in the serving cell is 2 Precoding information – number of bits as specified in Table 5.3.3.1.5-3 - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with CSI-RS-ConfigZPAperiodic. If both transport blocks are enabled, the transport block to codeword mapping is specified according to Table 5.3.3.1.5-1. In case one of the transport blocks is disabled as specified in subclause 7.1.7.2 of [3], the transport block to codeword swap flag is reserved and the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. Table 5.3.3.1.5-1: Transport block to codeword mapping (two transport blocks enabled) | transport block
to codeword
swap flag value | codeword 0
(enabled) | codeword 1
(enabled) | |---|-------------------------|-------------------------| | 0 | transport block 1 | transport block 2 | | 1 | transport block 2 | transport block 1 | Table 5.3.3.1.5-2: Transport block to codeword mapping (one transport block enabled) | transport block 1 | transport block 2 | codeword 0
(enabled) | codeword 1
(disabled) | |-------------------|-------------------|-------------------------|--------------------------| | enabled | disabled | transport block 1 | - | | disabled | enabled | transport block 2 | - | The interpretation of the precoding information field depends on the number of enabled codewords according to Table 5.3.3.1.5-4 and Table 5.3.3.1.5-5. Note that TPMI indicates which codebook index is used in Table 6.3.4.2.3-1 or Table 6.3.4.2.3-2 of [2]. For a single enabled codeword, indices 18 to 34 inclusive in Table 5.3.3.1.5-5 are only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two layers with closed-loop spatial multiplexing. If the number of information bits in format 2 carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one zero bit shall be appended to format 2. Some entries in Table 5.3.3.1.5-4 and Table 5.3.3.1.5-5 are used for indicating that the eNodeB has applied precoding according to PMI(s) reported by the UE. In these cases the precoding for the corresponding RB(s) in subframe n is according to the latest PMI(s) in an aperiodic CSI reported on or before subframe n-4. For aperiodic CSI mode 2-2: Precoding of scheduled resource blocks belonging to the reported preferred M subband(s) use precoder(s) according to the preferred M subband PMI indicated by the latest aperiodic CSI report; Precoding of scheduled resource blocks not belonging to the reported preferred M subband(s) use a precoder according to the wideband PMI indicated by the latest aperiodic CSI report. Table 5.3.3.1.5-3: Number of bits for precoding information | Number of antenna ports at eNodeB | Number of bits for precoding information | |-----------------------------------|--| | 2 | 3 | | 4 | 6 | Table 5.3.3.1.5-4: Content of precoding information field for 2 antenna ports | Bit field
mapped to
indexMessage02 layers: Transmit
diversity11 layer: Precoding
corresponding to
precoding vector
$\begin{bmatrix} 1 & 1 \end{bmatrix}^T / \sqrt{2}$ 21 layer: Precoding
corresponding to
precoder vector
$\begin{bmatrix} 1 & -1 \end{bmatrix}^T / \sqrt{2}$ 31 layer: Precoding
corresponding to31 layer: Precoding
corresponding to | Bit field
mapped
to index
0 | Message 2 layers: Precoding corresponding to precoder matrix $ \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} $ 2 layers: Precoding corresponding to precoder matrix $ \frac{1}{2}\begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} $ | |--|--------------------------------------|--| | diversity 1 | 1 | corresponding to precoder matrix $\frac{1}{2}\begin{bmatrix}1&1\\1&-1\end{bmatrix}$ 2 layers: Precoding corresponding to precoder matrix | | corresponding to precoding vector $\begin{bmatrix} 1 & 1 \end{bmatrix}^T / \sqrt{2}$ $2 \qquad \qquad \text{1 layer: Precoding corresponding to precoder vector } \\ \begin{bmatrix} 1 & -1 \end{bmatrix}^T / \sqrt{2}$ $3 \qquad \qquad \text{1 layer: Precoding}$ | | corresponding to
precoder matrix | | corresponding to precoder vector $ \begin{bmatrix} 1 & -1 \end{bmatrix}^T / \sqrt{2} $ 3 1 layer: Precoding | 2 | י י י | | | | 2 layers: Precoding
according to the latest
PMI report on
PUSCH, using the
precoder(s) indicated
by the reported
PMI(s) | | precoder vector $\begin{bmatrix} 1 & j \end{bmatrix}^T / \sqrt{2}$ | 3 | reserved | | 4 1 layer: Precoding corresponding to precoder vector $\begin{bmatrix} 1 & -j \end{bmatrix}^T / \sqrt{2}$ | 4 | reserved | | 5 1 layer: Precoding according to the latest PMI report on PUSCH, using the precoder(s) indicated by the reported PMI(s), if RI=2 was reported, using 1st column multiplied by √2 of all precoders implied by the reported PMI(s) | 5 | reserved | | 6 1 layer: Precoding according to the latest PMI report on PUSCH, using the precoder(s) indicated by the reported PMI(s), if RI=2 was reported, using 2 nd column multiplied by √2 of all precoders implied by the reported PMI(s) 7 reserved | 6 | reserved | Table 5.3.3.1.5-5: Content of precoding information field for 4 antenna ports | Codev
Codev | Codeword 0 enabled, Codeword 0 enabled Codeword 1 enabled | | wo codewords:
deword 0 enabled,
deword 1 enabled | |---------------------------------|---|---------------------------------|---| | Bit field
mapped to
index | Message | Bit field
mapped
to index | Message | | 0 | 4 layers: Transmit diversity | 0 | 2 layers: TPMI=0 | | 1 | 1 layer: TPMI=0 | 1 | 2 layers: TPMI=1 | | 2 | 1 layer: TPMI=1 | • | • | | • | : | 15 | 2 layers: TPMI=15 | | 16 | 1 layer: TPMI=15 | 16 | 2 layers: Precoding
according to the latest
PMI report on PUSCH
using the precoder(s)
indicated by the reported
PMI(s) | | 17 | 1 layer: Precoding according to the latest PMI report on PUSCH using the precoder(s) indicated by the reported PMI(s) | 17 | 3 layers: TPMI=0 | | 18 | 2 layers: TPMI=0 | 18 | 3 layers: TPMI=1 | | 19 | 2 layers: TPMI=1 | • | • | | • | : | 32 | 3 layers: TPMI=15 | | 33 | 2 layers: TPMI=15 | 33 | 3 layers: Precoding
according to the latest
PMI report on PUSCH
using the precoder(s)
indicated by the reported
PMI(s) | | 34 | 2 layers: Precoding
according to the latest
PMI report on PUSCH
using the precoder(s)
indicated by the reported
PMI(s) | 34 | 4 layers: TPMI=0 | | 35 – 63 | reserved | 35 | 4 layers: TPMI=1 | | | | • | : | | | | 49 | 4 layers: TPMI=15 | | | | 50 | 4 layers: Precoding according to the latest PMI report on PUSCH using the precoder(s) indicated by the reported PMI(s) | | | | 51 – 63 | Reserved | # 5.3.3.1.5A Format 2A The following information is transmitted by means of the DCI format 2A: - Carrier indicator -0 or 3 bits. The field is present according to the definitions in [3]. - Resource allocation header (resource allocation type 0 / type 1) 1 bit as defined in subclause 7.1.6 of [3] If downlink bandwidth is less than or equal to 10 PRBs, there is no resource allocation header and resource allocation type 0 is assumed. - Resource block assignment: - For resource allocation type 0 as
defined in subclause 7.1.6.1 of [3] - $\left[N_{RB}^{DL}/P\right]$ bits provide the resource allocation - For resource allocation type 1 as defined in subclause 7.1.6.2 of [3] - $\lceil \log_2(P) \rceil$ bits of this field are used as a header specific to this resource allocation type to indicate the selected resource blocks subset - 1 bit indicates a shift of the resource allocation span - $\left(N_{RB}^{DL}/P\right]$ $\left[\log_2(P)\right]$ 1) bits provide the resource allocation where the value of P depends on the number of DL resource blocks as indicated in subclause 7.1.6.1 of [3] - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - Transport block to codeword swap flag 1 bit In addition, for transport block 1: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits In addition, for transport block 2: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits - Precoding information number of bits as specified in Table 5.3.3.1.5A-1 - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. MUST interference presence and power ratio 0 or 2 bits as defined in subclause 6.3.3 of [2]. This field is present only when the UE is configured for MUST-near operation and the number of antenna ports for CRS transmission in the serving cell is 2. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with *CSI-RS-ConfigZPAperiodic*. If both transport blocks are enabled, the transport block to codeword mapping is specified according to Table 5.3.3.1.5-1. In case one of the transport blocks is disabled, the transport block to codeword swap flag is reserved and the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. The precoding information field is defined according to Table 5.3.3.1.5A-2. For a single enabled codeword, index 1 in Table 5.3.3.1.5A-2 is only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two layers with large delay CDD. For transmission with 2 antenna ports, the precoding information field is not present. The number of transmission layers is equal to 2 if both codewords are enabled; transmit diversity is used if codeword 0 is enabled while codeword 1 is disabled. If the number of information bits in format 2A carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one zero bit shall be appended to format 2A. Table 5.3.3.1.5A-1: Number of bits for precoding information | Number of antenna ports at eNodeB | Number of bits for precoding information | |-----------------------------------|--| | 2 | 0 | | 4 | 2 | Table 5.3.3.1.5A-2: Content of precoding information field for 4 antenna ports | One codeword:
Codeword 0 enabled,
Codeword 1 disabled | | Two codewords:
Codeword 0 enabled,
Codeword 1 enabled | | |---|---|---|---| | Bit field
mapped to
index | Message | Bit field
mapped
to index | Message | | 0 | 4 layers: Transmit diversity | 0 | 2 layers: precoder
cycling with large delay
CDD | | 1 | 2 layers: precoder cycling with large delay CDD | 1 | 3 layers: precoder cycling with large delay CDD | | 2 | reserved | 2 | 4 layers: precoder cycling with large delay CDD | | 3 | reserved | 3 | reserved | ### 5.3.3.1.5B Format 2B The following information is transmitted by means of the DCI format 2B: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - Resource allocation header (resource allocation type 0 / type 1) 1 bit as defined in subclause 7.1.6 of [3] If downlink bandwidth is less than or equal to 10 PRBs, there is no resource allocation header and resource allocation type 0 is assumed. - Resource block assignment: - For resource allocation type 0 as defined in subclause 7.1.6.1 of [3] - $\left[N_{\rm RB}^{\rm DL}/P\right]$ bits provide the resource allocation - For resource allocation type 1 as defined in subclause 7.1.6.2 of [3] - $\lceil \log_2(P) \rceil$ bits of this field are used as a header specific to this resource allocation type to indicate the selected resource blocks subset - 1 bit indicates a shift of the resource allocation span - $$\left(N_{RB}^{DL}/P\right]$$ - $\left[\log_2(P)\right]$ - 1) bits provide the resource allocation where the value of P depends on the number of DL resource blocks as indicated in subclause [7.1.6.1] of [3] - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - Scrambling identity—1 bit as defined in subclause 6.10.3.1 of [2] - SRS request [0-1] bit. This field can only be present for TDD operation and if present is defined in subclause 8.2 of [3] In addition, for transport block 1: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits In addition, for transport block 2: - Modulation and coding scheme -5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - MUST interference presence and modulation (This field is present only when the UE is configured for MUST operation) 0 or 2 bits. The field is defined in Table 5.3.3.1.5C-3, where the interfering antenna port is in {7,8} excluding the antenna port for transmission. The interfering antenna port has the same scrambling identity as indicated in the "Scrambling identity" field. - SRS timing offset 3 bits as defined in [3]. This field is present only when the DCI format is used for scheduling PDSCH in a LAA SCell and the UE is configured with uplink transmission on the LAA SCell. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with *CSI-RS-ConfigZPAperiodic*. If both transport blocks are enabled, the number of layers equals two; transport block 1 is mapped to codeword 0; and transport block 2 is mapped to codeword 1. Antenna ports 7 and 8 are used for spatial multiplexing. In case one of the transport blocks is disabled, the number of layers equals one; the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2; and the antenna port for single-antenna port transmission is according to Table 5.3.3.1.5B-1. Table 5.3.3.1.5B-1: Antenna port for single-antenna port transmission (one transport block disabled) | New data indicator of the disabled transport block | Antenna port | |--|--------------| | 0 | 7 | | 1 | 8 | If the number of information bits in format 2B carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one zero bit shall be appended to format 2B. ### 5.3.3.1.5C Format 2C The following information is transmitted by means of the DCI format 2C: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - Resource allocation header (resource allocation type 0 / type 1) 1 bit as defined in subclause 7.1.6 of [3] If downlink bandwidth is less than or equal to 10 PRBs, there is no resource allocation header and resource allocation type 0 is assumed. - Resource block assignment: - For resource allocation type 0 as defined in subclause 7.1.6.1 of [3] - $-\left[N_{\rm RB}^{\rm DL}/P\right]$ bits provide the resource allocation - For resource allocation type 1 as defined in subclause 7.1.6.2 of [3] - $\lceil \log_2(P) \rceil$ bits of this field are used as a header specific to this resource allocation
type to indicate the selected resource blocks subset - 1 bit indicates a shift of the resource allocation span - $\left(N_{RB}^{DL}/P\right]$ $\left[\log_2(P)\right]$ 1) bits provide the resource allocation where the value of P depends on the number of DL resource blocks as indicated in subclause [7.1.6.1] of [3] - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - Antenna port(s), scrambling identity and number of layers 3 bits as specified in Table 5.3.3.1.5C-1 where n_{SCID} is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2], or 4 bits as specified in Table 5.3.3.1.5C-2 where n_{SCID} is the scrambling identity for antenna ports 7, 8, 11 and 13 defined in subclause 6.10.3.1 of [2] when higher layer parameter $d_{mrs-tableAlt}$ is set to 1, or 1 bit as specified in Table 5.3.3.1.5C-6 where n_{SCID} is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2] when higher layer parameter semiOpenLoop is configured. - SRS request [0-1] bit. This field can only be present for TDD operation and if present is defined in subclause 8.2 of [3] In addition, for transport block 1: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits In addition, for transport block 2: - Modulation and coding scheme – 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - MUST interference presence, antenna port, and modulation (this field is only present when the UE is configured for MUST operation) 2 bits when higher layer parameter *dmrs-tableAlt* is not configured or is set to 0, 4 bits when higher layer parameter *k-max* is set to 1 and *dmrs-tableAlt* =1, or 6 bits when *k-max* is set to 3 and *dmrs-tableAlt* =1. For the 2 and 6 bit fields, two bits are defined for each interfering antenna port in Table 5.3.3.1.5C-3, where a single interfering antenna port is in {7,8} excluding the antenna port for transmission, and multiple interfering antenna ports are in {7,8,11,13} excluding the antenna ports for transmission. For the 6 bit field, the two or four LSB are reserved in the case of two or one interfering antenna port, respectively. Each pair of the used bits in 6 bit field from MSB to LSB is associated with one interfering antenna port in increasing order of port index. For the 4 bit field, two MSB are defined for interference presence and antenna port in Table 5.3.3.1.5C-4 where the single interfering antenna port is one of {7,8,11,13} excluding the antenna port for transmission, and two LSB are defined for interference modulation in 5.3.3.1.5C-5. The interfering antenna port(s) have the same scrambling identity and OCC length as indicated in the "Antenna port(s), scrambling identity and number of layers" field. - SRS timing offset 3 bits as defined in [3]. This field is present only when the DCI format is used for scheduling PDSCH in a LAA SCell and the UE is configured with uplink transmission on the LAA SCell. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with CSI-RS-ConfigZPAperiodic. If both transport blocks are enabled; transport block 1 is mapped to codeword 0; and transport block 2 is mapped to codeword 1. When higher layer parameter *semiOpenLoop* is configured, antenna ports 7 and 8 are used for spatial multiplexing. In case one of the transport blocks is disabled; the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. For the single enabled codeword, Value = 4, 5, 6 in Table 5.3.3.1.5C-1 or Value = 12, 13,14 in Table 5.3.3.1.5C-2 are only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two, three or four layers, respectively. When higher layer parameter *semiOpenLoop* is configured, antenna ports 7 and 8 are used for transmit diversity. If the number of information bits in format 2C carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one zero bit shall be appended to format 2C. Table 5.3.3.1.5C-1: Antenna port(s), scrambling identity and number of layers indication | One Codeword: Codeword 0 enabled, Codeword 1 disabled | | Two Codewords:
Codeword 0 enabled,
Codeword 1 enabled | | | |---|--------------------------|---|------------------------------|--| | Value | Message | Value Message | | | | 0 | 1 layer, port 7, nscid=0 | 0 | 2 layers, ports 7-8, nscid=0 | | | 1 | 1 layer, port 7, nscid=1 | 1 | 2 layers, ports 7-8, nsciD=1 | | | 2 | 1 layer, port 8, nscip=0 | 2 | 3 layers, ports 7-9 | | | 3 | 1 layer, port 8, nscip=1 | 3 | 4 layers, ports 7-10 | | | 4 | 2 layers, ports 7-8 | 4 | 5 layers, ports 7-11 | | | 5 | 3 layers, ports 7-9 | 5 | 6 layers, ports 7-12 | | | 6 | 4 layers, ports 7-10 | 6 | 7 layers, ports 7-13 | | | 7 | Reserved | 7 | 8 layers, ports 7-14 | | Table 5.3.3.1.5C-2: Antenna port(s), scrambling identity and number of layers indication | One Codeword:
Codeword 0 enabled,
Codeword 1 disabled | | Two Codewords:
Codeword 0 enabled,
Codeword 1 enabled | | |---|--|---|--| | Value | Message | Value | Message | | 0 | 1 layer, port 7, <i>n_{SCID}</i> =0 (OCC=2) | 0 | 2 layer, port 7-8, n _{SCID} =0 (OCC=2) | | 1 | 1 layer, port 7, nscid=1 (OCC=2) | 1 | 2 layer, port 7-8, n _{SCID} =1 (OCC=2) | | 2 | 1 layer, port 8, <i>n_{SCID}</i> =0 (OCC=2) | 2 | 2 layer, port 7-8, n _{SCID} =0 (OCC=4) | | 3 | 1 layer, port 8, <i>nsciD</i> =1 (OCC=2) | 3 | 2 layer, port 7-8, n _{SCID} =1 (OCC=4) | | 4 | 1 layer, port 7, n _{SCID} =0 (OCC=4) | 4 | 2 layer, port 11,13, nsciD=0 (OCC=4) | | 5 | 1 layer, port 7, nscid=1 (OCC=4) | 5 | 2 layer, port 11,13, n _{SCID} =1 (OCC=4) | | 6 | 1 layer, port 8, <i>nsciD</i> =0 (OCC=4) | 6 | 3 layer, port 7-9 | | 7 | 1 layer, port 8, <i>n_{SCID}</i> =1 (OCC=4) | 7 | 4 layer, port 7-10 | | 8 | 1 layer, port 11, nscid=0 (OCC=4) | 8 | 5 layer, port 7-11 | | 9 | 1 layer, port 11, nscid=1 (OCC=4) | 9 | 6 layer, port 7-12 | | 10 | 1 layer, port 13, <i>n_{SCID}</i> =0 (OCC=4) | 10 | 7 layers, ports 7-13 | | 11 | 1 layer, port 13, <i>n_{SCID}</i> =1 (OCC=4) | 11 | 8 layers, ports 7-14 | | 12 | 2 layers, ports 7-8 | 12 | 3 layers, ports 7, 8,11, n _{SCID} =0 | | | | | (OCC=4) | | 13 | 3 layers, ports 7-9 | 13 | 4 layers, ports 7, 8,11,13, <i>n_{SCID}</i> =0 | | | | | (OCC=4) | | 14 | 4 layers, ports 7-10 | 14 | Reserved | | 15 | Reserved | 15 | Reserved | Table 5.3.3.1.5C-3: Content of MUST interference presence and modulation for an antenna port | Bit field | Message | |-----------|--| | 00 | No interference presence | | 01 | Interference is present with QPSK | | 10 | Interference is present with 16QAM | | 11 | Interference is present with 64QAM or 256QAM | Table 5.3.3.1.5C-4: Content of MUST interference presence and antenna port | Bit field | Message | | |-----------|--------------------------|--| | 00 | No interference presence | | | 01 | First antenna port | | | 10 | Second antenna port | | | 11 | Third antenna port | | Table 5.3.3.1.5C-5: Content of MUST interference modulation | Bit field | Message | |-----------|---------| | 00 | QPSK | | 01 | 16QAM | | 10 | 64QAM | | 11 | 256QAM | Table 5.3.3.1.5C-6: Antenna port(s), scrambling identity and number of layers indication | One Codeword:Codeword 0 enabled, Codeword 1 disabled Or | | | | |---|--|--|--| | Two Codewo | Two Codewords:Codeword 0 enabled, Codeword 1 enabled | | | | Value | Value Message | | | | 0 | 2 layer, port 7-8, nsciD=0 | | | | 1 | 2 layer, port 7-8, n _{SCID} =1 | | | ## 5.3.3.1.5D Format 2D The following information is transmitted by means of the DCI format 2D: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - Resource allocation header (resource allocation type 0 / type 1) 1 bit as defined in subclause 7.1.6 of [3] If downlink bandwidth is less than or equal to 10 PRBs, there is no resource allocation header and resource allocation type 0 is assumed. - Resource block assignment: - For resource allocation type 0 as defined in subclause 7.1.6.1 of [3] - $\left[N_{RR}^{DL}/P\right]$ bits provide the resource allocation - For resource allocation type 1 as defined in subclause 7.1.6.2 of [3] - $\lceil \log_2(P) \rceil$ bits of this field are used as a header specific to this resource allocation
type to indicate the selected resource blocks subset - 1 bit indicates a shift of the resource allocation span - $\left(N_{\text{RB}}^{\text{DL}}/P\right]$ $\left[\log_2(P)\right]$ 1) bits provide the resource allocation where the value of P depends on the number of DL resource blocks as indicated in subclause [7.1.6.1] of [3] - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. - HARQ process number 4 bits if higher layer parameter *dl-TTI-Length* is configured for the cell, otherwise 3 bits (for cases with FDD primary cell not configured with EN-DC and higher layer parameter *subframeAssignment-r15*), 4 bits (for cases with TDD primary cell, or for cases with EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - Antenna port(s), scrambling identity and number of layers 3 bits as specified in Table 5.3.3.1.5C-1 (or Table 5.3.3.1.5D-1 for two codewords when higher layer parameter *qcl-Operation* is set to 'typeC') where *n_{SCID}* is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2], or 4 bits as specified in Table 5.3.3.1.5C-2 (or Table 5.3.3.1.5D-2 for two codewords when higher layer parameter *qcl-Operation* is set to 'typeC') where *n_{SCID}* is the scrambling identity for antenna ports 7, 8, 11 and 13 defined in subclause 6.10.3.1 of [2] when higher layer parameter *dmrs-tableAlt* is set to 1, or 1 bit as specified in Table 5.3.3.1.5C-6 where *n_{SCID}* is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2] when higher layer parameter *semiOpenLoop* is configured. - SRS request [0-1] bit. This field can only be present for TDD operation and if present is defined in subclause 8.2 of [3] In addition, for transport block 1: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits In addition, for transport block 2: - Modulation and coding scheme 5 bits if higher layer parameter *altMCS-Table* is not configured, 6 bits otherwise, as defined in subclause 7.1.7 of [3] - New data indicator 1 bit - Redundancy version 2 bits - PDSCH RE Mapping and Quasi-Co-Location Indicator 2 bits as defined in subclauses 7.1.9 and 7.1.10 of [3] - HARQ-ACK resource offset (this field is present when this format is carried by EPDCCH. This field is not present when this format is carried by PDCCH) 2 bits as defined in subclause 10.1 of [3]. The 2 bits are set to 0 when this format is carried by EPDCCH on a secondary cell, or when this format is carried by EPDCCH on the primary cell scheduling PDSCH on a secondary cell and the UE is configured with PUCCH format 3 for HARQ-ACK feedback. - MUST interference presence, antenna port, and modulation (this field is only present when the UE is configured for MUST operation) 2 bits when higher layer parameter *dmrs-tableAlt* is not configured or is set to 0, 4 bits when higher layer parameter *k-max* is set to 1 and *dmrs-tableAlt* =1, 6 bits when *k-max* is set to 3 and *dmrs-tableAlt* =1. For the 2 and 6 bit fields, two bits are defined for each interfering antenna port in Table 5.3.3.1.5C-3, where a single interfering antenna port is in {7,8} excluding the antenna port for transmission, and multiple interfering antenna ports are in {7,8,11,13} excluding the antenna ports for transmission. For the 6 bit field, the two or four LSB are reserved in the case of two or one interfering antenna port, respectively. Each pair of the used bits in 6 bit field from MSB to LSB is associated with one interfering antenna port in increasing order of port index. For the 4 bit field, two MSB are defined for interference presence and antenna port in Table 5.3.3.1.5C-4 where the single interfering antenna port is one of {7,8,11,13} excluding the antenna port for transmission, and two LSB are defined for interference modulation in 5.3.3.1.5C-5. The interfering antenna port(s) have the same scrambling identity and OCC length as indicated in the "Antenna port(s), scrambling identity and number of layers" field. - SRS timing offset 3 bits as defined in [3]. This field is present only when the DCI format is used for scheduling PDSCH in a LAA SCell and the UE is configured with uplink transmission on the LAA SCell. - Aperiodic zero-power CSI-RS resource indicator for PDSCH RE Mapping 2 bits as defined in subclauses 7.1.9 and 7.2.7 of [3]. This field is present only when the UE is configured with *CSI-RS-ConfigZPAperiodic*. If both transport blocks are enabled; transport block 1 is mapped to codeword 0; and transport block 2 is mapped to codeword 1. When higher layer parameter *semiOpenLoop* is configured, antenna ports 7 and 8 are used for spatial multiplexing. In case one of the transport blocks is disabled; the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. For the single enabled codeword, Value = 4, 5, 6 in Table 5.3.3.1.5C-1 or Value = 12, 13,14 in Table 5.3.3.1.5C-2 are only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two, three or four layers, respectively. When higher layer parameter *semiOpenLoop* is configured, antenna ports 7 and 8 are used for transmit diversity. If the number of information bits in format 2D carried by PDCCH belongs to one of the sizes in Table 5.3.3.1.2-1, one zero bit shall be appended to format 2D. Table 5.3.3.1.5D-1: Antenna port(s), scrambling identity and number of layers indication | Two Codewords | | | | |---------------|---|--|--| | Value | Message | | | | 0 | 2 layers, ports 7-8, n_{SCID} =0 | | | | 1 | 2 layers, ports 7-8, n _{SCID} =1 | | | | 2 | 3 layers, ports 7,9,10 | | | | 3 | 4 layers, ports 7-10 | | | | 4 | 5 layers, ports 7,8,9,10,12 | | | | 5 | 6 layers, ports 7,8,11,9,10,12 | | | | 6 | 7 layers, ports 7,8,11,9,10,12,14 | | | | 7 | 8 layers, ports 7,8,11,13,9,10,12,14 | | | Table 5.3.3.1.5D-2: Antenna port(s), scrambling identity and number of layers indication | Two Codewords | | | | |---------------|---|--|--| | Value | Message | | | | 0 | 2 layer, port 7-8, <i>n_{SCID}</i> =0 (OCC=2) | | | | 1 | 2 layer, port 7-8, n _{SCID} =1 (OCC=2) | | | | 2 | 2 layer, port 7-8, <i>n_{SCID}</i> =0 (OCC=4) | | | | 3 | 2 layer, port 7-8, n _{SCID} =1 (OCC=4) | | | | 4 | 2 layer, port 11,13, n _{SCID} =0 (OCC=4) | | | | 5 | 2 layer, port 11,13, n _{SCID} =1 (OCC=4) | | | | 6 | 3 layers, ports 7,9,10 | | | | 7 | 4 layers, ports 7-10 | | | | 8 | 5 layers, ports 7,8,9,10,12 | | | | 9 | 6 layers, ports 7,8,11,9,10,12 | | | | 10 | 7 layers, ports 7,8,11,9,10,12,14 | | | | 11 | 8 layers, ports 7,8,11,13,9,10,12,14 | | | | 12 | Reserved | | | | 13 | Reserved | | | | 14 | Reserved | | | | 15 | Reserved | | | # 5.3.3.1.6 Format 3 DCI format 3 is used for the transmission of TPC commands for PUCCH, SPUCCH corresponding to semi-persistently scheduled PDSCH with slot/subslot duration, semi-persistently scheduled PUSCH with slot/subslot duration, and PUSCH with subframe durationw ith 2-bit power adjustments. The following information is transmitted by means of the DCI format 3: - TPC command number 1, TPC command number 2,..., TPC command number N where $$N = \left\lfloor \frac{L_{\text{format 0}}}{2} \right\rfloor$$, and where $L_{\text{format 0}}$ is equal to the payload size of format 0 before CRC attachment when format 0 is mapped onto the common search space, including any padding bits appended to format 0. The parameter *tpc-Index* or *tpc-Index-PUCCH-SCell-r13* provided by higher layers determines the index to the TPC command for a given UE. If $$\left| \frac{L_{\text{format 0}}}{2} \right| < \frac{L_{\text{format 0}}}{2}$$, a bit of value zero shall be appended to format 3. For BL/CE UE, $L_{\text{format 0}}$ and format 0 are replaced by $L_{\text{format 6-0A}}$ and format 6-0A, respectively, in the description above. # 5.3.3.1.7 Format 3A DCI format 3A is used for the transmission of TPC commands for PUCCH, SPUCCH corresponding to semi-persistently scheduled PDSCH with slot/subslot duration, semi-persistently scheduled PUSCH with slot/subslot duration, and PUSCH with subframe duration with single bit power adjustments. The following information is transmitted by means of the DCI format 3A: - TPC command number 1, TPC command number 2,..., TPC command number M where $M = L_{\text{format 0}}$, and where $L_{\text{format 0}}$ is equal to the payload size of format 0 before CRC attachment when format 0 is mapped onto the common search space, including any padding bits appended to format 0. The parameter *tpc-Index* or *tpc-Index-PUCCH-SCell-r13* provided by higher layers determines the index to the TPC command for a given UE. For BL/CE UE, L_{format 0} and format 0 are replaced by L_{format 6-0A} and format 6-0A, respectively, in the description above. ### 5.3.3.1.7A Format 3B DCI format 3B is used for the transmission of a group of TPC commands for SRS transmissions by one or more UEs. Along with a TPC command, a SRS request may also be transmitted. The following information is transmitted by means of the DCI format 3B: - block number 1, block number 2, ..., block number B where the starting position of a block is determined by the parameter *startingBitOfFormat3B* provided by higher layers for the UE configured with the block. If a UE has more than 5 TDD SCells configured without PUCCH and without PUSCH, one block is configured for the UE by higher layers, with the following fields defined for the block: - SRS request 0 or 2 bits. This field is present, and if present interpreted, according to the definition in Subclause 8.2 of [3]. - TPC command number 1, TPC command number 2, ..., TPC command number n The *n* TPC command
fields correspond to a set of *n* TDD SCells without PUCCH and without PUSCH, with the set indicated by the SRS request field or determined by higher layers if there is no SRS request field present. A TPC command field has 1 bit if the parameter *fieldTypeFormat3B* provided by higher layers has a value of 1 or 3, and 2 bits if the parameter *fieldTypeFormat3B* has a value of 2 or 4. If a UE has up to 5 TDD SCells configured without PUCCH and without PUSCH, one or more blocks each corresponding to an SCell are configured by higher layers, with the following fields defined for each block: - SRS request 0, 1, or 2 bits, where the number of bits is determined in Subclause 8.2 of [3]. - TPC command 1 or 2 bits, where the number of bits is 1 if the parameter *fieldTypeFormat3B* provided by higher layers has a value of 1 or 3, and 2 if the parameter *fieldTypeFormat3B* has a value of 2 or 4. The size of format 3B is equal to $L_{\text{format 0}}$, and where $L_{\text{format 0}}$ is equal to the payload size of format 0 before CRC attachment when format 0 is mapped onto the common search space, including any padding bits appended to format 0. ## 5.3.3.1.8 Format 4 DCI format 4 is used for the scheduling of PUSCH in one UL cell with multi-antenna port transmission mode, The following information is transmitted by means of the DCI format 4: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - Resource block assignment $\max \left[\left\lceil \log_2(N_{RB}^{UL}(N_{RB}^{UL}+1)/2) \right\rceil, \left\lceil \log_2\left(\left\lceil N_{RB}^{UL}/P+1 \right\rceil \right) \right\rceil \right] \right]$ bits, where *P* is the UL RBG size as defined in subclause 8.1.2 of [3] - For resource allocation type 0: - The $\left(\left\lceil \log_2(N_{RB}^{UL}(N_{RB}^{UL}+1)/2) \right\rceil \right)$ LSBs provide the resource allocation in the UL subframe as defined in subclause 8.1.1 of [3] - For resource allocation type 1: - The $\left\lceil \log_2 \left(\left\lceil N_{RB}^{UL} / P + 1 \right\rceil \right) \right\rceil$ LSBs provide the resource allocation in the UL subframe as defined in subclause 8.1.2 of [3] - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - Cyclic shift for DM RS and OCC index and IFDMA configuration 3 bits as defined in subclause 5.5.2.1.1 of [2] - UL index 2 bits as defined in subclauses 5.1.1.1, 7.2.1, 8 and 8.4 of [3] (this field is present only for TDD operation with uplink-downlink configuration 0, or TDD operation with uplink-downlink configuration 6 and special subframe configuration 10 when the higher layer parameter *symPUSCH-UpPts* or *shortProcessingTime* is configured for the cell) - Downlink Assignment Index (DAI) 2 bits as defined in subclause 7.3 of [3] (this field is present only for the following cases: 1) TDD primary cell and either TDD operation with uplink-downlink configurations 1-6 or FDD operation; or 2) EN-DC with FDD primary cell and higher layer parameter *subframeAssignment-r15* configured) - CSI request 1, 2, 3, 4 or 5 bits as defined in subclause 7.2.1 of [3]. If UEs are not configured with CSI-RS-ConfigNZPAperiodic or if UEs are configured with CSI-RS-ConfigNZPAperiodic and numberActivatedAperiodicCSI-RS-Resources=1 for each CSI process, the 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell; - UEs that are configured by higher layers with more than one CSI process; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*; the 3-bit field applies to UEs that are configured with more than five DL cells; otherwise the 1-bit field applies If UEs are configured with CSI-RS-ConfigNZPAperiodic and numberActivatedAperiodicCSI-RS-Resources>1 for at least one CSI process, the 4-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell; - UEs that are configured by higher layers with more than one CSI process; - UEs that are configured with two CSI measurement sets by higher layers with the parameter csi-MeasSubframeSet; the 5-bit field applies to UEs that are configured with more than five DL cells; otherwise the 3-bit field applies. - SRS request 2 bits as defined in subclause 8.2 of [3] - Resource allocation type 1 bit as defined in subclause 8.1 of [3] - Cyclic Shift Field mapping table for DMRS 1 bit as defined in subclause 5.5.2.1.1 of [2]. The 1-bit field applies to UEs that are configured with higher layer parameter *UL-DMRS-IFDMA*. - HARQ process number 4 bits if higher layer parameter *ul-TTI-Length* is configured for the cell, otherwise 3 bits (this field is present when higher layer parameter *shortProcessingTime* is configured for the cell) - Redundancy version 2 bits (this field is present when higher layer parameter *shortProcessingTime* is configured for the cell) In addition, for transport block 1: - Modulation and coding scheme and redundancy version 5 bits as defined in subclause 8.6 of [3] - New data indicator 1 bit In addition, for transport block 2: - Modulation and coding scheme and redundancy version 5 bits as defined in subclause 8.6 of [3] - New data indicator 1 bit Precoding information and number of layers: number of bits as specified in Table 5.3.3.1.8-1. Bit field as shown in Table 5.3.3.1.8-2 and Table 5.3.3.1.8-3. Note that TPMI for 2 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-1 of [2], and TPMI for 4 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-2, Table 5.3.3A.2-3, Table 5.3.3A.2-4 and Table 5.3.3A.2-5 of [2]. If both transport blocks are enabled, transport block 1 is mapped to codeword 0; and transport block 2 is mapped to codeword 1. In case one of the transport blocks is disabled, the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. For a single enabled codeword, indices 24 to 39 in Table 5.3.3.1.8-3 are only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two layers. Table 5.3.3.1.8-1: Number of bits for precoding information | Number of antenna ports at UE | Number of bits for precoding information | |-------------------------------|--| | 2 | 3 | | 4 | 6 | Table 5.3.3.1.8-2: Content of precoding information field for 2 antenna ports | One codeword: Codeword 0 enabled Codeword 1 disabled | | Two codewords:
Codeword 0 enabled
Codeword 1 enabled | | |--|-----------------|--|------------------| | Bit field mapped to index | Message | Bit field mapped to index | Message | | 0 | 1 layer: TPMI=0 | 0 | 2 layers: TPMI=0 | | 1 | 1 layer: TPMI=1 | 1-7 | reserved | | 2 | 1 layer: TPMI=2 | | | | | | | | | 5 | 1 layer: TPMI=5 | | | | 6-7 | reserved | | | Table 5.3.3.1.8-3: Content of precoding information field for 4 antenna ports | One codeword:
Codeword 0 enabled
Codeword 1 disabled | | Two codewords:
Codeword 0 enabled
Codeword 1 enabled | | |--|-------------------|--|-------------------| | Bit field mapped to index | Message | Bit field mapped to index | Message | | 0 | 1 layer: TPMI=0 | 0 | 2 layers: TPMI=0 | | 1 | 1 layer: TPMI=1 | 1 | 2 layers: TPMI=1 | | | | | | | 23 | 1 layer: TPMI=23 | 15 | 2 layers: TPMI=15 | | 24 | 2 layers: TPMI=0 | 16 | 3 layers: TPMI=0 | | 25 | 2 layers: TPMI=1 | 17 | 3 layers: TPMI=1 | | | | | | | 39 | 2 layers: TPMI=15 | 27 | 3 layers: TPMI=11 | | 40-63 | reserved | 28 | 4 layers: TPMI=0 | | | | 29 - 63 | Reserved | If the number of information bits in format 4 is equal to the payload size for DCI format 1, 2, 2A, 2B, 2C or 2D associated with the configured DL transmission mode in the same serving cell, one zero bit shall be appended to format 4. ### 5.3.3.1.8A Format 4A DCI format 4 is used for the scheduling of PUSCH in a LAA SCell with multi-antenna port transmission mode, or activating/releasing AUL transmission for a UE with multi-antenna port transmission mode, or indicating AUL-DFI to a UE that is activated with AUL transmission with multi-antenna port transmission mode. The following information is transmitted by means of the DCI format 4A: - Carrier indicator – 0 or 3 bits. The field is present according to the definitions in [3]. If the format 4A DCI is scrambled by C-RNTI - PUSCH trigger A – 1 bit, where value 0 indicates non-triggered scheduling and value 1 indicates triggered scheduling as defined in subclause 8.0 of [3]; #### Else - Flag for AUL differentiation – 1 bit, where value 0 indicates activating/releasing AUL transmission and value 1 indicates AUL-DFI. If the format 4A is used for the scheduling of PUSCH in a LAA SCell or activating/releasing AUL transmission for a UE, all the remaining fields are set as follows: - Timing offset 4 bits as defined in subclause 8.0 of [3]. - When the PUSCH trigger A is set to 0, - The field indicates the absolute timing offset for the PUSCH transmission. - Otherwise, - The first two bits of the field indicate the timing offset, relative to the UL offset *l* as defined in clause 13A of [3], for the PUSCH transmission. - The last two bits of the field indicate the time window within which the scheduling of PUSCH via triggered scheduling is valid. - Resource block assignment 5 or 6 bits provide the resource allocation in the UL subframe as defined in subclause 8.1.4 of [3]. - HARQ process number 4 bits. - Redundancy version 2 bits as defined in subclause 8.6.1 of [3] which is common for both transport blocks. - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - Cyclic shift for DM RS and OCC index 3 bits as defined in subclause
5.5.2.1.1 of [2] - CSI request 1, 2 or 3 bits as defined in subclause 7.2.1 of [3]. The 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell; - UEs that are configured by higher layers with more than one CSI process; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*; the 3-bit field applies to UEs that are configured with more than five DL cells; otherwise the 1-bit field applies. - SRS request 2 bits as defined in subclause 8.2 of [3]. - Partial PUSCH Mode 2 bits as specified in Table 5.3.3.1.1A-3. This field is only present when at least one of *laa-PUSCH-Mode1*, *laa-PUSCH-Mode2*, and *laa-PUSCH-Mode3* is configured. The UE is not expected to be indicated with a partial PUSCH mode that is not configured by RRC. - PUSCH starting position 2 bits - as specified in Table 5.3.3.1.1A-2 if the 'Partial PUSCH Mode' field indicates Partial PUSCH Mode 2; - as specified in Table 5.3.3.1.1A-1 otherwise. - PUSCH ending symbol 1 bit, where - if the 'Partial PUSCH Mode' field indicates Partial PUSCH Mode 3, value 0 indicates symbol 6 of the subframe, and value 1 indicates symbol 3 of the subframe. - otherwise value 0 indicates the last symbol of the subframe and value 1 indicates the second to last symbol of the subframe. - Channel Access type 1 bit as defined in subclause 4.2 of [8]. - Channel Access Priority Class 2 bits as defined in subclause 4.2 of [8]. # In addition, for transport block 1: - Modulation and coding scheme and redundancy version 5 bits as defined in subclause 8.6 of [3]. - New data indicator 1 bit. #### In addition, for transport block 2: - Modulation and coding scheme and redundancy version – 5 bits as defined in subclause 8.6 of [3]. - New data indicator – 1 bit. Precoding information and number of layers: number of bits as specified in Table 5.3.3.1.8-1. Bit field as shown in Table 5.3.3.1.8-2 and Table 5.3.3.1.8-3. Note that TPMI for 2 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-1 of [2], and TPMI for 4 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-2, Table 5.3.3A.2-3, Table 5.3.3A.2-4 and Table 5.3.3A.2-5 of [2]. If both transport blocks are enabled, transport block 1 is mapped to codeword 0; and transport block 2 is mapped to codeword 1. In case one of the transport blocks is disabled, the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. For a single enabled codeword, indices 24 to 39 in Table 5.3.3.1.8-3 are only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two layers. If the format 4A is used for indicating AUL-DFI to a UE that is activated with AUL transmission, all the remaining fields are set as follows: - HARQ-ACK bitmap 32 bits, where the order of the bitmap to HARQ process index mapping is such that HARQ process indices are mapped in ascending order from MSB to LSB of the bitmap. For each bit of the bitmap, value 1 indicates ACK, and value 0 indicates NACK. - TPC command 2 bits as defined in subclause 5.1.1.1 of [3]. - Precoding information: number of bits as specified in Table 5.3.3.1.8-1. Bit field as shown in Table 5.3.3.1.8-2 and Table 5.3.3.1.8-3. Note that TPMI for 2 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-1 of [2], and TPMI for 4 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-2, Table 5.3.3A.2-3, Table 5.3.3A.2-4 and Table 5.3.3A.2-5 of [2]. If both transport blocks are enabled, transport block 1 is mapped to codeword 0; and transport block 2 is mapped to codeword 1. In case one of the transport blocks is disabled, the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. For a single enabled codeword, indices 24 to 39 in Table 5.3.3.1.8-3 are only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two layers. - All the remaining bits in format 4A are set to zero. If the number of information bits in format 4A is equal to the payload size for DCI format 1, 2, 2A, 2B, 2C or 2D associated with the configured DL transmission mode in the same serving cell, one zero bit shall be appended to format 4A. ## 5.3.3.1.8B Format 4B DCI format 4B is used for the scheduling of PUSCH with multi-antenna port transmission mode in each of multiple subframes in a LAA SCell. The following information is transmitted by means of the DCI format 4B: - Carrier indicator 0 or 3 bits. The field is present according to the definitions in [3]. - PUSCH trigger A 1 bit, where value 0 indicates non-triggered scheduling and value 1 indicates triggered scheduling as defined in subclause 8.0 of [3]. - Timing offset 4 bits as defined in subclause 8.0 of [3]. - When the PUSCH trigger A is set to 0, - The field indicates the absolute timing offset for the PUSCH transmission. - Otherwise, - The first two bits of the field indicate the timing offset, relative to the UL offset *l* as defined in clause 13A of [3], for the PUSCH transmission. - The last two bits of the field indicate the time window within which the scheduling of PUSCH via triggered scheduling is valid. - Number of scheduled subframes 1 or 2 bits. The 1-bit field applies when *maxNumberOfSchedSubframes-Format4B-r14* is configured by higher layers to two, otherwise the 2-bit field applies. - Resource block assignment 5 or 6 bits provide the resource allocation in the UL subframe as defined in subclause 8.1.4 of [3]. - HARQ process number 4 bits. The 4-bit applies to the first scheduled subframe, and the HARQ process numbers for other scheduled subframes are defined in subclause 8.0 of [3]. - Redundancy version *maxNumberOfSchedSubframes-Format4B-r14* bits. Each scheduled PUSCH corresponds to 1 bit as defined in subclause 8.6.1 of [3]. Redundancy version is common for both transport blocks. - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3]. - Cyclic shift for DM RS and OCC index 3 bits as defined in subclause 5.5.2.1.1 of [2]. - CSI request 1, 2 or 3 bits as defined in subclause 7.2.1 of [3]. The 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell; - UEs that are configured by higher layers with more than one CSI process; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*; the 3-bit field applies to UEs that are configured with more than five DL cells; otherwise the 1-bit field applies. - SRS request 2 bits as defined in subclause 8.2 of [3]. - Partial PUSCH Mode 1 1 bit only present if *laa-PUSCH-Mode1* is configured by higher layer, and applicable to each of the scheduled subframe(s), except for the first scheduled subframe in case the 'Partial PUSCH Mode 2' field is value 1 and the last scheduled subframe in case the 'Partial PUSCH Mode 3' field is value 1, where - value 0 indicates the starting position of the PUSCH is determined following Partial PUSCH Mode 0 as defined in Table 5.3.3.1.1A-3; - value 1 indicates the starting position of the PUSCH of the first transmitted subframe is determined following Partial PUSCH Mode 1 as defined in Table 5.3.3.1.1A-3. - Partial PUSCH Mode 2 1 bit. This field is only present if *laa-PUSCH-Mode2* is configured by higher layer, and applicable to only the first scheduled subframe. - Partial PUSCH Mode 3 1 bit. This field is only present if *laa-PUSCH-Mode3* is configured by higher layer, and applicable to only the last scheduled subframe. - PUSCH starting position 2 bits - as specified in Table 5.3.3.1.1A-2 applicable to only the first scheduled subframe, if the 'Partial PUSCH Mode 2' field is value 1; - as specified in Table 5.3.3.1.1A-1 applicable to only the first scheduled subframe otherwise. - PUSCH ending symbol 1 bit, where - if the 'Partial PUSCH Mode 3' is value 1, value 0 indicates symbol 6 of the last scheduled subframe, and value 1 indicates symbol 3 of the last scheduled subframe; - otherwise value 0 indicates the last symbol of the last scheduled subframe and value 1 indicates the second to last symbol of the last scheduled subframe. - Channel Access type 1 bit as defined in subclause 4.2 of [8]. - Channel Access Priority Class 2 bits as defined in subclause 4.2 of [8]. #### In addition, for transport block 1: - Modulation and coding scheme and redundancy version 5 bits as defined in subclause 8.6 of [3]. - New data indicator *maxNumberOfSchedSubframes-Format4B-r14* bits. Each scheduled PUSCH corresponds to 1 bit. In addition, for transport block 2: - Modulation and coding scheme and redundancy version 5 bits as defined in subclause 8.6 of [3]. - New data indicator *maxNumberOfSchedSubframes-Format4B-r14* bits. Each scheduled PUSCH corresponds to 1 bit Precoding information and number of layers: number of bits as specified in Table 5.3.3.1.8-1. Bit field as shown in Table 5.3.3.1.8-2 and Table 5.3.3.1.8-3. Note that TPMI for 2 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-1 of [2], and TPMI for 4 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-2, Table 5.3.3A.2-3, Table 5.3.3A.2-4 and Table 5.3.3A.2-5 of [2]. If both transport blocks are enabled, transport block 1 is mapped to codeword 0; and transport block 2 is mapped to codeword 1. In case one of the transport blocks is disabled, the transport block to codeword mapping is specified according to Table 5.3.3.1.5-2. For a single enabled codeword, indices 24 to 39 in Table 5.3.3.1.8-3 are only supported for retransmission of the corresponding transport block if that transport block has previously been transmitted using two layers. If the number of information bits in format 4B is equal to the payload size for DCI format 1, 2, 2A, 2B, 2C or 2D
associated with the configured DL transmission mode in the same serving cell, one zero bit shall be appended to format 4B. #### 5.3.3.1.9 Format 5 DCI format 5 is used for the scheduling of PSCCH, and also contains several SCI format 0 fields used for the scheduling of PSSCH. The following information is transmitted by means of the DCI format 5: - Resource for PSCCH 6 bits as defined in subclause 14.2.1 of [3] - -TPC command for PSCCH and PSSCH 1 bit as defined in subclauses 14.2.1 and 14.1.1 of [3] - SCI format 0 fields according to 5.4.3.1.1: - Frequency hopping flag - Resource block assignment and hopping resource allocation - Time resource pattern If the number of information bits in format 5 mapped onto a given search space is less than the payload size of format 0 for scheduling the same serving cell, zeros shall be appended to format 5 until the payload size equals that of format 0 including any padding bits appended to format 0. ## 5.3.3.1.9A Format 5A DCI format 5A is used for the scheduling of PSCCH, and also contains several SCI format 1 fields used for the scheduling of PSSCH. The following information is transmitted by means of the DCI format 5A: - Carrier indicator –3 bits. This field is present according to the definitions in [3]. - Lowest index of the subchannel allocation to the initial transmission $\left\lceil \log_2(N_{\text{subchannel}}^{\text{SL}}) \right\rceil$ bits as defined in subclause 14.1.1.4C of [3]. - SCI format 1 fields according to 5.4.3.1.2: - Frequency resource location of initial transmission and retransmission. - Time gap between initial transmission and retransmission. - SL index 2 bits as defined in subclause 14.2.1 of [3] (this field is present only for cases with TDD operation with uplink-downlink configuration 0-6). When the format 5A CRC is scrambled with SL-SPS-V-RNTI, the following fields are present: - SL SPS configuration index 3 bits as defined in subclause 14.2.1 of [3]. - Activation/release indication 1 bit as defined in subclause 14.2.1 of [3]. If the number of information bits in format 5A mapped onto a given search space is less than the payload size of format 0 mapped onto the same search space, zeros shall be appended to format 5A until the payload size equals that of format 0 including any padding bits appended to format 0. If the format 5A CRC is scrambled by SL-V-RNTI and if the number of information bits in format 5A mapped onto a given search space is less than the payload size of format 5A with CRC scrambled by SL-SPS-V-RNTI mapped onto the same search space and format 0 is not defined on the same search space, zeros shall be appended to format 5A until the payload size equals that of format 5A with CRC scrambled by SL-SPS-V-RNTI. #### 5.3.3.1.10 Format 6-0A DCI format 6-0A is used for the scheduling of PUSCH in one UL cell, and for the indication of ACK feedback. The following information is transmitted by means of the DCI format 6-0A: - Flag format 6-0A/format 6-1A differentiation 1 bit, where value 0 indicates format 6-0A and value 1 indicates format 6-1A - Frequency hopping flag 1 bit, where value 0 indicates frequency hopping is not enabled and value 1 indicates frequency hopping is enabled as defined in subclause 5.3.4 of [2] - Number of resource units 2 bits, where value '00' indicates the format 6-0A DCI uses PRB resource allocation, otherwise the DCI format 6-0A uses sub-PRB resource allocation as defined in subclause 8.1.6 of [3]. This field is present when the possibility to use sub-PRB resource allocation is enabled by higher layers and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3] - Resource block assignment - - If the format 6-0A DCI uses sub-PRB resource allocation: $$- \left[\log_2 \left[\frac{N_{\text{RB}}^{\text{UL}}}{6} \right] \right] + 6 \text{ bits for PUSCH as defined in [3]}$$ - $$\left[\log_2\left[\frac{N_{\rm RB}^{\rm UL}}{6}\right]\right]$$ MSB bits provide the narrowband index as defined in subclause 5.2.4 of [2] - 6 bits provide the resource allocation within the indicated narrowband using UL resource allocation type 5 as defined in subclause 8.1.6 of [3] - Else if flexible starting PRB for PUSCH resource allocation is enabled by higher layers with $N_{\rm RB}^{\rm UL}$ equal to $N_{\rm RB}^{\rm DL}$, $\left[\log_2(6N_{\rm RB}^{\rm UL})\right]$ bits for FDD PUSCH and $\left[\log_2(5N_{\rm RB}^{\rm UL})\right]$ bits for TDD PUSCH provide the resource allocation using UL resource allocation type 0 as defined in subclause 8.1.1 of [3] - Otherwise, $$\left[\log_2\left\lfloor\frac{N_{\text{RB}}^{\text{UL}}}{6}\right\rfloor\right]$$ +5 bits for PUSCH as defined in [3]: - If the 5 LSB bits indicate a value not larger than 20 - $$\left[\log_2\left|\frac{N_{\rm RB}^{\rm UL}}{6}\right|\right]$$ MSB bits provide the narrowband index as defined in subclause 5.2.4 of [2] - 5 bits provide the resource allocation using UL resource allocation type 0 within the indicated narrowband - Otherwise, - $$\left[\log_2\left\lfloor\frac{N_{\rm RB}^{\rm UL}}{6}\right\rfloor\right]$$ +5 bits provide the resource allocation using UL resource allocation type 4 as defined in subclause 8.1.5 of [3] - Modulation and coding scheme 3 or 4 bits as defined in subclause 8.6 of [3]. The 3-bit field applies when the format 6-0A DCI uses sub-PRB resource allocation, otherwise the 4-bit field applies. - Repetition number 2 or 3 bits as defined in subclause 8.0 of [3]. The 3-bit field applies when *ce-pdsch-puschEnhancement-config* is configured by higher layers, otherwise the 2-bit field applies. - HARQ process number 3 bits - New data indicator 1 bit - Redundancy version 2 bits - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - UL index 2 bits as defined in subclauses 5.1.1.1, 7.2.1, 8 and 8.4 of [3] (this field is present only for TDD operation with uplink-downlink configuration 0) - Downlink Assignment Index (DAI) 2 bits as defined in subclause 7.3 of [3] (This field is present only for cases with TDD primary cell and either TDD operation with uplink-downlink configurations 1-6 or FDD operation. This field is reserved when the configured maximum repetition number is larger than 1 for MPDCCH, or when the higher layer parameter *csi-NumRepetitionCE-r13* indicates more than one subframe) - CSI request 1 bit as defined in subclause 7.2.1 of [3]. This field is reserved if the format 6-0A DCI uses sub-PRB resource allocation. - SRS request –1 bit. The interpretation of this field is provided in subclause 8.2 of [3] - DCI subframe repetition number 2 bits as defined in subclause 9.1.5 of [3] - Modulation order override 1 bit as defined in subclause 8.6.1 of [3]. This field is only present when *ce-pdsch-puschEnhancement-config* is configured by higher layers If the Resource block assignment in format 6-0A is set to all ones, format 6-0A is used for the indication of ACK feedback, and all the remaining bits except Flag format 6-0A/format 6-1A differentiation and DCI subframe repetition number are set to zero. If the number of information bits in format 6-0A mapped onto a given search space is less than the payload size of format 6-1A for scheduling the same serving cell and mapped onto the same search space (including any padding bits appended to format 6-1A), zeros shall be appended to format 6-0A until the payload size equals that of format 6-1A. #### 5.3.3.1.11 Format 6-0B DCI format 6-0B is used for the scheduling of PUSCH in one UL cell, and for the indication of ACK feedback. The following information is transmitted by means of the DCI format 6-0B: - Flag for format 6-0B/format 6-1B differentiation 1 bit, where value 0 indicates format 6-0B and value 1 indicates format 6-1B - Flag for sub-PRB resource allocation 1 bit, where value 1 indicates the format 6-0B DCI uses sub-PRB resource allocation and value 0 indicates the format 6-0B DCI does not use sub-PRB resource allocation. This field is present when the possibility to use sub-PRB resource allocation is enabled by higher layers and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3]. - Resource block assignment - If the flag for sub-PRB resource allocation is set to 1: $$- \left[\log_2 \left[\frac{N_{\text{RB}}^{\text{UL}}}{6} \right] \right] + 4 \text{ bits for PUSCH as defined in [3]}$$ - $$\left[\log_2\left|\frac{N_{\rm RB}^{\rm UL}}{6}\right|\right]$$ MSB bits provide the narrowband index as defined in subclause 5.2.4 of [2] - 4 bits provide the resource allocation within the indicated narrowband using UL resource allocation type 5 as defined in subclause 8.1.6 of [3]- Otherwise, $\left\lceil \log_2 \left| \frac{N_{\text{RB}}^{\text{UL}}}{6} \right| \right\rceil$ +3 bits for PUSCH as defined in [3]: - $\left[\log_2 \left| \frac{N_{\text{RB}}^{\text{UL}}}{6} \right| \right]$ MSB bits provide the narrowband index as defined in subclause 5.2.4 of [2] - 3 bits provide the resource allocation within the indicated narrowband as specified in subclause 8.1.3 of [3] - Modulation and coding scheme 3 or 4 bits as defined in subclause 8.6 of [3]. The 3-bit field applies when the flag for sub-PRB resource allocation is present and set to 1, otherwise the 4-bit field applies. - Number of resource units 1 bit as defined in subclause 8.1.6 of [3]. This field is present when the flag for sub-PRB resource allocation is present, and is reserved when the flag for sub-PRB resource allocation is set to 0. - Repetition number 3 bits as defined in subclause 8.0 of [3] - HARQ process number 1 bit - New data indicator 1 bit - DCI subframe repetition number 2 bits as defined in subclause 9.1.5 of [3] If the Modulation and coding scheme in format 6-0B is 4 bits and set to all ones, format 6-0B is used for the indication of ACK feedback, and all the remaining bits except Flag for format 6-0B/format 6-1B differentiation and DCI subframe repetition number are set to zero. If the number of information bits in format
6-0B mapped onto a given search space is less than the payload size of format 6-1B for scheduling the same serving cell and mapped onto the same search space (including any padding bits appended to format 6-1B), zeros shall be appended to format 6-0B until the payload size equals that of format 6-1B. ### 5.3.3.1.12 Format 6-1A DCI format 6-1A is used for the compact scheduling of one PDSCH codeword in one cell, random access procedure initiated by a PDCCH order, and notifying SC-MCCH change. The DCI corresponding to a PDCCH order can be carried by MPDCCH. The following information is transmitted by means of the DCI format 6-1A: - Flag format 6-0A/format 6-1A differentiation – 1 bit, where value 0 indicates format 6-0A and value 1 indicates format 6-1A Format 6-1A is used for random access procedure initiated by a PDCCH order only if format 6-1A CRC is scrambled with C-RNTI and all the remaining fields are set as follows: - Resource block assignment $\left[\log_2\left\lfloor\frac{N_{\rm RB}^{\rm DL}}{6}\right\rfloor\right]$ +5 bits, where all bits shall be set to 1 - Preamble Index 6 bits - PRACH Mask Index 4 bits, [5] - Starting CE level 2 bits provide the PRACH starting CE level as defined in [5] - All the remaining bits in format 6-1A for compact scheduling assignment of one PDSCH codeword are set to Otherwise, - Frequency hopping flag 1 bit, where value 0 indicates frequency hopping is not enabled and value 1 indicates frequency hopping is enabled as defined in subclause 6.4.1 of [2]. If the UE is configured with 64QAM for PDSCH and the repetition number field indicates no PDSCH repetition, this field is the MSB bit of the extended Modulation and coding scheme field, as specified in Table 7.1.7.1-1 of [3]. - Resource block assignment flag 1 bit. This field is only present when the higher layer parameter *ce-pdsch-maxBandwidth-config* is configured and set to 20 MHz and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3]. - Resource block assignment - If *ce-pdsch-maxBandwidth-config* is set to 5 MHz or *mpdcch-PDSCH-MaxBandwidth-SC-MTCH* is set to 24 PRBs or the resource block assignment flag is set to 1, and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3], - If $N_{RB}^{DL} > 25$, $\left[\log_2 \left[\frac{N_{RB}^{DL}}{6} \right] \right] + 8$ bits for PDSCH as defined in [3]: - $\left[\log_2\left[\frac{N_{\rm RB}^{\rm DL}}{6}\right]\right]$ MSB bits provide the starting narrowband index as defined in subclause 6.2.7 of [2] - 3 bit bitmap provides additional allocated narrowbands among the three narrowbands following the starting narrowband. The order of the bitmap to narrowband index mapping is such that the first narrowband after the starting narrowband to the third narrowband after the starting narrowband are mapped to MSB to LSB of the bitmap. - 5 bits provide the same resource allocation using DL resource allocation type 2 within each of the allocated narrowbands. - Else if $6 < N_{RB}^{DL} \le 25$, $\left\lfloor \frac{N_{RB}^{DL}}{6} \right\rfloor + 5$ bits for PDSCH as defined below: - $\left\lfloor \frac{N_{\rm RB}^{\rm DL}}{6} \right\rfloor$ MSB bits provide a bitmap of allocated narrowbands. The order of the bitmap to narrowband index mapping is such that narrowband index 0 to $\left\lfloor \frac{N_{\rm RB}^{\rm DL}}{6} \right\rfloor - 1$ are mapped to MSB to LSB of the bitmap. - 5 bits provide the same resource allocation using DL resource allocation type 2 within each of the allocated narrowbands - Otherwise, 5 bits for PDSCH as defined below: - 5 bits provide resource allocation using DL resource allocation type 2 - Else if the resource block assignment flag is set to 0: - $\left[\frac{N_{\rm RB}^{\rm DL}}{S}\right]$ bits provide the RBG bitmap as defined in subclause 7.1.6.1 of [3], where S=9 if $N_{\rm RB}^{\rm DL} > 75$ and S=6 otherwise - Reserved information bits are added until the size is equal to the size of the resource block assignment with resource block assignment flag is set to 1 - Otherwise, $\left[\log_2\left|\frac{N_{\rm RB}^{\rm DL}}{6}\right|\right]$ +5 bits for PDSCH as defined in [3]: - $\left[\log_2 \left| \frac{N_{\text{RB}}^{\text{DL}}}{6} \right| \right]$ MSB bits provide the narrowband index as defined in subclause 6.2.7 of [2] - 5 bits provide the resource allocation using DL resource allocation type 2 within the indicated narrowband - Modulation and coding scheme 4 bits as defined in subclause 7.1.7 of [3] - Repetition number 2 bits as defined in subclause 7.1.11 of [3] - HARQ process number 3 bits (for cases with FDD primary cell), 4 bits (for cases with TDD primary cell, or for cases with FDD primary cell when *ce-pdsch-tenProcesses-config* is configured by higher layers and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3]). This field is not present when the format 6-1A CRC is scrambled with G-RNTI. - New data indicator 1 bit. This field is not present when the format 6-1A CRC is scrambled with G-RNTI. - Redundancy version 2 bits - TPC command for PUCCH 2 bits as defined in subclause 5.1.2.1 of [3] . This field is not present when the format 6-1A CRC is scrambled with G-RNTI. - If the format 6-1A CRC is scrambled by RA-RNTI: - The most significant bit of the TPC command is reserved. - The least significant bit of the TPC command indicates column N_{PRB}^{1A} of the TBS table defined of [3]. - If least significant bit is 0 then $N_{PRB}^{1A} = 2$ else $N_{PRB}^{1A} = 3$. - Else - The two bits including the most significant bit indicate the TPC command - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2. This field is reserved when the configured maximum repetition number is larger than 1 for MPDCCH, and not present when the format 6-1A CRC is scrambled with G-RNTI, or when the higher layer parameter *csi-NumRepetitionCE-r13* indicates more than one subframe. - Antenna port(s) and scrambling identity 2 bits indicating the values 0 to 3, as specified in Table 5.3.3.1.5C-1. This field is present only if PDSCH transmission is configured with TM9 for DCI formats scheduling PDSCH which are mapped onto the UE specific search space given by the C-RNTI as defined in [3]. - SRS request –1 bit. The interpretation of this field is provided in subclause 8.2 of [3] - TPMI information for precoding number of bits as specified in Table 5.3.3.1.3A-1. - TPMI information indicates which codebook index is used in Table 6.3.4.2.3-1 or Table 6.3.4.2.3-2 of [2] corresponding to the single-layer transmission. This field is present only if PDSCH transmission is configured with TM6 for DCI formats scheduling PDSCH which are mapped onto the UE specific search space given by the C-RNTI as defined in [3]. - PMI confirmation for precoding 1 bit as specified in Table 5.3.3.1.3A-2. This field is present only if PDSCH transmission is configured with TM6 for DCI formats scheduling PDSCH which are mapped onto the UE specific search space given by the C-RNTI as defined in [3]. - HARQ-ACK resource offset 0 or 2 bits as defined in subclause 10.1 of [3] (this field is 0 bits if Information for SC-MCCH change notification is present) - Information for SC-MCCH change notification 2 bits as defined in subclause 5.8a of [6] (this field is present if the format 6-1A CRC is scrambled with G-RNTI) - DCI subframe repetition number 0 or 2 bits as defined in subclause 9.1.5 of [3] (this field is 0 bits if Transport blocks in a bundle is present) - Transport blocks in a bundle 0 or 2 bits as defined in subclause 7.3.1 of [3] (this field is 2 bits when DCI Field "HARQ-ACK bundling flag" is set to 1, and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3]. Otherwise this field is 0 bits) - HARQ-ACK bundling flag 1 bit, where value 0 indicates HARQ-ACK bundling is not enabled and value 1 indicates HARQ-ACK bundling is enabled as defined in subclause 7.3 of [3]. This field is only present when the higher layer parameter *ce-HarqAckBundling-config* is configured and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3]. - HARQ-ACK delay 3 bits as defined in 7.3 of [3]. This field is only present when the higher layer parameter *ceschedulingEnhancement-config* or *ce-HarqAckBundling-config* is configured and the DCI is mapped onto the UE-specific search space given by the C-RNTI as defined in [3]. When the format 6-1A CRC is scrambled with a RA-RNTI, then the following fields among the fields above are reserved: - HARQ process number - New data indicator - Downlink Assignment Index - HARQ-ACK resource offset If the UE is not configured to decode MPDCCH with CRC scrambled by the C-RNTI and the format 6-1A CRC is not scrambled with a G-RNTI, and the number of information bits in format 6-1A is less than that of format 6-0A, zeros shall be appended to format 6-1A until the payload size equals that of format 6-0A. If the UE is configured to decode MPDCCH with CRC scrambled by the C-RNTI and the format 6-1A CRC is not scrambled with a G-RNTI, and the number of information bits in format 6-1A mapped onto a given search space is less than that of format 6-0A for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 6-1A until the payload size equals that of format 6-0A. #### 5.3.3.1.13 Format 6-1B DCI format 6-1B is used for the scheduling of one PDSCH codeword in one cell and notifying SC-MCCH change. The following information is transmitted by means of the DCI format 6-1B: - Flag for format 6-0B/format 6-1B differentiation – 1 bit, where value 0 indicates format 6-0B and value 1 indicates format 6-1B Format 6-1B is used for random access procedure initiated by a PDCCH order only if format 6-1B CRC is scrambled with C-RNTI and all the remaining fields are set as follows: - Reserved bits $\left[\log_2 \left\lfloor \frac{N_{\rm RB}^{\rm DL}}{6}
\right\rfloor \right]$ +2 bits, where all bits shall be set to 1 - Preamble Index 6 bits - PRACH Mask Index 4 bits [5] - Starting CE level 2 bits provide the PRACH starting CE level as defined in [5] - All the remaining bits in format 6-1B for compact scheduling assignment of one PDSCH codeword are set to zero Otherwise, - Modulation and coding scheme 4 bits as defined in subclause 7.1.7 of [3] - Resource block assignment - - If *ce-pdsch-maxBandwidth-config* is set to 5 MHz or *mpdcch-PDSCH-MaxBandwidth-SC-MTCH* is set to 24 PRBs, - If $N_{RB}^{DL} > 25$, $\left[\log_2 \left[\frac{N_{RB}^{DL}}{24} \right] \right] + 4$ bits for PDSCH as defined in [3]: - $\left[\log_2 \left| \frac{N_{\text{RB}}^{\text{DL}}}{24} \right| \right]$ MSB bits provide the wideband index as defined in subclause 6.2.7 of [2] - 4 bits provide a narrowband bitmap for resource allocation within the indicated wideband - Otherwise, $\left| \frac{N_{RB}^{DL}}{6} \right|$ bits for PDSCH as defined below: - if $\left\lfloor \frac{N_{\text{RB}}^{\text{DL}}}{6} \right\rfloor$ = 1, 1 bit provides the resource allocation within the narrowband, where value 0 indicates RBs with PRB index {0, 1, 2, 3} and value 1 indicates that all 6 PRBs are used. - Otherwise, $\left| \frac{N_{\rm RB}^{\rm DL}}{6} \right|$ bits provide allocated narrowbands - Else if ce-pdsch-maxBandwidth-config is set to 20 MHz, - If $N_{RB}^{DL} \ge 50$, $\left[\log_2 \left\lfloor \frac{N_{RB}^{DL}}{24} \right\rfloor \right] + 5$ bits for PDSCH as defined in [3]: - $\left[\log_2 \left| \frac{N_{\text{RB}}^{\text{DL}}}{24} \right| \right]$ + 1 bits provide a wideband combination index as defined in subclause 7.1.6 of [3] - 4 bits provide a narrowband bitmap for resource allocation within each indicated wideband - Otherwise, $\left| \frac{N_{RB}^{DL}}{6} \right|$ bits for PDSCH as defined in [3]: - If $\left\lfloor \frac{N_{\text{RB}}^{\text{DL}}}{6} \right\rfloor$ = 1, 1 bit provides the resource allocation within the narrowband, where value 0 indicates RBs with PRB index {0, 1, 2, 3} and value 1 indicates that all 6 PRBs are used. - Otherwise, $\left| \frac{N_{\text{RB}}^{\text{DL}}}{6} \right|$ bits provide a narrowband bitmap for resource allocation - Otherwise, $\left[\log_2\left\lfloor\frac{N_{\rm RB}^{\rm DL}}{6}\right\rfloor\right]$ +1 bits for PDSCH as defined in [3]: - $\left[\log_2\left|\frac{N_{\rm RB}^{\rm DL}}{6}\right|\right]$ MSB bits provide the narrowband index as defined in subclause 6.2.7 of [2] - 1 bit provides the resource allocation within the indicated narrowband, where value 0 indicates RBs with PRB index {0, 1, 2, 3} and value 1 indicates that all 6 PRBs are used. - Repetition number 3 bits as defined in subclause 7.1.11 of [3] - HARQ process number 1 bit. This field is not present when the format 6-1B CRC is scrambled with G-RNTI. - New data indicator 1 bit. This field is not present when the format 6-1B CRC is scrambled with G-RNTI. - HARQ-ACK resource offset 0 or 2 bits as defined in subclause 10.1 of [3] (this field is 0 bits if Information for SC-MCCH change notification is present) - Information for SC-MCCH change notification 2 bits as defined in subclause 5.8a of [6] (this field is present if the format 6-1B CRC is scrambled with G-RNTI) - DCI subframe repetition number -2 bits as defined in subclause 9.1.5 of [3] When the format 6-1B CRC is scrambled with a RA-RNTI then the following fields among the fields above are reserved: - HARQ process number - New data indicator - HARQ-ACK resource offset If the UE is not configured to decode MPDCCH with CRC scrambled by the C-RNTI and the format 6-1B CRC is not scrambled with a G-RNTI, and the number of information bits in format 6-1B is less than that of format 6-0B, zeros shall be appended to format 6-1B until the payload size equals that of format 6-0B. If the UE is configured to decode MPDCCH with CRC scrambled by the C-RNTI and the format 6-1B CRC is not scrambled with a G-RNTI, and the number of information bits in format 6-1B mapped onto a given search space is less than that of format 6-0B for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 6-1B until the payload size equals that of format 6-0B. #### 5.3.3.1.14 Format 6-2 DCI format 6-2 is used for paging, direct indication, scheduling of one PDSCH codeword carrying SC-MCCH in one cell, and notifying SC-MCCH change. The following information is transmitted by means of the DCI format 6-2: - If the format 6-2 CRC is scrambled by P-RNTI: - Flag for paging/direct indication differentiation 1 bit, with value 0 for direct indication and value 1 for paging - Else if the format 6-2 CRC is scrambled by a SC-RNTI: - Information for SC-MCCH change notification 1 bit as defined in subclause 5.8a of [6] - If the format 6-2 CRC is scrambled by P-RNTI and Flag=0: - Direct Indication information 8 bits provide direct indication of system information update and other fields, as defined in [6] - Reserved information bits are added until the size is equal to that of format 6-2 with Flag=1 - If the format 6-2 CRC is scrambled by P-RNTI and Flag=1, or if the format 6-2 CRC is scrambled by SC-RNTI: - Resource block assignment $\left[\log_2\left\lfloor\frac{N_{\rm RB}^{\rm DL}}{6}\right\rfloor\right]$ bits for the narrowband index as defined in subclause 7.1.6 of [3] - Modulation and coding scheme 3 bits as defined in subclause 7.1.7 of [3] - Repetition number 3 bits as defined in subclause 7.1.11 of [3] - DCI subframe repetition number 2 bits as defined in subclause 9.1.5 of [3] #### 5.3.3.1.15 Format 7-0A DCI format 7-0A is used for the scheduling of PUSCH with slot or subslot duration in one UL cell. The following information is transmitted by means of the DCI format 7-0A: - Flag for UL/DL differentiation 1 bit, where value 0 indicates format 7-0A and value 1 indicates format 7-1A/B/C/D/E/F/G depending on the configured downlink transmission mode - Resource block assignment ($\lceil \log_2(\lceil N_{RB}^{UL}/P \rceil (\lceil N_{RB}^{UL}/P \rceil + 1)/2) \rceil$) bits provide the resource allocation in the UL slot or subslot as defined in subclause 8.1.1 of [3], where P = 4 if $N_{RB}^{UL} > 15$, and P = 1 otherwise. - Modulation and coding scheme 5 bits as defined in subclause 8.6 of [3] - HARQ process number 4 bits - New data indicator 1 bit - Redundancy version 2 bits - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - DMRS pattern 2 bits as defined in subclause 5.5.2.1.2 in [2] (The field is present only for PUSCH with subslot duration) - Cyclic shift for DMRS and IFDMA configuration 1 bit as defined in subclause 5.5.2.1.1 of [2] - UL index 2 bits as defined in subclauses 5.1.1.1, 7.2.1, 8 and 8.4 of [3] (this field is present only for TDD operation with uplink-downlink configuration 0, or TDD operation with uplink-downlink configuration 6 and special subframe configuration 0, 5, 9 or 10) - Downlink Assignment Index (DAI) 2 bits as defined in subclause 7.3 of [3] (this field is present only for cases with TDD primary cell and either TDD operation with uplink-downlink configurations 1-6 or FDD operation) - CSI request 1, 2 or 3 bits as defined in subclause 7.2.1 of [3]: The 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell; - UEs that are configured by higher layers with more than one CSI process; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*; the 3-bit field applies to UEs that are configured with more than five DL cells; otherwise the 1-bit field applies - SRS request 0 or 1 bit as defined in subclause 8.2 of [3] (this field is present only for TDD operation, if the UE has indicated the capability *srs-DCI7-Triggering-FS2-r15* and the UE is configured with higher layer parameter *srs-DCI7-TriggeringConfig-r15*) - Beta offet indicator 1 bit as defined in subclause 8.6.3 of [3] (this field is present only if UE is configured with *ul-TTI-Length*=subslot). - Cyclic Shift Field mapping table for DMRS 1 bit as defined in subclause 5.5.2.1.1 of [2]. If the number of information bits in format 7-0A mapped onto a given search space is less than the payload size of format 7-1A/B/C/D/E/F/G depending on the configured downlink transmission mode for scheduling the same serving cell and mapped onto the same search space (including any padding bits appended to format 7-1A/B/C/D/E/F/G), zeros shall be appended to format 7-0A until the payload size equals that of format 7-1A/B/C/D/E/F/G. If the number of information bits in format 7-0A carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-0A until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.16 Format 7-0B DCI format 7-0B is used for the scheduling of PUSCH with slot or subslot duration in one UL cell with multi-antenna port transmission mode. The following information is transmitted by means of the DCI format 7-0B: - Flag for UL/DL differentiation 1 bit, where value 0 indicates format 7-0B and value 1 indicates format 7-1A/B/C/D/E/F/G depending on the configured downlink transmission mode - Resource block assignment ($[\log_2([N_{RB}^{UL}/P]([N_{RB}^{UL}/P]+1)/2)]$) bits provide the resource allocation in the UL slot or subslot as defined in subclause 8.1.1 of [3], where P=4 if $N_{RB}^{UL}>15$, and P=1 otherwise. - Modulation and coding scheme 5 bits as defined in subclause 8.6 of [3] - HARQ process number 4 bits - New data indicator 1 bit - Redundancy version 2 bits - TPC command for scheduled PUSCH 2 bits as defined in subclause 5.1.1.1 of [3] - DMRS
pattern 2 bits as defined in subclause 5.5.2.1.2 in [2] (The field is present only for PUSCH with subslot duration) - Cyclic shift for DMRS and IFDMA configuration 1 bit as defined in subclause 5.5.2.1.1 of [2] - UL index 2 bits as defined in subclauses 5.1.1.1, 7.2.1, 8 and 8.4 of [3] (this field is present only for TDD operation with uplink-downlink configuration 0, or TDD operation with uplink-downlink configuration 6 and special subframe configuration 0, 5, 9 or 10) - Downlink Assignment Index (DAI) 2 bits as defined in subclause 7.3 of [3] (this field is present only for cases with TDD primary cell and either TDD operation with uplink-downlink configurations 1-6 or FDD operation) - CSI request 1, 2 or 3 bits as defined in subclause 7.2.1 of [3]: The 2-bit field applies to UEs configured with no more than five DL cells and to - UEs that are configured with more than one DL cell; - UEs that are configured by higher layers with more than one CSI process; - UEs that are configured with two CSI measurement sets by higher layers with the parameter *csi-MeasSubframeSet*; the 3-bit field applies to UEs that are configured with more than five DL cells; otherwise the 1-bit field applies - SRS request 2 bits as defined in subclause 8.2 of [3] (this field is present only for TDD operation, if the UE has indicated the capability *srs-DCI7-Triggering-FS2-r15* and the UE is configured with higher layer parameter *srs-DCI7-TriggeringConfig-r15*) - Beta offet indicator 1 bit as defined in subclause 8.6.3 of [3] (this field is present only if UE is configured with *ul-TTI-Length*=subslot). - Cyclic Shift Field mapping table for DMRS 1 bit as defined in subclause 5.5.2.1.1 of [2]. - Precoding information and number of layers: number of bits as specified in Table 5.3.3.1.8-1. Bit field are shown in Table 5.3.3.1.16-1 and Table 5.3.3.1.16-2. Note that TPMI for 2 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-1 of [2], and TPMI for 4 antenna ports indicates which codebook index is to be used in Table 5.3.3A.2-2, Table 5.3.3A.2-3, Table 5.3.3A.2-4 and Table 5.3.3A.2-5 of [2]. Table 5.3.3.1.16-1: Content of precoding information field for 2 antenna ports | Bit field mapped to index | Message | |---------------------------|------------------| | 0 | 1 layer: TPMI=0 | | 1 | 1 layer: TPMI=1 | | 2 | 1 layer: TPMI=2 | | | | | 5 | 1 layer: TPMI=5 | | 6 | 2 layers: TPMI=0 | | 7 | reserved | Table 5.3.3.1.16-2: Content of precoding information field for 4 antenna ports | Bit field mapped to index | Message | |---------------------------|-------------------| | 0 | 1 layer: TPMI=0 | | 1 | 1 layer: TPMI=1 | | | | | 23 | 1 layer: TPMI=23 | | 24 | 2 layers: TPMI=0 | | 25 | 2 layers: TPMI=1 | | | | | 39 | 2 layers: TPMI=15 | | 40 | 3 layers: TPMI=0 | | 41 | 3 layers: TPMI=1 | | | | | 51 | 3 layers: TPMI=11 | | 52 | 4 layers: TPMI=0 | | 53-63 | reserved | If the number of information bits in format 7-0B mapped onto a given search space is less than the payload size of format 7-1A/B/C/D/E/F/G depending on the configured downlink transmission mode for scheduling the same serving cell and mapped onto the same search space (including any padding bits appended to format 7-1A/B/C/D/E/F/G), zeros shall be appended to format 7-0B until the payload size equals that of format 7-1A/B/C/D/E/F/G. If the number of information bits in format 7-0B carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-0B until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.17 Format 7-1A DCI format 7-1A is used for the scheduling of one PDSCH codeword with slot or subslot duration in one cell. The following information is transmitted by means of the DCI format 7-1A: - Flag for DL/UL differentiation 1 bit, where value 0 indicates format 7-0A/B depending on the configured uplink transmission mode and value 1 indicates the DL DCI format - For resource allocation type 0 as defined in subclause 7.1.6.1 of [3]: - $\left\lfloor N_{ m RB}^{ m DL}/P ight floor$ bits provide the resource allocation where the value of P depends on the number of DL resource blocks as indicated in subclause 7.1.6.1 of [3] - For resource allocation type 2 as defined in subclause 7.1.6.3 of [3]: - $\left[\log_2(\left\lfloor N_{\rm RB}^{\rm DL}/N_{\rm RB}^{\rm step}\right\rfloor \left\lfloor \left\lfloor N_{\rm RB}^{\rm DL}/N_{\rm RB}^{\rm step}\right\rfloor +1)/2)\right]$ bits provide the resource allocation - one additional bit if $N_{\rm RB}^{\rm DL}=25$ where $N_{\rm RB}^{\rm step}$ is defined in subclause 7.1.6.3 of [3] - Modulation and coding scheme 5 bits as defined in subclause 7.1.7 of [3]. The MSB is set to 0 when the UE is configured with *blindSlotSubslotPDSCH-Repetitions* set to TRUE and the repetition number is greater than 1 and the higher layer parameter *mcs-restrictionSlotSubslotPDSCH-Repetitions* is configured to 1. - HARQ process number 4 bits - New data indicator 1 bit - Redundancy version 2 bits - TPC command for slot-SPUCCH or subslot-SPUCCH 2 bits as defined in subclause 5.1.2.1 of [3] - Downlink Assignment Index number of bits as specified in Table 5.3.3.1.2-2 - Used/Unused SPDCCH resource indication 2 bits (This field is present if the DCI is mapped to SPDCCH and L1-based reuse indication is configured by higher layers) - SPUCCH resource indication 2 bit as defined in subclause 10.1.2 of [3]. - Repetition number 2 bits as defined in Table 5.3.3.1.17-1, where the number of transmissions for PDSCH is given by higher layer parameter *maxNumber-SlotSubslotPDSCH-Repetitions* for the value of '11'. This field is present only when the UE is configured with higher layer parameter *blindSlotSubslotPDSCH-Repetitions* set to TRUE. Bit field Number of transmissions for PDSCH 00 1 01 2 10 3 11 as configured by higher layers Table 5.3.3.1.17-1: Content of repetition number field If the UE is configured to decode SPDCCH CRC scrambled by the C-RNTI and the number of information bits in format 7-1A mapped onto a given search space is less than that of format 7-0A/B depending on the configured uplink transmission mode for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 7-1A until the payload size equals that of format 7-0A/B, except when format 7-1A assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 7-1A carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-1A until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.18 Format 7-1B DCI format 7-1B is used for the scheduling of one PDSCH codeword with slot or subslot duration in one cell. The following information is transmitted by means of the DCI format 7-1B: - The fields of format 7-1A - Precoding information –1 bit for transmission with 2 antenna ports and 2 bits for transmission with 4 antenna ports. For transmission with 4 antenna ports, the precoding information field is defined according to Table 5.3.3.1.18-1. For transmission with 2 antenna ports, the number of transmission layers is equal to 2 if precoding information is 1; transmit diversity is used if precoding information is 0. Table 5.3.3.1.18-1: Content of precoding information field for 4 antenna ports | Bit field
mapped to
index | Message | |---------------------------------|---| | 0 | 4 layers: Transmit diversity | | 1 | 2 layers: precoder
cycling with large delay
CDD | | 2 | 3 layers: precoder cycling with large delay CDD | | 3 | 4 layers: precoder cycling with large delay CDD | If the UE is configured to decode SPDCCH CRC scrambled by the C-RNTI and the number of information bits in format 7-1B mapped onto a given search space is less than that of format 7-0A/B depending on the configured uplink transmission mode for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 7-1B until the payload size equals that of format 7-0A/B, except when format 7-1B assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 7-1B carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-1B until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.19 Format 7-1C DCI format 7-1C is used for the scheduling of one PDSCH codeword with slot or subslot duration in one cell. The following information is transmitted by means of the DCI format 7-1C: - The fields of format 7-1A - Precoding information 4 bits for 2 antenna ports and 6 bits for 4 antenna ports. The precoding information field is defined in Table 5.3.3.1.19-1 and Table 5.3.3.1.19-2. Note that TPMI indicates which codebook index is used in Table 6.3.4.2.3-1 or Table 6.3.4.2.3-2 of [2]. Some entries in Table 5.3.3.1.5-4 and Table 5.3.3.1.5-5 are used for indicating that the eNodeB has applied precoding according to PMI(s) reported by the UE. In these cases the precoding for the
corresponding RB(s) in slot/subslot n is according to the latest PMI(s) in an aperiodic CSI reported on or before slot n-4 if higher layer parameter ul-TTI-Length is configured as slot, or subslot n-k if higher layer parameter ul-TTI-Length is configured as subslot, where k is the minimum processing timing configured in higher layer parameter min-proc-TimelineSubslot. For aperiodic CSI mode 2-2: Precoding of scheduled resource blocks belonging to the reported preferred M subband(s) use precoder(s) according to the preferred M subband PMI indicated by the latest aperiodic CSI report; Precoding of scheduled resource blocks not belonging to the reported preferred M subband(s) use a precoder according to the wideband PMI indicated by the latest aperiodic CSI report. Table 5.3.3.1.19-1: Content of precoding information field for 2 antenna ports | Bit field
mapped to
index | Message | |---------------------------------|---| | 0 | 2 layers: Transmit diversity | | 1 | 1 layer: Precoding corresponding to | | | precoding vector $\begin{bmatrix} 1 & 1 \end{bmatrix}^T / \sqrt{2}$ | | 2 | 1 layer: Precoding corresponding to | | | precoder vector $\begin{bmatrix} 1 & -1 \end{bmatrix}^T / \sqrt{2}$ | | 3 | 1 layer: Precoding corresponding to | | | precoder vector $\begin{bmatrix} 1 & j \end{bmatrix}^T / \sqrt{2}$ | | 4 | 1 layer: Precoding corresponding to | | | precoder vector $\begin{bmatrix} 1 & -j \end{bmatrix}^T / \sqrt{2}$ | | 5 | 1 layer: | | | Precoding according to the latest PMI report on PUSCH, using the | | | precoder(s) indicated by the reported | | | PMI(s), | | | if RI=2 was reported, using 1st column | | | multiplied by $\sqrt{2}$ of all precoders | | | implied by the reported PMI(s) | | 6 | 1 layer: Precoding according to the latest PMI report on PUSCH, using the precoder(s) indicated by the reported PMI(s), | | | if RI=2 was reported, using 2 nd column | | | multiplied by $\sqrt{2}$ of all precoders | | | implied by the reported PMI(s) | | 7 | 2 layers: Precoding corresponding to | | | precoder matrix $\frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ | | 8 | 2 layers: Precoding corresponding to | | | precoder matrix $\frac{1}{2}\begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$ | | 9 | 2 layers: Precoding according to the latest PMI report on PUSCH, using the precoder(s) indicated by the reported PMI(s) | | 10~15 | reserved | | | | Table 5.3.3.1.19-2: Content of precoding information field for 4 antenna ports | Bit field
mapped to
index | Message | |---------------------------------|--| | 0 | 4 layers: Transmit diversity | | 1 | 1 layer: TPMI=0 | | 2 | 1 layer: TPMI=1 | | • | : | | 16 | 1 layer: TPMI=15 | | 17 | 1 layer: Precoding according to the latest PMI report on PUSCH using the precoder(s) indicated by the reported PMI(s) | | 18 | 2 layers: TPMI=0 | | 19 | 2 layers: TPMI=1 | | • | : | | 33 | 2 layers: TPMI=15 | | 34 | 2 layers: Precoding according to the latest PMI report on PUSCH using the precoder(s) indicated by the reported PMI(s) | | 35 | 3 layers: TPMI=0 | | 36 | 3 layers: TPMI=1 | | : | : | | 50 | 3 layers: TPMI=15 | | 51 | 3 layers: Precoding according to the latest PMI report on PUSCH using the precoder(s) indicated by the reported PMI(s) | | 52 | 4 layers: TPMI=0 | | 53 | 4 layers: TPMI=1 | | | : | | 62 | 4 layers: TPMI=10 | | 63 | 4 layers: Precoding according to the latest PMI report on PUSCH using the precoder(s) indicated by the reported PMI(s) | If the UE is configured to decode SPDCCH CRC scrambled by the C-RNTI and the number of information bits in format 7-1C mapped onto a given search space is less than that of format 7-0A/B depending on the configured uplink transmission mode for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 7-1C until the payload size equals that of format 7-0A/B, except when format 7-1C assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 7-1C carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-1C until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.20 Format 7-1D DCI format 7-1D is used for the scheduling of one PDSCH codeword with slot or subslot duration in one cell. The following information is transmitted by means of the DCI format 7-1C: - The fields of format 7-1A - Precoding information number of bits as the value specified in Table 5.3.3.1.3A-1 plus one The precoding information field is defined in Table 5.3.3.1.20-1 and Table 5.3.3.1.20-2. Table 5.3.3.1.20-1: Content of precoding information field for 2 antenna ports | Bit field mapped to | Mossago | |---------------------|---| | index | Message | | 0 | 2 layers: Transmit | | | diversity | | 1 | 1 layer: Precoding | | | corresponding to | | | precoding vector | | | $\begin{bmatrix} 1 & 1 \end{bmatrix}^T / \sqrt{2}$ | | 2 | 1 layer: Precoding | | | corresponding to | | | precoder vector | | | $\begin{bmatrix} 1 & -1 \end{bmatrix}^T / \sqrt{2}$ | | 3 | 1 layer: Precoding | | | corresponding to | | | precoder vector | | | $\begin{bmatrix} 1 & j \end{bmatrix}^T / \sqrt{2}$ | | 4 | 1 layer: Precoding | | | corresponding to | | | precoder vector | | | $\begin{bmatrix} 1 & -j \end{bmatrix}^T / \sqrt{2}$ | | 5 | 1 layer: | | | Precoding according to | | | the latest PMI report on | | | PUSCH, using the | | | precoder(s) indicated by | | 6 0 | the reported PMI(s) | | 6~8 | reserved | Table 5.3.3.1.20-2: Content of precoding information field for 4 antenna ports | Bit field
mapped to
index | Message | |---------------------------------|--| | 0 | 4 layers: Transmit | | | diversity | | 1 | 1 layer: TPMI=0 | | 2 | 1 layer: TPMI=1 | | • | • | | 16 | 1 layer: TPMI=15 | | 17 | 1 layer: Precoding
according to the latest
PMI report on PUSCH
using the precoder(s)
indicated by the reported
PMI(s) | | 18~31 | reserved | If the UE is configured to decode SPDCCH CRC scrambled by the C-RNTI and the number of information bits in format 7-1D mapped onto a given search space is less than that of format 7-0A/B depending on the configured uplink transmission mode for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 7-1D until the payload size equals that of format 7-0A/B, except when format 7-1D assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 7-1D carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-1D until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.21 Format 7-1E DCI format 7-1E is used for the scheduling of one PDSCH codeword with slot or subslot duration in one cell. The following information is transmitted by means of the DCI format 7-1E: - The fields of format 7-1A - SRS request 0 or 1 bit as defined in subclause 8.2 of [3] (this field is present only for TDD operation, if the UE has indicated the capability *srs-DCI7-Triggering-FS2-r15* and the UE is configured with higher layer parameter *srs-DCI7-TriggeringConfig-r15*) - Scrambling identity—1 bit as defined in subclause 6.10.3.1 of [2] - Precoding information 2 bits as specified in Table 5.3.3.1.21-1. Table 5.3.3.1.21-1: Content of precoding information field | Bit field mapped to index | Message | |---------------------------|------------------------------| | 0 | 2 layers: transmit diversity | | U | antenna ports 7, 8 | | 1 | 1 layer: antenna port 7 | | 2 | 1 layer: antenna port 8 | | 3 | 2 layers: antenna ports 7, 8 | If the UE is configured to decode SPDCCH CRC scrambled by the C-RNTI and the number of information bits in format 7-1E mapped onto a given search space is less than that of format 7-0A/B depending on the configured uplink transmission mode for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 7-1E until the payload size equals that of format 7-0A/B, except when format 7-1E assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 7-1E carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-1E until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.22 Format 7-1F DCI format 7-1F is used for the scheduling of one PDSCH codeword with slot or subslot duration in one cell. The following information is transmitted by means of the DCI format 7-1F: - The fields of format 7-1A - SRS request 0 or 1 bit as defined in subclause 8.2 of [3] (this field is present only
for TDD operation, if the UE has indicated the capability *srs-DCI7-Triggering-FS2-r15* and the UE is configured with higher layer parameter *srs-DCI7-TriggeringConfig-r15*) - DMRS position indicator 1 bit, where the value 0 indicates the presence of DMRS and the value 1 indicates the absence of DMRS. (The field is present only if UE is configured with *dl-TTI-Length=subslot*). This field is set to 0 when the UE is configured with higher layer parameter *blindSlotSubslotPDSCH-Repetitions* set to TRUE and the repetition number is greater than 1. - Antenna port(s), scrambling identity and number of layers 3 bits as specified in Table 5.3.3.1.22-2 if the UE is higher layer configured with *slotSubslotPDSCH-TXDiv-2layer-TM9/10*, Table 5.3.3.1.22-3 if the UE is higher layer configured with *slotSubslotPDSCH-TXDiv-4layer-TM9/10*, or Table 5.3.3.1.22-1 otherwise, where *n_{SCID}* is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2], or 1 bit as specified in Table 5.3.3.1.5C-6 where n_{SCID} is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2] when higher layer parameter *semiOpenLoop-STTI* is configured. When higher layer parameter semiOpenLoop-STTI is configured, antenna ports 7 and 8 are used for transmit diversity. Table 5.3.3.1.22-1: Antenna port(s), scrambling identity and number of layers indication | Value | Message | |-------|------------------------------| | 0 | 1 layer, port 7, nscid=0 | | 1 | 1 layer, port 7, nscid=1 | | 2 | 1 layer, port 8, nscid=0 | | 3 | 1 layer, port 8, nscid=1 | | 4 | 2 layers, ports 7-8, nscid=0 | | 5 | 2 layers, ports 7-8, nscid=1 | | 6 | 3 layers, ports 7-9 | | 7 | 4 layers, ports 7-10 | Table 5.3.3.1.22-2: Antenna port(s), scrambling identity and number of layers indication if the UE is configured with slotSubslotPDSCH-TXDiv-2layer-TM9/10 | Value | Message | |-------|---| | 0 | 1 layer, port 7, n _{SCID} =0 | | 1 | 1 layer, port 7, n _{SCID} =1 | | 2 | 1 layer, port 8, n _{SCID} =0 | | 3 | 1 layer, port 8, n _{SCID} =1 | | 4 | 2 layers, ports 7-8, nscid=0 | | 5 | 2 layers, ports 7-8, nscid=1 | | 6 | 2 layers, transmit diversity ports 7-8, n_{SCID} =0 | | 7 | 2 layers, transmit diversity ports 7-8, nscid=1 | Table 5.3.3.1.22-3: Antenna port(s), scrambling identity and number of layers indication if the UE is configured with slotSubslotPDSCH-TXDiv-4layer-TM9/10 | Value | Message | | |-------|---|--| | 0 | 1 layer, port 7, nscid=0 | | | 1 | 1 layer, port 7, nscid=1 | | | 2 | 1 layer, port 8, nscid=0 | | | 3 | 1 layer, port 8, nscid=1 | | | 4 | 2 layers, ports 7-8, n _{SCID} =0 | | | 5 | 2 layers, transmit diversity | | | | ports 7-8, <i>n</i> _{SCID} =0 | | | 6 | 3 layers, ports 7-9 | | | 7 | 4 layers, ports 7-10 | | If the UE is configured to decode SPDCCH CRC scrambled by the C-RNTI and the number of information bits in format 7-1F mapped onto a given search space is less than that of format 7-0A/B depending on the configured uplink transmission mode for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 7-1F until the payload size equals that of format 7-0A/B, except when format 7-1F assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 7-1F carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-1F until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.1.23 Format 7-1G DCI format 7-1G is used for the scheduling of one PDSCH codeword with slot or subslot duration in one cell. The following information is transmitted by means of the DCI format 7-1G: - The fields of format 7-1A - SRS request 0 or 1 bit as defined in subclause 8.2 of [3] (this field is present only for TDD operation, if the UE has indicated the capability *srs-DCI7-Triggering-FS2-r15* and the UE is configured with higher layer parameter *srs-DCI7-TriggeringConfig-r15*) - DMRS position indicator 1 bit, where the value 0 indicates the presence of DMRS and the value 1 indicates the absence of DMRS. (The field is present only if UE is configured with *dl-TTI-Length=subslot*). This field is set to 0 when the UE is configured with higher layer parameter *blindSlotSubslotPDSCH-Repetitions* set to TRUE and the repetition number is greater than 1. - Antenna port(s), scrambling identity and number of layers 3 bits as specified in Table 5.3.3.1.22-2if the UE is higher layer configured with *slotSubslotPDSCH-TXDiv-2layer-TM9/10*, Table 5.3.3.1.22-3 if the UE is higher layer configured with *slotSubslotPDSCH-TXDiv-4layer-TM9/10*, or Table 5.3.3.1.22-1 otherwise, where n_{SCID} is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2], or 1 bit as specified in Table 5.3.3.1.5C-6 where n_{SCID} is the scrambling identity for antenna ports 7 and 8 defined in subclause 6.10.3.1 of [2] when higher layer parameter *semiOpenLoop-STTI* is configured. - PDSCH RE Mapping and Quasi-Co-Location Indicator 2 bits as defined in subclauses 7.1.9 and 7.1.10 of [3] When higher layer parameter semiOpenLoop-STTI is configured, antenna ports 7 and 8 are used for transmit diversity. If the UE is configured to decode SPDCCH CRC scrambled by the C-RNTI and the number of information bits in format 7-1G mapped onto a given search space is less than that of format 7-0A/B depending on the configured uplink transmission mode for scheduling the same serving cell and mapped onto the same search space, zeros shall be appended to format 7-1G until the payload size equals that of format 7-0A/B, except when format 7-1G assigns downlink resource on a secondary cell without an uplink configuration associated with the secondary cell. If the number of information bits in format 7-1G carried by PDCCH is equal to the payload size of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4 mapped onto the UE specific search space given by C-RNTI or SPS C-RNTI as defined in [3] (including any padding bits appended to format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4), one or more zero bit(s) shall be appended to format 7-1G until the payload size is not equal to that of a configured format 0/0C/1/1A/1B/1D/2/2A/2B/2C/2D/4. #### 5.3.3.2 CRC attachment Error detection is provided on DCI transmissions through a Cyclic Redundancy Check (CRC). The entire payload is used to calculate the CRC parity bits. Denote the bits of the payload by $a_0, a_1, a_2, a_3, ..., a_{A-1}$, and the parity bits by $p_0, p_1, p_2, p_3, ..., p_{L-1}$. A is the payload size and L is the number of parity bits. The parity bits are computed and attached according to subclause 5.1.1 setting L to 16 bits, resulting in the sequence $b_0, b_1, b_2, b_3, ..., b_{B-1}$, where B = A + L. In the case where closed-loop UE transmit antenna selection is not configured or applicable, after attachment, the CRC parity bits are scrambled with the corresponding RNTI $x_{mti,0}, x_{mti,1}, ..., x_{mti,15}$, where $x_{mti,0}$ corresponds to the MSB of the RNTI, to form the sequence of bits $c_0, c_1, c_2, c_3, ..., c_{B-1}$. The relation between c_k and b_k is: $$c_k = b_k$$ for $k = 0, 1, 2, ..., A-1$ $$c_k = (b_k + x_{rnti,k-A}) \mod 2$$ for $k = A, A+1, A+2, ..., A+15$. In the case where closed-loop UE transmit antenna selection is configured and applicable, after attachment, the CRC parity bits with DCI format 0 or DCI format 6-0A are scrambled with the antenna selection mask $x_{AS,0}, x_{AS,1}, ..., x_{AS,15}$ as indicated in Table 5.3.3.2-1 and the corresponding RNTI $x_{rnti,0}, x_{rnti,1}, ..., x_{rnti,15}$ to form the sequence of bits $c_0, c_1, c_2, c_3, ..., c_{B-1}$. The relation between c_k and b_k is: $$c_k = b_k$$ for $k = 0, 1, 2, ..., A-1$ $$c_k = (b_k + x_{rnti,k-A} + x_{AS,k-A}) \mod 2$$ for $k = A, A+1, A+2, ..., A+15$. Table 5.3.3.2-1: UE transmit antenna selection mask | UE transmit antenna selection | Antenna selection mask | |-------------------------------|---| | | $< x_{AS,0}, x_{AS,1},, x_{AS,15} >$ | | UE port 0 | <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | | UE port 1 | <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 | #### 5.3.3.3 Channel coding Information bits are delivered to the channel coding block. They are denoted by $c_0, c_1, c_2, c_3, ..., c_{K-1}$, where K is the number of bits, and they are tail biting convolutionally encoded according to subclause 5.1.3.1. After encoding the bits are denoted by $d_0^{(i)}$, $d_1^{(i)}$, $d_2^{(i)}$, $d_3^{(i)}$,..., $d_{D-1}^{(i)}$, with i = 0,1, and 2, and where D is the number of bits on the i-th coded stream, i.e., D = K. #### 5.3.3.4 Rate matching A tail biting convolutionally coded block is delivered to the rate matching block. This block of coded bits is denoted by $d_0^{(i)}, d_1^{(i)}, d_2^{(i)}, d_3^{(i)}, ..., d_{D-1}^{(i)}$, with i = 0,1, and 2, and where i is the coded stream index and D is the number of bits in each coded stream. This coded block is rate matched according to subclause 5.1.4.2. After rate matching, the bits are denoted by $e_0, e_1, e_2, e_3, ..., e_{E-1}$, where E is the number of rate matched bits. #### 5.3.4 Control format indicator Data arrives each subframe to the coding unit in the form of an indicator for the time span, in units of OFDM symbols, of the DCI carried by PDCCH in that subframe of the corresponding DL cell. The CFI takes values CFI = 1, 2 or 3. For system bandwidths $N_{\rm RB}^{\rm DL} > 10$, the span of the DCI carried by PDCCH in units of OFDM symbols, 1, 2 or 3, is given
by the CFI. For system bandwidths $N_{\rm RB}^{\rm DL} \le 10$, the span of the DCI carried by PDCCH in units of OFDM symbols, 2, 3 or 4, is given by CFI+1. The coding flow is shown in Figure 5.3.4-1. Figure 5.3.4-1 Coding for CFI #### 5.3.4.1 Channel coding The control format indicator is coded according to Table 5.3.4-1. Table 5.3.4-1: CFI code words | | CFI code word | |------------|---| | CFI | < b ₀ , b ₁ ,, b ₃₁ > | | 1 | <0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1> | | 2 | <1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1 | | 3 | <1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1> | | 4 | | | (Reserved) | <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | ## 5.3.5 HARQ indicator (HI) Data arrives to the coding unit in the form of indicators for HARQ acknowledgement for one transport block. The coding flow is shown in Figure 5.3.5-1. Figure 5.3.5-1 Coding for HI #### 5.3.5.1 Channel coding The HI is coded according to Table 5.3.5-1, where for a positive acknowledgement HI = 1 and for a negative acknowledgement HI = 0. Table 5.3.5-1: HI code words | | HI code word | |----|--| | HI | < b ₀ , b ₁ , b ₂ > | | 0 | < 0,0,0 > | | 1 | < 1,1,1 > | # 5.4 Sidelink transport channels and control information # 5.4.1 Sidelink broadcast channel Figure 5.4.1-1 shows the processing structure for the SL-BCH transport channel. Data arrives to the coding unit in the form of a maximum of one transport block. The following coding steps can be identified: - Add CRC to the transport block - Channel coding - Rate matching The coding steps for SL-BCH transport channel are shown in the figure below. In addition, after rate matching PUSCH interleaving is applied according to subclauses 5.2.2.7 and 5.2.2.8 without any control information in order to apply a time-first rather than frequency-first mapping, where $C_{mux} = 2 \cdot \left(N_{\text{symb}}^{\text{SL}} - 3\right)$ and the sequence of bits f is equal to e. For SL-BCH configured by higher layers for V2X sidelink, $C_{mux} = 2 \cdot \left(N_{\text{symb}}^{\text{SL}} - 2\right) - 3$ is used. Figure 5.4.1-1: Transport channel processing for SL-BCH #### 5.4.1.1 Transport block CRC attachment Error detection is provided on transport blocks through a Cyclic Redundancy Check (CRC). The entire transport block is used to calculate the CRC parity bits. Denote the bits in a transport block delivered to layer 1 by $a_0, a_1, a_2, a_3, ..., a_{A-1}$, and the parity bits by $p_0, p_1, p_2, p_3, ..., p_{L-1}$. A is the size of the transport block and L is the number of parity bits. The lowest order information bit a_0 is mapped to the most significant bit of the transport block as defined in subclause 6.1.1 of [5]. The parity bits are computed and attached according to subclause 5.1.1 setting L to 16 bits, resulting in the sequence of bits $c_0, c_1, c_2, c_3, ..., c_{K-1}$ where $c_k = b_k$ for k = 0, 1, 2, ..., K-1 and K=A+L. #### 5.4.1.2 Channel coding Information bits are delivered to the channel coding block. They are denoted by $c_0, c_1, c_2, c_3, ..., c_{K-1}$, where K is the number of bits, and they are tail biting convolutionally encoded according to subclause 5.1.3.1. After encoding the bits are denoted by $d_0^{(i)}, d_1^{(i)}, d_2^{(i)}, d_3^{(i)}, ..., d_{D-1}^{(i)}$, with i = 0,1, and 2, and where D is the number of bits on the i-th coded stream, i.e., D = K. #### 5.4.1.3 Rate matching A tail biting convolutionally coded block is delivered to the rate matching block. This block of coded bits is denoted by $d_0^{(i)}, d_1^{(i)}, d_2^{(i)}, d_3^{(i)}, \dots, d_{D-1}^{(i)}$, with i = 0,1, and 2, and where i is the coded stream index and D is the number of bits in each coded stream. This coded block is rate matched according to subclause 5.1.4.2. After rate matching, the bits are denoted by $e_0, e_1, e_2, e_3, ..., e_{E-1}$, where E is the number of rate matched bits as defined in subclause 9.6.1 of [2]. #### 5.4.2 Sidelink shared channel The processing of the sidelink shared channel follows the downlink shared channel according to subclause 5.3.2, with the following differences: - Data arrives to the coding unit in the form of a maximum of one transport block every transmission time interval (TTI) - In the step of code block concatenation, the sequence of coded bits corresponding to one transport block after code block concatenation is referred to as one codeword in subclause 9.3.1 of [2]. - PUSCH interleaving is applied according to subclauses 5.2.2.7 and 5.2.2.8 without any control information in order to apply a time-first rather than frequency-first mapping, where $C_{mux} = 2 \cdot \left(N_{\text{symb}}^{\text{SL}} 1\right)$. For SL-SCH configured by higher layers for V2X sidelink, $C_{mux} = 2 \cdot \left(N_{\text{symb}}^{\text{SL}} 2\right) 1$ is used if the transmission format field of SCI format 1 is present and set to 1, otherwise $C_{mux} = 2 \cdot \left(N_{\text{symb}}^{\text{SL}} 2\right)$. #### 5.4.3 Sidelink control information An SCI transports sidelink scheduling information. The processing for one SCI follows the downlink control information according to subclause 5.3.3, with the following differences: - In the step of CRC attachment, no scrambling is performed. - PUSCH interleaving is applied according to subclauses 5.2.2.7 and 5.2.2.8 without any control information in order to apply a time-first rather than frequency-first mapping, where $C_{mux} = 2 \cdot (N_{\text{symb}}^{\text{SL}} 1)$ and the sequence of bits f is equal to e. For SCI format 1, $C_{mux} = 2 \cdot (N_{\text{symb}}^{\text{SL}} 2)$. #### 5.4.3.1 SCI formats The fields defined in the SCI formats below are mapped to the information bits a_0 to a_{A-1} as follows. Each field is mapped in the order in which it appears in the description, with the first field mapped to the lowest order information bit a_0 and each successive field mapped to higher order information bits. The most significant bit of each field is mapped to the lowest order information bit for that field, e.g. the most significant bit of the first field is mapped to a_0 . #### 5.4.3.1.1 SCI format 0 SCI format 0 is used for the scheduling of PSSCH. The following information is transmitted by means of the SCI format 0: - Frequency hopping flag 1 bit as defined in subclause 14.1.1 of [3]. - Resource block assignment and hopping resource allocation $-\left\lceil \log_2(N_{\rm RB}^{\rm SL}(N_{\rm RB}^{\rm SL}+1)/2) \right\rceil$ bits - For PSSCH hopping: - N_{SL_hop} MSB bits are used to obtain the value of $\tilde{n}_{PRB}(i)$ as indicated in subclause 8.4 of [3] - $-\left(\left\lceil\log_2(N_{\rm RB}^{\rm SL}(N_{\rm RB}^{\rm SL}+1)/2)\right\rceil-N_{\rm SL_hop}\right) \text{ bits provide the resource allocation in the subframe}$ - For non-hopping PSSCH: - $\left[\log_2(N_{\text{RB}}^{\text{SL}}(N_{\text{RB}}^{\text{SL}}+1)/2)\right]$ bits provide the resource allocation in the subframe as defined in subclause 8.1.1 of [3] - Time resource pattern 7 bits as defined in subclause 14.1.1 of [3]. - Modulation and coding scheme 5 bits as defined in subclause 14.1.1 of [3] - Timing advance indication 11 bits as defined in subclause 14.2.1 of [3] - Group destination ID 8 bits as defined by higher layers #### 5.4.3.1.2 SCI format 1 SCI format 1 is used for the scheduling of PSSCH. The following information is transmitted by means of the SCI format 1: - Priority 3 bits as defined in subclause 4.4.5.1 of [7]. - Resource reservation 4 bits as defined in subclause 14.2.1 of [3]. - Frequency resource location of initial transmission and retransmission $\left[\log_2(N_{\text{subchannel}}^{\text{SL}}(N_{\text{subchannel}}^{\text{SL}}+1)/2)\right]$ bits as defined in subclause 14.1.1.4C of [3]. - Time gap between initial transmission and retransmission 4 bits as defined in subclause 14.1.1.4C of [3]. - Modulation and coding scheme 5 bits as defined in subclause 14.2.1 of [3]. - Retransmission index 1 bit as defined in subclause 14.2.1 of [3]. - Transmission format—1 bit, where value 1 indicates a transmission format including rate-matching and TBS scaling, and value 0 indicates a transmission format including puncturing and no TBS-scaling. This field is only present if the transport mechanism selected by higher layers indicates the support of rate matching and TBS scaling. - Reserved information bits are added until the size of SCI format 1 is equal to 32 bits. The reserved bits are set to zero. ## 5.4.4 Sidelink discovery channel The processing of the sidelink discovery channel follows the downlink shared channel according to subclause 5.3.2, with the following differences: - Data arrives to the coding unit in the form of a maximum of one transport block every transmission time interval (TTI). - In the step of code block concatenation, the sequence of coded bits corresponding to one transport block after code block concatenation is referred to as one codeword in subclause 9.5.1 of [2]. - PUSCH interleaving is applied according to subclauses 5.2.2.7 and 5.2.2.8 without any control information in order to apply a time-first rather than frequency-first mapping, where $C_{mux} = 2 \cdot (N_{symb}^{SL} 1)$. # 6 Narrowband IoT # 6.1 Mapping to physical channels For Narrowband IoT, transport channels are mapped onto narrowband physical channels, the channel coding, multiplexing, and interleaving of which are specified in subclauses 6.3 and 6.4 for the uplink and downlink, respectively. Table 6.1-1 specifies the mapping of the uplink transport channels to their corresponding physical channels. Table 6.1-2 specifies the mapping of the downlink transport channels to their corresponding physical channels. Table 6.1-3 specifies the mapping of control channel information to its corresponding physical channel. Table 6.1-1 | TrCH | Physical Channel | |--------|-------------------| |
UL-SCH | NPUSCH (format 1) | | RACH | NPRACH | **Table 6.1-2** | TrCH | Physical Channel | |--------|------------------| | DL-SCH | NPDSCH | | BCH | NPBCH | | PCH | NPDSCH | **Table 6.1-3** | Control information | Physical Channel | |---------------------|-------------------| | UCI | NPUSCH (format 2) | | DCI | NPDCCH | # 6.2 Generic procedures The generic procedures for channel coding, multiplexing and interleaving are as in subclause 5.1 unless otherwise noted in subclause 6. Usage of coding scheme and coding rate for the different types of TrCH is shown in table 6.2-1. Usage of coding scheme and coding rate for the different control information types is shown in table 6.2-2. Table 6.2-1: Usage of channel coding scheme and coding rate for TrCHs | TrCH | Coding scheme | Coding rate | |--------|---------------|-------------| | UL-SCH | Turbo coding | 1/3 | | BCH | Tail biting | | | DL-SCH | convolutional | 1/3 | | PCH | coding | | Table 6.2-2: Usage of channel coding scheme and coding rate for control information. | Control Information | Coding scheme | Coding rate | |---------------------|--|-------------| | DCI | Tail biting
convolutional
coding | 1/3 | | UCI | Block code | 1/16 | # 6.3 Uplink transport channels and control information ### 6.3.1 Random access channel The sequence for the random access channel is processed according to [2]. # 6.3.2 Uplink shared channel Figure 6.3.2-1 shows the processing structure for the UL-SCH transport channel. Data arrives to the coding unit in the form of a maximum of one transport block over a number of resource units per UL cell. The number of resource units is scheduled according to [3]. The following coding steps can be identified: - CRC attachment - Channel coding - Rate matching Figure 6.3.2-1: Transport block processing for UL-SCH The CRC attachment, channel coding, and rate matching are performed according to subclauses 5.2.2.1, 5.2.2.3, and 5.2.2.4, respectively, with the following differences: In subclause 5.1.4.1.2 in the calculation of G', Q_m is 1 for $\pi/2$ -BPSK and 2 for $\pi/4$ -QPSK, and $rv_{idx} = 0$ or 2. In addition, after rate matching interleaving is applied per resource unit according to subclauses 5.2.2.7 and 5.2.2.8 without any control information in order to apply a time-first rather than frequency-first mapping, where the input sequence to 5.2.2.7 is the portion of e for a resource unit instead of f, and where $C_{mux} = (N_{\text{symb}}^{\text{UL}} - 1)N_{\text{slots}}^{\text{UL}}$ is the number of SC-FDMA symbols for NPUSCH in a UL resource unit as given in subclause 10.1.2.3 of [2]. # 6.3.3 Uplink control information on NPUSCH without UL-SCH data When control data is sent via NPUSCH without UL-SCH data and arrives to the coding unit in the form of an indicator for HARQ acknowledgement for one transport block, the coding flow is as shown in Figure 6.3.3-1. Figure 6.3.3-1: Coding for HARQ-ACK The one bit information of HARQ-ACK o_0^{ACK} is coded according to Table 6.3.3-1, where for a positive acknowledgement $o_0^{ACK} = 1$ and for a negative acknowledgement $o_0^{ACK} = 0$. Table 6.3.3-1: HARQ-ACK code words | HARQ-ACK $< O_0^{ACK} >$ | HARQ-ACK code word
< b ₀ , b ₁ , b _{2,} ,b ₁₅ > | |--------------------------|--| | 0 | <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | | 1 | <1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 | # 6.3.4 Scheduling request The scheduling request indication is received from higher layers and is processed according to [2] and [3]. # 6.4 Downlink transport channels and control information #### 6.4.1 Broadcast channel The processing structure for the BCH transport channel is according to Subclause 5.3.1, with the following differences: - The transmission time interval (TTI) is 640ms - The size of the BCH transport block is set to 34 bits - The CRC mask for NPBCH is selected according to 1 or 2 transmit antenna ports at eNodeB according to Table 5.3.1.1-1, where the transmit antenna ports are defined in subclause 10.2.6 of [2] - The number of rate matched bits is defined in subclause 10.2.4.1 of [2]. # 6.4.2 Downlink shared channel and Paging channel Figure 6.4.2-1 shows the processing structure for each transport block for the DL-SCH and PCH transport channels. Data arrives to the coding unit in the form of a maximum of one transport blocks over a number of resource units per DL cell. The following coding steps can be identified for each transport block of a DL cell: - CRC attachment - Channel coding - Rate matching Figure 6.4.2-1: Transport block processing for DL-SCH and PCH The CRC attachment, channel coding, and rate matching is performed according to subclauses 5.1.1, 5.1.3.1 and 5.1.4.2, respectively. For the CRC attachment, the parity bits are computed and attached according to subclause 5.1.1 setting L to 24 bits and using the generator polynomial $g_{\text{CRC24A}}(D)$, resulting in the sequence of bits $c_0, c_1, c_2, c_3, ..., c_{K-1}$ where $c_k = b_k$ for k = 0, 1, 2, ..., K-1 and K=A+L. #### 6.4.3 Downlink control information A DCI transports downlink or uplink scheduling information for one cell and one RNTI. The RNTI is implicitly encoded in the CRC. The processing structure for one DCI is according to Subclause 5.3.3. #### 6.4.3.1 DCI Format N0 DCI format N0 is used for the scheduling of NPUSCH in one UL cell. The following information is transmitted by means of the DCI format N0: - Flag for format N0/format N1 differentiation -1 bit, where value 0 indicates format N0 and value 1 indicates format N1 - Subcarrier indication 6 bits as defined in subclause 16.5.1.1 of [3] - Resource assignment 3 bits as defined in subclause 16.5.1.2 of [3] - Scheduling delay 2 bits as defined in subclause 16.5.1 of [3] - Modulation and coding scheme 4 bits as defined in subclause 16.5.1.2 of [3] - Redundancy version 1 bit as defined in subclause 16.5.1.2 of [3] - Repetition number 3 bits as defined in subclause 16.5.1.1 of [3] - New data indicator 1 bit - DCI subframe repetition number 2 bits as defined in subclause 16.6 in [3] - HARQ process number 1 bit. This field can only be present if 2 HARQ processes are configured and the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]. #### 6.4.3.2 DCI Format N1 DCI format N1 is used for the scheduling of one NPDSCH codeword in one cell, random access procedure initiated by a NPDCCH order, and notifying SC-MCCH change. The DCI corresponding to a NPDCCH order is carried by NPDCCH. The following information is transmitted by means of the DCI format N1: - If the format N1 CRC is scrambled by C-RNTI or RA-RNTI: - Flag for format N0/format N1 differentiation 1 bit, where value 0 indicates format N0 and value 1 indicates format N1 - NPDCCH order indicator 1 bit - Else if the format N1 CRC is scrambled by a G-RNTI: - Information for SC-MCCH change notification 2 bits as defined in subclause 5.8a of [6] Format N1 is used for random access procedure initiated by a NPDCCH order only if NPDCCH order indicator is set to '1', format N1 CRC is scrambled with C-RNTI, and all the remaining fields are set as follows: - Preamble format indicator 1 bit, where value 0 indicates preamble format 0/1 and value 1 indicates preamble format 2. This field is only present if *SystemInformationBlockType23-NB* is configured and the UE indicates the *nprach-Format2* capability. - Starting number of NPRACH repetitions 2 bits as defined in subclause 16.3.2 of [3] - Subcarrier indication of NPRACH 6 or 8 bits, this field is 8 bits only if Preamble format indicator is present and set to 1, as defined in subclause 16.3.2 of [3] - Carrier indication of NPRACH 4 bits as defined in subclause 16.3.2 of [3]. This field is only present if *ul-ConfigList* is configured and the UE indicates the *multiCarrier-NPRACH* capability. - All the remaining bits in format N1 are set to one #### Otherwise, - Scheduling delay 3 bits as defined in subclause 16.4.1 of [3] - Resource assignment 3 bits as defined in subclause 16.4.1.3 of [3] - Modulation and coding scheme 4 bits as defined in subclause 16.4.1.5 of [3] - Repetition number 4 bits as defined in subclause 16.4.1.3 of [3] - New data indicator 1 bit - HARQ-ACK resource 4 bits as defined in subclause 16.4.2 of [3]. - DCI subframe repetition number 2 bits as defined in subclause 16.6 in [3] - HARQ process number 1 bit. This field can only be present if 2 HARQ processes are configured and the corresponding DCI format is mapped onto the UE specific search space given by the C-RNTI as defined in [3]. When the format N1 CRC is scrambled with a RA-RNTI or a G-RNTI, then the following fields among the fields above are reserved for RA-RNTI and not present for G-RNTI: - New data indicator - HARQ-ACK resource If the number of information bits in format N1 is less than that of format N0 and the format N1 CRC is not scrambled by G-RNTI, zeros shall be appended to format N1 until the payload size equals that of format N0. #### 6.4.3.3 DCI Format N2 DCI format N2 is used for paging, direct indication, scheduling of one NPDSCH codeword carrying SC-MCCH in one cell, and notifying SC-MCCH change. The following information is transmitted by means of the DCI format N2: - If the format N2 CRC is scrambled by P-RNTI: - Flag for paging/direct indication differentiation 1 bit, with value 0 for direct indication and value 1 for paging - Else if the format N2 CRC is scrambled by a SC-RNTI: - Information for SC-MCCH change notification 1 bit as defined in subclause 5.8a of [6] - If the format N2 CRC is scrambled by P-RNTI and Flag=0: - Direct Indication information 8 bits provide direct indication of system information update and other fields, as defined in [6] - Reserved information bits are added until the size is equal to that of format N2 with Flag=1 - If the format N2 CRC is scrambled by P-RNTI and Flag=1, or if the
format N2 CRC is scrambled by SC-RNTI: - Resource assignment 3 bits as defined in subclause 16.4.1.3 of [3] - Modulation and coding scheme 4 bits as defined in subclause 16.4.1.5 of [3] - Repetition number 4 bits as defined in subclause 16.4.1.3 of [3] - DCI subframe repetition number – 3 bits as defined in subclause 16.6 of [3] # Annex A (informative): Change history | | | | | | Change history | | | |----------------------|------------------|------------------------|------|-----|--|----------------|----------------| | Date | TSG # | TSG Doc. | CR | Rev | Subject/Comment | Old | New | | 2006-09 | | | | | Skeleton | | 0.0.0 | | 2006-10 | | | | | Updated skeleton | 0.0.0 | 0.0.1 | | 2006-10 | | | | | Endorsed skeleton | 0.0.1 | 0.1.0 | | 2006-11 | | | | | Added TC. Added Broadcast, Paging and MBMS transport | 0.1.0 | 0.1.1 | | | | | | | channels in Table 4.2-1. | | | | 2006-11 | | | | | Endorsed v 0.2.0 | 0.1.1 | 0.2.0 | | 2006-12 | | | | | Added CC. Added type of coding for each transport channel or | 0.2.0 | 0.2.1 | | 0007.04 | | | | | control information. | 0.04 | 0.00 | | 2007-01 | | | | | Editor's version | 0.2.1 | 0.2.2 | | 2007-01 | | | | | Endorsed v 0.3.0 | 0.2.2 | 0.3.0 | | 2007-02 | | | | | Added QPP turbo Interleaver description. | 0.3.0 | 0.3.1 | | 2007-02 | | | | | Editor's version | 0.3.1 | 0.3.2 | | 2007-02
2007-02 | | | | | Endorsed v 0.4.0 | 0.3.2 | 0.4.0 | | 2007-02 | | | | | Added CRC details for PDSCH, PDCCH and PUSCH. Added QPP turbo-interleaver parameters. Set Z to 6144. Added details on code block segmentation. | 0.4.0 | 0.4.1 | | 2007-02 | | | | | Editor's version | 0.4.1 | 0.4.2 | | 2007-03 | RAN#35 | RP-070170 | | | For information at RAN#35 | 0.4.2 | 1.0.0 | | 2007-03 | | | | | Editor's version | 1.0.0 | 1.0.1 | | 2007-03 | | | | | Editor's version | 1.0.1 | 1.1.0 | | 2007-05 | | | | | Editor's version | 1.1.0 | 1.1.1 | | 2007-05 | | | | | Editor's version | 1.1.1 | 1.1.2 | | 2007-05 | | | | | Editor's version | 1.1.2 | 1.2.0 | | 2007-06 | | | | | Added circular buffer rate matching for PDSCH and PUSCH. Miscellaneous changes. | 1.2.0 | 1.2.1 | | 2007-06 | | | ļ | | Editor's version | 1.2.1 | 1.2.2 | | 2007-07 | | | | | Editor's version | 1.2.2 | 1.2.3 | | 2007-07 | | | | | Endorsed by email following decision taken at RAN1#49b | 1.2.3 | 1.3.0 | | 2007-08 | | | | | Editor's version including decision from RAN1#49bis. | 1.3.0 | 1.3.1 | | 2007-08 | | | | | Editor's version | 1.3.1 | 1.3.2 | | 2007-08 | | | | | Editor's version | 1.3.2 | 1.4.0 | | 2007-09 | | | | | Editor's version with decisions from RAN1#50 | 1,4.0 | 1,4,1 | | 2007-09 | | | | | Editor's version | 1.4.1 | 1.4.2 | | 10/09/07 | RAN#37 | RP-070730 | - | - | For approval at RAN#37 | 1.4.2 | 2.0.0 | | 12/09/07 | RAN_37 | RP-070730 | - | - | Approved version | 2.0.0 | 8.0.0 | | 28/11/07 | RAN_38 | RP-070949 | 0001 | - | Update of 36.212 | 8.0.0 | 8.1.0 | | 05/03/08 | RAN_39 | RP-080145 | 0002 | - | Update to 36.212 incorporating decisions from RAN1#51bis and RAN1#52 $$ | | 8.2.0 | | 28/05/08 | RAN_40 | RP-080433 | 0003 | - | Joint coding of CQI and ACK on PUCCH | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0004 | 1 | ACK insertion into PUSCH | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0005 | 1 | Introduction of format 1C | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0006 | 1 | Miscellaneous fixes to 36.212 | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 8000 | 1 | On multiplexing scheme for indicators | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0009 | 1 | On the soft buffer split of MIMO and TDD | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0010 | - | Resource assignment field for distributed VRB | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0011 | - | Clarifying the use of the different DCI formats | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0012 | 1 | Clarifying the value of N _L | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0013 | - | Payload size for DCI formats 3 and 3A | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0014 | - | Coding of ACK on PUSCH | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0015 | 1 | Coding of RI on PUSCH and mapping | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0016 | - | CRC for control information on PUSCH | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0017 | - | Introduction of Downlink Assignment Index | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0018 | - | Coding of CQI/PMI on PUSCH coming from PUCCH | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0019 | - | Simultaneous transmission of aperiodic CQI and UL control | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0020 | - | Encoding of antenna indicator on DCI format 0 | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0021 | - | PDCCH coverage in narrow bandwidths | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080433 | 0022 | - | Closed-loop and open-loop spatial multiplexing | 8.2.0 | 8.3.0 | | 28/05/08 | RAN_40 | RP-080457 | 0023 | - | Formula for linkage between PUSCH MCS and amount of resources used for control | 8.2.0 | 8.3.0 | | 09/09/08 | RAN_41 | RP-080669 | 0026 | - | Correction to PUSCH Channel Interleaver | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0028 | - | Correction of mapping of ACK/NAK to binary bit values | 8.3.0 | 8.4.0 | | 09/09/08
09/09/08 | RAN_41
RAN_41 | RP-080669
RP-080669 | 0029 | - | Correction to bit collection, selection and transmission Padding one bit to DCI format 1 when format 1 and format 0/1A | 8.3.0
8.3.0 | 8.4.0
8.4.0 | | | | | 0030 | - | have the same size | | | | 09/09/08 | RAN_41 | RP-080669 | 0031 | | Modification of M_limit | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0032 | | Definition of Formats 2 and 2A | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0033 | 2 | Corrections to DCI formats | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0035 | 1 | Format 1B confirmation flag | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0036 | _ | Corrections to Rank information scrambling in Uplink Shared | 8.3.0 | 8.4.0 | | | | | 0030 | _ | Channel | | | | Detc | TCC # | TCC Dag | CD | D | Change history | Old | Marri | |--------------|------------------|------------------------|------------|---|---|--------|--------| | Date | TSG # | TSG Doc. | CR | | Subject/Comment | Old | New | | 09/09/08 | RAN_41 | RP-080669 | 0037 | 2 | Clarification of TPC commands signaled in DCI formats 3/3A | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0038 | - | Clarification on UE transmit antenna selection mask | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0039 | 1 | Linking of control resources in PUSCH to data MCS | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0041 | - | Definition of Bit Mapping for DCI signalling | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0042 | 1 | Clarification on resource allocation in DCI format 1/2/2A | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0043 | - | DCI Format 1A changes needed for scheduling Broadcast Control | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0044 | - | DCI format1C | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0045 | - | Miscellaneous corrections | 8.3.0 | 8.4.0 | | 11/09/08 | RAN_41 | RP-080736 | 0046 | 1 | Correction on downlink multi-user MIMO | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0047 | 1 | Corrections to DL DCI Formats In case of Ambiguous Payload Sizes | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0048 | - | CR for RE provisioning for the control information in case of CQI-only transmission on PUSCH | 8.3.0 | 8.4.0 | | 09/09/08 | RAN_41 | RP-080669 | 0091 | 2 | Coding and multiplexing of multiple ACK/NACK in PUSCH | 8.3.0 | 8.4.0 | | 03/12/08 | RAN_42 | RP-080983 | | | Clarification of input bits corresponding to 2-bit HARQ-ACK and | 8.4.0 | 8.5.0 | | | | | 0050 | 2 | 2-bit RI | | | | 03/12/08 | RAN_42 | RP-080983 | 0053 | - | Editorial corrections to 36.212 | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0055 | - | Miscellaneous Corrections | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0057 | - | Clarification of mapping of information bits | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0058 | - | Completion of 36.212 CR47 (R1-083421) for "new" DCI Formats | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0059 | - | Change for determining DCI format 1A TBS table column indicator for broadcast control | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0061 | 2 | Defining DCI format 1A for downlink data arrival | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0063 | 1 | ACK/NACK transmission on PUSCH for LTE TDD | 8.4.0 | 8.5.0 | | 03/12/08 | RAN 42 | RP-080983 | 0065 | - | Correction in 36.212 related to TDD downlink HARQ processes | 8.4.0 | 8.5.0 | | 03/12/08 | RAN 42 | RP-080983 | 0067 | 1 | Correction of control MCS offset and SRS symbol puncturing | 8.4.0 | 8.5.0 | | 03/12/08 | RAN 42 | RP-080983 | 0068 | 1 | DCI format 2/2A | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0069 | - | Correction to zero padding in DCI format 1 | 8.4.0 | 8.5.0 | | 03/12/08 | RAN 42 | RP-080983 | 0071 | - | Clarification of RI bit field mapping for PUCCH | 8.4.0 | 8.5.0 | | 03/12/08 | RAN 42 | RP-080983 | 0072 | - | Clarifying RNTI bit mapping for PDCCH CRC scrambling | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0073 | - | Clarification on BCH transport block size | 8.4.0 | 8.5.0 | | 03/12/08 | RAN_42 | RP-080983 | 0076 | - | Clarification on the number of PUCCH-based CQI/PMI bits when reported on PUSCH | 8.4.0 | 8.5.0 | | 04/03/09 | RAN 43 | RP-090235 | 77 | 1 | Corrections to Transmitted Rank Indication | 8.5.0 | 8.6.0 | | 04/03/09 | RAN_43 | RP-090235 | 79 | 1 | Corrections to Transmitted Kank
Indication Correction to the bundled ACK/NACK and DAI transmission | 8.5.0 | 8.6.0 | | 04/03/09 | RAN_43 | RP-090235 | 80 | 2 | Corrections to transmission modes | 8.5.0 | 8.6.0 | | 04/03/09 | RAN_43 | RP-090235 | 81 | 1 | Corrections to transmission modes Correction on ACKNACK transmission on PUSCH for LTE TDD | 8.5.0 | 8.6.0 | | 04/03/09 | RAN_43 | RP-090235 | 82 | 2 | Corrections to CQI and RI fields description | 8.5.0 | 8.6.0 | | 04/03/09 | RAN_43 | RP-090235 | 83 | - | Clarifying DCI format 1A and DCI Format 1B | 8.5.0 | 8.6.0 | | 04/03/09 | RAN_43 | RP-090235 | | 1 | Clarification on channel coding for UCI HARQ-ACK | 8.5.0 | 8.6.0 | | 27/05/09 | RAN_44 | RP-090233 | 92 | - | Clarify some parameters for determining control resources on | 8.6.0 | 8.7.0 | | | | | 87 | - | PUSĆH | | | | 01/12/09 | RAN_46 | RP-091168 | 89 | - | Clarification on bitwidth of RI | 8.7.0 | 8.8.0 | | 01/12/09 | RAN_46 | RP-091168 | 94 | - | Correction to Channel interleaver for PUSCH RE Mapping | 8.7.0 | 8.8.0 | | 01/12/09 | RAN_46 | RP-091177 | 88 | 1 | Editorial corrections to 36.212 | 8.8.0 | 9.0.0 | | 01/12/09 | RAN_46 | RP-091257 | 95 | 1 | Introduction of enhanced dual layer transmission | 8.8.0 | 9.0.0 | | 16/03/10 | RAN_47 | RP-100210 | 96 | 1 | MCCH change notification using DCI format 1C | 9.0.0 | 9.1.0 | | 16/03/10 | RAN_47 | RP-100211 | 97 | - | Addition of missing reference to DCI format 2B + typo corrections | 9.0.0 | 9.1.0 | | 01/06/10 | RAN_48 | RP-100589 | 98 | - | Correction to TBS determination for DCI format 1C | 9.1.0 | 9.2.0 | | 14/09/10 | RAN_49 | RP-100899 | 99 | - | Clarify soft buffer size determination for MCH | 9.2.0 | 9.3.0 | | 07/12/10 | RAN_50 | RP-101320 | 100 | - | Introduction of Rel-10 LTE-Advanced features in 36.212 | 9.3.0 | 10.0.0 | | 15/03/11 | RAN_51 | RP-110254 | 101 | - | Correction on UE behavior upon receiving DCI format 1B | 10.0.0 | 10.1.0 | | 15/03/11 | RAN_51 | RP-110256 | 102 | - | Corrections to Rel-10 LTE-Advanced features in 36.212 | 10.0.0 | 10.1.0 | | 01/06/11 | RAN_52 | RP-110819 | 103 | 3 | Correction of DCI format 0 and 4 resource allocation | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52 | RP-110819 | 104 | 2 | Correction to Multi-cluster flag in DCI format 0 | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52 | RP-110819 | 107 | 2 | Corrections on HARQ-ACK Channel Coding in the PUSCH | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52 | RP-110820 | 108 | 3 | A clarification for DCI format payload size | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52 | RP-110819 | 110 | 1 | Correction the search space and RNTI for CQI and SRS request flag | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52
RAN_52 | RP-110819
RP-110820 | 111
112 | 1 | Resource dimensioning for CQI only PUSCH transmission Correction on bit representations of transport block processing for UL-SCH | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52 | RP-110818 | 113 | - | Clarification on PMI indication in DCI format1B and format 2 | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52 | RP-110820 | 114 | 1 | Rate maching parameters for CA | 10.1.0 | 10.2.0 | | J 1/ JU/ 1 1 | | | 116 | - | HARQ-ACK on PUSCH for TDD with channel selection | 10.1.0 | 10.2.0 | | 01/06/11 | RAN_52 | RP-110819 | 110 | | configured for 2 serving cells | 10.1.0 | 10.2.0 | | | Change history | | | | | | | | | | |--|----------------|--------|-----------|-----|----------|--|--------|--------|--|--| | 15/09/11 RAN, 53 RP-111220 120 20 10.30 15/09/11 RAN, 53 RP-111230 120 20 10.30 15/09/11 RAN, 53 RP-111230 122 1 Size adjustment of DCI format 0, 1A and 1 10.2 10.30 15/09/11 RAN, 53 RP-111232 123 1 Corrections on N/sr 10.2 10.30 15/09/11 RAN, 53 RP-111232 123 1 Corrections on N/sr 10.2 10.30 15/09/11 RAN, 53 RP-111232 125 Corrections on DCI format 1B/1D 10.2 10.30 15/09/11 RAN, 53 RP-111228 125 Corrections on DCI format 1B/1D 10.2 10.30 15/09/11 RAN, 53 RP-111228 125 Corrections on DCI format 1B/1D 10.2 10.30 15/09/11 RAN, 53 RP-111228 125 Corrections on DCI format 1 Description 10.2.0 10.30 15/09/11 RAN, 53 RP-111228 127 Corrections on DCI format 1 Description 10.2.0 10.30 15/09/11 RAN, 54 RP-111229 129 Corrections on channel coding of control information and DCI 10.2.0 10.30 10.40 10.50 10. | Date | TSG # | TSG Doc. | CR | Rev | | Old | New | | | | 15/09/11 RAN, 53 RP-111230 120 2 D. correction of channel coding of control information 10.20 10.30 | | | | | | | | | | | | 1509/11 RAN, 53 RP-111230 122 1 Size adjustment of DCI format 0, 1A and 1 10.2.0 10.3.0 1509/11 RAN, 53 RP-111232 123 1 Corrections on Ns/s 10.2.0 10.3.0 1509/11 RAN, 53 RP-111228 125 - Minro Correction on DCI Format 1 Description 10.2.0 10.3.0 1509/11 RAN, 53 RP-111228 125 - Minro Correction on DCI Format 1 Description 10.2.0 10.3.0 1509/11 RAN, 53 RP-111228 125 - Correction on ACK/NACK mapping 10.2.0 10.3.0 15.09/11 RAN, 53 RP-111228 128 - Corrections on channel coding of control information and DCI 10.2.0 10.3.0 15.09/11 RAN, 53 RP-111229 129 - Clarification and correction to configuration signalling condition for channel quality information formats 10.2.0 10.3.0 10.4.0 10.5.0 10.5/12/11 RAN, 54 RP-111667 130 1 Corrections on codebook index indication in DCI format 4 10.3.0 10.4.0 10.5/12/11 RAN, 54 RP-111667 130 1 Corrections on codebook index indication in DCI format 1 10.3.0 10.4.0 10.5/12/11 RAN, 55 RP-120283 132 2 Corrections on payload size adjustment for DCI format 1 10.3.0 10.4.0 10.5.0 10.5/12/12 RAN, 55 RP-120283 134 1 Miscellaneous corrections 10.4.0 10.5.0 10.5/12/12 RAN, 55 RP-120283 134 1 Miscellaneous corrections 10.4.0 10.5.0 10.5/12/12 RAN, 55 RP-120737 138 1 Correction to Data and control multiplexing 10.4.0 10.5.0 10.6/12/12 RAN, 56 RP-120737 138 1 Introduction of Rel-11 LTE-Advanced features in 36.212 10.6.0 11.0.0 11.1. | | | | | 2 | | | | | | | 15/09/11 RAN, 53 RP-111232 123 1 Corrections on NS/s 10.2.0 10.3.0 10.3.0 15/09/11 RAN, 53 RP-111228 125 2 Corrections on DCI Format 1 Description 10.2.0 10.3.0 15/09/11 RAN, 53 RP-111228 125 2 Correction on DCI Format 1 Description 10.2.0 10.3.0 10.30 15/09/11 RAN, 53 RP-111226 127 Correction on ACK/NACK mapping 10.2.0 10.3.0 15/09/11 RAN, 53 RP-111228 128 Corrections on channel coding of control information and DCI 10.2.0 10.3.0 15/09/11 RAN, 54 RP-111667 130 Corrections on channel coding of control information and DCI 10.2.0 10.3.0 10.5/12/11 RAN, 54 RP-111667 130 Corrections on codebook index indication in DCI format 4 10.3.0 10.4.0 10.5/12/11 RAN, 54 RP-111666 131 Corrections on codebook index indication in DCI format 4 10.3.0 10.4.0 10.5/12/11 RAN, 54 RP-111666 131 Corrections on payload size adjustment for DCI format 1A and 1 10.4.0 10.5.0 13/06/12 RAN, 55 RP-120283 133 Correction on payload size adjustment for DCI format 1A and 1 10.4.0 10.5.0 13/06/12 RAN, 56
RP-120739 136 Correction of two HARQ-ACK feedback on PUSCH 10.4.0 10.5.0 13/06/12 RAN, 56 RP-120739 136 Correction to Data and control multiplexing 10.5.0 10.6.0 13/06/12 RAN, 56 RP-120739 138 Correction to Data and control multiplexing 10.5.0 10.6.0 | | | | | | | | | | | | 15/09/11 RAN, 53 RP-111/228 124 2 Corrections on DCI format 16/10 103.0 103.0 103.0 15/09/11 RAN, 53 RP-111/228 127 Correction on ACK/NACK mapping 102.0 103.0 15/09/11 RAN, 53 RP-111/228 128 Corrections on contamnel coding of control information and DCI 15/09/11 RAN, 53 RP-111/229 129 Corrections on contamnel coding of control information and DCI 15/09/11 RAN, 54 RP-111/229 129 Corrections on codebook index indication in DCI format 4 103.0 104.0 105.0 105/12/11 RAN, 54 RP-111/666 131 HARC-ACK on UCI-only PUSCH without UL-SCH data 103.0 104.0 105.0 105/12/11 RAN, 54 RP-111/666 131 HARC-ACK on UCI-only PUSCH without UL-SCH data 103.0 104.0 105.0 105/12/11 RAN, 55 RP-120283 132 2 Corrections on codebook index indication in DCI format 4 103.0 104.0 105.0 105/12/11 RAN, 55 RP-120283 133 1 Correction of two HARC-ACK leads on PUSCH 104.0 105.0 105/12/12 RAN, 55 RP-120283 134 1 Miscellaneous corrections 104.0 105.0 | | | | 123 | 1 | | | | | | | 15/09/11 RAN_53 RP-111226 127 - Correction on DCI Format 1 Description 10.2.0 10.3.0 15/09/11 RAN_53 RP-111231 128 - Correction on ACK/NACK mapping 10.2.0 10.3.0 15/09/11 RAN_53 RP-111231 128 - Corrections on channel coding of control information and DCI 10.2.0 10.3.0 15/09/11 RAN_54 RP-111667 30 1 Corrections on channel coding of control information and DCI 10.2.0 10.3.0 10.5/12/11 RAN_54 RP-111666 31 - HARCA-ACK on UCI-only PUSCH without UL-SCH data 10.3.0 10.4.0 10.5/12/11 RAN_54 RP-111666 31 - HARCA-ACK on UCI-only PUSCH without UL-SCH data 10.3.0 10.4.0 10.5/12/11 RAN_55 RP-120283 133 - HARCA-ACK on UCI-only PUSCH without UL-SCH data 10.3.0 10.4.0 10.5/12/12 RAN_55 RP-120283 133 - Corrections on payload size adjustment for DCI format 1 A and 1 10.4.0 10.5.0 10.6/12 RAN_56 RP-120739 316 - Correction of two HARCA-ACK deedback on PUSCH 10.4.0 10.5.0 10.6/12 RAN_56 RP-120739 316 - Correction to Data and control multiplexing 10.5.0 10.6.0 10.6/12 RAN_56 RP-120737 138 - Correction to Data and control multiplexing 10.5.0 10.6.0 10.6/12 RAN_56 RP-120737 138 - Correction to SI request field size in DCI format 0 and DCI 10.5.0 10.6.0 10.6/12 RAN_56 RP-120737 138 - Correction to SI request field size in DCI format 0 and DCI 10.5.0 10.6.0 10.6/12 RAN_56 RP-120737 138 - Correction to Test parameter us-Category-v10xy 11.0.0 11.1.0 | | | | | 2 | | | _ | | | | 15/09/11 RAN_53 RP-111226 127 Correction on ACK/NACK mapping 10.2.0 10.3.0 15/09/11 RAN_53 RP-111231 128 Corrections on channel coding of control information and DCI 10.2.0 10.3.0 15/09/11 RAN_54 RP-111267 129 Corrections on codebook index indication in DCI format 4 10.3.0 10.4.0 10.5/05/12/11 RAN_54 RP-111666 131 HARC-ACK on UCI-nolly PUSCH without UL-SCH data 10.3.0 10.4.0 10.5/05/12/11 RAN_54 RP-111666 131 HARC-ACK on UCI-nolly PUSCH without UL-SCH data 10.3.0 10.4.0 10.5/05/12/11 RAN_54 RP-120283 132 2 Corrections on codebook index indication in DCI format 4 10.3.0 10.4.0 10.5/05/12/11 RAN_55 RP-120283 132 2 Corrections on payload size adjustment for DCI format 1A and 1 10.4.0 10.5.0 10.5/05/12/12 RAN_55 RP-120283 133 1 Correction of two HARQ-ACK feedback on PUSCH 10.4.0 10.5.0 10.6/05/12/12 RAN_56 RP-120739 136 Correction to Data and control multiplexing 10.5/05/12/12 RAN_56 RP-120739 138 Correction to Data and control multiplexing 10.5/05/12/12 RAN_58 RP-121839 143 Correction to CSI request field size in DCI format 0 and DCI 10.5/05/12/12 RAN_58 RP-121839 143 Correction to TSI request field size in DCI format 0 and DCI 10.5/05/12/12 RAN_58 RP-121839 143 Correction to TSI request field size in DCI format 0 and DCI 10.5/05/12/12 RAN_58 RP-130785 145 Finalisation for introducing Rel-11 11.0.0 11.1.0 | | | | | - | | | | | | | 15/09/11 | | | | | - | | | | | | | NR-111667 30 10.40 10.40 10.50 10.60 10.40 10.50 10.40 10.50 10.60 10.60 10.50 10.50 10. | | | | | - | Corrections on channel coding of control information and DCI | | | | | | 66/12/11 RAN_54 RP-111666 131 - HARQ-ACK on UCI-only PUSCH without UL-SCH data 10.3.0 10.4.0 | 15/09/11 | RAN_53 | RP-111229 | 129 | - | | 10.2.0 | 10.3.0 | | | | 28/02/12 RAN_55 RP-120283 132 2 Corrections on payload size adjustment for DCI format 1A and 1 10.4.0 10.5.0 28/02/12 RAN_55 RP-120283 133 1 Correction of two HARQ-ACK feedback on PUSCH 10.4.0 10.5.0 13/06/12 RAN_55 RP-120739 136 - Correction to Data and control multiplexing 10.5.0 10.6.0 13/06/12 RAN_56 RP-120737 138 - Correction to CSI request field size in DCI format 0 and DCI format 0 and DCI format 4 10.5.0 10.6.0 04/12/12 RAN_56 RP-121872 139 - Correction to CSI request field size in DCI format 0 and DCI format 0 and DCI format 4 10.5.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.1.0 11.0.0 11.1.0 | 05/12/11 | RAN_54 | RP-111667 | 130 | 1 | Corrections on codebook index indication in DCI format 4 | 10.3.0 | 10.4.0 | | | | 28/02/12 RAN_55 RP-120283 132 2 Corrections on payload size adjustment for DCI format 1A and 1 10.4.0 10.5.0 28/02/12 RAN_55 RP-120283 133 1 Correction of two HARQ-ACK feedback on PUSCH 10.4.0 10.5.0 13/06/12 RAN_55 RP-120739 136 - Correction to Data and control multiplexing 10.5.0 10.6.0 13/06/12 RAN_56 RP-120737 138 - Correction to CSI request field size in DCI format 0 and DCI format 0 and DCI format 4 10.5.0 10.6.0 04/12/12 RAN_56 RP-121872 139 - Correction to CSI request field size in DCI format 0 and DCI format 0 and DCI format 4 10.5.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.0.0 11.1.0 11.0.0 11.1.0 | 05/12/11 | RAN_54 | RP-111666 | 131 | - | HARQ-ACK on UCI-only PUSCH without UL-SCH data | 10.3.0 | 10.4.0 | | | | 28/02/12 RAN_55 RP-120283 133 1 Correction of two HARQ-ACK feedback on PUSCH 10.4.0 10.5.0 28/02/12 RAN_55 RP-120285 134 1 Miscellaneous corrections 10.4.0 10.5.0 13/06/12 RAN_56 RP-120737 138 - Correction to Data and control multiplexing 10.5.0 10.6.0 04/09/12 RAN_56 RP-120737 138 - Correction to CSI request field size in DCI format 0 and DCI format 0 and DCI format 4 10.6.0 10.6.0 10.6.0
11.0.0 10.6.0 11.0.0 11.1.0 11.0.0 11.1.0 11.0.0 11.0 | 28/02/12 | RAN 55 | RP-120283 | 132 | 2 | | | 10.5.0 | | | | 28/02/12 RAN_55 RP-120285 134 1 Miscellaneous corrections 10.4.0 10.5.0 10.6.0 13/06/12 RAN_56 RP-120739 138 - Correction to Data and control multiplexing 10.5.0 10.6.0 13/06/12 RAN_56 RP-120737 138 - Correction to CSI request field size in DCI format 0 and DCI 10.5.0 10.6.0 04/09/12 RAN_58 RP-121839 143 - Correction to CSI request field size in DCI format 0 and DCI 10.6.0 11.0.0 04/12/12 RAN_58 RP-121846 144 - Correction to the parameter ue-Category-v10xy 11.0.0 11.1.0 26/02/13 RAN_59 RP-130755 145 - Finalisation for introducing Rel-11 features 11.0.0 11.1.0 11/06/13 RAN_60 RP-130755 145 - Correction on the RIb lit width 111.2.0 11.3.0 11/06/13 RAN_60 RP-130752 149 - Correction on the time span of the DCI 11.2.0 11.3.0 11/06/13 RAN_60 <td>28/02/12</td> <td></td> <td>RP-120283</td> <td>133</td> <td>1</td> <td></td> <td>10.4.0</td> <td>10.5.0</td> | 28/02/12 | | RP-120283 | 133 | 1 | | 10.4.0 | 10.5.0 | | | | 13/06/12 RAN_56 RP-120739 136 Correction to Data and control multiplexing 10.5.0 10.6.0 13/06/12 RAN_56 RP-120737 138 Correction to CSI request field size in DCI format 0 and DCI 10.5.0 10.6.0 11.0.0 11.1. | | | | | 1 | | | _ | | | | 13/06/12 RAN_56 RP-120737 138 Correction to CSI request field size in DCI format 0 and DCI 10.5.0 10.6.0 | | | | | - | | | | | | | 04/12/12 RAN_58 RP-121839 143 Correction to the parameter ue-Category-v10xy 11.0.0 11.1.0 04/12/12 RAN_58 RP-121846 144 Finalisation for introducing Rel-11 features 11.0.0 11.1.0 11.2.0 11.3.0 11/06/13 RAN_59 RP-130255 145 RP-130255 145 RAN_59 RP-130751 147 2 Correction on the RI bit width 11.2.0 11.3.0 11/06/13 RAN_60 RP-130774 148 Correction on the RI bit width 11.2.0 11.3.0 11/06/13 RAN_60 RP-130752 149 Correction on the time span of the DCI 11.2.0 11.3.0 11/06/13 RAN_60 RP-130752 150 Correction on ARO bit setting for DL DCIs carried by EPDCCH 11.2.0 11.3.0 11/06/13 RAN_60 RP-130750 151 Clarification on DL DAI usage in inter-band TDD CA 11.2.0 11.3.0 11/06/13 RAN_60 RP-130749 153 Correction on ARO bit setting for DL DCIs carried by EPDCCH 11.2.0 11.3.0 11/06/13 RAN_60 RP-130789 155 Clarification on DL DAI usage in inter-band TDD CA 11.2.0 11.3.0 11.4.0 03/12/13 RAN_62 RP-131896 154 3 Introduction of Rel 12 feature for Downlink MIMO Enhancement 11.4.0 12.0.0 10/06/14 RAN_64 RP-140858 156 Clarification on UE antenna port based CRC masking 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 155 Clarification on UE antenna port based CRC masking 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 Clarification of GRel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/06/14 RAN_66 RP-14106 163 3 Clarification of GRel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/09/14 RAN_66 RP-14106 163 3 Clarification of Outwill with Strams 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.0.0 12.0.0 12.0.0 12.0.0 12.0.0 | | | | | - | Correction to CSI request field size in DCI format 0 and DCI | | | | | | 04/12/12 RAN_58 RP-121839 143 Correction to the parameter ue-Category-v10xy 11.0.0 11.1.0 04/12/12 RAN_58 RP-121846 144 Finalisation for introducing Rel-11 features 11.0.0 11.1.0 11.2.0 11.3.0 11/06/13 RAN_59 RP-130255 145 RP-130255 145 RAN_59 RP-130751 147 2 Correction on the RI bit width 11.2.0 11.3.0 11/06/13 RAN_60 RP-130774 148 Correction on the RI bit width 11.2.0 11.3.0 11/06/13 RAN_60 RP-130752 149 Correction on the time span of the DCI 11.2.0 11.3.0 11/06/13 RAN_60 RP-130752 150 Correction on ARO bit setting for DL DCIs carried by EPDCCH 11.2.0 11.3.0 11/06/13 RAN_60 RP-130750 151 Clarification on DL DAI usage in inter-band TDD CA 11.2.0 11.3.0 11/06/13 RAN_60 RP-130749 153 Correction on ARO bit setting for DL DCIs carried by EPDCCH 11.2.0 11.3.0 11/06/13 RAN_60 RP-130789 155 Clarification on DL DAI usage in inter-band TDD CA 11.2.0 11.3.0 11.4.0 03/12/13 RAN_62 RP-131896 154 3 Introduction of Rel 12 feature for Downlink MIMO Enhancement 11.4.0 12.0.0 10/06/14 RAN_64 RP-140858 156 Clarification on UE antenna port based CRC masking 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 155 Clarification on UE antenna port based CRC masking 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 Clarification of GRel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/06/14 RAN_66 RP-14106 163 3 Clarification of GRel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/09/14 RAN_66 RP-14106 163 3 Clarification of Outwill with Strams 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.1.0 12.0.0 12.0.0 12.0.0 12.0.0 12.0.0 12.0.0 | 04/09/12 | RAN_57 | RP-121272 | 139 | - | Introduction of Rel-11 LTE-Advanced features in 36.212 | 10.6.0 | 11.0.0 | | | | 04/12/12 RAN_58 RP-121846 144 - Finalisation for introducing Rel-11 features 11.0.0 11.1.0 11.2.0 11.3.0 11.06/13 RAN_60 RP-130751 147 2 Correction on the RI bit width 11.2.0 11.3.0 11.06/13 RAN_60 RP-130747 148 - CR on DCI Format 4 payload size 11.2.0 11.3.0 11.06/13 RAN_60 RP-130752 149 - Correction on the time span of the DCI 11.2.0 11.3.0 11.06/13 RAN_60 RP-130752 150 - Correction on ARO bit setting for DL DCIs carried by EPDCCH 11.2.0 11.3.0 11.06/13 RAN_60 RP-130750 151 - Correction on ARO bit setting for DL DCIs carried by EPDCCH 11.2.0 11.3.0 11.06/13 RAN_60 RP-130750 151 - Correction on DL DAI usage in inter-band TDD CA 11.2.0 11.3.0 11.06/13 RAN_60 RP-130749 153 - Correction on DL DAI usage in inter-band TDD CA 11.2.0 11.3.0 11.06/13 RAN_62 RP-131893 155 - Correction on parameter ue-Category 11.3.0 11.4.0 10.06/14 RAN_64 RP-140858 156 - Ciarification on UE antenna port based CRC masking 12.0.0 12.1.0 10.06/14 RAN_64 RP-140862 158 - Ciarification on UE antenna port based CRC masking 12.0.0 12.1.0 10.06/14 RAN_64 RP-140862 158 - Ciarification of Dull by the span b | | RAN_58 | RP-121839 | 143 | - | Correction to the parameter ue-Category-v10xy | 11.0.0 | 11.1.0 | | | | 26/02/13 RAN_59 RP-130255 145 - Additional clarifications/corrections for introducing Rel-11 features 11.1.0 11.2.0 11.2.0 11.3.0 11.2.0 11.3.0 11.2.0 11.3.0 | 04/12/12 | RAN_58 | RP-121846 | 144 | - | | 11.0.0 | 11.1.0 | | | | 11/06/13 | | | RP-130255 | 145 | - | Additional clarifications/corrections for introducing Rel-11 | 11.1.0 | 11.2.0 | | | | 11/06/13 | 11/06/13 | RAN_60 | RP-130751 | 147 | 2 | Correction on the RI bit width | 11.2.0 | 11.3.0 | | | | 11/06/13 | 11/06/13 | RAN_60 | RP-130747 | 148 | - | CR on DCI Format 4 payload size | 11.2.0 | 11.3.0 | | | | 11/06/13 RAN_60 RP-130750 151 - Clarification on DL DAI usage in inter-band TDD CA 11.2.0 11.3.0 11/06/13 RAN_60 RP-130749 153 - Correction to bit padding of DCI format 1A for secondary cell without uplink component carrier 11.2.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.3.0 11.4.0 12.0 12.1.0 11.3.0 11.4.0 12.0.0 12.1.0 12.0.0 12.1.0 </td <td>11/06/13</td> <td>RAN_60</td> <td>RP-130752</td> <td>149</td> <td>-</td> <td>Correction on the time span of the DCI</td> <td>11.2.0</td> <td>11.3.0</td> | 11/06/13 | RAN_60 | RP-130752 | 149 | - | Correction on the time span of the DCI | 11.2.0 | 11.3.0 | | | | 11/06/13 RAN_60 RP-130749 153 Correction to bit padding of DCI
format 1A for secondary cell without uplink component carrier 11.2.0 11.3.0 11.4.0 12.0 11.3.0 11.4.0 12.0 11.3.0 11.4.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 <td>11/06/13</td> <td>RAN_60</td> <td>RP-130752</td> <td>150</td> <td>-</td> <td>Correction on ARO bit setting for DL DCIs carried by EPDCCH</td> <td>11.2.0</td> <td>11.3.0</td> | 11/06/13 | RAN_60 | RP-130752 | 150 | - | Correction on ARO bit setting for DL DCIs carried by EPDCCH | 11.2.0 | 11.3.0 | | | | Name | 11/06/13 | RAN_60 | RP-130750 | 151 | - | Clarification on DL DAI usage in inter-band TDD CA | 11.2.0 | 11.3.0 | | | | 03/12/13 RAN_62 RP-131893 155 1 Correction on parameter ue-Category 11.3.0 11.4.0 03/12/13 RAN_62 RP-131896 154 3 Introduction of Rel 12 feature for Downlink MIMO Enhancement 11.4.0 12.0.0 10/06/14 RAN_64 RP-140858 156 - Clarification on UE antenna port based CRC masking 12.0.0 12.1.0 10/06/14 RAN_64 RP-140859 157 1 Correction on UCI multiplexing on PUSCH 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 - Introduction of Rel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 - Clarification of downlink subframes 12.0.0 12.1.0 10/09/14 RAN_65 RP-141485 161 - CR for 36.212 on 256QAM and LC-MTC 12.1.0 12.2.0 12.3.0 08/12/14 RAN_66 RP-142106 163 3 CR for 36.212 on 256QAM and LC-MTC 12.2.0 12.3.0 08/12/14 RAN_66 | 11/06/13 | RAN_60 | RP-130749 | 153 | - | | 11.2.0 | 11.3.0 | | | | 10/06/14 RAN_64 RP-140858 156 - Clarification on UE antenna port based CRC masking 12.0.0 12.1.0 10/06/14 RAN_64 RP-140859 157 1 Correction on UCI multiplexing on PUSCH 12.0.0 12.1.0 10/06/14 RAN_64 RP-140862 158 - Introduction of Rel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 - Clarification of downlink subframes 12.0.0 12.1.0 10/09/14 RAN_65 RP-141485 161 - CR for 36.212 on 256QAM and LC-MTC 12.1.0 12.2.0 12.3.0 08/12/14 RAN_66 RP-142106 163 3 CR for 36.212 on 256QAM and LC-MTC 12.2.0 12.3.0 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_67 RP-150366 162 3 Introduction of Dual Connectivity feature into 36.212 12. | 03/12/13 | RAN_62 | RP-131893 | 155 | 1 | Correction on parameter ue-Category | 11.3.0 | 11.4.0 | | | | 10/06/14 RAN_64 RP-140859 157 1 Correction on UCI multiplexing on PUSCH 12.0.0 12.1.0 10/06/14 RAN_64 RP-140862 158 - Introduction of Rel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 - Clarification of downlink subframes 12.0.0 12.1.0 10/09/14 RAN_65 RP-141485 161 - CR for 36.212 on 256QAM and LC-MTC 12.1.0 12.2.0 12.3.0 08/12/14 RAN_66 RP-142106 163 3 CR for 36.212 on 256QAM and LC-MTC 12.2.0 12.3.0 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 <td< td=""><td>03/12/13</td><td>RAN_62</td><td>RP-131896</td><td>154</td><td>3</td><td>Introduction of Rel 12 feature for Downlink MIMO Enhancement</td><td>11.4.0</td><td>12.0.0</td></td<> | 03/12/13 | RAN_62 | RP-131896 | 154 | 3 | Introduction of Rel 12 feature for Downlink MIMO Enhancement | 11.4.0 | 12.0.0 | | | | 10/06/14 RAN_64 RP-140859 157 1 Correction on UCI multiplexing on PUSCH 12.0.0 12.1.0 10/06/14 RAN_64 RP-140862 158 - Introduction of Rel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 - Clarification of downlink subframes 12.0.0 12.1.0 10/09/14 RAN_65 RP-141485 161 - CR for 36.212 on 256QAM and LC-MTC 12.1.0 12.2.0 12.3.0 08/12/14 RAN_66 RP-142106 163 3 CR for 36.212 on 256QAM and LC-MTC 12.2.0 12.3.0 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 <td< td=""><td>10/06/14</td><td>RAN_64</td><td>RP-140858</td><td>156</td><td>-</td><td>Clarification on UE antenna port based CRC masking</td><td>12.0.0</td><td>12.1.0</td></td<> | 10/06/14 | RAN_64 | RP-140858 | 156 | - | Clarification on UE antenna port based CRC masking | 12.0.0 | 12.1.0 | | | | 10/06/14 RAN_64 RP-140862 158 - Introduction of Rel 12 features of TDD-FDD CA and elMTA 12.0.0 12.1.0 10/06/14 RAN_64 RP-140858 159 - Clarification of downlink subframes 12.0.0 12.1.0 10/09/14 RAN_65 RP-141485 161 - CR for 36.212 on 256QAM and LC-MTC 12.1.0 12.2.0 12.3.0 08/12/14 RAN_66 RP-142106 163 3 CR for 36.212 on 256QAM and LC-MTC 12.2.0 12.3.0 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 RP-150937 171 1 Corrections on elMTA RRC parameter naming 12.4.0 12.5.0 14/09/15 RAN_69 < | 10/06/14 | RAN_64 | RP-140859 | 157 | 1 | | 12.0.0 | 12.1.0 | | | | 10/06/14 RAN_64 RP-140858 159 - Clarification of downlink subframes 12.0.0 12.1.0 10/09/14 RAN_65 RP-141485 161 - CR for 36.212 on 256QAM and LC-MTC 12.1.0 12.2.0 12.3.0 08/12/14 RAN_66 RP-142106 163 3 CR for 36.212 on 256QAM and LC-MTC 12.2.0 12.3.0 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 RP-150936 169 - Corrections on elMTA RRC parameter naming 12.4.0 12.5.0 14/09/15 RAN_68 RP-151466 174 1 Introduction of 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-1 | 10/06/14 | RAN_64 | RP-140862 | 158 | - | | 12.0.0 | 12.1.0 | | | | 10/09/14 RAN_65 RP-141485 161 - CR for 36.212 on 256QAM and LC-MTC 12.1.0 12.2.0 08/12/14 RAN_66 RP-142106 163 3 CR for 36.212 on 256QAM and LC-MTC 12.2.0 12.3.0 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 RP-150936 169 - Corrections on elMTA RRC parameter naming 12.4.0 12.5.0 15/06/15 RAN_68 RP-150937 171 1 Correction for 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-151466 174 1 Introduction of MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 | 10/06/14 | RAN_64 | RP-140858 | 159 | - | Clarification of downlink subframes | 12.0.0 | 12.1.0 | | | | 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 RP-150936 169 - Corrections on elMTA RRC parameter naming 12.4.0 12.5.0 15/06/15 RAN_68 RP-150937 171 1 Correction for 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-151466 174 1 Introduction of MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 13.0.0 | 10/09/14 | RAN_65 | RP-141485 | 161 | - | | 12.1.0 | 12.2.0 | | | | 08/12/14 RAN_66 RP-142098 164 3 Clarification of PUSCH rate matching with SRS 12.2.0 12.3.0 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 RP-150936 169 - Corrections on elMTA RRC parameter naming 12.4.0 12.5.0 15/06/15 RAN_68 RP-150937 171 1 Correction for 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-151466 174 1 Introduction of MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 13.0.0 | 08/12/14 | RAN_66 | RP-142106 | 163 | 3 | CR for 36.212 on 256QAM and LC-MTC | 12.2.0 | 12.3.0 | | | | 08/12/14 RAN_66 RP-142107 166 - Introduction of Dual Connectivity feature into 36.212 12.2.0 12.3.0 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 RP-150936 169 - Corrections on elMTA RRC parameter naming 12.4.0 12.5.0 15/06/15 RAN_68 RP-150937 171 1 Correction for 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-151466 174 1 Introduction of MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 | | | RP-142098 | 1 | | Clarification of PUSCH rate matching with SRS | | | | | | 09/03/15 RAN_67 RP-150366 162 3 Introduction of D2D feature into 36.212 12.3.0 12.4.0 15/06/15 RAN_68 RP-150936 169 - Corrections on elMTA RRC
parameter naming 12.4.0 12.5.0 15/06/15 RAN_68 RP-150937 171 1 Correction for 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-151466 174 1 Introduction of MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152026 180 2 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | | 166 | - | | 12.2.0 | | | | | 15/06/15 RAN_68 RP-150936 169 - Corrections on elMTA RRC parameter naming 12.4.0 12.5.0 15/06/15 RAN_68 RP-150937 171 1 Correction for 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-151466 174 1 Introducing 4-layer MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152025 179 1 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | | 162 | 3 | | | | | | | 15/06/15 RAN_68 RP-150937 171 1 Correction for 36.212 on soft buffer assumption 12.4.0 12.5.0 14/09/15 RAN_69 RP-151466 174 1 Introducing 4-layer MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152025 179 1 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | | | | | | | | | | 14/09/15 RAN_69 RP-151466 174 1 Introducing 4-layer MIMO transmission in TM3 and TM4 12.5.0 12.6.0 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152025 179 1 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152026 180 2 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | RP-150937 | | | | | | | | | 14/09/15 RAN_69 RP-151467 175 2 Introduction of MIMO capability signalling for intra-band contiguous CA 12.50 12.6.0 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152025 179 1 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152026 180 2 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | | | 1 | | | | | | | 07/12/15 RAN_70 RP-152038 177 - Correction on rank indication bit widths 12.6.0 12.7.0 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152025 179 1 Introduction of EB/FD-MIMO 12.7.0 13.0.0 07/12/15 RAN_70 RP-152026 180 2 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | | | 2 | Introduction of MIMO capability signalling for intra-band | | _ | | | | 07/12/15 RAN_70 RP-152027 178 1 Introduction of Rel 13 feature of eCA 12.7.0 13.0.0 07/12/15 RAN_70 RP-152025 179 1 Introduction of EB/FD-MIMO 12.7.0 13.0.0 07/12/15 RAN_70 RP-152026 180 2 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | 07/12/15 | RAN 70 | RP-152038 | 177 | - | | 12.6.0 | 12.7.0 | | | | 07/12/15 RAN_70 RP-152025 179 1 Introduction of EB/FD-MIMO 12.7.0 13.0.0 07/12/15 RAN_70 RP-152026 180 2 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | | | 1 | | | | | | | 07/12/15 RAN_70 RP-152026 180 2 Introduction of Rel 13 feature of LAA 12.7.0 13.0.0 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | <u>-</u> | | | | | | | | | | | | | Change history | | |--------------------|------------------|------------------------|--------------|-----|--------|--|------------------| | Date | Meeting | TDoc | CR | Rev | Cat | Subject/Comment | New version | | 2016-03 | RAN#71 | RP-160361 | 0181 | 3 | В | Introduction of Rel-13 features of eMTC in 36.212 | 13.1.0 | | 2016-03 | RAN#71 | RP-160358 | 0185 | - | F | CR on mismatch between 36.212 and 36.331 | 13.1.0 | | 2016-03 | RAN#71 | RP-160358 | 0186 | - | F | Clarification on Class B CSI report | 13.1.0 | | 2016-03 | RAN#71 | RP-160365 | 0189 | - | Α | Correction to RI reporting for UE category with MIMO capability of 1 layer | 13.1.0 | | 2016-03 | RAN#71 | RP-160358 | 0191 | _ | F | CR on CRI-RI payload restriction for non-eCA UE | 13.1.0 | | 2016-06 | RAN#72 | RP-161067 | 0192 | 3 | В | Introduction of Rel-13 feature of NB-IoT in 36.212 | 13.2.0 | | 2016-06 | RAN#72 | RP-161062 | 0194 | - | F | Correction on aperiodic CSI reporting mode 1-0 and 1-1 | 13.2.0 | | 2016-06 | RAN#72 | RP-161063 | 0195 | - | F | Correction to S1 and S2 definition and i2 bit width | 13.2.0 | | 2016-06 | RAN#72 | RP-161066 | 0196 | 1 | F | MCS field in DCI format 6-2 for paging for MTC | 13.2.0 | | 2016-06 | RAN#72 | RP-161062 | 0197 | - | F | Coding of higher layer parameter codebooksizeDetermination-r13 | 13.2.0 | | 2016-06 | RAN#72 | RP-161065 | 0198 | - | F | CR on subframe configuration for LAA | 13.2.0 | | 2016-06 | RAN#72 | RP-161063 | 0199 | - | F | Correction on the description of DMRS table | 13.2.0 | | 2016-06 | RAN#72 | RP-161065 | 0200 | - | F | Clarification on the applicability of DL procedures for LAA SCell | 13.2.0 | | 2016-06
2016-06 | RAN#72
RAN#72 | RP-161062
RP-161066 | 0201
0202 | - | F | Correction on DAI Presence in DCI formats for eCA Identify MPDCCH order in CE mode B in TS 36.212 (Solution 2) | 13.2.0
13.2.0 | | 2016-06 | RAN#72 | RP-161063 | 0202 | - | F | CR on missing CRI-only table (36.212) | 13.2.0 | | 2016-06 | RAN#72 | RP-161062 | 0205 | _ | F | Correction on citations to a DAI bits table | 13.2.0 | | 2016-06 | RAN#72 | RP-161066 | 0206 | 1 | F | Frequency hopping flag definition in DCI formats for BL/CE UE | 13.2.0 | | 2016-06 | RAN#72 | RP-161066 | 0207 | - | F | Correction on the DCI payload size for eMTC in TS 36.212 | 13.2.0 | | 2016-06 | RAN#72 | RP-161066 | 0208 | | F | Channel interleaver correction for eMTC | 13.2.0 | | 2016-09 | RAN#73 | RP-161563 | 0211 | - | F | Correction on BCH rate matching in TS 36.212 | 13.3.0 | | 2016-09 | RAN#73 | RP-161560 | 0213 | - | F | Correction on bitwidth of CLASS A codebook | 13.3.0 | | 2016-09 | RAN#73 | RP-161560 | 0214 | - | F | Corrections on CRI bit width in 36.212 | 13.3.0 | | 2016-09 | RAN#73 | RP-161562 | 0215 | - | F | Subband CQI report and TM6 | 13.3.0 | | 2016-09 | RAN#73 | RP-161562 | 0216 | 1 | F | CR for clarification of DCI sizes for format 6-1A (TM6 and TM9) in TS 36.212 | 13.3.0 | | 2016-09 | RAN#73 | RP-161569 | 0219 | - | F | Correction on SRS request field in DCI format 1A for Rel-13 LAA | 13.3.0 | | 2016-09 | RAN#73 | RP-161925 | 0220 | - | F | Introduction of 1.2Gbps and 1.6Gbps UE categories in Rel-13 | 13.3.0 | | 2016-09 | RAN#73 | RP-161570 | 0217 | - | В | Introduction of V2V into TS36.212 | 14.0.0 | | 2016-09 | RAN#73 | RP-161571 | 0218 | - | В | Introduction of eLAA into TS36.212 | 14.0.0 | | 2016-12
2016-12 | RAN#74
RAN#74 | RP-162368
RP-162368 | 0221
0222 | - | F
D | Corrections to RV in eLAA DCI definitions CR on DCI formats related with LAA in TS 36.212 | 14.1.0
14.1.0 | | 2016-12 | RAN#74 | RP-162368 | 0223 | - | F | Clarification of PUSCH start position for eLAA | 14.1.0 | | 2016-12 | RAN#74 | RP-162368 | 0224 | - | F | CR on RI transmission on PUSCH for LAA SCells | 14.1.0 | | 2016-12 | RAN#74 | RP-162359 | 0231 | 1 | Α | Correction on DCI Format N1 in 36.212 | 14.1.0 | | 2016-12 | RAN#74 | RP-162366 | 0232 | - | F | Miscellaneous corrections for V2V in 36.212 | 14.1.0 | | 2016-12 | RAN#74 | RP-162368 | 0233 | - | F | CR on correction to the PUSCH start position reference and relative timing offset in UL DCI for LAA | 14.1.0 | | 2016-12 | RAN#74 | RP-162368 | 0234 | - | F | Corrections to bit padding of DCI format 1A for eLAA in TS36.212 | 14.1.0 | | 2016-12 | RAN#74 | RP-162368 | 0235 | - | F | CR on UL resource allocation for 10MHz LAA SCell | 14.1.0 | | | | | 0236 | - | | Corrections to bit padding of DCI format 0B for eLAA in TS36.212 | 14.1.0 | | | | RP-162364 | 0237 | - | В | Introduction of SRS switching into 36.212 | 14.1.0 | | 2016-12 | RAN#74 | RP-162365 | 0238 | - | В | Introduction of Multiuser Superposition Transmission (MUST) | 14.1.0 | | 2016-12 | RAN#74 | RP-162366 | 0239 | - | F | Correction to DCI format 5A MCC clean-up to correct corruption in text formatting (wrong line | 14.1.0 | | 2017-01 | DANIHZE | DD 470005 | 0040 | 4 | | spacing) | 14.1.1 | | 2017-03
2017-03 | RAN#75
RAN#75 | RP-170605
RP-170608 | 0240
0241 | 1 | B
B | Introduction of uplink capacity enhancements in 36.212 Introduction of FeMBMS in 36.212 | 14.2.0
14.2.0 | | 2017-03 | RAN#75 | RP-170608 | 0241 | _ | A | Correction on soft buffer calculation for UE category 17 in Rel-14 | 14.2.0 | | 2017-03 | RAN#75 | RP-170609 | 0245 | - | A | DAI in eMTC | 14.2.0 | | 2017-03 | RAN#75 | RP-170615 | 0246 | - | F | CR for SRS switching in 36.212 | 14.2.0 | | 2017-03 | RAN#75 | RP-170622 | 0247 | - | В | Introduction of V2X into 36.212 | 14.2.0 | | 2017-03 | RAN#75 | RP-170623 | 0248 | - | В | Introduction of FeMTC in 36.212 | 14.2.0 | | 2017-03 | RAN#75 | RP-170624 | 0249 | _ | В | Introduction of Rel-14 NB-IoT enhancements in 36.212 | 14.2.0 | | 2017-03 | RAN#75 | RP-170607 | 0250 | - | В | Introduction of eFD-MIMO into 36.212 | 14.2.0 | | 2017-03 | RAN#75 | RP-170625 | 0251 | - | В | Introduction of
voice and video enhancement in 36.212 | 14.2.0 | | 2017-06 | RAN#76 | RP-171193 | 0253 | - | Α | CR for applicability of spatial bundling for PUCCH format 3 with FDD PCell | 14.3.0 | | 2017-06 | RAN#76 | RP-171209 | 0255 | - | Α | Corrections on bit width of PMI for wideband CQI reports in 36.212 | | | 2017-06 | RAN#76 | RP-171204 | 0256 | - | F | Clarification of resource allocation for PDSCH in CE mode B | 14.3.0 | | 2017-06 | RAN#76 | RP-171194 | 0257 | 1 | F | Corrections on bit width of UCI fields for advanced CSI reporting in 36.212 | 14.3.0 | | 2017-06 | RAN#76 | RP-171194 | 0258 | - | F | Correction on RI and CRI reporting for aperiodic and multi-shot CSI-RS | 14.3.0 | | 2017.06 | RAN#76 | RP-171210 | 0259 | - | F | CR on higher-layer parameters for 36.212 Clarification of resource allocation for PDSCH with maximum 5 | 14.3.0 | | 2017-06 | | | | | | | | | 2017-06 | RAN#76 | RP-171204 | 0263 | - | F | Corrections on total number of soft channel bits for UE Cat M1 and M2 in 36.212 | 14.3.0 | |---------|------------------|------------------------|------|---|--------|--|------------------| | 2017-09 | RAN#77 | RP-171646 | 0264 | 3 | F | Correction on NB-IoT DCI format N1 in 36.212 | 14.4.0 | | 2017-09 | RAN#77 | RP-171647 | 0265 | - | F | CR on UE assumption on co-scheduled DMRS ports for MUST in 36.212 | 14.4.0 | | 2017-12 | RAN#78 | RP-172686 | 0266 | 1 | F | Correction to multi-carrier NPRACH IE name in PDCCH order DCI format N1 | 14.5.0 | | 2017-12 | RAN#78 | RP-172678 | 0270 | • | Α | Clarification for DAI for eCA | 14.5.0 | | 2017-12 | RAN#78 | RP-172685 | 0271 | - | F | Correction of section references for feMTC | 14.5.0 | | 2017-12 | RAN#78 | RP-172692 | 0272 | - | F | Correction of section reference for eVoLTE | 14.5.0 | | 2017-12 | RAN#78 | RP-172682 | 0273 | - | F | Correction on deriving number of available symbols for PUSCH | 14.5.0 | | 2017-12 | RAN#78 | RP-172690 | 0276 | - | Α | Correction on number of SRS symbol for UCI multiplexing | 14.5.0 | | 2017-12 | RAN#78 | RP-172686 | 0277 | - | F | Clarification on 2 HARQ process applicability to UE-specific search space | 14.5.0 | | 2017-12 | RAN#78 | RP-172693 | 0278 | - | В | Introduction of shortened processing time and shortened TTI into 36.212 | 15.0.0 | | 2018-01 | | | | | | MCC to correct missing 5G logo on spec cover sheet | 15.0.1 | | 2018-03 | RAN#79 | RP-180195 | 0268 | 1 | В | Introduction of FeCoMP into 36.212 | 15.1.0 | | 2018-03 | RAN#79 | RP-180201 | 0279 | 1 | В | Introduction of EN-DC into 36.212 | 15.1.0 | | 2018-06 | RAN#80 | RP-181170 | 0280 | 2 | F | Corrections on shortened processing time and shortened TTI in 36.212 | 15.2.0 | | 2018-06 | RAN#80 | RP-181162 | 0283 | - | Α | Ordering of P-CSI plus SR in eCA | 15.2.0 | | 2018-06 | RAN#80 | RP-181173 | 0284 | 1 | В | Introduction of high capacity stationary wireless link and 1024QAM into 36.212 | 15.2.0 | | 2018-06 | RAN#80 | RP-181166 | 0285 | - | F | Clarification on CRC attachment for DL-SCH and PCH transport channels in NB-IoT | 15.2.0 | | 2018-06 | RAN#80 | RP-181165 | 0286 | - | Α | Correction on TPC field in DCI format 6-1A | 15.2.0 | | 2018-06 | RAN#80 | RP-181165 | 0288 | - | Α | Fallback DCI for eMTC | 15.2.0 | | 2018-06 | RAN#80 | RP-181180 | 0290 | 2 | В | Introduction of FeLAA into 36.212 | 15.2.0 | | 2018-06 | RAN#80 | RP-181182 | 0291 | - | F | Introduce definition of non-BL/CE in Definitions section | 15.2.0 | | 2018-06 | RAN#80 | RP-181174 | 0292 | - | В | Introduction of even further enhanced MTC for LTE in 36.212 | 15.2.0 | | 2018-06 | RAN#80 | RP-181166 | 0293 | - | В | Introduction of further enhancements to NB-IoT in 36.212 | 15.2.0 | | 2018-06 | RAN#80 | RP-181176 | 0294 | - | В | Introduction of V2X Phase 2 based on LTE | 15.2.0 | | 2018-06 | RAN#80 | RP-181177 | 0295 | - | В | Introduction of HRLLC into 36.212 | 15.2.0 | | 2018-06 | RAN#80 | RP-181182 | 0296 | - | В | Introduction of modulation enhancements | 15.2.0 | | 2018-07 | | | | | | MCC correction to remove duplication of DMRS position indicator statement for format 7-1F (subclause 5.3.3.1.22) and format 7-1G (subclause 5.3.3.1.23). | 15.2.1 | | 2018-09 | RAN#81 | RP-181795 | 0297 | 1 | F | Correction on the interpretation of HARQ-ACK bitmap for FeLAA in 36.212 | 15.3.0 | | 2018-09 | RAN#81 | RP-181782 | 0299 | - | Α | Correction on DCI for HARQ-ACK bundling | 15.3.0 | | 2018-09 | RAN#81 | RP-181795 | 0300 | - | F | Correction on the partial PUSCH mode field for FeLAA in 36.212 | 15.3.0 | | 2018-09 | RAN#81 | RP-181790 | 0301 | - | F | Correction of RRC parameter name for 1024QAM rate matching | 15.3.0 | | 2018-09 | RAN#81 | RP-181799 | 0303 | - | Α | Corrections to modulation signalling in MUST | 15.3.0 | | 2018-09 | RAN#81 | RP-181787 | 0304 | - | F | Corrections on shortened processing time and shortened TTI in 36.212 | 15.3.0 | | 2010 00 | | | | | | | | | 2018-09 | RAN#81 | RP-181791 | 0305 | - | F | | 15.3.0 | | | RAN#81
RAN#81 | RP-181791
RP-181783 | 0305 | - | F
F | Corrections to Even further enhanced MTC for LTE Corrections to Further Enhancements of NB-IoT | 15.3.0
15.3.0 | # History | Document history | | | | | | | |------------------|--------------|-------------|--|--|--|--| | V15.2.1 | July 2018 | Publication | | | | | | V15.3.0 | October 2018 | Publication |